
IBM MobileFirst Platform Foundation
V6.3.0

IBM

Note
Before you use this information and the product it supports, read the information in “Notices” on page A-1.

IBM MobileFirst Platform Foundation V6.3.0

This edition applies to version V6.3.0 of IBM MobileFirst Platform Foundation and to all subsequent releases and
modifications until otherwise indicated in new editions.

This edition was updated last on 25 Jan 2017.

This PDF document is made available for convenience and on an "as is" basis only. The master and controlling
document can be found in Knowledge Center at http://ibm.biz/knowctr#SSHS8R_6.3.0/wl_welcome.html. This
PDF document may contain uncontrollable formatting errors or differences from the master version in Knowledge
Center.

© Copyright IBM Corporation 2006, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://ibm.biz/knowctr#SSHS8R_6.3.0/wl_welcome.html

Contents

IBM MobileFirst Platform Foundation
V6.3.0 documentation 1-1

Product overview 2-1
Introduction to mobile application development . . 2-1
Product main capabilities 2-4
Product components 2-7
Product editions 2-11
System requirements for using IBM MobileFirst
Platform Foundation. 2-12
Matrix of features and platforms. 2-12

Release notes 3-1
What's new in V6.3.0 interim fixes 3-1
iOS 9 support 3-1
Android 6.0 Marshmallow support 3-2
Apache Cordova 3-3
What's new 3-4

New product name 3-4
Efficient development. 3-4
Enhanced user engagement 3-7
Secure integration 3-8
Continuous delivery 3-9
Improved MobileFirst API 3-11
Documentation improvements 3-14

Deprecated and removed features 3-14
Deprecated features 3-15
Removed features. 3-15

Known issues 3-15
Known limitations 3-16

Troubleshooting 4-1

Tutorials, samples, and additional
resources 5-1

Installing and configuring 6-1
IBM MobileFirst Platform Foundation installation
overview 6-1
Installing MobileFirst Studio 6-2

Running additional tasks for Rational Team
Concert V4.0 6-3
Starting MobileFirst Studio 6-4
Installing mobile-specific tools 6-4
Changing the port number of the internal
application server 6-6
Uninstalling MobileFirst Studio 6-7

Installing command-line tools for developers . . . 6-8
Installing in silent mode 6-8
Windows 8.1 installation for IBM MobileFirst
Platform Command Line Interface 6-9
Console Installation for MobileFirst Platform
Command Line Interface 6-11

Uninstalling command-line tools for developers 6-12

Installing and configuring IBM MobileFirst
Platform Test Workbench 6-12

Troubleshooting IBM MobileFirst Platform Test
Workbench 6-13

Installing MobileFirst Server 6-14
Planning the installation of MobileFirst Server 6-14
Tutorial for a basic installation of MobileFirst
Server 6-20
Running IBM Installation Manager 6-27
Installing the MobileFirst Server administration 6-46
Installing a server farm 6-99

Configuring MobileFirst Server 6-118
Backup and recovery 6-118
Optimization and tuning of MobileFirst Server 6-118
Optimization of MobileFirst Server project
databases 6-121
Testing MobileFirst Server performance . . . 6-123
Security configuration 6-130
Transmitting MobileFirst data on the
BlackBerry Enterprise Server MDS channel . . 6-135
Protecting your mobile application traffic by
using IBM WebSphere DataPower as a
security gateway 6-135
Configuring MobileFirst Server to enable TLS
V1.2 6-147
Configuring SSL between MobileFirst adapters
and back-end servers by using self-signed
certificates 6-148
Configuring SSL by using untrusted
certificates 6-150
Handling MySQL stale connections 6-168
Managing the DB2 transaction log size . . . 6-169

Installing the IBM MobileFirst Platform
Operational Analytics 6-170

Installing IBM MobileFirst Platform
Operational Analytics for WebSphere
Application Server Liberty 6-171
Installing IBM MobileFirst Platform
Operational Analytics for WebSphere
Application Server 6-172
IBM MobileFirst Platform Operational
Analytics installation for Tomcat 6-176
Configuring the MobileFirst Server for the
IBM MobileFirst Platform Operational
Analytics 6-176

Installing and configuring the Application Center 6-177
Installing Application Center with IBM
Installation Manager 6-177
Manual installation of Application Center 6-182
Configuring the Application Center after
installation 6-203
Configuring WebSphere Application Server
full profile 6-204
Configuring WebSphere Application Server
Liberty profile 6-206
Configuring Apache Tomcat 6-207

© Copyright IBM Corp. 2006, 2015 iii

Configuring properties of DB2 JDBC driver in
WebSphere Application Server 6-207
Configuring WebSphere Application Server to
support applications in public app stores . . 6-208
Managing users with LDAP 6-210
Defining the endpoint of the application
resources 6-230
Configuring Secure Sockets Layer (SSL) . . . 6-235
Managing the DB2 transaction log size . . . 6-237
List of JNDI properties for the Application
Center 6-238

Predefining MobileFirst Server configuration for
several deployment environments 6-244

Creating the property file 6-244
Using a property file in the file system . . . 6-245
Using property files injected into a web
archive file 6-248
Using a shared library of JNDI properties 6-251

Typical topologies of a MobileFirst instance. . . 6-255
Setting up IBM MobileFirst Platform
Foundation in WebSphere Application Server
cluster environment 6-257
Setting up an IBM HTTP Server in an IBM
WebSphere Application Server Liberty profile
farm 6-268
Integrating IBM WebSphere DataPower with a
cluster of instances of MobileFirst Server . . 6-276

Endpoints of the MobileFirst Server production
server 6-288

HTTP Interface of the production server . . . 6-290
Troubleshooting IBM MobileFirst Platform Server 6-294

Troubleshooting to find the cause of
installation failure 6-295
Troubleshooting failure to create the DB2
database 6-295
Troubleshooting a MobileFirst Server upgrade
with Derby as the database 6-295
Troubleshooting failure to authenticate to
Application Center and applications that use
the basic registry element. 6-296
Troubleshooting server farm configuration
issues 6-297

Upgrading to IBM MobileFirst Platform
Foundation V6.3.0 7-1
Version compatibility 7-1
Separation of lifecycle between MobileFirst Server
and MobileFirst Studio 7-3
Upgrading to MobileFirst Studio V6.3.0 7-5

Upgrading MobileFirst Studio in the Consumer
or Enterprise Editions to MobileFirst Studio
V6.3.0 7-5
Upgrading MobileFirst Studio in the Developer
Edition to MobileFirst Studio V6.3.0 7-6
Migrating projects to MobileFirst Studio V6.3.0 7-7
Impact of migrating to a new version of
MobileFirst Studio for applications already in
production 7-11

Migrating projects to V6.3.0 using MobileFirst
Platform Command Line Interface 7-12

Migrating IBM SmartCloud Analytics Embedded
to IBM MobileFirst Platform Operational Analytics 7-12
Upgrading to MobileFirst Server V6.3.0 in a
production environment 7-13

Overview of the upgrade to MobileFirst Server
V6.3.0 process 7-14
Preparation for upgrades to MobileFirst Server 7-16
Starting the MobileFirst Server V6.3.0 upgrade
process 7-29
Running IBM Installation Manager and
completing the Application Center upgrade . . 7-34
Upgrading the MobileFirst runtime
environment for MobileFirst Server V6.3.0 . . 7-40
Additional MobileFirst Server V6.3.0 upgrade
information 7-50
Updating deployment scripts 7-58

Rolling upgrade procedure to apply a fix pack to
IBM MobileFirst Platform Foundation V6.3.0. . . 7-59

Planning the rolling upgrade procedure . . . 7-60
Overview of the rolling upgrade procedure 7-61
Performing a rolling upgrade to install a fix
pack 7-61

Developing MobileFirst applications 8-1
MobileFirst Studio overview 8-2
Artifacts produced during development cycle. . . 8-5

MobileFirst projects, environments, and skins 8-5
Creating MobileFirst projects 8-7
Creating an application in a MobileFirst project 8-9
Creating the client-side of a MobileFirst
application 8-10
Integrating with source control systems . . . 8-11

Developing hybrid and web applications 8-14
Anatomy of a MobileFirst project 8-14
Anatomy of a MobileFirst application 8-15
Setting up a new MobileFirst environment for
your application 8-32
The MobileFirst Development Server and the
MobileFirst Operations Console 8-35
Removing a project from MobileFirst
Operations Console 8-38
Working with multiple MobileFirst Server
instances in MobileFirst Studio 8-38
Developing hybrid applications 8-46
Developing user interface of hybrid
applications. 8-76
Connecting to MobileFirst Server 8-145
Configuring the MobileFirst Logger 8-145
Web and native code in iPhone, iPad, and
Android 8-155
Development guidelines for desktop and web
environments 8-159
Configuring and customizing direct update 8-162

Developing native applications 8-180
Development guidelines for using native API 8-180
Developing native applications for iOS . . . 8-183
Developing native applications for Android 8-189
Developing native applications for Java
Platform, Micro Edition 8-195
Developing native C# applications for
Windows Phone 8 8-198

iv IBM MobileFirst Platform Foundation V6.3.0

Developing native C# applications for
Windows 8 8-201
Adding MobileFirst web capabilities to an
existing native app 8-203

Updating mobile apps with IBM MobileFirst
Platform Foundation and the Application Center . 8-208
MobileFirst Platform Command Line Interface 8-210

CLI commands usage 8-210
Commands 8-211

Accelerating application development by reusing
resources 8-285

Configuring application component and
template preferences 8-285
Application components 8-285
MobileFirst project templates 8-301

Building and deploying in MobileFirst Studio 8-304
The Run on MobileFirst Development Server
command 8-306
The Build All Environments command . . . 8-307
The Preview command 8-308
The Build Settings and Deploy Target
command 8-308
Additional Run As menu options 8-311

Optimizing MobileFirst applications 8-312
Including and excluding application features 8-313
Application cache management in Desktop
Browser and Mobile Web apps 8-316
MobileFirst application build settings. . . . 8-321
Minification of JS and CSS files 8-324
Concatenation of JS and CSS files 8-327
Optimizing MobileFirst applications for use
over slow networks. 8-331

Developing the server side of a MobileFirst
application 8-333

Overview of MobileFirst adapters 8-333
The adapter XML File 8-337
Creating a MobileFirst adapter 8-354
Adapter timeout and concurrency 8-357
Generating adapters with the services
discovery wizard 8-359
Adapter invocation service 8-364
Implementing adapter procedures 8-365
Encoding a SOAP XML envelope 8-367
Backend responses in adapters 8-368
Calling Java code from a JavaScript adapter 8-372
Features of MobileFirst Studio 8-372
Procedure invocation 8-376
Invoking a back-end service 8-377
Deploying an adapter 8-379
JMS adapters 8-380
SAP adapters 8-386
USSD Support 8-396
Invoking a back-end service for USSD . . . 8-398

JSONStore 8-401
JSONStore overview 8-401
General JSONStore terminology 8-405
Enabling JSONStore 8-407
JSONStore API concepts 8-407
JSONStore troubleshooting 8-411
JSONStore examples 8-419
JSONStore advanced topics 8-437

JSONStore security utilities 8-451
Push notification 8-455

Possible MobileFirst push notification
architectures 8-456
Setting up push notifications 8-458
Broadcast notifications. 8-461
Event source-based notifications 8-462
Interactive notifications 8-464
Tag-based notification 8-466
Silent notifications 8-467
Unicast notifications 8-469
Web-based SMS subscription 8-469
Sending push notifications 8-471
Sending SMS push notifications 8-472
Sending push notifications from WebSphere
Application Server – IBM DB2 8-473
Configuring a polling event source to send
push notifications 8-473
Using two-way SMS communication 8-475
Using native and JavaScript push APIs in the
same app 8-476
Troubleshooting push notification problems 8-479

MobileFirst security framework. 8-480
MobileFirst security overview 8-480
MobileFirst application authenticity overview 8-485
Security tests 8-490
Authentication realms 8-492
Authenticators and login modules 8-494
Mobile device authentication 8-494
The authentication configuration file 8-497
Configuring MobileFirst web application
authorization 8-501
Configuring authenticators and realms . . . 8-501
Configuring login modules 8-520
Configuring device auto provisioning . . . 8-525
Device single sign-on (SSO) 8-535
Using SSO between IBM MobileFirst Platform
Foundation and external services 8-541

Simple data sharing 8-549
Simple data sharing overview 8-549
Simple data sharing general terminology 8-549
Enabling the Simple Data Sharing feature 8-550
Simple data sharing API concepts 8-553
Simple data sharing troubleshooting 8-554
Simple data sharing limitations and special
considerations 8-554

Developing globalized hybrid applications . . . 8-555
Globalization in JavaScript frameworks . . . 8-555
Globalization mechanisms in IBM MobileFirst
Platform Foundation 8-566
Globalization of web services 8-574
Globalization of push notifications. 8-575
Enforce language preference for MobileFirst
messages 8-578

Developing accessible applications. 8-579
Location services 8-580

Platform support for location services . . . 8-582
Location services permissions 8-583
Triggers 8-585
Setting an acquisition policy 8-587
Working with geofences and triggers 8-588

Contents v

Differentiating between indoor areas 8-591
Securing server resources based on location 8-596
Tracking the current location of devices . . . 8-598
Keeping the application running in the
background 8-600

Client-side log capture. 8-601
Server preparation for uploaded log data 8-605
Client-side log capture configuration from the
MobileFirst Operations Console 8-607

MobileFirst Filtered Export 8-608

Testing with IBM MobileFirst Platform
Foundation 9-1
Getting started 9-6
Creating a Test Workbench project 9-6
Managing mobile applications 9-7
Creating mobile tests 9-7
Editing mobile tests 9-8
Running mobile tests 9-9
Evaluating results 9-9
Using MobileFirst Studio and Application Center 9-9

Initiating mobile testing from Android, iPad,
and iPhone environments in MobileFirst Studio . 9-9
Using the Application Center and the
MobileFirst Test Workbench to share
applications. 9-11
Publishing test-ready iOS applications to the
Application Center 9-12

API reference 10-1
MobileFirst client-side API. 10-1

JavaScript client-side API 10-2
Objective-C client-side API for iOS apps . . . 10-5
Objective-C client-side API for hybrid apps 10-6
Java client-side API for Android apps 10-6
Java client-side API for Java Platform, Micro
Edition (Java ME) apps 10-6
C# client-side API for Windows Phone 8 apps 10-6
C# client-side API for Windows 8 apps . . . 10-7

MobileFirst server-side API 10-7
JavaScript server-side API 10-8
Java server-side API 10-8

REST Services API 10-8
Adapter Binary (GET, HEAD) 10-9
Adapter (DELETE) 10-10
Adapter (GET) 10-13
Adapter (POST) 10-15
Adapters (GET) 10-18
Adobe Air Application Binary (GET) 10-21
APNS Credentials (DELETE) 10-22
APNS Credentials (GET) 10-24
APNS Credentials (PUT) 10-26
App Version Access Rule (PUT) 10-28
App Version Authenticity Check (PUT) . . . 10-33
App Version (DELETE) 10-37
App Version Lock (PUT) 10-40
Application Binary (GET, HEAD) 10-42
Application (DELETE) 10-44
Application (GET) 10-46
Application (POST) 10-50

Applications (GET) 10-54
Associate beacons and triggers (DELETE) 10-59
Associate beacons and triggers (GET). . . . 10-62
Associate beacons and triggers (PUT). . . . 10-65
Beacon Trigger (DELETE). 10-69
Beacon Trigger (GET) 10-72
Beacon Triggers (GET) 10-74
Beacon Triggers (POST) 10-76
Beacon Triggers (PUT) 10-81
Beacons (DELETE) 10-85
Beacons (GET) 10-88
Beacons (PUT) 10-91
Device Application Status (PUT) 10-95
Device (DELETE) 10-99
Device Status (PUT) 10-102
Devices (GET) 10-105
Event Source (GET) 10-108
Event Sources (GET) 10-110
GCM Credentials (DELETE) 10-112
GCM Credentials (GET) 10-114
GCM Credentials (PUT) 10-115
Mediator (GET). 10-118
Mediators (GET) 10-119
MPNS Credentials (DELETE) 10-121
MPNS Credentials (GET) 10-123
MPNS Credentials (PUT) 10-124
Push Device Registration (DELETE) 10-127
Push Device Registration (GET) 10-129
Push Device Subscription (DELETE). . . . 10-130
Push Device Subscription (GET) 10-132
Push Devices Registration (GET) 10-135
Push Enabled Applications (GET) 10-137
Push Tags (DELETE) 10-139
Push Tags (GET) 10-141
Push Tags (POST) 10-143
Push Tags (PUT) 10-145
Runtime (DELETE) 10-147
Runtime (GET) 10-148
Runtime Lock (DELETE) 10-154
Runtime Lock (GET) 10-155
Runtimes (GET) 10-156
Send Bulk Messages (POST) 10-159
Send Message (POST) 10-163
Transaction (GET) 10-168
Transactions (GET) 10-171
Unsubscribe SMS (POST) 10-174

Deploying MobileFirst projects . . . 11-1
Deploying MobileFirst applications to test and
production environments 11-1

Deploying an application from development to
a test or production environment 11-2
Building a project WAR file with Ant 11-4
Deploying the project WAR file 11-5
Configuration of MobileFirst applications on
the server 11-45
Ant tasks for building and deploying
applications and adapters. 11-67
Deploying applications and adapters to
MobileFirst Server 11-73

vi IBM MobileFirst Platform Foundation V6.3.0

Administering adapters and apps in
MobileFirst Operations Console. 11-74
MobileFirst security overview 11-76
High availability. 11-91
Updating MobileFirst apps in production 11-93

Deploying to the cloud 11-96
Installing MobileFirst support for cloud
deployment 11-96
Working with the IBM MobileFirst Platform
Application Pattern Type 11-99
Working with IBM MobileFirst Platform
Application Pattern Extension for MobileFirst
Studio 11-109
Building and deploying MobileFirst virtual
applications by using the command line
interface 11-111
Deployment of the Application Center to the
cloud 11-114
Deployment of analytics to the cloud . . . 11-117

Administering MobileFirst
applications. 12-1
Administering MobileFirst applications with
MobileFirst Operations Console 12-2

Locking an application 12-3
Remotely disabling application connectivity 12-3
Displaying a notification message on
application startup 12-5
Defining administrator messages from
MobileFirst Operations Console in multiple
languages 12-5
Controlling authenticity testing for an app . . 12-8
Error log of operations on runtime
environments 12-9
Audit log of administration operations . . . 12-10

Administering MobileFirst applications through
Ant 12-12

Calling the wladm Ant task 12-13
Commands for adapters 12-16
Commands for apps 12-19
Commands for beacons 12-24
Commands for devices 12-30
Commands for troubleshooting 12-32
A complex example of a wladm Ant task . . . 12-35

Administering MobileFirst applications through
the command line 12-36

Calling the wladm program 12-36
Commands for adapters 12-41
Commands for apps 12-44
Commands for beacons 12-49
Commands for devices 12-56
Commands for troubleshooting 12-58

Administering push notifications with the
MobileFirst Operations Console 12-61
Application Center 12-62

Concept of the Application Center 12-63
Specific platform requirements 12-64
General architecture 12-65
Preliminary information 12-67
Preparations for using the mobile client . . . 12-68
Push notifications of application updates 12-76

The Application Center console. 12-82
Command-line tool for uploading or deleting
an application 12-108
Publishing MobileFirst applications to the
Application Center 12-114
The mobile client 12-117
Advanced information for BlackBerry users 12-154

Federal standards support in IBM MobileFirst
Platform Foundation 12-156

FDCC and USGCB support 12-156
FIPS 140-2 support 12-157

Monitoring and mobile operations 13-1
Logging and monitoring mechanisms 13-1

Vitality queries for checking server health . . 13-2
Configuring logging in the development server 13-4
Setting logging and tracing for Application
Center on the application server 13-7

Analytics 13-9
Comparison of operational analytics and
reports features 13-10
Operational analytics 13-11
Reports database 13-43

Mobile application management 13-62
User to device mapping and control 13-63
Device access management in the MobileFirst
Operations Console. 13-64
Enabling the device access management
features. 13-65
Performance implications for the server . . . 13-66

User certificate authentication 13-67
User certificate authentication overview . . . 13-67
Protecting resources with user certificate
authentication 13-70
User certificate authentication on the server 13-71
User certificate authentication on the client 13-80
Troubleshooting the User Certificate
Authentication feature 13-83

License tracking 13-84
Configuring your license tracking details 13-84
License Tracking report 13-85
Integration with IBM License Metric Tool 13-86

Integrating with other IBM products 14-1
Introduction to MobileFirst integration capabilities 14-1
Integration with Cast Iron 14-2
Integration and authentication with a reverse
proxy 14-3
Integration with IBM Endpoint Manager 14-5

IBM Endpoint Manager for Mobile Devices 14-5
End-point management with IBM Endpoint
Manager 14-7

Integration with IBM Tealeaf 14-9
IBM Tealeaf client-side integration 14-9
IBM Tealeaf server-side integration 14-10

Integration with IBM Trusteer 14-10
Integrating IBM Trusteer for iOS 14-11
Integrating IBM Trusteer for Android by using
a MobileFirst component 14-11

Contents vii

Integrating IBM Trusteer for Android from a
zipped archive 14-12

Using WebSphere DataPower as a push
notification proxy 14-13
More about integration 14-13

Reference 15-1
Ant configuredatabase task reference 15-1
Customizing the database connection with JDBC
properties 15-7
Ant tasks for installation of MobileFirst
Operations Console and Administration Services . 15-8
Ant tasks for installation of MobileFirst runtime
environments 15-16
Internal runtime database tables 15-26
Sample configuration files 15-30

Glossary 16-1
A 16-1
B 16-2
C 16-2
D 16-4
E 16-4
F 16-4
G 16-5

H 16-5
I 16-5
J 16-5
K 16-5
L 16-6
M 16-6
N 16-7
P 16-7
R 16-8
S 16-8
T 16-9
U 16-10
V 16-10
W 16-10
X 16-10

Support and comments. 17-1

Notices A-1
Trademarks A-3
Terms and conditions for product documentation A-3
IBM Online Privacy Statement A-4

Index X-1

viii IBM MobileFirst Platform Foundation V6.3.0

IBM MobileFirst Platform Foundation V6.3.0 documentation

Welcome to the IBM MobileFirst™ Platform Foundation V6.3.0 documentation,
where you can find information about how to install, maintain, and use the
product.

Getting started

Product overview
Product legal notices
Release notes
What's New
System requirements for using IBM MobileFirst Platform Foundation
IBM MobileFirst Platform Foundation installation overview
Configuring MobileFirst Server
Tutorials, samples, and additional resources
Common tasks

Developing MobileFirst applications
Testing with IBM MobileFirst Platform Foundation
Deploying MobileFirst projects
Administering MobileFirst applications
Using the Application Center
Troubleshooting and support

Troubleshooting
Known limitations

IBM Support home for IBM MobileFirst Platform Foundation
More information

PDF file for this documentation

Mobile Application Developer skills

IBM MobileFirst Platform blogs

developerWorks blogs and articles

Mobile development community

IBM Redbooks

© Copyright IBM Corporation 2006, 2016 © IBM 2006, 2015 1-1

http://www.ibm.com/support/entry/portal/product/other_software/ibm_mobilefirst_platform_foundation
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mobilefirst_platform_foundation_doc.pdf
http://www-304.ibm.com/services/learning/ites.wss/zz/en/?pageType=page&c=J179530Z42409M36
https://developer.ibm.com/mobilefirstplatform/blogs
http://www.ibm.com/search/csass/search/?q=MobileFirst+Platform&dws=dw&ibm-search.x=0&ibm-search.y=0&sn=dw&cc=US&ddr=&en=utf&lo=en&hpp=20
http://www.ibm.com/developerworks/mobile/
http://www.redbooks.ibm.com/

1-2 IBM MobileFirst Platform Foundation V6.3.0

Product overview

IBM MobileFirst Platform Foundation is an integrated platform that helps you
extend your business to mobile devices.

IBM MobileFirst Platform Foundation includes a comprehensive development
environment, mobile-optimized runtime middleware, a private enterprise
application store, and an integrated management and analytics console, all
supported by various security mechanisms.

With IBM MobileFirst Platform Foundation, your organization can efficiently
develop, connect, run, and manage rich, cross-platform mobile applications (apps)
that can access the full capabilities of your target mobile devices. IBM MobileFirst
Platform Foundation can help reduce time-to-market, cost, and complexity of
development, while enabling an optimized customer and employee user experience
across multiple environments.

As part of this comprehensive mobile solution, IBM MobileFirst Platform
Foundation can be integrated with application lifecycle, security, management, and
analytics capabilities to help you address the unique mobile needs of your
business.

Introduction to mobile application development
With IBM MobileFirst Platform Foundation, you can develop mobile applications
by using any of four different approaches: web development, hybrid development,
hybrid mixed development, and native development.

IBM MobileFirst Platform Foundation provides capabilities to help you respond to
the fast-paced development of mobile devices. This flexible structure gives you
more options when you implement your mobile communication channel, or release
a new version of your application, be it a hybrid or native application. You can
evaluate the best approach for each situation, according to skills, time, and
functionality, without being limited by a specific approach to mobile application
development.

With IBM MobileFirst Platform Foundation, you can develop mobile applications
by using a spectrum of supported approaches. See Figure 2-1 on page 2-2.

© Copyright IBM Corp. 2006, 2015 2-1

Desktop and mobile website development

With the website development approach, users start their preferred browser and
navigate to the enterprise website. The application runs inside the browser of the
mobile device, and uses standard technologies such as HTML5, CSS3, and
JavaScript to create the website. Your application is platform independent, so you
do not need to develop a new application to support a new mobile platform.
Modifications to your application might be required to support a different browser
engine. On the downside, however, mobile web applications cannot access device
functions such as contact list because they rely only on the browser and the
associated web standards. In addition, if the website, and especially the enterprise
back-end systems are not optimized for mobile interactions, user experience is less
than pleasing. Mobile web applications are not distributed through an application
store. They are accessed through a link on a website, or a bookmark in the mobile
browser of the user.

Hybrid development

With the hybrid development approach, you can create applications that use parts
of both the native and web development approaches with standards such as
HTML5, JavaScript and CSS. Your hybrid application runs inside a native container
and uses the browser engine to display the application interface. The interface is
often based on HTML and JavaScript and can also incorporate native elements. The
native container allows your application to access device capabilities that are not
accessible to web applications, such as the accelerometer, camera, and local storage
on a smartphone. These capabilities can be leveraged from JavaScript using Apache
Cordova. The application is built using the mobile OS native IDE, such as Xcode.
Similar to pure-native applications, hybrid applications are distributed through the
application store of the platform.

As shown in the diagram, there are several possible approaches to hybrid
development:

Native shell application enclosing an external mobile website
Using this approach is similar to mobile website development, however
your mobile website is displayed inside of a native shell that is provided
by IBM MobileFirst Platform Foundation instead of the device browser. By

Figure 2-1. Spectrum of mobile app development approaches

2-2 IBM MobileFirst Platform Foundation V6.3.0

using this approach, your mobile website is able to access device native
functionality through APIs exposed by the native container. There are
several drawbacks with this approach: drawing the app code and user
interface remotely from a website might significantly downgrade user
experience; when your only in-browser caching options are manual or
through the HTML5 manifest, offline functioning is not optimized.

Pre-packaged HTML5 resources
This is the most common approach when developing hybrid mobile
applications. With this approach, you can create applications that use a
container to access device capabilities, but also use other native,
platform-specific components such as libraries, or specific user-interface
elements, to enhance the mobile application. Unlike the previous approach,
the web resources are not loaded from an external website but are
packaged within the application itself. In addition to leveraging the native
functionality that is provided by a native container, the application can
achieve better performance and responsiveness since all the resources
required for application functionality are packaged within the app itself
and do not need to be loaded over a network. By using this approach,
your application acquires the ability to work and store data in offline
mode. To achieve the best user experience, it is important to optimize for
various form factors by using techniques such as responsive web design.

Mixing web and native in code and UI (HTML5 + native UI/mostly native with
some HTML5 screens)

Here, you mix web and native elements in one of two approaches: either
you have a hybrid app to which you add native user interface components
and gestures or you have a mostly native app and add HTML5 screens. By
developing in this style, you are able, for example, to start your application
with a native screen and move to a web screen at a later stage, or even mix
native and web components on the same screen. There are several benefits:
v You fully leverage all platform functions such as accessing the camera or

contact list from both native and JavaScript code.
v You achieve enhanced performance and user experience where you need

it, by using native capabilities.
v You reuse code and web development skills by using

HTML5/JavaScript/CSS where you can.

Pure native development

With the pure native development approach, you can create applications that are
written for a specific platform and run on that platform only. Your applications
achieve great performance and can fully leverage all platform functions such as
accessing the camera or contact list, enabling gestures, or interacting with other
applications on the device. To support platforms such as Android, iOS, Java™ ME,
and Windows Phone, you must develop separate applications with different
programming languages, such as Objective-C for iOS, or Java for Android, or C#
for Windows Phone 8. Unlike desktop and mobile web applications, native and
hybrid applications are distributed through an application store.

Aspects of each development approach

Each of these development approaches has advantages and disadvantages. You
must select the appropriate development approach according to the specific
requirements for an individual mobile solution. This choice depends heavily on the
specifics of your mobile application and its functional requirements. Mapping your

Product overview 2-3

requirements to select an appropriate development approach is the first step in a
mobile development project. Table 2-1 outlines the major aspects of the four
development approaches, and can help you decide which development approach is
appropriate for your specific mobile application.

Table 2-1. Comparison of mobile development approaches. In this table, you can find the
different aspects of mobiles developments and the level of difficulty or possibilities that web
development, hybrid development, hybrid mixed development, and native development, can
bring for each aspect.

Aspect

Mobile
website
development

Native shell,
external
mobile
website

Pre-packaged
HTML5
resources

Mixing web
and native in
code and UI

Pure native
development

Easy to learn Easiest Easiest Medium Harder Hardest

Application
performance

Slowest Moderate Good Fastest Fastest

Device
knowledge
required

None Some Some Some A lot

Development
lifecycle
(build/test/
deploy)

Shortest Shortest Medium Medium Longest

Application
portability to
other
platforms

Highest High High Medium None

Support for
native device
functionality

Some Most Most All All

Distribution
with built-in
mechanisms

No No Yes Yes Yes

Ability to
write
extensions to
device
capabilities

No No Yes Yes Yes

Product main capabilities
With IBM MobileFirst Platform Foundation, you can use capabilities such as
development, testing, back-end connections, push notifications, offline mode,
update, security, analytics, monitoring, and application publishing.

Development

IBM MobileFirst Platform Foundation provides a framework that enables the
development, optimization, integration, and management of secure mobile
applications (apps). IBM MobileFirst Platform Foundation does not introduce a
proprietary programming language or model that users must learn.

You can develop apps by using HTML5, CSS3, and JavaScript. You can optionally
write native code (Java or Objective-C). IBM MobileFirst Platform Foundation

2-4 IBM MobileFirst Platform Foundation V6.3.0

provides an SDK that includes libraries that you can access from native code.

Testing

IBM MobileFirst Platform Foundation includes IBM MobileFirst Platform Test
Workbench for testing mobile applications. With the mobile testing capabilities of
MobileFirst Test Workbench, you can automate the creation, execution, and
analysis of functional tests for IBM MobileFirst Platform Foundation native and
hybrid applications on Android and iOS devices.

Back-end connections

Some mobile applications run strictly offline with no connection to a back-end
system, but most mobile applications connect to existing enterprise services to
provide the critical user-related functions. For example, customers can use a mobile
application to shop anywhere, at any time, independent of the operating hours of
the store. Their orders must still be processed by using the existing e-commerce
platform of the store. To integrate a mobile application with enterprise services,
you must use middleware such as a mobile gateway. IBM MobileFirst Platform
Foundation can act as this middleware solution and make communication with
back-end services easier.

Push notifications

With push notifications, enterprises applications can send information to mobile
devices, even when the application is not being used. IBM MobileFirst Platform
Foundation includes a unified notification framework that provides a consistent
mechanism for such push notifications. With this unified notification framework,
you can send push notifications without having to know the details of each
targeted device or platform because each mobile platform has a different
mechanism for these push notifications.

Offline mode

In terms of connectivity, mobile applications can operate offline, online, or in a
mixed mode. IBM MobileFirst Platform Foundation uses a client/server
architecture that can detect whether a device has network connectivity, and the
quality of the connection. Acting as a client, mobile applications periodically
attempt to connect to the server and to assess the strength of the connection. An
offline-enabled mobile application can be used when a mobile device lacks
connectivity but some functions can be limited. When you create an offline-enabled
mobile application, it is useful to store information about the mobile device that
can help preserve its functionality in offline mode. This information typically
comes from a back-end system, and you must consider data synchronization with
the back end as part of the application architecture. IBM MobileFirst Platform
Foundation includes a feature that is called JSONStore for data exchange and
storage. With this feature, you can create, read, update, and delete data records
from a data source. Each operation is queued when operating offline. When a
connection is available, the operation is transferred to the server and each
operation is then performed against the source data.

Update

IBM MobileFirst Platform Foundation simplifies version management and mobile
application compatibility. Whenever a user starts a mobile application, the
application communicates with a server. By using this server, IBM MobileFirst

Product overview 2-5

Platform Foundation can determine whether a newer version of the application is
available, and if so, give information to the user about it, or push an application
update to the device. The server can also force an upgrade to the latest version of
an application to prevent continued use of an outdated version.

Security

Protecting confidential and private information is critical for all applications within
an enterprise, including mobile applications. Mobile security applies at various
levels, such as mobile application, mobile application services, or back-end service.
You must ensure customer privacy and protect confidential data from being
accessed by unauthorized users. Dealing with privately owned mobile devices
means giving up control on certain lower levels of security, such as the mobile
operating system.

IBM MobileFirst Platform Foundation provides secure, end-to-end communication
by positioning a server that oversees the flow of data between the mobile
application and your back-end systems. With IBM MobileFirst Platform
Foundation, you can define custom security handlers for any access to this flow of
data. Because any access to data of a mobile application has to go through this
server instance, you can define different security handlers for mobile applications,
web applications, and back-end access. With this kind of granular security, you can
define separate levels of authentication for different functions of your mobile
application, or avoid sensitive information to be accessed from a mobile
application entirely.

Analytics

The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage, or to detect problems.

In addition to reports that summarize app activity, IBM MobileFirst Platform
Foundation includes a scalable operational analytics platform accessible in the
MobileFirst Operations Console. The analytics feature enables enterprises to search
across logs and events that are collected from devices, apps, and servers for
patterns, problems, and platform usage statistics. You can enable analytics, reports,
or both, depending on your needs.

Monitoring

IBM MobileFirst Platform Foundation includes a range of operational analytics and
reporting mechanisms for collecting, viewing, and analyzing data from your IBM
MobileFirst Platform Foundation applications and servers, and for monitoring
server health.

Application publishing

IBM MobileFirst Platform Foundation Application Center is an enterprise
application store. With the Application Center, you can install, configure, and
administer a repository of mobile applications for use by individuals and groups
across your enterprise. You can control who in your organization can access the
Application Center and upload applications to the Application Center repository,
and who can download and install these applications onto a mobile device. You
can also use the Application Center to collect feedback from users and access
information about devices on which applications are installed.

2-6 IBM MobileFirst Platform Foundation V6.3.0

The concept of the Application Center is similar to the concept of the Apple public
App Store or the Google Play store, except that it targets the development process.

The Application Center provides a repository for storing the mobile application
files and a web-based console for managing that repository. The Application Center
also provides a mobile client application to allow users to browse the catalog of
applications that are stored by the Application Center, install applications, leave
feedback for the development team, and expose production applications to IBM®

Endpoint Manager. Access to download and install applications from the
Application Center is controlled by using access control lists (ACLs).

Product components
IBM MobileFirst Platform Foundation consists of the following components:
MobileFirst Studio, MobileFirst Server, client-side runtime components, MobileFirst
Operations Console, Application Center, and MobileFirst Application Pattern.

MobileFirst Studio

In a mobile development platform, cross-platform portability of the application
code is critical for mobile device application development. Various methods exist
to achieve this portability. With IBM MobileFirst Platform Foundation, you can
develop multiplatform applications by using MobileFirst Studio, which is an
integrated development environment for mobile applications.

You can use MobileFirst Studio for the following tasks:
v Develop rich HTML5, hybrid and native applications for all supporting modern

devices by using native code, a bidirectional WYSIWYG editor, and standard
web technologies and tools.

v Maximize code sharing by defining custom behavior and styling guidelines that
match the target environment.

v Access device APIs by using native code or standard web languages over a
uniform Apache Cordova bridge.

Note: Because Apache Cordova is preinstalled with IBM MobileFirst Platform
Foundation, do not download your own Apache Cordova version.

v Use both native and standard web languages within the same application to
achieve development efficiency and provide a rich user experience.

v Use third-party tools, libraries, and frameworks such as JQuery Mobile, Sencha
Touch, and Dojo Mobile.

v Implement runtime skins to build apps that automatically adjust to environment
guidelines such as form factor, screen density, HTML support, and UI input
method.

MobileFirst Server

The MobileFirst Server is a runtime container for the mobile applications you
develop using MobileFirst tooling. It is not an application server in the Java
Platform, Enterprise Edition (JEE) sense. It acts as a container for IBM MobileFirst
Platform Foundation application packages, and is in fact a collection of web
applications, optionally packaged as an EAR (Enterprise Application ARchive) file
that run on top of traditional application servers.

Product overview 2-7

MobileFirst Server is designed to integrate into the enterprise environment and use
its existing resources and infrastructure. This integration is based on adapters that
are server-side software components responsible for channeling back-end
enterprise systems and cloud-based services to the user device. You can use
adapters to retrieve and update data from information sources, and to allow users
to perform transactions and start other services and applications.

You can use MobileFirst Server for the following tasks:
v Empower hundreds of thousands of users with transactional capabilities and

enable their direct access to back-end systems and cloud-based services.
v Configure, test, and deploy descriptive XML files to connect to various back-end

systems by using standard MobileFirst tools.
v Directly update deployed hybrid and web applications, without going through

the different app stores (subject to the terms of service of the vendor).
v Automatically convert hierarchical data to JSON format for optimal delivery and

consumption.
v Enhance user interaction with a uniform push notification architecture.
v Define complex mashups of multiple data sources to reduce overall traffic.
v Integrate with the existing security and authentication mechanisms of the

organization.

Client-side runtime components

IBM MobileFirst Platform Foundation provides client-side runtime code that
embeds server functionality within the target environment of deployed apps. These
runtime client APIs are libraries that are integrated into the locally stored app
code. They complement the MobileFirst Server by defining a predefined interface
for apps to access native device functions. Among these APIs, IBM MobileFirst
Platform Foundation uses the Apache Cordova development framework. This
framework delivers a uniform bridge between standard web technologies (HTML5,
CSS3, JavaScript) and the native functions that different mobile platforms provide.

The client-side runtime components provide the following functions:
v Mobile data integration: connectivity and authentication APIs
v Security features: on-device encryption, offline authentication, and remote

disablement of the ability to connect to MobileFirst Server
v Cross-platform support: runtime skins, UI abstractions, and HTML5 toolkits

compatibility
v Mobile client functionality: hybrid app framework, access to device APIs and

push notification registration
v Reports and analytics: built-in reports and event-based custom reporting
v Resource serving: direct update of app web resources and HTML5 caching

The Apache Cordova framework included with this version of IBM MobileFirst
Platform Foundation consists of the following components:

Platforms

v cordova-android: 3.6.1
v cordova-blackberry10: 3.6.1
v cordova-ios: 3.6.1
v cordova-windows: 3.6.1
v cordova-wp8: 3.6.1

2-8 IBM MobileFirst Platform Foundation V6.3.0

Plugins

v org.apache.cordova.battery-status: 0.2.10
v org.apache.cordova.camera: 0.3.1
v org.apache.cordova.console: 0.2.10
v org.apache.cordova.contacts: 0.2.12
v org.apache.cordova.device-motion: 0.2.9
v org.apache.cordova.device-orientation: 0.3.8
v org.apache.cordova.device: 0.2.11
v org.apache.cordova.dialogs: 0.2.9
v org.apache.cordova.file: 1.3.1
v org.apache.cordova.file-transfer: 0.4.7
v org.apache.cordova.geolocation: 0.3.9
v org.apache.cordova.globalization: 0.3.0
v org.apache.cordova.inappbrowser: 0.5.1
v org.apache.cordova.media-capture: 0.3.2
v org.apache.cordova.media: 0.2.12
v org.apache.cordova.network-information: 0.2.11
v org.apache.cordova.splashscreen: 0.3.2
v org.apache.cordova.statusbar: 0.1.7
v org.apache.cordova.vibration: 0.3.10

MobileFirst Operations Console

The MobileFirst Operations Console is used for the control and management of the
mobile applications.

You can use the MobileFirst Operations Console for the following tasks:
v Monitor all deployed applications, adapters, and push notification rules from a

centralized, web-based console.
v Assign device-specific identifiers (IDs) to ensure secure application provisioning.
v Remotely disable the ability to connect to MobileFirst Server by using

preconfigured rules of app version and device type.
v Customize messages that are sent to users on application launch.
v Collect user statistics from all running applications.
v Generate built-in, pre-configured reports about user adoption and usage

(number and frequency of users that are engaging with the server through the
applications).

v Configure data collection rules for application-specific events.
v Export raw reporting data to be analyzed by the Business Intelligence systems of

the organization.

Application Center

With the Application Center, you can share mobile applications that are under
development within your organization in a single repository of mobile
applications. Development team members can use the Application Center to share
applications with members of the team. This process facilitates collaboration
between all the people who are involved in the development of an application.

Product overview 2-9

Your company can typically use the Application Center as follows:
1. The development team creates a version of an application.
2. The development team uploads the application to the Application Center,

enters its description, and asks the extended team to review and test it.
3. When the new version of the application is available, a tester runs the

Application Center installer application, which is the mobile client. Then, the
tester locates this new version of the application, installs it on their mobile
device, and tests it.

4. After the tests, the tester rates the application and submits feedback, which is
visible to the developer from the Application Center console.

The Application Center is aimed for private use within a company, and you can
target some mobile applications to specific groups of users. You can use the
Application Center as an enterprise application store.

With the Application Center, you can manage native or hybrid applications that are
installed on mobile devices. The Application Center supports applications that are
built for the Google Android platform, the Apple iOS platform, the Windows
Phone 8 platform, and the BlackBerry OS 6 and 7 platform, but does not target
mobile web applications. Windows Phone 7, Windows RT, and BlackBerry OS 10
are not supported by the current version of the Application Center.

IBM Mobile Application Platform Pattern

With the IBM Mobile Application Platform Pattern, you can deploy the MobileFirst
Server on IBM PureApplication® System or IBM SmartCloud® Orchestrator. With
this pattern, administrators and corporations can respond quickly to changes in the
business environment by taking advantage of on-premises Cloud technologies. This
approach simplifies the deployment process, and improves the operational
efficiency to cope with increased mobile demand. The demand accelerates iteration
of solutions that exceed traditional demand cycles. Deploying the IBM Mobile
Application Platform Pattern on IBM PureApplication System or IBM SmartCloud
Orchestrator also gives access to best practices and built-in expertise, such as
built-in scaling policies.

MobileFirst Platform Command Line Interface

To help developers get a better tools experience, IBM MobileFirst Platform
Foundation provides a command-line interface (CLI) tool to easily create and
manage apps. The CLI enables developers to use their preferred text editors or
alternative IDEs to create mobile applications.

The commands support tasks such as creating, adding, and configuring with the
API library, adding the client-side properties file and performing the build and
deploy of the application. From the command-line, you can create and deploy
adapters, and test them locally. You can administer your project from CLI or REST
services, or the Console, where you can easily control the local server and observe
the logs.

2-10 IBM MobileFirst Platform Foundation V6.3.0

Product editions
IBM MobileFirst Platform Foundation is available in several editions: the IBM
MobileFirst Platform Foundation Developer Edition, the IBM MobileFirst Platform
Foundation Consumer Edition, the IBM MobileFirst Platform Foundation
Enterprise Edition, the IBM MobileFirst Platform Foundation Application Pattern
Consumer Edition, and the IBM MobileFirst Platform Foundation Application
Pattern Enterprise Edition.

IBM MobileFirst Platform Foundation Developer Edition

IBM MobileFirst Platform Foundation Developer Edition is a free, non-warranted
collection of self-contained development tools for IBM MobileFirst Platform
Foundation. It is available from the IBM MobileFirst Platform Developer Center
website. IBM MobileFirst Platform Foundation Developer Edition contains the
following components:
v IBM MobileFirst Platform Studio, which is available as an Eclipse plug-in.
v IBM MobileFirst Platform Test Workbench, which is available as an Eclipse

plug-in. After you install MobileFirst Studio, you can then optionally install the
test workbench in Eclipse.

v IBM MobileFirst Platform Command Line Interface, which is available as an
installable download. You can install and use MobileFirst Platform Command
Line Interface as an alternative to the integrated development environment
MobileFirst Studio.

IBM MobileFirst Platform Foundation Consumer Edition and IBM
MobileFirst Platform Foundation Enterprise Edition

IBM MobileFirst Platform Foundation Consumer Edition and IBM MobileFirst
Platform Foundation Enterprise Edition are identical programs that differ in license
only. These programs are supported through an IBM International License
Agreement and are available from IBM Passport Advantage®. IBM MobileFirst
Platform Foundation Consumer Edition and IBM MobileFirst Platform Foundation
Enterprise Edition contain the following components:
v The same three components as in IBM MobileFirst Platform Foundation

Developer Edition.
v A separate IBM MobileFirst Platform Server component, which is available as an

IBM Installation Manager package

IBM MobileFirst Platform Foundation Application Pattern
Consumer Edition and IBM MobileFirst Platform Foundation
Application Pattern Enterprise Edition

IBM MobileFirst Platform Foundation Application Pattern Consumer Edition and
IBM MobileFirst Platform Foundation Application Pattern Enterprise Edition are
identical programs that differ in license only. These programs are supported
through an IBM International License Agreement and are available from IBM
Passport Advantage. IBM MobileFirst Platform Foundation Application Pattern
Consumer Edition and IBM MobileFirst Platform Foundation Application Pattern
Enterprise Edition contain the following components:
v The same three components as in IBM MobileFirst Platform Foundation

Developer Edition.
v A separate IBM MobileFirst Platform Application Pattern component, which is

available as an installable download.

Product overview 2-11

https://developer.ibm.com/mobilefirstplatform/

Choosing the appropriate edition
v Choose IBM MobileFirst Platform Foundation Developer Edition if you want to

start developing and learning about IBM MobileFirst Platform Foundation.
MobileFirst Studio and IBM MobileFirst Platform Command Line Interface both
include an embedded MobileFirst Development Server. This edition is useful to
quickly develop and test applications.

v Choose IBM MobileFirst Platform Foundation Consumer Edition or MobileFirst
Enterprise Edition if you plan to develop and deploy production applications.
These editions provide full production support. Customers can obtain support
through the IBM Support home for IBM MobileFirst Platform Foundation.

v Choose IBM MobileFirst Platform Foundation Application Pattern Consumer
Edition or IBM MobileFirst Platform Foundation Application Pattern Enterprise
Edition if you plan to develop mobile applications, test them, and deploy them
to IBM PureSystems® or IBM SmartCloud Orchestrator.

Note: Additionally, users of any edition can get help on the Stack Overflow
community, where support is provided on a best-effort basis.

System requirements for using IBM MobileFirst Platform Foundation
System requirements for IBM MobileFirst Platform Foundation include operating
systems, Eclipse versions, SDKs, and other software.

To identify the system requirements for this release of IBM MobileFirst Platform
Foundation, see the Detailed System Requirements page on the IBM Support
Portal. The system requirements include:
v Operating systems that support IBM MobileFirst Platform Foundation, including

mobile device operating systems
v Required hardware configuration
v Editions of Eclipse that support MobileFirst Studio, which is an Eclipse-based

integrated development environment (IDE)
v Supported software development kits (SDKs)
v Application servers, database management systems, and other software that are

required or supported by IBM MobileFirst Platform Foundation

Matrix of features and platforms
IBM MobileFirst Platform Foundation provides many features and supports many
platforms.

The Mobile OS feature mapping for IBM MobileFirst Platform Foundation technote
on the IBM Support Portal lists the features that are available on each of the
platforms that IBM MobileFirst Platform Foundation supports.

2-12 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/entry/portal/product/other_software/ibm_mobilefirst_platform_foundation
http://www.ibm.com/support/docview.wss?uid=swg27024838
http://www.ibm.com/support/docview.wss?uid=swg27039422

Release notes

You can identify the latest information about this product release and all its fix
packs.

What's new in V6.3.0 interim fixes
Interim fixes provide patches and updates to correct problems and keep IBM
MobileFirst Platform Foundation current for new releases of mobile operating
systems.

Interim fixes are cumulative. When you download the latest V6.3.0 interim fix, you
get all of the fixes from earlier interim fixes.

Download and install the latest interim fix to obtain all of the fixes that are
described in the following sections. If you install earlier fixes, you might not get all
of the fixes described here.

iOS 9 support
If you use Xcode 7 to compile your apps install the latest interim fix and review
the following sections to ensure that your apps continue to work on iOS 9.

Disabling bitcode-enabled Xcode builds

Starting with Xcode 7, bitcode is a default, but optional option for iOS apps. The
bitcode option is not currently supported in IBM MobileFirst Platform Foundation.
To use the MobileFirst SDK in any project that uses Xcode 7, you must disable
bitcode.

Applications that are based on Apple watchOS 2 require the bitcode to be enabled
and are currently not supported in IBM MobileFirst Platform Foundation.

For more information, see “Disabling bitcode in Xcode builds” on page 8-188.

Support for dynamic .tbd libraries in Xcode 7

Xcode 7 replaces dynamic .dylib libraries with more lightweight .tbd files. Up to
now, IBM MobileFirst Platform Foundation projects link with .dylib libraries such
as: libc++.dylib, libstdc.dylib, and libz.dylib. These libraries must be replaced
with the corresponding .tbd libraries.

For guidelines, see the following topics:
v “Copying files of native API applications for iOS” on page 8-186
v Adding Mobilefirst web capabilities to an existing native app

Enforcing TLS-secure connections in iOS apps

Apple's App Transport Security (ATS) is a new feature of iOS 9 that enforces best
practices for connections between the app and the server. By default, this feature
enforces some connection requirements that improve security. These include

© Copyright IBM Corp. 2006, 2015 3-1

client-side HTTPS requests and server-side certificates and connection ciphers that
conform to Transport Layer Security (TLS) version 1.2 using forward secrecy.

For development purposes, you can override the default behavior by specifying an
exception in the Info.plist file in your app. However, in a full production
environment, all iOS apps must enforce TLS-secure connections for them to work
properly.

By applying the latest interim fix, the apps that you develop in IBM MobileFirst
Platform Foundation V6.0.0 and later automatically turn off transport security to
allow all non-secure connections to the IBM MobileFirst Platform Foundation
development server.

For more information, see “Enforcing TLS-secure connections in iOS apps” on page
8-187.

Android 6.0 Marshmallow support
Android 6.0 Marshmallow introduces a number of changes that might require you
to install the latest IBM MobileFirst Platform Foundation interim fix for your app
to work on Android 6.0.

Review the following sections to learn about changes in Android that might affect
your apps and determine whether you need to install the latest interim fix for your
app to support Android 6.0 Marshmallow.

Allowing runtime access to location services in Android 6.0
Marshmallow

In Android 6.0 Marshmallow and later, geo acquisition (location) permissions also
require runtime permissions.

According to the new model, in addition to defining permissions at installation,
users must allow or deny access to different features at runtime. Before an app
accesses location services, it must check whether permission has already been
granted and, if needed, request permission. Developers are responsible to perform
the check before the app accesses any of the following methods in the WLDevice
interface:
v startAcquisition
v acquireGeoPosition
v stopAcquisition

For more information, see For Android 6.0 Marshmallow and later.

Preventing Android 6.0 Marshmallow automatic backup of
MobileFirst data

By default, app data on devices that are running under Android 6.0 Marshmallow
is automatically backed up to Google Drive.

The MobileFirst SDK holds app web resources, logs, and some other artifacts that
are stored on the device. The volume of this data is potentially large and even if
deleted can be easily recovered. Thus, there is no need for it to be backed up.

3-2 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/location/api/WLDevice.html

By applying latest interim fix, you can prevent most of the MobileFirst SDK
internal data from being backed up to Google Drive.

Note: After you apply the interim fix, some artifacts, for example residual logs
might still be backed up to Google Drive.

Apache Cordova
The requirements of Apache Cordova might be updated as new versions of the
platform SDKs are released.

Added support for Android SDK version 23 permissions (APAR
PI61332)

Applications can target Android SDK version 23 and request permissions at run
time. The following core Cordova plug-ins that are provided with the IBM
MobileFirst Platform Foundation version 6.3 were updated to support the new
permission handling:
v Camera
v Contacts
v File
v Media
v Media-capture

Note: The cordova-plugin-file plug-in that is provided with this APAR fix was
upgraded to version 4.2.0 in order to support Android Marshmallow permissions.
See the Cordova file plug-in documentation that is provided with that version level
for any API changes.

Third-party Cordova plug-ins that request permissions must be updated to use the
new permission model. In addition to updating the third-party Cordova plug-ins,
you must add the PermissionHelper.java file to your project that uses the new
permission handling.

For more information, see “Enabling a Cordova app to support Android SDK
version 23 permissions” on page 8-52.

Extra steps are required when you prepare a IBM MobileFirst
Platform Foundation Cordova app with the camera plug-in for the
Android platform (APAR PI73910)

Starting with Android N, a file URI can be accessed only by the same app. This
access restriction causes a FileUriExposedException when you use the Cordova
camera plug-in on the Android platform. The camera app of the device passes the
URI of a photo to the camera plug-in, but the plug-in cannot access the photo.
Cordova provides a solution for this restriction that requires extra setup steps so
the camera plug-in can access the URI of the photo.

If you require the Cordova camera plug-in for your Android platform app, you
must complete the steps in “Preparing a project that uses the Cordova camera
plug-in with the Android platform” on page 8-59.

Release notes 3-3

What's new
Discover the new features and changes in IBM MobileFirst Platform Foundation
V6.3.0 compared to the previous version of this product.

New product name
Starting with V6.3.0, IBM Worklight® Foundation is renamed as IBM MobileFirst
Platform Foundation.

The MobileFirst Platform provides mobile application development, delivery, and
management capabilities, and code scanning, test, and quality assurance
capabilities, by including the following components:
v IBM MobileFirst Platform Foundation (previously known as “IBM Worklight

Foundation”): described in this documentation, this component provides
mobile-optimized, standards-based middleware and tools for enterprise-grade
mobile application development, delivery, and management, including
development and runtime environments, an operation console and a private
store.

v IBM MobileFirst Platfom Quality Assurance: this component enables you to
analyze the user experience to help improve mobile applications, to collect beta
test feedback and crash data, and to analyze user sentiment.

v IBM MobileFirst Platform Application Scanning: this component helps you
reduce security risks and lower support costs by identifying mobile application
source code vulnerabilities early in the software development lifecycle so they
can be fixed before deployment.

Note: This documentation is about IBM MobileFirst Platform Foundation only. For
more information about the other components and the IBM MobileFirst offering,
see the IBM MobileFirst website.

Efficient development
New features enable the efficient development of mobile applications.

Seamless mixing of web and native components extended to
Windows Phone 8

Starting with V6.3.0, features for seamless mixing of web and native components in
iOS and Android applications are extended to Windows Phone 8. In Windows
Phone 8, the architecture of hybrid applications now offers the flexibility to interact
more easily between C# and HTML5 usage of the MobileFirst API in a single app.
v You can send actions and data objects from JavaScript code to native code and

from native code to JavaScript code. For more information, see “Sending actions
and data objects between JavaScript code and native code” on page 8-72.

v You can manage the splash screen for Windows Phone 8 during the initialization
of an application. For more information, see “Managing the splash screen in a
Windows Phone 8 based hybrid application” on page 8-71

v You can integrate native and web components on the same screen.

For a general introduction to the features that support the seamless mixing of web
and native components, see “Developing MobileFirst applications” on page 8-1.

3-4 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/software/mobile-solutions

JSONStore improvements

You can learn about JSONStore performance for different environments and device
operating systems by reading the new blog post at JSONStore performance. For
more information, see “JSONStore performance” on page 8-441.

Filtered Export for MobileFirst projects

Starting with IBM MobileFirst Platform Foundation V6.3.0, you can use the
MobileFirst Filtered Export export option to export only the required MobileFirst
project resources to an archive file on the local system. For more information, see
“MobileFirst Filtered Export” on page 8-608.

HTML5 tags in Rich Page Editor palette

Starting with IBM MobileFirst Platform Foundation V6.3.0, you can use the HTML5
tags in the Rich Page Editor palette to create web pages for your MobileFirst
project. For more information, see “HTML5 tags in palette” on page 8-118.

Dojo application resource to improve debugging

Starting with IBM MobileFirst Platform Foundation V6.3.0, several .map files are
available as part of the Dojo Library resources that are provided. These files are
layers/core-web-layer.js.map, dojo/dojo.js.map, and layers/mobile-ui-
layer.js.map. Now that these source maps are available, any errors, logs, and
breakpoints map to the uncompressed JavaScript version of the minified source
files. This availability causes more sources that contain the .uncompressed.js
extension to be pulled and made available to the current application. The
compressed file is being used to run the preview.

These files are only used for debugging and not used in a production environment,
so they are not reported as missing resources of the Dojo Library Requests.
Therefore, you do not append these unnecessary files to the final deployment.

Note: The deviceTheme.js.map file and its corresponding
deviceTheme.js.map.uncompressed file are not provided by the Dojo Library
because of the way deviceTheme.js is requested by the main web page. The
deviceTheme.js file is requested by a direct request instead of an asynchronous
request. You can obtain this file from /dojoLib/toolkit/debug/dojox/mobile only if
dojoLib is the library project. You must copy the file manually.

Multi-application build and deploy in MobileFirst Studio

Starting with IBM MobileFirst Platform Foundation V6.3.0, you can select more
than one application node in the same project and perform a Run on MobileFirst
Development Server action or a Build All Environments action. All of the selected
applications are built and, if necessary, deployed to the MobileFirst Development
Server. For more information about the multi-application build and deploy in
MobileFirst Studio, see “The Run on MobileFirst Development Server command”
on page 8-306 and “The Build All Environments command” on page 8-307.

Release notes 3-5

https://www.ibm.com/developerworks/community/blogs/worklight/entry/jsonstore_performance_breakdown

New support for the latest iOS architectures

IBM MobileFirst Platform Foundation V6.3.0 now provides support for arm64, in
addition to support for armv7 and armv7s for hybrid app. You can build your new
MobileFirst hybrid app with 32 bit (armv7 or armv7s) or with 64 bit (arm64), or for
any combination of these architectures.

For more information about how to target those new architectures in your existing
apps, see “Targeting new iOS architectures for your existing apps” on page 7-9.

Enhanced Service Discovery for SAP systems to work with
complex SAP back ends

IBM MobileFirst Platform Foundation V6.3.0 now contains added support for SAP
systems. With V6.3.0, you can create, retrieve, update, delete, and analyze entities
that exist on an SAP system by using the MobileFirst SAP adapter. V6.3.0 also
provides improved procedure names to better match for SAP actions. For more
information about this added support, see “Starting an SAP adapter” on page
8-386.

IBM MobileFirst Platform Command Line Interface enhancements

IBM MobileFirst Platform Foundation V6.3.0 includes new and improved
commands. The following commands are new.
v The bd command is short for mfp build and mfp deploy.
v The preview command is to view apps in the Mobile Browser Simulator.
v The restart command stops then starts the server.
v The logs command prints the server log location.
v The config command sets the preferred development browser or more.

The following commands are improved.
v The add environment command is now run from anywhere.
v The invoke command uses a file as input when you test adapter calls.
v The export command is used to reduce archive sizes.
v The info command provides extended environment details for support.

For more information about these commands, see “Commands” on page 8-211.

Additionally, the automatic server creates and starts on all commands. There is
also a new automatic undeploy of non-current projects on server start.

The command execution is changed to mfp or mobilefirst as opposed to wl or
worklight. For more information about using these commands, see “CLI
commands usage” on page 8-210.

The installation location is changed. Additionally, the uninstall folder location is
now more obvious. For more information about installation and uninstallation of
the MobileFirst Platform Command Line Interface, see “Installing command-line
tools for developers” on page 6-8 and “Uninstalling command-line tools for
developers” on page 6-12.

Automatic deployment of projects

When you open the MobileFirst Operations Console, projects are automatically
deployed as needed. For more information, see “The MobileFirst Development

3-6 IBM MobileFirst Platform Foundation V6.3.0

Server and the MobileFirst Operations Console” on page 8-35.

Upgraded version of Cordova

IBM MobileFirst Platform Foundation V6.3.0 uses an upgraded version of Cordova.
For more information about the version of Cordova that is used, see Software
Product Compatibility Reports, click the Supported Software tab, and then click
Runtime Environment.

Enhanced user engagement
New features enhance user engagement for a wide variety of mobile application
users.

Push notification enhancements

IBM MobileFirst Platform Foundation V6.3.0 includes support for the following
features:
v Interactive notification. Users can take actions without opening the application

when a notification has arrived. For more information, see “Interactive
notifications” on page 8-464.

v Silent notification. Does not display alerts or otherwise disturb the user when
such notifications arrive. For more information, see “Silent notifications” on page
8-467.

Documentation explaining how to protect JSONStore by using
Touch ID

The V6.3.0 documentation includes a new topic that describes advanced protection
for JSONStore by using Touch ID. For more information, “Setting up Touch ID
support for JSONStore” on page 8-439.

Support for Android 5.0 notification features

On Android 5.0 devices, the following features are enabled by default:
v Notifications can be displayed on the lock screen. The user can read the

notifications without the need to unlock the device.
v High priority notifications are displayed in a small floating window on top of

the current screen for a short period of time.
v Notifications are bridged over to wearable devices.

For more information, see the notifyAllDevices API in the WL.Server class.

Apple Swift language

Apple Swift is compatible with Objective-C. Therefore, when you develop native
applications for iOS, you can use the MobileFirst API from within an iOS Swift
project.

For more information, see “Creating a Swift project” on page 8-187.

Indoor location and iBeacon support

Starting with V6.3.0, you can manage the beacons, the beacon triggers, and the
beacon trigger association by using wladm Ant task, wladm command calls, and

Release notes 3-7

http://www-969.ibm.com/software/reports/compatibility/clarity-reports/report/html/prereqsForProduct?deliverableId=1404132386734#sw-6
http://www-969.ibm.com/software/reports/compatibility/clarity-reports/report/html/prereqsForProduct?deliverableId=1404132386734#sw-6
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

REST services API. You can retrieve the relevant beacons and triggers along with
their associations for the specified application by calling a WL.Server API in an
adapter. For more information, see:
v “Administering MobileFirst applications through Ant” on page 12-12
v “Administering MobileFirst applications through the command line” on page

12-36
v “REST Services API” on page 10-8
v getBeaconsAndTriggers(applicationName, beaconsOfInterest) API of the

WL.Server class.

Differential Direct Update

Starting with IBM MobileFirst Platform Foundation V6.3.0, direct update was
improved to allow users to receive only the web resources that have changed
between updates, instead of downloading the entire web resource package. This
enhancement reduces download time, conserves bandwidth, and improves overall
user experience. The feature is available only for users who are upgrading an
application with web resources that are only one build behind those in the
application now being deployed. For more information, see “Direct updates of app
versions to mobile devices” on page 8-163.

Secure integration
New features extend the means of securing the integration of your mobile
applications.

Verifying authenticity of direct updates

Starting with IBM MobileFirst Platform Foundation V6.3.0, you can digitally sign a
direct update package. Before the package is installed on the user's device, the
client application can verify its authenticity to ensure that it has not been tampered
with or modified by a third-party attacker. For more information, see “Direct
Update Authenticity” on page 8-168.

Device authentication for native Android and native iOS

The V6.3.0 documentation includes new topics that describe how to implement
client-side components for device authentication in native Android and native iOS.
For more information, see:
v “Implementing client-side components for native Android” on page 8-531
v “Implementing client-side components for native iOS” on page 8-533

App authenticity and device authentication for Windows Phone 8

The V6.3.0 documentation also enhances topics on how to implement app
authenticity and device authentication for Windows Phone 8. For more
information, see:
v “MobileFirst application authenticity overview” on page 8-485
v “Controlling authenticity testing for an app” on page 12-8
v “Implementing client-side components for hybrid applications” on page 8-529
v “Mobile device authentication” on page 8-494
v “The authentication configuration file” on page 8-497
v “The application descriptor” on page 8-24

3-8 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

Adapter timeout and concurrency update

Starting from V6.3.0, IBM MobileFirst Platform Foundation adapters no longer rely
on thread pools to manage timeout and concurrency. All threads are now
contained within WebSphere® Application Server (WAS). The update enables IBM
MobileFirst Platform Foundation to benefit from all the security features that WAS
offers, and also reduce server resources. For more information, see “Adapter
timeout and concurrency” on page 8-357.

Continuous delivery
New features support the continuous delivery of mobile applications.

A single store application, multiple MobileFirst servers

Starting with IBM MobileFirst Platform Foundation V6.3.0, the enterprise can
distribute the same application to different user groups and allow each user group
to connect to its own MobileFirst Server in production. This is achieved through a
client-side API that changes the MobileFirst Server address dynamically from the
client application. The user can then provide the address of the MobileFirst Server
to connect to.

For more information, see the following classes:
v Objective-C client-side API for iOS: WLClient class.
v Java client-side API for Android: WL and WLClient classes.
v C# client-side API for Windows Phone 8: “C# client-side API for Windows

Phone 8 apps” on page 10-6
v JavaScript client-side API: WL.App class.

Support of Windows Store apps in Application Center

Application Center now supports Metro apps in Microsoft Windows 8 Full Edition.
The Application Center client for Windows Store apps is a native application
composed of an executable (.exe) file and Dynamic Link Libraries (.dll files). You
cannot distribute the client by using the installers page. Options for distributing
the client are:
v Send the executable file by email.
v Create a website to house the executable file for downloading.
v Create an installer.
v Use the normal internal distribution system for executable files within your

organization.

Application Center does not support the distribution of executable files.

The binary and source files of the client are provided. Place the archive of the
binary files in your chosen location and extract the files. Start the client from the
location where you extract it.

No support is provided for automatically upgrading the Application Center client
for Windows Store apps.

Windows Store apps are packaged and uploaded to the Application Center console
as application package (.appx) files. Application package files can depend on other
application package files, so you must always upload all the application packages.

Release notes 3-9

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_w_l_client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/androidgap/api/WL.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/wlclient/api/WLClient.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.App.html

For more detailed information, see:
v “Specific platform requirements” on page 12-64
v “Preparations for using the mobile client” on page 12-68
v “Microsoft Windows 8: Building the project” on page 12-72
v “The Application Center console” on page 12-82
v “The mobile client” on page 12-117

Preconfiguring MobileFirst Server for several deployment
environments

You can predefine in external property files the JNDI properties used to configure
MobileFirst administration components, including Application Center, and
MobileFirst runtimes. You can have different sets of properties for different
purposes or environments, such as test and production, without having to
configure them directly in the web application server. You can easily switch
between these different sets of properties, even within the same web application
server. Thus, an administrator can select from sets of predefined settings.

Different ways of delivering the configurations are available:

In a web archive (WAR) file
If you want to predefine the configuration experimentally in a test server
and then move the whole configuration to a production server, you can
inject several property files into a web archive file. You can easily upgrade
web archive files without having to declare the JNDI properties again.

In a shared library
If you want to experiment with and test a predefined configuration before
transferring it to the production server, a shared library is an alternative to
a web archive file. You can include several property files and it is easy to
upgrade the web archive files in the library without affecting the
configuration. If you have a stable configuration, but upgrade your web
archive files often, you might prefer to use a shared library, especially on
early versions of WebSphere Application Server.

In a separate property file on the file system
You can easily edit the configuration during the trial phase without
affecting the remaining server configuration. Thus, it is easy to try out
different settings. This solution works well in a stand-alone server or in a
shared file system.

You can select which configuration to use by setting a system property or with an
explicitly set JNDI property. A priority order in which explicitly specified JNDI
properties or configurations are selected exists.

The wljndiinject tool is provided for injecting a set of property configurations into
a web archive file or for creating a shared library of JNDI property configurations.

Although you can mix different ways of delivering configurations, you cannot mix
injected configuration and shared library.

For more detailed information about predefining configurations, see “Predefining
MobileFirst Server configuration for several deployment environments” on page
6-244.

