
Upgrading Applications to Support New OS
Platform Versions

Version: 2013.11.22

This section includes best practices that should be considered when planning for upgrading apps
with support for new platform versions.

Checklist

❏ Plan ahead for periodic O/S upgrades �

❏ Assume required changes to support any new O/S version �

❏ Assume required changes to support any new platform or O/S �

❏ Target beta periods to upgrade applications...as a continuous cycle �

❏ Upgrade Native OS Vendor’s SDK during Beta period �

❏ Think twice about running in legacy mode �

❏ Treat hybrid webview as different from standalone web browsers �

❏ Upgrade application-level libraries used for new platform support �

❏ On Android platform, consider using exclusion capabilities to protect against untested new
device use �

Copyright © 2013, International Business Machines Corporation

Discussion

Plan ahead for periodic O/S upgrades
When supporting an app on multiple mobile operating systems, because of the release
frequency of OS upgrades it is important to have an ongoing plan for updating existing
app's platform support on an periodic basis. Native OS api's can change the behavior
of applications, and new OS versions are also typically when OS-supplied browsers are
updated. Usually breaking changes are contained mainly to major version upgradees,
but it's important to verify application regression testing through continuous testing as
major.minor levels are released as well.

As part of a periodic application app upgrade plan, it is important to review the items within
this document.

Assume required changes to support any new O/S version
Assume that there will always be changes needed to support a new version of an operating
system already supported. Whether you are building native, hybrid or web apps, you should
always assume that the new OS version upgrade will introduce some changes that will
break your app--especially when adding a new major version of operating system support.

Adding support for a new major version of an operating system requires more effort than
adding support for a new major.minor version, and less effort than adding support for a new
operating system altogether.

Assume required changes to support any new platform or O/S
You should assume that there will always be changes needed to add support for a new
operating system that is not already supported, even when using hybrid and web app
architectures. Web and hybrid application architectures save costs over time because of
fewer skills compared to native apps. However, web and hybrid apps are not write once,
run on every device or operating system without any changes--they usually require some
app development updates and testing to support additional devices or platforms, even
when using mobile-first responsive design techniques.

Changes will always be needed to support new versions of operating systems. The costs
of adding support for new devices/OS will generally be less than that of native projects, but
there is still work involved. The browser engine on different mobile OS’s may be webkit
based; however, webkit is designed modularly and capabilities still vary greatly across
versions of different operating systems (and sometimes within the same operating system).

Copyright © 2013, International Business Machines Corporation

Using mobile first responsive design techniques (ie. “flexible layouts and environment
aware components”) can further reduce the costs of supporting new OS versions as
compared to prescriptive designed applications (eg. “pixel perfect” designs); however, there
are still maintenance costs involved with keeping media queries and stylesheets up to date
with OS/browser changes.

Target beta periods to upgrade applications...as a continuous cycle
Your users will be buying new models the day they arrive and trying out your app on the
very first day. The user expectation is that you’ll have done work already to ensure your
app is ready to go for that new iGadget v128.0 on the day it comes out. This means you
have to be done with development and testing prior to that GA date.

Whether you’re doing native, hybrid or web apps, plan for additional development work to
add support for any new operating system to be completed in the beta period prior to the
new operating system’s expected GA date.

The more apps you have that will need to support the new major version, the more testing/
development resources will be needed to upgrade them during the beta period.

This also means that your application’s dependencies, 3rd party vendor runtime libraries
and tools your application uses above and beyond the device vendor’s SDK need to be
certified for use with the new operating system version prior to the GA date of the new
device’s operating system update. See additional guidance regarding library upgrades
later in this document.

Upgrade Native OS Vendor’s SDK during Beta period
During the beta period, upgrade your prerequisite development tools to versions that
correspond to the the new mobile OS version:

● XCode
● Android SDK
● Blackberry SDK
● Microsoft Windows Phone SDK

Think twice about running in legacy mode
Sometimes device operating system vendors allow running applications built on previous
versions of tools on newer versions of an operating system in a legacy mode. Running
in legacy mode can sometimes be leveraged to extend the time needed to migrate an
application to a new version of the device operating system beyond the general availability
date of the device operating system.

However, it is not a recommended practice to remain in legacy mode for an extended
period of time and to use the time in legacy mode to upgrade the application with true

Copyright © 2013, International Business Machines Corporation

support for the new version of the operating system. The reason being is that the device
operating system vendor could pull support for the previous operating system version's
tools running on the new operating system version at their discretion.

Treat hybrid webview as different from standalone web browsers
You should treat hybrid webview environments as a different environment from that of the
default standalone web browser on an operating system. Although usually the standalone
web browser will use the same engine as the browser engine used by embedded web
views (used by hybrid apps), this is sometimes not the case. Even if the same browser
engine is used, different options will be enabled between webviews and standalone
browser, such as JavaScript optimization levels that can provide different behaviors in the
two environments.

Upgrade application-level libraries used for new platform support
3rd party Javascript libraries including any 3rd party plugins or extensions to these libraries
from other vendors you may be using:

● jQuery
● Dojo
● EmberJS
● AngularJS
● Sencha
● etc.

3rd party Native (iOS, Android, Blackberry, Win8) client-side libraries
● Augmented Reality
● Barcode scanning, etc.

The libraries may be provided by a mobile platform provider (eg. IBM, Kony, Titanium, etc.)
or provided by 3rd parties. It is important to review the versions of the native libraries being
used to ensure that the libraries have been tested and are supported on the new version of
the operating system the application will be supported on. If not, plan time prior to the OS
update becoming available to upgrade these libraries.

Finally, plan appropriate time to regression test the application functionality on the new
operating system prior to the general availability release of the new OS version if possible.
Sometimes mobile operating system versions can change browser or webview dimensions
or other native UI elements that require changes to an application these changes can
occur in either native or JavaScript/HTML code and may require things like CSS styling
and responsive design techniques (eg. media queries) to adjust UI layouts flexibly to the
changes introduced by the mobile OS vendor.

Copyright © 2013, International Business Machines Corporation

On Android platform, consider using exclusion capabilities to protect against
untested new device use

The Android beta program is typically limited to participation by device carriers, unlike
Apple which as a beta period prior to GA that developers can get access to. Because of
this, you will likely not be able to test your application prior to the GA release date for new
versions of Android. Instead, as devices become available that can run the new version of
Android (or if you can upgrade current device’s at time of GA release, you can then begin
testing).

When you already have an Android app in the Google Play app store, you can protect
against new untested devices/OS versions being used with your app, until you have had
time to test your app on the new version by using the Google Play exclusion list feature.

Reference:
● http://mobile.tutsplus.com/tutorials/android/android-essentials-publishing-to-specific-

devices/

Trademarks

© 2012 Google Inc. All rights reserved. Android is a trademark of Google Inc.

Copyright © 2013, International Business Machines Corporation

http://mobile.tutsplus.com/tutorials/android/android-essentials-publishing-to-specific-devices/
http://mobile.tutsplus.com/tutorials/android/android-essentials-publishing-to-specific-devices/