3-10 IBM MobileFirst Platform Foundation V6.3.0

License management with IBM License Metric Tool

IBM MobileFirst Platform Foundation integrates with IBM License Metric Tool and
generates IBM Software License Metric Tag (SLMT) files. If you installed a version
of IBM License Metric Tool that supports IBM Software License Metric Tag, the
License Consumption reports can be generated. If the version of IBM License
Metric Tool that you installed does not support IBM Software License Metric Tag,
you can review the license usage with the License Tracking reports of MobileFirst
Operations Console. For more information, see “Integration with IBM License
Metric Tool” on page 13-86.

APNS Certification Expiration Management

The support to Apple Push Notification Service (APNS) certificate expiration has
been enhanced. IBM MobileFirst Platform Foundation can detect if the app has
APNS certificate and displays the certificate expiration date on the Application
catalog in the MobileFirst Operations Console. A warning message is displayed
when the app is deployed with an APNS certificate that has already expired. The
APNS credentials of an app can be updated with the REST API. For more
information about the new REST API, see “REST Services API” on page 10-8.

Cloud deployment enhancements

V6.3.0 provides the following enhancements to deliver a more efficient and
complete on-cloud deployment on IBM PureApplication System, IBM SmartCloud
Orchestrator, and IBM PureApplication Service on SoftLayer:

Create a pattern that uses a single combined database
You can create an IBM MobileFirst Platform Application Pattern that uses a
single DB2® virtual machine and a combined database workload standard.
See “Creating an IBM MobileFirst Platform Application Pattern that uses a
single DB2 VM” on page 11-103

Create patterns from predefined templates
IBM MobileFirst Platform Foundation V6.3.0 provides two predefined
templates that you can use as a basis for building your own patterns for
cloud deployment. The sample virtual application pattern that is included
in previous versions is no longer provided. For more information about the
predefined templates, see “Creating an IBM MobileFirst Platform
Application Pattern from predefined templates” on page 11-104.

Deploy analytics to the cloud
You can deploy analytics to the cloud. For more information, see
“Deployment of analytics to the cloud” on page 11-117. A new analytics
property for the console URL configuration (wl.analytics.console.url), is
added. For more information, see “Analytics” on page 11-49.

Improved MobileFirst API
New features improve and extend the APIs that you can use to develop mobile
applications.

New C# client-side API for Windows 8

IBM MobileFirst Platform Foundation V6.3.0 includes a new C# client-side API for
Windows 8 that you can use to develop apps for Windows 8.

For more information, see:

Release notes 3-11

v “C# client-side API for Windows 8 apps” on page 10-7
v “Developing native C# applications for Windows 8” on page 8-201

New Rest Services API

IBM MobileFirst Platform Foundation V6.3.0 includes more REST services API as
follows:
v For Push Notification Credentials Management. Ability to change the APNS,

MPNS, and GCM credentials of an application.
v For Push Notification Tags Management. Ability to create, update, get, and

delete the tags of an application.
v For Push Device Registration and Push Device Subscription. Ability to retrieve

and delete push notification subscription, or device registration.
v For Beacons Management. Ability to register, get, and delete beacons.
v For Beacon Triggers Management. Ability to add, get, update, and delete beacon

triggers.
v For Beacon and Trigger Association Management. Ability to create, get, and

delete associations between beacons and triggers.

For more information about the new REST API, see “REST Services API” on page
10-8.

Updated JavaScript client-side API

IBM MobileFirst Platform Foundation V6.3.0 includes updates in its JavaScript
client-side API, as follows:
v New API:

– WLApp.setServerUrl = function (url, successCallback, failCallback)

With this new API, you can change the MobileFirst Server URL during
runtime.
For more information, see the WL.App class.

– WLApp.getServerUrl = function (successCallback, failCallback)

With this new API, you can get the URL currently set for the MobileFirst
Server during runtime.
For more information, see the WL.App class.

v Modified API:
– WL.JSONStore.destroy(username, options)

With this updated API, you can completely wipe the data, destroy the
internal storage, and clear the security artifacts for a specific user.
For more information, see the WL.JSONStore class.

Updated JavaScript server-side API

IBM MobileFirst Platform Foundation V6.3.0 includes updates in its JavaScript
server-side API that you can use to extend the MobileFirst Server, as follows:
v New API:

– WL.Server.getBeaconsAndTriggers(applicationName, beaconsOfInterest)

With this new API, you can retrieve the relevant beacons and triggers along
with their associations for the specified application.
For more information, see the WL.Server class.

3-12 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.App.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.App.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

v Modified API:
– WL.Server.invokeHttp() now supports two new properties:

connectionTimeoutInMillisecons and socketTimeoutInMilliseconds. These
properties correspond to the HTTP protocol timeouts.
For more information, see the WL.Server class.

For more information, see “JavaScript server-side API” on page 10-8.

Updated Objective-C client-side API for iOS

IBM MobileFirst Platform Foundation V6.3.0 includes updates in its Objective-C
client-side API to develop native apps on iOS, as follows:
v New API:

– -(BOOL) destroyWithUsername:(NSString*)username
error:(NSError**)error;

With this new API, you can completely wipe the data, destroy the internal
storage, and clear the security artifacts for a specific user.
For more information, see the JSONStore class.

– - (void) setServerUrl: (NSURL*) url{}

With this new API, you can change the MobileFirst Server URL during
runtime.
For more information, see the WLClient class.

– - (NSURL*) serverUrl{}

With this new API, you can obtain the URL currently set for the MobileFirst
Server during runtime.
For more information, see the WLClient class.

For more information, see “Objective-C client-side API for iOS apps” on page 10-5.

Updated Java client-side API for Android

IBM MobileFirst Platform Foundation V6.3.0 includes updates in its Java client-side
API to develop native apps on Android, as follows:
v New API:

– WL.setServerUrl (URL url) and WLClient.setServerUrl (URL url)
With this new API, you can change the MobileFirst Server URL during
runtime.
For more information, see the WL and WLClient classes.

– WL.getServerUrl and WLClient.getServerUrl
With this new API, you can get the URL currently set for the MobileFirst
Server during runtime.
For more information, see the WL and WLClient classes.

– WL.JSONStore.destroy(java.lang.String username)

With this new API, you can completely wipe the data, destroy the internal
storage, and clear the security artifacts for a specific user.
For more information, see the WLJSONStore class.

For more information, see “Java client-side API for Android apps” on page 10-6.

Release notes 3-13

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_j_s_o_n_store.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_w_l_client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_w_l_client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/androidgap/api/WL.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/wlclient/api/WLClient.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/androidgap/api/WL.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/wlclient/api/WLClient.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/jsonstore/api/WLJSONStore.html

Updated C# client-side API for Windows Phone 8

IBM MobileFirst Platform Foundation V6.3.0 includes updates in its C# client-side
API for Windows Phone 8 as follows:
v New API:

– WL

This new class contains the various methods that are related to mixed hybrid
features: action sender, splash screen, and change server address. You can get
reference of WL object by using WL.getInstance().

– WLActionReceiver

With this new interface, it allows every implementing object to receive actions
and data from the MobileFirst framework.

– WLClient.getInstance().getServerUrl()

With this new method in WLClient class, you can get the current MobileFirst
Server URL.

– WLClient.getInstance().setServerUrl(Url url)

With this new method in WLClient class, you can set the MobileFirst Server
URL to the specified URL.

For more information, see “C# client-side API for Windows Phone 8 apps” on page
10-6.

Documentation improvements
IBM MobileFirst Platform Foundation V6.3.0 includes several enhancements to the
documentation.

“Guidelines for testing hybrid MobileFirst applications” on page 8-74
These are new guidelines for testing for unexpected behaviors in hybrid
applications.

“Guidelines for using native code in MobileFirst projects” on page 8-159
These are new guidelines for keeping your project's native code intact
during a build.

“Enabling high-resolution splash images for iPhone 6 and 6 Plus devices” on
page 8-69

This new topic describes how to use a UILaunchImages dictionary to enable
high-resolution splash images.

“Endpoints of the MobileFirst Server production server” on page 6-288
This new topic describes how you can use white- and blacklists to the
endpoints of the MobileFirst Server.

“Optimization and tuning of MobileFirst Server” on page 6-118
This topic has been reviewed extensively. Along with updates to existing
issues, it now provides guidelines in using Oracle JDK, tuning back-end
connections, and handling slow back-end servers.

Deprecated and removed features
If you are migrating from an earlier release of the product, be aware of the various
features that have been deprecated or removed in this and earlier releases.

Deprecated features

3-14 IBM MobileFirst Platform Foundation V6.3.0

Definition: Pertaining to an entity, such as a programming element or
feature, that is supported but no longer recommended and that might
become obsolete.

For a list of deprecated features, see “Deprecated features”

Removed features

Definition: Pertaining to a feature that is no longer included in a product.

For a list of removed features, see “Removed features”

Deprecated features
The following features are deprecated from this and earlier releases of this product.

Features deprecated in V6.3.0

Table 3-1. Features deprecated in V6.3.0

Category Deprecation Recommended action

Sencha Touch tooling Sencha Touch tooling is
deprecated in MobileFirst
Studio. Specific Sencha Touch
tooling might be removed
from MobileFirst Studio in a
future release.
Note: Sencha Touch is still
supported by the product.

You can continue to use
Sencha Touch by copying the
relevant files into your
MobileFirst application to a
directory of your choosing.
Then, add the necessary
reference tags into the main
index.html file.

Removed features
The following features are removed from this and earlier releases of this product.

Features removed in V6.3.0

Table 3-2. Features removed in V6.3.0

Feature

The IBM Worklight Application Framework (beta) set of tools is removed in IBM
MobileFirst Platform Foundation V6.3.0.

Known issues
You can identify the latest known issues and their resolutions, for this product
release and all its fix packs, by browsing this dynamic list of documents.

Click the following link to receive a dynamically generated list of documents for
this specific release and all its fix packs, including known issues and their
resolutions, and relevant downloads: http://www.ibm.com/support/
search.wss?tc=SSVNUQ&tc=SSHT2F&atrn=SWVersion&atrv=6.3

The following websites provide helpful community resources:
v Developer Center for IBM MobileFirst Platform (Help page), where you can post

questions to Stack Overflow website, and get answers, by using the following
tags:
– mobilefirst
– worklight for past releases

Release notes 3-15

http://www.ibm.com/support/search.wss?tc=SSVNUQ&tc=SSHT2F&atrn=SWVersion&atrv=6.3
http://www.ibm.com/support/search.wss?tc=SSVNUQ&tc=SSHT2F&atrn=SWVersion&atrv=6.3
https://developer.ibm.com/mobilefirstplatform/help/
http://stackoverflow.com/questions/tagged/mobilefirst
http://stackoverflow.com/questions/tagged/worklight

v dW Answers website, where you can post questions and get answers, by using
the following tags:
– mobilefirst
– worklight for past releases

Known limitations
General limitations apply to IBM MobileFirst Platform Foundation as detailed here.
Limitations that apply to specific features are explained in the topics that describe
these features.

In this documentation, you can find the description of IBM MobileFirst Platform
Foundation known limitations in different locations:
v When the known limitation applies to a specific feature, you can find its

description in the topic that explains this specific feature. You can then
immediately identify how it affects the feature.

v When the known limitation is general, that is, applies to different and possibly
not directly related topics, you can find its description here.

Note: For more information about product known limitations or issues, see
“Known issues” on page 3-15.

Globalization

If you are developing globalized apps, notice the following restrictions:
v Part of the product IBM MobileFirst Platform Foundation V6.3.0, including its

documentation, is translated in the following languages: Simplified Chinese,
Traditional Chinese, French, German, Italian, Japanese, Korean, Portuguese
(Brazil), Russian, and Spanish. Only user-facing text is translated.

v The MobileFirst Studio and MobileFirst Operations Console provide only partial
support for bidirectional languages.

v The applications that are generated by IBM MobileFirst Platform Foundation are
not fully bidirectional enabled. Mirroring of the graphic user interface (GUI)
elements and the control of the text direction are not provided by default.
However, there is no hard dependency from the generated applications on this
limitation. It is possible for the developers to achieve full bidi compliance by
manual adjustments in the generated code.

v Although translation into Hebrew is provided for IBM MobileFirst Platform
Foundation core functionality, some GUI elements are not mirrored.

v In MobileFirst Studio and MobileFirst Operations Console, dates and numbers
might not be formatted according to the locale.

v Names of projects, apps, adapters, Dojo custom builds and Dojo library projects
must be composed only of the following characters:
– Uppercase and lowercase letters (A-Z and a-z)
– Digits (0-9)
– Underscore (_)

Some examples of the problems that you might encounter if the names of your
Dojo library projects are NL strings are the incorrect display of the UI pattern
preview, the failure of the generation of the Dojo custom build, and the failure to
display the NL string in the Dojo custom build console.

v There is no support for Unicode characters outside the Basic Multilingual Plane.

3-16 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/answers
https://developer.ibm.com/answers/search.html?f=&type=question&redirect=search_search&sort=relevance&q=mobilefirst
https://developer.ibm.com/answers/search.html?f=&type=question&redirect=search_search&sort=relevance&q=worklight

The Server Configuration Tool has the following restrictions:
v The descriptive name of a server configuration can contain only characters that

are in the system character set. On Windows, it is the ANSI character set.
v Passwords that contain single quotation mark or double quotation mark

characters might not work correctly.
v The console of the Server Configuration Tool has the same globalization

limitation as the Windows console to display strings that are out of the default
codepage.

IBM MobileFirst Platform Operational Analytics has the following limitations in
terms of globalization:
v In reports, the format for dates and times do not follow the International

Components for Unicode (ICU) rules.
v In reports, the format for numbers does not follow the International Components

for Unicode (ICU) rules.
v In reports, the numbers do not use the user's preferred number script.
v In reports, searching for Chinese, Japanese, and Korean characters (CJK) returns

no results.
v Messages that include non-ASCII characters that are created with the

WL.Analytics log method are not always logged successfully.
v Messages that include non-ASCII characters that are created with the WL.Logger

error method are not always logged successfully.
v The Analytics page of the MobileFirst Operations Console does not work in the

following browsers:
– Microsoft Internet Explorer version 8 or earlier
– Apple Safari on iOS version 4.3 or earlier

v On Mozilla Firefox browser and Google Chrome browser, the locale that is used
to display dates and time might differ from the locale that is set for the browser.

v The dates on the X-axis are not localized.

You might also experience restrictions or anomalies in various aspects of
globalization because of limitations in other products, such as browsers, database
management systems, or software development kits in use. For example:
v You must define the user name and password of the Application Center with

ASCII characters only. This limitation exists because IBM WebSphere Application
Server (full or Liberty profiles) does not support non-ASCII passwords and user
names. See Characters that are valid for user IDs and passwords.

v On Windows:
– To see any localized messages in the log file that the test server that is

embedded in MobileFirst Studio creates, you must open this log file with the
UTF8 encoding.

– In the test server console in Eclipse, the localized messages are not properly
displayed.

These limitations exist because of the following causes:
– The test server is installed on IBM WebSphere Application Server Liberty

profile, which creates log file with the ANSI encoding except for its localized
messages for which it uses the UTF8 encoding.

– The test server console in Eclipse displays the content by using the ANSI
encoding, not the UTF8 encoding.

Release notes 3-17

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Logger.html
http://ibm.biz/knowctr#SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/csec_chars.html

v In Java 7.0 Service Refresh 4-FP2 and previous versions, you cannot paste
Unicode characters that are not part of the Basic Multilingual Plane into the
input field. To avoid this issue, create the path folder manually and choose that
folder during the installation.

v Custom title and button names for the alert, confirm, and prompt methods must
be kept short to avoid truncation at the edge of the screen.

v The applications that are developed with MobileFirst Application Framework
running in Portuguese (Portugal) will see runtime messages in Portuguese
(Brazil).

v JSONStore does not handle normalization. The Find functions for the JSONStore
API do not take account of language sensitivity such as accent insensitive, case
insensitive, and 1 to 2 mapping.

v The sorted results of JSONStore Find API are not language-specific and not
compliant with Common Locale Data Repository (CLDR) rules.

Application Center mobile client

The Application Center mobile client follows the cultural conventions of the
running device, such as the date formatting. It does not always follow the stricter
International Components for Unicode (ICU) rules.

The Application Center mobile client for BlackBerry has the following known
limitations:
v It supports only a limited set of languages. In particular, it does not fully

support right-to-left languages, such as Arabic and Hebrew.
v It does not support Unicode characters outside the Basic Multilingual Plane.
v It supports Unicode characters inside the Basic Multilingual Plane but how these

characters are displayed depends on the fonts that are available on the device

Application Center mobile client: refresh issues on Android 4.0.x

Android 4.0.x WebView component is known to have several refresh issues.
Updating devices to Android 4.1.x should provide a better user experience.

If you build the Application Center client from sources, disabling the hardware
acceleration at the application level in the Android manifest should improve the
situation for Android 4.0.x. In that case, the application must be built with Android
SDK 11 or later.

Rich Page Editor

The Rich Page Editor fails to show your page when the code that initializes it
attempts to communicate with MobileFirst Server.

The Rich Page Editor simulates the mobile device environment without any
connection to a real server. If the code that initializes your page tries to
communicate with MobileFirst Server, a failure occurs. Because of this failure, the
page content remains hidden, and you cannot use the Design pane of the Rich
Page Editor.

As an example, a failure occurs if your page calls an adapter procedure in the
wlCommonInit() function or the wlEnvInit() function.

3-18 IBM MobileFirst Platform Foundation V6.3.0

In general, however, the initialization code is not strictly necessary to get a
reasonable visual rendering of your page. To avoid this limitation, temporarily
remove the "display: none" style from the body element in your page. Your page
then renders even if the initialization functions do not execute completely.

Note: The standard Eclipse editor does not handle UTF-8 with the BOM (byte
order mark) properly, therefore the Rich Page Editor does not support UTF-8 with
byte order mark.

Note: The Rich Page Editor supports jQuery mobile 1.4.2. It does not support
jQuery mobile 1.4.1

JSONStore resources for iPhone and iPad

When you develop apps for iPhone and iPad, the JSONStore resources are always
packaged in the application, regardless of whether you enabled JSONStore or not
in the application descriptor. The application size is not reduced even if JSONStore
is not enabled.

Analytics page of the MobileFirst Operations Console

Response times in the Analytics page of the MobileFirst Operations Console
depend on several factors, such as hardware (RAM, CPUs), quantity of
accumulated analytics data, and IBM MobileFirst Platform Operational Analytics
clustering. Consider testing your load before integrating IBM MobileFirst Platform
Operational Analytics into production.

Deployment of an app from MobileFirst Studio to Tomcat

If you use Tomcat as an external server in Eclipse (for example to test and debug
the applications directly in MobileFirst Studio), the following restrictions apply:
v The context path that you set to your project is ignored. When you deploy your

app from MobileFirst Studio to Tomcat, the default context path, which is the
project name, is used instead of the context path. The URL of the MobileFirst
Operations Console for your app similarly uses the project name.

v When you deploy your app from MobileFirst Studio to Tomcat, the deployed
WAR file is not visible in the Server view of Eclipse (in MobileFirst Studio),
even if the application is correctly deployed.

To avoid these issues, keep the default value of the context path of your project,
which is the project name.

IBM MobileFirst Platform Foundation components cannot contain
multiple environments

During the creation of a MobileFirst component, you include Android as well as
iPhone or iOS environments. The addition of the same component fails because it
contains multiple environments.

Separate MobileFirst component needs to be created for each environment, such as
Android, iOS or iPhone.

Release notes 3-19

Installation on a cluster of IBM WebSphere Application Servers
Liberty profile that you administer with a collective controller

The following limitations apply if you install MobileFirst Server on a cluster of
IBM WebSphere Application Servers, Liberty profile, that you administer with a
collective controller:
v The Application Center installation with the MobileFirst Server installer does not

use the collective controller. You must install MobileFirst Server on each server
separately.

v The MobileFirst Operations Console installation with the
<configureApplicationServer> Ant task does not use the collective controller.
You must run the <configureApplicationServer> Ant task for each server
separately.

No white space with Eclipse workspace path

The MobileFirst Development Server (an instance of the WebSphere Application
Server Liberty profile server) cannot handle an Eclipse workspace path with white
space. As a result, a simple app cannot be deployed or previewed. In MobileFirst
Operations Console, an error message is displayed:
Server error. Contact the server administrator.

In the log file, the following error messages are logged:
[12/11/14 10:27:57:376 IST] 0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W: The manifest class path jaxb-api.jar can not be found in jar file wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wlp/usr/servers/worklight/apps/worklightconsole.war!/WEB-INF/lib/jaxb-impl-2.1.12.osgi.jar or its parent.
[12/11/14 10:27:57:376 IST] 0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W: The manifest class path activation.jar can not be found in jar file wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wlp/usr/servers/worklight/apps/worklightconsole.war!/WEB-INF/lib/jaxb-impl-2.1.12.osgi.jar or its parent.
[12/11/14 10:27:57:376 IST] 0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W: The manifest class path jsr173_1.0_api.jar can not be found in jar file wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wlp/usr/servers/worklight/apps/worklightconsole.war!/WEB-INF/lib/jaxb-impl-2.1.12.osgi.jar or its parent.
[12/11/14 10:27:57:377 IST] 0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W: The manifest class path jaxb1-impl.jar can not be found in jar file wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wlp/usr/servers/worklight/apps/worklightconsole.war!/WEB-INF/lib/jaxb-impl-2.1.12.osgi.jar or its parent.
[12/11/14 10:27:57:637 IST] 00000029 com.ibm.ws.webcontainer.osgi.webapp.WebGroup I SRVE0169I: Loading Web Module: IBMJMXConnectorREST.

Do not use an Eclipse workspace path with white space.

Installation of a fix pack or interim fix to the Application Center
or the MobileFirst Server

When you apply a fix pack or an interim fix to Application Center or MobileFirst
Server, manual operations are required, and you might have to shut down your
applications for some time. For more information, see “Upgrading to IBM
MobileFirst Platform Foundation V6.3.0” on page 7-1 or “Upgrading to MobileFirst
Server V6.3.0 in a production environment” on page 7-13.

FIPS 140-2 feature limitations

The following known limitations apply when you use the FIPS 140-2 feature in
IBM MobileFirst Platform Foundation:
v This FIPS 140-2 validated mode applies only to the protection (encryption) of

local data that is stored by the JSONStore feature and protection of HTTPS
communications between the MobileFirst client and the MobileFirst Server.
– For HTTPS communications, only the communications between the

MobileFirst client and the MobileFirst Server use the FIPS 140-2 libraries on
the client. Direct connections to other servers or services do not use the FIPS
140-2 libraries.

v This feature is only supported on the iOS and Android platforms.
– On Android, this feature is only supported on devices or simulators that use

the x86 or armv7 architectures. It is not supported on Android using armv5 or

3-20 IBM MobileFirst Platform Foundation V6.3.0

armv6 architectures. The reason is because the OpenSSL library used did not
obtain FIPS 140-2 validation for armv5 or armv6 on Android.

– On iOS, it is supported on i386, armv7, and armv7s architectures. FIPS is not
yet supported on 64-bit architecture even though MobileFirst library does
support 64-bit architecture. Therefore, FIPS must not be enabled on 64-bit
target platform when XCode Build Setting (Architecture) is also set to 64 bit.

v This feature works with hybrid applications only (not native).
v The use of the user enrollment feature on the client is not supported by the FIPS

140-2 feature.
v The Application Center client does not support the FIPS 140-2 feature.

For more information about this feature, see “FIPS 140-2 support” on page 12-157.

Support for Android Emulator 2.3.x

IBM MobileFirst Platform Foundation does not support Android Emulator 2.3.x
because of known issues, as detailed in the Android list of issues at
https://code.google.com/p/android/issues/list (search for issue 12987).

User Certificate Authentication feature limitations

The following known limitations apply when using the User Certificate
Authentication feature in IBM MobileFirst Platform Foundation:
v This feature is available only on the hybrid iOS and Android environments for

this current release.
v This feature is not supported with the FIPS 140-2 feature.
v This feature is supported on WebSphere Application Server and WebSphere

Application Server Liberty profile.
v This feature does not support an environment where the MobileFirst Server is

protected by container security that requires a CLIENT-CERT authentication
method. Instead, the server must be configured to accept the client certificate
optionally, and not require one.

v Self-signed certificates are not supported with the User Certificate Authentication
feature.

v This feature cannot be used when you use the IBM HTTP Server between the
client device and the MobileFirst Server. The IBM HTTP Server is unable to
provide user identity to the MobileFirst Server after authenticating with the
client certificate.

LTPA token limitations

An SESN0008E exception occurs when an LTPA token expires before the user session
expires.

An LTPA token is associated with the current user session. If the session expires
before an LTPA token expires, a new session is created automatically. However,
when an LTPA token expires before a user session expires, the following exception
occurs:
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException: SESN0008E: A user authenticated as anonymous has attempted to access a session owned by {user name}

To resolve this limitation, you must force the user session to expire when the LTPA
token expires.

Release notes 3-21

https://code.google.com/p/android/issues/list

v On WebSphere Application Server Liberty, set the httpSession attribute
invalidateOnUnauthorizedSessionRequestException to true in the server.xml
file.

v On WebSphere Application Server, add the session management custom
property InvalidateOnUnauthorizedSessionRequestException with the value
true to fix the issue.

Note: On certain versions of WebSphere Application Server or WebSphere
Application Server Liberty, the exception is still logged, but the session is correctly
invalidated. For more information, see APAR PM85141.

Support of Oracle 12c by MobileFirst Server

The installation tools of the MobileFirst Server (Installation Manager, Server
Configuration Tool, and Ant tasks) support installation with Oracle 12c as a
database with the same limitations as in “Using complex Oracle connection
descriptors” on page 6-18.

The database and database users must be created before you run the installation
tools. The connection information must be entered using a JDBC URL. For more
information, see “Using complex Oracle connection descriptors” on page 6-18.

Liberty server limitations

If you use the Liberty studio server on a 32-bit JDK 7, Eclipse might not start, and
you might receive the following error: Error occurred during initialization of
VM. Could not reserve enough space for object heap. Error: Could not create
the Java Virtual Machine. Error: A fatal exception has occurred. Program
will exit.

To fix this issue, use the 64-bit JDK with the 64-bit Eclipse and 64-bit Windows. If
you use the 32-bit JDK on a 64-bit machine, you might configure JVM preferences
to mx512m and -Xms216m.

3-22 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg1PM85141

Troubleshooting

You can find advice on how to troubleshoot problems, and more information about
known limitations and technotes (Troubleshooting).

The following links point to troubleshooting topics in other parts of this user
documentation. To navigate from there back to this topic, click Back in your Web
browser.
v “Troubleshooting IBM MobileFirst Platform Test Workbench” on page 6-13
v “Troubleshooting IBM MobileFirst Platform Server” on page 6-294
v “Troubleshooting failure to create the DB2 database” on page 6-295
v “Troubleshooting IBM HTTP Server startup” on page 6-275
v “Troubleshooting to find the cause of installation failure” on page 6-295
v “Troubleshooting a Cast Iron adapter – connectivity issues” on page 8-337
v “JSONStore troubleshooting” on page 8-411
v “Troubleshooting adding and removing application components” on page 8-301
v “Troubleshooting the User Certificate Authentication feature” on page 13-83
v “Simple data sharing troubleshooting” on page 8-554.
v “Troubleshooting a corrupt login page (Apache Tomcat)” on page 12-83
v “Troubleshooting failure to authenticate to Application Center and applications

that use the basic registry element” on page 6-296
v “Troubleshooting push notification problems” on page 8-479
v “Troubleshooting JMX configuration for Liberty profile” on page 6-52
v “Troubleshooting unintended direct update requests on Windows Phone 8” on

page 8-179

For more information about known limitations or issues in the product, and
removed or deprecated features, see “Release notes” on page 3-1.

Important: If you have to contact IBM Support for help, see the information in
Collect troubleshooting data. This document details how to gather the necessary
information about your environment so that IBM Support can help diagnose and
resolve your problem.

© Copyright IBM Corp. 2006, 2015 4-1

http://www.ibm.com/support/docview.wss?uid=swg21598161

4-2 IBM MobileFirst Platform Foundation V6.3.0

Tutorials, samples, and additional resources

Tutorials and samples help you get started with and learn about IBM MobileFirst
Platform Foundation. Use them to evaluate what the product can do for you.

Tutorials and associated samples

For you to learn the most important features of IBM MobileFirst Platform
Foundation, tutorials are available on the Getting Started page of the Developer
Center for IBM MobileFirst Platform Foundation.

Tutorials are organized in categories.

Each tutorial is composed of web pages to learn the steps and one or two
companion samples to practice and reuse. The samples are provided as compressed
files and contain pieces of code or script files that support the step-by-step
instructions. When a tutorial includes some exercises, a companion sample
provides the solutions to these exercises.

The same page provides links for you to download compressed files that contain
the materials for the tutorials and samples.

Sample applications

Demonstrations are available from the Starter application samples page of the
Developer Center for a collection of features.

Additional documentation

The Additional documentation page of the Developer Center provides more useful
links, including a guide to scalability and hardware sizing.

Terms and conditions

Before you use the IBM MobileFirst Platform Foundation Getting Started modules,
exercises, and code samples that are available from this Getting Started page, you
must agree on the terms and conditions that are set forth here:

This information contains sample code provided in source code form. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample code is written. Notwithstanding anything to the
contrary, IBM PROVIDES THE SAMPLE SOURCE CODE ON AN “AS IS” BASIS
AND IBM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE, AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM SHALL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY OR ECONOMIC
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR OPERATION OF
THE SAMPLE SOURCE CODE. IBM SHALL NOT BE LIABLE FOR LOSS OF, OR
DAMAGE TO, DATA, OR FOR LOST PROFITS, BUSINESS REVENUE,

© Copyright IBM Corp. 2006, 2015 5-1

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/starter-application-samples/
https://developer.ibm.com/mobilefirstplatform/additional-documentation/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

GOODWILL, OR ANTICIPATED SAVINGS. IBM HAS NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS OR
MODIFICATIONS TO THE SAMPLE SOURCE CODE.

The resources might include applicable third-party licenses. Review the third-party
licenses before you use any of the resources. You can find the third-party licenses
that apply to each sample in the notices.txt file that is included with each
sample.

5-2 IBM MobileFirst Platform Foundation V6.3.0

Installing and configuring

This topic is intended for IT developers and administrators who want to install
and configure IBM MobileFirst Platform Foundation.

This topic describes the tasks required to install and configure the different
components of IBM MobileFirst Platform Foundation. It also contains information
about installing and configuring database and application server software that you
need to support the runtime database.

For more information about how to size your system, see the Scalability and
Hardware Sizing document and the hardware calculator spreadsheet at
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-
sizing-6-3.

IBM MobileFirst Platform Foundation installation overview
IBM MobileFirst Platform Foundation provides the following installable
components: MobileFirst Studio, MobileFirst Server, and IBM MobileFirst Platform
Test Workbench. This section gives an overview of the installation process.

Installing MobileFirst Studio on Eclipse with a P2 update site

You install MobileFirst Studio into an existing installation of Eclipse by using its P2
install and update features. For actual instructions, see “Installing MobileFirst
Studio” on page 6-2.

After the MobileFirst Studio installation, you must also install extra software
development kits (SDKs) and Eclipse plug-ins for each mobile environment that
you are developing for (for example, the Android Development Toolkit).

Installing MobileFirst Test Workbench on Eclipse with a P2
update site

You must install IBM MobileFirst Platform Test Workbench into an existing,
properly configured installation of MobileFirst Studio by using the Eclipse P2
install and update feature. For actual instructions, see “Installing and configuring
IBM MobileFirst Platform Test Workbench” on page 6-12.

Installing MobileFirst Server with IBM Installation Manager

To ensure the correct installation of MobileFirst Server, see “Installation
prerequisites” on page 6-15.

You must install IBM Installation Manager 1.6.3 or later separately before you
install IBM MobileFirst Platform Foundation. For more information, see “Running
IBM Installation Manager” on page 6-27.

Note: IBM Installation Manager is sometimes referred to as IBM Rational®

Enterprise Deployment on the eXtreme Leverage, Passport Advantage sites, and on
the distribution disks. The file names for the images take the form IBM Rational
Enterprise Deployment <version number><hardware platform> <language>; for
example, IBM Rational Enterprise Deployment V1.6.3.1Windows Multilingual.

© Copyright IBM Corp. 2006, 2015 6-1

https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3

You then use IBM Installation Manager to install MobileFirst server-side
components on your application server, and to create databases on your database
management system. Some application server and database configuration is
required. For actual instructions, see “Installing MobileFirst Server” on page 6-14.

Upgrading from earlier versions

The preceding sections provide an overview of IBM MobileFirst Platform
Foundation "first time" installations. For information about upgrading existing
installations of MobileFirst Studio and MobileFirst Server to a newer version, see
“Upgrading to IBM MobileFirst Platform Foundation V6.3.0” on page 7-1.

Installing MobileFirst Studio
You install MobileFirst Studio from your existing Eclipse IDE workbench.

Before you begin
v Ensure that your computer meets the system requirements for the software that

you install, as detailed in “System requirements for using IBM MobileFirst
Platform Foundation” on page 2-12. In particular, note the required versions of
Eclipse (errors might occur if you use other versions or editions).

v If you anticipate using IBM Dojo Toolkit V1.10.1 that is available as part of
MobileFirst Studio, ensure that Eclipse V4.4.1 or higher is installed.

v For Android development, ensure that Android SDK and Oracle JDK are
installed.

v Ensure that an Internet connection is available in case dependencies that are
required by the installation are not already included in the Eclipse IDE.

About this task

MobileFirst Studio is installed with a P2 Eclipse update.

As of V6.2.0, IBM MobileFirst Platform Foundation Developer Edition, IBM
MobileFirst Platform Foundation Consumer Edition, and MobileFirst Enterprise
Edition provide the same instance of MobileFirst Studio:
v MobileFirst Studio that is installed from the IBM MobileFirst Platform

Foundation Developer Edition includes the authenticity feature, which prior to
V6.2.0 was only available in the IBM MobileFirst Platform Foundation Consumer
Edition and the MobileFirst Enterprise Edition. As of V6.2.0, developers can
create production-ready applications with any edition of MobileFirst Studio.

v The internal MobileFirst Development Server that is embedded in MobileFirst
Studio does not include the authenticity feature. Deploying and testing the
authenticity feature requires IBM MobileFirst Platform Foundation Consumer
Edition or MobileFirst Enterprise Edition. You must install MobileFirst Server,
configure it in MobileFirst Studio as an external server, and deploy the
application to MobileFirst Server.

To learn more about the specifics of IBM MobileFirst Platform Foundation
Developer Edition, IBM MobileFirst Platform Foundation Consumer Edition, and
MobileFirst Enterprise Edition, see “Product editions” on page 2-11.

To install MobileFirst Studio as part of IBM MobileFirst Platform Foundation
Developer Edition, go to the IBM MobileFirst Platform Foundation development
website at https://developer.ibm.com/mobilefirstplatform/.

6-2 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/

To install MobileFirst Studio as part of IBM MobileFirst Platform Foundation
Consumer Edition or MobileFirst Enterprise Edition, complete the following
procedure.

Procedure
1. Start your Eclipse IDE workbench. Verify that your version of Eclipse is one of

the versions that is listed in “System requirements for using IBM MobileFirst
Platform Foundation” on page 2-12.

2. Click Help > Install new software.
3. Beside the Work with field, click Add.
4. In the Add Repository window, click Archive.
5. Browse to the location of the P2 update .zip file on the DVD, or to the

location of the archive file on your machine, and click Open.
6. Click OK to close the Add Repository window.
7. On the Available Software page, select IBM MobileFirst Platform Studio

Development Tools, and then click Next. If you want to see the components
to be installed, expand IBM MobileFirst Platform Studio Development Tools,
and select the components you want:
v Always select IBM MobileFirst Platform Studio.
v Select IBM Dojo Mobile Tools if you anticipate using that JavaScript

library.
v Select IBM jQuery Mobile Tools if you anticipate using that JavaScript

library.
8. On the Install Details page, review the features of MobileFirst Studio to be

installed, and then click Next.
9. On the Review Licenses page, review the license text. If you agree to the

terms, select I accept the terms of the license agreement and then click
Finish. The installation process starts.

10. Follow the prompts (during which you may be asked to restart Eclipse) to
complete the installation.

What to do next

Before you run MobileFirst Studio, determine whether you must run extra
post-installation tasks.

You can now optionally install IBM MobileFirst Platform Test Workbench. For more
information, see “Installing and configuring IBM MobileFirst Platform Test
Workbench” on page 6-12.

Running additional tasks for Rational Team Concert V4.0
Before you run MobileFirst Studio, you might need to clean the Eclipse
environment.

About this task

If your Eclipse workbench is installed with IBM Rational Team Concert™ V4.0
Eclipse client, the MobileFirst Studio plug-ins might not be properly activated
when you open an existing workbench. For example, the wizard New >
MobileFirst Project might not be available. To work around this problem, follow
these instructions.

Installing and configuring 6-3

Note: You need to perform these steps only the first time that you start the
product.

Procedure
1. Stop the workbench.
2. Locate the eclipse.ini file in eclipse_installation_directory\eclipse\.
3. Make a copy of the eclipse.ini file, or back it up.
4. Open the eclipse.ini file in a text editor.
5. Append the following text after the existing lines, on a new line: -clean
6. Save and close the file.
7. Start the product and select a workspace. You should be able to successfully

open the workspace.
8. Remove the -clean line from the eclipse.ini file and save the file.

Starting MobileFirst Studio
Start MobileFirst Studio by running the Eclipse executable file.

Procedure
v On Linux systems, run the eclipse file.
v On Windows systems, run the eclipse.exe file.

Installing mobile-specific tools
When you develop mobile applications, you must install and use specialized tools,
such as SDKs. These tools depend on the operating system that you develop the
applications for, such as iOS or Android.

Installing tools for Adobe AIR
To build and sign applications for Adobe AIR, you must install the Adobe AIR
SDK.

Procedure
1. Download the Adobe AIR SDK from the Adobe website at

http://www.adobe.com/.
2. Unpack the archive into a folder of your choice.
3. Set an environment variable (either locally or on the central build server)

named AIR_HOME, pointing to the place where you opened the SDK. The
MobileFirst Builder uses this environment variable to run the build and sign
tool when building AIR applications.

Installing tools for iOS
To build and sign applications for iOS, you must install the latest Xcode IDE,
including the iOS simulator, on a Mac computer.

Procedure
1. Register as an Apple developer on the Apple Registration Center website at

https://developer.apple.com/programs/register/.
2. Download Xcode from the Mac App Store at http://www.apple.com/osx/

apps/app-store.html.
3. Install Xcode on your Mac.

For more information about the iOS development environment, see the tutorials
on the Getting Started page.

6-4 IBM MobileFirst Platform Foundation V6.3.0

http://www.adobe.com/
https://developer.apple.com/programs/register/
http://www.apple.com/osx/apps/app-store.html
http://www.apple.com/osx/apps/app-store.html
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

Installing tools for Android
To build and sign applications for Android, you must install the Android SDK and
the Android Development Tools (ADT) plug-in for Eclipse. Alternatively, you can
install Android Studio.

Procedure
v Using the Android SDK and the Android Development Tools plug-in for Eclipse:

1. Install the Android SDK, available from the Android website at
http://developer.android.com/sdk/.

2. Install the Android Development Tools plug-in for Eclipse, available at
https://dl-ssl.google.com/android/eclipse/.

3. Add SDK Platform and Virtual Devices to the SDK.
For more information about the Android development environment, see the
tutorials on the Getting Started page.

Note: On Ubuntu (Linux), you must check that the Android SDK works
properly. You might need to add some .lib files. For more information, see
the Android website at http://developer.android.com/sdk/installing/
index.html.

v Using Android Studio:
1. Install Android Studio, available from the Android website at

http://developer.android.com/sdk/installing/studio.html.
2. Update the MobileFirst Studio preferences with the location of Android

Studio. From MobileFirst Studio, click Window > Preferences > MobileFirst
(or Eclipse > Preferences > MobileFirst on Mac OS), and specify the
directory where your Android Studio is installed.

3. Right-click your Android applications, and click Run As > Android Studio
project to start Android Studio.

Installing tools for BlackBerry
To build and sign applications for BlackBerry OS 6, 7, or 10, you must install the
WebWorks tools.

Procedure
1. Download Ripple emulator from the BlackBerry website at

https://developer.blackberry.com/html5/download/ and install it.
2. Download WebWorks SDK from the same site, at https://

developer.blackberry.com/html5/download/, and install it in the folder of your
choice.

3. (Only for BlackBerry 10) Set the WEBWORKS_HOME environment variable, either
locally or on the central build server, to the SDK root folder. The MobileFirst
Builder uses this environment variable when it builds BlackBerry 10
applications. On each build, the environment variable value is transferred to
native\project.properties.
You must set the WEBWORKS_HOME variable before you start MobileFirst Studio.
This variable is important for the normal operation of the client. If you use Ant
scripts to build and deploy the application to the device, and the WEBWORKS_HOME
value is incorrectly set, your file structure might become corrupted, and
produce a new directory with the incorrect WEBWORKS_HOME value.

Note: BlackBerry OS 10 is not supported by the current version of the
Application Center.

Installing and configuring 6-5

http://developer.android.com/sdk/
https://dl-ssl.google.com/android/eclipse/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/studio.html
https://developer.blackberry.com/html5/download/
https://developer.blackberry.com/html5/download/
https://developer.blackberry.com/html5/download/

4. Download and install a simulator.
For more information about the BlackBerry development environment, see the
tutorials on the Getting Started page.

Installing tools for Windows Phone 8
To build and sign applications for Windows Phone 8, you must install Microsoft
Visual Studio Express 2012 for Windows Phone.

Procedure

Download Microsoft Visual Studio Express 2012 from the Windows website at
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-
windows-phone and install it.
For more information about the Windows Phone 8 development environment, see
the tutorials on the Getting Started page.

Installing tools for Windows 8
Windows Store apps run only on Windows 8. Therefore, to develop Windows Store
apps, you need Windows 8 and some developer tools.

Procedure
1. After you install Windows 8, go to the Windows website at

http://msdn.microsoft.com/en-us/windows/apps/br229516.aspx.
2. Select the option to download the Windows SDK.
3. Download Microsoft Visual Studio Express 2012 from the Visual Studio website

at http://www.visualstudio.com/ and install it. Microsoft Visual Studio
Express 2012 for Windows 8 includes the Windows 8 SDK. It also gives you
tools to code, debug, package, and deploy a Windows Store app.

4. Start Visual Studio Express 2012. You are prompted to obtain a developer
license. You need a developer license to install, develop, test, and evaluate
Windows Store apps. For more information about obtaining a developer license,
see the Windows site at http://msdn.microsoft.com/en-us/library/windows/
apps/br211384.aspx.

Changing the port number of the internal application server
If the default port number is already in use, edit the eclipse.ini file to change to
a different port.

About this task

When you start Eclipse with MobileFirst Studio, an embedded application server is
started automatically to host a MobileFirst Server instance for your adapters and
apps. This internal server uses port 10080 by default.

If port 10080 is occupied by another application that is running on your
development computer, you can configure the MobileFirst Studio internal server to
use a different port.

Procedure
1. Open the Servers view in Eclipse.
2. Expand the MobileFirst Development Server list.
3. Double-click Server Configuration [server.xml] worklight.
4. In the Server Configuration window, click HTTP endpoint.

6-6 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/
http://msdn.microsoft.com/en-us/windows/apps/br229516.aspx
http://www.visualstudio.com/
http://msdn.microsoft.com/en-us/library/windows/apps/br211384.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211384.aspx

5. Change the Port value to any port number of your choice.

Uninstalling MobileFirst Studio
You uninstall MobileFirst Studio from your existing Eclipse IDE workbench.

About this task

Follow this procedure to uninstall MobileFirst Studio and the optional IBM mobile
libraries, if those libraries were also installed on your computer along with
MobileFirst Studio.

Procedure
1. In Eclipse, go to Help > About Eclipse SDK > Installation Details.

2. In Eclipse SDK Installation Details, select IBM MobileFirst Platform Studio,
and IBM Dojo Mobile Tools and IBM jQuery Mobile Tools if those
components are also listed in the list of Installed Software.

Figure 6-1. About Eclipse SDK

Installing and configuring 6-7

3. Click Uninstall.
4. In the Uninstall wizard, review the components to uninstall, and click Finish.
5. Wait until the uninstallation process finishes, and click Yes when you are

prompted to restart Eclipse to complete the uninstallation.

Installing command-line tools for developers
Follow these instructions to install IBM MobileFirst Platform Command Line
Interface (CLI).

Procedure

Go to the IBM - Developer Center Install the Command Line Interface and
complete the necessary steps to download the CLI Package.

Installing in silent mode
You can complete an unattended installation if you edit values of a response file,
then run the silent installation command.

Before you begin

To complete an unattended installation, you must first create a response file and
name it installer.properties. You must also download the CLI package. For
instructions about downloading the CLI package, see “Installing command-line
tools for developers.”

Note: Mac does not support silent installation.

Procedure

To use the response file and proceed with the silent installation:
1. Copy the contents of the following response file.

Figure 6-2. List of installed software in Eclipse SDK Installation Details

6-8 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/install/#clui

Indicate whether the license agreement has been accepted
#--
LICENSE_ACCEPTED=FALSE

Choose Install Folder
Uncomment one of the properties below, and (optionally) change the value
if you prefer to install to a non-default location.
#---------------------
Linux default
#USER_INSTALL_DIR=/opt/ibm/Worklight-CLI

Windows default
#USER_INSTALL_DIR=C:\\Program Files\\IBM\\Worklight-CLI

#---------------------

2. Paste the contents into your installer.properties response file.
3. Change the license accepted value to TRUE.
4. Remove the leading # from one of the USER_INSTALL_DIR properties.
5. Change the value to the location where you want to install.
6. Install the CLI with the silent installation by writing one of the following

command lines.
v Windows: install_windows.exe -i silent -f /path/to/

installer.properties

v Linux: ./install_linux.bin -i silent -f /path/to/installer.properties

Windows 8.1 installation for IBM MobileFirst Platform
Command Line Interface

If you are using Windows 8.1, you need to ensure that the installer is run in
compatibility mode.

Before you begin

You must download the IBM MobileFirst Platform Command Line Interface (CLI)
package. For instructions about downloading the CLI package, see “Installing
command-line tools for developers” on page 6-8.

Procedure

Follow these steps to run the installer in compatibility mode.
1. Right click install_windows.exe and click Properties:

Installing and configuring 6-9

2. You can see the Properties window, click the Compatibility tab.

3. Check the option Run this program in compatibility mode for:

6-10 IBM MobileFirst Platform Foundation V6.3.0

4. Click Apply and then OK.
5. Then, double-click install_windows.exe.
6. The installer opens and works as expected.

Console Installation for MobileFirst Platform Command Line
Interface

Console installation is an alternative installation method that provides a text-only
interaction that is easily read by screen readers such as JAWS. You can also use a
console installation for Linux environments that accepts connections only through
Secure Shell (SSH) and Telnet. Mac does not support console installation.

Before you begin

You must download the IBM MobileFirst Platform Command Line Interface (CLI)
package. For instructions about downloading the CLI package, see “Installing
command-line tools for developers” on page 6-8.

Note: Mac does not support console installation.

Installing and configuring 6-11

Procedure
1. Open your command-line terminal and change the directory to the folder

where your extracted MobileFirst CLI package is located.
2. Select the installer that is appropriate to your platform and run the installer by

using the next command line:
v Windows: install_windows.exe -i console

v Linux: /install_linux.bin -i console

3. A new command-line terminal window appears which guides you through the
installation of IBM MobileFirst Platform Command Line Interface. Follow the
instructions to complete your installation.

4. On completion of your installation, log out and then log back in. This action
ensures that the mobilefirst and mfp commands are on your system path.

Uninstalling command-line tools for developers
Follow these instructions to uninstall the IBM MobileFirst Platform Command Line
Interface.

Before you begin

Open your command-line terminal to the path where you installed the IBM
MobileFirst Platform Command Line Interface, and change the directory to the
Uninstaller folder.

Procedure
1. GUI Uninstallation: Select and run the uninstall. A GUI appears which guides

you through the uninstallation of the IBM MobileFirst Platform Command Line
Interface. Follow the instructions to complete your uninstallation.

Note: Mac OS X users can only uninstall the product with the GUI.
2. Console Uninstallation: Run the uninstall by using the appropriate command

line:
v Windows: Uninstall.exe -i console
v Linux: ./Uninstall -i console

A new command-line terminal window appears which guides you through the
uninstallation of the IBM MobileFirst Platform Command Line Interface. Follow
the instructions to complete your uninstallation.

3. Silent Uninstallation: Run the uninstall by using the appropriate command
line:
v Windows: Uninstall.exe -i silent
v Linux: ./Uninstall -i silent

Installing and configuring IBM MobileFirst Platform Test Workbench
You must install IBM MobileFirst Platform Test Workbench into an Eclipse IDE
where Worklight Studio V6.0.0 or later is already installed.

Before you begin
v Your computer must meet the system requirements for the software that you

install. For more information, see “System requirements for using IBM
MobileFirst Platform Foundation” on page 2-12.

v Worklight Studio V6.0.0 or later must be already installed on your computer.

6-12 IBM MobileFirst Platform Foundation V6.3.0

v Ensure that an Internet connection is available in case dependencies that are
required by the installation are not already included in the Eclipse IDE.

About this task
v To install IBM MobileFirst Platform Test Workbench on top of MobileFirst Studio

as part of IBM MobileFirst Platform Foundation Developer Edition, go to the
IBM MobileFirst Platform Foundation development website at
https://developer.ibm.com/mobilefirstplatform/.

v To install IBM MobileFirst Platform Test Workbench on top of MobileFirst Studio
as part of IBM MobileFirst Platform Foundation Consumer Edition or of
MobileFirst Enterprise Edition, complete the following procedure.

Procedure
1. Start your Eclipse IDE workbench.
2. Click Help > Install new software.
3. Beside the Work with field, click Add.
4. In the Add Repository window, click Archive.
5. Browse to the location of the P2 update .zip file on the DVD, or of the archive

file on your machine, and click Open.
6. Click OK to exit the Add Repository window.
7. Select the features of IBM MobileFirst Platform Test Workbench that you want

to install, and then click Next.
8. On the Install Details page, review the features that you install, and then click

Next.
9. On the Review Licenses page, review the license text. If you agree to the

terms, click I accept the terms of the license agreement and then click Finish.
The installation process starts.

10. Follow the prompts to complete the installation.

What to do next

When IBM MobileFirst Platform Test Workbench is installed, you can install the
mobile test client for Android and the mobile test client for the iOS Simulator. For
more information about the mobile test client installation, see Installing the mobile
test client.

You can then configure the mobile test client. For details, see Configuring the
mobile test client.

To understand the various available features, see “Testing with IBM MobileFirst
Platform Foundation” on page 9-1.

Make sure you add a JDK to your path in Eclipse. For more information, see
“Troubleshooting IBM MobileFirst Platform Test Workbench.”

Troubleshooting IBM MobileFirst Platform Test Workbench
If you do not set Eclipse to use a JDK installed on your system, you cannot test
Android applications with IBM MobileFirst Platform Test Workbench. The testing
process fails and you get error messages.

Installing and configuring 6-13

https://developer.ibm.com/mobilefirstplatform/
http://ibm.biz/knowctr#SS2HS7_8.5.1/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/cmobinstovr.html
http://ibm.biz/knowctr#SS2HS7_8.5.1/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/cmobinstovr.html
http://ibm.biz/knowctr#SS2HS7_8.5.1/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/cmobconfig.html
http://ibm.biz/knowctr#SS2HS7_8.5.1/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/cmobconfig.html

About this task

To test Android applications with IBM MobileFirst Platform Test Workbench, you
must add the path to the JDK in Eclipse.

Procedure
1. In Eclipse, go to Window > Preferences > Java > Installed JREs.
2. Select JDK to set the JDK as the default JRE.

Installing MobileFirst Server
IBM installations are based on an IBM product called IBM Installation Manager.
Install IBM Installation Manager 1.6.3.1 or later separately before you install IBM
MobileFirst Platform Foundation.

Important: Ensure that you use IBM Installation Manager 1.6.3.1 or later. This
version contains an important fix for an issue identified in IBM Installation
Manager 1.6.3. See http://www.ibm.com/support/docview.wss?uid=swg24035049.

The MobileFirst Server installer copies onto your computer all the tools and
libraries that are required for deploying a MobileFirst project or the IBM
MobileFirst Platform Application Center in production, and IBM SmartCloud
Analytics Embedded.

MobileFirst Server can also automatically deploy the Application Center at
installation time. In this case, a database management system and an application
server are required as prerequisites and must be installed before you start the
MobileFirst Server installer.

The installer can also help with upgrading an existing installation of MobileFirst
Server to the current version. See “Upgrading to IBM MobileFirst Platform
Foundation V6.3.0” on page 7-1.

The following topics describe the installation of MobileFirst Server, installation
prerequisites, and the procedures for a manual installation and configuration of
Application Center. After MobileFirst Server is installed, a MobileFirst project must
be deployed to an application server. This deployment installs a IBM MobileFirst
Platform Operations Console that can be used to upload applications and adapters.
The instructions in “Tutorial for a basic installation of MobileFirst Server” on page
6-20 are based on a simple installation scenario. For a complete description of the
process of deploying a MobileFirst project, see “Deploying MobileFirst projects” on
page 11-1.

Planning the installation of MobileFirst Server
You must plan your installation and choose one installation scenario. You must
also plan the creation of your databases and the topology of the application server.

To install the MobileFirst Server, you can choose one of the following scenarios:
v With the Server Configuration Tool.

The Server Configuration Tool is a graphical tool and is available for Windows,
Linux on x86, and Mac OS. With this tool, you get easily started, but expect
some limitations when you maintain an application in production, in particular
for some upgrade scenarios. This tool can export Ant files.

6-14 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg24035049

Restriction:

– The Server Configuration Tool does not support server farms. Therefore, you
cannot use it to define, install, upgrade, or uninstall server farms. For server
farms, use the provided Ant script or follow manual steps in your application
server. For more information, see “Installing a server farm” on page 6-99.

– The Server Configuration Tool for Mac OS is available for development and
test purposes only.

v Ant tasks: Ant command-line files automate the process of creating or upgrading
a database, either automatically or as a complement of a database preparation by
a database administrator. The Ant tasks also automate the process of installing
or upgrading the Administration Services and the MobileFirst Operations
Console in an application server. Ant tasks provide a high level of control for
individual operations on the database or on the application server.

v Manual installation.

Installation prerequisites
For smooth installation of MobileFirst Server, ensure that you fulfill all required
environment setup and software prerequisites before you attempt installation.

You can find a complete list of supported hardware together with prerequisite
software in “System requirements for using IBM MobileFirst Platform Foundation”
on page 2-12.

Important: If a version of MobileFirst Server is already installed, review
“Upgrading to IBM MobileFirst Platform Foundation V6.3.0” on page 7-1 before
you install MobileFirst Server and deploy a MobileFirst project on the same
application server or databases. Failure to do so can result in an incomplete
installation and a non-functional MobileFirst Server.

Download the IBM MobileFirst Platform Foundation package from IBM Passport
Advantage.

Ensure that you have the latest fix packs for the IBM MobileFirst Platform
Foundation product. If you are connected to the Internet during the installation,
IBM Installation Manager can download the latest fix packs for you.

The package contains an Install Wizard that guides you through the MobileFirst
Server installation.

MobileFirst Server requires an application server and relies on a database
management system.

You can use any of the following application servers:
v WebSphere Application Server Liberty Core
v WebSphere Application Server
v Apache Tomcat

You can use any of the following database management systems:
v IBM DB2
v MySQL
v Oracle
v Apache Derby in embedded mode. Included in the installation image.

Installing and configuring 6-15

http://www.ibm.com/software/passportadvantage/pao_customers.htm
http://www.ibm.com/software/passportadvantage/pao_customers.htm

Verify that the application server you selected provides support for your database.

Note: Apache Derby is supplied for evaluation and testing purposes only and is
not supported for production-grade MobileFirst Server.

The MobileFirst installer can install the IBM MobileFirst Platform Application
Center and deploy it to your application server. In this case, the application server
and the database management system (if different from Apache Derby) must be
installed before you start the MobileFirst Server installer. If you do not need the
Application Center or decide to install it manually, you do not need to install the
application server and database management system before you start the
MobileFirst Server installer. However, you need them before you deploy IBM
MobileFirst Platform Foundation projects.

The IBM MobileFirst Platform Foundation packages include the following
installers:
v IBM DB2 Workgroup Server Edition
v IBM DB2 Enterprise Server Edition (on Linux for System z® only)
v IBM WebSphere Application Server Liberty Core

File system prerequisites
To install IBM MobileFirst Platform Foundation to an application server, the
MobileFirst installation tools must be run by a user that has specific file system
privileges.

The installation tools include:
v IBM Installation Manager
v The Server Configuration Tool
v The Ant tasks to deploy the MobileFirst Server

For WebSphere Application Server Liberty profile, you must have the right to
perform the following actions:
v Read the files in the Liberty installation directory.
v Create files in the configuration directory of the Liberty server, which is typically

usr/servers/<servername>, to create backup copies and modify server.xml and
jvm.options.

v Create files and directories in the Liberty shared resource directory, which is
typically usr/shared.

v Create files in the Liberty server apps directory, which is typically
usr/servers/<servername>/apps.

For WebSphere Application Server full profile and WebSphere Application Server
Network Deployment, you must have the right to perform the following actions:
v Read the files in the WebSphere Application Server installation directory.
v Read the configuration file of the selected WebSphere Application Server full

profile or of the Deployment Manager profile.
v Run the wsadmin command.
v Create files in the profiles configuration directory. The installation tools put

resources such as shared libraries or JDBC drivers in that directory.

For Apache Tomcat, you must have the right to perform the following actions:
v Read the configuration directory.

6-16 IBM MobileFirst Platform Foundation V6.3.0

v Create backup files and modify files in the configuration directory, such as
server.xml, and tomcat-users.xml.

v Create backup files and modify files in the bin directory, such as setenv.bat.
v Create files in the lib directory.
v Create files in the webapps directory.

For all these application servers, the user who runs the application server must be
able to read the files that were created by the user who ran the MobileFirst
installation tools.

Planning the creation of the databases
You must plan the creation of the three databases that are needed for the
Administration Services and the MobileFirst runtime environments.

The installation of the MobileFirst Server requires the following three databases:
v For the Administration Services, an administration database.
v For each MobileFirst runtime environment:

– a runtime database
– a reports database

Note: By default, the databases have the following names and kind attributes, as
defined in table 1 of “Ant configuredatabase task reference” on page 15-1:
v The default name of the administration database is WLADMIN, and its kind is

WorklightAdmin.
v The default name of the runtime database is WRKLGHT, and its kind is Worklight.
v The default name of the reports database is WLREPORT, and its kind is

WorklightReports.

Optionally, the Application Center can be installed. The Application Center also
requires a database.

An installation of MobileFirst Server includes at least one MobileFirst runtime
environment, which is the web application that is in contact with the mobile
devices, but might contain more than one MobileFirst runtime environment.

The databases can be instantiated automatically by the Server Configuration Tool
or by the Ant tasks. In these two installation scenarios, it is also possible that a
database administrator creates the database beforehand. For more information
about the creation of these databases, see “Optional creation of the administration
database” on page 6-46. For more information about the MobileFirst runtime
environments, see “Optional creation of databases” on page 11-6.

For DB2, the administration, the runtime database, and the reports database can be
in the same database, but they must be in different schemas.

For Oracle, these databases must be created for a different user.

For each database, it is possible to restrict the privileges of the database user that
uses the data source at run time.

Installing and configuring 6-17

Restricting database user permissions for IBM MobileFirst Platform Server
runtime operations:

When the databases are operational, you can decide to create a database user with
restricted privileges. You use this database user to perform database underlying
operations from the MobileFirst administration and runtime components. The user
credentials appear in the application server configuration.

MobileFirst Server data is stored in three databases, which are described in
Introduction to the MobileFirst Server components. The database administrator
might require you to provide specific permissions that you need when you access
those databases at run time. The connection to the MobileFirst Server databases at
run time, which is established in the data source credentials, and any subsequent
requests to the databases, are handled through a single database user or one
distinct user per database. Using different users that can access only one kind of
database, and especially to separate the databases of the MobileFirst runtime
environment from the database of the MobileFirst administration component,
improves security. These database users have no relation to the standard
MobileFirst Server groups. The following table shows the minimal permissions that
the database administrator must define on the MobileFirst Server databases for
these users:

Table 6-1. Minimal permissions defined by the database administrator

Database permission Use MobileFirst Server Operation

ALTER TABLE Not required

CREATE INDEX Not required

CREATE ROLE Not required

CREATE SEQUENCE Not required

CREATE TABLE Not required

CREATE VIEW Not required

DROP INDEX Not required

DROP SEQUENCE Not required

DROP TABLE Not required

DROP VIEW Not required

SELECT TABLE Required

INSERT TABLE Required

UPDATE TABLE Required

DELETE TABLE Required

SELECT SEQUENCE Required

These minimal permissions also apply to the database user of the (optional)
Application Center database.

Using complex Oracle connection descriptors:

For some topologies of the Oracle DBMS, for example Oracle Real Application
Clusters (RAC), you might have to use complex Oracle Net connection descriptors.
In that case, review the following steps.

6-18 IBM MobileFirst Platform Foundation V6.3.0

Procedure

1. You must create the databases manually for the Application Center, the
MobileFirst Server administration, and the MobileFirst project WAR file. This
step is mandatory and cannot be performed with the Ant tasks or Server
Configuration Tool. See the following links for instructions on how to create
these databases.
v For installing the Application Center, see “Creating the Oracle database for

Application Center” on page 6-179.
v For installing the MobileFirst Server administration, see “Creating the Oracle

database for MobileFirst Server administration” on page 6-48.
v For deploying the MobileFirst project WAR file, see “Creating the Oracle

databases” on page 11-8.
2. In IBM Installation Manager, or in the Server Configuration Tool, you must use

a generic Oracle JDBC URL instead of the host name and port.

3. For Ant tasks, you must use the alternative attributes for the <oracle> element.
For more information, see “Ant configuredatabase task reference” on page
15-1, table 19.

Note: The example files in “Sample configuration files” on page 15-30 do not
use the alternative attributes for the <oracle> element. If you use an example
file, you must modify the <oracle> elements in the file so that they use the
alternative attributes.

4. The URL must be a URL for the Oracle thin driver. It must not include the user
name and password, for example: jdbc:oracle:thin:@(DESCRIPTION= [Oracle
Net connection descriptor]).

Configuring DB2 HADR seamless failover for MobileFirst Server and
Application Center data sources:

You must enable the seamless failover feature with WebSphere Application Server
Liberty profile and WebSphere Application Server. With this feature, you can
manage an exception when a database fails over and gets rerouted by the DB2
JDBC driver.

Figure 6-3. Oracle Database Settings window

Installing and configuring 6-19

By default with DB2 HADR, when the DB2 JDBC driver performs a client reroute
after detecting that a database failed over during the first attempt to reuse an
existing connection, the driver triggers
com.ibm.db2.jcc.am.ClientRerouteException, with ERRORCODE=-4498 and
SQLSTATE=08506. WebSphere Application Server maps this exception to
com.ibm.websphere.ce.cm.StaleConnectionException before it is received by the
application.

In this case, the application would have to catch the exception and execute again
the transaction. The MobileFirst and Application Center runtime environments do
not manage the exception but rely on a feature that is called seamless failover. To
enable this feature, you must set the enableSeamlessFailover JDBC property to "1".

WebSphere Application Server Liberty profile configuration

You must edit the server.xml file, and add the enableSeamlessFailover property
to the properties.db2.jcc element of the MobileFirst and Application Center data
sources. For example:
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLADMIN" currentSchema="WLADMSC"

serverName="db2server" portNumber="50000"
enableSeamlessFailover= "1"
user="worklight" password="worklight"/>

</dataSource>

WebSphere Application Server configuration

From the WebSphere Application Server administrative console for each
MobileFirst and Application Center data source:
1. Go to Resources > JDBC > Data sources > DataSource name.
2. Select New and add the following custom property, or update the values if the

properties already exist:
enableSeamlessFailover : 1

3. Click Apply.
4. Save your configuration.

For more information about how to configure a connection to an HADR-enabled
DB2 database, see Setting up a connection to an HADR-enabled DB2 database.

Planning the topology of the application server
You must install MobileFirst Server in an application server, and decide which
topology to use.

For more information about the choice of topology, see “Typical topologies of a
MobileFirst instance” on page 6-255.

Tutorial for a basic installation of MobileFirst Server
Learn about the MobileFirst Server installation process by walking through a
simple configuration that creates a functional MobileFirst Server for demonstration
purposes or tests.

Before you begin
1. Install MobileFirst Studio on your computer, if you have not already done so.

6-20 IBM MobileFirst Platform Foundation V6.3.0

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tdat_db2_hadr.html?cp=SSAW57_8.5.5%2F3-3-6-3-3-0-7-3&lang=en

2. Use MobileFirst Studio to create a project, which you can then run on
MobileFirst Server.

About this task

This task shows how to install MobileFirst Server, based on a tutorial of a simple
configuration. It is designed as an overview, to show you where to find the
following tools and information:
v Tools to install a MobileFirst Server and the Application Center, and tools to

deploy a MobileFirst project.
v Information about configuring MobileFirst Server and the Application Center.
v Information about manual MobileFirst Server installation.

Note: Manual installation provides greater flexibility, but can make the
diagnosis of issues more complex, and make the subsequent description of your
configuration to IBM Support more difficult.

For this task, install the following components:
v An IBM WebSphere Application Server Liberty Core application server.
v A database management system (DBMS): IBM DB2, Oracle, or MySQL.
v The Application Center.
v A simple MobileFirst project and its console.

Procedure
1. Install WebSphere Application Server Liberty Core. The installer for WebSphere

Application Server Liberty Core is provided as part of the package for IBM
MobileFirst Platform Foundation.
a. Load the repository for WebSphere Application Server Liberty Core in IBM

Installation Manager and install the product.

Note: IBM Installation Manager is sometimes referred to as IBM Rational
Enterprise Deployment on the eXtreme Leverage, Passport Advantage sites,
and on the distribution disks. The file names for the images take the form
IBM Rational Enterprise Deployment <version number><hardware
platform> <language>; for example, IBM Rational Enterprise Deployment
V1.6.3.1Windows Multilingual.
For more information about loading repositories with IBM Installation
Manager, see step 4a of this procedure. See also the IBM Installation
Manager user documentation.

b. During the installation process, take note of the installation directory of
Liberty.
You need this information later on in the procedure.

2. Create a server for Liberty.
You use this server to install the Application Center and to deploy a
MobileFirst project and its console.
a. Go to the installation directory of Liberty. For example, on Windows, if the

product is installed with administrator rights, it is located by default in
C:\Program Files\IBM\WebSphere\Liberty.

b. Type the command that creates a server.
In this scenario, the server name is simpleServer.

Installing and configuring 6-21

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html

On UNIX and Linux systems:
bin/server create simpleServer

On Windows systems:
bin\server.bat create simpleServer

The server is created with all default settings. For more information about
configuring a Liberty server, read the file README.txt in the Liberty installation
directory. Default settings are sufficient for this tutorial.

3. Install the database management system.
You use this DBMS to install the Application Center and to deploy a
MobileFirst project and its console.
v If you use IBM DB2, the installer for IBM DB2 is provided as part of the

package for IBM MobileFirst Platform Foundation.
a. Run the installer and follow the instructions.
b. On Windows, when you are asked whether to install the IBM Secure

Shell Server for Windows, say Yes.
c. In the following steps, you must have a Secure Shell server installed and

running so that the MobileFirst tools can create the required databases.
– On Windows, the IBM Secure Shell Server for Windowsor the Cygwin

openssh package, as described at Oracle: Installing Cygwin and
Starting SSH Daemon.

– On UNIX, the sshd daemon
d. Take note of the user name and password for the DB2 administrator role.

v If you use MySQL:
a. Install MySQL on your computer.
b. Take note of the user name and password for the administrator.

– By default for some installations, the administrator is root and there is
no password.

– If there is no password for the MySQL administrator in your
installation, set a password for the administrator, following the
instructions from the MySQL documentation.

v If you use Oracle:
a. Install the Oracle database on your computer.
b. Install an ssh shell on your computer. On Windows, install cygwin and

the openssh package.
c. Start the ssh server. On Windows, you need administrator rights.
d. In subsequent steps, you must have that Secure Shell server running.

4. Install MobileFirst Server.
a. Add the MobileFirst Server repository in IBM Installation Manager:

1) Download the Installation Manager Repository for IBM MobileFirst
Platform Server from Passport Advantage.

2) Extract the file on your disk.
3) Start IBM Installation Manager.
4) Open the File > Preferences menu.
5) In the Preferences dialog, click Add Repositories.
6) Select the file disk1/diskTag.inf from the repository directory you

extracted.
7) Click OK and close the Preferences dialog.

6-22 IBM MobileFirst Platform Foundation V6.3.0

http://docs.oracle.com/cd/E25178_01/install.1111/e22624/preinstall_req_cygwin_ssh.htm
http://docs.oracle.com/cd/E25178_01/install.1111/e22624/preinstall_req_cygwin_ssh.htm

b. Load the repository for MobileFirst Server in IBM Installation Manager and
install the product.
1) In the Configuration Choice panel, select the first choice. This option

installs Application Center.
2) In the Database Choice panel, select the name of the database

management system you installed.

Restriction: Apache Derby is not supported by the Server Configuration
Tool , which is used later in this tutorial.

3) In the following database panels of the installer:
v If you use IBM DB2:

– In the Database Server Properties panel:
- Enter localhost as the host name.
- Select the db2jcc4.jar JAR file in the JDBC driver directory (in

<DB2InstallDir>/Java).
– In the Database Server Additional Properties panel:

- Select Simple Mode.
- Enter a database user and password. This user must already

exist.
– In the Create Database panel:

- Enter the name and password of a user account on the database
server that has DB2 privilege SYSADM or SYSCTRL.

- The installer creates the database.
v If you use MySQL:

– In the Database Server Properties panel:
- Enter localhost as the host name.
- Enter the name of the JDBC JAR file for MySQL.

– In the Database Server Additional Properties panel:
- Select Simple Mode.
- Enter a database user and password. This user is already created

by the installer.
– In the Create Database panel:

- Enter the name and password of a superuser account in your
MySQL database server. The default superuser account is root.

- The installer creates the database.
v If you use Oracle:

– In the Database Server Properties panel:
- Enter localhost as the host name.
- Enter the name of the JDBC JAR file for Oracle.

– In the Database Server Additional Properties panel:
- Select Simple Mode.
- Enter a password for the user APPCENTER. This user is created by

the installer.
- The installer creates a database if it does not already exist.

– In the Create Database panel:

Installing and configuring 6-23

- For Administrator Login Name and Passwords, enter an
administrator login name and password that can be used to run
an ssh session. The default Oracle Administrator Login name is
oracle.

- If the database already exists, provide the password of the
SYSTEM user that is used to create the user APPCENTER. If the
database does not already exist, enter the passwords for the SYS
and SYSTEM users that are created to manage the database.

4) In the Application Server Selection panel, select WebSphere
Application Server.

5) In the Application Server Configuration panel, select the installation
directory for IBM WebSphere Application Server Liberty Core that is
installed in step 2.

6) Select simpleServer as the server name.
7) Install the product.

The files that are described in “Distribution structure of MobileFirst Server” on
page 6-42 are installed on your computer.

5. Explore Application Center. Application Center is now functional. The artifacts
of the Application Center are deployed into the Liberty server, which now
includes the features that Application Center requires, and a demonstration
user account exists. The required database also exists.
a. To test the Application Center, start the Liberty server.

On UNIX and Linux systems:
bin/server start simpleServer

On Windows systems:
bin\server.bat start simpleServer

b. Open the Application Center by using the program shortcut that the
installer creates: IBM MobileFirst Platform Server > Application Center.
Alternatively, you can enter the URL for the Application Center into a
browser window. When a Liberty server is created with default settings, the
default URL for Application Center is http://localhost:9080/
appcenterconsole/.

c. Log in to the Application Center with the demonstration account credentials
(login: demo, password: demo)

d. Explore further by using any of the following resources:
v See “Configuring the Application Center after installation” on page 6-203.
v See “Distribution structure of MobileFirst Server” on page 6-42 for a list

of MobileFirst applications that you can compile and upload to the
Application Center. These applications provide access to the Application
Center for mobile devices.

v If you are considering a manual installation of Application Center, see
“Manual installation of Application Center” on page 6-182. In some cases,
manual installations can make the diagnosis of issues more complex, and
can make the description of a configuration to IBM Support more
difficult.

6. Install the MobileFirst Server administration components: Administration
Services and MobileFirst Operations Console.
a. Start the Server Configuration Tool.
v On Linux:

6-24 IBM MobileFirst Platform Foundation V6.3.0

– Click the desktop menu IBM MobileFirst Platform Server > Server
Configuration Tool.

v On Windows:
– Click the Start menu IBM MobileFirst Platform Server > Server

Configuration Tool.
v On Mac OS X:

– In the Finder, double-click the file mf_server_install_dir/shortcuts/
configuration-tool.sh.

Restriction: MobileFirst Server is not supported for production use on
Mac OS X.

mf_server_install_dir is the directory where you install MobileFirst Server.
mf_server is the shortcut for MobileFirst Server.

b. Select Create a MobileFirst Server Configuration.
c. Name the configuration Hello MobileFirst Server.
d. Do not change the default entries in the Configuration Description panel.
e. Do not change the default entries in the Console Settings panel.
f. In the Database Properties panel:

1) Select your database.
2) Proceed as described in the Install MobileFirst Server section when you

entered data to create the database for Application Center.
g. In the Application Server panel:
v Proceed as described in the Install MobileFirst Server section when you

entered data to create the database for Application Center.
v Take note of the default password and login: demo (for both).

h. When all the data is entered, click Deploy.
v The log of the deployment operations appears in the console.
v The Configuration appears in the tree view.
v After the database operation is completed, a log file that is named databases

appears in the tree view, under the Configuration.
v After the deployment to the application server is complete, a log file that is

named install appears in the tree view, under the Configuration.
7. Create a simple MobileFirst project. You create a MobileFirst runtime

environment.
a. Complete the following steps:

1) Install MobileFirst Studio on your computer. See “Installing MobileFirst
Studio” on page 6-2.

2) Start MobileFirst Studio.
3) Create a MobileFirst project (File > New > MobileFirst Project).
4) Assign the name simpleProject, and accept the default project template

Hybrid Application.
5) In the next panel, name the application simpleApp, and then click Finish.

b. Build the application.
1) In the Project Explorer view in MobileFirst Studio, open the project.
2) Open the apps folder, right-click the subfolder simpleApp, and then

click Run As > Run on MobileFirst Development Server.

Installing and configuring 6-25

3) In the Project Explorer view, open the bin folder that was created by
this task. Right-click simpleProject.war and click Properties. The
properties show the path to the WAR file. This path is used in step 8.
For example, if the path of the Eclipse workspace is
C:\workspaces\WorklightStudioWorkspace, the path to the WAR file is
C:\workspaces\WorklightStudioWorkspace\simpleProject\bin\
simpleProject.war.

8. Deploy a MobileFirst runtime environment with the Server Configuration Tool.
a. In the Server Configuration Tool, select File/Add MobileFirst runtime

environment

b. In the dialog box, select the Hello MobileFirst Server configuration created
in step 6.

c. In Enter the name of the new runtime, enter First Runtime.
d. In the MobileFirst runtime environment Configuration Description panel:
v Load the WAR file that you created in the previous step.

e. In the Database Properties panel:
1) Select your database.
2) Proceed as described in the Install MobileFirst Server section when you

entered data to create the database for Application Center.
f. When all the data is entered, click Deploy.
v The log of the deployment operations appears in the console.
v The Runtime appears in the tree view.
v After the database operation is completed, a log file that is named databases

appears in the tree view, under the Configuration.
v After the deployment to the application server is complete, a log file that is

named install appears in the tree view, under the Configuration.
9. Restart the Liberty server and open the MobileFirst Operations Console.

a. Go to the Liberty installation directory. Type the following command:
v On Linux and UNIX systems:

bin/server stop simpleServer

v On Windows systems:
bin\server.bat stop simpleServer

b. Restart the server with the following command:
v On Linux and UNIX systems:

bin/server start simpleServer

v On Windows systems:
bin\server.bat start simpleServer

c. In the shortcut directory that you specified in the MobileFirst runtime
environment Configuration Description panel of the Server Configuration
Tool:
v On Linux and UNIX systems:

Run the mobilefirst-console.sh script.
v On Windows systems:

Double-click the file mobilefirst-console.url. (On Windows 7, this
shortcut can appear as mobilefirst-console, with a file type of Internet
Shortcut.)

You see the MobileFirst Operations Console. You can log in with the default
user login and password that you created in step 6 (by default demo/demo).

6-26 IBM MobileFirst Platform Foundation V6.3.0

What to do next

For more information about the Server Configuration Tool, see “Deploying,
updating, or undeploying MobileFirst Server by using the Server Configuration
Tool” on page 11-9.

If you want to explore the MobileFirst Operations Console further, you can
complete the following tasks:
v Deploy an application as described in “Deploying applications and adapters to

MobileFirst Server” on page 11-73.
v Review “Administering MobileFirst applications” on page 12-1.
v Review “Deploying the project WAR file” on page 11-5.
v Review “Configuration of MobileFirst applications on the server” on page 11-45

and “Configuring a MobileFirst project in production by using JNDI
environment entries” on page 11-56

v Review the options to deploy an IBM MobileFirst Platform Foundation project
manually. In some cases, manual installations can make the diagnosis of issues
more complex, and can make the description of a configuration to IBM Support
more difficult. See “Deploying a project WAR file and configuring the
application server manually” on page 11-37.

Running IBM Installation Manager
IBM Installation Manager installs the IBM MobileFirst Platform Foundation files
and tools on your computer.

IBM Installation Manager helps you install, update, modify, and uninstall packages
on your computer. The installer for MobileFirst Server does not support rollback
operations and updates from one version to another cannot be undone.

The way that you use IBM Installation Manager to upgrade from a previous
release depends on your upgrade path.

You can use IBM Installation Manager to install IBM MobileFirst Platform
Foundation in several different modes, including single-user and multi-user
installation modes.

You can also use silent installations to deploy IBM MobileFirst Platform
Foundation to multiple systems, or systems without a GUI interface.

For more information about Installation Manager, see the IBM Installation Manager
user documentation.

Note: IBM Installation Manager is sometimes referred to as IBM Rational Enterprise
Deployment on the eXtreme Leverage, Passport Advantage sites, and on the
distribution disks. The file names for the images take the form IBM Rational
Enterprise Deployment <version number><hardware platform> <language>; for
example, IBM Rational Enterprise Deployment V1.6.3.1Windows Multilingual.

Installation of the Application Center with IBM Installation
Manager

Run IBM Installation Manager. If you plan to install the Application Center with
IBM Installation Manager, verify that the user who runs IBM Installation Manager
has the privileges that are described in “File system prerequisites” on page 6-16,

Installing and configuring 6-27

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html

then see “Installing and configuring the Application Center” on page 6-177 and
install the Application Center before you proceed to the installation of MobileFirst
Operations Console. For more information, see “Installing the MobileFirst Server
administration” on page 6-46.

If you do not plan to install the Application Center with IBM Installation Manager,
or if you plan to install the Application Center manually, answer No to the
question Install IBM Application Center.

Single-user versus multi-user installations
You can install MobileFirst Server in two different IBM Installation Manager
modes.

Administrator installation
It is an administrator installation when IBM Installation Manager is
installed through the install command. In this case, it requires
administrator privileges to run, and it produces multi-user installations of
products.

When you have chosen an administrator installation of MobileFirst Server,
it is advisable to run the application server from a non-administrator user
account. Running it from an administrator or root user account is
dangerous in terms of security risks.

Because of this, during an administrator installation of MobileFirst Server,
you can choose an operating system user or an operating system user
group. Each of the users in this group can:
v Run the specified application server (if WebSphere Application Server

Liberty, or Apache Tomcat).
v Modify the Application Center Derby database (if Apache Derby is

chosen as your database management system).

In this case, the MobileFirst Server installer sets restrictive access
permissions on the Liberty or Tomcat configuration files, so as to:
1. Allow the specified users to run the application server.
2. At the same time, protect the database or user passwords that these

files contain.

Nonadministrator (single-user) installation
It is a nonadministrator (single-user) installation when IBM Installation
Manager is installed through the userinst command. In this case, only the
user who installed this copy of IBM Installation Manager can use it.

The following constraints regarding user accounts on UNIX apply:
v If the application server is owned by a non-root user, you can install MobileFirst

Server in either of two ways:
– Through a nonadministrator (single-user) installation of IBM Installation

Manager, as the same non-root user.
– Through an administrator installation of IBM Installation Manager, as root,

and afterward change the owner of all files and directories added or modified
during the installation to that user. The result is a single-user installation.

v If the application server is owned by root, you can install MobileFirst Server
only through an administrator installation of IBM Installation Manager; a
single-user installation of IBM Installation Manager does not work, because it
lacks the necessary privileges.

6-28 IBM MobileFirst Platform Foundation V6.3.0

Note: MobileFirst Server does not support the group mode of IBM Installation
Manager.

Installing a new version of MobileFirst Server
Create a fresh installation of IBM MobileFirst Platform Server by creating a new
package group in IBM Installation Manager.

Procedure
1. Start IBM Installation Manager.
2. On the IBM Installation Manager main page, click Install.
3. In the panel that prompts for the package group name and the installation

directory, select Create a new package group.
4. Complete the installation by following the instructions that are displayed.

Upgrading MobileFirst Server from a previous release
The way that you use IBM Installation Manager to upgrade to the latest version of
MobileFirst Server depends on your upgrade path.

Before you begin

Before you apply these instructions, see “Upgrading to IBM MobileFirst Platform
Foundation V6.3.0” on page 7-1. It describes important steps to upgrade
MobileFirst applications, or to upgrade a production server in a production
environment.

Procedure
1. Start the IBM Installation Manager.
2. Depending on your upgrade path, take one of the following actions:
v To upgrade from Worklight Server to MobileFirst Server:

a. Click Install.
b. In the panel that prompts for the package group name and the

installation directory, select Use the existing package group. In this
situation, installation MobileFirst Server automatically removes a
Worklight Server installation that was installed in the same directory.

v To upgrade from MobileFirst Server to a newer version, click Update.

Command-line installation with XML response files (silent
installation)
With IBM Installation Manager, you can complete a command-line installation of
MobileFirst Server with XML response files, on multiple computers, or on
computers where a GUI interface is not available. In the following documentation,
this installation is referred to as silent installation.

About this task

Silent installation uses predetermined answers to wizard questions, rather than
presenting a GUI that asks the questions and records the answers. Silent
installation is useful when:
v You want to install MobileFirst Server on a set of computers that are configured

in the same way.
v You want to install MobileFirst Server on a computer where a GUI is not readily

available. For example, a GUI might not be available on a production server
behind a firewall that prevents the use of VNC, RDP, remote X11, and ssh -X.

Installing and configuring 6-29

Silent installations are defined by an XML file that is called a response file. This file
contains the necessary data to complete installation operations silently. Silent
installations are started from the command line or a batch file.

You can use IBM Installation Manager to record preferences and installation actions
for your response file in user interface mode. Alternatively, you can create a
response file manually by using the documented list of response file commands
and preferences.

You can use one response file to install, update, or uninstall multiple products.

You can use a response file to do almost anything that is possible by using IBM
Installation Manager in wizard mode. For example, with a response file you can
specify the location of the repository that contains the package, the package to
install, and the features to install for that package. You can also use a response file
to apply updates or interim fixes or to uninstall a package.

Silent installation is described in the IBM Installation Manager user documentation,
see Working in silent mode.

There are two ways to create a suitable response file:
v Working with sample response files provided in the MobileFirst user

documentation.
v Working with a response file recorded on a different computer.

Both of these methods are documented in the following sections.

In addition, for a list of the parameters that are created in the response file by the
IBM Installation Manager wizard, see “Command-line (silent installation)
parameters” on page 6-33.

Working with sample response files for IBM Installation Manager:

Instructions for working with sample response files for IBM Installation Manager
to facilitate creating a silent MobileFirst Server installation.

Procedure

Sample response files for IBM Installation Manager are provided in the
Silent_Install_Sample_Files.zip compressed file. The following procedures
describe how to use them.
1. Pick the appropriate sample response file from the compressed file. The

Silent_Install_Sample_Files.zip file contains one subdirectory per release.

Important: For an installation that does not install Application Center on an
application server, use the file named install-no-appcenter.xml.
For an installation that installs Application Center, pick the sample response file
from the following table, depending on your application server and database.

6-30 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silentinstall_overview.html
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/Silent_Install_Sample_Files.zip

Table 6-2. Sample installation response files in the Silent_Install_Sample_Files.zip file to
install the Application Center

Application
server where
you install the
Application
Center Derby IBM DB2 MySQL Oracle

WebSphere
Application
Server Liberty
profile

install-
liberty-
derby.xml

install-
liberty-db2.xml

install-
liberty-
mysql.xml (See
Note)

install-
liberty-
oracle.xml

WebSphere
Application
Server full
profile,
stand-alone
server

install-was-
derby.xml

install-was-
db2.xml

install-was-
mysql.xml (See
Note)

install-was-
oracle.xml

WebSphere
Application
Server Network
Deployment

n/a install-wasnd-
cluster-db2.xml

install-wasnd-
server-db2.xml

install-wasnd-
node-db2.xml

install-wasnd-
cell-db2.xml

install-wasnd-
cluster-
mysql.xml (See
Note)

install-wasnd-
server-
mysql.xml (See
Note)

install-wasnd-
node-mysql.xml

install-wasnd-
cell-mysql.xml
(See Note)

install-wasnd-
cluster-
oracle.xml

install-wasnd-
server-
oracle.xml

install-wasnd-
node-oracle.xml

install-wasnd-
cell-oracle.xml

Apache Tomcat install-tomcat-
derby.xml

install-tomcat-
db2.xml

install-tomcat-
mysql.xml

install-tomcat-
oracle.xml

Note: MySQL in combination with WebSphere Application Server Liberty
profile or WebSphere Application Server full profile is not classified as a
supported configuration. For more information, see WebSphere Application
Server Support Statement. You can use IBM DB2 or another DBMS that is
supported by WebSphere Application Server to benefit from a configuration
that is fully supported by IBM Support.
For uninstallation, use a sample file that depends on the version of MobileFirst
Server or Worklight Server that you initially installed in the particular package
group:
v MobileFirst Server uses the package group IBM MobileFirst Platform

Server.
v Worklight Server V6.x, or later, uses the package group IBM Worklight.
v Worklight Server V5.x uses the package group Worklight.

Table 6-3. Sample uninstallation response files in the Silent_Install_Sample_Files.zip

Initial version of MobileFirst Server Sample file

Worklight Server V5.x uninstall-initially-worklightv5.xml

Installing and configuring 6-31

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

Worklight Server V6.x uninstall-initially-worklightv6.xml

IBM MobileFirst Platform Server V6.x uninstall-initially-mfpserverv6.xml

2. Change the file access rights of the sample file to be as restrictive as possible.
Step 4 requires that you supply some passwords. If you must prevent other
users on the same computer from learning these passwords, you must remove
the read permissions of the file for users other than yourself. You can use a
command, such as the following examples:
v On UNIX:

chmod 600 <target-file.xml>

v On Windows:
cacls <target-file.xml> /P Administrators:F %USERDOMAIN%\%USERNAME%:F

3. Similarly, if the server is a WebSphere Application Server Liberty profile or
Apache Tomcat server, and the server is meant to be started only from your
user account, you must also remove the read permissions for users other than
yourself from the following file:
v For WebSphere Application Server Liberty profile: wlp/usr/servers/

<server>/server.xml

v For Apache Tomcat: conf/server.xml
4. Adjust the list of repositories, in the <server> element. For more information

about this step, see section named Information about the repositories in “Become
familiar with IBM Installation Manager before you start” on page 7-27 and the
IBM Installation Manager documentation at Repositories.
In the <profile> element, adjust the values of each key/value pair.
In the <offering> element in the <install> element, set the version attribute to
match the release you want to install, or remove the version attribute if you
want to install the newest version available in the repositories.

5. Type the following command:
<InstallationManagerPath>/eclipse/tools/imcl input <responseFile> -log /tmp/installwl.log -acceptLicense

Where:
v <InstallationManagerPath> is the installation directory of IBM Installation

Manager.
v <responseFile> is the name of the file that is selected and updated in step 1.

For more information, see the IBM Installation Manager documentation at
Installing a package silently by using a response file.

Working with a response file recorded on a different machine:

Instructions for working with response files for IBM Installation Manager created
on another machine to facilitate creating a silent MobileFirst Server installation.

Procedure

1. Record a response file, by running IBM Installation Manager in wizard mode
and with option -record responseFile on a machine where a GUI is available.
For more details, see Record a response file with Installation Manager.

2. Change the file access rights of the response file to be as restrictive as possible.
Step 4 requires that you supply some passwords. If you must prevent other
users on the same computer from learning these passwords, you must remove
the read permissions of the file for users other than yourself. You can use a
command, such as the following examples:

6-32 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/r_repository_types.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_response_file_install.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_create_response_files_IM.html

v On UNIX:
chmod 600 response-file.xml

v On Windows:
cacls response-file.xml /P Administrators:F %USERDOMAIN%\%USERNAME%:F

3. Similarly, if the server is a WebSphere Application Server Liberty or Apache
Tomcat server, and the server is meant to be started only from your user
account, you must also remove the read permissions for users other than
yourself from the following file:
v For WebSphere Application Server Liberty: wlp/usr/servers/<server>/

server.xml

v For Apache Tomcat: conf/server.xml
4. Modify the response file to take into account differences between the machine

on which the response file was created and the target machine.
5. Install MobileFirst Server by using the response file on the target machine, as

described in Install a package silently by using a response file.

Command-line (silent installation) parameters:

The response file that you create for silent installations by running the IBM
Installation Manager wizard supports a number of parameters.

Table 6-4. Parameters available for silent installation

Key When necessary Description
Allowed
values

user.appserver.selection2 Always Type of
application
server. was
means
preinstalled
WebSphere
Application
Server 7.0, 8.0,
or 8.5. tomcat
means Tomcat
7.0 or newer.

was, tomcat,
none

The value
none means
that the
installer will
not install
the
Application
Center. If
this value is
used, both
user.appserver.selection2
and
user.database.selection2
must take
the value
none.

user.appserver.was.installdir ${user.appserver.selection2}
== was

WebSphere
Application
Server
installation
directory.

An absolute
directory
name.

Installing and configuring 6-33

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_response_file_install.html

Table 6-4. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.appserver.was.profile ${user.appserver.selection2}
== was

Profile into
which to
install the
applications.
For
WebSphere
Application
Server
Network
Deployment,
specify the
Deployment
Manager
profile.
Liberty
means the
Liberty profile
(subdirectory
wlp).

The name of
one of the
WebSphere
Application
Server
profiles.

user.appserver.was.cell ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

WebSphere
Application
Server cell
into which to
install the
applications.

The name of
the
WebSphere
Application
Server cell.

user.appserver.was.node ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

WebSphere
Application
Server node
into which to
install the
applications.
This
corresponds
to the current
machine.

The name of
the
WebSphere
Application
Server node
of the
current
machine.

6-34 IBM MobileFirst Platform Foundation V6.3.0

Table 6-4. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.appserver.was.scope ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Type of set of
servers into
which to
install the
applications.
server means
a standalone
server.
nd-cell
means a
WebSphere
Application
Server
Network
Deployment
cell.
nd-cluster
means a
WebSphere
Application
Server
Network
Deployment
cluster.
nd-node
means a
WebSphere
Application
Server
Network
Deployment
node
(excluding
clusters).
nd-server
means a
managed
WebSphere
Application
Server
Network
Deployment
server.

server,
nd-cell,
nd-cluster,
nd-node,
nd-server

user.appserver.was.serverInstance${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
${user.appserver.was.scope}
== server

Name of
WebSphere
Application
Server server
into which to
install the
applications.

The name of
a WebSphere
Application
Server server
on the
current
machine.

Installing and configuring 6-35

Table 6-4. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.appserver.was.nd.cluster ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
${user.appserver.was.scope}
== nd-cluster

Name of
WebSphere
Application
Server
Network
Deployment
cluster into
which to
install the
applications.

The name of
a WebSphere
Application
Server
Network
Deployment
cluster in the
WebSphere
Application
Server cell.

user.appserver.was.nd.node ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
(${user.appserver.was.scope}
== nd-node ||
${user.appserver.was.scope}
== nd-server)

Name of
WebSphere
Application
Server
Network
Deployment
node into
which to
install the
applications.

The name of
a WebSphere
Application
Server
Network
Deployment
node in the
WebSphere
Application
Server cell.

user.appserver.was.nd.server ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
${user.appserver.was.scope}
== nd-server

Name of
WebSphere
Application
Server
Network
Deployment
server into
which to
install the
applications.

The name of
a WebSphere
Application
Server
Network
Deployment
server in the
given
WebSphere
Application
Server
Network
Deployment
node.

user.appserver.was.admin.name ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Name of
WebSphere
Application
Server
administrator.

user.appserver.was.admin.password2${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Password of
WebSphere
Application
Server
administrator,
optionally
encrypted in a
specific way.

6-36 IBM MobileFirst Platform Foundation V6.3.0

Table 6-4. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.appserver.was.appcenteradmin.password${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Password of
appcenteradmin
user to add to
the
WebSphere
Application
Server users
list, optionally
encrypted in a
specific way.

user.appserver.was.serial ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Suffix that
distinguishes
the
applications
to be installed
from other
installations
of MobileFirst
Server.

String of 10
decimal
digits.

user.appserver.was85liberty.serverInstance_${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
== Liberty

Name of
WebSphere
Application
Server Liberty
server into
which to
install the
applications.

user.appserver.tomcat.installdir${user.appserver.selection2}
== tomcat

Apache
Tomcat
installation
directory. For
a Tomcat
installation
that is split
between a
CATALINA_HOME
directory and
a
CATALINA_BASE
directory, here
you need to
specify the
value of the
CATALINA_BASE
environment
variable.

An absolute
directory
name.

Installing and configuring 6-37

Table 6-4. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.database.selection2 Always Type of
database
management
system used
to store the
databases.

derby, db2,
mysql,
oracle, none

The value
none means
that the
installer will
not install
the
Application
Center. If
this value is
used, both
user.appserver.selection2
and
user.database.selection2
must take
the value
none.

user.database.preinstalled Always true means a
preinstalled
database
management
system, false
means Apache
Derby to
install.

true, false

user.database.derby.datadir ${user.database.selection2}
== derby

The directory
in which to
create or
assume the
Derby
databases.

An absolute
directory
name.

user.database.db2.host ${user.database.selection2}
== db2

The host
name or IP
address of the
DB2 database
server.

user.database.db2.port ${user.database.selection2}
== db2

The port
where the
DB2 database
server listens
for JDBC
connections.
Usually 50000.

A number
between 1
and 65535.

user.database.db2.driver ${user.database.selection2}
== db2

The absolute
file name of
db2jcc.jar or
db2jcc4.jar.

An absolute
file name.

6-38 IBM MobileFirst Platform Foundation V6.3.0

Table 6-4. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.database.db2.appcenter.username${user.database.selection2}
== db2

The user
name used to
access the
DB2 database
for
Application
Center.

Non-empty.

user.database.db2.appcenter.password${user.database.selection2}
== db2

The password
used to access
the DB2
database for
Application
Center,
optionally
encrypted in a
specific way.

Non-empty
password.

user.database.db2.appcenter.dbname${user.database.selection2}
== db2

The name of
the DB2
database for
Application
Center.

Non-empty;
a valid DB2
database
name.

user.database.db2.appcenter.schema${user.database.selection2}
== db2

The name of
the schema
for
Application
Center in the
DB2 database.

user.database.mysql.host ${user.database.selection2}
== mysql

The host
name or IP
address of the
MySQL
database
server.

user.database.mysql.port ${user.database.selection2}
== mysql

The port
where the
MySQL
database
server listens
for JDBC
connections.
Usually 3306.

A number
between 1
and 65535.

user.database.mysql.driver ${user.database.selection2}
== mysql

The absolute
file name of
mysql-
connector-
java-5.*-
bin.jar.

An absolute
file name.

Installing and configuring 6-39

Table 6-4. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.database.mysql.appcenter.username${user.database.selection2}
== mysql

The user
name used to
access the
MySQL
database for
Application
Center.

Non-empty.

user.database.mysql.appcenter.password${user.database.selection2}
== mysql

The password
used to access
the MySQL
database for
Application
Center,
optionally
encrypted in a
specific way.

user.database.mysql.appcenter.dbname${user.database.selection2}
== mysql

The name of
the MySQL
database for
Application
Center.

Non-empty,
a valid
MySQL
database
name.

user.database.oracle.host ${user.database.selection2}
== oracle, unless
${user.database.oracle.appcenter.jdbc.url}
is specified

The host
name or IP
address of the
Oracle
database
server.

user.database.oracle.port ${user.database.selection2}
== oracle, unless
${user.database.oracle.appcenter.jdbc.url}
is specified

The port
where the
Oracle
database
server listens
for JDBC
connections.
Usually 1521.

A number
between 1
and 65535.

user.database.oracle.driver ${user.database.selection2}
== oracle

The absolute
file name of
ojdbc6.jar.

An absolute
file name.

user.database.oracle.appcenter.username${user.database.selection2}
== oracle

The user
name used to
access the
Oracle
database for
Application
Center.

A string
consisting of
1 to 30
characters:
ASCII digits,
ASCII
uppercase
and
lowercase
letters, '_', '#',
'$' are
allowed.

6-40 IBM MobileFirst Platform Foundation V6.3.0

Table 6-4. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.database.oracle.appcenter.username.jdbc${user.database.selection2}
== oracle

The user
name used to
access the
Oracle
database for
Application
Center, in a
syntax
suitable for
JDBC.

Same as
${user.database.oracle.appcenter.username}
if it starts
with an
alphabetic
character
and does not
contain
lowercase
characters,
otherwise it
must be
${user.database.oracle.appcenter.username}
surrounded
by double
quotes.

user.database.oracle.appcenter.password${user.database.selection2}
== oracle

The password
used to access
the Oracle
database for
Application
Center,
optionally
encrypted in a
specific way.

The
password
must be a
string
consisting of
1 to 30
characters:
ASCII digits,
ASCII
uppercase
and
lowercase
letters, '_', '#',
'$' are
allowed.

user.database.oracle.appcenter.dbname${user.database.selection2}
== oracle, unless
${user.database.oracle.appcenter.jdbc.url}
is specified

The name of
the Oracle
database for
Application
Center.

Non-empty,
a valid
Oracle
database
name.

user.database.oracle.appcenter.jdbc.url${user.database.selection2}
== oracle, unless
${user.database.oracle.host},
${user.database.oracle.port},
${user.database.oracle.appcenter.dbname}
are all specified

The JDBC
URL of the
Oracle
database for
Application
Center.

A valid
Oracle JDBC
URL. Starts
with
"jdbc:oracle:".

user.writable.data.user Always The operating
system user
that is
allowed to
run the
installed
server.

An operating
system user
name, or
empty.

Installing and configuring 6-41

Table 6-4. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.writable.data.group2 Always The operating
system users
group that is
allowed to
run the
installed
server.

An operating
system users
group name,
or empty.

Distribution structure of MobileFirst Server
The MobileFirst Server files and tools are installed in the MobileFirst Server
installation directory.

Table 6-5. Files and subdirectories in the MobileFirst Server installation directory

Item Description

shortcuts Launcher scripts for Apache Ant, the
MobileFirst Server Server Configuration
Tool, and the wladm command, which are
supplied with MobileFirst Server.

Table 6-6. Files and subdirectories in the WorklightServer subdirectory

Item Description

worklight-jee-library.jar The MobileFirst Server library for
production. For instructions on deploying a
MobileFirst project and this library to an
Application Server, see “Deploying
MobileFirst projects” on page 11-1. The
deployment is typically performed by using
Ant tasks, but instructions for manual
deployment are also provided.

worklight-ant-deployer.jar A set of Ant tasks that help you deploy
projects, applications, and adapters to your
MobileFirst Server. For documentation about
the Ant tasks that are provided in this
library, see “Deploying MobileFirst projects”
on page 11-1.

worklight-ant-builder.jar A set of Ant tasks that help you build
projects, applications, and adapters for use
in MobileFirst Server. For more information
about the Ant tasks that are provided in this
library, see Ant tasks for building and
deploying applications and adapters.

configuration-samples Contains the sample Ant files for
configuring a database for the MobileFirst
Server and deploying a MobileFirst project
to an Application Server. For instructions on
how to use these Ant projects, see “Sample
configuration files” on page 15-30.

6-42 IBM MobileFirst Platform Foundation V6.3.0

Table 6-6. Files and subdirectories in the WorklightServer subdirectory (continued)

Item Description

databases SQL scripts to be used for the manual
creation of tables for MobileFirst Server and
the Administration Services, instead of using
Ant tasks for the automatic configuration of
these tables. For information about these
scripts, see “Creating and configuring the
databases manually” on page 11-17.

FarmSchemas.xsd XML schema that describes the format of the
file that defines the nodes of a server farm.

encrypt.bat and encrypt.sh Tools to encrypt confidential properties that
are used to configure a MobileFirst Server,
such as a database password or a certificate.
For information about this tool, see “Storing
properties in encrypted format” on page
11-52.

report-templates Report templates to configure BIRT reports
for your Application Server. For information
about these BIRT reports, see “Manually
configuring BIRT Reports for your
application server” on page 13-58.

wladm-schemas XML schemas that describe the format of
input and output of the <wladm> Ant task.

worklightadmin.war The WAR file for the Administration
Services web application.

worklightconsole.war The WAR file for the MobileFirst Operations
Console user interface web application.

external-server-libraries The JAR files and JavaScript libraries that
allow you to use SSO between IBM
MobileFirst Platform Foundation and other
external servers. See usage instructions in
“Using SSO between IBM MobileFirst
Platform Foundation and external services”
on page 8-541.

Table 6-7. Files and subdirectories in the ApplicationCenter subdirectory

Item Description

ApplicationCenter/installer
IBMApplicationCenter.apk

The Android version of the
Application Center Mobile client.

IBMApplicationCenterBB6.zip
The BlackBerry version of the
Application Center Mobile client.

IBMApplicationCenterUnsigned.xap
The Windows Phone 8 version of
the Application Center Mobile
client. You must sign the .xap file
with your company account before
you use it.

Installing and configuring 6-43

Table 6-7. Files and subdirectories in the ApplicationCenter subdirectory (continued)

Item Description

ApplicationCenter/installer/
IBMAppCenterBlackBerry6

Contains the BlackBerry project for the
mobile Client for OS V6 and V7. You must
compile this project to create the BlackBerry
version of the mobile client.

ApplicationCenter/installer/IBMAppCenter Contains the MobileFirst project for the
mobile Client. You must build this project to
create the iOS version of the mobile client.

ApplicationCenter/console/
appcenterconsole.war

The WAR file for the Application
Center console user interface web
application.

applicationcenter.war
The WAR file for the Application
Center REST services web
application.

applicationcenter.ear
The enterprise application archive
(EAR) file to be deployed under
IBM PureApplication System.

ApplicationCenter/databases
create-appcenter-derby.sql

The SQL script to re-create the
application center database on
derby.

create-appcenter-db2.sql
The SQL script to re-create the
application center database on DB2.

create-appcenter-mysql.sql
The SQL script to re-create the
application center database on
mySQL.

create-appcenter-oracle.sql
The SQL script to re-create the
application center database on
Oracle.

In addition, this directory contains the SQL
scripts to upgrade the database from earlier
versions of IBM MobileFirst Platform
Foundation.

6-44 IBM MobileFirst Platform Foundation V6.3.0

Table 6-7. Files and subdirectories in the ApplicationCenter subdirectory (continued)

Item Description

ApplicationCenter/tools
android-sdk

The directory that contains the part
of the Android SDK required by the
Application Center console.

applicationcenterdeploytool.jar
The JAR file that contains the Ant
task to deploy an application to the
Application Center.

acdeploytool.bat
The startup script of the
deployment tool for use on
Microsoft Windows systems.

acdeploytool.sh
The startup script of the
deployment tool for use on UNIX
systems.

build.xml
Example of an Ant script to deploy
applications to the Application
Center.

dbconvertertool.sh
The startup script of the database
converter tool for use on UNIX
systems.

dbconvertertool.bat
The startup script of the database
converter tool for use on Microsoft
Windows systems.

dbconvertertool.jar
The main library of the database
converter tool.

lib The directory that contains all Java
Archive (JAR) files that are required
by the database converter tool.

json4j.jar
The required JSON4J Java archive
file.

README.TXT
Readme file that explains how to
use the deployment tool.

Table 6-8. Files and subdirectories in the License subdirectory

Item Description

License-mfpce License for IBM MobileFirst Platform
Foundation Consumer Edition

License-mfpee License for IBM MobileFirst Platform
Foundation Enterprise Edition

Installing and configuring 6-45

Table 6-9. Files and subdirectories in the tools subdirectory

Item Description

tools/apache-ant-<version> A binary installation of Apache Ant that can
be used to run the Ant tasks. For more
information, see “Deploying MobileFirst
projects” on page 11-1.

Table 6-10. Files and subdirectories in the Analytics subdirectory

Item Description

worklight-analytics.ear The IBM MobileFirst Platform Operational
Analytics EAR file. Contains the
worklight-analytics-service.war file for
deployment on WebSphere Application
Server and WebSphere Application Server
Liberty. For installation instructions, see
“Installing the IBM MobileFirst Platform
Operational Analytics” on page 6-170.

worklight-analytics.war The WAR file for the analytics console user
interface web application.

worklight-analytics-service.war The WAR file for the analytics REST services
web application.

Installing the MobileFirst Server administration
You must install the Administration Services, and optionally the MobileFirst
Operations Console, as part of the MobileFirst Server installation.

Optional creation of the administration database
If you want to activate the option to install the administration database when you
run the Ant tasks or the Server Configuration Tool, you must have certain database
access rights that entitle you to create the databases, or the users, or both, that are
required by the MobileFirst Server administration.

If you have sufficient database administration credentials, and if you enter the
administrator user name and password when prompted, or use Ant files with dba
tags, the installation tools can create the databases for you. Otherwise, you need to
ask your database administrator to create the required database for you. In this
case, the database must be created before you start the installation tools.

The following topics describe the procedure for the supported database
management systems.

Important: This step is optional if you install IBM MobileFirst Platform
Foundation with the Server Configuration Tool or the Ant tasks because the Server
Configuration Tool and the Ant tasks can create the databases automatically.

Creating the DB2 database for MobileFirst Server administration:

During the installation of IBM MobileFirst Platform Foundation, the installation
tools can create the administration database for you.

6-46 IBM MobileFirst Platform Foundation V6.3.0

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the DB2 database manually for the IBM MobileFirst
Platform Server administration” on page 6-64 instead.

About this task

The installation tools can create the administration database for you if you enter
the name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the administration database for
you. For more information, see the DB2 Solution user documentation.

When you create the database manually, you can replace the database name (here
WLADMIN) and the password with a database name and password of your choice.

Important: You can name your database and user differently, or set a different
password, but ensure that you enter the appropriate database name, user name,
and password correctly across the DB2 database setup. DB2 limits:
v Database names: no more than 8 characters on all platforms
v User name and passwords: no more than 8 characters for UNIX and Linux, and

no more than 30 characters for Windows

Procedure

1. Create a system user named, for example, wluser in a DB2 admin group such
as DB2USERS, by using the appropriate commands for your operating system.
Give it a password, for example, wluser.
If you want multiple MobileFirst Server instances to connect to the same
database, use a different user name for each connection. Each database user has
a separate default schema. For more information about database users, see the
DB2 documentation and the documentation for your operating system.

2. Open a DB2 command-line processor, with a user that has SYSADM or SYSCTRL
permissions.
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, navigate to ~/sqllib/bin and enter ./db2.

3. To create the administration database, enter database manager and SQL
statements similar to the following example.
Replace the user name wluser with your own.
CREATE DATABASE WLADMIN COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLADMIN
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT WLADMIN
QUIT

What to do next

The installation tools can create the database tables and objects for MobileFirst
Server administration in a specific schema. You can then use the same database for
MobileFirst Server administration and for a MobileFirst project.
v If the IMPLICIT_SCHEMA authority is granted to the user that you created in

Step 1, no further action is required. This is the default in the database creation
script of Step 2.

Installing and configuring 6-47

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html

v If the user does not have the IMPLICIT_SCHEMA authority, create a SCHEMA
for the administration database tables and objects.

Creating the MySQL database for MobileFirst Server administration:

During the MobileFirst installation, the installation tools can create the
administration database for you.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the MySQL database manually for the IBM
MobileFirst Platform Server administration” on page 6-72 instead.

About this task

The installation tools can create the database for you if you enter the name and
password of the superuser account. For more information, see Securing the Initial
MySQL Accounts on your MySQL database server. Your database administrator
can also create the databases for you. When you create the database manually, you
can replace the database name (here WLADMIN) and password with a database name
and password of your choice.

Attention: On UNIX, MySQL database names are case-sensitive.

Procedure

1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE WLADMIN CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WLADMIN.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON WLADMIN.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;

Here, you need to replace Worklight-host with the name of the host on which
IBM MobileFirst Platform Foundation runs.

Creating the Oracle database for MobileFirst Server administration:

During the installation of IBM MobileFirst Platform Foundation, the installation
tools can create the administration database or the user and schema inside an
existing database for you.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the Oracle database manually for the IBM
MobileFirst Platform Server administration” on page 6-75 instead.

About this task

The installation tools can create the database or user and schema inside an existing
database for you if you enter the name and password of the Oracle administrator
on the database server, and the account can be accessed through SSH. Otherwise,

6-48 IBM MobileFirst Platform Foundation V6.3.0

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

the database administrator can create the database or user and schema for you.
When you manually create the database or user, you can use database names, user
names, and a password of your choice.

Attention: Lowercase characters in Oracle user names can lead to unwanted
results.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new general-purpose database named ORCL:
a. Use global database name ORCL_your_domain, and system identifier (SID)

ORCL.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts because you must first create a user account.
c. On the Character Sets tab of the step Initialization Parameters, select Use

Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.
2. Create a database user by using either Oracle Database Control or the Oracle

SQLPlus command-line interpreter.
v Using Oracle Database Control.

a. Connect as SYSDBA.
b. Go to the Users page and click Server, then Users in the Security section.
c. Create a user, for example WLADMIN. If you want multiple MobileFirst

Server instances to connect to the general-purpose database that you
created in Step 1, use a different user name for each connection. Each
database user has a separate default schema.

d. Assign the following attributes:
– Profile: DEFAULT
– Authentication: password
– Default tablespace: USERS
– Temporary tablespace: TEMP
– Status: Unlocked
– Add system privilege: CREATE SESSION
– Add system privilege: CREATE SEQUENCE
– Add system privilege: CREATE TABLE
– Add quota: Unlimited for tablespace USERS

v Using the Oracle SQLPlus command-line interpreter.
The commands in the following example create a user named WLADMIN for the
database:
CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER WLADMIN IDENTIFIED BY WLADMIN_password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WLADMIN;
DISCONNECT;

Configuration of the application server
IBM MobileFirst Platform Foundation has some requirements for the configuration
of the application server that are detailed in the following topics.

Installing and configuring 6-49

Configuring WebSphere Application Server Liberty profile:

You must configure a secure JMX connection for WebSphere Application Server
Liberty profile.

Procedure

MobileFirst Server requires the secure JMX connection to be configured.
v The Server Configuration Tool and the Ant tasks can configure a default secure

JMX connection, which includes the generation of a self-signed SSL certificate
with a validity period of 365 days. This configuration is not intended for
production use.

v To configure the secure JMX connection for production use, follow the
instructions from the page Configuring secure JMX connection to the Liberty
profile.

v The rest-connector is available for WebSphere Application Server, Liberty Core,
and other editions of Liberty, but it is possible to package a Liberty Server with
a subset of the available features. To verify that the rest-connector feature is
available in your installation of Liberty, enter the following command:
<libertyInstallDir>/bin/productInfo featureInfo

Note: Verify that the output of this command contains restConnector-1.0.

What to do next

For more information about the optimization of MobileFirst Server, especially the
tuning of the JVM memory allocation, see “Optimization and tuning of MobileFirst
Server” on page 6-118.

Configuring Apache Tomcat:

You must configure a secure JMX connection for Apache Tomcat application server.

About this task

The Server Configuration Tool and the Ant tasks can configure a default secure
JMX connection, which includes the definition of a JMX remote port, and the
definition of authentication properties. They modify <tomcatInstallDir>/bin/
setenv.bat and <tomcatInstallDir>/bin/setenv.sh to add these options to
CATALINA_OPTS:
-Djava.rmi.server.hostname=localhost
-Dcom.sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

Note: 8686 is a default value. The value for this port can be changed if the port is
not available on the computer.
v The setenv.bat file is used if you start Apache Tomcat with

<tomcatInstallDir>/bin/startup.bat, or <tomcatInstallDir>/bin/catalina.bat.
v The setenv.sh file is used if you start Apache Tomcat with

<tomcatInstallDir>/bin/startup.sh, or <tomcatInstallDir>/bin/catalina.sh.

This file might not be used if you start Apache Tomcat with another command. If
you installed the Apache Tomcat Windows Service Installer, the service launcher
does not use setenv.bat.

6-50 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1

Important: This configuration is not secure by default. To secure the configuration,
you must manually complete steps 2 and 3 of the following procedure.

Procedure

Manually configuring Apache Tomcat:
1. For a simple configuration, add the following options to CATALINA_OPTS:

-Djava.rmi.server.hostname=localhost
-Dcom.sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

2. To activate authentication, see the Apache Tomcat user documentation SSL
Support - BIO and NIO and SSL Configuration HOW-TO.

3. For a JMX configuration with SSL enabled, add the following options:
-Dcom.sun.management.jmxremote=true
-Dcom.sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.ssl=true
-Dcom.sun.management.jmxremote.authenticate=false
-Djava.rmi.server.hostname=localhost
-Djavax.net.ssl.trustStore=<key store location>
-Djavax.net.ssl.trustStorePassword=<key store password>
-Djavax.net.ssl.trustStoreType=<key store type>
-Djavax.net.ssl.keyStore=<key store location>
-Djavax.net.ssl.keyStorePassword=<key store password>
-Djavax.net.ssl.keyStoreType=<key store type>

Note: The port 8686 can be changed.
4. If the Tomcat instance is running behind a firewall, the JMX Remote Lifecycle

Listener must be configured. See the Apache Tomcat documentation for JMX
Remote Lifecycle Listener.
The following environment properties must also be added to the Context
section of the Administration Services application in the server.xml file, such
as in the following example:
<Context docBase="worklightadmin" path="/worklightadmin ">

<Environment name="ibm.worklight.admin.rmi.registryPort" value="registryPort" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.admin.rmi.serverPort" value="serverPort" type="java.lang.String" override="false"/>

</Context>

In the previous example:
v registryPort must have the same value as the rmiRegistryPortPlatform

attribute of the JMX Remote Lifecycle Listener.
v serverPort must have the same value as the rmiServerPortPlatform attribute

of the JMX Remote Lifecycle Listener.
5. If you installed Apache Tomcat with the Apache Tomcat Windows Service

Installer instead of adding the options to CATALINA_OPTS, run
<TomcatInstallDir>/bin/Tomcat7w.exe, and add the options in the Java tab of
the Properties window.

Installing and configuring 6-51

https://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener
http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener

What to do next

For more information about the optimization of MobileFirst Server, especially the
tuning of the JVM memory allocation, see “Optimization and tuning of MobileFirst
Server” on page 6-118.

Troubleshooting JMX configuration for Liberty profile:

When you start the IBM MobileFirst Platform Foundation Admin Services and the
MobileFirst runtimes, you can encounter several exceptions in the Liberty profile
server logs.

6-52 IBM MobileFirst Platform Foundation V6.3.0

Table 6-11. Configuring JMX for Liberty profile: errors. Table that describes multiple errors
that you might receive when you try to configure the Liberty profile JMX server.

Message title Error Cause Resolution

Invalid administrator
user

Failed to obtain
JMX connection to
access an MBean.
There might be a
JMX configuration
error: CWWKX0215E:
There was a problem
with the user name
or password
provided. The
server responded
with code 401 and
message
'Unauthorized'

The value of the
ibm.worklight.admin.jmx.user
JNDI property is not
an administrative
Liberty profile user.

Edit the server.xml
file and make sure
that the user
referenced in
ibm.worklight.admin.jmx.user
is defined in the
<administrator-
role> element.

SSL socket factory
not found

Failed to obtain
JMX connection to
access an MBean.
There might be a
JMX configuration
error:
java.lang.ClassNotFoundException:
Cannot find the
specified class
com.ibm.websphere.ssl.protocol.SSLSocketFactory

The IBM JDK cannot
be used with the SSL
socket factories of
WebSphere
Application Server
Liberty profile.

For information
about resolving this
issue, see
“Configuring Liberty
profile when IBM
JDK is used” on page
6-209.

No JMX connector
configured

Failed to obtain
JMX connection to
access an MBean.
There might be a
JMX configuration
error: No JMX
connector is
configured

The host name or the
port number that is
required for the JMX
connection is not
configured.

Edit the server.xml
file and make sure
that both the
ibm.worklight.admin.jmx.port
and the
ibm.worklight.admin.jmx.host
JNDI properties are
defined.

Read timed out Failed to obtain
JMX connection to
access an MBean.
There might be a
JMX configuration
error: Read timed
out

The JMX connection
times out before the
operation completes.
By default, the JMX
connection times out
after one minute.

Edit the Liberty
profile jvm.options
file and add the
following property:

Dcom.ibm.ws.jmx.connector.client.rest.readTimeout=time in milliseconds

The default value is
60000. Use a greater
value. The following
example uses three
minutes.

Dcom.ibm.ws.jmx.connector.client.rest.readTimeout=180000

Installing and configuring 6-53

Table 6-11. Configuring JMX for Liberty profile: errors (continued). Table that describes
multiple errors that you might receive when you try to configure the Liberty profile JMX
server.

Message title Error Cause Resolution

Invalid certification
path

Failed to obtain
JMX connection to
access an MBean.
There might be a
JMX configuration
error:
com.ibm.jsse2.util.h:
PKIX path building
failed:
java.security.cert.CertPathBuilderException:
unable to find
valid certification
path to requested
target

The SSL
configuration of the
Liberty profile server
is not correct.

For instructions
about how to resolve
this issue, see
Configuring secure
JMX connection to
the Liberty profile.

Connection exception java.net.ConnectException:
Connection refused:
connect

The JMX connection
fails.

Edit the server.xml
file. Make sure that
both the
ibm.worklight.admin.jmx.port
and the
ibm.worklight.admin.jmx.host
JNDI properties
reference the local
host, and that the
https port number is
defined in the
<httpEndpoint>
element.

Configuring WebSphere Application Server and WebSphere Application Server
Network Deployment:

You must configure a secure JMX connection for WebSphere Application Server
and WebSphere Application Server Network Deployment.

Procedure

v IBM MobileFirst Platform Foundation requires access to the SOAP port, or the
RMI port to perform JMX operations. By default, the SOAP port is active on a
WebSphere Application Server. IBM MobileFirst Platform Foundation uses the
SOAP port by default. If both the SOAP and RMI ports are deactivated, IBM
MobileFirst Platform Foundation does not run.

v RMI is only supported with a WebSphere Application Server Network
Deployment. RMI is not supported with a stand-alone profile, or with a
WebSphere Application Server server farm.

v You must activate Administrative and Application Security.

What to do next

For more information about the optimization of MobileFirst Server, especially the
tuning of the JVM memory allocation, see “Optimization and tuning of MobileFirst
Server” on page 6-118.

6-54 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1

Defining the endpoint of the MobileFirst Administration services
If circumstances require the parameters of the endpoint definition to be changed,
you must configure properties of the web application server appropriately.

MobileFirst Operations Console must be able to locate the MobileFirst
Administration REST services and must be able to generate various URI for the
entry points of web applications or for the download of audit log files.

By default, the URI protocol, hostname, and port are the same as those defined in
the web application server used to access MobileFirst Operations Console; the
context root of the MobileFirst Administration REST services is worklightadmin.
When the context root of the MobileFirst Administration REST services is changed
or when the internal URI of the web application server is different from the
external URI, and the external URI is used to access MobileFirst Operations
Console, the externally accessible endpoint (protocol, hostname, and port) must be
defined by configuring the web application server. Reasons for separating internal
and external URI could be, for example, a firewall or a secured reverse proxy that
uses HTTP redirection.

The following figure shows a configuration with a secured reverse proxy that hides
the internal address (192.168...) when MobileFirst Operations Console is accessed
with the external address (wrklght.net).

Figure 6-4. Configuration with secured reverse proxy

Installing and configuring 6-55

Table 6-12. The endpoint properties

Property name Purpose Example

ibm.worklight.admin.endpointThis property enables
MobileFirst Operations
Console to locate the
MobileFirst Administration
REST services. The value of
this property must be
specified as the external
address and context root of
the worklightadmin.war web
application. You can use the
asterisk (*) character as
wildcard for specifying that
the MobileFirst
Administration services use
the same value as
MobileFirst Operations
Console. For example:
://:*/wladmin means use
the same protocol, host, and
port as MobileFirst
Operations Console, but use
wladmin as context root. This
property must be specified
for the MobileFirst
Operations Console
application.

https://wrklght.net:443/
worklightadmin

ibm.worklight.admin.proxy.protocolIf external access is required,
this property specifies the
protocol for external
browsers to access the
MobileFirst Administration
services. This property must
be specified for the
MobileFirst Administration
services application.

https

ibm.worklight.admin.proxy.hostIf external access is required,
this property specifies the
hostname for external
browsers to access the
MobileFirst Administration
services. This property must
be specified for the
MobileFirst Administration
services application.

wrklght.net

ibm.worklight.admin.proxy.portIf external access is required,
this property specifies the
port for external browsers to
access the MobileFirst
Administration services. This
property must be specified
for the MobileFirst
Administration services
application.

443

6-56 IBM MobileFirst Platform Foundation V6.3.0

Configuring the endpoint (WebSphere Application Server full profile):

Configure the endpoint of the application resources in the environment entries of
MobileFirst Operations Console and the MobileFirst Administration services
application.

About this task

Follow this procedure when you must change the endpoint of the MobileFirst
Administration services.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Applications > Application Types > WebSphere enterprise

applications.
3. Click Worklight Administration Services.
4. In the “Web Module Properties” section, select “Environment entries for Web

modules”.
5. Assign the appropriate values for the following environment entries:

a. For ibm.worklight.admin.proxy.host, assign the hostname.
b. For ibm.worklight.admin.proxy.port, assign the port number.
c. For ibm.worklight.admin.proxy.protocol, assign the external protocol.

6. Click OK and save the configuration.
7. Select Applications > Application Types > WebSphere enterprise

applications.
8. Click Worklight Console.
9. In the “Web Module Properties” section, select “Environment entries for Web

modules”.
10. For ibm.worklight.admin.endpoint, assign the full URI of the MobileFirst

Administration services; That is, the URI of the applicationcenter.war file.
v In a scenario with a firewall or a secured reverse proxy, this URI must be

the external URI and not the internal URI inside the local LAN.
v You can use the asterisk (*) character as wildcard for specifying that the

MobileFirst Administration services use the same value as MobileFirst
Operations Console. For example, *://*:*/wladmin means use the same
protocol, host, and port as MobileFirst Operations Console, but use wladmin
as context root.

11. Click OK and save the configuration. For a complete list of JNDI properties
that you can set, see “List of JNDI properties for MobileFirst Server
administration” on page 6-92.

Configuring the endpoint (Liberty profile):

For the Liberty profile, configure the endpoint of the application resources through
the JNDI environment.

About this task

Follow this procedure when you must change the endpoint of MobileFirst
Administration services. The appropriate entries in the server.xml file must be
correctly defined.

Installing and configuring 6-57

Procedure

1. Ensure that the <feature> element in the server.xml file is correctly defined to
be able to define JNDI entries.
<feature>jndi-1.0</feature>

2. In the <server> section of the server.xml file, add an entry for each required
property. Each such entry should have the following syntax:
<jndiEntry jndiName="JNDI_property_name" value="property_value"/>

Where:
v JNDI_property_name is the name of the property that you are adding.
v property_value is the value of the property that you are adding.

For a complete list of JNDI properties that you can set, see “List of JNDI
properties for MobileFirst Server administration” on page 6-92.

Example of setting properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file that are
required for configuring the endpoint of the application resources.
<jndiEntry jndiName="worklightconsole/ibm.worklight.admin.endpoint"

value="https://wrklght.net:443/worklightadmin" />
<jndiEntry jndiName="worklightadmin/ibm.worklight.admin.proxy.protocol"

value="https" />
<jndiEntry jndiName="worklightadmin/ibm.worklight.admin.proxy.host"

value="wrklght.net" />
<jndiEntry jndiName="worklightadmin/ibm.worklight.admin.proxy.port"

value="443" />

In this example, assume that the context root of MobileFirst Operations Console is
worklightconsole and that the context root of the Administration Services is
worklightadmin. You can prefix the JNDI properties with the context root of the
corresponding web application. If multiple instances of MobileFirst Server are
running in the same web application server, this technique is particularly useful. If
you have only one instance of MobileFirst Server, you can omit the context root
prefix; for example:
<jndiEntry jndiName="ibm.worklight.admin.endpoint"

value="https://wrklght.net:443/worklightadmin" />
<jndiEntry jndiName="ibm.worklight.admin.proxy.protocol"

value="https" />
<jndiEntry jndiName="ibm.worklight.admin.proxy.host"

value="wrklght.net" />
<jndiEntry jndiName="ibm.worklight.admin.proxy.port"
value="443"/>

For ibm.worklight.admin.endpoint, you can use the asterisk (*) character as
wildcard for specifying that the MobileFirst Administration services use the same
value as MobileFirst Operations Console. For example, *://*:*/wladmin means use
the same protocol, host, and port as MobileFirst Operations Console, but use
wladmin as context root.

Configuring the endpoint (Apache Tomcat):

For the Apache Tomcat server, configure the endpoint of the application resources
in the server.xml file.

6-58 IBM MobileFirst Platform Foundation V6.3.0

About this task

Follow this procedure when you must change the endpoint of the MobileFirst
Administration services. You must edit the server.xml file in the conf directory of
your Apache Tomcat installation.

Procedure

In the server.xml file in the conf directory of your Apache Tomcat installation, add
an entry for each property in the <context> section of the corresponding
application. Each entry should have the following syntax:
<Environment name="JNDI_property_name" value="property_value" type="property_type" override="false"/>

Where:
v JNDI_property_name is the name of the property that you are adding.
v property_value is the value of the property that you are adding.
v property_type is the value of the type of property that you are adding.

For a complete list of JNDI properties that you can set, see “List of JNDI properties
for MobileFirst Server administration” on page 6-92.

Example of setting server.xml properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file that are
required for configuring the endpoint of the application resources.

In the context section of the MobileFirst Operations Console application:
<Environment name="ibm.worklight.admin.endpoint" value="https://wrklght.net:443/worklightadmin"

type="java.lang.String" override="false"/></p>

For ibm.worklight.admin.endpoint, you can use the asterisk (*) character as
wildcard for specifying that the MobileFirst Administration services use the same
value as MobileFirst Operations Console. For example, *://*:*/wladmin means use
the same protocol, host, and port as MobileFirst Operations Console, but use
wladmin as context root.

In the <context> section of the MobileFirst Administration Services application,
you can write:
<Environment name="ibm.worklight.admin.proxy.protocol" value="https" type="java.lang.String"

override="false"/>
<Environment name="ibm.worklight.admin.proxy.host" value="wrklght.net" type="java.lang.String"

override="false"/>
<Environment name="ibm.worklight.admin.proxy.port" value="443" type="java.lang.Integer" override="false"/>

Installing MobileFirst Server administration with the Server
Configuration Tool
You can use the Server Configuration Tool to install and configure MobileFirst
Server administration.

Before you begin

Verify that the user who runs the Server Configuration Tool has the privileges that
are described in “File system prerequisites” on page 6-16.

Installing and configuring 6-59

About this task

Restriction:

v The Server Configuration Tool does not support server farms. Therefore, you
cannot use this tool to install, upgrade, or configure a server farm.

v MobileFirst Server is not supported for production use on Mac OS X.

Procedure
1. Start the Server Configuration Tool.
v On Linux: In the desktop menu, click IBM MobileFirst Platform Server >

Server Configuration Tool.
v On Windows: In the Start menu, click IBM MobileFirst Platform Server >

Server Configuration Tool.
v On Mac OS X: In the Finder, double-click the file mf_server_install_dir/

shortcuts/configuration-tool.sh.

Note: The mf_server_install_dir placeholder represents the directory where
you install MobileFirst Server. mf_server is the shortcut for MobileFirst
Server.

2. Select Create a MobileFirst Server Configuration.
3. Name your configuration.
4. In the Configuration Description window:

a. Enter the context root of the MobileFirst Administration REST service.
The context root is used to create the URL to the MobileFirst REST
Administration service. This URL is typically in the form
<URL_TO_APPLICATION_SERVER_HTTPS_PORT>/contextroot or
<URL_TO_APPLICATION_SERVER_HTTP_PORT>/contextroot.

b. Enter an environmentId.
This ID is optional and is used to distinguish between different
deployments of the MobileFirst Server administration components in the
same application server environment, for example in the same cell of
WebSphere Application Server Network Deployment.

Important: Review carefully this environment ID. It must match the
environment ID of all the runtime environments that are managed by this
MobileFirst Server administration component. If you install or upgrade the
MobileFirst runtime environments with separate Ant files, this verification
is particularly important because the environmentId attribute must match.
For a server farm, all installations must also have the same environmentId
attribute.

The environmentId attribute is an attribute of the following Ant tasks:
v installworklightadmin, updateworklightadmin, and

uninstallworklightadmin, which are documented at “Ant tasks for
installation of MobileFirst Operations Console and Administration
Services” on page 15-8.

v configureapplicationserver, updateapplicationserver,
unconfigureapplicationserver, which are documented at “Ant tasks for
installation of MobileFirst runtime environments” on page 15-16.

5. In the Console Settings window, enter the context root of the MobileFirst
Operations Console.

6. In the Database Properties window:

6-60 IBM MobileFirst Platform Foundation V6.3.0

a. Select your database type: IBM DB2, MySQL, or Oracle.
b. In the next window, enter the details to connect to the database instance.
c. In the Database Additional properties window, enter the parameters to

connect to the administration database.
d. If the database administrator did not create the databases in step

“Optional creation of the administration database” on page 6-46, enter
database administration credentials in the database creation request
window.

Note: For IBM DB2 and for Oracle, you must have an SSH access to the
host where the database management system (DBMS) is installed.
The Server Configuration Tool creates the database for you.

7. In the Application Server Choice window:
a. Select your application server type: WebSphere Application Server,

WebSphere Application Server Liberty profile, or Apache Tomcat.
b. In the Application Server window, enter the data so that you can deploy

IBM MobileFirst Platform Foundation to that application server.
c. Depending on your application server, proceed as follows:
v If the application server is WebSphere Application Server Liberty profile,

or Apache Tomcat, select Create a default user if you want to declare a
user who can log in to the console as administrator to the MobileFirst
Operations Console

v If the application server is WebSphere Application Server, select Declare
the WebSphere Administrator as an administrator of IBM MobileFirst
Platform Operations Console if you want to allow the WebSphere
administrator to log in to the MobileFirst Operations Console.

For more information about further configuration of security roles, see
“Configuring user authentication for MobileFirst Server administration” on
page 6-88.

8. When all the data is entered, click Deploy.
The following effects take place.
a. If the database administrator did not complete step “Optional creation of

the administration database” on page 6-46, the database for the MobileFirst
Server administration is created and access rights are granted to the user
that is specified in the database additional properties window.

b. If the tables for MobileFirst administration do not exist in the database,
they are created.

c. The MobileFirst administration components are installed in the application
server and are connected to the database.

9. Restart the application server
10. If you are in an environment where you must protect the password of the

user who can log in to the console as administrator to the MobileFirst
Operations Console, follow the steps in “Securing the MobileFirst Server
administration” on page 6-130.

11. Open the console.
If the context root of the console was not changed in the Console Settings
window, you find it at <URL_TO_APPLICATION_SERVER_HTTPS_PORT>/
worklightconsole, or if HTTPS is not supported in your application server, at
the unsecured URL <URL_TO_APPLICATION_SERVER_HTTP_PORT>/
worklightconsole.

Installing and configuring 6-61

What to do next

Install a MobileFirst runtime environment. For more information, see “Deploying,
updating, or undeploying MobileFirst Server by using the Server Configuration
Tool” on page 11-9.

Using Ant tasks to install MobileFirst Server administration
Learn about the Ant tasks that you can use to install MobileFirst Server
administration.

Creating and configuring the database for MobileFirst Server administration
with Ant tasks:

If you did not manually create databases, you can use Ant tasks to create and
configure your database for MobileFirst Server administration.

Before you begin

Make sure that a database management system (DBMS) is installed and running on
a database server, which can be the same computer, or a different computer.

Note: This preliminary step is not required if you plan to use Apache Derby,
which is not supported for production use. You can install an Apache Derby
database with Ant tasks.

If you want to start the Ant task from a computer on which MobileFirst Server is
not installed, you must copy the file mf_server_install_dir/WorklightServer/
worklight-ant-deployer.jar to that computer.

If you did not create your databases manually as described in “Optional creation
of the administration database” on page 6-46, complete the following steps.

Note: The mf_server_install_dir placeholder represents the directory where you
installed MobileFirst Server.

About this task

Procedure

1. Review the sample configuration files in “Sample configuration files” on page
15-30, and copy the Ant file that corresponds to your database.
The files for creating a database are named after the following pattern:
create-database-<database>.xml

For more information, see table 1, Table 15-58 on page 15-30, in “Sample
configuration files” on page 15-30.

2. See step 4 of the page “Sample configuration files” on page 15-30 to edit the
Ant file and replace the placeholder values for the properties at the top of the
file.

3. Run the following commands to create the databases.
ant -f create-database-database.xml admdatabases

You can find the Ant command in mf_server_install_dir/shortcuts.
If the databases are created, and you must create only the database TABLES.
4. Edit the Ant script that you use later to create and configure the databases.

6-62 IBM MobileFirst Platform Foundation V6.3.0

5. Review the sample configuration files in “Sample configuration files” on page
15-30, and copy the Ant file that corresponds to your database. The files for
configuring an existing database are named after this pattern:
configure-appServer-database.xml

For more information, see table 1, Table 15-58 on page 15-30, in “Sample
configuration files” on page 15-30.

6. See step 4 of the page “Sample configuration files” on page 15-30 to edit the
Ant file and replace the placeholder values for the properties at the top of the
file.

7. Run the following commands to create the databases.
ant -f configure-appServer-database.xml admdatabases

You can find the Ant command in mf_server_install_dir/shortcuts.

What to do next

See also:
v “Ant configuredatabase task reference” on page 15-1
v “Sample configuration files” on page 15-30

Deploying the MobileFirst Operations Console and Administration Services
with Ant tasks:

Use Ant tasks to deploy the MobileFirst Operations Console and Administration
Services to an application server, and configure data sources, properties, and
database drivers that are used by IBM MobileFirst Platform Foundation.

Before you begin

1. Complete the procedure in “Creating and configuring the databases with Ant
tasks” on page 11-13.

2. Run the Ant task on the computer where the application server is installed, or
the Network Deployment Manager for WebSphere Application Server Network
Deployment. If you want to start the Ant task from a computer on which
MobileFirst Server is not installed, you must copy the file
mf_server_install_dir/WorklightServer/worklight-ant-deployer.jar to that
computer.

Note: The mf_server_install_dir placeholder represents the directory where you
installed MobileFirst Server.

Procedure

1. Edit the Ant script that you use later to deploy the project WAR File.
a. Review the sample configuration files in “Sample configuration files” on

page 15-30, and copy the Ant file that corresponds to your database. The
files for deploying a project WAR file are named after the following pattern:
configure-appServer-database.xml

For more information, see table 1, Table 15-58 on page 15-30, in “Sample
configuration files” on page 15-30.

Note: If your file name follows the pattern configure-appServer-
database.xml, you can reuse it for “Creating and configuring the databases
with Ant tasks” on page 11-13.

Installing and configuring 6-63

b. Follow step 4 of the page “Sample configuration files” on page 15-30 to edit
the Ant file and replace the placeholder values for the properties at the top
of the file.

2. To deploy the Administration Services and the MobileFirst Operations Console
WAR files, run the following command:
ant -f configure-appServer-database.xml adminstall

You can find the Ant command in mf_server_install_dir/shortcuts

What to do next

See also:
v “Ant tasks for installation of MobileFirst Operations Console and Administration

Services” on page 15-8
v “Sample configuration files” on page 15-30

Manually installing MobileFirst Server administration
You can install the MobileFirst Server administration manually instead of using the
Ant task or the Server Configuration Tool. You might also want to reconfigure
MobileFirst Server so that it uses a different database or schema from the one that
was specified during the first installation of MobileFirst Server. This
reconfiguration depends on the type of database and the kind of application server.

Configuring the DB2 database manually for the IBM MobileFirst Platform
Server administration:

You configure the DB2 database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in “Creating the DB2 database for
MobileFirst Server administration” on page 6-46.

2. Create the tables in the database. This step is described in “Setting up your
DB2 database manually for the MobileFirst Server administration.”

3. Perform the application server-specific setup as the following list shows.

Setting up your DB2 database manually for the MobileFirst Server administration:

You can set up your DB2 database for the MobileFirst Server administration
manually.

About this task

Set up your DB2 database for the MobileFirst Server administration by creating the
database schema.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password worklight. For more information, see the DB2 documentation and the
documentation for your operating system.

6-64 IBM MobileFirst Platform Foundation V6.3.0

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across
the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called WLADMIN:
CREATE DATABASE WLADMIN COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLADMIN
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

4. Run DB2 with the following commands to create the WLADMIN tables, in a
schema named WLADMSC You can change the name of the schema. This
command can be run on an existing database whose page size is compatible
with the one defined in step 3.
db2 CONNECT TO WLADMIN
db2 SET CURRENT SCHEMA = ’WLADMSC’
db2 -vf product_install_dir/WorklightServer/databases/create-worklightadmin-db2.sql -t

Configuring Liberty profile for DB2 manually for MobileFirst Server administration:

You can set up and configure your DB2 database manually for MobileFirst Server
administration with WebSphere Application Server Liberty profile.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/db2.
If that directory does not exist, create it. You can retrieve the file in one of two
ways:
v Download it from DB2 JDBC Driver Versions.
v Fetch it from the db2_install_dir/java on the DB2 server directory.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file as follows:
In this path, you can replace worklightServer by the name of your server.
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLADMIN" currentSchema="WLADMSC"

serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>

</dataSource>

The worklight value after user= is the name of the system user with
CONNECT access to the WLADMIN database that you have previously created.
The worklight value after password= is this user's password. If you have

Installing and configuring 6-65

http://www.ibm.com/support/docview.wss?uid=swg21363866

defined either a different user name, or a different password, or both, replace
worklight accordingly. Also, replace db2server with the host name of your DB2
server (for example, localhost, if it is on the same computer).
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

Configuring WebSphere Application Server for DB2 manually for MobileFirst Server
administration:

You can set up and configure your DB2 database manually for the MobileFirst
Server administration with WebSphere Application Server.

About this task

Complete the DB2 database setup procedure before continuing.

Note: The was_install_dir and mf_server_install_dir placeholders respectively denote
the directories where you installed WebSphere Application Server and MobileFirst
Server.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/WorklightAdmin/db2.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
WorklightAdmin/db2.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/db2.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/WorklightAdmin/db2.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/WorklightAdmin/db2.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver

Versions, or fetch it from the directory db2_install_dir/java on the DB2
server) to the directory that you determined in step 1.

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database type to DB2.
e. Set Provider type to DB2 Using IBM JCC Driver.
f. Set Implementation Type to Connection pool data source.
g. Set Name to DB2 Using IBM JCC Driver.
h. Click Next.

6-66 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

i. Set the Class path to the set of JAR files in the directory that you
determined in step 1, one per line, replacing WAS_INSTALL_DIR/profiles/
profile-name with the WebSphere Application Server variable reference
${USER_INSTALL_ROOT}.

j. Do not set Native library path.
k. Click Next.
l. Click Finish.
m. The JDBC provider is created.
n. Click Save.

4. Create a data source for the administration database:
a. Click Resources > JDBC > Data Sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Set the Data source name to administration database.
e. Set JNDI Name to jdbc/WorklightAdminDS.
f. Click Next.
g. Enter properties for the data source, for example:
v Driver type: 4
v Database Name: WLADMIN
v Server name: localhost
v Port number: 50000 (default)
Leave Use this data source in (CMP) selected.

h. Click Next.
i. Create JAAS-J2C authentication data, specifying the DB2 user name and

password as its properties. If necessary, go back to the data source creation
wizard, by repeating steps 4a to 4h.

j. Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

k. Click Next and Finish.
l. Click Save.
m. In Resources > JDBC > Data sources, select the new data source.
n. Click WebSphere Application Server data source properties.
o. Select the Non-transactional data source check box.
p. Click OK.
q. Click Save.
r. Click Custom properties for the datasource, select property currentSchema,

and set the value to the schema used to create the MobileFirst Server
administration tables (WLADMSC in this example).

5. Test the data source connection by selecting Data Source and clicking Test
Connection.

6. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for DB2 manually for MobileFirst Server administration:

You can set up and configure your DB2 database manually for IBM MobileFirst
Platform Server administration with the Apache Tomcat application server.

Installing and configuring 6-67

About this task

Before you continue, complete the DB2 database setup procedure.

Procedure

1. Add the DB2 JDBC driver JAR file.
You can retrieve this JAR file in one of the following ways:
v Download it from DB2 JDBC Driver Versions.
v Or fetch it from the directory db2_install_dir/java on the DB2 server) to

$TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example.
<Resource auth="Container"

driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/WorklightAdminDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/WLADMIN:currentSchema=WLADMSC;"/>

The worklight parameter after username= is the name of the system user with
"CONNECT" access to the WLADMIN database that you previously created. The
password parametere after password= is this user's password. If you defined
either a different user name, or a different password, or both, replace these
entries accordingly.
DB2 enforces limits on the length of user names and passwords.
v For UNIX and Linux systems: 8 characters
v For Windows: 30 characters

3. Insert this statement in the server.xml file, as indicated in “Configuring
Apache Tomcat for MobileFirst Server administration manually” on page 6-85.

Configuring the Apache Derby database manually for the IBM MobileFirst
Platform Server administration:

You configure the Apache Derby database manually by creating the database and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database and the tables within them. This step is described in
“Setting up your Apache Derby database manually for the MobileFirst Server
administration” on page 6-69.

2. Configure the application server to use this database setup. Go to one of the
following topics:
v “Configuring Liberty profile for Derby manually for MobileFirst Server

administration” on page 6-69
v “Configuring WebSphere Application Server for Derby manually for

MobileFirst Server administration” on page 6-70
v “Configuring Apache Tomcat for Derby manually for the MobileFirst Server

administration” on page 6-71

6-68 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

Setting up your Apache Derby database manually for the MobileFirst Server
administration:

You can set up your Apache Derby database for the MobileFirst Server
administration manually.

About this task

Set up your Apache Derby database for the MobileFirst Server administration by
creating the database schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from Apache Derby: Downloads.

For supported versions of Apache Derby, see “System requirements for using
IBM MobileFirst Platform Foundation” on page 2-12.
The script displays ij version number.

2. At the command prompt, enter the following commands:
connect ’jdbc:derby:WLADMIN;user=WLADMIN;create=true’;
run ’product_install_dir/WorklightServer/databases/create-worklightadmin-derby.sql’;
quit;

Configuring Liberty profile for Derby manually for MobileFirst Server administration:

If you want to manually set up and configure your Apache Derby database for
MobileFirst Server administration with WebSphere Application Server Liberty
profile, use the following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:
<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/WLADMIN" user="WLADMIN"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool"/>

</dataSource>

Installing and configuring 6-69

http://db.apache.org/derby/derby_downloads

Configuring WebSphere Application Server for Derby manually for MobileFirst Server
administration:

You can set up and configure your Apache Derby database manually for the
MobileFirst Server administration with WebSphere Application Server.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/WorklightAdmin/derby.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
WorklightAdmin/derby.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/derby.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/WorklightAdmin/derby.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/WorklightAdmin/derby.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/

lib/derby.jar to the directory that you determined in step 1.
3. Set up the JDBC provider.

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database Type to User-defined.
e. Set class Implementation name to

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40.
f. Set Name to Worklight - Derby JDBC Provider.
g. Set Description to Derby JDBC provider for Worklight.
h. Click Next.
i. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

j. Click Finish.
4. Create the data source for the administration database.

a. In the WebSphere Application Server, click Resources > JDBC > Data
sources.

b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.

6-70 IBM MobileFirst Platform Foundation V6.3.0

d. Set Data source Name to administration database.
e. Set JNDI name to jdbc/WorklightAdminDS.
f. Click Next.
g. Select the existing JDBC Provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the administration Database datasource that you created.
m. Under Additional Properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the WLADMIN database that is created in “Setting up

your Apache Derby database manually for the MobileFirst Server
administration” on page 6-69.

p. Click OK.
q. Click Save.
r. At the top of the page, click administration atabase.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.
u. Click OK.
v. Click Save.
w. In the table, select the administration Database datasource that you

created.
x. Optional: Only if you are not on the console of a WebSphere Application

Server Deployment Manager, click test connection.
5. For WebSphere Application Server Network Deployment, click System

administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for Derby manually for the MobileFirst Server
administration:

If you want to manually set up and configure your Apache Derby database for the
IBM MobileFirst Platform Server administration with the Apache Tomcat server,
use the following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from product_install_dir/WorklightServer/tools/lib/
derby.jar to the directory $TOMCAT_HOME/lib.

2. Prepare an XML statement that defines the data source, as shown in the
following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for MobileFirst Server administration
manually” on page 6-85

Installing and configuring 6-71

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/WorklightAdminDS"
username="WLADMIN"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WLADMIN"/>

Configuring the MySQL database manually for the IBM MobileFirst Platform
Server administration:

You configure the MySQL database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in “Creating the MySQL database
for MobileFirst Server administration” on page 6-48.

2. Create the tables in the database. This step is described in “Setting up your
MySQL database manually for the MobileFirst Server administration.”

3. Perform the application server-specific setup as the following list shows.

Setting up your MySQL database manually for the MobileFirst Server administration:

You can set up your MySQL database for the MobileFirst Server administration
manually.

About this task

Complete the following procedure to set up your MySQL database.

Procedure

1. Create the database schema.
a. Run a MySQL command line client with the option -u root.
b. Enter the following commands:

CREATE DATABASE WLADMIN CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WLADMIN.* TO ’worklight’@’Worklight-host’IDENTIFIED BY ’worklight’;
GRANT ALL PRIVILEGES ON WLADMIN.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
FLUSH PRIVILEGES;

USE WLADMIN;
SOURCE product_install_dir/WorklightServer/databases/create-worklightadmin-mysql.sql;

Where worklight before the "at" sign (@) is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM MobileFirst Platform Foundation runs.

2. Add the following property to your MySQL option file:
max_allowed_packet=256M

For more information about option files, see the MySQL documentation at
MySQL.

Configuring Liberty profile for MySQL manually for MobileFirst Server administration:

If you want to manually set up and configure your MySQL database for
MobileFirst Server administration with WebSphere Application Server Liberty
profile, use the following procedure.

6-72 IBM MobileFirst Platform Foundation V6.3.0

http://dev.mysql.com

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:
<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="WLADMIN"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>

</dataSource>

where worklight after user= is the user name, worklight after password= is this
user's password, and mysqlserver is the host name of your MySQL server (for
example, localhost, if it is on the same machine).

Configuring WebSphere Application Server for MySQL manually for MobileFirst Server
administration:

If you want to manually set up and configure your MySQL database for
MobileFirst Server administration with WebSphere Application Server, use the
following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/WorklightAdmin/mysql.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
WorklightAdmin/mysql.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/mysql.

Installing and configuring 6-73

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/WorklightAdmin/mysql.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/WorklightAdmin/mysql.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the MySQL JDBC driver JAR file that you downloaded from Download

Connector/J to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Create a JDBC provider named MySQL.
e. Set Database type to User defined.
f. Set Scope to Cell.
g. Set Implementation class to

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.
h. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

i. Save your changes.
4. Create a data source for the administration database:

a. Click Resources > JDBC > Data Sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Type any name (for example, Worklight administration Database).
e. Set JNDI Name to jdbc/WorklightAdminDS.
f. Use the existing JDBC Provider MySQL, defined in the previous step.
g. Set Scope to New.
h. On the Configuration tab, select Non-transactional data source.
i. Click Next a number of times, leaving all other settings as defaults.
j. Save your changes.

5. Set the custom properties of the new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

portNumber = 3306
relaxAutoCommit=true
databaseName = WLADMIN
serverName = the host name of the MySQL server
user = the user name of the MySQL server
password = the password associated with the user name

6. Set the WebSphere Application Server custom properties of the new data
source.
a. In Resources > JDBC > Data sources, select the new data source.
b. Click WebSphere Application Server data source properties.
c. Select Non-transactional data source.

6-74 IBM MobileFirst Platform Foundation V6.3.0

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

d. Click OK.
e. Click Save.

7. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for MySQL manually for MobileFirst Server administration:

If you want to manually set up and configure your MySQL database for IBM
MobileFirst Platform Server administration with the Apache Tomcat server, use the
following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/lib directory.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for MobileFirst Server administration
manually” on page 6-85.

<Resource name="jdbc/WorklightAdminDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/WLADMIN"/>

Configuring the Oracle database manually for the IBM MobileFirst Platform
Server administration:

You configure the Oracle database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in “Creating the Oracle database for
MobileFirst Server administration” on page 6-48.

2. Create the tables in the database. This step is described in “Setting up your
Oracle database manually for the MobileFirst Server administration.”

3. Perform the application server-specific setup as the following list shows.

Setting up your Oracle database manually for the MobileFirst Server administration:

You can set up your Oracle database for the MobileFirst Server administration
manually.

About this task

Complete the following procedure to set up your Oracle database.

Installing and configuring 6-75

Procedure

1. Ensure that you have at least one Oracle database.
In many Oracle installations, the default database has the SID (name) ORCL. For
best results, specify Unicode (AL32UTF8) as the character set of the database.
If the Oracle installation is on a UNIX or Linux computer, make sure that the
database is started next time the Oracle installation is restarted. To this effect,
make sure that the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create the user WLADMIN, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.
v Create the user for the runtime database/schema, by using Oracle Database

Control, proceed as follows:
a. Connect as SYSDBA.
b. Go to the Users page.
c. Click Server, then Users in the Security section.
d. Create a user, named WLADMIN with the following attributes:

Profile: DEFAULT
Authentication: password
Default tablespace: USERS
Temporary tablespace: TEMP
Status: Unlocked
Add system privilege: CREATE SESSION
Add system privilege: CREATE SEQUENCE
Add system privilege: CREATE TABLE
Add quota: Unlimited for tablespace USERS

v To create the user by using Oracle SQLPlus, enter the following commands:
CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER WLADMIN IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WLADMIN;
DISCONNECT;

3. Create the database tables for the runtime database and reports database:
a. Using the Oracle SQLPlus command-line interpreter, create the tables for

the IBM administration database by running the create-worklightadmin-
oracle.sql file:
CONNECT WLADMIN/WLADMIN_password@ORCL
@product_install_dir/WorklightServer/databases/create-worklightadmin-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:
a. Download the JDBC driver from the Oracle website at Oracle: JDBC, SQLJ,

Oracle JPublisher and Universal Connection Pool (UCP):
b. Ensure that the Oracle JDBC driver is in the system path. The driver file is

ojdbc6.jar.

Configuring Liberty profile for Oracle manually for MobileFirst Server administration:

If you want to manually set up and configure your Oracle database for MobileFirst
Server administration with WebSphere Application Server Liberty profile, use the
following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

6-76 IBM MobileFirst Platform Foundation V6.3.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Procedure

1. Add the Oracle JDBC Driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/oracle. If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/wlp/usr/
servers/worklightServer/server.xml file (worklightServer may be replaced in
this path by the name of your server) as shown in the following JNDI code
example:
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin"

serverName="oserver" portNumber="1521"
databaseName="ORCL"
user="WLADMIN" password="WLADMIN_password"/>

</dataSource>

where WLADMIN after user= is the user name, WLADMIN_password after password=
is this user's password, and oserver is the host name of your Oracle server (for
example, localhost, if it is on the same machine).

Configuring WebSphere Application Server for Oracle manually for the MobileFirst Server
administration:

If you want to manually set up and configure your Oracle database for the
MobileFirst Server administration with WebSphere Application Server, use the
following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/WorklightAdmin/oracle.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
WorklightAdmin/oracle.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/oracle.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/WorklightAdmin/oracle.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/WorklightAdmin/oracle.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the Oracle ⌂ojdbc6.jar file downloaded from JDBC and Universal

Connection Pool (UCP) to the directory determined in step 1.

Installing and configuring 6-77

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Complete the JDBC Provider fields as indicated in the following table:

Table 6-13. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver

Implementation type Connection pool data source

Name Oracle JDBC Driver

e. Click Next.
f. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

g. Click Next.
The JDBC provider is created.

4. Create a data source for the administration database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source name to Oracle JDBC Driver DataSource.
e. Set JNDI name to jdbc/WorklightAdminDS.
f. Click Next.
g. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.
h. Click Next.
i. Set the URL value to jdbc:oracle:thin:@oserver:1521:ORCL, where oserver is

the host name of your Oracle server (for example, localhost, if it is on the
same machine).

j. Click Next twice.
k. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource

> Custom properties.
l. Set oracleLogPackageName to oracle.jdbc.driver.
m. Set user = WLADMIN.
n. Set password = WLADMIN_password.
o. Click OK and save the changes.
p. In Resources > JDBC > Data sources, select the new data source.
q. Click WebSphere Application Server data source properties.
r. Select the Non-transactional data source check box.
s. Click OK.
t. Click Save.

5. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

6-78 IBM MobileFirst Platform Foundation V6.3.0

Configuring Apache Tomcat for Oracle manually for MobileFirst Server administration:

If you want to manually set up and configure your Oracle database for IBM
MobileFirst Platform Server administration with the Apache Tomcat server, use the
following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for MobileFirst Server administration
manually” on page 6-85

<Resource name="jdbc/WorklightAdminDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521:ORCL"
username="WLADMIN"
password="WLADMIN_password"/>

Where WLADMIN after username= is the name of the system user with
"CONNECT" access to the WLADMIN database that you have previously created,
and WLADMIN_password after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these values accordingly.

Deploying the Administration Services and MobileFirst Operations Console and
configuring the application server manually:

The procedure to deploy the Administration services and IBM MobileFirst Platform
Operations Console manually to an application server depends on your application
server.

These manual instructions assume that you are familiar with your application
server.

Note: Using the MobileFirst Server installer to install MobileFirst Server
administration is more reliable than installing manually and should be used
whenever possible.

If you prefer to use the manual process, follow these steps to configure your
application server for MobileFirst Server administration. You must deploy the
worklightconsole.war and worklightadmin.war files to your MobileFirst Server
administration. The files are located in product_install_dir/WorklightServer.

Configuring WebSphere Application Server Liberty profile for MobileFirst Server
administration manually:

To configure WebSphere Application Server Liberty profile for MobileFirst Server
administration manually, you must modify the server.xml file.

Installing and configuring 6-79

About this task

In addition to modifications for the databases, which are described in “Manually
installing MobileFirst Server administration” on page 6-64, you must make the
following modifications to the server.xml file.

Note: In the following procedure, when the example uses the worklight.war file
name, use the name of your MobileFirst project, for example, myProject.war.

Procedure

1. Ensure that the <featureManager> element contains at least the following
<feature> elements:
<feature>ssl-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>jndi-1.0</feature>
<feature>restConnector-1.0</feature>
<feature>appSecurity-1.0</feature>

2. Follow the instructions from the IBM WebSphere Application Server user
documentation to configure the secure JMX connection.

3. Add the following global JNDI entries in the server.xml file:
<jndiEntry jndiName="ibm.worklight.admin.jmx.host" value="localhost"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.port" value="9443"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.user" value="WorklightRESTUser"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.pwd" value="WorklighRESTUserPassword"/>
<jndiEntry jndiName="ibm.worklight.topology.platform" value="Liberty"/>
<jndiEntry jndiName="ibm.worklight.topology.clustermode" value="Standalone"/>

Where:
v ibm.worklight.admin.jmx.host is the host name for the JMX REST

connection.
v ibm.worklight.admin.jmx.port is the HTTPS port. You can find its value in

the httpEndpoint element of the server.xml file.
v ibm.worklight.admin.jmx.user is a user with the <administrator-role> that

you created in step 2.
v ibm.worklight.admin.jmx.pwd is the password of that user.

4. Modify the web container definition with the following values:
<webContainer invokeFlushAfterService="false" deferServletLoad="false"/>

5. Declare a thread pool: Add the following <executor> declaration, or if the
server.xml file has an <executor> declaration already, modify its coreThreads
and maxThreads values accordingly.
<!-- Thread pool -->
<executor name="LargeThreadPool" id="default"

coreThreads="200" maxThreads="400" keepAlive="60s"
stealPolicy="STRICT" rejectedWorkPolicy="CALLER_RUNS"/>

6. Copy the following WAR files to the apps directory of the liberty server:
product_install_dir/WorklightServer/worklightadmin.war and
product_install_dir/WorklightServer/worklightconsole.war.

Note: the apps directory is in the same directory as the server.xml file.
7. Declare the Administration Services and MobileFirst Operations Console

applications:
<!-- Declare the Administration Services application. -->
<application id="worklightadmin" name="worklightadmin" location="worklightadmin.war" type="war">

<application-bnd>

6-80 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html

<security-role name="worklightadmin">
<!-- This example adds a user to the worklightadmin security-role <user name="worklightUser"/> -->
</security-role>
<security-role name="worklightdeployer">
</security-role>
<security-role name="worklightmonitor">
</security-role>
<security-role name="worklightoperator">
</security-role>

</application-bnd>
<classloader delegation="parentLast">
<commonLibrary>

<!-- Important: the version number of the following cryptographic JAR file might change according to the version of WebSphere Application Server Liberty profile, or its fix packs -->
<fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_*.jar"/>

</commonLibrary>
</classloader>

</application>

<!-- Declare the MobileFirst Operations Console application. -->
<application id="worklightconsole" name="worklightconsole" location="worklightconsole.war" type="war">

<application-bnd>
<security-role name="worklightadmin">
<!-- This example adds a user to the worklightadmin security-role <user name="worklightUser"/> -->
</security-role>
<security-role name="worklightdeployer">
</security-role>
<security-role name="worklightmonitor">
</security-role>
<security-role name="worklightoperator">
</security-role>

</application-bnd>
</application>

<jndiEntry jndiName="worklightconsole/ibm.worklight.admin.endpoint" value=’"*://*:*/worklightadmin"’/>

Note: For more information about how to configure a user registry for Liberty
profile, see Configuring a user registry for the Liberty profile.
The JNDI property worklightconsole/ibm.worklight.admin.endpoint is
prefixed by the context root of the MobileFirst Operations Console application,
in this example worklightconsole. The value of this property is the end point
to the MobileFirst administration.
The syntax "*://*:*/worklightadmin" means that the URL is the same as the
one that is used to contact the MobileFirst Operations Console. However, the
context root of the MobileFirst Operations Console is replaced by
worklightadmin.
You might also specify the full endpoint, for example: http://
myhostname.mydomain.com:9080/worklightadmin.

8. If the database is Oracle, add the commonLibraryRef attribute to the class loader
of the worklightadmin application.
...
<classloader delegation="parentLast" commonLibraryRef="OracleLib">

<commonLibrary>
...

The name of the library reference (OracleLib in this example) must be the ID of
the library that contains the JDBC JAR file. This ID is declared in the procedure
that is documented in “Configuring Liberty profile for Oracle manually for
MobileFirst Server administration” on page 6-76.

Installing and configuring 6-81

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_sec_registries.html

Configuring WebSphere Application Server for MobileFirst Server administration
manually:

To configure WebSphere Application Server for IBM MobileFirst Platform Server
administration manually, you must configure variables, custom properties, and
class loader policies.

Before you begin

These instructions assume that a stand-alone profile exists with an application
server named “Worklight” and that the server is using the default ports.

Procedure

1. Log on to the WebSphere Application Server administration console for your
MobileFirst Server.
The address is of the form http://server.com:9060/ibm/console, where server
is the name of the server.

2. Enable application security.
a. Click Security > Global Security.
b. Ensure that Enable administrative security is selected. Application security

can be enabled only if administrative security is enabled.
c. Ensure that Enable application security is selected.
d. Click OK.
e. Save the changes.

For more information, see Enabling security in WebSphere Application Server
user documentation.

3. Review the server class loader policy: Click Servers > Server Types >
WebSphere application servers, and select the server used for IBM MobileFirst
Platform Foundation.
v If the class loader policy is set to Multiple, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-last, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-first, change the class loader policy to Multiple, and set the class
loader order of all applications other than MobileFirst applications to
parent-first.

4. Create the MobileFirst Server administration JDBC data source and provider.
See the instructions in the appropriate subsection in “Manually installing
MobileFirst Server administration” on page 6-64.

5. If you install on WebSphere Application Server Network Deployment, find the
SOAP port of the deployment manager by clicking System
Administration/Deployment manager.
a. In Additional properties, open Ports.
b. Take note of the value SOAP_CONNECTOR_ADDRESS, because you need it to set

the value of the ibm.worklight.admin.jmx.dmgr.port environment entry for
the Administration Services.

6. Install the Administration Services WAR file:
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

6-82 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_csec2.html

v Applications > New Application > New Enterprise Application

b. Go to the MobileFirst Server installation directory product_install_dir/
WorklightServer.

c. Select worklightadmin.war, and then click Next.
d. On the How do you want to install the application? page, click Detailed,

and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the Map resource references to resources page,

and enter the JNDI name of the data source that you created in step 4.
g. Click Next until you reach the Map context roots for web modules page.
h. In the Context Root field, type /worklightadmin.
i. Click Next.
j. In Map environment entries for web modules:
v If you install by using the Deployment Manager in the WebSphere

Application Server Network Deployment product, enter the following
values:
– For the entry ibm.worklight.admin.jmx.dmgr.host, enter the host name

of the deployment manager.
– For the entry ibm.worklight.admin.jmx.dmgr.port, enter the SOAP port

of the deployment manager that you noted in step 5.b.
– For the entry ibm.worklight.topology.platform, enter WAS.
– For the entry ibm.worklight.topology.clustermode, enter Cluster.

v If you install on a stand-alone server:
– For the entry ibm.worklight.topology.platform, enter WAS.
– For the entry ibm.worklight.topology.clustermode, enter Standalone.

k. Click Next until you reach the last step, and click Finish.
l. Click Save.

7. Configure the class loader policies for the Administration Services and then
start the application:
a. Click the Manage Applications link, or click Applications > Applications

Types > WebSphere enterprise applications.
b. From the list of applications, click worklightadmin_war.
c. In the Detail Properties section, click the Class loading and update

detection link.
d. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
e. Click OK.
f. In the Detail Properties section, click the Startup behavior link.
g. In Startup Order, enter 1, and click OK.
h. In the Modules section, click Manage Modules.
i. From the list of modules, click the Worklight Administration Services

module.
j. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
k. Click OK twice.
l. Click Save.
m. Select worklightadmin_war and click Start.

Installing and configuring 6-83

8. Install the IBM MobileFirst Platform Operations Console WAR file.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Go to the MobileFirst Server installation directory product_install_dir/
WorklightServer.

c. Select worklightconsole.war, and then click Next.
d. On the How do you want to install the application? page, click Detailed,

and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the Map context roots for web modules page.
g. In the Context Root field, type /worklightconsole.
h. Click Next.
i. In Map environment entries for web modules, enter the value

://:*/worklightadmin for the entry ibm.worklight.admin.endpoint.
j. Click Next until you reach the last step, and click Finish.
k. Click Save.

9. Configure the class loader policies for the MobileFirst Operations Console and
start the application:
a. Click the Manage Applications link, or click Applications > Application

Types > WebSphere enterprise applications.
b. From the list of applications, click worklightconsole_war.
c. In the Detail Properties section, click the Class loading and update

detection link.
d. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
e. Click OK.
f. In the Detail Properties section, click the Startup behavior link.
g. In Startup Order, enter 1, and click OK.
h. In the Modules section, click Manage Modules.
i. From the list of modules, click the Worklight Console module.
j. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
k. Click OK twice.
l. Click Save.
m. Click Applications > Application Types > WebSphere enterprise

applications.
n. Select Select for worklightconsole_war and click Start.

Results

You can now access the MobileFirst Server administration at http://
<server>:<port>/worklightconsole, where server is the host name of your server
and port is the port number (by default 9080).

6-84 IBM MobileFirst Platform Foundation V6.3.0

What to do next

For more steps to configure MobileFirst Server administration, see “Configuring
WebSphere Application Server full profile for MobileFirst Server administration”
on page 6-90.

Configuring Apache Tomcat for MobileFirst Server administration manually:

To configure Apache Tomcat for the MobileFirst Server administration manually,
you must copy JAR and WAR files to Tomcat, add database drivers, edit the
server.xml file, and then start Tomcat.

Before you begin

Prerequisites:
v Configure the database for MobileFirst Server administration. For more

information about various databases configuration, see “Manually installing
MobileFirst Server administration” on page 6-64.

v Define the CATALINA_OPTS options to enable Java Management Extensions (JMX)
as described in “Configuring Apache Tomcat” on page 6-50.

Procedure

1. Edit tomcat_install_dir/conf/server.xml file.
a. Uncomment the following element, which is initially commented out:

<Valve className="org.apache.catalina.authenticator.SingleSignOn" />.
b. Declare the MobileFirst Operations Console and Administration Services

applications and a user registry:
<!-- Declare the Administration Services application. -->
<Context docBase="worklightadmin" path="/worklightadmin">

<!-- Declare the JNDI environment entries for the Administration Services. -->
<Environment name="ibm.worklight.topology.platform" value="Tomcat" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.topology.clusterMode" value="Standalone" type="java.lang.String" override="false"/>

<!-- Declare the administration database. -->
<!-- <Resource name="jdbc/WorklightAdminDS" type="javax.sql.DataSource" ... /> -->

</Context>

<!-- Declare the MobileFirst Platform Operations Console application. -->
<Context docBase="worklightconsole" path="/worklightconsole">

<!-- Declare the JNDI environment entries for the Operations Console. -->
<Environment name="ibm.worklight.admin.endpoint" value="*://*:*/worklightadmin" type="java.lang.String" override="false"/>

</Context>

<!-- Declare the user registry for the MobileFirst Server administration.
The MemoryRealm recognizes the users defined in conf/tomcat-users.xml.
For other choices, see Apache Tomcat "Realm Configuration HOW-TO"
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html . -->

<Realm className="org.apache.catalina.realm.MemoryRealm"/>

where you must uncomment and complete the <Resource> element to
declare the administration database as described in one of the following
sections:
v “Configuring Apache Tomcat for DB2 manually for MobileFirst Server

administration” on page 6-67

Installing and configuring 6-85

v “Configuring Apache Tomcat for Derby manually for the MobileFirst
Server administration” on page 6-71

v “Configuring Apache Tomcat for MySQL manually for MobileFirst Server
administration” on page 6-75

v “Configuring Apache Tomcat for Oracle manually for MobileFirst Server
administration” on page 6-79

2. Copy the MobileFirst Server administration WAR files to Tomcat.
v On UNIX and Linux systems:

cp product_install_dir/WorklightServer/*.war tomcat_install_dir/webapps

v On Windows systems:
copy /B product_install_dir\WorklightServer\worklightconsole.war tomcat_install_dir\webapps\worklightconsole.war
copy /B product_install_dir\WorklightServer\worklightadmin.war tomcat_install_dir\webapps\worklightadmin.war

3. Start Tomcat.

What to do next

For more steps to configure the MobileFirst Server administration, see
“Configuring Apache Tomcat for MobileFirst Server administration” on page 6-92.

Defining a server farm for MobileFirst Server administration:

You configure IBM MobileFirst Platform Foundation to work in a server farm
topology by using JNDI properties and by defining the farm nodes correctly in
XML.

To define a server farm in IBM MobileFirst Platform Foundation, you must define
the farm nodes in a flat XML file. A server farm works with a homogeneous list of
farm node types; that is, all the member nodes must use the same type of
application server. The following application servers are supported:
v WebSphere Application Server full profile
v WebSphere Application Server Liberty profile
v Apache Tomcat

If all the nodes do not use the same type of application server, the server farm is
not guaranteed to work correctly.

The following JNDI properties are mandatory because they define the type and
location of the server farm: ibm.worklight.farm.type and
ibm.worklight.farm.definition.location

The ibm.worklight.farm.type property accepts only the FILE value. This value
enables the list of farm nodes to be built from an XML file where the farm node
properties are defined. Use the ibm.worklight.farm.definition.location property
to define the full path of the XML file.

To be readable, the XML file must comply with the product_install_dir/
WorklightServer/FarmSchema.xsd schema definition. You can validate the structure
of your customized flat file against the schema.

Schema definition of the flat file that defines server farm nodes
<?xml version="1.0" encoding="UTF-8"?>
<!-- Licensed Materials - Property of IBM
5725-I43 (C) Copyright IBM Corp. 2006, 2014. All Rights Reserved.
US Government Users Restricted Rights - Use, duplication or

6-86 IBM MobileFirst Platform Foundation V6.3.0

disclosure restricted by GSA ADP Schedule Contract with IBM Corp. -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >

<xs:simpleType name="PortNumberType">
<xs:restriction base="xs:integer">
<xs:minInclusive value="0" />
<xs:maxInclusive value="65535" />
<xs:whiteSpace value="collapse"></xs:whiteSpace>
</xs:restriction>
</xs:simpleType>

<xs:attribute name="Hostname" type="xs:string" />
<xs:attribute name="JMXPortNumber" type="PortNumberType" />
<xs:attribute name="TomcatPortNumber" type="PortNumberType" />

<xs:complexType name="TomcatNodeType">
<xs:attribute ref="Hostname" use="required" />
<xs:attribute name="ServerID" type="xs:string" use="required" />
<xs:attribute ref="TomcatPortNumber" use="optional" />
<xs:attribute ref="JMXPortNumber" use="required" />
</xs:complexType>

<xs:complexType name="LibertyNodeType">
<xs:attribute ref="Hostname" use="required" />
<xs:attribute name="ServerID" type="xs:string" use="required" />
<xs:attribute ref="JMXPortNumber" use="required" />
<xs:attribute name="AdminUser" type="xs:string" use="required" />
<xs:attribute name="AdminPass" type="xs:string" use="required" />
</xs:complexType>

<xs:element name="TomcatNode" type="TomcatNodeType"/>
<xs:element name="LibertyNode" type="LibertyNodeType"/>
<xs:element name="WasNode" type="LibertyNodeType"/>

<xs:element name="Farm">
<xs:complexType>
<xs:sequence>
<xs:choice maxOccurs="unbounded" minOccurs="1" >
<xs:element ref="TomcatNode" />
<xs:element ref="LibertyNode" />
<xs:element ref="WasNode" />

</xs:choice>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

Example of server farm nodes for WebSphere Application Server full profile

The following example shows how to configure the nodes in a server farm that run
on WebSphere Application Server configured as full profile.
<?xml version="1.0" encoding="UTF-8"?>
<Farm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="FarmSchema.xsd">
<WasNode Hostname="someWasHost1" ServerID ="wasServerID1" AdminPass="wasPassword1" AdminUser="wasAdmin1" JMXPortNumber="12345" />
<WasNode Hostname="someWasHost2" ServerID ="wasServerID2" AdminPass="wasPassword2" AdminUser="wasAdmin2" JMXPortNumber="12345" />
</Farm>

Example of server farm nodes for the Liberty profile

The following example shows how to configure the nodes in a server farm on
application servers that run the Liberty profile.

Installing and configuring 6-87

<?xml version="1.0" encoding="UTF-8"?>
<Farm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="FarmSchema.xsd">

<LibertyNode Hostname="someLibertyHost1" ServerID ="libertyServerID1" AdminPass="libertyPassword1" AdminUser="libertyAdmin1" JMXPortNumber="12345" />
<LibertyNode Hostname="someLibertyHost2" ServerID ="libertyServerID2" AdminPass="libertyPassword2" AdminUser="libertyAdmin2" JMXPortNumber="12345" />
<LibertyNode Hostname="someLibertyHost3" ServerID ="libertyServerID3" AdminPass="libertyPassword3" AdminUser="libertyAdmin3" JMXPortNumber="12345" />

</Farm>

Example of server farm nodes for Apache Tomcat

The following example shows how to configure the nodes in a server farm that run
on Apache Tomcat application servers.
<?xml version="1.0" encoding="UTF-8"?>
<Farm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="FarmSchema.xsd">
<TomcatNode ServerID ="tomcatServerID1" Hostname="someTomcatHost1" JMXPortNumber="12345" TomcatPortNumber="54321" />
<TomcatNode ServerID ="tomcatServerID2" Hostname="someTomcatHost2" JMXPortNumber="12345" TomcatPortNumber="54321" />
</Farm>

If an Apache Tomcat server is placed behind a firewall, you must also define the
TomcatPortNumber attribute. Set this attribute to the value of the
rmiServerPortPlatform attribute as defined in the Tomcat JMX Lifecycle listener
page of the Apache website.

Configuring user authentication for MobileFirst Server
administration
You configure user authentication and choose an authentication method.
Configuration procedure depends on the web application server that you use.

The MobileFirst Server administration requires user authentication.

You must perform configuration after the installer deploys the MobileFirst Server
administration web applications in the web application server.

The MobileFirst Server administration has the following Java Platform, Enterprise
Edition (Java EE) security roles defined:

worklightadmin

worklightdeployer

worklightoperator

worklightmonitor

You must map the roles to the corresponding sets of users. The worklightmonitor
role can view data but cannot change any data. The purpose of the roles is
illustrated by the following table.

Table 6-14. MobileFirst Roles and Functionality - Production Server

Administrator Deployer Operator Monitor

Java EE security
role.

worklightadmin worklightdeployerworklightoperatorworklightmonitor

Deployment

Deploy an
application.

Y Y

6-88 IBM MobileFirst Platform Foundation V6.3.0

http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener

Table 6-14. MobileFirst Roles and Functionality - Production Server (continued)

Administrator Deployer Operator Monitor

Deploy an
adapter.

Y Y

MobileFirst
Server
Management

Configure
runtime settings.

Y Y

Application
Management

Upload new
MobileFirst
application.

Y Y

Remove
MobileFirst
application.

Y Y

Upload new
MobileFirst
adapter.

Y Y

Remove
MobileFirst
adapter.

Y Y

Turn on or off
application
authenticity
testing for an
application.

Y Y

Change
properties on
MobileFirst
application
status: Active,
Active
Notifying, and
Disabled.

Y Y Y

Lock an
application so
the new artifacts
cannot be used
for a version.

Y Y Y

Notifications

Unsubscribe a
device from SMS
notification.

Y Y

Configure Push. Y Y

Logging

Enable and
disable device
logging
remotely.

Y Y Y

Installing and configuring 6-89

Table 6-14. MobileFirst Roles and Functionality - Production Server (continued)

Administrator Deployer Operator Monitor

Configure log
levels.

Y Y Y

Disable the
specific device,
marking the
state as lost or
stolen so that
access from any
of the
applications on
that device is
blocked.

Y Y Y

Disable a
specific
application,
marking the
state as disabled
so that access
from the specific
application on
that device is
blocked.

Y Y

If you choose to use an authentication method through a user repository such as
LDAP, you can configure the MobileFirst Server administration so that you can use
users and groups with the user repository to define the Access Control List (ACL)
of the MobileFirst Server administration. This procedure is conditioned by the type
and version of the web application server that you use.

Configuring WebSphere Application Server full profile for MobileFirst Server
administration:

Configure security by mapping the MobileFirst Server administration JEE roles to a
set of users for both web applications.

Procedure

You define the basics of user configuration in the WebSphere Application Server
console. Access to the console is usually by this address:
https://localhost:9043/ibm/console/

1. Select Security > Global Security.
2. Select Security Configuration Wizard to configure users.

You can manage individual user accounts by selecting Users and Groups >
Manage Users.

3. Map the roles worklightadmin, worklightdeployer, worklightmonitor, and
worklightoperator to a set of users.
a. Select Servers > Server Types > WebSphere application servers.
b. Select the server.
c. In the Configuration tab, select Applications > Enterprise applications.
d. Select IBM_Worklight_Administration_Services.

6-90 IBM MobileFirst Platform Foundation V6.3.0

e. In the Configuration tab, select Details > Security role to user/group
mapping.

f. Perform the necessary customization.
g. Click OK.
h. Repeat steps c to g to map the roles for the console web application. In step

d, select IBM_Worklight_Console.
i. Click Save to save the changes.

Configuring WebSphere Application Server Liberty profile for MobileFirst
Server administration:

Configure the Java EE security roles of the MobileFirst Server administration and
the data source in the server.xml file.

Before you begin

In WebSphere Application Server Liberty profile, you configure the roles of
worklightadmin, worklightdeployer, worklightmonitor, and worklightoperator in
the server.xml configuration file of the server.

About this task

To configure the security roles, you must edit the server.xml file. In the
<application-bnd> element of each <application> element, create <security-role>
elements. Each <security-role> element is for each roles: worklightadmin,
worklightdeployer, worklightmonitor, and worklightoperator. Map the roles to
the appropriate user group name, in this example: worklightadmingroup,
worklightdeployergroup, worklightmonitorgroup, or worklightoperatorgroup.
These groups are defined through the <basicRegistry> element. You can customize
this element or replace it entirely with an <ldapRegistry> element or a
<safRegistry> element.

Then, to maintain good response times with a large number of installed
applications, for example with 80 applications, you should configure a connection
pool for the administration database.

Procedure

1. Edit the server.xml file.
For example:
<security-role name="worklightadmin">

<group name="worklightadmingroup"/>
</security-role>
<security-role name="worklightdeployer">

<group name="worklightdeployergroup"/>
</security-role>
<security-role name="worklightmonitor">

<group name="worklightmonitorgroup"/>
</security-role>
<security-role name="worklightoperator>

<group name="worklightoperatorgroup"/>
</security-role>

<basicRegistry id="worklightadmin">
<user name="admin" password="admin"/>
<user name="guest" password="guest"/>
<user name="demo" password="demo"/>
<group name="worklightadmingroup">

Installing and configuring 6-91

<member name="guest"/>
<member name="demo"/>

</group>
<group name="worklightdeployergroup">
<member name="admin" id="admin"/>

</group>
<group name="worklightmonitorgroup"/>
<group name="worklightoperatorgroup"/>

</basicRegistry>

2. Edit the server.xml file to define the AppCenterPool size.
<connectionManager id="AppCenterPool" minPoolSize="10" maxPoolSize="40"/>

3. In the <dataSource> element, define a reference to the connection manager:
<dataSource id="WLADMIN" jndiName="jdbc/WorklightAdminDS" connectionManagerRef="AppCenterPool">
...

</dataSource>

Configuring Apache Tomcat for MobileFirst Server administration:

You must configure the JEE security roles for the MobileFirst Server administration
on the Apache Tomcat web application server.

Procedure

1. If you installed the MobileFirst Server administration manually, declare the
following roles in the conf/tomcat-users.xml file.
<role rolename="worklightadmin"/>
<role rolename="worklightmonitor"/>
<role rolename="worklightdeployer"/>
<role rolename="worklightoperator"/>

2. Add roles to the selected users, for example:
<user name="demo" password="demo" roles="worklightadmin"/>

3. You can define the set of users as described in the Apache Tomcat
documentation, Realm Configuration HOW-TO.

List of JNDI properties for MobileFirst Server administration
When you configure MobileFirst Server Administration Services and MobileFirst
Operations Console for your application server, you set optional or mandatory
JNDI properties, in particular for Java Management Extensions (JMX).

Table 6-15. JNDI properties for Administration Services: JMX

Property
Optional/
Mandatory Description Restrictions

ibm.worklight.admin.jmx.connectorOptional The Java
Management
Extensions (JMX)
connector type.

The possible values
are SOAP and RMI.
The default value is
SOAP.

WebSphere
Application Server
only.

ibm.worklight.admin.jmx.host Optional Host name for the
JMX REST
connection.

Liberty profile only.

ibm.worklight.admin.jmx.port Optional Port for the JMX
REST connection.

Liberty profile only.

6-92 IBM MobileFirst Platform Foundation V6.3.0

http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

Table 6-15. JNDI properties for Administration Services: JMX (continued)

Property
Optional/
Mandatory Description Restrictions

ibm.worklight.admin.jmx.user Optional User name for the
JMX REST
connection.

Liberty profile only.

ibm.worklight.admin.jmx.pwd Optional User password for
the JMX REST
connection.

Liberty profile only.

ibm.worklight.admin.rmi.registryPortOptional RMI registry port for
the JMX connection
through a firewall.

Tomcat only.

ibm.worklight.admin.rmi.serverPortOptional RMI server port for
the JMX connection
through a firewall.

Tomcat only.

ibm.worklight.admin.jmx.dmgr.hostMandatory Deployment
manager host name.

WebSphere
Application Server
Network
Deployment only.

ibm.worklight.admin.jmx.dmgr.portMandatory Deployment
manager RMI or
SOAP port.

WebSphere
Application Server
Network
Deployment only.

Table 6-16. JNDI properties for Administration Services: time out

Property
Optional/
Mandatory Description

ibm.worklight.admin.actions.prepareTimeoutOptional Timeout in milliseconds to transfer data
from the management service to the
runtime during a deployment
transaction. If the runtime cannot be
reached within this time, an error is
raised and the deployment transaction
ends.

Default value: 1800000 ms (30 min)

ibm.worklight.admin.actions.commitRejectTimeoutOptional Timeout in milliseconds, when a
runtime is contacted, to commit or
reject a deployment transaction. If the
runtime cannot be reached within this
time, an error is raised and the
deployment transaction ends.

Default value: 120000 ms (2 min)

ibm.worklight.admin.lockTimeoutInMillisOptional Timeout in milliseconds for obtaining
the transaction lock. Because
deployment transactions run
sequentially, they use a lock. Therefore,
a transaction must wait until a previous
transaction is finished. This timeout is
the maximal time during which a
transaction waits.

Default value: 1200000 ms (20 min)

Installing and configuring 6-93

Table 6-16. JNDI properties for Administration Services: time out (continued)

Property
Optional/
Mandatory Description

ibm.worklight.admin.maxLockTimeInMillisOptional The maximal time during which a
process can take the transaction lock.
Because deployment transactions run
sequentially, they use a lock. If the
application server fails while a lock is
taken, it can happen in rare situations
that the lock is not released at the next
restart of the application server. In this
case, the lock is released automatically
after the maximum lock time so that
the server is not blocked forever. Set a
time that is longer than a normal
transaction.

Default value: 1800000 (30 min)

Table 6-17. JNDI properties for Administration Services: logging

Property
Optional/
Mandatory Description

ibm.worklight.admin.logging.formatjson Optional Set this property to true to
enable pretty formatting (extra
blank space) of JSON objects in
responses and log messages.
Setting this property is helpful
when you debug the server.

Default value: false.

ibm.worklight.admin.logging.tosystemerrorOptional Specifies whether all logging
messages are also directed to
System.Error. Setting this
property is helpful when you
debug the server.

Table 6-18. JNDI properties for Administration Services: proxies

Property
Optional/
Mandatory Description

ibm.worklight.admin.proxy.portOptional If the MobileFirst Administration server is
behind a firewall or reverse proxy, this
property specifies the address of the host. Set
this property to enable a user outside the
firewall to reach the MobileFirst
Administration server. Typically, this property
is the port of the proxy, for example 443. It is
necessary only if the protocol of the external
and internal URIs are different.

6-94 IBM MobileFirst Platform Foundation V6.3.0

Table 6-18. JNDI properties for Administration Services: proxies (continued)

Property
Optional/
Mandatory Description

ibm.worklight.admin.proxy.protocolOptional If the MobileFirst Administration server is
behind a firewall or reverse proxy, this
property specifies the protocol (HTTP or
HTTPS). Set this property to enable a user
outside the firewall to reach the MobileFirst
Administration server. Typically, this property
is set to the protocol of the proxy. For
example, wl.net. This property is necessary
only if the protocol of the external and
internal URIs are different.

ibm.worklight.admin.proxy.schemeOptional This property is just an alternative name for
ibm.worklight.admin.proxy.protocol.

ibm.worklight.admin.proxy.hostOptional If the MobileFirst Administration server is
behind a firewall or reverse proxy, this
property specifies the address of the host. Set
this property to enable a user outside the
firewall to reach the MobileFirst
Administration server. Typically, this property
is the address of the proxy.

Table 6-19. JNDI properties for Administration Services: topologies and connections

Property
Optional/
Mandatory Description

ibm.worklight.admin.audit Optional. Set this property to false to disable
the audit feature of the MobileFirst
Server Administration console. The
default value is true.

ibm.worklight.admin.environmentid Optional. Environment identifier for the
registration of the MBeans.

Use this identifier when different
instances of the MobileFirst Server are
installed on the same application
server. The identifier determines which
Administration Services, which
console, and which runtimes belong to
the same installation. The
Administration Services manage only
the runtimes that have the same
environment identifier.

ibm.worklight.admin.serverid Optional. Server identifier. Must be different for
each server in the farm. For server
farms only.

ibm.worklight.admin.hsts Optional. Set to true to enable HTTP Strict
Transport Security according to RFC
6797.

ibm.worklight.admin.db.jndi.name Optional The JNDI name of the database. This
parameter is the normal mechanism to
specify the database. The default value
is java:comp/env/jdbc/
WorklightAdminDS.

Installing and configuring 6-95

Table 6-19. JNDI properties for Administration Services: topologies and
connections (continued)

Property
Optional/
Mandatory Description

ibm.worklight.admin.db.type Optional

Conditionally
mandatory

The database type. Mandatory when
the database is not specified by the
ibm.worklight.admin.db.jndi.name
property.

ibm.worklight.admin.db.openjpa.ConnectionDriverNameOptional

Conditionally
mandatory

The fully qualified name of the
database connection driver class.
Mandatory only when the data source
that is specified by the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.ConnectionURLOptional

Conditionally
mandatory

The URL for the database connection.
Mandatory only when the data source
that is specified by the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.ConnectionUserNameOptional

Conditionally
mandatory

The ⌂user name for the database
connection. Mandatory only when the
data source that is specified by the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.ConnectionPasswordOptional

Conditionally
mandatory

The password for the database
connection. Mandatory only when the
data source that is specified by the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.Log Optional This property is passed to OpenJPA
and enables JPA logging. For more
information, see the Apache OpenJPA
User's Guide.

ibm.worklight.topology.platform Not strictly
mandatory
but your
application
works best
if you set
this
property.

Server type. Valid values:

v Liberty

v WAS

v Tomcat

If you do not set the value, the
application tries to guess the server
type.

ibm.worklight.topology.clustermode Not strictly
mandatory
but your
application
works best
if you set
this
property.

In addition to the server type, specify
here the server topology. Valid values:

v Standalone

v Cluster

v Farm

The value by default is Standalone.

6-96 IBM MobileFirst Platform Foundation V6.3.0

http://openjpa.apache.org/docs/openjpa-0.9.0-incubating/manual/manual.html
http://openjpa.apache.org/docs/openjpa-0.9.0-incubating/manual/manual.html

Table 6-19. JNDI properties for Administration Services: topologies and
connections (continued)

Property
Optional/
Mandatory Description

ibm.worklight.farm.type Optional. This property is for server farms only
and sets the type of the node farm if a
node farm is to be used.

Only the FILE type is currently
supported.

ibm.worklight.farm.definition.locationOptional

Conditionally
mandatory

This property is for server farm only
and sets the full path to the XML
configuration file of the server farm.
The configuration file is checked
against the FarmSchema.xsd schema.

This option is mandatory for the FILE
type of server farm.

Table 6-20. JNDI properties for the MobileFirst Operations Console

Property
Optional/
Mandatory Description

ibm.worklight.admin.endpointOptional Enables the MobileFirst Operations Console to
locate the MobileFirst Server Administration
REST services. Specify the external address
and context root of the worklightadmin.war
web application. In a scenario with a firewall
or a secured reverse proxy, this URI must be
the external URI and not the internal URI
inside the local LAN. For example,
https://wl.net:443/worklightadmin.

ibm.worklight.admin.global.logoutOptional Clears the WebSphere user authentication
cache during the console logout. This property
is useful only for WebSphere Application
Server V7.

The default value is false.

ibm.worklight.admin.hsts Optional Set this property to true to enable HTTP Strict
Transport Security according to RFC 6797. For
more information, see the W3C Strict Transport
Security page.

The default value is false.

ibm.worklight.admin.ui.cors Optional The default value is true.

For more information, see the W3C
Cross-Origin Resource Sharing page.

ibm.worklight.admin.ui.cors.strictsslOptional Set to false to allow CORS situations where
the MobileFirst Operations Console is secured
with SSL (HTTPS protocol) while the
MobileFirst Server Administration services are
not, or conversely. This property takes effect
only if the ibm.worklight.admin.ui.cors
property is enabled.

Installing and configuring 6-97

http://www.w3.org/Security/wiki/Strict_Transport_Security
http://www.w3.org/Security/wiki/Strict_Transport_Security
http://www.w3.org/TR/cors/

Table 6-21. Properties common to MobileFirst and MobileFirst Operations Console

Property
Optional/
Mandatory Description

ibm.worklight.jndi.configurationOptional If the JNDI configuration is stored as an
external file, the value of this property is the
path of a file that describes the JNDI
configuration. This value can also be specified
as a system property. See “Predefining
MobileFirst Server configuration for several
deployment environments” on page 6-244.

ibm.worklight.jndi.file Optional If the JNDI configuration is stored as an
external file, the value of this property is the
path of a file that describes the JNDI
configuration. This value can also be specified
as a system property. See “Predefining
MobileFirst Server configuration for several
deployment environments” on page 6-244.

Configuring the JNDI properties

For more information about how to configure the JNDI properties, see the topic
“Configuring a MobileFirst project in production by using JNDI environment
entries” on page 11-56, sections Configuring with the Ant task, Manually configuring
on the server, and Procedure.

To configure the properties with Ant tasks, you must use the Ant task
installworklightadmin, instead of configureapplicationserver.

For the console, the property element should be under the console element.

For more information, see “Ant tasks for installation of MobileFirst Operations
Console and Administration Services” on page 15-8.

Verifying the installation of MobileFirst Server administration
You must log in to the MobileFirst Operations Console to verify that the
installation was successful.

Procedure
1. Open a web browser.
2. Enter the following URL in the address bar: http://hostname:9083/

worklightconsole/.

Note:

v In this URL, hostname is the host name of the computer that runs your
application server.

v You must replace 9083 by the HTTP port of your application server.
3. Log in with a worklightadmin user role.
4. The console displays the following message: No runtime can be found.. To

install a MobileFirst runtime environment that you can manage with the
MobileFirst Operations Console, see “Installing the MobileFirst runtime
environment” on page 6-99.

Note: If the Application Center and MobileFirst Operations Console are
installed in the same Tomcat instance, you cannot log in to the Application

6-98 IBM MobileFirst Platform Foundation V6.3.0

Center console and to the MobileFirst Operations Console at the same time in
the same browser. If you try to log in at the same time, you get a 404 Page Not
Found error message.

For example, you get this error message if you open your browser, successfully
log in to the Application Center console, open a new tab in the browser, and
log in to the MobileFirst Operations Console.

This is a technical limitation of Tomcat. The implementation of single sign-on in
Tomcat does not allow to use the same browser to log in to the Application
Center console and to the MobileFirst Operations Console at the same time. But
the Application Center and MobileFirst Server require single sign-on. You must
exit the browser after your work is done in the Application Center console and
restart the browser to log in to the MobileFirst Operations Console. You can
then successfully log in to the MobileFirst Operations Console.

Installing the MobileFirst runtime environment

About this task

For more information about the MobileFirst runtime environment, see “Deploying
the project WAR file” on page 11-5.

Installing a server farm
MobileFirst Server provides a specific plug-in so that instances of application
servers can become server farm nodes. After you have prepared the installation
depending on your work environment, you can install your server farm manually
or by running Ant tasks.

Planning the configuration of a server farm
To plan the configuration of a server farm, choose the application server, write the
configuration file, and deploy the WAR files.

In IBM MobileFirst Platform Foundation, a server farm is composed of multiple
stand-alone application servers that are not federated or administered by a
managing component of an application server. MobileFirst Server internally
provides a farm plug-in as the means to enhance an application server so that it
can be part of a server farm.

When to declare a server farm

Declare a server farm in the following cases:

v MobileFirst Server is installed on multiple Tomcat application servers.
v MobileFirst Server is installed on multiple WebSphere Application Server

servers but not on WebSphere Application Server Network Deployer.
v MobileFirst Server is installed on multiple WebSphere Application Server

Liberty servers.

Do not declare a server farm in the following cases:

v Your application server is stand-alone.
v Multiple application servers are federated by WebSphere Application

Server Network Deployment.

Installing and configuring 6-99

Why it is mandatory to declare a farm

Each time a management operation is performed through the MobileFirst
Operations Console or through the MobileFirst Administration Services application,
the operation needs to be replicated to all instances of a runtime environment.
Examples of such management operations are the uploading of a new version of a
wlapp or of an adapter. The replication is done via JMX calls performed by the
MobileFirst Administration Services application instance that handles the
operation. The Administration Service needs to contact all runtime instances in the
cluster. In environments listed under “When to declare a server farm” on page
6-99, the runtime can be contacted through JMX only if a farm is configured. If a
server is added to a cluster without proper configuration of the farm, the runtime
in that server will be in an inconsistent state after each management operation, and
until it is restarted again.

Work flow

When you plan to set up a server farm, you first choose an application server and
then write the appropriate configuration file.
1. Choose a stand-alone application server for the server farm. IBM MobileFirst

Platform Foundation supports the following applications servers for server
farms:
v WebSphere Application Server Base
v WebSphere Application Server Liberty
v Apache Tomcat

Note: To know which versions of application servers are supported, see
“System requirements for using IBM MobileFirst Platform Foundation” on page
2-12.
Attention: IBM MobileFirst Platform Foundation V6.3.0 supports only
homogeneous server farms. A server farm is said to be homogeneous when it
connects application servers of the same type. Attempting to associate different
types of application servers would lead to unpredictable behavior at run time.
For example, a farm of Tomcat servers and WebSphere Application Server
servers is an invalid configuration.

2. After you chose an application server, write a configuration file for your server
farm.
This configuration file is a flat file in XML format, which specifies the
connectivity settings for each server. The farm plug-in reads the file at run time
so that each server can communicate with all others within the farm. Each
server in the farm uses the same configuration file at run time. Therefore, this
file can either be duplicated on the file system of each server or be placed in a
shared directory, with appropriate read rights for each server.
For more information about this configuration file, see “Defining a server farm
for MobileFirst Server administration” on page 6-86.

3. When you plan to deploy MobileFirst runtime environments on a farm of N
servers, deploy the following elements on each of the N servers, according to
the MobileFirst symmetric deployment scheme.
v The WAR file for MobileFirst Administration Services.
v Optionally, the WAR file for the MobileFirst Operations Console. If you do

not install the console, you need to complete management operations in one
of the following ways:

6-100 IBM MobileFirst Platform Foundation V6.3.0

– By using wladm Ant tasks. See “Administering MobileFirst applications
through Ant” on page 12-12.

– By using the wladm program. See “Administering MobileFirst applications
through the command line” on page 12-36.

v The WAR file for each MobileFirst runtime environment.
The databases for MobileFirst Administration Services, MobileFirst runtime
environments, and MobileFirst reports are shared among all the servers.

Note: The Derby database is not supported in a server farm.
4. Exchange the server certificates in their truststores.

This exchange is mandatory for WebSphere Application Server and WebSphere
Application Server Liberty farms because communication is secured with SSL
between the server. The exchange is optional for Tomcat farms.

Installing a server farm by using an Ant task
To install a server farm, you can use an Ant task. You stop the servers, write a
configuration file, customize the Ant script, and run it so that each server becomes
a farm node. Then, you add the necessary JNDI properties and exchange the signer
certificates between the servers.

Before you begin

Make sure to stop all the servers that you are about to configure as members of a
server farm.

Configure the REST connector of all the Liberty servers of the farm, by following
the procedure at “Configuring WebSphere Application Server Liberty profile” on
page 6-50. This configuration defines the following parameters for each Liberty
server:
v The Liberty administrator and password, which are required to define the

configuration farm plug-in in step 1.
v The keystore, which is required to exchange public certificates in step 5.

Procedure
1. Write the configuration file for the farm plug-in.

The configuration file is a flat file in XML format. You must write it manually.
In this file, each server is defined as an XML element with attributes that are
specific to each type of supported application server: WebSphere Application
Server Express® or Base, Liberty, or Tomcat. These attributes identify a server as
unique, indicate the connection type and ports to use, and provide credentials
for authentication purpose when applicable. Your configuration file is read by
the farm plug-in at run time and validated against the FarmSchema.xsd XML
schema. When you write the configuration file, you can use the schema to
ensure that your XML code complies with it to prevent any problem at run
time.

Tip: Give your configuration files meaningful names, for example
TomcatFarm.xml or LibertyFarm.xml.
The contents of the configuration file depends on the type of application server.
For instructions on how to write a farm plug-in configuration file.s
v For WebSphere Application Server, see step 2 on page 6-106 in “Installing a

WebSphere Application Server farm manually” on page 6-105.

Installing and configuring 6-101

v For Liberty, see step 2 on page 6-110 in “Installing a Liberty server farm
manually” on page 6-109.

v For Tomcat, see step 2 on page 6-114 in “Installing a Tomcat server farm
manually” on page 6-113.

2. Customize your Ant script to configure the databases.
a. If you must create the database, do as follows:
v Edit the Ant script that you use later to configure the databases.

To help you write configuration files, sample Ant files that use these Ant
tasks are provided in product_install_dir/WorklightServer/
configuration-samples.
The files are named after this pattern: create-database-database.xml. For
more information, see Table 1 in “Sample configuration files” on page
15-30.

v To create the Administration Services databases, run these commands:
ant -f create-database-database.xml admdatabases

v If only one MobileFirst project is deployed in the farm, run the following
command to create the MobileFirst project databases:
ant -f create-database-database.xml databases

v If several MobileFirst projects are to be deployed in the farm, each
MobileFirst project must have its own database. Create a copy of the Ant
file per project. Each one must point to a different database or schema, or,
for Oracle, have a different user. Then, run the database target for each
file.

Because all the servers in the farm must share MobileFirst Server databases,
you run these commands only once, even if you defined several servers.

b. If the databases are created, and you must create only the database TABLES:
v Edit the Ant script that you use later to create and configure the

databases.
To help you write configuration files, sample Ant files that use these Ant
tasks are provided in product_install_dir/WorklightServer/
configuration-samples.
The files are named after this pattern: configure-appServer-
database.xml. For more information, see Table 1 in “Sample configuration
files” on page 15-30.

v To create the Administration Services databases, run these commands:
ant -f configure-appServer-database.xml admdatabases

v If only one MobileFirst project is deployed in the farm, run the following
command to create the MobileFirst project databases:
ant -f configure-appServer-database.xml databases

v If several MobileFirst projects are to be deployed in the farm, each
MobileFirst project must have its own database. Create a copy of the Ant
file per project. Each one must point to a different database or schema, or,
for Oracle, have a different user. Then, run the database target for each
file.

Because all the servers in the farm must share Worklight databases, you run
these commands only once, even if you defined several servers.

3. Customize and run your Ant script so that each server becomes a farm node.
For each server that you want to promote as a farm node, proceed as follows:
a. Edit the Ant script that you use to configure the server.

6-102 IBM MobileFirst Platform Foundation V6.3.0

To install the Administration Services and the MobileFirst runtime
environments, the script must contain at least the admininstall and install
targets.
To help you write configuration files, sample Ant files that use these Ant
tasks are provided in product_install_dir/WorklightServer/
configuration-samples. The files are named after this pattern:
configure-appServer-database. For more information, see Table 1 in
“Sample configuration files” on page 15-30.

b. For WebSphere Application Server Liberty profile, modify the JMX tag to
define the Liberty administrator credentials. In the Ant file, replace the
empty <jmx/> tag by the following line.
<jmx libertyAdminUser="demo" libertyAdminPassword="demo" createLibertyAdmin="false"/>

Where:
v libertyAdminUser is the name of the Liberty administrator.
v libertyAdminPassword is the password of the Liberty administrator.
v If createLibertyAdmin is set to false, the Ant task does not attempt to add

the user in the basic registry, or to declare it as a Liberty administrator.
c. Optional: In addition, if your server farm includes several Tomcat servers

on the same computer, specify a different JMX port number for each server
by setting the tomcatRMIPort attribute of the <jmx> element inside the
installworklightadmin Ant task.
This port number must match the value of the JMXPortNumber attribute of
the corresponding <TomcatNode> element in the configuration file that you
wrote in step 1 on page 6-101.
For example, consider a farm with several Tomcat servers, two of which are
on the same computer. Assign port 8686 to the first server and 8687 to the
second.
1) In the Ant script, add the following elements.
v For the first server: <jmx tomcatRMIPort=”8686”/>
v For the second server:<jmx tomcatRMIPort=”8687”/>

2) In the configuration file of the farm, add the following elements.
<TomcatNode .. JMXPortNumber=”8686”>
<TomcatNode .. JMXPortNumber=”8687”>

d. Deploy the Administration Services and MobileFirst runtime environments
on the targeted application server.
Run the following commands for each server of the farm.
ant -f configure-<appServer>-<database>.xml adminstall
ant -f configure-<appServer>-<database>.xml install

4. Manually add the necessary JNDI properties.
Depending on your type of application server, proceed as follows:
v For a Tomcat farm or a WebSphere Application Server farm, set the JNDI

properties for Administration Services for each server, as shown in Table 1.

Table 6-22. Tomcat or WebSphere Application Server farm: JNDI properties for
Administration Services

Name Value

ibm.worklight.farm.type File

ibm.worklight.farm.definition.location The absolute path to the XML configuration
file for the farm plug-in. For example:
TomcatFile.xml or WasFile.xml

Installing and configuring 6-103

Table 6-22. Tomcat or WebSphere Application Server farm: JNDI properties for
Administration Services (continued)

Name Value

ibm.worklight.admin.serverid A unique identifier for each server.

This identifier must match the corresponding
ServerID attribute of the server element in the
configuration file for the server that you are
configuring (<TomcatNode> or <WasNode>).

ibm.worklight.topology.clustermode
Note: The Ant task created this entry with
the value Standalone. You must modify
this value.

Farm

v For a Tomcat farm or a WebSphere Application Server farm, set the JNDI
properties for MobileFirst runtime environments for each server, as shown in
Table 2.

Table 6-23. Tomcat or WebSphere Application Server farm: JNDI properties for MobileFirst
runtime environments

Name Value

ibm.worklight.admin.serverid A unique identifier for each server.

This identifier must match the corresponding
ServerID attribute of the server element in the
configuration file for the server that you are
configuring (<TomcatNode> or <WasNode>).

ibm.worklight.topology.clustermode
Note: The Ant task created this entry
with the value Standalone. You must
modify this value.

Farm

v For a Liberty farm, set the JNDI properties for Administration Services and
MobileFirst runtime environments for each server, as shown in Table 3.

Table 6-24. Liberty farm: JNDI properties for Administration Services and MobileFirst runtime
environments

Header Header

ibm.worklight.farm.type File

ibm.worklight.farm.definition.locationThe absolute path to the XML configuration file
for the farm plug-in. For example:
LibertyFile.xml

ibm.worklight.admin.serverid A unique identifier for each server.

This identifier must match the corresponding
ServerID attribute of the server element in the
configuration file for the server that you are
configuring (<LibertyNode>).

ibm.worklight.topology.clustermode
Note: The Ant task created this entry
with the value Standalone. You must
modify this value.

Farm

For more information, see the following documentation.

6-104 IBM MobileFirst Platform Foundation V6.3.0

v For a farm of WebSphere Application Server stand-alone servers, see how to
set JNDI properties in “Installing a WebSphere Application Server farm
manually.”
– For Administration Services, see step 4 on page 6-107.
– For MobileFirst runtime environments, see step 5 on page 6-108.

v For a Tomcat farm, see how to set JNDI properties in “Installing a Tomcat
server farm manually” on page 6-113:
– For Administration Services, see step 5 on page 6-115.
– For MobileFirst runtime environments, see step 7 on page 6-116.

5. Exchange the public certificates between all the servers of the farm.
v For a farm of WebSphere Application Server stand-alone servers, see step 6

on page 6-108 in “Installing a WebSphere Application Server farm manually.”
v For a Liberty farm, see step 8 on page 6-112 in “Installing a Liberty server

farm manually” on page 6-109.
v For a Tomcat farm: By default, the sample configuration Ant scripts that are

provided with MobileFirst Server configure only the Tomcat HTTP connector,
which does not use SSL. Therefore, you have nothing to do.

6. Replicate the LTPA keystores across farm members.

Note: For a Liberty farm, see step 9 in “Installing a Liberty server farm
manually” on page 6-109.

What to do next

Start the servers.

Set up an IBM HTTP Server for Liberty. For more information, see “Setting up an
IBM HTTP Server in an IBM WebSphere Application Server Liberty profile farm”
on page 6-268.

Installing a WebSphere Application Server farm manually
To install a WebSphere Application Server server farm step by step, you create the
database, write the configuration file, configure the runtime database, and the
MobileFirst Operations Console and administration web applications, and
exchange signer certificates between truststores.

Before you begin

Make sure that you have defined your WebSphere Application Server profile.

About this task

To configure a farm of WebSphere Application Server servers, follow these steps:
1. Create the MobileFirst Administration Services database.
2. Write the configuration file for the farm plug-in.
3. Configure the MobileFirst runtime database.
4. Install the MobileFirst Operations Console and Administration Services

applications.
5. Configure the MobileFirst runtime environments.
6. Exchange signer certificates between server truststore for each server of the

farm..

Installing and configuring 6-105

Tip: When you work in the wizard of the WebSphere Application Server
administration console, where no step number is mentioned in the following
procedure, click Next or click the subsequent step number wizard list.

Procedure
1. Create the MobileFirst Administration Services database.

Note: MobileFirst databases are shared among the application servers of a
farm, which has two consequences:
v You create this database only once, whatever the number of servers.
v You cannot use the Derby database in such a topology because this database

allows only a single connection at a time.
For more information for each database, see the following documentation.
v “Setting up your DB2 database manually for the MobileFirst Server

administration” on page 6-64
v “Setting up your Oracle database manually for the MobileFirst Server

administration” on page 6-75
v “Setting up your MySQL database manually for the MobileFirst Server

administration” on page 6-72
2. Write the configuration file for the farm plug-in.

a. Create an XML file.
Give it a meaningful name, for example WasFarm.xml.
<?xml version="1.0" encoding="UTF-8"?>
<Farm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="FarmSchema.xsd">

<WasNode ServerID="server id" AdminPass="user password" AdminUser="user name"
Hostname="host name address" JMXPortNumber="port number"/>

.....
</Farm>

Where:
v server id is the unique identifier of the server
v user password is the WebSphere Application Server password.
v user name is the WebSphere Application Server user name. This name

must be in the WebSphere Application Server user registry but does not
need to have a WebSphere Application Server role because the
MobileFirst MBeans are not secured

v host name address is the host name of the stand-alone WebSphere
Application Server server.

v port number is the SOAP port number of the stand-alone WebSphere
Application Server server.

Tip: The port number must be different for each server that is hosted on
the same computer.

There must be one <WasNode> element per server in the farm. For example:
<?xml version="1.0" encoding="UTF-8"?>
<Farm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="FarmSchema.xsd">
<WasNode ServerID="ServerOne" AdminPass="admin" AdminUser="admin" Hostname="MyHostName" JMXPortNumber="8686"/>
<WasNode ServerID="ServerTwo" AdminPass="admin" AdminUser="admin" Hostname="MyHostName" JMXPortNumber="8687"/>

</Farm>

The complete syntax of the elements and attributes of this XML file and the
underlying XML schema is documented in “Defining a server farm for
MobileFirst Server administration” on page 6-86.

6-106 IBM MobileFirst Platform Foundation V6.3.0

b. Copy the configuration file to each computer where WebSphere Application
Server is installed or on a shared file system that all the servers of the farm
can access.

3. Configure the MobileFirst runtime database.

Important: In the context of a server farm, you must set the scope of the JDBC
connection to server level.
v “Configuring WebSphere Application Server for DB2 manually” on page

11-20
v “Configuring WebSphere Application Server for Oracle manually” on page

11-34
v “Configuring WebSphere Application Server for MySQL manually” on page

11-29
a. Follow the instructions for configuring your database.
b. Log on to the WebSphere Application Server administration console.
c. On the navigation pane, select Security > Global security.
d. In Authentication, select Java Authentication and Authorization Service >

J2C authentication data.
e. Clear Prefix new alias names with the node name of the cell (for

compatibility with earlier releases).
f. Click Apply and then Save.

4. Install the MobileFirst Operations Console and Administration Services
applications.
a. Follow the instructions in “Configuring WebSphere Application Server for

MobileFirst Server administration manually” on page 6-82.
b. On the navigation pane, select Applications > Application Types >

Websphere enterprise applications.
c. Click Install.
d. Browse to the product_install_dir/WorklightServer/worklightadmin.war

file for MobileFirst Administration Services.
e. Click Next.
f. Select Detailed to show all installation options and parameters.
g. Click Next, and then Continue.
h. In Step 7 Map resource references to resource, enter /jdbc/

WorklightAdminDS.
i. In Step 9 Map context roots for web modules, enter /worklightadmin.
j. In Step 10 Map environment entries for Web Modules, proceed as follows:

1) Enter WAS next to ibm.worklight.topology.platform.
2) Enter Farm next to ibm.worklight.topology.clustermode

3) Enter File next to ibm.worklight.farm.type.
4) Enter the server identifier next to ibm.worklight.admin.serverid.

This identifier must be the same as the one that you declared in the
configuration file in step 2 on page 6-106.

5) Enter the location of the XML configuration file in
ibm.worklight.farm.definition.location.

k. In Step 11 Map security roles to users or groups, select the worklightadmin
role and then select Map Special Subjects > All Authenticated in
Application's Realm.

l. After Step 15, click Finish and save the configuration.

Installing and configuring 6-107

m. Click the application name.
n. In Detail properties, click Class loading and update detection.
o. Select Class loaded with local class loader first (parent last).
p. Click OK.
q. Click the application name again.
r. In Module, click Manage Modules and then click the module link.
s. Select Class loaded with local class loader first (parent last).
t. Click OK, and then again OK.
u. Save the configuration.

5. Configure the MobileFirst runtime environments.
For a list of JNDI properties, see “List of JNDI properties for MobileFirst Server
administration” on page 6-92.
a. Log on to the WebSphere Application Server administration console and go

through the next steps for each deployed MobileFirst application.
b. Configure WebSphere Application Server manually. You must configure

variables, custom properties, and class loader policies. See Configuring
WebSphere Application Server manually.

c. On the navigation pane, select Applications > Application Types >
Websphere enterprise applications.

d. Click the application name.
e. In Web Module Properties, click Environment entries for Web Modules to

display the JNDI properties.
f. Enter WAS next to ibm.worklight.topology.platform.
g. Enter Farm next to ibm.worklight.topology.clustermode.
h. Enter SOAP or RMI next to ibm.worklight.admin.jmx.connector.
i. Enter the server identifier for this server next to

ibm.worklight.admin.serverid.
This identifier must be the same as the one that you declared in the
configuration file in the ServerId attribute of the <WasNode> element for this
instance of WebSphere Application Server.

j. Click OK and save the configuration.
k. Click the application name.
l. Click Startup behavior.
m. Set 100 in Startup order, or a higher value, to ensure that the MobileFirst

runtime environment starts after the MobileFirst Administration Services.
n. Click OK and save the configuration.

6. Exchange signer certificates between server truststore for each server of the
farm.
a. Log on to the WebSphere Application Server administration console.
b. On the navigation pane, select Security > SSL certificate and key

management.
c. In Related Items, click Key stores and certificates.
d. From the Keystore usages drop-down list, make sure that SSL keystores is

selected.
e. Import the certificates from all the other WebSphere Application Server

servers of the farm.
1) Click the NodeDefaultTrustStore.
2) In the Additional Properties section, click Signer certificates.

6-108 IBM MobileFirst Platform Foundation V6.3.0

3) Click Retrieve from port.
4) For each other server of the farm

a) Enter its host name or IP address in the Host field.
b) Enter its HTTPS transport (SSL) port in the Port field.
c) From the SSL configuration for outbound connection drop-down

list, select NodeDefaultSSLSettings.
d) Enter an alias for this signer certificate in the Alias field.
e) Click Retrieve signer information.
f) Review the information that is retrieved from the remote certificate

then click OK.
f. Click Save.
g. Restart the server.

Installing a Liberty server farm manually
To install a Liberty server farm step by step, you create the database, write the
configuration file, configure SSL security, configure the runtime database, and the
MobileFirst Operations Console and administration web applications, set JNDI
properties, and exchange signer certificates between truststores.

Before you begin

Configure the REST connector of all the Liberty servers of the farm, by following
the procedure at “Configuring WebSphere Application Server Liberty profile” on
page 6-50. This configuration defines the following parameters for each Liberty
server:
v The Liberty administrator and password, which are required to define the

configuration farm plug-in in step 2 on page 6-110, and the admin.jmx.user/
password JNDI properties in step 6 on page 6-111.

v The keystore, which is required to exchange public certificates in step 8 on page
6-112.

About this task

To configure a farm of Liberty servers, follow these steps:
1. Create the Administration Services database.
2. Write the configuration file for the farm plug-in.
3. Configure the runtime database.
4. Configure the MobileFirst Operations Console application.
5. Configure the Administration Services application.
6. Configure the JNDI properties.
7. Configure the MobileFirst runtime environments.
8. Exchange signer certificates between server truststores.
9. Replicate the LTPA keystores across farm members.

Procedure
1. Create the Administration Services database.

Note: MobileFirst databases are shared among the application servers of a
farm, which has two consequences:
v You create this database only once, whatever the number of servers.

Installing and configuring 6-109

v You cannot use the Derby database in such a topology because this database
allows only a single connection at a time.

For more information for each database, see the following documentation.
v “Setting up your DB2 database manually for the MobileFirst Server

administration” on page 6-64
v “Setting up your Oracle database manually for the MobileFirst Server

administration” on page 6-75
v “Setting up your MySQL database manually for the MobileFirst Server

administration” on page 6-72
2. Write the configuration file for the farm plug-in.

a. Write an XML file.
Give it a meaningful name, for example LibertyFarm.xml.
<?xml version="1.0" encoding="UTF-8"?>
<Farm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="FarmSchema.xsd">
<LibertyNode ServerID="server id" AdminPass="user password" AdminUser="user name" Hostname="host name address" JMXPortNumber="port number"/>
.....

</Farm>

Where:
v server id is the unique identifier of the server
v user password is the password of the Liberty administrator that you must

create to enable the Liberty REST Connector. For more information, see
“Configuring WebSphere Application Server Liberty profile” on page
6-50.

v user name is the user name of the Liberty administrator that you must
create to enable the Liberty REST Connector. For more information, see
“Configuring WebSphere Application Server Liberty profile” on page
6-50.

v host name address is the host name of the Liberty server
v port number is the HTTPS port number of the Liberty server

Tip: The port number must be different for each server that is hosted on
the same computer.

Create one <LibertyNode> element per server in the farm. For example:
<?xml version="1.0" encoding="UTF-8"?>
<Farm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="FarmSchema.xsd">
<LibertyNode ServerID="S1" AdminPass="demo" AdminUser="demo" Hostname="MyHostName" JMXPortNumber="9443"/>
<LibertyNode ServerID="S2" AdminPass="demo" AdminUser="demo" Hostname="MyHostName" JMXPortNumber="9444"/>

</Farm>

The complete syntax of the elements and attributes of this XML file and the
underlying XML schema is documented in “Defining a server farm for
MobileFirst Server administration” on page 6-86.

b. Copy the configuration file to each computer where Liberty is installed or
on a shared file system that all the servers of the farm can access.

3. Configure the runtime database.
You create this database only once, whatever the number of servers. For more
information for each database, see the following documentation.
v “Setting up your DB2 databases manually” on page 11-18
v “Setting up your Oracle databases manually” on page 11-32
v “Setting up your MySQL databases manually” on page 11-28

4. Configure the MobileFirst Operations Console application.

6-110 IBM MobileFirst Platform Foundation V6.3.0

a. Make a backup of the Liberty_install_dir/servers/server_name/
server.xml file.

b. Add the following lines in the server.xml file.
<application id="worklightconsole" name="worklightconsole" location="worklightconsole.war" type="war">

<application-bnd>
<security-role name="worklightadmin">

<user name="demo"/>
</security-role>

</application-bnd>
</application>

c. Copy the MobileFirst Operations Console WAR file product_install_dir/
WorklightServer/worklightconsole.war in the "apps" server directory of
each Liberty farm server.

Note: The "apps" directory is in the same directory as the server.xml file.
5. Configure the Administration Services application.

a. Make a backup of the Liberty_install_dir/servers/server_name/
server.xml file.

b. Add the following lines in the server.xml file.
<jndiEntry jndiName="worklightconsole/ibm.worklight.admin.endpoint" value=’"*://*:*/worklightadmin"’/>
<application id="worklightadmin" name="worklightadmin" location="worklightadmin.war" type="war">

<application-bnd>
<security-role name="worklightadmin">

<user name="demo"/>
</security-role>

</application-bnd>
<classloader delegation="parentLast">

<privateLibrary>
<fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_*.jar"/>

</privateLibrary>
</classloader>

</application>

c. Copy the Administration Services WAR file product_install_dir/
WorklightServer/worklightadmin.war in the "apps" server directory of each
Liberty farm server.

Note: The "apps" directory is in the same directory as the server.xml file.
d. Configure the data sources as described in the following documentation.
v DB2: “Configuring Liberty profile for DB2 manually for MobileFirst

Server administration” on page 6-65
v Oracle: “Configuring Liberty profile for Oracle manually for MobileFirst

Server administration” on page 6-76
v MySQL: “Configuring Liberty profile for MySQL manually for

MobileFirst Server administration” on page 6-72
6. Configure the JNDI properties

For a list of JNDI properties, see “List of JNDI properties for MobileFirst Server
administration” on page 6-92.
a. Make a backup of the Liberty_install_dir/servers/server_name/

server.xml file.
b. Add the following lines in the server.xml file.

<jndiEntry jndiName="ibm.worklight.topology.platform" value="Liberty"/>
<jndiEntry jndiName="ibm.worklight.topology.clustermode" value="Farm"/>
<jndiEntry jndiName="ibm.worklight.farm.type" value="File"/>
<jndiEntry jndiName="ibm.worklight.farm.definition.location" value="<plugin xml file location>"/>
<jndiEntry jndiName="ibm.worklight.admin.serverid" value="<server id>"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.host" value="<hostname>"/>

Installing and configuring 6-111

<jndiEntry jndiName="ibm.worklight.admin.jmx.port" value="<server HTTPS port number>"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.user" value="demo" />
<jndiEntry jndiName="ibm.worklight.admin.jmx.pwd" value="demo"/>

Where
v <plugin xml file location> is the location of the configuration file that

you wrote in step 2 on page 6-110.
v <hostname> is the host name of this server. This value must match the

Hostname attribute of the <LibertyNode> element that corresponds to this
server in the configuration file.

v <server id> must have the same value as the ServerId attribute for this
server in the <LibertyNode> element of the configuration file.

v <server HTTPS port number> is the value of the httpsPort attribute in the
<httpEndpoint> entry for this server.

Note:

v The ibm.worklight.admin.jmx.user JNDI property must have the same
value as the AdminUser attribute in the <LibertyNode> element of the
configuration file.

v The ibm.worklight.admin.jmx.pwd JNDI property must have the same
value as the AdminPass attribute in the <LibertyNode> element of the
configuration file.

c. Configure the data sources as described in the following documentation.
v DB2: “Configuring Liberty profile for DB2 manually for MobileFirst

Server administration” on page 6-65
v Oracle: “Configuring Liberty profile for Oracle manually for MobileFirst

Server administration” on page 6-76
v MySQL: “Configuring Liberty profile for MySQL manually for

MobileFirst Server administration” on page 6-72
7. Configure the MobileFirst runtime environments.

a. Follow the instructions in “Configuring the Liberty profile manually” on
page 11-38.

b. Make a backup copy of the Liberty_install_dir/servers/server_name/
server.xml file.

c. Edit the Liberty_install_dir/servers/server_name/server.xml file.
d. Add the following lines in the server.xml file.

<jndiEntry jndiName="runtime name/publicWorkLightProtocol" value=’"http"’/>
<jndiEntry jndiName="runtime name/publicWorkLightPort" value=’"http port"’/>

The http port placeholder represents the port value of the httpPort
attribute in the <httpEndpoint> element.

8. Exchange signer certificates between server truststores.
You can configure the truststore by using such IBM utilities as KeyTool or
iKeyman.
a. Import the public certificates of the other servers in the farm into the

truststore referenced by the server.xml configuration file of the server. If
the server.xml file does not specify the location of a truststore, it is usually
the ⌂Liberty_install_dir/usr/servers/servername/resources/security/
key.jks file. If you are unsure and want to find the location of the
truststore, you can do so by adding ⌂the following declaration to the
server.xml file:
<logging traceSpecification="SSL=all:SSLChannel=all"/>

6-112 IBM MobileFirst Platform Foundation V6.3.0

Then, start the server and look for lines containing
⌂com.ibm.ssl.trustStore in the ⌂Liberty_install_dir/usr/servers/
servername/logs/trace.log file.

b. Restart each instance of WebSphere Application Server so that this security
configuration takes effect.

For more information about KeyTool, see the KeyTool page of the IBM SDK
documentation
For more information about iKeyman, see the iKeyman page of the IBM SDK
documentation.

9. Replicate the LTPA keystores across farm members.

Note: This step is required for Single Sign On (SSO) to work.
a. Start one of the farm member.

In case of a default LTPA configuration, the Liberty server generates a LTPA
keystore Liberty_install_dir/servers/server_name/resources/security/
ltpa.keys after it has successfully started.
For more information about how to customize your LTPA configuration, see
Configuring LTPA on the Liberty profile.

b. Copy this ltpa.keys file in the directory Liberty_install_dir/servers/
server_name/resources/security of each farm member.

What to do next

Set up an IBM HTTP Server for Liberty. For more information, see “Setting up an
IBM HTTP Server in an IBM WebSphere Application Server Liberty profile farm”
on page 6-268.

Installing a Tomcat server farm manually
To install a Tomcat server farm step by step, you create the database, write the
configuration file, configure JMX, configure the runtime database, and the
MobileFirst Operations Console and administration web applications, and declare
users and roles.

About this task

To configure a farm of Tomcat servers, follow these steps:
1. Create the MobileFirst Administration Services database.
2. Write the configuration file for the farm plug-in.
3. Configure Java Management Extensions (JMX).
4. Configure the MobileFirst runtime database.
5. Install the MobileFirst Administration Services application.
6. Install the MobileFirst Operations Console application.
7. Configure the MobileFirst runtime environments.
8. Declare the users and roles to manage the applications in the MobileFirst

Operations Console.

Procedure
1. Create the MobileFirst Administration Services database.

Note: MobileFirst databases are shared among the application servers of a
farm, which has two consequences:
v You create this database only once, whatever the number of servers.

Installing and configuring 6-113

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/keytoolDocs/keytool_overview.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/ikeyman_tool.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/ikeyman_tool.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ltpa.html

v You cannot use the Derby database in such a topology because this database
allows only a single connection at a time.

For more information for each database, see the following documentation.
v “Setting up your DB2 database manually for the MobileFirst Server

administration” on page 6-64
v “Setting up your Oracle database manually for the MobileFirst Server

administration” on page 6-75
v “Setting up your MySQL database manually for the MobileFirst Server

administration” on page 6-72
2. Write the configuration file for the farm plug-in.

a. Create an XML file.
Give it a meaningful name, for example TomcatFarm.xml.
<?xml version="1.0" encoding="UTF-8"?>
<Farm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="FarmSchema.xsd">
<TomcatNode ServerID="server id" Hostname="host name address" JMXPortNumber="port number"/>
.....

</Farm>

Where:
v server id is the unique identifier of the server
v host name address is the host name of the Tomcat server
v port number is the RMI port number of the Tomcat server

Tip: The port number must be different for each server that is hosted on
the same computer.

There must be one <TomcatNode> element per server in the farm. For
example:
<?xml version="1.0" encoding="UTF-8"?>
<Farm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="FarmSchema.xsd">
<TomcatNode ServerID="ServerOne" Hostname="MyHostName" JMXPortNumber="8686"/>
<TomcatNode ServerID="ServerTwo" Hostname="MyHostName" JMXPortNumber="8687"/>

</Farm>

The complete syntax of the elements and attributes of this XML file and the
underlying XML schema is documented in “Defining a server farm for
MobileFirst Server administration” on page 6-86.

b. Copy the configuration file to each computer where Tomcat is installed or
on a shared file system that all the servers of the farm can access.

3. Configure Java Management Extensions (JMX).
You configure JMX for each Tomcat server.
a. Make sure that the CATALINA_OPTS environment variable sets all these Java

properties: First check that the number thaT you set forRMI_port number is
not already used on your system.
-Djava.rmi.server.hostname=localhost
-Dcom.sun.management.jmxremote.port=RMI_port number
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

b. Optional: If you want to be able to inspect the MBeans through the jconsole
tool of your Java SDK, add the -Dcom.sun.management.jmxremote property.
Add a setenv file in the Tomcat bin/ directory.
v For UNIX environments: setenv.sh

=========================== setenv.sh ===========================
Allow to inspect the MBeans through jconsole
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote"

6-114 IBM MobileFirst Platform Foundation V6.3.0

Configure JMX.
CATALINA_OPTS="$CATALINA_OPTS -Djava.rmi.server.hostname=localhost"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.port=RMI_port number"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.authenticate=false"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.ssl=false"

v For Windows environments: setenv.bat
REM =========================== setenv.bat ===========================
REM Allow to inspect the MBeans through jconsole
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote
REM Configure JMX.
set CATALINA_OPTS=%CATALINA_OPTS% -Djava.rmi.server.hostname=localhost
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.port=RMI_port number
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.authenticate=false
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.ssl=false

4. Configure the MobileFirst runtime database.
You create this database only once, whatever the number of servers. For more
information for each database, see the following documentation.
v “Setting up your DB2 databases manually” on page 11-18
v “Setting up your Oracle databases manually” on page 11-32
v “Setting up your MySQL databases manually” on page 11-28

5. Configure the MobileFirst Administration Services application.
a. Remove the Tomcat_install_dir/webapps/worklightadmin directory.
b. Copy the MobileFirst Administration Services file worklightadmin.war from

product_install_dir/WorklightServer to Tomcat_install_dir/webapps/.
c. Make a backup copy of the Tomcat_install_dir/conf/server.xml file.
d. Edit the Tomcat_install_dir/conf/server.xml file.
e. Add the following lines in the <Host> element:

<Context docBase="worklightadmin" path="/worklightadmin">
<Resource ... />
<Environment name="ibm.worklight.topology.platform" value="Tomcat" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.topology.clustermode" value="Farm" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.admin.serverid" value="<server ID>"

type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.farm.type" value="File" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.farm.definition.location" value="farm_plugin_xml_file_location>"

type="java.lang.String" override="false"/>
</Context>

Where
v The attributes of the <Resource> element depend on the database. You

can use the following examples in this documentation:
– For DB2 databases, see “Configuring Apache Tomcat for DB2 manually

for MobileFirst Server administration” on page 6-67.
– For Oracle databases, see “Configuring Apache Tomcat for Oracle

manually for MobileFirst Server administration” on page 6-79.
– For MySQL databases, see “Configuring Apache Tomcat for MySQL

manually for MobileFirst Server administration” on page 6-75.
v farm_plugin_xml_file_location> is the absolute path to the configuration

file that you wrote in step Write the configuration file for the farm
plug-in..

v server ID is a unique identifier for this server. This identifier must match
the ServerID attribute of the <TomcatNode> element that you declared in
the configuration file for this server.

Installing and configuring 6-115

Attention: The name of the web application WAR file
(worklightadmin.war) must match the context root (/worklightadmin),
otherwise ill effects might occur.

6. Configure the MobileFirst Operations Console application.
a. Remove the Tomcat_install_dir/webapps/worklightconsole directory.
b. Copy the worklightconsole.war file to Tomcat_install_dir/webapps/.
c. Make a backup copy of the Tomcat_install_dir/conf/server.xml file.
d. Edit the Tomcat_install_dir/conf/server.xml file.
e. Add the following lines into the <Host> element:

<Context docBase="worklightconsole" path="/worklightconsole">
<Environment name="ibm.worklight.admin.endpoint" value="*://*:*/worklightadmin"

type="java.lang.String" override="false"/>
</Context>

Attention: The name of the web application WAR file
(worklightadmin.war) must match the context root (/worklightadmin),
otherwise ill effects might occur.

7. Configure the MobileFirst runtime environments.
a. Make a backup copy of the Tomcat_install_dir/conf/server.xml file.
b. Edit the Tomcat_install_dir/conf/server.xml file.
c. Add the following lines in the <Host> element:

<Context docBase="<runtime>" path="/<runtime>">
<Loader className="org.apache.catalina.loader.VirtualWebappLoader" virtualClasspath="${catalina.base}/Worklight/<runtime>/worklight-jee-library.jar" searchVirtualFirst="true"/>
<Environment name="ibm.worklight.topology.platform" value="Tomcat" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.topology.clustermode" value="farm" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.admin.serverid" value="server_id" type="java.lang.String" override="false"/>
<Resource ... name="jdbc/WorklightDS" ... />
<Resource ... name="jdbc/WorklightReportsDS" ... />

Where
v The attributes of the <Resource> element depend on the database. You

can use the examples that are provided in the following documentation.
– For DB2 databases, see “Configuring Apache Tomcat for DB2

manually” on page 11-22.
– For Oracle databases, see “Configuring Apache Tomcat for Oracle

manually” on page 11-36.
– For MySQL databases, see “Configuring Apache Tomcat for MySQL

manually” on page 11-31.
v <runtime> is the name of your runtime environment, that is, the name of

the MobileFirst WAR file without its extension.
v <server ID> is a unique identifier for this server. This identifier must

match the ServerID attribute of the <TomcatNode> element as declared in
the configuration file for this server.

8. Declare the users and roles to manage the applications in the MobileFirst
Operations Console .
a. Make a backup copy of the Tomcat_install_dir>/conf/tomcat-users.xml

file.
b. Edit the Tomcat_install_dir/conf/tomcat-users.xml file.
c. Add the following roles and users in the <tomcat-users> element.

<!-- Define roles and users for the IBM MobileFirst Admin webapps. -->
<role name="worklightadmin"/>
<role name="worklightdeployer"/>

6-116 IBM MobileFirst Platform Foundation V6.3.0

<role name="worklightmonitor"/>
<role name="worklightoperator"/>
<user name="admin" password="admin" roles="worklightadmin"/>
<user name="demo" password="demo" roles="worklightadmin"/>
<user name="deployer" password="deployer" roles="worklightdeployer"/>
<user name="monitor" password="monitor" roles="worklightmonitor"/>
<user name="operator" password="operator" roles="worklightoperator"/>

Verifying a farm configuration
To verify a server farm configuration, start all the servers, deploy an application to
one of the servers of the farm, and then check the log files of each server to
confirm that all servers have been updated.

About this task

The purpose of this task is to verify that a farm is configured properly and that
administration operations are propagated on all servers of a farm.

Procedure
1. Start all the servers of the farm.
2. Deploy a MobileFirst application to one of the servers of the farm. You can use

the MobileFirst Operations Console or the wladm program with the deploy app
command. For more information about the deploy app command, see
“Commands for apps” on page 12-44.

3. Once the operation is completed, review the log file of the application server
and search for the entries of class BaseTransaction. Verify that all servers have
been updated.
This is the example of a Liberty log file:
$ grep BaseTransaction messages.log

[9/22/14 1:03:17:032 CEST] 0000006d com.ibm.worklight.admin.actions.BaseTransaction I Result: worklight: farm2///169.254.19.0: Preparation to deploy ’Hello’ finished
[9/22/14 1:03:17:251 CEST] 0000006e com.ibm.worklight.admin.actions.BaseTransaction I Result: worklight: farm1///169.254.19.0: Preparation to deploy ’Hello’ finished
[9/22/14 1:03:19:123 CEST] 00000072 com.ibm.worklight.admin.actions.BaseTransaction I Result: worklight: farm1///169.254.19.0: Commit
[9/22/14 1:03:19:123 CEST] 00000072 com.ibm.worklight.admin.actions.BaseTransaction I worklight: farm1///169.254.19.0: 2014-09-20T23:03:18.608Z: Application ’Hello’ was updated
[9/22/14 1:03:19:138 CEST] 00000071 com.ibm.worklight.admin.actions.BaseTransaction I Result: worklight: farm2///169.254.19.0: Commit
[9/22/14 1:03:19:138 CEST] 00000071 com.ibm.worklight.admin.actions.BaseTransaction I worklight: farm2///169.254.19.0: 2014-09-20T23:03:18.608Z: Application ’Hello’ was updated

Troubleshooting

v If you use an environment ID (see “List of JNDI properties for
MobileFirst Server administration” on page 6-92 and “Configuring a
MobileFirst project in production by using JNDI environment
entries” on page 11-56), for each server, verify that the environmentId
value for the MobileFirst Administration Service is the same as the
environmentId value for the runtime.

v If you have several servers on the same computer, you must verify
that all servers are using a different JMX port:
– For WebSphere Application Server, the port that is used for JMX is

the SOAP port.
– For WebSphere Application Server Liberty, the port that is used

for JMX is the HTTPS port.
– For Apache Tomcat, the port that is used for JMX is the RMI port,

which is specified in the Ant tasks or in the setenv file for a
manual installation.

If the JMX port is not available for a server, the MobileFirst runtime
environment cannot start.

Installing and configuring 6-117

Configuring MobileFirst Server
Consider your backup and recovery policy, optimize your MobileFirst Server
configuration, and apply access restrictions and security options.

Backup and recovery
You can back up the customization and the content (adapters and applications)
outside the MobileFirst instance, for example in a source control system.

It is advisable to back up the runtime database as-is. When reports are enabled, the
database can become quite large. Consider the benefits of backing them up
separately. Report tables can be configured to be stored on a different database
instance.

Optimization and tuning of MobileFirst Server
Optimize the MobileFirst Server configuration by tuning the allocation of Java
virtual machine (JVM) memory, HTTP connections, back-end connections, and
internal settings.

The MobileFirst Server works with three application servers: Apache Tomcat,
WebSphere Application Server and Liberty profile. For best results, install
MobileFirst Server on a 64-bit operating system, and use only 64-bit software.

JDK

The MobileFirst Server can run on IBM JDK or Oracle JDK.

JVM memory allocation

The Java instance of the application server allocates memory. Consider the
following general guidelines for JVM memory allocations:
v Set the JVM memory to at least 2 GB. This means you can not use less than 2GB,

but that might not be enough and you will have to specify more, based on the
requirements.

v For a production environment, setting the minimum heap size and maximum
heap size to the same value can provide the best performance, as it avoids heap
expansion and contraction.

v Set the required memory size of the application server:
– Liberty: See the jvm.options section in Customizing the Liberty profile

environment. You must create this file if it does not exist.
– WebSphere Application Server: proceed as follows.

1. Log in to the administration console.
2. Go to Servers > Server types > WebSphere application servers.
3. Select each server and set Java memory settings under Java Process

definition > JVM arguments.
– Apache Tomcat: find the catalina script and set JAVA_OPTS to inject memory.

For information about how to calculate memory size, see the Scalability and
Hardware Sizing document and the hardware calculator spreadsheet at
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-
sizing-6-3.

6-118 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_customvars.html
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_customvars.html
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3

Tuning HTTP connections

This configuration defines threading and execution settings for the application
server.

Each incoming request requires a thread for the duration of that request. If more
simultaneous requests are received than can be handled by the currently available
request processing threads, then additional threads will be created up to the
configured maximum.

Specific application server configuration:
v Liberty: See the executor section in Liberty profile: Configuration elements in

the server.xml file.
By default, the maximum number of threads is unlimited.

v WebSphere Application Server: Proceed as follows:
1. Log in to the administration console.
2. Go to Servers > Server types > WebSphere application servers >

server_name > Web container.
By default, the maximum number of threads is 50.

v Apache Tomcat: See The HTTP Connector page in the Apache Tomcat website.
By default, the maximum number of threads is 200.

Bear in mind the following points when you configure HTTP threads:
v If, for example, the longest call takes 500 milliseconds and you configure a

maximum of 50 threads, you can handle approximately 100 requests per second.
v If your environment includes a back-end system that runs slowly, increase the

number of default threads. In addition, increase the number of back-end
connection threads. For more information, see “Tuning database connections.”

v If you expect a high number of concurrent users, increase the number of default
threads.

v Liberty specific: Even though the maximum number of threads is unlimited, the
executor service makes informed choices whether adding another thread will
actually be useful.

Tuning database connections

In tuning database connections, the most important parameter is the number of
connection threads from the server to the database. This configuration is made in
the data source. There are two IBM MobileFirst Platform Foundation features that
rely heavily on the database: SSO (single sign-on) and reports. When using these
features, you must ensure that you have enough database connection threads. The
only limitation is that each node in the MobileFirst Server cluster can have no
more than MAX_DB_INCOMING_CONNECTIONS/NUM_OF_CLUSTER_NODES connection
threads, where MAX_DB_INCOMING_CONNECTIONS is the maximum incoming
connections defined in the database server and NUM_OF_CLUSTER_NODES is the
number of MobileFirst Server nodes in the cluster. A rough rule of thumb is to set
the number of database connections to be the number of HTTP threads in the
application server, as long as you maintain the limitation above.

Each incoming request uses a thread. If more simultaneous requests are received
than can be handled by the currently available request-processing threads, more
threads are created up to the configured maximum.

Installing and configuring 6-119

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
http://tomcat.apache.org/tomcat-7.0-doc/config/http.html

For data source configuration, check the following:
v WebSphere Application Server: See Connection pool settings.
v Apache Tomcat: See JNDI Datasource HOW-TO.
v Liberty Server: See the Datasource section in Liberty profile: Configuration

elements in the server.xml file.

Tuning back-end connections

maxConcurrentConnectionsPerNode

The maxConcurrentConnectionsPerNode parameter defines the maximum
number of concurrent calls to the back-end service from the MobileFirst
Server node. This maxConcurrentConnectionsPerNode parameter is set in the
<connectionPolicy> element of the adapter XML file.

Starting from IBM MobileFirst Platform Foundation V6.3, all requests to
the back-end remain on the HTTP thread. The MobileFirst Server does
NOT allocate a new thread for the backend request. The only use of
maxConcurrentConnectionsPerNode is for blocking the number of
connections to the HTTP back-end. The implication is that you can specify
a large value for maxConcurrentConnectionsPerNode (for example, 5000), so
as not to limit the back-end calls.

Handling slow backend servers

If your backend server is slow, increase the values for your server settings,
in particular the following:
v Number of HTTP threads in the application server: For a backend that

responds in 750 ms, for example, 3000 HTTP threads is recommended.
v maxConcurrentConnectionsPerNode in the adapter XML file: For a

backend that responds in 750 ms, for example, 3000 is recommended.
v OS settings: Increase the number of open files. 4096 is the recommended

number.
v Clients threads: A good rule of thumb is 2900 JMETER clients threads.
v Backend server: 3000 threads is recommended.

Push Notifications

For push notification information see the Push Notification section in the
Scalability and Hardware Sizing document and the hardware calculator
spreadsheet at https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-
and-hardware-sizing-6-3.

Analytics

For Analytics Server configuration see the Analytics section in the Scalability and
Hardware Sizing document and the hardware calculator spreadsheet at
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-
sizing-6-3.

MobileFirst Server internal configuration

Consider the following factors:
v The serverSessionTimeout property defines client inactivity timeout, after which

the session is invalidated. A session is an object stored in the server memory for
each connecting device. Among other data, it stores authentication information.

6-120 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSAW57_7.0.0/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/udat_conpoolset.html
http://tomcat.apache.org/tomcat-7.0-doc/jndi-datasource-examples-howto.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3

Active sessions are determined by the number of sessions opened versus the
sessions timing out due to lack of activity. The default session timeout is 10
minutes, but it can and should be configured. Users typically set the timeout to
anywhere from 5 to 10 minutes. This parameter affects the server memory
consumption.

v In addition, the mobile client has a “heartbeat” property that allows the mobile
client to ping the server while the app is in the foreground, so that the server
session will not time out.

Note:
When a mobile app has moved into the background, it no longer interacts with
the server, nor sends a “heartbeat”. The result is that the server session drops
after the specified server session timeout.

v For example, suppose every minute 1,000 users start a session against the server.
Even if they exit the application after 3 minutes, their sessions will remain active
on the server for 10 minutes, leaving 10 x 1,000 = 10,000 sessions.

Intervals for background tasks

The following worklight.properties parameters control the intervals at which
background tasks. Background tasks perform several actions on the database
and/or file system:

sso.cleanup.taskFrequencyInSeconds
The SSO (single sign-on) mechanism stores session data in a database table.
This parameter is the interval for the SSO cleanup task to check if there are
inactive accounts in the SSO table. If any are found, it deletes them. The
default value is 5 seconds, meaning that every 5 seconds, the database is
checked for inactive accounts. An inactive account is one that has remained
idle for longer than the value of the serverSessionTimeout property.

push.cleanup.taskFrequencyInSeconds
Deletes inactive push notification subscriptions. The default is 60 minutes.
This parameter is currently implemented only for Apple APNS.

Optimization of MobileFirst Server project databases
You can improve the performance of the project databases or schemas that support
MobileFirst Server.

The following sections provide general information about database tuning, and
techniques you can use to optimize your database performance for IBM
MobileFirst Platform Foundation. In the following sections, the examples that are
provided are for the IBM DB2 database. If you use MySQL or Oracle, consult that
vendor's documentation for the corresponding procedures.

Database disks

You can find some overview information about the MobileFirst Server project
databases in the Database usage and size section of the Scalability and Hardware
Sizing document and its accompanying hardware calculator spreadsheet at
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-
sizing-6-3. The spreadsheet can aid you in computing the hardware configuration
that is best suited to your planned server environment.

When you compute your hardware needs, consider servers that offer multiple
disks because performance increases significantly if you use disks correctly when

Installing and configuring 6-121

https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3

you set up your MobileFirst Server project databases. For example, whether you
use DB2, MySQL, or Oracle, you can almost always speed up database
performance by configuring the database to use separate disks to store database
logs, index, and data. Multidisk configuration results in faster access to your data
with every transaction because there is no contention resulting from the same disk
attempting to write to its log files or access its index at the same time it processes
the data transaction.

Database compression

By using the compression feature set by your database vendor, you can decrease
database size and input/output (I/O) time.

For example, in tests that were performed on IBM DB2, adding COMPRESS YES to
the SQL that creates the APP_ACTIVITY_REPORT table decreased the size of that table
on the disk by a factor of 3 and decreased its I/O time by a factor of 2.

CPU time might increase as a result of this compression, but it was not observed in
the tests on the APP_ACTIVITY_REPORT table, possibly because most of the activity
was INSERTs and the aggregation task was not monitored deeply.

On DB2, LOB data size

If your database is DB2, consider using the INLINE_LENGTH option when you create
tables for SSO information. This option is also appropriate for tables that contain
data that is stored as large objects (LOBs), but that are only a few kilobytes in size.
To improve performance of LOB data access, you can constrain the LOB size by
placing the LOB data within the formatted rows on data pages rather than in the
LOB storage object. For more information about this technique, see Inline LOBs
improve performance.

Database table partitions

A partition is a division of a logical database table into distinct independent parts.
You can improve performance and the purging accumulated data by mapping each
table partition to a different table space. This suggestion applies only to the
APP_ACTIVITY_REPORT table, which holds most of the row data.

Note: Partitioned tables are different from a partitioned database (DPF)
environment, which is not suggested for use with IBM MobileFirst Platform
Foundation.

To show how to use database partitions can be used, here is an example from DB2:
v A partition is defined on the ACTIVITY_TIMESTAMP column in the

APP_ACTIVITY_REPORT table.
v Each partition contains the data for one day.
v The number of partitions is the number of days of data that you want to save.
v Each partition is created in a different table space.
v Thus in the SQL example that follows, you create seven partitions in DB2:
CREATE TABLESPACE app_act_rep_1;
CREATE TABLESPACE app_act_rep_2;
CREATE TABLESPACE app_act_rep_3;
CREATE TABLESPACE app_act_rep_4;
CREATE TABLESPACE app_act_rep_5;
CREATE TABLESPACE app_act_rep_6;
CREATE TABLESPACE app_act_rep_7;

6-122 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.perf.doc/doc/c0053761.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.perf.doc/doc/c0053761.html

CREATE TABLE "APP_ACTIVITY_REPORT" (
"ID" BIGINT NOT NULL ,
"ACTIVITY" CLOB(1048576) LOGGED NOT COMPACT ,
"ACTIVITY_TIMESTAMP" TIMESTAMP ,
"ADAPTER" VARCHAR(254) ,
"DEVICE_ID" VARCHAR(254) ,
"DEVICE_MODEL" VARCHAR(254) ,
"DEVICE_OS" VARCHAR(254) ,
"ENVIRONMENT" VARCHAR(254) ,
"GADGET_NAME" VARCHAR(254) ,
"GADGET_VERSION" VARCHAR(254) ,
"IP_ADDRESS" VARCHAR(254) ,
"PROC" VARCHAR(254) ,
"SESSION_ID" VARCHAR(254) ,
"SOURCE" VARCHAR(254) ,
"USER_AGENT" VARCHAR(254))

IN app_act_rep_1, app_act_rep_2, app_act_rep_3, app_act_rep_4,
app_act_rep_5, app_act_rep_6, app_act_rep_7

PARTITION BY RANGE (ACTIVITY_TIMESTAMP)
(STARTING FROM (’2013-02-25-00.00.00.000000’)
ENDING AT (’2013-03-04-00.00.00.000000’) EXCLUSIVE
EVERY (1 DAY)
);

Database purge

After high-volume data is allocated to separate table spaces, the task of
periodically purging the data is simplified. This suggestion is also primarily
relevant only to the APP_ACTIVITY_REPORT table that holds most of the row data.
The process in this DB2 example is as follows:
v Aggregate data either with a MobileFirst process or with a client external

process.
v When the data is no longer needed (the aggregation task should successfully

process the data), it can be deleted.
v The most effective way to delete the data is to delete the partition. In DB2, you

purge the data purge by detaching the partition to a temp table, then truncating
that temp table and attaching a new day to the partition. You can implement the
process as a scheduled stored procedure in the database, as in the following
example:

ALTER TABLE "APP_ACTIVITY_REPORT"
DETACH PARTITION part0
INTO temptable;

TRUNCATE TABLE temptable;

ALTER TABLE "APP_ACTIVITY_REPORT"
ATTACH PARTITION part0
STARTING FROM (’2013-02-25-00.00.00.000000’)
ENDING AT (’2013-03-26-00.00.00.000000’) EXCLUSIVE
FROM temptable;

Testing MobileFirst Server performance
You can run performance tests on the different features of the MobileFirst Server.
This section describes how to run the Apache jMeter performance test tool, but the
procedure is similar for other tools.

The following features can have an impact on MobileFirst Server performance:
v Authentication flow
v Back-end invocation

Installing and configuring 6-123

v Database reporting
v Single sign-on (SSO)
v Direct update
v Push notification
v Geolocation

This section focuses on testing the impact of authentication flow and back-end
invocation on MobileFirst Server performance.

Testing authentication flow performance

The following realms, which are part of the default security test for Android, iOS,
and Windows Phone 8, are tested:

Remote disable realm
Check on every request that the application is not blocked.

AntiXSRF realm
Check on every request that WL-Instance-Id is equal to the one sent in the
init response.

Anonymous User realm
Generate a random user ID that is used for such things as reports and
identifying the user.

Device no provisioning
Check that the token value inside the authorization header is equal to the
one sent in the initialization response.

For more information about the realms, see “The authentication configuration file”
on page 8-497.

When you run a performance test, your first step is to complete the authentication
flow. If you do not do so, security challenges are raised and your requests are
rejected with “401” errors. This step involves sending an init request to the
MobileFirst Server and extracting the relevant data from the response. The init
request has the following structure: http://{Host}:{Port}/{Context}/apps/
services/api/{AppName}/{environment}/init

Table 6-25. Initialization parameters

Parameter Description

x-wl-app-version Application version.

x-wl-platform-version Version of the product that built the
application.

This is an example of a jMeter test:

6-124 IBM MobileFirst Platform Foundation V6.3.0

The dynamic parameters in the Form Data (skinLoaderChecksum, isAjaxRequest,
and x) are appended to the URL. During performance testing, the skin and
skinLoaderChecksum parameters are not needed because jMeter does not really run
the app: jMeter only simulates the client app. The parameter x aims to prevent
response data from being returned from cache. As a result, you do not need to
append the parameters during performance testing or you can generate a random
value for the dynamic parameter x. A better option is always to clean cookies in
your performance testing tool before you start loading test threads.

Response data from MobileFirst initialization service

The response data from the MobileFirst init request differs depending on the
security test you apply on your MobileFirst application environment. By default, if
you have no additional security test, the response data structure for the common
and iPhone environment are shown in the following figures. (The data structure
for the Android and Windows Phone 8 environment is the same as that for the
iPhone environment.)

Figure 6-5. Response data from common environment

Figure 6-6. Response data from iPhone environment

Installing and configuring 6-125

The difference between the common and iphone environment data structures is
that the common environment has no wl_deviceNoProvisioningRealm challenge by
default.

Extracting the init response data

You need to extract the WL-Instance-Id and the token from the init response and
send them as headers in all requests to the MobileFirst Server. If you do not do so,
the authentication check fails and the request is rejected. Challenge data is different
for each session, so you need to extract and store the challenge data for each
thread. For more information, see “Testing back-end invocation” later in this
section.

Changing the response status to HTTP 200

When the performance testing thread runs the initialization for the first time,
MobileFirst Server responds to challenge data with an HTTP 401 status. This is to
be expected, so the performance tool should treat this HTTP status as a success.
The HTTP status can be changed to HTTP 200 by using the performance testing
tool’s script. In this way, the performance testing tool will record the request as a
success, otherwise the performance testing report might mark this request as
having failed and might record it as an error. This would greatly impact the
performance testing report.

Testing back-end invocation

You should start testing back-end invocation only after you have finished testing
authentication flow. You can choose any type of back end that you want. The
request for the back-end invocation has the following structure:
http://{Host}:{Port}/{Context}/apps/services/api/{AppName}/{environment}/
query.

Table 6-26. Backend invocation parameters

Parameter Description

adapter MobileFirst Adapter name.

procedure MobileFirst procedure name

parameters Procedure parameters should be an array.

The following figure shows an example array of parameters:

The following figure shows an example of request headers:

6-126 IBM MobileFirst Platform Foundation V6.3.0

By default, the jMeter tool encodes the URL. If your performance testing tool does
not support URL encoding, you must use encoded parameter values.

For the Android, iPhone, and Windows Phone 8 environments, since they contain
wl_deviceNoProvisioningRealm by default, you need to send the Authorization
header. . The format for HTTP Authorization header is shown as follows. You need
to replace ${device-token} with the token you extracted in the initialization phase.
{"wl_deviceNoProvisioningRealm":{"device":{"id":"1234567890","os":"5.0","model":"testModel","environment":"iphone"},"app":{"id":"testId","version":"1.0"},"token":"${device-token}","custom":{}}}
When the response data "isSuccessful" is true, this indicates that the response
data from the MobileFirst Adapter procedure was successfully received and now
you can continue with your back-end testing.

Logging in

When the MobileFirst adapter procedure is protected by a security test or the
connectAs property is set to endUser, you need to log in to the MobileFirst Server
before calling this procedure. To check if the MobileFirst adapter procedure needs a
login, you can call the procedure followed by the steps described earlier, and check
the response data from the MobileFirst Server. If the response data includes
isSuccessful:true and authStatus:required, you should log in to the MobileFirst
Server first, otherwise the requests to this procedure are rejected by MobileFirst
Server. The way you log in to the MobileFirst Server depends on the authentication
type. If the app is protected by form-based authentication or adapter-based
authentication, you can call the login procedure after successfully completing
initialization. In general, the login procedure should not be protected by a security
test; it can be directly called after initialization is completed. For other
authentication types, you can capture the network traffic on MobileFirst Server by
using network traffic capture tools (for example, Fiddler or Wireshark). The
network traffic data shows the detailed URL and parameters that you can use to
log in to the MobileFirst Server. The following screen image shows an example of a
login function that calls the setActiveUser API with the supplied user ID and
password:

Installing and configuring 6-127

Logging out

The following options are available for logging out of the MobileFirst Server:

Not logging out for each iteration
MobileFirst Server automatically logs the user out when the session times
out. This option consumes more memory than logging out, but is useful if
you want to maximize memory usage during performance testing. To
adopt this option, you need to clean cookies for each iteration in the
performance testing tool.

Logging out after each iteration by using the MobileFirst logout service
It is recommended to clean cookies for each iteration to avoid sharing data
between iterations. The logout request has the following structure:
http://{Host}:{Port}/{Context}/apps/services/api/{AppName}/
{environment}/logout

For more information about the parameters, see “HTTP Interface of the production
server” on page 6-290.

Database reporting

To activate database reporting, you need to specify reports.exportRowData=true in
your worklight.properties file. You also need to set up the reports database. For
more information, see “Reports database” on page 13-43. After you enable database
reporting, you can use the back-end invocation step described earlier. See the
database reporting section in the Scalability and Hardware Sizing document at
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-
sizing-6-3.

Single sign-on (SSO), direct update, push notification, and
geolocation

See the relevant section in the Scalability and Hardware Sizing document at
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-
sizing-6-3.

General example: Using jMeter as a performance testing tool

HTTP cookie management

Cleaning the cookies on every thread iteration ensures that no data and
user information is being cached during this iteration. If you want to keep

6-128 IBM MobileFirst Platform Foundation V6.3.0

https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3

cookie information, you need to clean the user information at the end of
the iteration to avoid unexpected errors during load testing. For example,
if the user does not log out during the previous iteration, the next iteration
might be affected by that user.

HTTP Header Management

The necessary x-wl-platform-version and x-wl-app-version that were
described earlier can be defined here; you can also define the
WL-Instance-Id and WL_deviceNoProvisioningRealm token placeholders.
You can use a jMeter script to extract the real challenge data and replace
the placeholders for each thread iteration as shown in the following image:

Initialization phase

1. Extract and replace the WL-Instance-Id placeholder:

2. Extract and replace the WL_deviceNoProvisioningRealm token
placeholder:

3. Change initialization HTTP status 401 and 403 to HTTP status 200:

Installing and configuring 6-129

Security configuration
Configure the security of the MobileFirst Server as detailed here.

Securing the MobileFirst Server administration
This section helps ensure that no unauthorized person can perform MobileFirst
Server administration operations. This is particularly important in a production
environment.

The security threat is that any person who can install mobile applications in a
production environment is able to modify the behavior of these apps on the mobile
devices. The apps are served to the clients through the MobileFirst runtime
environments, which get these apps from the Administration Services through
JMX. The Administration Services fetch these apps from the administration
database. The Administration Services and the IBM MobileFirst Platform
Operations Console allow any user in the roles of worklightadmin or
worklightdeployer to deploy applications. A similar threat exists for adapters.

Enabling https in the application server

The ability to use https with the application server is a prerequisite.

For WebSphere Application Server Liberty profile:
v Verify that the server.xml file contains either <feature>ssl-1.0</feature> or

<feature>restConnector-1.0</feature>, or both features. The
restConnector-1.0 feature implies that the ssl-1.0 feature is enabled.

v Verify that the HTTPS port is enabled, by ensuring that the server.xml file does
not have an <httpEndpoint> element with a httpsPort attribute that is negative.
If the HTTPS port is disabled, SSL is also disabled, and the JMX connections that
the MobileFirst Server requires do not work.

v Verify that the server.xml file contains <keyStore id="defaultKeyStore" .../>,
or an equivalent declaration, otherwise the JMX connections that the MobileFirst
Server requires do not work. For more information, see Liberty profile: SSL
configuration attributes.

For Apache Tomcat:
v Enable an https port as documented in SSL support and SSL Configuration

HOW-TO.

6-130 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html
http://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

Enabling application security in the application server

Without this step, anyone can connect to the web applications without credentials.

For WebSphere Application Server full profile:
v Verify that Administrative Security is enabled.
v Verify that Application Security is enabled.

For WebSphere Application Server Liberty profile:
v Verify that the server.xml file contains <feature>appSecurity-1.0</feature>.

Protecting the passwords of users in the roles worklightadmin and
worklightdeployer

If the password of any user who is mapped to the roles worklightadmin or
worklightdeployer is compromised, that is, becomes potentially known to an
unauthorized person, unauthorized MobileFirst administration operations are
possible. Here are steps to mitigate this risk.
v Minimize the number of users that you map to the roles worklightadmin and

worklightdeployer.
v Map different users to the roles worklightadmin or worklightdeployer in

development and test environments than you do in the production environment.
If the password of the administrator of the development or test environment is
compromised (for example, by use of secure="false"), this helps secure the
password of the administrator of the production environment.

v If these users are authenticated through LDAP, secure the connection to the
LDAP server.

v Never use the MobileFirst Operations Console or the MobileFirst Administration
REST services over http. Always use https. There are two ways to guarantee
this:
– Configure the application server to respond only to an https port, not to an

http port.
– Modify the worklightconsole.war and worklightadmin.war files to activate

the JEE6 transport security of type CONFIDENTIAL. This setting performs a
redirect from http to https before the application server requests a user and
password.
1. Unpack worklightconsole.war (as a .zip file).
2. Edit its WEB-INF/web.xml file, changing <transport-guarantee>NONE</

transport-guarantee> to <transport-guarantee>CONFIDENTIAL</
transport-guarantee>.

3. Repack worklightconsole.war.
4. Unpack worklightadmin.war (as a .zip file).
5. Edit its WEB-INF/web.xml file, changing <transport-guarantee>NONE</

transport-guarantee> to <transport-guarantee>CONFIDENTIAL</
transport-guarantee>.

6. Repack worklightadmin.war.
7. Redeploy these WAR files, either manually, or through the Ant task

<installworklightadmin> or <updateworklightadmin>. For more
information, see “Deploying the MobileFirst Operations Console and
Administration Services with Ant tasks” on page 6-63.

Installing and configuring 6-131

v Never use the <wladm> Ant task with the attribute secure="false", and never
use the wladm command with the option -secure=false. To achieve this, you
must:
– Ensure that your application server uses an SSL certificate signed by a CA,

not a self-signed certificate, and that the host name mentioned in this
certificate matches the host name of the application server machine.

– Ensure that this SSL certificate is contained in the truststore of the JVM that
runs the <wladm> Ant task or the wladm command.

v Change the file access permissions of the file that contains the password that is
used by the <wladm> Ant task or the wladm command to be as restrictive as
possible. To do this, you can use a command, such as the following examples:
– On UNIX: chmod 600 adminpassword.txt
– On Windows: cacls adminpassword.txt /P Administrators:F

%USERDOMAIN%\%USERNAME%:F

v Additionally, you might want to obfuscate the password, to hide it from an
occasional glimpse. To do so, use the wladm config password command to store
the obfuscated password in a configuration file. Then you can copy and paste
the obfuscated password to the Ant script or to the password file that you want.

v In the configuration of the MobileFirst Operations Console web application, set
the JNDI property ibm.worklight.admin.ui.cors.strictssl to true. This
property helps rejecting unsecure SSL certificates.

v In the configuration of the MobileFirst Operations Console web application, set
the JNDI property ibm.worklight.admin.hsts to true. This property implements
HTTP Strict Transport Security and helps the administrator's browser remember
to access the MobileFirst Operations Console through https instead of http.

Protecting the administration database

If the password of the administration database (or of the user who owns the
corresponding schema of that database) is compromised, that is, becomes
potentially known to an unauthorized person, unauthorized deployments of apps
and adapters are possible. Here are steps to mitigate this risk.
v Do not host other services than the database management system on the

machines that serve this database.
v If you use Ant tasks to configure the MobileFirst Server administration (see

“Using Ant tasks to install MobileFirst Server administration” on page 6-62), you
must do one of the following actions:
– Change the file access rights of the Ant XML file to be as restrictive as

possible before you store passwords in it. For more information, see step 2 in
“Sample configuration files” on page 15-30.

– Write ************ (12 asterisks) in place of the password, so the Ant XML
file does not contain the password. Instead, the Ant task queries the password
interactively when it is invoked.

v Minimize the number of users who have login access to the machines that run
MobileFirst Server.

v Change the file access rights of the application server configuration files that
contain the jdbc/WorklightAdminDS data source password to be as restrictive as
possible. For more information, see step 3 in “Sample configuration files” on
page 15-30.

6-132 IBM MobileFirst Platform Foundation V6.3.0

Protecting the JMX communication

If the JMX communication between Administration Services and the MobileFirst
runtime environments are not secured, unauthorized persons who have local
access to the MobileFirst Server machines can play man-in-the-middle attacks and
thus activate tampered apps and adapters. Here are steps to mitigate this risk.
v For WebSphere Application Server Liberty, follow the procedure of Configuring

secure JMX connection to the Liberty profile.
v For Apache Tomcat, use a JMX configuration with SSL, as described in

“Configuring Apache Tomcat” on page 6-50.

Protecting the apps and adapters to deploy

If the source from which the MobileFirst administrator receives apps and adapters
is not secured, tampered apps and adapters can be submitted to the MobileFirst
administrator, who then deploys them. Here are steps to mitigate this risk.
v Ensure that the MobileFirst administrator receives apps and adapters only

through channels which guarantee the integrity of the sender and of the sent
artifacts. For example, use emails with digital signature, or web-based tools with
the need to log in through https.

v Ensure that the development teams that create these apps and adapters use a
Version Control System that guarantees the integrity of each modification and
disallows modifications by unauthorized persons. Examples of VCS systems in
this category are RTC/jazz and Git. An example of a VCS not in this category is
CVS.

Protecting against attacks from the internet

Attackers from the internet might attempt to search for security flaws in the
MobileFirst Operations Console and Administration Services and try to circumvent
the security measures. Here is a tip to mitigate this risk. It assumes that mobile
application users connect to MobileFirst Server from the internet, but all legitimate
uses of the MobileFirst Operations Console Console and Administration Services
are from an intranet.
v Configure your internet gateway or firewall (for example, IBM DataPower®) to

block access to URLs under the context roots of the MobileFirst Operations
Console (default: /worklightconsole) and of the Administration Services
(default: /worklightadmin). At the same time, keep the access to the MobileFirst
runtime web applications open.

Database and certificate security passwords
When you configure a MobileFirst Server, you must typically configure database
and certificate passwords for security.

Configuration of a IBM MobileFirst Platform Server typically includes the
following credentials:
v User name and password to the runtime database
v User name and password to other custom databases
v User name and password to certificates that enable the stamping of apps

All credentials are stored in the in JNDI properties of the application server.
Defaults can be stored in the worklight.properties file. See “Configuration of
MobileFirst applications on the server” on page 11-45 for information about
individual properties.

Installing and configuring 6-133

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_admin_restconnector.html
http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_admin_restconnector.html

You can encrypt any or all of these passwords. For more information, see “Storing
properties in encrypted format” on page 11-52.

Apache Tomcat security options
An optimal Apache Tomcat security balances ease of use and access with
strengthening of security and hardening of access.

You must harden the Tomcat Server according to your company policy.
Information on how to harden Apache Tomcat is available on the Internet. All
other out-of-the-box services provided by Apache Tomcat are unnecessary and can
be removed.

Running MobileFirst Server in WebSphere Application Server
with Java 2 security enabled
You can run IBM MobileFirst Platform Server in WebSphere Application Server
with Java 2 security enabled.

About this task

To enable Java 2 security in WebSphere Application Server, complete the following
procedure to modify the app.policy file and then restart WebSphere Application
Server for the modification to take effect.

Procedure
1. Install MobileFirst Server on a WebSphere Application Server instance. The

installation contains all the necessary libraries to support WebSphere
Application Server security.

2. Enable Java 2 security in WebSphere Application Server.
a. In the WebSphere Application Server console, click Security > Global

security

b. Select Use Java 2 security to restrict application access to local resources.
3. Modify the app.policy file, <ws.install.root>/profiles/<server_name>/

config/cells/<cell_name>/node/<node_name>/app.policy.
The app.policy file is a default policy file that is shared by all of the
WebSphere Application Server enterprise applications. For more information,
see app.policy file permissions in the WebSphere Application Server
documentation.
Add the following content into the app.policy file.
grant codeBase "file:${was.install.root}/worklight-jee-library-xxx.jar" {

permission java.security.AllPermission;
};

// The war file is your WL server war.
grant codeBase "file:worklight.war" {

//permission java.security.AllPermission;
//You can use all permission for simplicity, however, it might
// cause security problems.
permission java.lang.RuntimePermission "*";
permission java.io.FilePermission "${was.install.root}${/}-", "read,write,delete";
// In Linux need to set TEMP folder of Linux.
permission java.io.FilePermission "C:/Windows/TEMP/${/}-", "read,write,delete";
permission java.util.PropertyPermission "*", "read, write";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
permission com.ibm.tools.attach.AttachPermission "createAttachProvider";
permission com.ibm.tools.attach.AttachPermission "attachVirtualMachine";

6-134 IBM MobileFirst Platform Foundation V6.3.0

permission com.sun.tools.attach.AttachPermission "createAttachProvider";
permission com.sun.tools.attach.AttachPermission "attachVirtualMachine";
permission java.net.SocketPermission "*", "accept,resolve";

};

4. Restart WebSphere Application Server for the modification of the app.policy
file to take effect.

Transmitting MobileFirst data on the BlackBerry Enterprise
Server MDS channel

If you install IBM MobileFirst Platform Foundation in an environment that
includes a BlackBerry Enterprise Server, you can use the BlackBerry MDS channel
to transmit MobileFirst data.

About this task

Figure 6-7 shows an environment in which apps that are installed on BlackBerry
devices transmit data by using the BlackBerry MDS channel. When you install IBM
MobileFirst Platform Foundation in environments such as these, you can configure
MobileFirst data to use the same channel.

Procedure

On the BlackBerry Enterprise Server, configure an MDS connection service to the
MobileFirst Server or to its intermediary proxy server. For information about how
to configure an MDS connection service, see the BlackBerry Enterprise Server
documentation.

Protecting your mobile application traffic by using IBM
WebSphere DataPower as a security gateway

You can use IBM WebSphere DataPower in the Data Management Zone (DMZ) of
your enterprise to protect MobileFirst mobile application traffic.

Figure 6-7. IBM MobileFirst Platform Foundation with BlackBerry Enterprise Server

Installing and configuring 6-135

Before you begin
1. Ensure that MobileFirst Studio is installed.
2. Establish your stand-alone server environment on Liberty or WebSphere

Application Server.

About this task

Protecting mobile application traffic that comes into your network from customer
and employee devices involves preventing data from being altered, authenticating
users, and allowing only authorized users to access applications. To protect mobile
application traffic that is initiated by a client MobileFirst application, you can use
the security gateway features of IBM WebSphere DataPower.

Enterprise topologies are designed to include different zones of protection so that
specific processes can be secured and optimized. You can use IBM WebSphere
DataPower in different ways in the DMZ and in other zones within your network
to protect enterprise resources. When you start to build out MobileFirst
applications to be delivered to the devices of your customers and employees, you
can apply these methods to mobile traffic.

You can use IBM WebSphere DataPower as a front-end reverse proxy and security
gateway. DataPower uses a multiprotocol gateway (MPGW) service to proxy and
secure access to MobileFirst mobile applications. Two authentication options are
demonstrated: HTTP basic authentication and HTML forms-based login between
the mobile client and DataPower.

Consider adopting the following phased approach to establishing IBM WebSphere
DataPower as a security gateway:
1. Install and configure a MobileFirst environment and test the installation with a

simple application without DataPower acting as the reverse proxy.
2. Test that your application logic works.
3. Configure an MPGW on DataPower to proxy the mobile application or the

MobileFirst Operations Console. Select one of the following authentication
options:
v Use basic authentication for end-user authentication with AAA and generate

a single sign-on (SSO) LTPA token for MobileFirst Server running on
WebSphere Application Server if the user successfully authenticates.

v Use HTML form-based login with AAA and generate a single sign-on (SSO)
LTPA token for MobileFirst Server, running onWebSphere Application Server
if the user successfully authenticates.

4. Test the reverse proxy:
v Update the MobileFirst configuration on the server with the reverse proxy

configuration (see Step 1).
v Update the mobile security test configuration of each mobile application to

use form-based authentication so that the application requests the user to
authenticate immediately when the application starts. Either HTTP basic
authentication or HTML form-based login is supported before the application
starts. For web widgets, widget resources are accessible to the browser only
after a user authenticates successfully.

Procedure
1. Set up a MobileFirst configuration.

6-136 IBM MobileFirst Platform Foundation V6.3.0

a. For each app that you are configuring, modify the
authenticationConfig.xml file on the server to include the following
security test, realm, and login module declarations:
<securityTests>
<mobileSecurityTest name="WASTest-securityTest">

<testDeviceId provisioningType="none"/>
<testUser realm="WASLTPARealm"/>

</mobileSecurityTest>
<webSecurityTest name="WASTest-web-securityTest">

<testUser realm="WASLTPARealm"/>
</webSecurityTest>

</securityTests>

<realms>
<!-- For websphere -->
<realm name="WASLTPARealm" loginModule="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>
<parameter name="login-page" value="/login.html"/>
<parameter name="error-page" value="/loginError.html"/>

</realm>
</realms>

<loginModules>
<!-- For websphere -->
<loginModule name="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
</loginModule>

</loginModules>

By default, the authenticationConfig.xml file is usually available in this
directory: <WAS_INSTALL_DIR>/profiles/<WAS_PROFILE>/installedApps/
<WAS_CELL>/IBM_Worklight_Console.ear/worklight.war/WEB-INF/classes/
conf.

b. Restart the MobileFirst Operations Console enterprise application.
2. Update your client mobile app.

a. In your client mobile app, add the following JavaScript to your HTML
MobileFirst application:
function showLoginScreen() {
$("#index").hide();
$("#authPage").show();

}

function showMainScreen() {
$("#authPage").hide();
$("#index").show();

}

var myChallengeHandler = WL.Client.createChallengeHandler("WASLTPARealm");
var lastRequestURL;

myChallengeHandler.isCustomResponse = function(response) {

//A normal login form has been returned
var findError = response.responseText.search("DataPower/Worklight Error");
if(findError >= 0) {

return true;
}

//A normal login form has been returned
var findLoginForm = response.responseText.search("DataPower/Worklight Form Login");
if(findLoginForm >= 0) {

lastRequestURL = response.request.url;
return true;

Installing and configuring 6-137

}

//This response is a MobileFirst Server response, handle it normally
return false;

};

myChallengeHandler.handleChallenge = function(response) {
showLoginScreen();

};

challengeHandler1.handleFailure = function(response) {
console.log("Error during WL authentication.");

};

myChallengeHandler.submitLoginFormCallback = function(response) {
var isCustom = myChallengeHandler.isCustomResponse(response);
if(isCustom) {
myChallengeHandler.handleChallenge(response);

}
else {
//hide the login screen, you are logged in
showMainScreen();

myChallengeHandler.submitSuccess();

}
};

//When the login button is pressed, submit a login form
$("#loginButton").click(function() {
var reqURL = "/j_security_check";
alert(lastRequestURL);
var options = {method: "POST"};
options.parameters = {
j_username: $("#username").val(),
j_password: $("#password").val(),
originalUrl : lastRequestURL,
login: "Login"

};

options.headers = {};
myChallengeHandler.submitLoginForm(reqURL, options, myChallengeHandler.submitLoginFormCallback);

});

b. If you want to retrieve the LTPA key file that is used for authentication
from MobileFirst Server, you can also use the MobileFirst API function
login method as defined in the WL.Client class:
WL.Client.login(“WASLTPARealm”);

This call triggers the myChallengeHandler.isCustomResponse method with a
JSON response, where you can retrieve the LTPA key file.
if (response.responseJSON.WASLTPARealm && response.responseJSON.WASLTPARealm.isUserAuthenticated)
var sessionKey = response.responseJSON.WASLTPARealm.attributes.LtpaToken;

For any subsequent adapter calls that need to be proxied through the
reverse proxy, you can include this sessionKey as a header within the
request.
Ensure that the HTML body for your MobileFirst app reflects the login
information that is to be handled by DataPower.

c. To add the authentication test to an application or device, add a
securityTest attribute to the environment tag in the project
application-descriptor.xml file.

6-138 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

Set the value of this attribute to the name of the security test that you
declared in the authenticationConfig.xml file in substep 1a.. Here is an
iPad example:
<ipad bundleId="com.Datapower" securityTest="WASTest-securityTest" version="1.0">

<worklightSettings include="false"/>
<security>

<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>

</security>
</ipad>

3. Define a multiprotocol gateway.
a. In the IBM DataPower WebGUI, in the search box under Control Panel,

enter Multi-Protocol and click New Multi-Protocol Gateway.
b. On the General Configuration page, pdefine the following settings.

Table 6-27. General Configuration

Field Description

Multi-Protocol Gateway Name Provide a name for your gateway.

Response Type Select Non-XML. With this value, HTTP web
application traffic (including JSON,
JavaScript, and CSS) passes through the
appliance.

Request Type Select Non-XML. With this value, HTTP web
application requests are handled by the
appliance.

Front Side Protocol Select HTTPS (SSL). For this type of
interaction in which user credentials are
passed between client and server, HTTPS is
appropriate. Also provide the following
front-side handler details:

Name Enter a name for the configuration.

Port Number
Enter a number for the listening
port. This port number must match
the port number that you specify if
you define an AAA policy that uses
HTML form-based authentication.
See Table 6-29 on page 6-140.

Allowed Methods and Versions
Select GET method to enable
support for HTTP Get.

SSL Proxy
Select an SSL Reverse Proxy profile
to identify the SSL server.

Multi-Protocol Gateway Policy Click +, and then create rules to define the
policies that are listed in the following
topics, depending on the type of
authentication that you decide to use:

v Policy worklight-basicauth for HTTP
basic authentication. See “Rules for HTTP
basic authentication” on page 6-141.

v Policy mpgw-form for HTML form-based
login authentication. See “Rules for HTML
form-based authentication” on page 6-142.

Installing and configuring 6-139

Table 6-27. General Configuration (continued)

Field Description

Backend URL Specify the address and port of the
MobileFirst Server that is hosted on
WebSphere Application Server.

4. Create an AAA policy that supports the HTTP basic authentication or HTML
form-based login policy that you defined in the previous step.
a. In the IBM DataPower WebGUI, in the search box under Control Panel,

enter AAA, and then click Add.
b. Depending on the type of authentication that you want to use, define the

following settings.
v For HTTP basic authentication, specify the settings as listed in the

following table.

Table 6-28. AAA policy for HTTP basic authentication

Phase Description

Extract Identity In the Methods field, select HTTP
Authentication Header.

Authenticate Choose the authentication method. If
WebSphere Application Server is using
LDAP, configure LDAP here.

Extract Resource Select URL Sent by Client.

Post processing Generate an LTPA token. Specify LTPA
Token Expiry, LTPA Key File, and LTPA
Key File Password.

v For HTML form-based login, specify the settings as listed in the following
table.

Table 6-29. AAA policy for HTML forms-based authentication

Phase Description

Extract Identity In the Methods field, select HTML
Forms-based Authentication. Select or create
an HTML forms-based policy that has the
Use SSL for Login option enabled, assigns
SSL Port to the port number on which the
MPGW is listening (that was specified in
step 3), and has the Enable Session
Migration option disabled.

Authenticate Choose the authentication method. If
WebSphere Application Server is using
LDAP, configure LDAP here.

Extract Resource Select URL Sent by Client.

Post processing Generate an LTPA token. Specify LTPA
Token Expiry, LTPA Key File, and LTPA
Key File Password.

5. On the Advanced page, specify the advanced settings as listed in the following
table.

6-140 IBM MobileFirst Platform Foundation V6.3.0

Table 6-30. Advanced settings

Field Value

Persistent Connections On.

Allow Cache-Control Header Off

Loop Detection Off

Follow Redirects Off. This value prevents the DataPower
back-end user agent from resolving redirects
from the back end. Web applications
typically require a client browser to resolve
redirects so that they can maintain the
context for “directory” along with setting an
LTPA cookie on the client.

Allow Chunked Uploads Off

MIME Back Header Processing Off

MIME Front Header Processing Off

Results

Your MobileFirst mobile application traffic is now protected by an IBM WebSphere
DataPower secure gateway. Authentication is enforced on the DataPower device
and the credentials (header or LTPA token) are forwarded downstream to
MobileFirst Server to establish the user identity as part of the mobile traffic.

Rules for HTTP basic authentication
Add rules to define an HTTP basic authentication policy that is named
worklight-basicauth.

You create the worklight-basicauth policy as part of the process of defining a
multiprotocol gateway. See “Protecting your mobile application traffic by using
IBM WebSphere DataPower as a security gateway” on page 6-135, Table 6-27 on
page 6-139.

Table 6-31. HTTP Basic Authentication properties

Property Value

Policy Name worklight-basicauth

Order of configured rules 1. worklight-basicauth_rule_0: see
Table 6-32

2. worklight-basicauth_rule_3: see
Table 6-35 on page 6-142

3. worklight-basicauth_rule_1: see
Table 6-33 on page 6-142

4. worklight-basicauth_rule_2: see
Table 6-34 on page 6-142

Table 6-32. Properties of worklight-basicauth_rule_0. When processing HTML content,
skip processing with the icon that is associated with the website or the web page.

Property Value

Direction Client to Server or Both Directions.

Match v Type = URL

v Pattern = /favicon.ico

Installing and configuring 6-141

Table 6-32. Properties of worklight-basicauth_rule_0 (continued). When processing
HTML content, skip processing with the icon that is associated with the website or the web
page.

Property Value

Advanced "Set Variable" -> var://service/mpgw/skip-
backside = 1

Result Not applicable.

Table 6-33. Properties of worklight-basicauth_rule_1. Handle end-user authentication if
an LTPA token does not exist.

Property Value

Direction Client to Server.

Match v Type = URL

v Pattern = *

AAA BasicAuth2LTPA

v Output: NULL

Result Not applicable.

Table 6-34. Properties of worklight-basicauth_rule_2. Handle both the redirect and
content-type reset on the response side.

Property Value

Direction Server to Client.

Match v Type = URL

v Pattern = *

Filter Provide a custom stylesheet that handles
redirect and content-type rewrite. For a
sample redirect stylesheet, see “Sample
redirect stylesheet” on page 6-146.

v Output: NULL

Result Not applicable.

Table 6-35. Properties of worklight-basicauth_rule_3. Because the policy is applied to
each request, the rules must be ordered such as to ensure that an LTPA token is verified if
it exists in the HTTP request. If no token is available, proceed to the next rule and
authenticate the user.

Property Value

Direction Client to Server.

Match v Type = HTTP

v HTTP header tag = Cookie

v HTTP value match = *LtpaToken*

AAA VerifyLTPA

v Output: NULL

Result Not applicable.

Rules for HTML form-based authentication
Add rules to define an HTML form-based authentication policy named mpgw-form.

6-142 IBM MobileFirst Platform Foundation V6.3.0

You create the mpgw-form policy as part of the process of defining a multi-protocol
gateway. See “Protecting your mobile application traffic by using IBM WebSphere
DataPower as a security gateway” on page 6-135, Table 6-27 on page 6-139.

Table 6-36. HTTP Form-Based Login properties

Property Value

Policy Name mpgw-form

Order of configured rules 1. mpgw-form_rule_0: see Table 6-37

2. mpgw-form_rule_1: see Table 6-38

3. mpgw-form_rule_2: see Table 6-39

4. mpgw-form_rule_3: see Table 6-40 on page
6-144

5. mpgw-form_rule_6: see Table 6-41 on page
6-144

Table 6-37. Properties of mpgw-form_rule_0. This rule skips processing with the icon that is
associated with the web site or the web page.

Property Value

Direction Client to Server or Both Directions.

Match v Type = URL

v Pattern = /favicon.ico

Advanced “Set Variable” -> var://service/mpgw/skip-
backside = 1

Result Not applicable.

Table 6-38. Properties of mpgw-form_rule_1. This rule verifies an LTPA token if it exists in
the HTTP request.

Property Value

Direction Client to Server.

Match v Type = HTTP

v HTTP header tag = Cookie

v HTTP value match = *LtpaToken*

AAA VerifyLTPA

v Output: NULL

Result Not applicable.

Table 6-39. Properties of mpgw-form_rule_2. This rule generates the HTML form login page.

Property Value

Direction Client to Server.

Match v Match with PCRE = on

v Type = URL

v Pattern = /(Login|Error)Page\.htm(l)?(\
?originalUrl=.*)?

Installing and configuring 6-143

Table 6-39. Properties of mpgw-form_rule_2 (continued). This rule generates the HTML
form login page.

Property Value

Transform Provide a custom stylesheet that builds
either a Login or Error HTML page. For a
sample stylesheet, see “Sample form login
stylesheet.”
Note: The HTML Login Form policy allows
you to specify whether you retrieve the
login and error pages from DataPower or
from the back-end application server.

Advanced Select the set-var action and specify the
service variable: var://service/routing-url
and value with the endpoint of your login
page.

Result Not applicable.

Table 6-40. Properties of mpgw-form_rule_3. This rule handles end-user authentication if an
LTPA token does not exist.

Property Value

Direction Client to Server.

Match v Type = URL

v Pattern = *

Advanced “Convert Query Parameter to XML”. Accept
default values for other selections.

AAA Form2LTPA

Table 6-41. Properties of mpgw-form_rule_6. This rule handles both the redirect and
content-type reset on the response side.

Property Value

Direction Server to Client.

Match v Type = URL

v Pattern = *

Filter Provide a custom stylesheet that handles
redirect and content-type rewrite. For a
sample redirect stylesheet, see “Sample
redirect stylesheet” on page 6-146.

v Output: NULL

Result Not applicable.

Sample form login stylesheet
You can use this sample stylesheet to generate the HTML form login page or error
page when creating rules to define an HTML forms-based authentication policy.

You provide a custom stylesheet when defining rule mpgw-form_rule_2. See “Rules
for HTML form-based authentication” on page 6-142, Table 6-39 on page 6-143.
<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"
xmlns:dp="http://www.datapower.com/extensions"

6-144 IBM MobileFirst Platform Foundation V6.3.0

xmlns:re="http://exslt.org/regular-expressions"
extension-element-prefixes="dp re"
exclude-result-prefixes="dp re">
<xsl:output method="html" omit-xml-declaration="yes" />
<xsl:template match="/">
<xsl:choose>

<xsl:when test="contains(dp:variable(’var://service/URI’), ’LoginPage.htm’)">
<xsl:variable name="uri_temp" select="dp:decode(dp:variable(’var://service/URI’), ’url’)" />
<xsl:variable name="uri">

<xsl:choose>
<xsl:when test="contains($uri_temp, ’originalUrl’)">
<xsl:value-of select="$uri_temp" />

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="dp:decode(dp:http-request-header(’Cookie’), ’url’)" />
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<xsl:variable name="redirect_uri_preprocess">
<xsl:for-each select="re:match($uri, ’(.*)originalUrl=(.*)’)">

<xsl:if test="position()=3">
<xsl:value-of select="." />

</xsl:if>
</xsl:for-each>

</xsl:variable>
<xsl:variable name="redirect_uri">
<xsl:choose>

<xsl:when test="contains($redirect_uri_preprocess, ’;’)">
<xsl:value-of select="substring-before($redirect_uri_preprocess, ’;’)" />

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="$redirect_uri_preprocess" />
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<html>
<head>

<meta http-equiv="Pragma" content="no-cache" />
<title>Login Page</title>

</head>
<body>

<h2>DataPower/Worklight Form Login</h2>
<form name="LoginForm" method="post" action="j_security_check">

<p>
Please enter your user ID and password.

If you have forgotten your user ID or password, please contact the server administrator.
</p>
<p>

<table>
<tr>

<td>User ID:</td>
<td>
<input type="text" size="20" name="j_username" />

</td>
</tr>
<tr>

<td>Password:</td>
<td>
<input type="password" size="20" name="j_password" />

</td>
</tr>

</table>
</p>
<p>

<input type="hidden" name="originalUrl">
<xsl:attribute name="value">

Installing and configuring 6-145

<xsl:value-of select="$redirect_uri" />
</xsl:attribute>

</input>
<input type="submit" name="login" value="Login" />

</p>
</form>

</body>
</html>

</xsl:when>
<xsl:otherwise>
<!-- error -->
<html>

<head>
<meta http-equiv="Pragma" content="no-cache" />
<title>Error Page</title>

</head>
<body>
<h2>DataPower/Worklight Error</h2>
You must provide a valid user identity.

</body>
</html>

</xsl:otherwise>
</xsl:choose>
<dp:set-response-header name="’Content-Type’" value="’text/html’" />
<dp:set-variable name="’var://service/mpgw/skip-backside’" value="true()" />

</xsl:template>
</xsl:stylesheet>

Sample redirect stylesheet
You can use this sample stylesheet to handle redirection and content-type
rewriting. You refer to the stylesheet when you create rules to define an HTTP
basic authentication policy or an HTML forms-based authentication policy.

You provide a custom stylesheet when you define rule mpgw-form_rule_6 (see
“Rules for HTML form-based authentication” on page 6-142, Table 6-41 on page
6-144), and when you define rule worklight-basicauth_rule_2 (see “Rules for
HTTP basic authentication” on page 6-141, Table 6-34 on page 6-142).
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dp="http://www.datapower.com/extensions"
xmlns:re="http://exslt.org/regular-expressions"
extension-element-prefixes="dp re"
exclude-result-prefixes="dp">

<xsl:template match="/">
<xsl:choose>
<xsl:when test="dp:responding()">

<xsl:variable name="code">
<xsl:choose>
<xsl:when test="dp:http-response-header(’x-dp-response-code’) != ’’">

<xsl:value-of select="substring(dp:http-response-header(’x-dp-response-code’), 1, 3)"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="substring(dp:variable(’var://service/error-headers’), 10, 3)" />
</xsl:otherwise>

</xsl:choose>
</xsl:variable>

<xsl:choose>
<xsl:when test="$code = ’302’">
<xsl:variable name="dphost" select="dp:http-request-header(’Host’)"/>
<xsl:variable name="host" select="$dphost"/>
<xsl:variable name="location" select="dp:http-response-header(’Location’)"/>
<xsl:variable name="location_host">

<xsl:for-each select="re:match($location, ’(\w+):\/\/([^/]+)’)">

6-146 IBM MobileFirst Platform Foundation V6.3.0

<xsl:if test="position()=3">
<xsl:value-of select="." />

</xsl:if>
</xsl:for-each>

</xsl:variable>
<xsl:variable name="location_final">

<xsl:value-of select="re:replace($location, $location_host, ’g’, $host)" />
</xsl:variable>
<dp:set-http-response-header name="’Location’" value="$location_final" />

</xsl:when>
<xsl:otherwise>
<xsl:variable name="orig-content" select="dp:variable(’var://service/original-response-content-type’)"/>
<xsl:if test="$orig-content != ’’">

<dp:set-http-response-header name="’Content-Type’" value=’$orig-content’/>
</xsl:if>

</xsl:otherwise>
</xsl:choose>

<!-- the following prevent DataPower from overriding the
response code coming back from WorkLight Server

-->
<dp:set-response-header name="’x-dp-response-code’" value="’-1’"/>

</xsl:when>
<xsl:otherwise/>

</xsl:choose>
</xsl:template>

</xsl:stylesheet>

Configuring MobileFirst Server to enable TLS V1.2
For MobileFirst Server to communicate with devices that support only TLS V1.2,
among the SSL protocols, you must complete the following instructions.

About this task

The steps to configure MobileFirst Server to enable Transport Layer Security (TLS)
V1.2 depend on how MobileFirst Server connects to devices.

If MobileFirst Server is behind a reverse proxy that decrypts SSL-encoded packets
from devices before passing the packets to the application server, you must enable
TLS V1.2 support on your reverse proxy. If you are using IBM HTTP Server as
your reverse proxy, see Securing IBM HTTP Server for instructions.

If MobileFirst Server communicates directly with devices, the steps to configure
MobileFirst Server to enable TLS V1.2 depend on the application server that you
use. The following sections provide you with the specific instructions for Apache
Tomcat, WebSphere Application Server Liberty profile, and WebSphere Application
Server full profile.

Apache Tomcat
Procedure
1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.

Ensure that you use Oracle JRE 1.7.0_75 or later for MobileFirst Server V6.3.
2. Edit the conf/server.xml file and modify the <Connector> element that declares

the HTTPS port so that the sslEnabledProtocols attribute has the following
value:
sslEnabledProtocols="TLSv1.2,TLSv1.1,TLSv1,SSLv2Hello"

Installing and configuring 6-147

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_securing_ihs_container.html

WebSphere Application Server Liberty profile
Procedure
1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.
v If you use an IBM Java SDK, ensure that your IBM Java SDK is patched for

the POODLE vulnerability. You can find the minimum IBM Java SDK
versions that contain the patch for your version of WebSphere Application
Server in Security Bulletin: Vulnerability in SSLv3 affects IBM WebSphere
Application Server (CVE-2014-3566).

Note: You can use the versions that are listed in the security bulletin or later
versions.

v If you use an Oracle Java SDK, ensure that you use Oracle JRE 1.7.0_75 or
later.

2. If you use an IBM Java SDK, edit the server.xml file.
a. Add the following line:

<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore" sslProtocol="SSL_TLSv2"/>

b. Add the sslProtocol="SSL_TLSv2" attribute to all existing <ssl> elements.

WebSphere Application Server full profile
Procedure
1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.

Ensure that your IBM Java SDK is patched for the POODLE vulnerability. You
can find the minimum IBM Java SDK versions that contain the patch for your
version of WebSphere Application Server in Security Bulletin: Vulnerability in
SSLv3 affects IBM WebSphere Application Server (CVE-2014-3566).

Note: You can use the versions that are listed in the security bulletin or later
versions.

2. Log in to WebSphere Application Server administrative console, and click
Security > SSL certificate and key management > SSL configurations.

3. For each SSL configuration listed, modify the configuration to enable TLS V1.2.
a. Select an SSL configuration and then, under Additional Properties, click

Quality of protections (QoP) settings.
b. From the Protocol list, select SSL_TLSv2.
c. Click Apply and then save the changes.

Configuring SSL between MobileFirst adapters and back-end
servers by using self-signed certificates

You can configure SSL between MobileFirst adapters and back-end servers by
importing the server self-signed SSL certificate to the MobileFirst keystore.

Procedure
1. Check the configuration in the worklight.properties file. The configuration

might look like this example:
###
Worklight SSL keystore
###
#SSL certificate keystore location.
ssl.keystore.path=conf/default.keystore
#SSL certificate keystore type (jks or PKCS12)
ssl.keystore.type=jks
#SSL certificate keystore password.
ssl.keystore.password=worklight

6-148 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173

2. Make sure that the keystore file exists in the server/conf folder of the
MobileFirst project.

3. Export the server public certificate from the back-end server keystore.

Note: Export back-end public certificates from the back-end keystore by using
keytool or openssl lib. Do not use the export feature in a web browser.

4. Import the back-end server certificate into the MobileFirst keystore.
5. Restart the MobileFirst Server.

Example

The CN name of the back-end certificate must match what is configured in the
adapter.xml file. For example, consider an adapter.xml file that is configured as
follows:
<protocol>https</protocol>
<domain>mybackend.com</domain>

The back-end certificate must be generated with CN=mybackend.com.

As another example, consider the following adapter configuration:
<protocol>https</protocol>
<domain>123.124.125.126</domain>

The back-end certificate must be generated with CN=123.124.125.126.

The following example demonstrates how you complete the configuration by using
the Keytool program.
1. Create a back-end server keystore with a private certificate for 365 days.

keytool -genkey -alias backend -keyalg RSA -validity 365 -keystore backend.keystore -storetype JKS

Note: The First and Last Name field contains your server URL, which you use
in theadapter.xml configuration file, for example mydomain.com or localhost.

2. Configure your back-end server to work with the keystore. For example, in
Apache Tomcat, you change the server.xml file:
<Connector port="443" SSLEnabled="true" maxHttpHeaderSize="8192"

maxThreads="150" minSpareThreads="25" maxSpareThreads="200"
enableLookups="false" disableUploadTimeout="true"
acceptCount="100" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="backend.keystore" keystorePass="password" keystoreType="JKS"
keyAlias="backend"/>

3. Check the connectivity configuration in the adapter.xml file:
<connectivity>

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>https</protocol>
<domain>mydomain.com</domain>
<port>443</port>
<!-- The following properties are used by adapter’s key manager for choosing a specific certificate from the key store
<sslCertificateAlias></sslCertificateAlias>
<sslCertificatePassword></sslCertificatePassword>
-->

</connectionPolicy>
<loadConstraints maxConcurrentConnectionsPerNode="2"/>
</connectivity>

4. Export the public certificate from the created back-end server keystore:
keytool -export -alias backend -keystore backend.keystore -rfc -file backend.crt

Installing and configuring 6-149

5. Import the exported certificate into your MobileFirst Server default.keystore
file in the server/conf directory of the MobileFirst project:
keytool -import -alias backend -file backend.crt -storetype JKS -keystore default.keystore

6. Check that the certificate is correctly imported in the keystore:
keytool -list -keystore backend.keystore

Configuring SSL by using untrusted certificates
Making SSL work between instances of IBM MobileFirst Platform Server and
clients with certificates that are not signed by a known public certificate authority
(CA) can be challenging. Each mobile platform has its own peculiarities and
enforces different portions of the transport layer security (TLS) standard at
different times.

The following recommendations focus mostly on the iOS and Android
environments. Support for X.509 certificates comes from the individual platforms,
not from IBM MobileFirst Platform Foundation. For more information about
specific requirements for X.509 certificates, see the documentation of each mobile
platform.

If you have difficulties with getting your application to access a MobileFirst Server
because of SSL-related issues, the likely cause is a bad server certificate. Another
likely cause is a client that is not properly configured to trust your server. Many
other reasons can cause an SSL handshake to fail, so not all possibilities are
covered. Some hints and tips are provided to troubleshoot the most basic issues
that are sometimes forgotten or overlooked. These issues are important when you
deal with the mobile world and X.509 certificates.

Basic concepts

Certificate authority (CA)
An entity that issues certificates. A CA can issue (sign) other certificates or
other CA certificates (intermediate CA certificates).

In a public key infrastructure (PKI), certificates are verified by a
hierarchical chain of trust. The topmost certificate in this tree is the root
CA certificate.

You can purchase your certificates from a public Internet CA or operate
your own private (local) CA to issue private certificates for your users and
applications. A CA is meant to be an authority that is well-trusted by your
clients. Most commercial CAs issue certificates that are automatically
trusted by most web browsers and mobile platforms. Using private CAs
means that you must take certain actions to ensure that the client trusts
certificates that are signed by your root CA.

A certificate can be signed (issued) by one of the many public CAs that are
known by your mobile platforms, a private CA, or by itself.

Self-signed certificate
A certificate that is signed by itself and has no CA that attests to its
validity.

Using self-signed certificates is not recommended because most mobile
platforms do not support their use.

Self-signed CA
A CA that is signed by itself. It is both a certificate and a CA. Because it is
the topmost certificate in a tree, it is also the root CA.

6-150 IBM MobileFirst Platform Foundation V6.3.0

Using certificates that are signed by private CAs is not recommended for
production use on external Internet-facing servers because of security
concerns. However, they might be the preferred option for development
and testing environments due to their low cost. They are also often
appropriate for internal (intranet) servers as they can be deployed quickly
and easily.

Certificate types that are supported by different mobile platforms

Table 6-42. Certificate types that are supported by different mobile platforms

Platform
self-signed
certificates

self-signed CA
certificates

certificates that
are signed by a

private CA

certificates that
are signed by a

public CA

iOS - ⌂ ⌂ ⌂

Android - ⌂ ⌂ ⌂

Windows Phone - ⌂ ⌂ ⌂

Blackberry - ⌂ ⌂ ⌂

Windows 8 - ⌂ ⌂ ⌂

Certificate types that are supported by iOS

Table 6-43. Certificate types that are supported by iOS

Platform
self-signed
certificates

self-signed CA
certificates

certificates that
are signed by a

private CA

certificates that
are signed by a

public CA

iOS - ⌂ ⌂ ⌂

Self-signed certificates versus self-signed CAs

When you are dealing with mobile clients, the use of self-signed certificates is not
recommended because mobile platforms do not allow the installation of these
types of certificates onto the device truststore. This restriction makes it impossible
for the client to ever trust the server’s certificate. Although self-signed certificates
are often recommended for development and testing purposes, they will not work
when the client is a mobile device.

The alternative is to use self-signed CA certificates instead of self-signed
certificates. Self-signed CA certificates are as easy to acquire and are also as
cost-effective of a solution.

You can create a self-signed CA with most tools. For example, the following
command uses the openssl tool to create a self-signed CA:
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout privateKey.key -out certificate.crt -reqexts v3_req -extensions v3_ca

Note: X.509 version 1 certificates are not allowed by some mobile platforms. You
must use X.509 version 3 certificates instead. If you are generating self-signed CA
certificates, ensure that they are of the type X.509 version 3, and have the following
extension defined: basicConstraints = CA:TRUE. See the appropriate tool’s
documentation for how to specify the required version and certificate extensions.
For openssl commands, you can specify the -reqexts v3_req flag to indicate
version 3 X.509 certificates, and the -extensions v3_ca flag to indicate that the
certificate is also a CA.

Installing and configuring 6-151

You can check the certificate version and extensions by running the following
openssl command:
openssl x509 -in certificate.crt -text -noout

Establishing trust on the client

When you open a web page on your mobile browser or connect directly to your
MobileFirst Server on an HTTPS port, a client receives a server certificate in the
SSL handshake. The client then evaluates the server certificate against its list of
known and trusted CAs to establish trust. Each mobile platform includes a set of
trusted CAs that are deemed trustworthy for issuing SSL certificates. Trust is
established if your server certificate is signed by a CA that is already trusted by
the device. After trust is established, the SSL handshake is successful and you are
allowed to open the web page on a browser or connect directly to your server.

However, if your server uses a certificate that is signed by a CA that is unknown
to the client, the trust cannot be established, and your SSL handshake fails. To
ensure your client device trusts your server’s certificate, you must install the trust
anchor certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) needs to be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

For iOS, see “Installing the root CA on iOS” on page 6-155.

For Android, see “Installing the root CA on Android” on page 6-158.

For Windows Phone, see “Installing the root CA on Windows Phone” on page
6-159.

For Windows 8, see “Installing the root CA on Windows 8” on page 6-163.

Configuring Android

It is important to note that if the following flag is set to true in your application,
Android ignores SSL errors under certain conditions:
android:debuggable="true"

The use of this flag is highly discouraged for production environments. It is not
necessary if you properly configured your server with a certificate that is signed by
a CA that is trusted by your client device.

Handling the certificate chain

If you are using a server certificate that is not signed by itself, you must ensure
that the server sends the full certificate chain to the client.

For the client to validate the certificate path, it must have access to the full
certificate chain. To ensure that the client has access to the full certificate chain,
including intermediate certificates, ensure that all the certificates in the chain are in
the server-side keystore file.

For the WebSphere Application Server Liberty, see “Updating your keystore and
Liberty profile configuration to use a certificate chain” on page 6-167.

6-152 IBM MobileFirst Platform Foundation V6.3.0

Handling certificate extensions

RFC 5280 (and its predecessors) defines a number of certificate extensions that
provide extra information about the certificate. Certificate extensions provide a
means of expanding the original X.509 certificate information standards.

When an extension is specified in an X.509 certificate, the extension must specify
whether it is a critical or non-critical extension. A client that is processing a
certificate with a critical extension that the client does not recognize, or which the
client cannot process, must reject the certificate. A non-critical extension can be
ignored if it is not recognized.

Not all mobile platforms recognize or process certain certificate extensions in the
same manner. For this reason, you must follow the RFC as closely as possible.
Avoid certificate extensions unless you know that all of your targeted mobile
platforms can handle them as you expect.

CRL support

If your certificate supports certificate revocation lists (CRLs), ensure that the CRL
URL is valid and accessible. Otherwise, certificate chain validation fails.

Tools to use to verify the server certificate

To debug certificate path validation problems, try the openssl s_client command
line tool. This tool generates good diagnostic information that is helpful in
debugging SSL issues.

The following example shows how to use the openssl s_client command line
tool:
openssl s_client -CApath $HOME/CAdir -connect hostname:port

The following example shows how to inspect a certificate:
openssl x509 -in certificate.crt -text -noout

Troubleshooting problems with server certificates that are not
signed by a trusted certificate authority

Table 6-44. Troubleshoot problems with server certificates

Problem Actions to take

Unable to install the root CA on iOS.

Certificate installs, but after installation, iOS
shows the certificate as not trusted.

The certificate is not identified as a
certificate authority. Ensure that the
certificate specifies a certificate extension:

basicaConstraints = CA:TRUE

For more information, see “Self-signed
certificates versus self-signed CAs” on page
6-151.

Ensure that the certificate is in PEM format.

Ensure that the certificate has a .crt file
extension.

Installing and configuring 6-153

Table 6-44. Troubleshoot problems with server certificates (continued)

Problem Actions to take

Unable to install the root CA on Android.

After installation, the certificate does not
show up in the system trusted credentials.

The certificate is an X.509 version 1
certificate or does not have the following
certificate extension:

basicConstraints = CA:TRUE

For more information, see “Self-signed
certificates versus self-signed CAs” on page
6-151.

Ensure that the certificate is in PEM or DER
format.

Ensure that the certificate has a .crt file
extension.

"errorCode":"UNRESPONSIVE_HOST","errorMsg":"The
service is currently not available."

This error usually indicates an SSL
handshake failure.

The client cannot establish trust for the
server certificate.

1. Ensure that you installed the server’s
root CA on the client device. For more
information, see “Establishing trust on
the client” on page 6-152.

2. Ensure that the server sends the
complete certificate chain and in the
right order. For more information, see
“Handling the certificate chain” on page
6-152.

The server certificate is invalid.

1. Check the validity of the server
certificate. For more information, see
“Tools to use to verify the server
certificate” on page 6-153.

2. Ensure that the CRL URL is valid and
reachable. For more information, see
“CRL support” on page 6-153.

3. The server certificate contains a critical
certificate extension that is not
recognized by the client platform. For
more information, see “Handling
certificate extensions” on page 6-153.

SSL works on Android, but does not work
on iOS.

When Android is in debuggable mode,
Cordova ignores most SSL errors. This
behavior gives the impression that things are
working. Android is in debuggable mode
when the APK is unsigned, or when you
explicitly set the mode in the manifest.
Verify that the debuggable flag is set to
false (debuggable:false) in the Android
manifest file, or sign the APK. Make sure
that there is no explicit declaration in the
manifest that sets it to debuggable mode. For
more information about configuring
Android, see “Configuring Android” on
page 6-152.

6-154 IBM MobileFirst Platform Foundation V6.3.0

Table 6-44. Troubleshoot problems with server certificates (continued)

Problem Actions to take

After installation, the certificate does not
show up in the system’s trusted credentials
or truststore.

Ensure that you did not install the server
certificate by accessing the protected
resource directly from your browser. This
action imports the certificate only into the
browser space and not into the device
system truststore. The only requirement is
that you install the root CA.

For more information about how to properly
install the root CA on the device, see the
following topics.

For iOS, see “Installing the root CA on iOS.”

For Android, see “Installing the root CA on
Android” on page 6-158.

SCRIPT7002: XMLHttpRequest: Network
Error 0x2ee4, Could not complete the
operation due to error 00002ee4

v Ensure that you installed the server's root
CA on the client device. For more
information, see “Establishing trust on the
client” on page 6-152.

v Ensure that the server sends the complete
certificate chain and in the right order. For
more information, see “Handling the
certificate chain” on page 6-152.

Related tasks:
“Configuring SSL for Liberty profile” on page 6-236
Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
server.xml file to configure SSL on Liberty profile.
Related information:

Security with HTTPS and SSL

HTTPS Server Trust Evaluation

The Transport Layer Security (TLS) Protocol Version 1.2

RFC 5280 - Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile

Installing the root CA on iOS
The root CA must be installed on the client device to ensure that the client trusts
server certificates that are signed by your private CAs.

About this task

To establish trust for your server certificate, you must install the trust anchor
certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) must be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

Installing and configuring 6-155

http://developer.android.com/training/articles/security-ssl.html
https://developer.apple.com/library/ios/technotes/tn2232/_index.html
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280

Procedure
1. Ensure that the root CA is in PEM file format and has a .crt file extension.

Convert as needed.
2. Run the following command to view the certificate details.

openssl x509 -in certificate.crt -text -noout

3. Ensure that the certificate is of version X.509 v3. The certificate details must
show Version 3.

Note: The following openssl flag generates X.509 v3 certificates:
-reqexts v3_req

4. Ensure that the certificate is a certificate authority. The certificate details must
show X509v3 Basic Constraints: CA:TRUE

Note: The following openssl flag generates the CA extension:
-extensions v3_ca

5. To download the certificate file on the device, send it as an email attachment or
host it on a secure website.

Note: Do not install the server certificate by accessing the protected resource
directly from your browser. This action imports the certificate only into the
browser space and not into the device system truststore.

6. After you have the certificate file on the device, click the file to allow the iOS
system to install the certificate.

6-156 IBM MobileFirst Platform Foundation V6.3.0

7. Check that the certificate was properly installed under Settings > General >
Profiles > Configuration Profiles.

8. Ensure that the iOS device lists the CA as a trusted certificate authority.

Installing and configuring 6-157

Installing the root CA on Android
The root CA must be installed on the client device to ensure that the client trusts
server certificates that are signed by your private CAs.

About this task

To establish trust for your server certificate, you must install the trust anchor
certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) must be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

Procedure
1. Ensure that the root CA is in PEM or DER file format and has a .crt file

extension. Convert as needed.
2. Run the following command to view the certificate details.

openssl x509 -in certificate.crt -text -noout

3. Ensure that the certificate is of version X.509 v3. The certificate details must
show Version 3.

Note: The following openssl flag generates X.509 v3 certificates:
-reqexts v3_req

4. Ensure that the certificate is a certificate authority. The certificate details must
show X509v3 Basic Constraints: CA:TRUE

Note: The following openssl flag generates the CA extension:
-extensions v3_ca

5. To download the certificate file on the device, send it as an email attachment or
host it on a secure website.

Note: Do not install the server certificate by accessing the protected resource
directly from your browser. This action imports the certificate only into the
browser space and not into the device system truststore.

6. After you have the file on the device, click the file to allow the Android system
to install the certificate.

6-158 IBM MobileFirst Platform Foundation V6.3.0

7. Provide an alias name for the certificate when you are prompted.

8. Check that the certificate was properly installed under Settings > Security >
Trusted Credentials > User.

Installing the root CA on Windows Phone
The root CA must be installed on the client device to ensure that the client trusts
server certificates that are signed by your private CAs.

About this task

To establish trust for your server certificate, you must install the trust anchor
certificate (root CA) on the client device.

Installing and configuring 6-159

Note: Only the root CA certificate (trust anchor) must be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

Procedure
1. Ensure that the root CA is in DER file format and has a .cer file extension. The

PEM with a .crt file extension is not supported. Convert as needed.
2. Run the following command to view the certificate details.

openssl x509 -inform DER -in certificate.crt -text -noout

3. Ensure that the certificate is of version X.509 v3. The certificate details must
show Version 3.

Note: The following openssl flag generates X.509 v3 certificates:
-reqexts v3_req

4. Ensure that the certificate is a certificate authority. The certificate details must
show X509v3 Basic Constraints: CA:TRUE

Note: The following openssl flag generates the CA extension:
-extensions v3_ca

5. To download the certificate file on the device, send it as an email attachment or
host it on a secure website.

6. Click the link in your email or on the website, and then click Tap to open and
confirm the installation.

6-160 IBM MobileFirst Platform Foundation V6.3.0

Installing and configuring 6-161

6-162 IBM MobileFirst Platform Foundation V6.3.0

Results

You can now use web servers that are secured with certificates that are based on
this root CA.

Note: There is no way on Windows Phone to check whether the certificate was
properly installed. Furthermore, after you install the certificate, Windows Phone
provides no way to remove the certificate from the device.

Installing the root CA on Windows 8
The root CA must be installed on the client device to ensure that the client trusts
server certificates that are signed by your private CAs.

About this task

To establish trust for your server certificate, you must install the trust anchor
certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) must be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

Procedure
1. Ensure that the root CA is in DER file format and has a .cer file extension. The

PEM with a .crt file extension is not supported. Convert as needed.

Installing and configuring 6-163

2. Run the following command to view the certificate details.
openssl x509 -inform DER -in certificate.crt -text -noout

3. Ensure that the certificate is of version X.509 v3. The certificate details must
show Version 3.

Note: The following openssl flag generates X.509 v3 certificates:
-reqexts v3_req

4. Ensure that the certificate is a certificate authority. The certificate details must
show X509v3 Basic Constraints: CA:TRUE

Note: The following openssl flag generates the CA extension:
-extensions v3_ca

5. To download the certificate file on the device, send it as an email attachment
or host it on a secure website.

6. Click the link in your email or on the website, and on the General tab in the
certificate window, select Install Certificate and click OK to confirm the
installation.

7. In the Certificate Import Wizard welcome screen, select Local Machine as the
Store Location and click Next.

6-164 IBM MobileFirst Platform Foundation V6.3.0

8. Choose Place all certificates in the following store option and select Trusted
Root Certification Authorities as the certificate store. Click Next.

Installing and configuring 6-165

9. Choose Certificate Store Selected by User and click Finish.

6-166 IBM MobileFirst Platform Foundation V6.3.0

10. You will receive a Import successful message, select OK. The certificate is
now installed.

Results

You can now use web servers that are secured with certificates that are based on
this root CA.

Note: There is no way on Windows 8 to check whether the certificate was properly
installed. Furthermore, after you install the certificate, Windows 8 provides no
method to remove the certificate from the device.

Updating your keystore and Liberty profile configuration to use a
certificate chain
You must ensure that your server sends the whole certificate chain to client devices
on an SSL handshake.

About this task

For the client to validate the certificate path, it must have access to the full
certificate chain. To ensure that the client has access to the full certificate chain
(including intermediate certificates), ensure that all the certificates in the chain are
in the server-side keystore file.

Assuming that you have a root CA certificate, intermediate certificates, and a
server certificate, the whole chain must be sent on the HTTPS connection. These
certificates must be concatenated in one file, by concatenating in the following
order: server certificate, intermediate CA certificates (if any exist, and if so, in the
order in which they were signed), and finally the root CA.

The following example assumes that you have a server certificate
(SERVER_IDENTITY_CERT_NAME), one intermediate CA certificate

Installing and configuring 6-167

(INTERMEDIATE_CA_CERT_NAME), and a root CA (ROOT_CA_CERT_NAME).

Procedure
1. Open a terminal and navigate to a temporary working directory.
2. Concatenate your certificates to form the certificate chain.

a. Concatenate the intermediate and the root CA certificates.
cat INTERMEDIATE_CA_CERT_NAME ROOT_CA_CERT_NAME > INTERMEDIATE_CA_CHAIN_CERT_NAME

b. Add the server certificate to the chain.
cat .SERVER_IDENTITY_CERT_NAME INTERMEDIATE_CA_CHAIN_CERT_NAME > server_chain.crt

3. Export the private key and certificate chain into a .p12 keystore.
openssl pkcs12 -export -in server_chain.crt -inkey server/server_key.pem -out server/server.p12 -passout pass:passServerP12 -passin pass:passServer

4. Update your Liberty profile server.xml file.
a. Enable the SSL feature.

<featureManager>
...
<feature>ssl-1.0</feature>

...
</featureManager>

b. Create an SSL configuration.
<ssl id="mySSLSettings" keyStoreRef="myKeyStore" />
<keyStore id="myKeyStore"

location="server/server.p12"
type="PKCS12"
password="passServer12" />

c. Configure your HTTP endpoint to use this SSL configuration or set the
configuration as the default.
<sslDefault sslRef="mySSLSettings" />

What to do next

For more information, see Enabling SSL communication for the Liberty profile.

Handling MySQL stale connections
Instructions for how to configure your application server to avoid MySQL timeout
issues.

The MySQL database closes its connections after a period of non-activity on a
connection. This timeout is defined by the system variable called wait_timeout.
The default is 28000 seconds (8 hours).

When an application tries to connect to the database after MySQL closes the
connection, the following exception is generated:
com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: No operations allowed after statement closed.

The following sections provide the configuration elements specific to each
application server you can use to avoid this exception if you use the MySQL
database.

Apache Tomcat configuration

Edit the server.xml and context.xml files, and for every <Resource> element add
the following properties:
v testOnBorrow="true"

6-168 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html

v validationQuery="select 1"

For example:
<Resource name="jdbc/AppCenterDS"

type="javax.sql.DataSource"
driverClassName="com.mysql.jdbc.Driver"
...
testOnBorrow="true"
validationQuery="select 1"

/>

WebSphere Application Server Liberty profile configuration

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Edit the server.xml file and for every <dataSource> element (runtime and
Application Center databases) add a <connectionManager> element with the
agedTimeout property:
<connectionManager agedTimeout="timeout"/>

For example:
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<connectionManager agedTimeout="7h30m"/>
<jdbcDriver libraryRef="MySQLLib"/>
...

</dataSource>

WebSphere Application Server full profile configuration

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.
1. Log in to the WebSphere Application Server console.
2. Select Resources > JDBC > Data sources.
3. For each MySQL data source:

a. Click the data source.
b. Select Connection pool properties under Additional Properties.
c. Modify the value of the Aged timeout property. The value must be lower

that the MySQL wait_timeout system variable to have the connections
purged prior to the time that MySQL closes these connections.

d. Click OK.

Managing the DB2 transaction log size
When you deploy an application that is at least 40 MB with IBM MobileFirst
Platform Operations Console, you might receive a transaction log full error.

Installing and configuring 6-169

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

About this task

The following system output is an example of the transaction log full error
code.

DB2 SQL Error: SQLCODE=-964, SQLSTATE=57011

The content of each application is stored in the MobileFirst administration
database.

The active log files are defined in number by the LOGPRIMARY and LOGSECOND
database configuration parameters, and in size by the LOGFILSIZ database
configuration parameter. A single transaction cannot use more log space than
LOGFILSZ * (LOGPRIMARY + LOGSECOND) * 4096 KB.

The DB2 GET DATABASE CONFIGURATION command includes information about the log
file size, and the number of primary and secondary log files.

Depending on the largest size of the MobileFirst application that is deployed, you
might need to increase the DB2 log space.

Procedure

Using the DB2 update db cfg command, increase the LOGSECOND parameter. Space is
not allocated when the database is activated. Instead, the space is allocated only as
needed.

Installing the IBM MobileFirst Platform Operational Analytics
The IBM MobileFirst Platform Operational Analytics is delivered as two separate
WAR files. For convenience in deploying on WebSphere Application Server or
WebSphere Application Server Liberty, the IBM MobileFirst Platform Operational
Analytics is also delivered as an EAR file that contains the two WAR files.

When you develop within MobileFirst Studio, the WAR files that contain the IBM
MobileFirst Platform Operational Analytics are automatically deployed. The
MobileFirst Server forwards data to the MobileFirst tools with no additional
required configurations.

The analytics WAR and EAR files are included with the MobileFirst Server
installation. For more information, see “Distribution structure of MobileFirst
Server” on page 6-42.

The following sections describe the required steps for successfully deploying the
WAR file to the application server.

When you deploy the WAR file, the analytics console is available at:
http://<hostname>:<port>/<context-root>/console

Example:
http://localhost:9080/worklight-analytics/console

6-170 IBM MobileFirst Platform Foundation V6.3.0

Installing IBM MobileFirst Platform Operational Analytics for
WebSphere Application Server Liberty

You can install the IBM MobileFirst Platform Operational Analytics for WebSphere
Application Server Liberty.

About this task

The following steps describe how to install and run the Analytics EAR file on
WebSphere Application Server Liberty.

The IBM MobileFirst Platform Operational Analytics is protected with role-based
security, so you must bind the security roles to the application to be able to access
the console.

Procedure
1. Add the Analytics EAR file to the apps folder of your WebSphere Application

Server Liberty application server.
2. Modify the server.xml file to set the class loading delegation and bind the

security roles.
<basicRegistry id="worklight" realm="worklightRealm">

<user name="demo" password="demo"/>
<user name="monitor" password="demo"/>
<user name="deployer" password="demo"/>
<user name="operator" password="demo"/>
<user name="admin" password="admin"/>

</basicRegistry>

<application location="analytics.ear"
name="analytics-ear"
type="ear">

<application-bnd>
<security-role name="worklightadmin">

<user name="admin"/>
</security-role>
<security-role name="worklightdeployer">

<user name="deployer"/>
</security-role>
<security-role name="worklightmonitor">

<user name="monitor"/>
</security-role>
<security-role name="worklightoperator">

<user name="operator"/>
</security-role>
</application-bnd>

</application>

3. Add the following features to the WebSphere Application Server Liberty server
in the feature manager.
<feature>jsp-2.2</feature>
<feature>jndi-1.0</feature>
<feature>appSecurity-1.0</feature>

4. Start the application server and view the console in the browser.
http://localhost:9080/analytics/console

Results

The analytics console is deployed and can now be viewed in the browser.

Installing and configuring 6-171

Installing IBM MobileFirst Platform Operational Analytics for
WebSphere Application Server

You can install the IBM MobileFirst Platform Operational Analytics for WebSphere
Application Server.

About this task

The following steps describe how to install and run the Analytics EAR file on
WebSphere Application Server. If you are installing the individual WAR files on
WebSphere Application Server, follow only steps 2 - 6 on the analytics-service
WAR file after you deploy both WAR files. The class loading order must not be
altered on the analytics-ui WAR file.

Procedure
1. Deploy the EAR file to the application server, but do not start it. For more

information about the analytics files, see “Distribution structure of MobileFirst
Server” on page 6-42. For more information about how to install an EAR file on
WebSphere Application Server, see Installing enterprise application files with
the console.

2. Select the IMF Operational Analytics application from the Enterprise
Applications list.

3. Click Class loading and update detection.

6-172 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_instwiz.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_instwiz.html

4. Set the class loading order to parent last.

Installing and configuring 6-173

5. Click Manage Modules.

6-174 IBM MobileFirst Platform Foundation V6.3.0

6. Select the worklight-analytics-service module and change the class loading
order to parent last.

7. Start the IMF Operational Analytics application and go to the link in the
browser.

Installing and configuring 6-175

http://<hostname>:<port>/<context-root>/data

Results

The analytics EAR file is now ready to accept incoming analytics data.

IBM MobileFirst Platform Operational Analytics installation for
Tomcat

The individual WAR files that come packaged within the Analytics EAR file are
also provided when IBM MobileFirst Platform Foundation is installed.
worklight-analytics.war
worklight-analytics-service.war

For more information, see “Distribution structure of MobileFirst Server” on page
6-42.

Follow the normal procedures for deploying WAR files. No special configurations
need to be made for Tomcat.

Configuring the MobileFirst Server for the IBM MobileFirst
Platform Operational Analytics

You must configure the MobileFirst Server for the IBM MobileFirst Platform
Operational Analytics.

About this task

The following steps describe how to configure the MobileFirst Server for the IBM
MobileFirst Platform Operational Analytics.

Procedure
1. In the worklight.properties file, set the wl.analytics.url property to point to

the deployed WAR file.
wl.analytics.url=http://<hostname>:<port>/worklight-analytics-service/data

For example, if the Liberty server is at host.ibm.com on port 8080, then the
wl.analytics.url property is as follows:
wl.analytics.url=http://host.ibm.com:8080/worklight-analytics-service/data

2. In the worklight.properties file, set the wl.analytics.username and the
wl.analytics.password properties.

3. Optional: If you want to access the Analytics console from the MobileFirst
Operations Console, set the wl.analytics.console.url property in the
worklight.properties file.
wl.analytics.console.url=http://<hostname>:<port>/worklight-analytics/console

For example, if the Liberty server is at host.ibm.com on port 8080, then the
wl.analytics.console.url property is as follows:
wl.analytics.console.url=http://host.ibm.com:8080/worklight-analytics/console

Results

The MobileFirst Server now forwards data to the IBM MobileFirst Platform
Operational Analytics.

6-176 IBM MobileFirst Platform Foundation V6.3.0

Note: All properties in the worklight.properties file can also be set by using
JNDI. For more information about JNDI settings, see “Configuration of MobileFirst
applications on the server” on page 11-45.

Installing and configuring the Application Center
You install the Application Center as part of the MobileFirst Server installation.

The Application Center is part of MobileFirst Server. To install the Application
Center, see the following topics. Optionally, you can install the database of your
choice before you install MobileFirst Server with the Application Center.

When you install an IBM MobileFirst Platform Foundation edition through IBM
Installation Manager, the Application Center is installed in the web application
server that you designate. You have minimal additional configuration to do. For
more information, see “Configuring the Application Center after installation” on
page 6-203.

If you chose a manual setup in the installer, see the documentation of the server of
your choice.

If you intend to install applications on iOS devices through the Application Center,
you must first configure the Application Center server with SSL.

For a list of installed files and tools, see “Distribution structure of MobileFirst
Server” on page 6-42.

Installing Application Center with IBM Installation Manager
With IBM Installation Manager, you can install Application Center, create its
database, and deploy it on an Application Server.

Before you begin

Verify that the user who runs IBM Installation Manager has the privileges that are
described in “File system prerequisites” on page 6-16.

Procedure

To install IBM Application Center with IBM Installation Manager, complete the
followings steps.
1. Optional: You can manually create databases for Application Center, as

described in “Optional creation of databases.” IBM Installation Manager can
create the Application Center databases for you with default settings.

2. Run IBM Installation Manager, as described in “Running IBM Installation
Manager” on page 6-27.

3. Select Yes to the question Install IBM Application Center.

Optional creation of databases
If you want to activate the option to install the Application Center when you run
the MobileFirst Server installer, you need to have certain database access rights
that entitle you to create the tables that are required by the Application Center.

If you have sufficient database administration credentials, and if you enter the
administrator user name and password in the installer when prompted, the
installer can create the databases for you. Otherwise, you need to ask your

Installing and configuring 6-177

database administrator to create the required database for you. The database needs
to be created before you start the MobileFirst Server installer.

The following topics describe the procedure for the supported database
management systems.

Creating the DB2 database for Application Center:

During IBM MobileFirst Platform Foundation installation, the installer can create
the Application Center database for you.

About this task

The installer can create the Application Center database for you if you enter the
name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the Application Center database
for you. For more information, see the DB2 Solution user documentation.

When you manually create the database, you can replace the database name (here
APPCNTR) and the password with a database name and password of your
choosing.

Important: You can name your database and user differently, or set a different
password, but ensure that you enter the appropriate database name, user name,
and password correctly across the DB2 database setup. DB2 has a database name
limit of 8 characters on all platforms, and has a user name and password length
limit of 8 characters for UNIX and Linux systems, and 30 characters for Windows.

Procedure

1. Create a system user, for example, named wluser in a DB2 admin group such
as DB2USERS, using the appropriate commands for your operating system. Give
it a password, for example, wluser. If you want multiple instances of IBM
MobileFirst Platform Server to connect to the same database, use a different
user name for each connection. Each database user has a separate default
schema. For more information about database users, see the DB2
documentation and the documentation for your operating system.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor

v On Linux or UNIX systems, navigate to ~/sqllib/bin and enter ./db2.
v Enter database manager and SQL statements similar to the following

example to create the Application Center database, replacing the user name
wluser with your chosen user names:
CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT APPCNTR
QUIT

3. The installer can create the database tables and objects for Application Center
in a specific schema. This allows you to use the same database for Application
Center and for a MobileFirst project. If the IMPLICIT_SCHEMA authority is
granted to the user created in step 1 (the default in the database creation script
in step 2), no further action is required. If the user does not have the

6-178 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html

IMPLICIT_SCHEMA authority, you need to create a SCHEMA for the
Application Center database tables and objects.

Creating the MySQL database for Application Center:

During the MobileFirst installation, the installer can create the Application Center
database for you.

About this task

The installer can create the database for you if you enter the name and password
of the superuser account. For more information, see Securing the Initial MySQL
Accounts on your MySQL database server. Your database administrator can also
create the databases for you. When you manually create the database, you can
replace the database name (here APPCNTR) and password with a database name
and password of your choosing. Note that MySQL database names are
case-sensitive on Unix.

Procedure

1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;

Here, you need to replace Worklight-host with the name of the host on which
IBM MobileFirst Platform Foundation runs.

Creating the Oracle database for Application Center:

During the installation, the installer can create the Application Center database or
the user and schema inside an existing database for you.

About this task

The installer can create the database or user and schema inside an existing
database for you if you enter the name and password of the Oracle administrator
on the database server, and the account can be accessed through SSH. Otherwise,
the database administrator can create the database or user and schema for you.
When you manually create the database or user, you can use database names, user
names, and a password of your choosing. Note that lowercase characters in Oracle
user names can lead to trouble.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new general-purpose database named ORCL:
a. Use global database name ORCL_your_domain, and system identifier (SID)

ORCL.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts, because you must first create a user account.
c. On the Character Sets tab of the step Initialization Parameters, select Use

Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

Installing and configuring 6-179

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

d. Complete the procedure, accepting the default values.
2. Create a database user either by using Oracle Database Control, or by using

the Oracle SQLPlus command-line interpreter.
v Using Oracle Database Control.

a. Connect as SYSDBA.
b. Go to the Users page: click Server, then Users in the Security section.
c. Create a user, for example, named APPCENTER. If you want multiple

instances of IBM MobileFirst Platform Server to connect to the same
general-purpose database you created in step 1, use a different user name
for each connection. Each database user has a separate default schema.

d. Assign the following attributes:
– Profile: DEFAULT
– Authentication: password
– Default tablespace: USERS
– Temporary tablespace: TEMP
– Status: Unlocked
– Add system privilege: CREATE SESSION
– Add system privilege: CREATE SEQUENCE
– Add system privilege: CREATE TABLE
– Add quota: Unlimited for tablespace USERS

v Using the Oracle SQLPlus command-line interpreter.
The commands in the following example create a user named APPCENTER for
the database:
CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER APPCENTER IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO APPCENTER;
DISCONNECT;

Installing MobileFirst Server in WebSphere Application Server
Network Deployment
To install IBM MobileFirst Platform Server in a set of WebSphere Application
Server Network Deployment servers, run IBM Installation Manager on the machine
where the deployment manager is running.

Procedure
1. When IBM Installation Manager prompts you to specify the database type,

select any option other than Apache Derby. IBM MobileFirst Platform
Foundation supports Apache Derby only in embedded mode, and this choice is
incompatible with deployment through WebSphere Application Server Network
Deployment.

2. In the installer panel in which you specify the WebSphere Application Server
installation directory, select the deployment manager profile.
Attention: Do not select an application server profile and then a single
managed server: doing so causes the deployment manager to overwrite the
configuration of the server regardless of whether you install on the machine on
which the deployment manager is running or on a different machine.

3. Select the required scope depending on where you want MobileFirst Server to
be installed. The following table lists the available scopes:

6-180 IBM MobileFirst Platform Foundation V6.3.0

Table 6-45. Selecting the required scope

Scope Explanation

Cell Installs MobileFirst Server in all application
servers of the cell.

Cluster Installs MobileFirst Server in all application
servers of the specified cluster.

Node (excluding clusters) Installs MobileFirst Server in all application
servers of the specified node that are not in
a cluster.

Server Installs MobileFirst Server in the specified
server, which is not in a cluster.

4. Restart the target servers by following the procedure in “Completing the
installation.”

Results

The installation has no effect outside the set of servers in the specified scope. The
JDBC providers and JDBC data sources are defined with the specified scope. The
entities that have a cell-wide scope (the applications and, for DB2, the
authentication alias) have a suffix in their name that makes them unique. So, you
can install MobileFirst Server in different configurations or even different versions
of MobileFirst Server, in different clusters of the same cell.

Note: Because the JDBC driver is installed only in the specified set of application
servers, the Test connection button for the JDBC data sources in the WebSphere
Application Server administration console of the deployment manager might not
work.

What to do next

You need to complete the following additional configuration:
v If you use a front-end HTTP server, you need to configure the public URL

Completing the installation
When installation is complete, you must restart the web application server in
certain cases.

You must restart the web application server in the following circumstances:
v When you are using WebSphere Application Server with DB2 as database type.
v When you are using WebSphere Application Server and have opened it without

the application security enabled before you installed IBM MobileFirst Platform
Application Center or MobileFirst Server.
The MobileFirst installer must activate the application security of WebSphere
Application Server (if not active yet) to install Application Center. Then, for this
activation to take place, restart the application server after the installation of
MobileFirst Server completed.

v When you are using WebSphere Application Server Liberty or Apache Tomcat.
v After you upgraded from a previous version of MobileFirst Server.

If you are using WebSphere Application Server Network Deployment and chose an
installation through the deployment manager:

Installing and configuring 6-181

v You must restart the servers that were running during the installation and on
which the MobileFirst Server web applications are installed.
To restart these servers with the deployment manager console, select
Applications > Application Types > WebSphere enterprise applications >
IBM_Application_Center_Services > Target specific application status.

v You do not have to restart the deployment manager or the node agents.

Note: Only the Application Center is installed in the application server. A
MobileFirst Operations Console is not installed by default. To install a MobileFirst
Operations Console, you need to follow the steps in “Deploying MobileFirst
projects” on page 11-1.

Default logins and passwords created by IBM Installation
Manager for the Application Center
IBM Installation Manager creates the logins by default for the Application Center,
according to your application server. You can use these logins to test the
Application Center.

WebSphere Application Server full profile

The login appcenteradmin is created with a password that is generated and
displayed during the installation.

All users authenticated in the application realm are also authorized to access the
appcenteradmin role. This is not meant for a production environment, especially if
WebSphere Application Server is configured with a single security domain.

For more information about how to modify these logins, see “Configuring
WebSphere Application Server full profile” on page 6-204.

WebSphere Application Server Liberty profile
v The login demo is created in the basicRegistry with the password demo.
v The login appcenteradmin is created in the basicRegistry with the password

admin.

For more information about how to modify these logins, see “Configuring
WebSphere Application Server Liberty profile” on page 6-206.

Apache Tomcat
v The login demo is created with the password demo.
v The login guest is created with the password guest.
v The login appcenteradmin is created with the password admin.

For more information about how to modify these logins, see “Configuring Apache
Tomcat” on page 6-207.

Manual installation of Application Center
A reconfiguration is necessary for the MobileFirst Server to use a database or
schema that is different from the one that was specified during its installation. This
reconfiguration depends on the type of database and on the kind of application
server.

Restriction: Whether you install Application Center with IBM Installation Manager
as part of the MobileFirst Server installation or manually, remember that "rolling

6-182 IBM MobileFirst Platform Foundation V6.3.0

updates" of Application Center are not supported. That is, you cannot install two
versions of Application Center (for example, V5.0.6 and V6.0.0) that operate on the
same database. See “In-place upgrade or rolling upgrade to MobileFirst Server
V6.3.0” on page 7-25.

Configuring the DB2 database manually for IBM MobileFirst
Platform Application Center
You configure the DB2 database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the DB2 database for

Application Center” on page 6-178.
2. Create the tables in the database. This step is described in “Setting up your

DB2 database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your DB2 database manually for Application Center:

You can set up your DB2 database for Application Center manually.

About this task

Set up your DB2 database for Application Center by creating the database schema.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password worklight. For more information, see the DB2 documentation and the
documentation for your operating system.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across
the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called APPCNTR:
CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

4. Run DB2 with the following commands to create the APPCNTR tables, in a
schema named APPSCHM (the name of the schema can be changed). This
command can be run on an existing database that has a page size compatible
with the one defined in step 3.
db2 CONNECT TO APPCNTR
db2 SET CURRENT SCHEMA = ’APPSCHM’
db2 -vf product_install_dir/ApplicationCenter/databases/create-appcenter-db2.sql -t

Installing and configuring 6-183

Configuring Liberty profile for DB2 manually for Application Center:

You can set up and configure your DB2 database manually for Application Center
with WebSphere Application Server Liberty profile.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/db2.
If that directory does not exist, create it. You can retrieve the file in one of two
ways:
v Download it from DB2 JDBC Driver Versions.
v Fetch it from the db2_install_dir/java on the DB2 server directory.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file as follows:
In this path, you can replace worklightServer by the name of your server.
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="APPCNTR" currentSchema="APPSCHM"

serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>

</dataSource>

Theworklight placeholder after user= is the name of the system user with
CONNECT access to the APPCNTR database that you have previously created.
The worklight placeholder after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
worklight accordingly. Also, replace db2server with the host name of your DB2
server (for example, localhost, if it is on the same computer).
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

Configuring WebSphere Application Server for DB2 manually for Application
Center:

You can set up and configure your DB2 database manually for Application Center
with WebSphere Application Server.

About this task

Complete the DB2 database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a stand-alone server, you can use a directory such as

was_install_dir/optionalLibraries/IBM/Worklight/db2.

6-184 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

v For deployment to a WebSphere Application Server ND cell, use
was_install_dir/profiles/profile-name/config/cells/cell-name/
Worklight/db2.

v For deployment to a WebSphere Application Server ND cluster, use
was_install_dir/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/db2.

v For deployment to a WebSphere Application Server ND node, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/db2.

v For deployment to a WebSphere Application Server ND server, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/db2.

If this directory does not exist, create it.
2. Add the DB2 JDBC driver JAR file and its associated license files, if any, to the

directory that you determined in step 1.
You can retrieve the driver file in one of two ways:
v Download it from DB2 JDBC Driver Versions.
v Fetch it from the db2_install_dir/java directory on the DB2 server.

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database type to DB2.
e. Set Provider type to DB2 Using IBM JCC Driver.
f. Set Implementation Type to Connection pool data source.
g. Set Name to DB2 Using IBM JCC Driver.
h. Click Next.
i. Set the class path to the set of JAR files in the directory that you determined

in step 1, replacing was_install_dir/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

j. Do not set Native library path.
k. Click Next.
l. Click Finish.
m. The JDBC provider is created.
n. Click Save.

4. Create a data source for the Application Center database:
a. Click Resources > JDBC > Data Sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Set the Data source name to Application Center Database.
e. Set JNDI Name to jdbc/AppCenterDS.
f. Click Next.
g. Enter properties for the data source, for example:
v Driver type: 4
v Database Name: APPCNTR
v Server name: localhost

Installing and configuring 6-185

http://www.ibm.com/support/docview.wss?uid=swg21363866

v Port number: 50000 (default)
Leave Use this data source in (CMP) selected.

h. Click Next.
i. Create JAAS-J2C authentication data, specifying the DB2 user name and

password as its properties. If necessary, go back to the data source creation
wizard, by repeating steps 4a on page 6-185 to 4h.

j. Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

k. Click Next and Finish.
l. Click Save.
m. In Resources > JDBC > Data sources, select the new data source.
n. Click WebSphere Application Server data source properties.
o. Select the Non-transactional data source check box.
p. Click OK.
q. Click Save.
r. Click Custom properties for the data source, select property currentSchema,

and set the value to the schema used to create the Application Center tables
(APPSCHM in this example).

5. Test the data source connection by selecting Data Source and clicking Test
Connection.

Configuring Apache Tomcat for DB2 manually for Application Center:

If you want to manually set up and configure your DB2 database for Application
Center with Apache Tomcat server, use the following procedure.

About this task

Before you contiue, complete the DB2 database setup procedure.

Procedure

1. Add the DB2 JDBC driver JAR file.
You can retrieve this JAR file in one of the following ways:
v Download it from DB2 JDBC Driver Versions.
v Or fetch it from the directory db2_install_dir/java on the DB2 server) to

$TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example.
<Resource auth="Container"

driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/AppCenterDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/APPCNTR:currentSchema=APPSCHM;"/>

The worklight parameter after username= is the name of the system user with
"CONNECT" access to the APPCNTR database that you have previously created.
The password parameter after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these entries accordingly.
DB2 enforces limits on the length of user names and passwords.

6-186 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

v For UNIX and Linux systems: 8 characters
v For Windows: 30 characters

3. Insert this statement in the server.xml file, as indicated in “Configuring
Apache Tomcat for Application Center manually” on page 6-202.

Configuring the Apache Derby database manually for Application
Center
You configure the Apache Derby database manually by creating the database and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database and the tables within them. This step is described in

“Setting up your Apache Derby database manually for Application Center”
2. Configure the application server to use this database setup. Go to one of the

following topics:
v “Configuring Liberty profile for Derby manually for Application Center”
v “Configuring WebSphere Application Server for Derby manually for

Application Center” on page 6-188
v “Configuring Apache Tomcat for Derby manually for Application Center” on

page 6-190

Setting up your Apache Derby database manually for Application Center:

You can set up your Apache Derby database for Application Center manually.

About this task

Set up your Apache Derby database for Application Center by creating the database
schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from Apache Derby: Downloads.

For supported versions of Apache Derby, see “System requirements for using
IBM MobileFirst Platform Foundation” on page 2-12.
The script displays ij version number.

2. At the command prompt, enter the following commands:
connect ’jdbc:derby:APPCNTR;user=APPCENTER;create=true’;
run ’<product_install_dir>/ApplicationCenter/databases/create-appcenter-derby.sql’;
quit;

Configuring Liberty profile for Derby manually for Application Center:

If you want to manually set up and configure your Apache Derby database for
Application Center with WebSphere Application Server Liberty profile, use the
following procedure.

Installing and configuring 6-187

http://db.apache.org/derby/derby_downloads

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:
<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/APPCNTR" user="APPCENTER"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool"/>

</dataSource>

Configuring WebSphere Application Server for Derby manually for Application
Center:

You can set up and configure your Apache Derby database manually for
Application Center with WebSphere Application Server.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
If this directory does not exist, create it.
v For a standalone server, you can use a directory such as

was_install_dir/optionalLibraries/IBM/Worklight/derby.
v For deployment to a WebSphere Application Server ND cell, use

was_install_dir/profiles/profile-name/config/cells/cell-name/
Worklight/derby.

v For deployment to a WebSphere Application Server ND cluster, use
was_install_dir/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/derby.

v For deployment to a WebSphere Application Server ND node, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/derby.

v For deployment to a WebSphere Application Server ND server, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/derby.

2. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/
lib/derby.jar to the directory determined in step 1.

6-188 IBM MobileFirst Platform Foundation V6.3.0

3. Set up the JDBC provider.
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database Type to User-defined.
e. Set class Implementation name to

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40.
f. Set Name to Worklight - Derby JDBC Provider.
g. Set Description to Derby JDBC provider for Worklight.
h. Click Next.
i. Set the Class path to the JAR file in the directory determined in step 1,

replacing was_install_dir/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

j. Click Finish.
4. Create the data source for the Worklight database.

a. In the WebSphere Application Server console, click Resources > JDBC >
Data sources.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source Name to Application Center Database.
e. Set JNDI name to jdbc/AppCenterDS.
f. Click Next.
g. Select the existing JDBC Provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the Application Center Database datasource that you

created.
m. Under Additional Properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the APPCNTR database that is created in “Setting up

your Apache Derby database manually for Application Center” on page
6-187.

p. Click OK.
q. Click Save.
r. At the top of the page, click Application Center Database.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.
u. Click OK.
v. Click Save.
w. In the table, select the Application Center Database datasource that you

created.

Installing and configuring 6-189

x. Optional: Only if you are not on the console of a WebSphere Application
Server Deployment Manager, click test connection.

Configuring Apache Tomcat for Derby manually for Application Center:

You can set up and configure your Apache Derby database manually for
Application Center with the Apache Tomcat application server.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/
lib/derby.jar to the directory $TOMCAT_HOME/lib.

2. Prepare an XML statement that defines the data source, as shown in the
following code example.

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/AppCenterDS"
username="APPCENTER"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/APPCNTR"/>

3. Insert this statement in the server.xml file, as indicated in “Configuring
Apache Tomcat for Application Center manually” on page 6-202.

Configuring the MySQL database manually for Application Center
You configure the MySQL database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the MySQL database

for Application Center” on page 6-179.
2. Create the tables in the database. This step is described in “Setting up your

MySQL database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your MySQL database manually for Application Center:

You can set up your MySQL database for Application Center manually.

About this task

Complete the following procedure to set up your MySQL database.

Procedure

1. Create the database schema.
a. Run a MySQL command line client with the option -u root.
b. Enter the following commands:

CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’Worklight-host’IDENTIFIED BY ’worklight’;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
FLUSH PRIVILEGES;

6-190 IBM MobileFirst Platform Foundation V6.3.0

USE APPCNTR;
SOURCE product_install_dir/ApplicationCenter/databases/create-appcenter-mysql.sql;

Where worklight before the "at" sign (@) is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM MobileFirst Platform Foundation runs.

2. Add the following property to your MySQL option file:
max_allowed_packet=256M

For more information about option files, see the MySQL documentation at
MySQL.

Configuring Liberty profile for MySQL manually for Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server Liberty profile, use the
following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:
<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="APPCNTR"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>

</dataSource>

where worklight after user= is the user name, worklight after password= is this
user's password, and mysqlserver is the host name of your MySQL server (for
example, localhost, if it is on the same machine).

Configuring WebSphere Application Server for MySQL manually for
Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server, use the following
procedure.

Installing and configuring 6-191

http://dev.mysql.com
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

About this task

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/mysql.
v For deployment to a WebSphere Application Server ND cell, use

WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight/mysql.

v For deployment to a WebSphere Application Serverr ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/mysql.

v For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/mysql.

v For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/mysql.

If this directory does not exist, create it.
2. Add the MySQL JDBC driver JAR file downloaded from Download

Connector/J to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Create a JDBC provider named MySQL.
e. Set Database type to User defined.
f. Set Scope to Cell.
g. Set Implementation class to

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.
h. Set Database classpath to the JAR file in the directory determined in step 1,

replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

i. Save your changes.
4. Create a data source for the IBM Application Center database:

a. Click Resources > JDBC > Data Sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Type any name (for example, Application Center Database).

6-192 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

e. Set JNDI Name to jdbc/AppCenterDS.
f. Use the existing JDBC Provider MySQL, defined in the previous step.
g. Set Scope to New.
h. On the Configuration tab, select Non-transactional data source.
i. Click Next a number of times, leaving all other settings as defaults.
j. Save your changes.

5. Set the custom properties of the new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

portNumber = 3306
relaxAutoCommit=true
databaseName = APPCNTR
serverName = the host name of the MySQL server
user = the user name of the MySQL server
password = the password associated with the user name

6. Set the WebSphere Application Server custom properties of the new data
source.
a. In Resources > JDBC > Data sources, select the new data source.
b. Click WebSphere Application Server data source properties.
c. Select Non-transactional data source.
d. Click OK.
e. Click Save.

Configuring Apache Tomcat for MySQL manually for Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with the Apache Tomcat server, use the following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/lib directory.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for Application Center manually” on
page 6-202.

<Resource name="jdbc/AppCenterDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/APPCNTR"/>

Installing and configuring 6-193

Configuring the Oracle database manually for IBM MobileFirst
Platform Application Center
You configure the Oracle database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the Oracle database for

Application Center” on page 6-179.
2. Create the tables in the database. This step is described in “Setting up your

Oracle database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your Oracle database manually for Application Center:

You can set up your Oracle database for Application Center manually.

About this task

Complete the following procedure to set up your Oracle database.

Procedure

1. Ensure that you have at least one Oracle database.
In many Oracle installations, the default database has the SID (name) ORCL. For
best results, specify Unicode (AL32UTF8) as the character set of the database.
If the Oracle installation is on a UNIX or Linux computer, make sure that the
database is started next time the Oracle installation is restarted. To this effect,
make sure that the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create the user APPCENTER, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.
v To create the user for the Application Center database/schema, by using

Oracle Database Control, proceed as follows:
a. Connect as SYSDBA.
b. Go to the Users page.
c. Click Server, then Users in the Security section.
d. Create a user, named APPCENTER with the following attributes:

Profile: DEFAULT
Authentication: password
Default tablespace: USERS
Temporary tablespace: TEMP
Status: Unlocked
Add system privilege: CREATE SESSION
Add system privilege: CREATE SEQUENCE
Add system privilege: CREATE TABLE
Add quota: Unlimited for tablespace USERS

v To create the user by using Oracle SQLPlus, enter the following commands:
CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER APPCENTER IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO APPCENTER;
DISCONNECT;

3. Create the tables for the Application Center database:

6-194 IBM MobileFirst Platform Foundation V6.3.0

a. Using the Oracle SQLPlus command-line interpreter, create the tables for
the Application Center database by running the create-appcenter-
oracle.sql file:
CONNECT APPCENTER/APPCENTER_password@ORCL
@product_install_dir/ApplicationCenter/databases/create-appcenter-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:
a. Download the JDBC driver from the Oracle website at Oracle: JDBC, SQLJ,

Oracle JPublisher and Universal Connection Pool (UCP):
b. Ensure that the Oracle JDBC driver is in the system path. The driver file is

ojdbc6.jar.

Configuring Liberty profile for Oracle manually for Application Center:

You can set up and configure your Oracle database manually for Application
Center with WebSphere Application Server Liberty profile by adding the JAR file
of the Oracle JDBC driver.

About this task

Before continuing, set up the Oracle database.

Procedure

1. Add the JAR file of the Oracle JDBC driver to $LIBERTY_HOME/wlp/usr/shared/
resources/oracle.
If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/wlp/
usr/servers/mobileFirstServer/server.xml file as shown in the following
JNDI code example:

Note: In this path, you can replace mobileFirstServer with the name of your
server.
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin"

serverName="oserver" portNumber="1521"
databaseName="ORCL"
user="APPCENTER" password="APPCENTER_password"/>

</dataSource>

where
v APPCENTER after user= is the user name,
v APPCENTER_password after password= is this user's password, and
v oserver is the host name of your Oracle server (for example, localhost if it

is on the same machine).

What to do next

For more steps to configure Application Center, see “Deploying the Application
Center WAR files and configuring the application server manually” on page 6-198.

Installing and configuring 6-195

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Configuring WebSphere Application Server for Oracle manually for Application
Center:

If you want to manually set up and configure your Oracle database for Application
Center with WebSphere Application Server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/oracle.
v For deployment to a WebSphere Application Server ND cell, use

WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight/oracle.

v For deployment to a WebSphere Application Server ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/oracle.

v For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/oracle.

v For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/oracle.

If this directory does not exist, create it.
2. Add the Oracle ⌂ojdbc6.jar file downloaded from JDBC and Universal

Connection Pool (UCP) to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Complete the JDBC Provider fields as indicated in the following table:

Table 6-46. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver

Implementation type Connection pool data source

Name Oracle JDBC Driver

e. Click Next.
f. Set the class path to the JAR file in the directory determined in step 1,

replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}

g. Click Next.
The JDBC provider is created.

6-196 IBM MobileFirst Platform Foundation V6.3.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

4. Create a data source for the Worklight database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source name to Oracle JDBC Driver DataSource.
e. Set JNDI name to jdbc/AppCenterDS.
f. Click Next.
g. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.
h. Click Next.
i. Set the URL value to jdbc:oracle:thin:@oserver:1521:ORCL, where oserver is

the host name of your Oracle server (for example, localhost, if it is on the
same machine).

j. Click Next twice.
k. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource

> Custom properties.
l. Set oracleLogPackageName to oracle.jdbc.driver.
m. Set user = APPCENTER.
n. Set password = APPCENTER_password.
o. Click OK and save the changes.
p. In Resources > JDBC > Data sources, select the new data source.
q. Click WebSphere Application Server data source properties.
r. Select the Non-transactional data source check box.
s. Click OK.
t. Click Save.

Configuring Apache Tomcat for Oracle manually for Application Center:

If you want to manually set up and configure your Oracle database for Application
Center with the Apache Tomcat server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for Application Center manually” on
page 6-202

<Resource name="jdbc/AppCenterDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521:ORCL"
username="APPCENTER"
password="APPCENTER_password"/>

Where APPCENTER after username= is the name of the system user with
"CONNECT" access to the APPCNTR database that you have previously created,

Installing and configuring 6-197

and APPCENTER_password after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these values accordingly.

Deploying the Application Center WAR files and configuring the
application server manually
The procedure to manually deploy the Application Center WAR files manually to
an application server depends on the type of application server being configured.

These manual instructions assume that you are familiar with your application
server.

Note: Using the MobileFirst Server installer to install Application Center is more
reliable than installing manually, and should be used whenever possible.

If you prefer to use the manual process, follow these steps to configure your
application server for Application Center. You must deploy the
appcenterconsole.war and applicationcenter.war files to your Application Center.
The files are located in product_install_dir/ApplicationCenter/console.

Configuring the Liberty profile for Application Center manually:

To configure WebSphere Application Server Liberty profile manually for
Application Center, you must modify the server.xml file.

About this task

In addition to modifications for the databases that are described in “Manual
installation of Application Center” on page 6-182, you must make the following
modifications to the server.xml file.

Procedure

1. Ensure that the <featureManager> element contains at least the following
<feature> elements:
<feature>ssl-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>appSecurity-1.0</feature>

Since Liberty 8.5.5, the feature appSecurity-2.0 is available, which can also be
used instead of appSecurity-1.0.

2. Add the following declarations for Application Center:
<!-- The directory with binaries of the ’aapt’ program, from the Android SDK’s

platform-tools package. -->
<jndiEntry jndiName="android.aapt.dir" value="product_install_dir/ApplicationCenter/tools/android-sdk"/>
<!-- Declare the IBM Application Center Console application. -->
<application id="appcenterconsole"

name="appcenterconsole"
location="appcenterconsole.war"
type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
<classloader delegation="parentLast">
<commonLibrary>

<fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_*.jar"/>

6-198 IBM MobileFirst Platform Foundation V6.3.0

</commonLibrary>
</classloader>

</application>

<!-- Declare the IBM Application Center Services application. -->
<application id="applicationcenter"

name="applicationcenter"
location="applicationcenter.war"
type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
<classloader delegation="parentLast">
<commonLibrary>

<fileset dir="${wlp.install.dir}/lib"
includes="com.ibm.ws.crypto.passwordutil_*.jar"/>

</commonLibrary>
</classloader>

</application>

<!-- Declare the user registry for the IBM Application Center. -->
<basicRegistry id="applicationcenter-registry"

realm="ApplicationCenter">
<!-- The users defined here are members of group "appcentergroup",

thus have role "appcenteradmin", and can therefore perform
administrative tasks through the Application Center Console. -->

<user name="appcenteradmin" password="admin"/>
<user name="demo" password="demo"/>
<group name="appcentergroup">
<member name="appcenteradmin"/>
<member name="demo"/>

</group>
</basicRegistry>

The groups and users that are defined in the basicRegistry are example logins
that you can use to test Application Center. Similarly, the groups that are
defined in the <security-role name="appcenteradmin"> for the Application
Center console and the Application Center service are examples. For more
information about how to modify these groups, see “Configuring WebSphere
Application Server Liberty profile” on page 6-206.

3. Copy the Application Center WAR files to your Liberty server.
v On UNIX and Linux systems:

mkdir -p $LIBERTY_HOME/wlp/usr/servers/<server_name>/apps
cp product_install_dir/ApplicationCenter/console/*.war

v On Windows systems:
mkdir LIBERTY_HOME\wlp\usr\servers\<server_name>\apps

copy /B product_install_dir\ApplicationCenter\console\appcenterconsole.war LIBERTY_HOME\wlp\usr\servers\<server_name>\apps\appcenterconsole.war
copy /B product_install_dir\ApplicationCenter\console\applicationcenter.war LIBERTY_HOME\wlp\usr\servers\<server_name>\apps\applicationcenter.war

4. Start the Liberty server.

What to do next

For more steps to configure Application Center, see “Configuring WebSphere
Application Server Liberty profile” on page 6-206.

Configuring WebSphere Application Server for Application Center manually:

To configure WebSphere Application Server for Application Center manually, you
must configure variables, custom properties, and class loader policies.

Installing and configuring 6-199

Before you begin

These instructions assume that a stand-alone profile exists and that the application
server is using the default ports.

Procedure

1. Log on to the WebSphere Application Server administration console for your
IBM MobileFirst Platform Server.
The address is of the form http://server.com:9060/ibm/console, where server
is the name of the server.

2. Enable application security.
a. Click Security > Global Security.
b. Ensure that Enable administrative security is selected. Application security

can be enabled only if administrative security is enabled.
c. Ensure that Enable application security is selected.
d. Click OK.
e. Save the changes.

For more information, see Enabling security.
3. Create the Application Center JDBC data source and provider.

See the instructions in the appropriate subsection in “Manual installation of
Application Center” on page 6-182.

4. Install the Application Center console WAR file.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Navigate to the MobileFirst Server installation directory
product_install_dir/ApplicationCenter/console.

c. Select appcenterconsole.war, and then click Next.
d. On the How do you want to install the application? page, click Detailed,

and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the "Map context roots for web modules" page.
g. In the Context Root field, type /appcenterconsole.
h. Click Next.
i. Click Finish.

5. Configure the class loader policies and then start the application:
a. Click the Manage Applications link, or click Applications > WebSphere

Enterprise Applications.
b. From the list of applications, click appcenterconsole_war.
c. In the Detail Properties section, click the Class loading and update

detection link.
d. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
e. Click OK.
f. In the Modules section, click Manage Modules.
g. From the list of modules, click ApplicationCenterConsole.

6-200 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSEQTP_7.0.0/com.ibm.websphere.base.doc/info/aes/ae/tsec_csec2.html

h. In the Class loader order pane, click Classes loaded with local class loader
first (parent last).

i. Click OK twice.
j. Click Save.
k. Click Select for appcenterconsole_war and click Start.

6. Repeat step 4, selecting applicationcenter.war in substep c, and using a Context
Root of /applicationcenter in substep g.

7. Repeat step 5, selecting applicationcenter.war from the list of applications in
substep b.

8. Review the server class loader policy: Click Servers > Server Types >
Application Servers and then select the server.
v If the class loader policy is set to Multiple, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-last, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-first, change the class loader policy to Multiple, and set the class
loader order of all applications other than MobileFirst applications to
parent-first.

9. Configure a JNDI environment entry to indicate the directory with binary files
of the aapt program, from the Android SDK platform-tools package.
a. Determine a suitable directory for the aapt binary files in the WebSphere

Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/android-sdk.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/Worklight/android-sdk.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/Worklight/android-sdk.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/Worklight/android-sdk.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/Worklight/android-sdk.

b. Copy the product_install_dir/ApplicationCenter/tools/android-sdk
directory to the directory that you determined in 9a.

c. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

d. Configure the environment entry (JNDI property) android.aapt.dir, and set
as its value the directory that you determined in 9a, replacing
WAS_INSTALL_DIR/profiles/profile-name with the WebSphere Application
Server variable reference ${USER_INSTALL_ROOT}.

Results

You can now access the Application Center at http://<server>:<port>/
appcenterconsole, where server is the host name of your server and port is the port
number (by default 9080).

Installing and configuring 6-201

What to do next

For more steps to configure the Application Center, see “Configuring WebSphere
Application Server full profile” on page 6-204.

Configuring Apache Tomcat for Application Center manually:

To configure Apache Tomcat for Application Center manually, you must copy JAR
and WAR files to Tomcat, add database drivers, edit the server.xml file, and then
start Tomcat.

Procedure

1. Add the database drivers to the Tomcat lib directory. See the instructions for
the appropriate DBMS in “Manual installation of Application Center” on page
6-182.

2. Edit tomcat_install_dir/conf/server.xml.
a. Uncomment the following element, which is initially commented out:

<Valve className="org.apache.catalina.authenticator.SingleSignOn" />.
b. Declare the Application Center console and services applications and a user

registry:
<!-- Declare the IBM Application Center Console application. -->
<Context path="/appcenterconsole" docBase="appcenterconsole">

<!-- Define the AppCenter services endpoint in order for the AppCenter
console to be able to invoke the REST service.
You need to enable this property if the server is behind a reverse
proxy or if the context root of the Application Center Services
application is different from ’/applicationcenter’. -->

<!-- <Environment name="ibm.appcenter.services.endpoint"
value="http://proxy-host:proxy-port/applicationcenter"
type="java.lang.String" override="false"/>

-->

</Context>

<!-- Declare the IBM Application Center Services application. -->
<Context path="/applicationcenter" docBase="applicationcenter">
<!-- The directory with binaries of the ’aapt’ program, from

the Android SDK’s platform-tools package. -->
<Environment name="android.aapt.dir"

value="product_install_dir/ApplicationCenter/tools/android-sdk"
type="java.lang.String" override="false"/>

<!-- The protocol of the application resources URI.
This property is optional. It is only needed if the protocol
of the external and internal URI are different. -->

<!-- <Environment name="ibm.appcenter.proxy.protocol"
value="http" type="java.lang.String" override="false"/>

-->

<!-- The hostname of the application resources URI. -->
<!-- <Environment name="ibm.appcenter.proxy.host"

value="proxy-host"
type="java.lang.String" override="false"/>

-->

<!-- The port of the application resources URI.
This property is optional. -->

<!-- <Environment name="ibm.appcenter.proxy.port"
value="proxy-port"
type="java.lang.Integer" override="false"/> -->

<!-- Declare the IBM Application Center Services database. -->

6-202 IBM MobileFirst Platform Foundation V6.3.0

<!-- <Resource name="jdbc/AppCenterDS" type="javax.sql.DataSource" ... -->

</Context>

<!-- Declare the user registry for the IBM Application Center.
The MemoryRealm recognizes the users defined in conf/tomcat-users.xml.
For other choices, see Apache Tomcat’s "Realm Configuration HOW-TO"
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html . -->

<Realm className="org.apache.catalina.realm.MemoryRealm"/>

where you fill in the <Resource> element as described in one of the sections:
v “Configuring Apache Tomcat for DB2 manually for Application Center”

on page 6-186
v “Configuring Apache Tomcat for Derby manually for Application Center”

on page 6-190
v “Configuring Apache Tomcat for MySQL manually for Application

Center” on page 6-193
v “Configuring Apache Tomcat for Oracle manually for Application Center”

on page 6-197
3. Copy the Application Center WAR files to Tomcat.
v On UNIX and Linux systems: cp product_install_dir/ApplicationCenter/

console/*.war TOMCAT_HOME/webapps

v On Windows systems:
copy /B product_install_dir\ApplicationCenter\console\appcenterconsole.war tomcat_install_dir\webapps\appcenterconsole.war
copy /B product_install_dir\ApplicationCenter\console\applicationcenter.war tomcat_install_dir\webapps\applicationcenter.war

4. Start Tomcat.

What to do next

For more steps to configure the Application Center, see “Configuring Apache
Tomcat” on page 6-207.

Configuring the Application Center after installation
You configure user authentication and choose an authentication method;
configuration procedure depends on the web application server that you use.

The Application Center requires user authentication.

You must perform some configuration after the installer deploys the Application
Center web applications in the web application server.

The Application Center has two Java Platform, Enterprise Edition (JEE) security
roles defined:
v The appcenteruser role that represents an ordinary user of the Application

Center who can install mobile applications from the catalog to a mobile device
belonging to that user.

v The appcenteradmin role that represents a user who can perform administrative
tasks through the Application Center console.

You must map the roles to the corresponding sets of users.

Installing and configuring 6-203

If you choose to use an authentication method through a user repository such as
LDAP, you can configure the Application Center so that you can use users and
groups with the user repository to define the Access Control List (ACL) of the
Application Center. This procedure is conditioned by the type and version of the
web application server that you use. See “Managing users with LDAP” on page
6-210 for information about LDAP used with the Application Center.

After you configure authentication of the users of the Application Center, which
includes configuring LDAP if you plan to use it, you can, if necessary, define the
endpoint of the application resources. You must then build the Application Center
mobile client. The mobile client is used to install applications on mobile devices.
See “Preparations for using the mobile client” on page 12-68 for how to build the
Application Center mobile client.
Related concepts:
“Managing users with LDAP” on page 6-210
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.
Related reference:
Preparations for using the mobile client
To use the mobile client to install apps on mobile devices, you must either generate
the app by using the provided Eclipse and Visual Studio projects or use the
version of the client provided for Android, iOS, Windows Phone, Windows 8, or
BlackBerry directly.

Configuring WebSphere Application Server full profile
Configure security by mapping the Application Center JEE roles to a set of users
for both web applications.

Before you begin

Review the definition of roles at “Configuring the Application Center after
installation” on page 6-203.

Procedure

You define the basics of user configuration in the WebSphere Application Server
console. Access to the console is usually by this address:
https://localhost:9043/ibm/console/

1. Select Security > Global Security.

Figure 6-8. JEE security roles of the Application Center and the components that they influence

6-204 IBM MobileFirst Platform Foundation V6.3.0

2. Select Security Configuration Wizard to configure users.
You can manage individual user accounts by selecting Users and Groups >
Manage Users.

3. Map the roles appcenteruser and appcenteradmin to a set of users.
a. Select Servers > Server Types > WebSphere application servers.
b. Select the server.
c. In the Configuration tab, select Applications > Enterprise applications.

d. Select IBM_Application_Center_Services.
e. In the Configuration tab, select Details > Security role to user/group

mapping.

f. Perform the necessary customization.
g. Click OK.

Figure 6-9. Mapping the Application Center roles

Figure 6-10. Mapping the appcenteruser and appcenteradmin roles: user groups

Installing and configuring 6-205

h. Repeat steps c to g to map the roles for the console web application; in step
d, select IBM_Application_Center_Console.

i. Click Save to save the changes.

Configuring WebSphere Application Server Liberty profile
Configure the JEE security roles of the Application Center and the data source in
the server.xml file.

Before you begin

Review the definition of roles at “Configuring the Application Center after
installation” on page 6-203.

In WebSphere Application Server Liberty profile, you configure the roles of
appcenteruser and appcenteradmin in the server.xml configuration file of the
server.

About this task

To configure the security roles, you must edit the server.xml file. In the
<application-bnd> element of each <application> element, create two
<security-role> elements. One <security-role> element is for the appcenteruser
role and the other is for the appcenteradmin role. Map the roles to the appropriate
user group name appcenterusergroup or appcenteradmingroup. These groups are
defined through the <basicRegistry> element. You can customize this element or
replace it entirely with an <ldapRegistry> element or a <safRegistry> element.

Then, to maintain good response times with a large number of installed
applications, for example with 80 applications, you should configure a connection
pool for the Application Center database.

Procedure
1. Edit the server.xml file.

For example:
<security-role name="appcenteradmin">

<group name="appcenteradmingroup"/>
</security-role>
<security-role name="appcenteruser">

<group name="appcenterusergroup"/>
</security-role>

You must include this example in the <application-bnd> element of each
<application> element: the appcenterconsole and applicationcenter
applications.
Replace the <security-role> elements that have been created during
installation for test purposes.
<basicRegistry id="appcenter">

<user name="admin" password="admin"/>
<user name="guest" password="guest"/>
<user name="demo" password="demo"/>
<group name="appcenterusergroup">
<member name="guest"/>
<member name="demo"/>

</group>
<group name="appcenteradmingroup">
<member name="admin" id="admin"/>

</group>
</basicRegistry>

6-206 IBM MobileFirst Platform Foundation V6.3.0

This example shows a definition of users and groups in the basicRegistry of
WebSphere Application Server Liberty. For more information about configuring
a user registry for WebSphere Application Server Liberty profile, see
Configuring a user registry for the Liberty profile.

2. Edit the server.xml file to define the AppCenterPool size.
<connectionManager id="AppCenterPool" minPoolSize="10" maxPoolSize="40"/>

3. In the <dataSource> element, define a reference to the connection manager:
<dataSource id="APPCNTR" jndiName="jdbc/AppCenterDS" connectionManagerRef="AppCenterPool"
...

</dataSource>

Configuring Apache Tomcat
You must configure the JEE security roles for the Application Center on the Apache
Tomcat web application server.

Before you begin

Review the definition of roles at “Configuring the Application Center after
installation” on page 6-203.

Procedure
1. In the Apache Tomcat web application server, you configure the roles of

appcenteruser and appcenteradmin in the conf/tomcat-users.xml file. The
installation creates the following users:
<user username="appcenteradmin" password="admin" roles="appcenteradmin"/>
<user username="demo" password="demo" roles="appcenteradmin"/>
<user username="guest" password="guest" roles="appcenteradmin"/>

2. You can define the set of users as described in the Apache Tomcat
documentation, Realm Configuration HOW-TO.

Configuring properties of DB2 JDBC driver in WebSphere
Application Server

Add some JDBC custom properties to avoid DB2 exceptions from a WebSphere
Application Server that uses the IBM DB2 database.

About this task

When you use WebSphere Application Server with an IBM DB2 database, this
exception could occur:
Invalid operation: result set is closed. ERRORCODE=-4470, SQLSTATE=null

To avoid such exceptions, you must add custom properties in WebSphere
Application Server at the Application Center data source level.

Procedure
1. 1. Log in to the WebSphere Application Server administration console.
2. Select Resources > JDBC > Data sources > Application Center DataSource

name > Custom properties and click New.
3. In the Name field, enter allowNextOnExhaustedResultSet.
4. In the Value field, type 1.
5. Change the type to java.lang.Integer.
6. Click OK.

Installing and configuring 6-207

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_sec_registries.html
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

7. Click New.
8. In the Name field, enter resultSetHoldability.
9. In the Value field, type 1.

10. Change the type to java.lang.Integer.
11. Click OK and save your changes.

Configuring WebSphere Application Server to support
applications in public app stores

Configure WebSphere Application Server full profile and Liberty profile before
access to public app stores through application links, because of the use of SSL
connections.

The constraint imposed by the use of SSL connections requires the root certificates
of public app stores to exist in the WebSphere truststore before you can use
application links to access these public stores. The configuration requirement
applies to both WebSphere Application Server full profile and Liberty profile.

The root certificate of Google play must be imported into the WebSphere truststore
before you can use application links to Google play.

The root certificate of Apple iTunes must be imported into the WebSphere
truststore before you can use application links to iTunes.

To use application links to Google play, see “Configuring WebSphere Application
Server to support applications in Google play.”

To use application links to Apple iTunes, see “Configuring WebSphere Application
Server to support applications in Apple iTunes” on page 6-209.

Configuring WebSphere Application Server to support
applications in Google play
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Google play.

About this task

Follow this procedure to import the root certificate of Google play into the
WebSphere truststore. You must import this certificate before the Application
Center can support links to applications stored in Google Play.

Procedure
1. Log in to the WebSphere Application Server console and navigate to Security >

SSL certificate and key management > Key stores and certificates >
NodeDefaultTrustStore > Signer certificates.

2. Click Retrieve from port.
3. In the Host field, enter play.google.com.
4. In the Port field, enter 443.
5. In the Alias field, enter play.google.com.
6. Click Retrieve signer information.
7. Click OK and save the configuration.

6-208 IBM MobileFirst Platform Foundation V6.3.0

Configuring WebSphere Application Server to support
applications in Apple iTunes
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Apple iTunes.

About this task

Follow this procedure to import the root certificate of Apple iTunes into the
WebSphere truststore. You must import this certificate before the Application
Center can support links to applications stored in iTunes.

Procedure
1. Log in to the WebSphere Application Server console and navigate to Security >

SSL certificate and key management > Key stores and certificates >
NodeDefaultTrustStore > Signer certificates.

2. Click Retrieve from port.
3. In the Host field, enter itunes.apple.com.
4. In the Port field, enter 443.
5. In the Alias field, enter itunes.apple.com.
6. Click Retrieve signer information.
7. Click OK and save the configuration.

Configuring Liberty profile when IBM JDK is used
Configure Liberty profile to use default JSSE socket factories instead of SSL socket
factories of WebSphere Application Server when IBM JDK is used.

Purpose

The purpose is to configure the IBM JDK SSL factories to be compatible with
Liberty profile. This configuration is required only when IBM JDK is used. The
configuration does not apply for use of Oracle JDK. By default, IBM JDK uses the
SSL socket factories of WebSphere Application Server. These factories are not
supported by Liberty profile.

Exception when WebSphere Application Server SSL socket factories
are used

If you use the IBM JDK of WebSphere Application Server, this exception could
occur because this JDK uses SSL socket factories that are not supported by the
Liberty profile. In this case, follow the requirements documented in
Troubleshooting tips.
java.net.SocketException: java.lang.ClassNotFoundException: Cannot find the specified class com.ibm.websphere.ssl.protocol.SSLSocketFactory

at javax.net.ssl.DefaultSSLSocketFactory.a(SSLSocketFactory.java:11)
at javax.net.ssl.DefaultSSLSocketFactory.createSocket(SSLSocketFactory.java:6)
at com.ibm.net.ssl.www2.protocol.https.c.afterConnect(c.java:161)
at com.ibm.net.ssl.www2.protocol.https.d.connect(d.java:36)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1184)
at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:390)
at com.ibm.net.ssl.www2.protocol.https.b.getResponseCode(b.java:75)
at com.ibm.ws.jmx.connector.client.rest.internal.RESTMBeanServerConnection.loadJMXServerInfo(RESTMBeanServerConnection.java:142)
at com.ibm.ws.jmx.connector.client.rest.internal.RESTMBeanServerConnection.<init>(RESTMBeanServerConnection.java:114)
at com.ibm.ws.jmx.connector.client.rest.internal.Connector.connect(Connector.java:315)
at com.ibm.ws.jmx.connector.client.rest.internal.Connector.connect(Connector.java:103)

Installing and configuring 6-209

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_trouble.html

Managing users with LDAP
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.

LDAP is a way to centralize the user management for multiple web applications in
an LDAP Server that maintains a user registry. It can be used instead of specifying
one by one the users for the security roles appcenteradmin and appcenteruser.

If you plan to use an LDAP registry with the Application Center, you must
configure your WebSphere Application Server or your Apache Tomcat server to use
an LDAP registry to authenticate users.

In addition to authentication of users, configuring the Application Center for
LDAP also enables you to use LDAP to define the users and groups who can
install mobile applications through the Application Center. The means of defining
these users and groups is the Access Control List (ACL).

Since IBM Worklight V6.0, use the JNDI environment entries for defining LDAP
configuration properties.

Expert users could configure the application servers to use LDAP authentication by
using the methods that were documented in releases before IBM Worklight V6.0.

LDAP with WebSphere Application Server V7
Use LDAP to authenticate users and define the users and groups who can install
mobile applications with the Application Center; you can use the JNDI
environment or the VMM API to define the LDAP mapping

You use LDAP to define the roles appcenteradmin and appcenteruser. Then, you
have two ways of defining LDAP mapping for WebSphere Application Server V7:
v By using the JNDI environment with a stand-alone LDAP configuration
v By using federated repositories with the Virtual Member Manager (VMM) API

Configuring LDAP authentication (WebSphere Application Server V7):

Define the users who can access the Application Center console and the users who
can log in to the client by configuring LDAP as a stand-alone LDAP server or as a
federated repository.

About this task

This procedure shows you how to use LDAP to define the roles appcenteradmin
and appcenteruser in WebSphere Application Server V7.

Procedure

1. Log in to the WebSphere Application Server console.
2. In Security > Global Security, verify that administrative security and

application security are enabled.
3. Select Federated repositories or Standalone LDAP registry.
4. Click Configure. For federated repositories, follow step 5. For stand-alone

LDAP registry, follow step 6 on page 6-211
5. Option for federated repositories: add the new repository and configure the

required additional properties.
a. To add a new repository, click Add Base entry to Realm.

6-210 IBM MobileFirst Platform Foundation V6.3.0

b. Specify the value of “Distinguished name of a base entry that uniquely
identifies entries in the realm” and click Add Repository.

c. Select LDAP Repository.
d. Give this repository a name and enter the values required to connect to

your LDAP server.
e. Under Additional Properties, click LDAP entity types.
f. Configure the Group, OrgContainer, and PersonAccount properties. These

configuration details depend on your LDAP server.
6. Option for stand-alone LDAP registry: Configure access control (ACL)

management. You can use JNDI properties for this configuration, but you
cannot use VMM.
a. Enter the values of General Properties. These values depend on your

LDAP server.
b. Under Additional Properties, click Advanced Lightweight Directory

Access Protocol (LDAP) and configure the user and group filters and
maps. These configuration details depend on your LDAP server.

7. Save the configuration, log out, and restart the server.
8. In the WebSphere Application Server console, map the security roles to users

and groups.
a. In the Configuration tab, select Applications > WebSphere Enterprise

applications.
b. Select “IBM_Application_Center_Services”.
c. In the Configuration tab, select Details > Security role to user/group

mapping.
d. For appcenteradmin and appcenteruser roles, select Map groups. This

selection enables you to select users and groups inside the WebSphere user
repository, including LDAP users and groups. The selected users can
access the Application Center as appcenteradmin or appcenteruser. You
can also map the roles to Special Subjects “All authenticated in
application realm” to give everyone in the WebSphere user repository,
including everyone registered in the LDAP registry, access to the
Application Center.

9. Repeat the procedure described in step 8 for IBM_Application_Center_Console.
(Make sure that you select “IBM_Application_Center_Console” in step 8.b
instead of “IBM_Application_Center_Services”).

10. Click Save to save your changes.

Configuring LDAP ACL management with JNDI (WebSphere Application Server
V7):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center by using the JNDI environment.

About this task

Since IBM Worklight V6.0, two configuration approaches are available: the JNDI
API or the Virtual Member Manager (VMM) API. This procedure shows you how
to use the JNDI API to configure LDAP based on the federated repository
configuration or with the stand-alone LDAP registry. Only the simple type of
LDAP authentication is supported.

Installing and configuring 6-211

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Applications > Application Types > WebSphere enterprise applications.
3. Click IBM_Application_Center_Services.
4. In the Web Module Properties section, select “Environment entries for Web

modules”.
a. For the ibm.appcenter.ldap.vmm.active entry, assign the value “false”.
b. For the ibm.appcenter.ldap.active entry, assign the value “true”.

5. Continue to configure the remaining entries:
v ibm.appcenter.ldap.connectionURL: LDAP connection URL.
v ibm.appcenter.ldap.user.base: search base for users.
v ibm.appcenter.ldap.user.loginName: LDAP login attribute.
v ibm.appcenter.ldap.user.displayName: LDAP attribute for the user name to

be displayed, for example, a person's full name.
v ibm.appcenter.ldap.group.base: search base for groups.
v ibm.appcenter.ldap.group.name: LDAP attribute for the group name.
v ibm.appcenter.ldap.group.uniquemember: LDAP attribute that identifies the

members of a group.
v ibm.appcenter.ldap.user.groupmembership: LDAP attribute that identifies

the groups that a user belongs to.
v ibm.appcenter.ldap.group.nesting: management of nested groups. If nested

groups are not managed, set the value to false.
v ibm.appcenter.ldap.cache.expiration.seconds: delay in seconds before the

LDAP cache expires. If no value is entered, the default value is 86400, which
is equal to 24 hours.
Changes to users and groups on the LDAP server become visible to the
Application Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The Application Center
maintains a cache of LDAP data and the changes only become visible after
the cache expires. By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or groups, you can call
this command to clear the cache of LDAP data:
acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.
a. Enter the value of each property.
b. Click OK and save the configuration.

6. Option: If the LDAP external SASL authentication mechanism is required to bind to
the LDAP server, configure the ibm.appcenter.ldap.security.sasl property,
which defines the value of the security authentication mechanism. The value
depends on the LDAP server; usually, it is set to “EXTERNAL”.

7. Option: If security binding is required, follow this step. Configure the following
entries:
v ibm.appcenter.ldap.security.binddn: the distinguished name of the user

permitted to search the LDAP directory.
v ibm.appcenter.ldap.security.bindpwd: the password of the user permitted

to search the LDAP directory. The password can be encoded with the
“WebSphere PropFilePasswordEncoder” utility. Run the utility before you
configure the ibm.appcenter.ldap.security.bindpwd custom property.

6-212 IBM MobileFirst Platform Foundation V6.3.0

a. Enter the value of each optional property and click OK. Set the value of the
ibm.appcenter.ldap.security.bindpwd property to the encoded password
generated by the “WebSphere PropFilePasswordEncoder” utility.

b. Save the configuration.
8. Option: If LDAP referrals must be handled, follow this step. Configure

ibm.appcenter.ldap.referral: support of referrals by the JNDI API. v If no
value is given, the JNDI API will not handle LDAP referrals. Possible values
are:
v ignore: ignores referrals found in the LDAP server.
v follow: automatically follows any referrals found in the LDAP server.
v throw: causes an exception to occur for each referral found in the LDAP

server.
a. Enter the value of the property and click OK.
b. Save the configuration.

9. Option: If users and groups are defined in the same subtree (the properties
ibm.appcenter.ldap.user.base and ibm.appcenter.ldap.group.base have the
same value), follow this step. Configure the following entries:
v ibm.appcenter.ldap.user.filter: LDAP user search filter for the attribute of

user login name. Use %v as the placeholder for the login name attribute.
v ibm.appcenter.ldap.group.filter: LDAP group search filter. Use %v as the

placeholder for the group attribute.
v ibm.appcenter.ldap.user.displayName.filter: LDAP user search filter for

the attribute of user display name. Use %v as the placeholder for the user
display name attribute.

a. Enter the value of each optional property and click OK.
b. Save the configuration.

Results

The following figure shows the values to assign to each property.

See “List of JNDI properties for the Application Center” on page 6-238 for a
complete list of properties that you can set.

Installing and configuring 6-213

Configuring LDAP ACL management with VMM (WebSphere Application
Server V7):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center with the Virtual Member Manager (VMM) API.

About this task

Since IBM Worklight V6.0, two configuration approaches are available: the JNDI
API or the VMM API. This procedure shows you how to use the VMM API to
configure LDAP based on the federated repository configuration.

You must configure LDAP based on the federated repository configuration. The
stand-alone LDAP registry is not supported.

Several different repositories, LDAP and non-LDAP, can be configured in the
federated repository.

Procedure

1. Configure the attribute mapping. For users, the Application Center refers to
these VMM attributes:
v uid: represents the user login name.
v sn: represents the full name of the user.
For groups, the Application Center refers only to the VMM attribute cn.

Figure 6-11. Environment entries and their values (LDAP and WebSphere Application Server V7)

6-214 IBM MobileFirst Platform Foundation V6.3.0

If VMM attributes are not identical to LDAP attributes, you must map the
VMM attributes to the corresponding LDAP attributes.
In WebShere Application Server V7, you cannot configure this mapping with
the WebSphere Application Server console.
a. Find in the file {WAS_HOME/profiles/{profileName/config/cells/{cellName/

wim/config/wimconfig.xml the section that contains the LDAP repository
configuration with id="your LDAP id":
<config:repositories xsi:type="config:LdapRepositoryType" adapterClassName="com.ibm.ws.wim.adapter.ldap.LdapAdapter"

id="your LDAP id"....

Where your LDAP id is the user ID configured for you in the LDAP
repository.

b. In this section, after the element <config:attributeConfiguration>, add
these entries:
<config:attributes name="your LDAP attribute for the user full name" propertyName="sn">

<config:entityTypes>PersonAccount</config:entityTypes>
</config:attributes>
<config:attributes name="your LDAP attribute for the user login name " propertyName="uid">

<config:entityTypes>PersonAccount</config:entityTypes>
</config:attributes>

c. Save the file and restart the server.
2. Configure the Application Center for ACL management with LDAP. In

WebSphere Application Server V7, only a WebSphere administrator user can
run VMM access. (VMM roles are only supported by WebSphere Application
Server V8.)
You must define these properties:
v ibm.appcenter.ldap.active = true.
v ibm.appcenter.ldap.vmm.active = true.
v ibm.appcenter.ldap.vmm.adminuser = WebSphere administrator user.
v ibm.appcenter.ldap.vmm.adminpwd = WebSphere administrator password.

The password can be encoded or not.
v ibm.appcenter.ldap.cache.expiration.seconds = : the delay in seconds

before the LDAP cache expires. If no value is entered, the default value is
86400, which is equal to 24 hours.

Note: See “List of JNDI properties for the Application Center” on page 6-238
for a complete list of properties that you can set
Changes to users and groups on the LDAP server become visible to the
Application Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The Application Center
maintains a cache of LDAP data and the changes only become visible after
the cache expires. By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or groups, you can call
this command to clear the cache of LDAP data:
acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.
See “List of JNDI properties for the Application Center” on page 6-238 for a
complete list of properties that you can set.
a. Log in to the WebSphere Application Server console.
b. Select Applications > Application Types > WebSphere enterprise

applications.

Installing and configuring 6-215

c. In the “Web Module Properties” section, select
IBM_Application_Center_Services and then select Environment entries for
Web modules.

d. Set the values for the properties.
e. Click OK and save the configuration. The application is automatically

restarted.
3. Optional: Encode the password with the PropFilePasswordEncoder utility.

a. Create a file pwd.txt that contains the entry adminpwd=your clear password,
where your clear password is the unencoded administrator password.

b. Run this command:
{WAS_HOME}/profiles/profile name/bin/PropFilePasswordEncoder "file path/ pwd.txt" adminpwd

c. Open the pwd.txt file and copy the encoded password into the value of the
ibm.appcenter.ldap.vmm.adminpwd property.

LDAP with WebSphere Application Server V8.x
LDAP authentication is achieved based on the federated repository configuration.
ACL management configuration of the Application Center uses the Virtual Member
Manager API.

You must configure LDAP based on the federated repository configuration. The
stand-alone LDAP registry is not supported.

Several different repositories, LDAP and non-LDAP, can be configured in the
federated repository.

For information about configuring federated repositories, see the WebSphere
Application Server V8.0 user documentation or the WebSphere Application Server
V8.5 user documentation, depending on your version.

Configuration of the Application Center for ACL management with
LDAP

Some configuration details of ACL management are specific to the Application
Center, because it uses the Virtual Member Manager (VMM) API.

The Application Center refers to these VMM attributes for users:
uid represents the user login name.
sn represents the full name of the user.

For groups, the Application Center refers only to the VMM attribute cn.

If VMM attributes are not identical in LDAP, you must map the VMM attributes to
the corresponding LDAP attributes.

Configuring LDAP authentication (WebSphere Application Server V8.x):

Use LDAP to define users who can access the Application Center console and
users who can log in to the client.

About this task

You can configure LDAP based on the federated repository configuration only. This
procedure shows you how to use LDAP to define the roles appcenteradmin and
appcenteruser in WebSphere Application Server V8.x.

6-216 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#/SSEQTP_8.0.0/as_ditamaps/welcome_base.html
http://ibm.biz/knowctr#/SSEQTP_8.0.0/as_ditamaps/welcome_base.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Security > Global security and verify that administrative security and

application security are enabled.
3. In the “User account repository” section, select Federated repositories.
4. Click Configure.
5. Add a new repository and configure the required repository.

a. Click Add Base entry to Realm.
b. Specify the value of “Distinguished name of a base entry that uniquely

identifies entries in the realm” and click Add Repository.
c. Select LDAP Repository.
d. Give this repository a name and enter the values required to connect to

your LDAP server.
e. Under Additional Properties, click LDAP entity types.
f. Configure the Group, OrgContainer, and PersonAccount properties. These

configuration details depend on your LDAP server.
6. Save the configuration, log out, and restart the server.
7. In the WebSphere Application Server console, map the security roles to users

and groups.
a. In the Configuration tab, select Applications > WebSphere Enterprise

applications.
b. Select “IBM_Application_Center_Services”.
c. In the Configuration tab, select Details > Security role to user/group

mapping.
d. For appcenteradmin and appcenteruser roles, select Map groups. This

selection enables you to select users and groups inside the WebSphere user
repository, including LDAP users and groups. The selected users can access
the Application Center as appcenteradmin or appcenteruser. You can also
map the roles to Special Subjects “All authenticated in application realm”
to give everyone in the WebSphere user repository, including everyone
registered in the LDAP registry, access to the Application Center.

8. Repeat the procedure described in step 7 for IBM_Application_Center_Console.
(Make sure that you select “IBM_Application_Center_Console” in step 7.b
instead of “IBM_Application_Center_Services”.)

9. Click Save to save your changes.

What to do next

You must enable ACL management with LDAP. See “Configuring LDAP ACL
management (WebSphere Application Server V8.x).”

Configuring LDAP ACL management (WebSphere Application Server V8.x):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center with the Virtual Member Manager (VMM) API.

About this task

To configure ACL with LDAP, you should define three properties: uid, sn, and cn.
These properties enable the login name and the full name of users and the name of
user groups to be identified in the Application Center.

Installing and configuring 6-217

Then you should enable ACL management with VMM. You can configure LDAP
based on the federated repository configuration only.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Security > Global security.
3. In the “User account repository” section, select Configure.
4. Select your LDAP repository entry.
5. Under Additional Properties, select LDAP attributes (WebSphere Application

Server V8.0) or Federated repositories property names to LDAP attributes
mapping (WebSphere Application Server V8.5).

6. Select Add > Supported.
7. Enter these property values:

a. For Name enter your LDAP login attribute.
b. For Property name enter uid.
c. For Entity types enter the LDAP entity type.
d. Click OK.

8. Select Add > Supported.
a. For Name enter your LDAP attribute for full user name.
b. For Property name enter sn.
c. For Entity types enter the LDAP entity type.
d. Click OK.

9. Select Add > Supported to configure a group name:
a. For Name enter the LDAP attribute for your group name.
b. For Property name enter cn.
c. For Entity types enter the LDAP entity type.
d. Click OK.

10. Enable ACL management with LDAP:

Figure 6-12. Associating LDAP login with uid property (WebSphere Application Server V8.0)

Figure 6-13. Associating LDAP full user name with sn property (WebSphere Application Server V8.0)

6-218 IBM MobileFirst Platform Foundation V6.3.0

a. Select Servers > Server Types > WebSphere application servers.
b. Select the appropriate application server.

In a clustered environment you must configure all the servers in the
cluster in the same way.

c. In the Configuration tab, under “Server Infrastructure”, click the Java and
Process Management tab and select Process definition.

d. In the Configuration tab, under “Additional Properties”, select Java
Virtual Machine,

e. In the Configuration tab, under “Additional Properties”, select Custom
properties.

f. Enter the required property-value pairs in the form. To enter each pair,
click New, enter the property and its value, and click OK.
Property-value pairs:
v ibm.appcenter.ldap.vmm.active = true

v ibm.appcenter.ldap.active = true

v ibm.appcenter.ldap.cache.expiration.seconds = delay_in_seconds

Enter the delay in seconds before the LDAP cache expires. If you do not
enter a value, the default value is 86400, which is equal to 24 hours.
Changes to users and groups on the LDAP server become visible to the
Application Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The Application Center
maintains a cache of LDAP data and the changes only become visible
after the cache expires. By default, the delay is 24 hours. If you do not
want to wait for this delay to expire after changes to users or groups,
you can call this command to clear the cache of LDAP data:
acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.

Results

The following figure shows an example of custom properties with the correct
settings.

What to do next

Save the configuration and restart the server.

To use the VMM API, you must assign the “IdMgrReader” role to the users who
run the VMM code, or to the group owners of these users. You must assign this
role to all users and groups who have the roles of “appcenteruser” or
“appcenteradmin”.

Figure 6-14. ACL management for Application Center with LDAP on WebSphere Application Server V8

Installing and configuring 6-219

In the <was_home>\bin directory, where <was_home> is the home directory of your
WebSphere Application Server, run the wsadmin command.

After connecting with the WebSphere Application Server administrative user, run
the following command:
$AdminTask mapIdMgrGroupToRole {-roleName IdMgrReader -groupId your_LDAP_group_id}

Run the same command for all the groups mapped to the roles of “appcenteruser”
and “appcenteradmin”.

For individual users who are not members of groups, run the following command:
$AdminTask mapIdMgrUserToRole {-roleName IdMgrReader -userId your_LDAP_user_id}

You can assign the special subject “All Authenticated in Application's Realm” as
roles for appcenteruser and appcenteradmin. If you choose to assign this special
subject, IdMgrReader must be configured in the following way:
$AdminTask mapIdMgrGroupToRole {-roleName IdMgrReader -groupId ALLAUTHENTICATED}

Enter exit to end wsadmin.

LDAP with Liberty profile
Use LDAP to authenticate users and to define the users and groups who can install
mobile applications with the Application Center by using the JNDI environment.

Using LDAP with Liberty profile requires you to configure LDAP authentication
and LDAP ACL management.

Configuring LDAP authentication (Liberty profile):

You configure LDAP authentication by defining one or more LDAP registries in the
server.xml file and you map LDAP users and groups to Application Center roles.

About this task

You can configure LDAP authentication of users and groups in the server.xml file
by defining an LDAP registry or, since WebSphere Application Server Liberty
profile V8.5.5, a federated registry that uses several LDAP registries. Then you map
users and groups to Application Center roles. The mapping configuration is the
same for LDAP authentication and basic authentication.

Procedure

1. To open the server.xml descriptor file, enter {server.config.dir}/server.xml
2. Insert one or several LDAP registry definitions after the <httpEndpoint>

element.
Example for the LDAP registry:
<ldapRegistry baseDN="o=ibm.com" host="employees.com" id="Employees"

ldapType="IBM Tivoli Directory Server" port="389" realm="AppCenterLdap"
recursiveSearch="true">

<idsFilters
groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames))) " id="Employees"
userFilter="(&(emailAddress=%v)(objectclass=ibmPerson))"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember"
userIdMap="*:emailAddress"/>

</ldapRegistry>

For information about the parameters used in this example, see the WebSphere
Application Server V8.5 user documentation.

6-220 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html

3. Insert a security role definition after each Application Center application
definition (applicationcenter and appcenterconsole).
Example for security role definition: this example includes two sets of sample
code that show how to code when the group names are unique within LDAP
and how to code when the group names are not unique within LDAP.

Group names unique within LDAP
This sample code shows how to use the group names
ldapGroupForAppcenteruser and ldapGroupForAppcenteradmin when
they exist and are unique within LDAP.

<application-bnd>
<security-role name="appcenteruser" id="appcenteruser">

<group name="ldapGroupForAppcenteruser" />
</security-role>
<security-role name="appcenteradmin" id="appcenteradmin">

<group name="ldapGroupForAppcenteradmin" />
</security-role>

</application-bnd>

Group names not unique within LDAP
This sample code shows how to code the mapping when the group
names are not unique within LDAP. The groups must be specified with
the access-id attribute.

<application-bnd>
<security-role name="appcenteruser" id="appcenteruser">

<group name="ldapGroup"
id="ldapGroup"
access-id="group:AppCenterLdap/CN=ldapGroup,OU=myorg,

DC=mydomain,DC=AD,DC=myco,DC=com"/>
</security-role>
...

</application-bnd>

The access-id attribute must refer to the realm name used to specify
the LDAP realm. In this sample code, the realm name is AppCenterLdap.
The remainder of the access-id attribute specifies one of the LDAP
groups named ldapGroup in a way that makes it unique.

If required, use similar code to map the appcenteradmin role.

Configuring LDAP ACL management (Liberty profile):

Use LDAP to define the users and groups who can install mobile applications
through the Application Center. The means of defining these users and groups is
the Access Control List (ACL).

Purpose

To enable ACL management with LDAP. You enable ACL management after you
configure LDAP and map users and groups to Application Center roles. Only the
simple type of LDAP authentication is supported.

Properties

To be able to define JNDI entries, the following feature must be defined in the
server.xml file:
<feature>jndi-1.0</feature>

Installing and configuring 6-221

Add an entry for each property in the <server> section of the server.xml file. This
entry should have the following syntax:
<jndiEntry jndiName="JNDI_property_name" value="property_value"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

Table 6-47. JNDI properties for configuring ACL management with LDAP in the server.xml
file

Property Description

ibm.appcenter.ldap.active Set to true to enable LDAP; set to false to
disable LDAP.

ibm.appcenter.ldap.federated.active Since WebSphere Application Server Liberty
profile V8.5.5: set to true to enable use of the
federated registry; set to false to disable use
of the federated registry, which is the default
setting.

ibm.appcenter.ldap.connectionURL LDAP connection URL.

ibm.appcenter.ldap.user.base Search base of users.

ibm.appcenter.ldap.user.loginName LDAP login attribute.

ibm.appcenter.ldap.user.displayName LDAP attribute for the user name to be
displayed, for example, a person's full name.

ibm.appcenter.ldap.group.base Search base of groups.

ibm.appcenter.ldap.group.name LDAP attribute for the group name.

ibm.appcenter.ldap.group.uniquemember LDAP attribute that identifies the members
of a group.

ibm.appcenter.ldap.user.groupmembership LDAP attribute that identifies the groups to
which a user belongs.

ibm.appcenter.ldap.group.nesting Management of nested groups: if nested
groups are not managed, set the value to
false.

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of
user login name. Use %v as the placeholder
for the login name attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

ibm.appcenter.ldap.displayName.filter LDAP user search filter for the attribute of
user display name. Use %v as the placeholder
for the display name attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

6-222 IBM MobileFirst Platform Foundation V6.3.0

Table 6-47. JNDI properties for configuring ACL management with LDAP in the server.xml
file (continued)

Property Description

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the
placeholder for the group attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

ibm.appcenter.ldap.security.sasl The value of the security authentication
mechanism when the LDAP external SASL
authentication mechanism is required to bind
to the LDAP server. The value depends on
the LDAP server; usually, it is set to
“EXTERNAL”.

ibm.appcenter.ldap.security.binddn Property that identifies the distinguished
name of the user permitted to search the
LDAP directory. Use this property only if
security binding is required.

ibm.appcenter.ldap.security.bindpwd Property that identifies the password of the
user permitted to search the LDAP directory.
Use this property only if security binding is
required.

The password can be encoded with the
“Liberty profile securityUtility” tool. Run the
tool and then set the value of this property
to the encoded password generated by the
tool. The supported encoding types are xor
and aes.

Edit the Liberty profile server.xml file to
check whether the classloader is enabled to
load the JAR file that decodes the password.

ibm.appcenter.ldap.cache.expiration.secondsDelay in seconds before the LDAP cache
expires. If no value is entered, the default
value is 86400, which is equal to 24 hours.

Changes to users and groups on the LDAP
server become visible to the Application
Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds.
The Application Center maintains a cache of
LDAP data and the changes only become
visible after the cache expires. By default, the
delay is 24 hours. If you do not want to wait
for this delay to expire after changes to users
or groups, you can call this command to
clear the cache of LDAP data:

acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the
LDAP cache for details.

Installing and configuring 6-223

Table 6-47. JNDI properties for configuring ACL management with LDAP in the server.xml
file (continued)

Property Description

ibm.appcenter.ldap.referral Property that indicates whether referrals are
supported by the JNDI API. If no value is
given, the JNDI API will not handle LDAP
referrals. Possible values are:

v ignore: ignores referrals found in the
LDAP server.

v follow: automatically follows any referrals
found in the LDAP server.

v throw: causes an exception to occur for
each referral found in the LDAP server.

See “List of JNDI properties for the Application Center” on page 6-238 for a
complete list of LAPD properties that you can set.

Example of setting properties for ACL management with LDAP

This example shows the settings of the properties in the server.xml file required
for ACL management with LDAP.
<jndiEntry jndiName="ibm.appcenter.ldap.active" value="true"/>
<jndiEntry jndiName="ibm.appcenter.ldap.connectionURL" value="ldap://employees.com:636"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.loginName" value="uid"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.base" value="dc=ibm,dc=com"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.base" value="dc=ibm,dc=com"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.displayName" value="sn"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.name" value="cn"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.uniquemember" value="uniqueMember"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.groupmembership" value=ibm-allGroups"/>
<jndiEntry jndiName="ibm.appcenter.ldap.cache.expiration.seconds" value=43200"/>
<jndiEntry jndiName="ibm.appcenter.ldap.security.sasl" value=’"EXTERNAL"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.referral" value=’"follow"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.filter" value=’"(&(uid=%v)(objectclass=inetOrgPerson))"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.displayName.filter" value=’"(&(cn=%v)(objectclass=inetOrgPerson))"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.filter" value=’"(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))"’/>

LDAP with Apache Tomcat
Configure the Apache Tomcat server for LDAP authentication and configure
security (Java™ Platform, Enterprise Edition) in the web.xml file of the Application
Center.

To configure ACL management of the Application Center; configure LDAP for user
authentication, map the Java Platform, Enterprise Edition (JEE) roles of the
Application Center to the LDAP roles, and configure the Application Center
properties for LDAP authentication. Only the simple type of LDAP authentication
is supported.

Configuring LDAP authentication (Apache Tomcat):

Define the users who can access the Application Center console and the users who
can log in with the mobile client by mapping Java Platform, Enterprise Edition
roles to LDAP roles.

6-224 IBM MobileFirst Platform Foundation V6.3.0

Purpose

To configure ACL management of the Application Center; configure LDAP for user
authentication, map the Java Platform, Enterprise Edition (JEE) roles of the
Application Center to the LDAP roles, and configure the Application Center
properties for LDAP authentication. Only the simple type of LDAP authentication
is supported.

You configure the Apache Tomcat server for LDAP authentication and configure
security (Java™ Platform, Enterprise Edition) in the web.xml file of the Application
Center Services web application (applicationcenter.war) and of the Application
Center Console web application (appcenterconsole.war).

LDAP user authentication

You must configure a JNDIRealm in the server.xml file in the <Host> element. See
the Realm Component on the Apache Tomcat website for more information about
configuring a realm.

Example of configuration on Apache Tomcat to authenticate against an LDAP
server

This example shows how to configure user authentication on an Apache Tomcat
server by comparing with the authorization of these users on a server enabled for
LDAP authentication.
<Host appBase="webapps" autoDeploy="true" name="localhost" unpackWARs="true">
...
<Realm className="org.apache.catalina.realm.JNDIRealm"

connectionURL="ldap://bluepages.ibm.com:389"
userSubtree="true"
userBase="ou=bluepages,o=ibm.com"
userSearch="(emailAddress={0})"
roleBase="ou=ibmgroups,o=ibm.com"
roleName="cn"
roleSubtree="true"
roleSearch="(uniqueMember={0})"
allRolesMode="authOnly"
commonRole="appcenter"/>

...
</Host>

The value of connectionURL is the LDAP URL of your LDAP server.

The userSubtree, userBase, and userSearch attributes define how to use the name
given to the Application Center in login form (in the browser message box) to
match an LDAP user entry.

In the example, the definition of userSearch specifies that the user name is used to
match the email address of an LDAP user entry.

The basis or scope of the search is defined by the value of the userBase attribute.
In LDAP, an information tree is defined; the user base indicates a node in that tree.

The value of userSubtree should be set to true; if it is false, the search is
performed only on the direct child nodes of the user base. It is important that the
search penetrates the subtree and does not stop at the first level.

Installing and configuring 6-225

http://tomcat.apache.org/tomcat-7.0-doc/config/realm.html

For authentication, you define only the userSubtree, userBase, and userSearch
attributes. The Application Center also uses JEE security roles. Therefore, you must
map LDAP attributes to some JEE roles. These attributes are used for mapping
LDAP attributes to security roles:
v roleBase

v roleName

v roleSubtree

v roleSearch

In this example, the value of the roleSearch attribute matches all LDAP entries
with a uniqueMember attribute whose value is the Distinguished Name (DN) of the
authenticated user.

The roleBase attribute specifies a node in the LDAP tree below which the roles are
defined.

The roleSubtree attribute indicates whether the LDAP search should search the
entire subtree, whose root is defined by the value of roleBase, or only the direct
child nodes.

The roleName attribute defines the name of the LDAP attribute.

The allRolesMode attribute specifies that you can use the asterisk (*) character as
the value of role-name in the web.xml file. This attribute is optional.

The commonRole attribute adds a role shared by all authenticated users. This
attribute is optional.

Mapping the JEE roles of the Application Center to LDAP roles

After you define the LDAP request for the JEE roles, you must change the web.xml
file of the Application Center Services web application (applicationcenter.war)
and of the Application Center Console web application (appcenterconsole.war) to
map the JEE roles of "appcenteradmin" and "appcenteruser" to the LDAP roles.

These examples, where LDAP users have LDAP roles called "MyLdapAdmin" and
"MyLdapUser", show where and how to change the web.xml file.

The security-role-ref element in the JAX_RS servlet
<servlet>

<servlet-name>MobileServicesServlet</servlet-name>
<servlet-class>org.apache.wink.server.internal.servlet.RestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.puremeap.services.MobileServicesServlet</param-value>

</init-param>
<load-on-startup>1</load-on-startup>
<security-role-ref>

<role-name>appcenteradmin</role-name>
<role-link>MyLdapAdmin</role-link>

</security-role-ref>
<security-role-ref>

<role-name>appcenteruser</role-name>
<role-link>MyLdapUser</role-link>

</security-role-ref>
</servlet>

6-226 IBM MobileFirst Platform Foundation V6.3.0

The security-role element
<security-role>

<role-name>MyLdapAdmin</role-name>
</security-role>

The auth-constraint element

After you edit the security-role-ref and the security-role elements, you can use
the roles defined in the auth-constraint elements to protect the web resources. See
the appcenteradminConstraint element and the appcenteruserConstraint element
in this example for definition of the web resource collection to be protected by the
role defined in the auth-constraint element.

<security-constraint>
<display-name>appcenteruserConstraint</display-name>
<web-resource-collection>

<web-resource-name>appcenteruser</web-resource-name>
<url-pattern>/installers.html</url-pattern>
<url-pattern>/service/device/*</url-pattern>
<url-pattern>/service/directory/*</url-pattern>
<url-pattern>/service/plist/*</url-pattern>
<url-pattern>/service/auth/*</url-pattern>
<url-pattern>/service/application/*</url-pattern>
<url-pattern>/service/desktop/*</url-pattern>
<url-pattern>/service/principal/*</url-pattern>
<url-pattern>/service/acl/*</url-pattern>
<url-pattern>/service/userAndConfigInfo</url-pattern>
<http-method>DELETE</http-method>
<http-method>GET</http-method>
<http-method>POST</http-method>
<http-method>PUT</http-method>
<http-method>HEAD</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>MyLdapUser</role-name>
</auth-constraint>
<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>

Configuring LDAP ACL management (Apache Tomcat):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center by defining the Application Center LDAP properties
through JNDI.

Purpose

To configure LDAP ACL management of the Application Center; add an entry for
each property in the <context> section of the IBM Application Center Services
application in the server.xml file. This entry should have the following syntax:
<Environment name="JNDI_property_name" value="property_value" type="java.lang.String" override="false"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

Installing and configuring 6-227

Table 6-48. Properties for configuring ACL management for LDAP in the server.xml file on
Apache Tomcat

Property Description

ibm.appcenter.ldap.active Set to true to enable LDAP; set to false to
disable LDAP.

ibm.appcenter.ldap.connectionURL LDAP connection URL.

ibm.appcenter.ldap.user.base Search base of users.

ibm.appcenter.ldap.user.loginName LDAP login attribute.

ibm.appcenter.ldap.user.displayName LDAP attribute for the user name to be
displayed, for example, a person's full name.

ibm.appcenter.ldap.group.base Search base of groups.

ibm.appcenter.ldap.group.name LDAP attribute for the group name.

ibm.appcenter.ldap.group.uniquemember LDAP attribute that identifies the members
of a group.

ibm.appcenter.ldap.user.groupmembership LDAP attribute that identifies the groups to
which a user belongs.

ibm.appcenter.ldap.group.nesting Management of nested groups: if nested
groups are not managed, set the value to
false.

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of
user login name. Use %v as the placeholder
for the login name attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

ibm.appcenter.ldap.displayName.filter LDAP user search filter for the attribute of
user display name. Use %v as the
placeholder for the display name attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the
placeholder for the group attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

ibm.appcenter.ldap.security.sasl The value of the security authentication
mechanism when the LDAP external SASL
authentication mechanism is required to
bind to the LDAP server. The value depends
on the LDAP server; usually, it is set to
"EXTERNAL".

6-228 IBM MobileFirst Platform Foundation V6.3.0

Table 6-48. Properties for configuring ACL management for LDAP in the server.xml file on
Apache Tomcat (continued)

Property Description

ibm.appcenter.ldap.security.binddn Property that identifies the distinguished
name of the user permitted to search the
LDAP directory. Use this property only if
security binding is required.

ibm.appcenter.ldap.security.bindpwd Property that identifies the password of the
user permitted to search the LDAP directory.
Use this property only if security binding is
required.

ibm.appcenter.ldap.cache.expiration.secondsDelay in seconds before the LDAP cache
expires. If no value is entered, the default
value is 86400, which is equal to 24 hours.

Changes to users and groups on the LDAP
server become visible to the Application
Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds.
The Application Center maintains a cache of
LDAP data and the changes only become
visible after the cache expires. By default,
the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to
users or groups, you can call this command
to clear the cache of LDAP data:

acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the
LDAP cache for details.

ibm.appcenter.ldap.referral Property that indicates whether referrals are
supported by the JNDI API. If no value is
given, the JNDI API will not handle LDAP
referrals. Possible values are:

v ignore: ignores referrals found in the
LDAP server.

v follow: automatically follows any referrals
found in the LDAP server.

v throw: causes an exception to occur for
each referral found in the LDAP server.

See “List of JNDI properties for the Application Center” on page 6-238 for a
complete list of LAPD properties that you can set.

The example shows properties defined in the server.xml file.
<Environment name="ibm.appcenter.ldap.active" value="true" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.connectionURL" value="ldaps://employees.com:636" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.base" value="dc=ibm,dc=com" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.loginName" value="uid" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.displayName" value="cn" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.groupmembership" value="ibm-allGroups" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.base" value="dc=ibm,dc=com" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.name" value="cn" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.uniquemember" value="uniquemember" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.cache.expiration.seconds" value="43200" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.security.sasl" value="EXTERNAL" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.security.referral" value="follow" type="java.lang.String" override="false"/>

Installing and configuring 6-229

<Environment name="ibm.appcenter.ldap.user.filter" value="(&(uid=%v)(objectclass=inetOrgPerson))" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.displayName.filter" value="(&(cn=%v)(objectclass=inetOrgPerson))" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.filter" value="(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))" type="java.lang.String" override="false"/>

Defining the endpoint of the application resources
When you add a mobile application from the Application Center console, the
server-side component creates Uniform Resource Identifiers (URI) for the
application resources (package and icons). The mobile client uses these URI to
manage the applications on your device.

Purpose

To manage the applications on your device, the Application Center console must
be able to locate the Application Center REST services and to generate the required
number of URI that enable the mobile client to find the Application Center REST
services.

By default, the URI protocol, host name, and port are the same as those defined in
the web application server used to access the Application Center console; the
context root of the Application Center REST services is applicationcenter. When
the context root of the Application Center REST services is changed or when the
internal URI of the web application server is different from the external URI that
can be used by the mobile client, the externally accessible endpoint (protocol, host
name, and port) of the application resources must be defined by configuring the
web application server. (Reasons for separating internal and external URI could be,
for example, a firewall or a secured reverse proxy that uses HTTP redirection.)

The following figure shows a configuration with a secured reverse proxy that hides
the internal address (192.168...). The mobile client must use the external address
(appcntr.net).

Figure 6-15. Configuration with secured reverse proxy

6-230 IBM MobileFirst Platform Foundation V6.3.0

Table 6-49. The endpoint properties

Property name Purpose Example

ibm.appcenter.services.endpointThis property enables the
Application Center console
to locate the Application
Center REST services. The
value of this property must
be specified as the external
address and context root of
the applicationcenter.war
web application. You can use
the asterisk (*) character as
wildcard to specify that the
Application Center REST
services use the same value
as the Application Center
console. For example:
://:*/appcenter means
use the same protocol, host,
and port as the Application
Center console, but use
appcenter as context root.

This property must be
specified for the Application
Center console application.

https://appcntr.net:443/
applicationcenter

ibm.appcenter.proxy.protocolThis property specifies the
protocol required for external
applications to connect to the
Application Center.

https

ibm.appcenter.proxy.host This property specifies the
host name required for
external applications to
connect to the Application
Center.

appcntr.net

ibm.appcenter.proxy.port This property specifies the
port required for external
applications to connect to the
Application Center.

443

See “List of JNDI properties for the Application Center” on page 6-238 for a
complete list of endpoint properties that you can set.

Configuring the endpoint of the application resources (full
profile)
For the WebSphere Application Server full profile, configure the endpoint of the
application resources in the environment entries of the Application Center services
and the Application Center console applications.

About this task

Follow this procedure when you must change the URI protocol, hostname, and
port used by the mobile client to manage the applications on your device. Since
IBM Worklight V6.0, you use the JNDI environment entries.

Installing and configuring 6-231

Procedure
1. Log in to the WebSphere Application Server console.
2. Select Applications > Application Types > WebSphere enterprise

applications.
3. Click IBM Application Center Services.
4. In the “Web Module Properties” section, select Environment entries for Web

modules.
5. Assign the appropriate values for the following environment entries:

a. For ibm.appcenter.proxy.host, assign the hostname.
b. For ibm.appcenter.proxy.port, assign the port number.
c. For ibm.appcenter.proxy.protocol, assign the external protocol.
d. Click OK and save the configuration.

6. Select Applications > Application Types > WebSphere enterprise
applications.

7. Click IBM Application Center Console.
8. In the “Web Module Properties” section, select Environment entries for Web

modules.
9. For ibm.appcenter.services.endpoint, assign the full URI of the Application

Center REST services (the URI of the applicationcenter.war file).
v In a scenario with a firewall or a secured reverse proxy, this URI must be

the external URI and not the internal URI inside the local LAN.
v You can use the asterisk (*) character as wildcard to specify that the

Application Center REST services use the same value as the Application
Center console. For example: *://*:*/appcenter means use the same
protocol, host, and port as the Application Center console, but use
appcenter as context root.

10. Click OK and save the configuration. For a complete list of JNDI properties
that you can set, see “List of JNDI properties for the Application Center” on
page 6-238.

Configuring the endpoint of the application resources (Liberty
profile)
For the Liberty profile, configure the endpoint of the application resources through
the JNDI environment.

Purpose

Since IBM Worklight V6.0, follow this procedure when you must change the URI
protocol, hostname, and port used by the Application Center client to manage the
applications on your device.

Properties

Edit the server.xml file. To be able to define JNDI entries, the <feature> element
must be defined correctly in the server.xml file:
<feature>jndi-1.0</feature>

Add an entry for each property in the <server> section of the server.xml file. This
entry should have the following syntax:
<jndiEntry jndiName="JNDI_property_name" value="property_value"/>

Where:

6-232 IBM MobileFirst Platform Foundation V6.3.0

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

Table 6-50. Properties in the server.xml file for configuring the endpoint of the application
resources

Property Description

ibm.appcenter.services.endpoint The URI of the Application Center REST
services (applicationcenter.war). In a
scenario with a firewall or a secured reverse
proxy, this URI must be the external URI
and not the internal URI inside the local
LAN.

ibm.appcenter.proxy.protocol The protocol of the application resources
URI. This property is optional. It is only
needed if the protocol of the external and of
the internal URI are different.

ibm.appcenter.proxy.host The hostname of the application resources
URI.

ibm.appcenter.proxy.port The port of the application resources URI.
This property is optional. It is only needed if
the protocol of the external and of the
internal URI are different.

For a complete list of LAPD properties that you can set, see “List of JNDI
properties for the Application Center” on page 6-238.

Example of setting properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file required
for configuring the endpoint of the application resources.
<jndiEntry jndiName="ibm.appcenter.services.endpoint" value=" https://appcntr.net:443/applicationcenter" />
<jndiEntry jndiName="ibm.appcenter.proxy.protocol" value="https" />
<jndiEntry jndiName="ibm.appcenter.proxy.host" value="appcntr.net" />
<jndiEntry jndiName="ibm.appcenter.proxy.port" value=" 443"/>

You can use the asterisk (*) character as wildcard to specify that the Application
Center REST services use the same value as the Application Center console. For
example: *://*:*/appcenter means use the same protocol, host, and port as the
Application Center console, but use appcenter as context root.

Configuring the endpoint of the application resources (Apache
Tomcat)
For the Apache Tomcat server, configure the endpoint of the application resources
in the server.xml file.

Purpose

Since IBM Worklight V6.0, follow this procedure when you must change the URI
protocol, hostname, and port used by the Application Center client to manage the
applications on your device.

Properties

Edit the server.xml file in the conf directory of your Apache Tomcat installation.

Installing and configuring 6-233

Add an entry for each property in the <context> section of the corresponding
application. This entry should have the following syntax:
<Environment name="JNDI_property_name" value="property_value" type="property_type" override="false"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

property_type is the type of the property you are adding.

Table 6-51. Properties in the server.xml file for configuring the endpoint of the application
resources

Property Type Description

ibm.appcenter.services.endpointjava.lang.String The URI of the Application
Center REST services
(applicationcenter.war). In a
scenario with a firewall or a
secured reverse proxy, this URI
must be the external URI and
not the internal URI inside the
local LAN.

ibm.appcenter.proxy.protocoljava.lang.String The protocol of the application
resources URI. This property is
optional. It is only needed if the
protocol of the external and of
the internal URI are different.

ibm.appcenter.proxy.host java.lang.String The hostname of the application
resources URI.

ibm.appcenter.proxy.port java.lang.Integer The port of the application
resources URI. This property is
optional. It is only needed if the
protocol of the external and of
the internal URI are different.

For a complete list of JNDI properties that you can set, see “List of JNDI properties
for the Application Center” on page 6-238.

Example of setting server.xml properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file required
for configuring the endpoint of the application resources.

In the <context> section of the Application Center console application:
<Environment name="ibm.appcenter.services.endpoint" value="https://appcntr.net:443/applicationcenter" type="java.lang.String" override="false"/>

You can use the asterisk (*) character as wildcard to specify that the Application
Center REST services use the same value as the Application Center console. For
example: *://*:*/appcenter means use the same protocol, host, and port as the
Application Center console, but use appcenter as context root.

In the <context> section of the Application Center services application:

6-234 IBM MobileFirst Platform Foundation V6.3.0

<Environment name="ibm.appcenter.services.endpoint" value="https://appcntr.net:443/applicationcenter" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.proxy.protocol" value="https" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.proxy.host" value="appcntr.net" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.proxy.port" value="443" type="java.lang.Integer" override="false"/>

Configuring Secure Sockets Layer (SSL)
Learn about configuring SSL for the Application Center on supported application
servers and the limitations of certificate verification on mobile operating systems.

You can configure the Application Center with SSL or without SSL, unless you
intend to install applications on iOS devices. For iOS applications, you must
configure the Application Center server with SSL.

SSL transmits data over the network in a secured channel. You must purchase an
official SSL certificate from an SSL certificate authority. The SSL certificate must be
compatible with Android, iOS, and BlackBerry OS 6 and 7. Self-signed certificates
do not work with the Application Center.

When the client accesses the server through SSL, the client verifies the server
through the SSL certificate. If the server address matches the address filed in the
SSL certificate, the client accepts the connection. For the verification to be
successful, the client must know the root certificate of the certificate authority.
Many root certificates are preinstalled on Android, iOS, and BlackBerry devices.
The exact list of preinstalled root certificates varies between versions of mobile
operating systems.

You should consult the SSL certificate authority for information about the mobile
operating system versions that support its certificates.

If the SSL certificate verification fails, a normal web browser requests confirmation
to contact an untrusted site. The same behavior occurs when you use a self-signed
certificate that was not purchased from a certificate authority. When mobile
applications are installed, this control is not performed by a normal web browser,
but by operating system calls.

Some versions of Android, iOS, and Windows Phone operating systems do not
support this confirmation dialog in system calls. This limitation is a reason to
avoid self-signed certificates or SSL certificates that are not suited to mobile
operating systems. On Android, iOS, and Windows Phone operating systems, you
can install a self-signed CA certificate on the device to enable the device to handle
system calls with respect to this self-signed certificate. This practice is not
appropriate for Application Center in a production environment, but it may be
suitable during the testing period. For details, see “Configuring SSL by using
untrusted certificates” on page 6-150.

Configuring SSL for WebSphere Application Server full profile
Request a Secure Sockets Layer (SSL) certificate and process the received
documents to import them into the keystore.

About this task

This procedure indicates how to request an SSL certificate and import it and the
chain certificate into your keystore.

Installing and configuring 6-235

Procedure
1. Create a request to a certificate authority; in the WebSphere administrative

console, select Security > SSL certificate and key management > Key stores
and certificates > keystore > Personal certificate requests > New.
Where keystore identifies your keystore.
The request is sent to the certificate authority.

2. When you receive the SSL certificate, import it and the corresponding chain
certificate into your keystore by following the instructions provided by the
certificate authority. In the WebSphere administrative console, you can find the
corresponding option in Security > SSL certificate and key management >
Manage endpoint security configurations > node SSL settings > Key stores
and certificates > keystore > Personal certificates > certificate > Receive a
certificate from a certificate authority.
Where:
v node SSL settings shows the SSL settings of the nodes in your configuration.
v keystore identifies your keystore.
v certificate identifies the certificate that you received.

3. Create an SSL configuration. See the instructions in the user documentation that
corresponds to the version of the WebSphere Application Server full profile that
supports your applications.
You can find configuration details in the WebSphere administrative console at
Security > SSL certificate and key management > Manage endpoint security
configurations > SSL Configurations.

Configuring SSL for Liberty profile
Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
server.xml file to configure SSL on Liberty profile.

About this task

Follow the steps in this procedure to configure SSL on Liberty profile.

Procedure
1. Create a keystore for your web server; use the securityUtility with the

createSSLCertificate option. See Enabling SSL communication for the Liberty
profile for more information.

2. Import the SSL certificate and the corresponding chain certificate into your
keystore by following the instructions provided by the certificate authority.

3. Enable the ssl-1.0 Liberty feature in the server.xml file.
<featureManager>

<feature>ssl-1.0</feature>
</featureManager>

4. Add the keystore service object entry to the server.xml file. The keyStore
element is called defaultKeyStore and contains the keystore password. For
example:
<keyStore id="defaultKeyStore" location="/path/to/myKeyStore.p12"

password="myPassword" type="PKCS12"/>

5. Make sure that the value of the httpEndpoint element in the server.xml file
defines the httpsPort attribute. For example:
<httpEndpoint id="defaultHttpEndpoint” host="*" httpPort="9080” httpsPort="9443" >

6. Restart the web server. Now you can access the web server by
https://myserver:9443/...

6-236 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html

Configuring SSL for Apache Tomcat
Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
conf/server.xml file to define a connector for SSL on Apache Tomcat.

About this task

Follow the steps in this procedure to configure SSL on Apache Tomcat. See SSL
Configuration HOW-TO for more details and examples of configuring SSL for
Apache Tomcat.

Procedure
1. Create a keystore for your web server. You can use the Java keytool command

to create a keystore.
keytool -genkey -alias tomcat -keyalg RSA -keystore /path/to/keystore.jks

2. Import the SSL certificate and the corresponding chain certificate into your
keystore by following the instructions provided by the certificate authority.

3. Edit the conf/server.xml file to define a connector to use SSL. This connector
must point to your keystore.
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"

maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="/path/to/keystore.jks"
keystorePass="mypassword" />

4. Restart the web server. Now you can access the web server by
https://myserver:8443/...

Managing the DB2 transaction log size
When you upload an application that is at least 40 MB with IBM MobileFirst
Platform Application Center console, you might receive a transaction log full
error.

About this task

The following system output is an example of the transaction log full error
code.

DB2 SQL Error: SQLCODE=-964, SQLSTATE=57011

The content of each application is stored in the Application Center database.

The active log files are defined in number by the LOGPRIMARY and LOGSECOND
database configuration parameters, and in size by the LOGFILSIZ database
configuration parameter. A single transaction cannot use more log space than
LOGFILSZ * (LOGPRIMARY + LOGSECOND) * 4096 KB.

The DB2 GET DATABASE CONFIGURATION command includes information about the log
file size, and the number of primary and secondary log files.

Depending on the largest size of the MobileFirst application that is deployed, you
might need to increase the DB2 log space.

Installing and configuring 6-237

http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

Procedure

Using the DB2 update db cfg command, increase the LOGSECOND parameter. Space is
not allocated when the database is activated. Instead, the space is allocated only as
needed.

List of JNDI properties for the Application Center
Here is a list of the JNDI properties that can be configured for the Application
Center.

Table 6-52. List of the JNDI properties for the Application Center

Property Description

appcenter.database.type The database type, which is only required when the
database is not specified in appcenter.jndi.name.

appcenter.jndi.name The JNDI name of the database. This parameter is
the normal mechanism to specify the database. The
default value is java:comp/env/jdbc/AppCenterDS.

appcenter.openjpa.ConnectionDriverNameThe fully qualified class name of the database
connection driver class. This property is only needed
when the database is not specified in
appcenter.jndi.name.

appcenter.openjpa.ConnectionPasswordThe password for the database connection. This
property is only needed when the database is not
specified in appcenter.jndi.name.

appcenter.openjpa.ConnectionURL The URL specific to the database connection driver
class. This property is only needed when the
database is not specified in appcenter.jndi.name.

appcenter.openjpa.ConnectionUserNameThe user name or the database connection. This
property is only needed when the database is not
specified in appcenter.jndi.name.

ibm.appcenter.apns.p12.certificate.isDevelopmentCertificateSpecifies whether the certificate that enables
Application Center to send push notifications about
updates of iOS applications is a development
certificate. Set to true to enable or false to disable.
See “Configuring the Application Center server for
connection to Apple Push Notification Services” on
page 12-79.

ibm.appcenter.apns.p12.certificate.locationThe path to the file of the development certificate
that enables Application Center to send push
notifications about updates of iOS applications. For
example, /Users/someUser/someDirectory/apache-
tomcat/conf/AppCenter_apns_dev_cert.p12. See
“Configuring the Application Center server for
connection to Apple Push Notification Services” on
page 12-79.

ibm.appcenter.apns.p12.certificate.passwordThe password of the certificate that enables
Application Center to send push notifications about
updates of iOS applications is a development
certificate. See “Configuring the Application Center
server for connection to Apple Push Notification
Services” on page 12-79.

6-238 IBM MobileFirst Platform Foundation V6.3.0

Table 6-52. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.forceUpgradeDBTo60 The database design was changed starting from IBM
Worklight version 6.0. The database is automatically
updated when the Application Center web
application starts. If you want to repeat this update,
you can set this parameter to true and start the web
application again. Later you can set this parameter to
false.

ibm.appcenter.gcm.signature.googleapikeyThe Google API key that enables the Application
Center to send push notifications about updates for
Android applications. For example,
AIxaScCHg0VSGdgfOZKtzDJ44-oi0muUasMZvAs. See
“Configuring the Application Center server for
connection to Google Cloud Messaging” on page
12-78.

ibm.appcenter.ios.plist.onetimeurl Specifies whether URLs stored in iOS plist manifests
use the one-time URL mechanism without
credentials. If you set this property to true, the
security level is medium since the one-time URLs are
generated with a cryptographic mechanism so that
nobody can guess the URL. However, they do not
require the user to log in when you use these URLs.
Setting this property to false is maximally secure,
since the user is then required to log in for each
URL. However, requesting the user to log in multiple
times when you install an iOS application can
degrade the user experience. See “Installing the client
on an iOS mobile device” on page 12-120.

ibm.appcenter.ldap.active Specifies whether Application Center is configured
for LDAP. Set to true to enable LDAP; set to false
to disable LDAP. See “Managing users with LDAP”
on page 6-210.

ibm.appcenter.ldap.cache.expiration.secondsThe Application Center maintains a cache of LDAP
data and the changes become visible only after the
cache expires. Specify the amount of time in seconds
an entry in the LDAP cache is valid. Set this property
to a value larger than 3600 (1 hour) to reduce the
amount of LDAP requests. If no value is entered, the
default value is 86400, which is equal to 24 hours.

If you need to manually clear the cache of LDAP
data, enter this command:

acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP
cache for details.

ibm.appcenter.ldap.connectionURL The URL to access the LDAP server when no VMM
is used. See “Configuring LDAP ACL management
(Liberty profile)” on page 6-221 and “Configuring
LDAP ACL management (Apache Tomcat)” on page
6-227.

Installing and configuring 6-239

Table 6-52. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.ldap.federated.activeSpecifies whether Application Center is configured
for LDAP with federated repositories. Since
WebSphere Application Server Liberty Profile V8.5.5.
set this property to true to enable use of the
federated registry. Set this property to false to
disable use of the federated registry, which is the
default setting. See “Managing users with LDAP” on
page 6-210.

ibm.appcenter.ldap.group.base The search base to find groups when you use LDAP
without VMM. See “Configuring LDAP ACL
management (Liberty profile)” on page 6-221 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 6-227.

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the placeholder
for the group attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when
the properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same
value.

ibm.appcenter.ldap.group.name The group name attribute when you use LDAP
without VMM. See “Configuring LDAP ACL
management (Liberty profile)” on page 6-221 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 6-227.

ibm.appcenter.ldap.group.nesting Specifies whether the LDAP contains nested groups
(that is, groups in groups) when you use LDAP
without VMM. Setting this property to false speeds
up the LDAP access since the groups are then not
searched recursively. See “Configuring LDAP ACL
management (Liberty profile)” on page 6-221 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 6-227.

ibm.appcenter.ldap.group.uniquememberSpecifies the members of a group when you use
LDAP without VMM. This property is the inverse of
ibm.appcenter.ldap.user.groupmembership. See
“Configuring LDAP ACL management (Liberty
profile)” on page 6-221 and “Configuring LDAP ACL
management (Apache Tomcat)” on page 6-227.

ibm.appcenter.ldap.referral Specifies whether referrals are supported by the JNDI
API. If no value is given, the JNDI API does not
handle LDAP referrals. Here are the possible values:

v ignore: ignores referrals that are found in the
LDAP server.

v follow: automatically follows any referrals that are
found in the LDAP server.

v throw: causes an exception to occur for each
referral found in the LDAP server.

6-240 IBM MobileFirst Platform Foundation V6.3.0

Table 6-52. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.ldap.security.binddn The distinguished name of the user that is allowed to
search the LDAP directory. Use this property only if
security binding is required.

The password can be encoded with the “Liberty
Profile securityUtility” tool. Run the tool and then set
the value of this property to the encoded password
generated by the tool. The supported encoding types
are xor and aes.

Edit the Liberty Profile server.xml file to check
whether the classloader is enabled to load the JAR file
that decodes the password.See “Configuring LDAP
ACL management (Apache Tomcat)” on page 6-227.

ibm.appcenter.ldap.security.bindpwdThe password of the user that is permitted to search
the LDAP directory. Use this property only if security
binding is required. See “Configuring LDAP ACL
management (Apache Tomcat)” on page 6-227.

ibm.appcenter.ldap.security.sasl Specifies the security authentication mechanism
when the LDAP external SASL authentication
mechanism is required to bind to the LDAP server.
The value depends on the LDAP server and it is
typically set to EXTERNAL. If set, security
authentication is used when you connect to LDAP
without VMM. See “Configuring LDAP ACL
management (Liberty profile)” on page 6-221 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 6-227.

ibm.appcenter.ldap.user.base The search base to find users when you use LDAP
without VMM. See “Configuring LDAP ACL
management (Liberty profile)” on page 6-221 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 6-227.

ibm.appcenter.ldap.user.displayNameThe display name attribute, such as the user's real
name, when you use LDAP without VMM. See
“Configuring LDAP ACL management (Liberty
profile)” on page 6-221 and “Configuring LDAP ACL
management (Apache Tomcat)” on page 6-227.

ibm.appcenter.ldap.displayName.filterLDAP user search filter for the attribute of
ibm.appcenter.ldap.user.displayName. Use %v as the
placeholder for the display name attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when
the properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same
value.

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of
ibm.appcenter.ldap.user.loginName. Use %v as the
placeholder for the login name attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when
the properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same
value.

Installing and configuring 6-241

Table 6-52. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.ldap.user.groupmembershipSpecifies the groups of a member when you use
LDAP without VMM. This property is the inverse of
ibm.appcenter.ldap.group.uniquemember. This
property is optional, but if it is specified, the LDAP
access is faster. See “Configuring LDAP ACL
management (Liberty profile)” on page 6-221 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 6-227.

ibm.appcenter.ldap.user.loginName The login name attribute when you use LDAP
without VMM. See “Configuring LDAP ACL
management (Liberty profile)” on page 6-221 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 6-227.

ibm.appcenter.ldap.vmm.active Specifies whether LDAP is done through VMM. Set
to true to enable or false to disable. See
“Configuring LDAP ACL management (WebSphere
Application Server V8.x)” on page 6-217 and
“Configuring LDAP ACL management with VMM
(WebSphere Application Server V7)” on page 6-214.

ibm.appcenter.ldap.vmm.adminpwd The password when LDAP is done through VMM.
See “Configuring LDAP ACL management
(WebSphere Application Server V8.x)” on page 6-217
and “Configuring LDAP ACL management with
VMM (WebSphere Application Server V7)” on page
6-214.

ibm.appcenter.ldap.vmm.adminuser The user when LDAP is done through VMM. See
“Configuring LDAP ACL management (WebSphere
Application Server V8.x)” on page 6-217 and
“Configuring LDAP ACL management with VMM
(WebSphere Application Server V7)” on page 6-214.

ibm.appcenter.logging.formatjson This property has only an effect when
ibm.appcenter.logging.tosystemerror is set to true.
If enabled, it formats JSON responses in logging
messages that are directed to System.Error. Setting
this property is helpful when you debug the server.

ibm.appcenter.logging.tosystemerrorSpecifies whether all logging messages are also
directed to System.Error. Setting this property is
helpful when you debug the server.

ibm.appcenter.openjpa.Log This property is passed to OpenJPA and enables JPA
logging. For details, see the Apache OpenJPA User's
Guide.

ibm.appcenter.proxy.host If the Application Center server is behind a firewall
or reverse proxy, this property specifies the address
of the host. Setting this property allows a user
outside the firewall to reach the Application Center
server. Typically, this property is the address of the
proxy. See “Defining the endpoint of the application
resources” on page 6-230.

6-242 IBM MobileFirst Platform Foundation V6.3.0

http://openjpa.apache.org/builds/1.2.2/apache-openjpa-1.2.2/docs/manual/manual.html
http://openjpa.apache.org/builds/1.2.2/apache-openjpa-1.2.2/docs/manual/manual.html

Table 6-52. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.proxy.port If the Application Center server is behind a firewall
or reverse proxy, this property specifies the address
of the host. Setting this property allows a user
outside the firewall to reach the Application Center
server. Typically, this property is the port of the
proxy, for example 443. It is only needed if the
protocol of the external and of the internal URI are
different. See “Defining the endpoint of the
application resources” on page 6-230.

ibm.appcenter.proxy.protocol If the Application Center server is behind a firewall
or reverse proxy, this property specifies the protocol
(http or https). Setting this property allows a user
outside the firewall to reach the Application Center
server. Typically, this property is set to the protocol
of the proxy. For example, appcntr.net. This
property is only needed if the protocol of the
external and of the internal URI are different. See
“Defining the endpoint of the application resources”
on page 6-230.

ibm.appcenter.proxy.scheme This property is just an alternative name for
ibm.appcenter.proxy.protocol.

ibm.appcenter.push.schedule.period.amountSpecifies the time schedule when you send push
notifications of application updates. When
applications are frequently changed on the server, set
this property to send batches of notifications. For
example, send all notifications that happened within
the past hour, instead of sending each individual
notification.

ibm.appcenter.push.schedule.period.unitSpecifies the unit for the time schedule when you
send push notifications of application updates.

ibm.appcenter.services.endpoint Enables the Application Center console to locate the
Application Center REST services. Specify the
external address and context root of the
applicationcenter.war web application. In a
scenario with a firewall or a secured reverse proxy,
this URI must be the external URI and not the
internal URI inside the local LAN. For example,
https://appcntr.net:443/applicationcenter. See
“Defining the endpoint of the application resources”
on page 6-230.

ibm.appcenter.services.iconCacheMaxAgeSpecifies the amount of time in seconds cached icons
remain valid for the Application Center Console and
the Client. Application icons rarely change, therefore
they are cached. Specify values larger than 600 (10
min) to reduce the amount of data transfer for the
icons.

ibm.worklight.jndi.configuration Optional. If the JNDI configuration is injected into
the WAR files or provided as a shared library, the
value of this property is the name of the JNDI
configuration. This value can also be specified as a
system property. See “Predefining MobileFirst Server
configuration for several deployment environments”
on page 6-244.

Installing and configuring 6-243

Table 6-52. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.worklight.jndi.file Optional. If the JNDI configuration is stored as an
external file, the value of this property is the path of
a file that describes the JNDI configuration. This
value can also be specified as a system property. See
“Predefining MobileFirst Server configuration for
several deployment environments.”

Predefining MobileFirst Server configuration for several deployment
environments

You can configure JNDI properties in a property file for easy transfer between one
web application server and another; for example, to transfer from test to
production environments.

As part of the installation of administration components of IBM MobileFirst
Platform Foundation, various JNDI properties must be set. These components
include MobileFirst Operations Console, MobileFirst Administration Service, and
Application Center. Normally, JNDI properties are specified in the configuration of
the web application server and are outside the web archive (WAR) file that
represents the server component.

Instead, you can specify the JNDI properties in a property file. Having JNDI
properties in a property file makes it easier to transfer the entire configuration
from one web application server to another. For example, you can configure a test
web server and, once the configuration is stable, you can transfer the configuration
to the production web server by copying the property file to the production server.

This property file can be made available to the server components in various ways:
v The property file can be placed on the file system.

This solution is particularly useful for a stand-alone test server when you are
experimenting with JNDI properties to determine the final configuration. You
can easily change the file on the file system with a text editor. Then you have
only to restart the web server to enable the changed configuration.

v The property file can be injected into web archive (WAR) files.
This solution is useful when you want to transfer the configuration together
with the web archive file to another web server. You only have to handle the
web archive file, and no other files. The configuration is, in this case, fused into
the web archive file.

v The property file can be installed as a shared library for all server components.
This solution is useful when you intend to exchange the web archive files often,
but want to keep the same configuration all the time.

Creating the property file
Define JNDI properties in a property file by using a text editor. Determine where
to set JNDI properties according to a selective priority.

The property file follows the standard Java property file syntax and can be edited
with any text editor. It has the file extension .properties. You can include all
properties of all web archive (WAR) files in the same property file.

6-244 IBM MobileFirst Platform Foundation V6.3.0

Here is an example of the content of a property file.
publicWorkLightHostname=myworklighthost.net
publicWorkLightPort=9080
publicWorkLightProtocol=https
push.gcm.proxy.enabled=false
push.gcm.proxy.host=myproxyhost.net
push.gcm.proxy.port=-1
push.gcm.proxy.protocol=https
ibm.worklight.admin.environmentid=id123

JNDI properties

You can refer to the details of JNDI properties in the relevant parts of the user
documentation:

Application Center
“List of JNDI properties for the Application Center” on page 6-238

MobileFirst Application Services
“List of JNDI properties for MobileFirst Server administration” on page
6-92

MobileFirst runtime
“Configuration of MobileFirst applications on the server” on page 11-45

You do not have to specify all the possible JNDI properties in the property file.
You can specify some in the property file and others as JNDI properties that are
explicitly set in the web application server. The following list indicates the priority
by which properties are enacted.
1. If a JNDI property is explicitly set in the web application server, this property

value is taken. Refer to the documentation of your web application server for
how to set JNDI properties.

2. If that is not the case, but the JNDI property is set in the property file injected
into the web archive file or in the property file provided as a shared library, the
property value is taken from this property file.

3. If that is not the case, but the JNDI property is set in the property file provided
on the file system, the property value is taken from this property file.

4. If that is not the case, the default value of the JNDI property is taken.

Using a property file in the file system
You can place the property file directly into the file system of the web application
server.

The property file can be stored directly in the file system. This approach is
particularly useful for a stand-alone test server when you are experimenting with
JNDI properties to determine the final configuration. You can easily change the file
on the file system with a text editor. Then you have only to restart the web server
to enable the changed configuration.

You must define the property ibm.worklight.jndi.file to point to the location of
the property file. This property can be defined as a Java Virtual Machine system
property or explicitly as a JNDI property. This property cannot be defined in the
property file.

Installing and configuring 6-245

WebSphere Application Server full profile

Determine a suitable directory for the JNDI property file in the WebSphere
Application Server installation directory.
v For a stand-alone server, you can use a directory such as:

$WAS_INSTALL_DIR/profiles/profile-name/config/mywlconfig.properties

v For deployment to a WebSphere Application Server ND cell, use for example:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
mywlconfig.properties

v For deployment to a WebSphere Application Server ND cluster, use for example:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/mywlconfig.properties

v For deployment to a WebSphere Application Server ND node, use for example:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/node-
name/mywlconfig.properties

v For deployment to a WebSphere Application Server ND server, use for example:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/node-
name/servers/server-name/mywlconfig.properties

Next, add the setting of the ibm.worklight.jndi.file property to the Java Virtual
Machine custom properties in the WebSphere Application Server administration
console. For details of how to add this setting, see “Setting the file pointer property
(WebSphere Application Server full profile)” on page 6-247.

WebSphere Application Server Liberty profile

You must place the property file inside the server directory of the Liberty server;
for example, place it in $LIBERTY_HOME/usr/servers/worklightServer/
mywlconfig.properties.

Edit the $LIBERTY_HOME/usr/servers/worklightServer/bootstrap.properties file
and add the property ibm.worklight.jndi.file to point to the property file; for
example, ibm.worklight.jndi.file=mywlconfig.properties.

Alternatively, instead of editing bootstrap.properties, create or edit the file
$LIBERTY_HOME/usr/servers/worklightServer/jvm.options and add, for example:
-Dibm.worklight.jndi.file=mywlconfig.properties

You can use the normal web archive (WAR) files of the web applications. They can
be installed as described elsewhere in “Installing and configuring” on page 6-1.

Restart the web application server. Whenever the property file changes, the web
application server must be restarted.

Apache Tomcat

You must place the property file inside the conf directory of the Apache Tomcat
server; for example, place it in $TOMCAT_HOME/conf/mywlconfig.properties.

Edit the $TOMCAT_HOME/conf/catalina.properties file and add the property
ibm.worklight.jndi.file to point to the property file; for example,
ibm.worklight.jndi.file=../conf/mywlconfig.properties.

6-246 IBM MobileFirst Platform Foundation V6.3.0

Alternatively, on UNIX systems, instead of editing catalina.properties, create or
edit the $TOMCAT_HOME/bin/setenv.sh file and add, for example:
CATALINA_OPTS="$CATALINA_OPTS
-Dibm.worklight.jndi.file=../conf/mywlconfig.properties"

or on microsoft Windows systems, create or edit the $TOMCAT_HOME/bin/setenv.bat
file and add , for example:
set CATALINA_OPTS=%CATALINA_OPTS%
-Dibm.worklight.jndi.file=../conf/mywlconfig.properties

You can use the normal web archive (WAR) files of the web applications. They can
be installed as described elsewhere in “Installing and configuring” on page 6-1.

Restart the web application server. Whenever the property file changes, the web
application server must be restarted.

Setting the file pointer property (WebSphere Application Server
full profile)
Define the ibm.worklight.jndi.file property through the administration console
of the WebSphere Application Server full profile.

Before you begin

Determine the location in the file system of the JNDI property file. See “WebSphere
Application Server full profile” on page 6-246.

About this task

When you opt to configure JNDI properties by using a property file located
directly in the file system, you must set a property to point to the property file.
This property is outside the property file and is set through the administration
console.

You must log in to the WebSphere Application Server administration console and
add the setting of the ibm.worklight.jndi.file property to the Java Virtual
Machine custom properties.

Procedure
1. Select Servers > Server types > WebSphere Application Servers.
2. Select the name of your server.
3. Expand “Java and process management” and select “Process Definition”.
4. Select “Java Virtual Machine”.
5. Select “Custom Properties” and click New.
6. Specify the name as ibm.worklight.jndi.file.
7. Specify the value as the path to the property file. The directory

$WAS_INSTALL_DIR/profiles/profile-name can be specified as
${USER_INSTALL_ROOT}; for example, that can be one of the following values:
v ${USER_INSTALL_ROOT}/config/mywlconfig.properties

v ${USER_INSTALL_ROOT}/config/cells/cell-name/mywlconfig.properties

v ${USER_INSTALL_ROOT}/config/cells/cell-name/clusters/cluster-name/
mywlconfig.properties

v ${USER_INSTALL_ROOT}/config/cells/cell-name/nodes/node-name/
mywlconfig.properties

Installing and configuring 6-247

v ${USER_INSTALL_ROOT}/config/cells/cell-name/nodes/node-name/servers/
server-name/mywlconfig.properties

8. Click Apply.
9. Click Save.

What to do next

You can use the normal web archive (WAR) files of the web applications. They can
be installed as described elsewhere in “Installing and configuring” on page 6-1.

To enable the property file, restart all MobileFirst Server components. These
components are displayed in the WebSphere Application Server administration
console under WebSphere enterprise applications.

Using property files injected into a web archive file
You can inject several configuration files into the WAR file of a MobileFirst Server
component.

The property file can be injected into the web archive (WAR) files for MobileFirst
Operations Console, MobileFirst Administration Service, MobileFirst runtime, or
Application Center. This approach is useful when you want to transfer the
configuration together with the web archive file to another web application server.
In this case, you only have to handle the web archive file, and no other files. The
configuration is, in this case, fused into the web archive file.

You can inject several different configurations into the same web archive file and
then select in the web application server which configuration should be used. For
example, you could have a test configuration and a production configuration
injected at the same time. To do so, create multiple property files with different
settings, one named testconf.properties and the other named
prodconf.properties.

Some JNDI properties must have the same value in all MobileFirst Server
components. Therefore, you should inject the same property files into all web
archive files. The following JNDI properties must be the same for MobileFirst
Operations Console, MobileFirst Administration Services, and MobileFirst runtime:
v ibm.worklight.admin.environmentid

v ibm.worklight.topology.clustermode

v ibm.worklight.topology.platform

v ibm.worklight.admin.jmx.connector

v ibm.worklight.admin.jmx.dmgr.host

v ibm.worklight.admin.jmx.dmgr.port

v ibm.worklight.admin.jmx.host

v ibm.worklight.admin.jmx.port

v ibm.worklight.admin.jmx.user

v ibm.worklight.admin.jmx.pword

v ibm.worklight.admin.rmi.registryPort

v ibm.worklight.admin.rmi.serverPort

6-248 IBM MobileFirst Platform Foundation V6.3.0

Injecting property files into a WAR file by using the Command
Line tool

The wljndiinject command line tool is used to inject a set of property files into a
web archive file. To add the property files testconf.properties and
prodconf.properties to a war file, use the following command:
wljndiinject --sourceWarFile source.war testconf.properties prodconf.properties

The resulting web archive file can be found in the folder jndi-injected. It contains
the property files inside the web archive file.

Options of the tool:

--help Shows the help.

--sourceWarFile file
The web archive file that is used to add the property files.

--destFile file
The destination file name. If not specified, the destination file is placed in
the jndi-injected directory.

--sharedJar
Used to create a shared library; For details, see “Creating a shared library
of JNDI properties” on page 6-252.

Injecting property files into a WAR file by using an Ant task

You can use the com.worklight.ant.jndi.JNDIInjectionTask Ant task to inject a
set of property files into a web archive file.

Here is a sample ant script that shows the use of the ant task:
<?xml version="1.0" encoding="UTF-8"?>
<project name="WLJndiInjectTask" basedir="." default="jndiinject.Sample">

<property name="install.dir" value="/path.to.worklight.installation" />
<path id="classpath.run">
<fileset dir="${install.dir}/WorklightServer/">

<include name="worklight-ant-deployer.jar" />
</fileset>

</path>
<target name="jndiinject.init">
<taskdef name="jndiinject"

classname="com.worklight.ant.jndi.JNDIInjectionTask">
<classpath refid="classpath.run" />

</taskdef>
</target>
<target name="jndiinject.Sample"

description="Injects properties into the Worklight war file"
depends="jndiinject.init">

<!-- This is just an example:
Mandatory parameters are sourceWarFile and the fileset.
All other parameters are optional and could be ommitted.
The source war files are expected in the wars directory.
The property files are expected in the properties directory.

-->
<jndiinject

sourceWarFile="wars/worklightproject.war"
destWarFile="worklightproject-injected.war" >
<fileset dir="." casesensitive="yes">

<include name="properties/*.properties"/>
</fileset>

</jndiinject>
<jndiinject

Installing and configuring 6-249

sourceWarFile="wars/worklightadmin.war"
destWarFile="worklightadmin-injected.war" >
<fileset dir="." casesensitive="yes">

<include name="properties/*.properties"/>
</fileset>

</jndiinject>
<jndiinject

sourceWarFile="wars/worklightconsole.war"
destWarFile="worklightconsole-injected.war" >
<fileset dir="." casesensitive="yes">

<include name="properties/*.properties"/>
</fileset>

</jndiinject>
</target>

</project>

Installing the property-injected WAR files in the web application
server

After injection of the property files into the web archive files, the web archive files
contain the property files and can be installed like any normal web archive file in
the web application server.

For the MobileFirst Administration Services, MobileFirst Operations Console, and
the MobileFirst runtime, you can use the ant task to install the web archive files, or
you can update the web archive files manually.

For details of how to install web archive files for MobileFirst components, see:
v “Using Ant tasks to install MobileFirst Server administration” on page 6-62
v “Deploying a project WAR file and configuring the application server with Ant

tasks” on page 11-14
v “Deploying the Application Center WAR files and configuring the application

server manually” on page 6-198

When the web archive file is deployed, you must define the
ibm.worklight.jndi.configuration property to point to the name of the required
configuration.

Selecting the configuration in a property-injected WAR file

The default configuration is called default.properties. If the configuration of
JNDI properties has a different name, you must define the
ibm.worklight.jndi.configuration property. The value of this property must be
the configuration name without the extension .properties. This property can be
specified as a Java Virtual Machine system property or explicitly as a JNDI
property. This property cannot be defined in the configuration property file.

Selecting the configuration: WebSphere Application Server full
profile

You must log in to the WebSphere Application Server administration console and
add the setting of the ibm.worklight.jndi.configuration property to the Java
Virtual Machine custom properties.

To add this property setting:
1. Select Servers > Server types > WebSphere Application Servers.
2. Select the name of your server.

6-250 IBM MobileFirst Platform Foundation V6.3.0

3. Expand “Java and process management” and select “Process Definition”
4. Select “Java Virtual Machine”.
5. Select “Custom Properties” and click New.
6. Specify the name as ibm.worklight.jndi.configuration.
7. Specify the value as the name of the configuration.
8. Click Apply.
9. Click Save.

When the property is set, to enable the configuration, restart the appropriate
MobileFirst Server components. These components are displayed in the WebSphere
Application Server administration console under WebSphere enterprise
applications.

Selecting the configuration: WebSphere Application Server
Liberty profile

You must edit the $LIBERTY_HOME/usr/servers/worklightServer/
bootstrap.properties file and set the ibm.worklight.jndi.configuration property
to point to the name of the configuration.

For example:
ibm.worklight.jndi.configuration=testconf

Alternatively, instead of editing the bootstrap.properties file, create or edit the
$LIBERTY_HOME/usr/servers/worklightServer/jvm.options file. For example, add:
-Dibm.ibm.worklight.jndi.configuration=testconf

To enable the configuration, restart the web application server.

Selecting the configuration: Apache Tomcat

You must edit the $TOMCAT_HOME/conf/catalina.properties file and set the
ibm.worklight.jndi.configuration property to point to the name of the
configuration.

For example:
ibm.worklight.jndi.configuration=testconf

Alternatively, instead of editing the catalina.properties file, depending on the
operating system, create or edit one of the following files:
v On UNIX systems: $TOMCAT_HOME/bin/setenv.sh

For example, add:
CATALINA_OPTS="$CATALINA_OPTS -Dibm.worklight.jndi.configuration=testconf"

v On Microsoft Windows systems: $TOMCAT_HOME/bin/setenv.bat
For example, add:
set CATALINA_OPTS=%CATALINA_OPTS% -Dibm.worklight.jndi.configuration=testconf

To enable the configuration, restart the web application server.

Using a shared library of JNDI properties
You can create a shared library to hold different configurations for any MobileFirst
Server component.

Installing and configuring 6-251

If you do not want to inject properties into web archive files, the property file can
be installed as a shared library for all MobileFirst Server components. This
approach is useful when you intend to exchange the web archive files often, but
want to keep the same configuration all the time. The original web archive files
remain unchanged, but you need to install an additional shared library.

You can add several different configurations to the same shared library and then
select in the web application server which configuration to use. For example, you
could have a test configuration and a production configuration injected at the same
time. To do so, create property files with different settings, one named
testconf.properties and the other prodconf.properties.

Creating a shared library of JNDI properties

The wljndiinject command line tool is used to create a shared library for a set of
property files. To create a shared library named jndiprops.jar with the property
files testconf.properties and prodconf.properties, use the following command:
wljndiinject --sharedJar --destFile jndiprops.jar testconf.properties prodconf.properties

Options of the tool:

--help Shows the help.

--sourceWarFile file
This option is not required for creating a shared library. This option is used
when a property file is injected into a web archive file to identify the web
archive file.

--destFile file
The destination file name of the shared library.

--sharedJar
Used to create a shared library instead of injecting a property file into a
web archive file.

Installing a shared library of JNDI configurations

Assume that all web applications are already installed. The shared library is added
to the web applications.

WebSphere Application Server full profile
Determine a suitable directory for the shared library jndiprops.jar in the
WebSphere Application Server installation directory and place the
jndiprops.jar file there.
v For a stand-alone server, you can use a directory such as:

$WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight

v For deployment to a WebSphere Application Server ND cell, use for
example:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight

v For deployment to a WebSphere Application Server ND cluster, use:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
clusters/cluster-name/Worklight

v For deployment to a WebSphere Application Server ND node, use:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
nodes/node-name/Worklight

6-252 IBM MobileFirst Platform Foundation V6.3.0

v For deployment to a WebSphere Application Server ND server, use:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
nodes/node-name/servers/server-name/Worklight

For details about adding the shared library, see “Adding the shared library
(WebSphere Application Server full profile)” on page 6-255.

WebSphere Application Server Liberty profile
Place the jndiprops.jar file in a suitable directory; for
example,$LIBERTY_HOME/usr/shared/resources/lib/jndiprops.jar.

Edit the $LIBERTY_HOME/usr/servers/worklightServer/server.xml file. For
each <application> element, add or update the <classloader> element.
<application ...>

...
<classloader delegation="parentLast"></p>

...
<privateLibrary>

<fileset dir="${shared.resource.dir}/lib"
includes="jndiprops.jar"/>

</privateLibrary>
</classloader>

</application>

Restart the web application server after these changes.

Apache Tomcat
Place the shared library, jndiprops.jar file, in a suitable directory; for
example, $TOMCAT_HOME/Worklight/jndiprops.jar.

Edit the $TOMCAT_HOME/conf/server.xml file. For each <Context> element,
add or update the <Loader> element.
<Context docBase="worklightconsole" path="/worklightconsole">

<Loader className="org.apache.catalina.loader.VirtualWebappLoader"
virtualClasspath="${catalina.base}/Worklight/jndiprops.jar"
searchVirtualFirst="true"/>

...
</Context>

For the MobileFirst project, which uses additional shared libraries, the
example code is:
<Context docBase="worklightconsole" path="/worklight">

<Loader className="org.apache.catalina.loader.VirtualWebappLoader"
virtualClasspath="${catalina.base}/Worklight/worklight/worklight-jee-library.jar;${catalina.base}/Worklight/jndiprops.jar"
searchVirtualFirst="true"/>

...
</Context>

Restart the web application server after these changes.

Selecting the configuration in a shared library of JNDI
configurations

The default configuration is called default.properties. If the configuration of
JNDI properties has a different name, you must define the
ibm.worklight.jndi.configuration property. The value of this property must be
the configuration name without the extension .properties. This property can be
specified as a Java Virtual Machine system property or explicitly as a JNDI
property. This property cannot be defined in the configuration property file.

Installing and configuring 6-253

WebSphere Application Server full profile
You must log in to the WebSphere Application Server administration
console and add the setting of the ibm.worklight.jndi.configuration
property to the Java Virtual Machine custom properties.

To add this property setting:
1. Select Servers > Server types > WebSphere Application Servers.
2. Select the name of your server.
3. Expand “Java and process management” and select “Process

Definition”
4. Select “Java Virtual Machine”.
5. Select “Custom Properties” and click New.
6. Specify the name as ibm.worklight.jndi.configuration.
7. Specify the value as the name of the configuration.
8. Click Apply.
9. Click Save.

When the property is set, to enable the configuration, restart the
appropriate MobileFirst Server components. These components are
displayed in the WebSphere Application Server administration console
under WebSphere enterprise applications.

WebSphere Application Server Liberty profile
You must edit the $LIBERTY_HOME/usr/servers/worklightServer/
bootstrap.properties file and set the ibm.worklight.jndi.configuration
property to point to the name of the configuration.

For example:
ibm.worklight.jndi.configuration=testconf

Alternatively, instead of editing the bootstrap.properties file, create or
edit the $LIBERTY_HOME/usr/servers/worklightServer/jvm.options file. For
example, add:
-Dibm.ibm.worklight.jndi.configuration=testconf

To enable the configuration, restart the web application server.

Apache Tomcat
You must edit the $TOMCAT_HOME/conf/catalina.properties file and set the
ibm.worklight.jndi.configuration property to point to the name of the
configuration. For example:
ibm.worklight.jndi.configuration=testconf

Alternatively, instead of editing the catalina.properties file, depending
on the operating system, create or edit one of the following files:
v On UNIX systems: $TOMCAT_HOME/bin/setenv.sh

For example, add:
CATALINA_OPTS="$CATALINA_OPTS -Dibm.worklight.jndi.configuration=testconf"

v On Microsoft Windows systems: $TOMCAT_HOME/bin/setenv.bat
For example, add:
set CATALINA_OPTS=%CATALINA_OPTS% -Dibm.worklight.jndi.configuration=testconf

To enable the configuration, restart the web application server.

6-254 IBM MobileFirst Platform Foundation V6.3.0

Adding the shared library (WebSphere Application Server full
profile)
Define the shared library and specify which web applications use it.

Before you begin

Install the shared library jndiprops.jar in a suitable directory in the WebSphere
Application Server installation directory.

About this task

You can install the property file as a shared library for all MobileFirst Server
components. To do so, you must log in to the WebSphere Application Server
administration console to add the shared library.

Procedure
1. Select Environment > Shared Libraries.
2. Select your scope in the fields Node= and Server=.
3. Click New.
4. Enter a name, for example, “MobileFirst JNDI Properties”.
5. Enter a description, for example, “IBM MobileFirst JNDI property package”.
6. Enter the classpath of the jndiprops.jar file. The $WAS_INSTALL_DIR/profiles/

profile-name directory can be specified as ${USER_INSTALL_ROOT}.
7. Select the option “Use an isolated class loader for this shared library”.
8. Click Apply.
9. Click Save.

10. Specify which web applications should use the shared library.
a. In the administration console, select Applications > Application Types >

WebSphere enterprise applications. You should stop all applications that
you are going to change, because the operations run faster when the
applications are stopped.

b. Select an application, for example, IBM MobileFirst Administration Service.
c. Select Shared library references.
d. In “Application”, select IBM MobileFirst Administration Service.
e. Click Reference shared libraries.
f. Move the MobileFirst JNDI Properties library from Available to Selected.
g. Click OK.
h. Click Save.

Repeat this procedure for the other required web applications from among
MobileFirst Operations Console, MobileFirst project, Application Center
Service, Application Center Console.

What to do next

Go to Applications > Application Types > WebSphere enterprise applications
and restart all the web applications.

Typical topologies of a MobileFirst instance
A MobileFirst instance uses a particular topology that is typical for organizations
with an established extranet infrastructure.

Installing and configuring 6-255

The following figure depicts this topology.

Such a topology is based on the following principles:
v MobileFirst Server is installed in the organization local area network (LAN),

connecting to various enterprise back-end systems.
v MobileFirst Server can be clustered for high availability and scalability.
v MobileFirst Server uses a database for storing push notification information,

statistics for reporting and analytics, and the metadata that the server needs at
run time. All instances of MobileFirst Server share a single instance of the
database.

Figure 6-16. Typical topology of a MobileFirst instance

6-256 IBM MobileFirst Platform Foundation V6.3.0

v MobileFirst Server is installed behind a web Single Sign-On (SSO) authentication
infrastructure, which acts as a reverse proxy and provides the Security Socket
Layer (SSL).

MobileFirst Server can be installed in different network configurations, which
might include several Data Management Zone (DMZ) layers, reverse proxies,
Network Address Translation (NAT) devices, firewalls, high availability
components such as load balancers, IP sprayers, clustering, and alike. Some of
these components are explained. However, this document assumes a simpler
configuration in which MobileFirst Server is installed in the DMZ.

Setting up IBM MobileFirst Platform Foundation in WebSphere
Application Server cluster environment

You can set up a MobileFirst cluster environment with IBM WebSphere Application
Server Network Deployment V8.5 and IBM HTTP Server.

About this task

This procedure explains how to set up IBM MobileFirst Platform Foundation in the
topology shown in Figure 1:

The instructions are based on the hardware and software that are listed in the
following Table 6-53 and Table 6-54 on page 6-258 tables.

Table 6-53. Hardware

Host name Operating system Description

Host1 RHEL 6.2 WebSphere Application
Server Deployment Manager
and IBM HTTP Server.

Host2 RHEL 6.2 WebSphere Application
Server cluster node / server
1

Figure 6-17. MobileFirst cluster topology with IBM WebSphere Application Server Network Deployment

Installing and configuring 6-257

Table 6-53. Hardware (continued)

Host name Operating system Description

Host3 RHEL 6.2 WebSphere Application
Server cluster node / server
2

Host4 RHEL 6.2 DB2 server

Table 6-54. Software

Name Description

IBM Installation Manager 1.8 Install IBM WebSphere Application Server
Network Deployment, IBM HTTP Server,
IBM Web Server Plug-ins for WebSphere
Application Server, and IBM MobileFirst
Platform Foundation.

IBM WebSphere Application Server 8.5 WebSphere Application Server. You need to
get the installation repository before you
start.

IBM HTTP Server 8.5 IBM HTTP Server. You need to get the
installation repository before you start. It is
also included in the WebSphere Application
Server installation repository.

Web Server Plug-ins 8.5 IBM HTTP Server Plugin. You need to get
the installation repository before you start. It
is also included in the WebSphere
Application Server installation repository.

IBM MobileFirst Platform Foundation V6.3.0 IBM MobileFirst Platform Foundation
runtime. You need to get access to the
installation repository before you start.

IBM DB2 V9.7 or later DB2 Database. Your DB2 server must be
available before you start the IBM
MobileFirst Platform Foundation installation.

Ant 1.8.3 Configure IBM MobileFirst Platform
Foundation with Liberty Profile Server.

Procedure
1. Install WebSphere Application Server Network Deployment, IBM HTTP

Server, and Web Server Plugins.
a. On the Host1 machine, log on with the “root” user ID and run IBM

Installation Manager to install WebSphere Application Server Network
Deployment, IBM HTTP server and Web Server Plugins. This
documentation assumes that the applications are installed in the following
places:

WebSphere Application Server Network Deployment home
/opt/WAS85

IBM HTTP Server home
/opt/IBM/HTTPServer

Web Server Plugins home
/opt/IBM/HTTPServer/Plugins

b. Repeat step 1a on Host2 and Host3, but install only WebSphere
Application Server Network Deployment.

6-258 IBM MobileFirst Platform Foundation V6.3.0

2. Create a deployment manager and nodes.
a. To avoid network errors, add the host name and IP mapping to the

/etc/hosts file.

On Windows:
Add the IP-to-host mapping to C:\Windows\System32\drivers\etc\
hosts.

On Linux:
Add the IP-to-host mapping to /etc/hosts.

For example:
9.186.9.75 Host1
9.186.9.73 Host2
9.186.9.76 Host3

b. Create a deployment manager and IBM HTTP Server node on Host1. You
can change the profile name and profile path to suit your environment.
1) Create the deployment manager profile. The following command

creates a profile named “dmgr:”

On Windows:
./manageprofiles.bat -create -profileName dmgr
-profilePath ../profiles/dmgr -templatePath
../profileTemplates/management -severType
DEPLOYMENT_MANAGER

On Linux:
./manageprofiles.sh -create -profileName dmgr
-profilePath ../profiles/dmgr506 -templatePath
../profileTemplates/management -severType
DEPLOYMENT_MANAGER

2) Create an IBM HTTP Server node profile. The following command
creates a profile named "ihs":

On Windows:
./manageprofiles.bat -create -profileName ihs
-profilePath ../profiles/ihs -templatePath
../profileTemplates/managed

On Linux:
./manageprofiles.sh -create -profileName ihs -profilePath
../profiles/ihs506 -templatePath ../profileTemplates/
managed

3) Start the deployment manager:

On Windows:
./startManager.bat

On Linux:
./startManager.sh

4) Add an IBM HTTP Server node to the deployment manager. The
following command adds the node defined by the “ihs” profile to the
deployment manager running on Host1, and assigns port 8879:

On Windows:
./addNode.bat Host1 8879 -profileName ihs

On Linux:
./addNode.sh Host1 8879 -profileName ihs

Installing and configuring 6-259

5) From the WebSphere Application Server administrative console, click
System administration > Nodes and check that the node is added to
the deployment manager.

Note: Node names might be different from the profile names you
specify because WebSphere Application Server automatically generates
a display name for a new node.

c. Create MobileFirst node1 on Host2.
1) Create a profile for the node. The following command creates a profile

named node1:

On Windows:
./manageprofiles.bat -create -profileName node1
-profilePath ../profiles/node1 -templatePath
../profileTemplates/managed

On Linux:
./manageprofiles.sh -create -profileName node1
-profilePath ../profiles/node1 -templatePath
../profileTemplates/managed

2) Add the node to the deployment manager. The following command
adds the node defined by the node1 profile to the deployment manager
running on Host1, and assigns port 8879:

On Windows:
./addNode.bat Host1 8879 -profileName node1

On Linux:
./addNode.sh Host1 8879 -profileName node1

d. Repeat step 2c to create MobileFirst node2 on Host3.
e. From the WebSphere Application Server administrative console, click

System administration > Nodes and check that the nodes you added to
the deployment manager are listed.

Note: Node names might be different from the profile names you specify
because WebSphere Application Server automatically generates a display
name for a new node.

3. Create a cluster and add MobileFirst nodes as members.
a. From the WebSphere Application Server administrative console, click

Servers > Clusters > WebSphere application server clusters, and then

6-260 IBM MobileFirst Platform Foundation V6.3.0

click New to create a new cluster.

b. For each MobileFirst node, add a member to the cluster: in the fields
provided, enter the required information, and then click Add Member.

c. From the WebSphere Application Server administrative console, click
Servers > Server Types > WebSphere application servers to check that the
cluster member servers are listed.

d. If the status column indicates that nodes are not synchronized, click
System Administration > Nodes, and then click Synchronize to
synchronize your nodes to the deployment manager.

Installing and configuring 6-261

4. Install MobileFirst Server on Host1. Ensure that the WebSphere Application
Server Network Deployment cluster is created without errors before you begin
the installation. For installation instructions, see “Installing MobileFirst
Server” on page 6-14.

5. Configure the databases. For instructions, see “Creating and configuring the
databases with Ant tasks” on page 11-13.

6. In MobileFirst Studio, create a MobileFirst project and build a MobileFirst
project WAR file. See “Artifacts produced during development cycle” on page
8-5.

7. Configure IBM MobileFirst Platform Foundation with the WebSphere
Application Server Network Deployment cluster. For instructions, see
“Deploying a project WAR file and configuring the application server with
Ant tasks” on page 11-14. Modify the Ant template to match your WebSphere
Application Server cluster and database server.

8. Verify the installation.
a. Restart the WebSphere Application Server cluster.
b. From the WebSphere Application Server administrative console, click

Resources > JDBC > Data sources, and check that the data sources
jdbc/WorklightAdminDS, jdbc/WorklightDS and jdbc/WorklightReportsDS
exist. If Application Center is installed, check that the data source
jdbc/AppCenterDS exists.

c. Select the data sources and click Test connection to verify the DB2
database connection. Confirmations similar to the ones in the following
messages indicate a successful connection.

6-262 IBM MobileFirst Platform Foundation V6.3.0

d. Go to Applications > Application Types > WebSphere enterprise
applications and check that the MobileFirst Operations Console
application is running.

e. Now that you have deployed IBM MobileFirst Platform Foundation on the
two node servers, you can access the MobileFirst Operations Console on
each host by browsing to the associated URLs:
v http://Host2:9080/worklightconsole

v http://Host3:9080/worklightconsole

Check that both MobileFirst Operations Console are running.
9. Configure the IBM HTTP Server.

a. From the WebSphere Application Server administrative console, go to
Servers > Server Types > Web servers, and then click New to create a
new IBM HTTP server.

b. Select the "ihs" node you previously created on Host1, then from the Type
list, select IBM HTTP Server, and then click Next.

c. Enter the IBM HTTP Server home and Web Server Plugins home you
previously selected on Host1, and then click Next and save your
configuration.

Installing and configuring 6-263

d. In the administrative console, on the Web servers page, click Generate
Plug-in to generate the plug-in configuration file.

A confirmation message is displayed.

e. Make a note of the plugin-cfg.xml location displayed in the confirmation
message.

f. In the administrative console, on the Web servers page, click ihs, and then
in the Configuration file name field, click Edit.

g. In the editor, add a was_ap22_module and a WebSpherePluginConfig
configuration to your http.conf file by adding the following text:

On Windows:
LoadModule was_ap22_module {IHS_Plugin_HOME}/bin/{64bits}/mod_was_ap22_http.dll
WebSpherePluginConfig {path to}/plugin-cfg.xml

On Linux:
LoadModule was_ap22_module {IHS_Plugin_HOME}/bin/{64bits}/mod_was_ap22_http.so
WebSpherePluginConfig {path to}/plugin-cfg.xml

6-264 IBM MobileFirst Platform Foundation V6.3.0

h. In the administrative console, on the Web servers page for the "ihs" server,
click Plug-in properties.

i. In the Plug-in Configuration file name field, click View.

j. Search for the cluster node and MobileFirst URI in the plugin-cfg.xml file.
For example:
<ServerCluster CloneSeparatorChange="false"
GetDWLMTable="false"
IgnoreAffinityRequests="true"
LoadBalance="Round Robin"
Name="Worklight"
PostBufferSize="0"
PostSizeLimit="-1"
RemoveSpecialHeaders="true"
RetryInterval="60"
ServerIOTimeoutRetry="-1">
<Server CloneID="17oi9lu2o"

ConnectTimeout="5"
ExtendedHandshake="false"
LoadBalanceWeight="2"
MaxConnections="-1"
Name="topowas1Node01_server1"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="topowas1" Port="9080" Protocol="http"/>
<Transport Hostname="topowas1" Port="9443" Protocol="https">

<Property Name="keyring" Value="/opt/Plugins/config/ihs/plugin-key.kdb"/>

Installing and configuring 6-265

<Property Name="stashfile" Value="/opt/Plugins/config/ihs/plugin-key.sth"/>
</Transport>

</Server>
<Server CloneID="17oi9m7kg"

ConnectTimeout="5"
ExtendedHandshake="false"
LoadBalanceWeight="2"
MaxConnections="-1"
Name="topowas2Node01_server2"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="topowas2" Port="9080" Protocol="http"/>
<Transport Hostname="topowas2" Port="9443" Protocol="https">

<Property Name="keyring" Value="/opt/Plugins/config/ihs/plugin-key.kdb"/>
<Property Name="stashfile" Value="/opt/Plugins/config/ihs/plugin-key.sth"/>

</Transport>
</Server>

<PrimaryServers>
<Server Name="topowas1Node01_server1"/>
<Server Name="topowas2Node01_server2"/>

</PrimaryServers>
</ServerCluster>
<UriGroup Name="default_host_Worklight_URIs">

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/appcenterconsole/*"/>

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/worklight/*"/>
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/applicationcenter/*"/>

</UriGroup>

If your configuration file does not include cluster servers and URIs, delete
the "ihs" server and create it again.

k. Optional: On the Plug-in properties page for the "ihs" server, click Request
Routing if you want to set a load-balancing policy.

6-266 IBM MobileFirst Platform Foundation V6.3.0

l. Optional: On the Plug-in properties page for the "ihs" server, click Caching
if you want to configure caching.

10. Start the IBM HTTP server and verify that the server is running.
a. In the WebSphere Application Server administrative console, go to Servers

> Server Types > Web servers.
b. Select the IBM HTTP server you created (in this example, named "ihs"),

and then click Start.

c. If the server fails to start, check the log file. To find the location of the log
file:
1) In the administrative console, on the Web servers page for the "ihs"

server, click Log file.
2) On the log file page, click the Configuration tab.
3) The location of the log file is displayed in the Error log file name field.

Installing and configuring 6-267

d. To verify that the IBM HTTP server is running, enter the URL for the
MobileFirst Operations Console in a web browser. For example:
http://Host1:80/worklightconsole.

Results

IBM MobileFirst Platform Foundation is now installed on an IBM WebSphere
Application Server Network Deployment cluster, and is ready for use.

Setting up an IBM HTTP Server in an IBM WebSphere
Application Server Liberty profile farm

You can set up a MobileFirst cluster environment with Liberty profile.

Before you begin

Install a server farm for Liberty. See “Installing a server farm” on page 6-99. If a
server farm is not configured, the MobileFirst Server installation does not work
properly, and changes made by using the MobileFirst Operations Console or
Administration Service are not replicated to all the servers of the farm, resulting in
inconsistent behavior for client devices that connect to the MobileFirst Server.

About this task

You can set up IBM MobileFirst Platform Foundation in the topology similar to the
one shown in Figure 6-18 on page 6-269.

6-268 IBM MobileFirst Platform Foundation V6.3.0

This procedure uses the hardware listed in Table 6-55 and the software listed in
Table 6-56.

Table 6-55. Hardware

Hostname Operating system Description

Host1 RHEL 6.2 IBM HTTP server with Web
Server plug-in, acting as load
balancer.

Host2 RHEL 6.2 Liberty farm server 1

Host3 RHEL 6.2 Liberty farm server 2

Host4 RHEL 6.2 DB2 server

Table 6-56. Software

Name Description

IBM Installation Manager Install IBM HTTP Server , IBM Liberty
profile, and IBM MobileFirst Platform
Foundation.

IBM HTTP Server You need to get access to the installation
repository before you start the procedure.
IBM HTTP Server is also included in the
WebSphere Application Server installation
repository.

Web Server Plug-ins You need to get access to the installation
repository before you start the procedure.
IBM HTTP Server Plugin is also included in
the WebSphere Application Server
installation repository.

Figure 6-18. MobileFirst cluster topology with Liberty profile

Installing and configuring 6-269

Table 6-56. Software (continued)

Name Description

IBM Liberty profile You need to get access to the installation
repository before you start the procedure.
IBM Liberty profile is also included in the
WebSphere Application Server installation
repository.

IBM MobileFirst Platform Foundation You need to get access to the installation
repository before you start the procedure.

IBM DB2 Your DB2 server must be available before
you start the IBM MobileFirst Platform
Foundation installation.

Procedure
1. Install IBM HTTP Server and Web Server Plugins.

a. On the Host1 machine. log on with the “root” user ID and run IBM
Installation Manager to install the IBM HTTP server and Web Server
Plugins. This documentation assumes that the applications are installed in
the following places:

IBM HTTP Server home
/opt/HTTPServer

Web Server Plugins home
/opt/Plugins

2. Start the Liberty profile servers to test whether you can access the MobileFirst
Operations Console on Host2 and Host3 by browsing to the associated URLs:
v http://Host2:9080/worklight/console

v http://Host3:9080/worklight/console

Check that both MobileFirst Operations Console are running.
3. Run the following command on Host1 to start the IBM HTTP server.

/opt/HTTPServer/bin/httpd -d /opt/HTTPServer -k start –f /opt/HTTPServer/conf/httpd.conf

If you encounter problems during IBM HTTP server startup, see
“Troubleshooting IBM HTTP Server startup” on page 6-275.

4. Ensure that the IBM HTTP Server can be accessed at the following URL in a
web browser:
http://<hostname>:<port>

5. For each Liberty server, generate a web server plug-in configuration file named
plugin-cfg.xml. The web server plug-in is used to forward HTTP requests from
the web server to the application server.
a. Start the server that hosts your applications and ensure that the

localConnector-1.0 feature and other required features are included in the
server configuration. Use the pluginConfiguration element in the server
configuration file to specify the webserverPort and webserverSecurePort
attributes for requests that are forwarded from the web server. By default,
the value of webserverPort is 80 and the value of webserverSecurePort is
443. Assign the value * to the host attribute to ensure that applications on
the Liberty server can be accessed from a remote browser. Here is an
example of a server.xml server configuration file:

6-270 IBM MobileFirst Platform Foundation V6.3.0

<server description="new server">
<featureManager>

<feature>localConnector-1.0</feature>
<feature>jsp-2.2</feature>

</featureManager>
<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9080">

<tcpOptions soReuseAddr="true" />
</httpEndpoint>
<pluginConfiguration webserverPort="80" webserverSecurePort="443"/>

</server>

b. Use one of the following methods to generate the plugin-cfg.xml file for
the Liberty server running your application.
v jConsole:

1) Using the same JDK as the server, run the jConsole Java utility from a
command prompt. For example, run the following command:
C:\java\bin\jconsole

2) In the jConsole window, click Local Process, click the server process
in the list of local processes, and then click Connect.

3) In the Java Monitoring & Management Console, click the MBeans tab.

Installing and configuring 6-271

4) Select and invoke the defaultPluginConfig generation MBean
operation to generate the plugin-cfg.xml file.

You can find the generated file in the \wlp\usr\servers\
<server_name> directory. Here is an example:
<?xml version="1.0" encoding="UTF-8"?>
<Config ASDisableNagle="false"
AcceptAllContent="false"
AppServerPortPreference="HostHeader"
ChunkedResponse="false"
FIPSEnable="false"
IISDisableNagle="false"
IISPluginPriority="High"
IgnoreDNSFailures="false"
RefreshInterval="60"
ResponseChunkSize="64"

6-272 IBM MobileFirst Platform Foundation V6.3.0

SSLConsolidate="false"
SSLPKCSDriver="REPLACE"
SSLPKCSPassword="REPLACE"
TrustedProxyEnable="false"
VHostMatchingCompat="false">
<Log LogLevel="Error" Name="String\logs\String\http_plugin.log"/>
<Property Name="ESIEnable" Value="true"/>
<Property Name="ESIMaxCacheSize" Value="1024"/>
<Property Name="ESIInvalidationMonitor" Value="false"/>
<Property Name="ESIEnableToPassCookies" Value="false"/>
<Property Name="PluginInstallRoot" Value="String"/>
<VirtualHostGroup Name="default_host">

<VirtualHost Name="*:443"/>
<VirtualHost Name="*:80"/>
<VirtualHost Name="*:9080"/>

</VirtualHostGroup>
<ServerCluster CloneSeparatorChange="false"

GetDWLMTable="false"
IgnoreAffinityRequests="true"
LoadBalance="Round Robin"
Name="String_default_node_Cluster"
PostBufferSize="64"
PostSizeLimit="-1"
RemoveSpecialHeaders="true"
RetryInterval="60">
<Server CloneID="s56"

ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String0"
ServerIOTimeout="900"
WaitForContinue="false">

<Transport Hostname="wasvm56" Port="9080" Protocol="http"/>
</Server>
<PrimaryServers>

<Server Name="default_node_String0"/>
</PrimaryServers>

</ServerCluster>
<UriGroup Name="default_host_String_default_node_Cluster_URIs">

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/tri-web/*"/>
</UriGroup>
<Route ServerCluster="String_default_node_Cluster"

UriGroup="default_host_String_default_node_Cluster_URIs"
VirtualHostGroup="default_host"/>

</Config>

v Eclipse:
1) Make sure your Liberty server is started.
2) In Eclipse, in the servers panel, right-click the Liberty server, and then

click Utilities > Generate Plugin Config.
c. Copy the plugin-cfg.xml file to the machine that hosts the IBM HTTP

Server web server, and then restart the web server to activate the settings in
the file. Typically, you must enable the plug-in within the httpd.conf file of
the web server by using the LoadModule phrase, and you must specify the
location of the plugin-cfg.xml file using the WebSpherePluginConfig
phrase.

On Windows:
LoadModule was_ap22_module "path\to\mod_was_ap22_http.dll"
WebSpherePluginConfig "path\to\plugin-cfg.xml"

On other distributed systems:
LoadModule was_ap22_module "path\to\mod_was_ap22_http.so"
WebSpherePluginConfig "path\to\plugin-cfg.xml"

Installing and configuring 6-273

6. Use one of the following methods to merge the plugin-cfg.xml files for all the
Liberty servers in the cluster.
v Manually merge the files using a text editor.
v Use the job manager to submit a Generate merged plugin configuration for

Liberty servers job.
For more information about the job manager, see Generating a merged
plug-in configuration for Liberty profile servers using the job manager.

7. Verify that workloads are distributed to multiple Liberty servers via the IBM
HTTP Server and Web Server Plugins.
a. Ensure that session affinity is enabled.

To do so, check that a CloneID attribute is included for each server in the
plugin-cfg.xml file of the IBM HTTP Server and Web Server Plugins.
Although you can generate CloneID values automatically, in production
environments, you must specify particular strings in the Liberty Profile
server.xml file. See Configuring session persistence for the Liberty profile.
If you do not specify particular strings, the value of the CloneID might
change under some circumstances and session affinity would stop working.
Automatically generated CloneID should not be used in a production
environment. In WebSphere Application Server Liberty profile, the CloneID
is generated when you start a server for the first time; it is regenerated if
you start the server with the --clean option.
In production use, manually assigning a clone ID ensures that the CloneID
is stable and that request affinity is correctly maintained. The CloneID must
be unique for each server and can be 8 to 9 alphanumeric characters in
length.
The following example shows CloneID attributes specified for three servers:
<ServerCluster CloneSeparatorChange="false"
GetDWLMTable="false"
IgnoreAffinityRequests="true"
LoadBalance="Round Robin"
Name="String_default_node_Cluster1"
PostBufferSize="64"
PostSizeLimit="-1"
RemoveSpecialHeaders="true"
RetryInterval="60">
<Server CloneID="s59"
ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String1"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="wasvm59.example.com" Port="9080" Protocol="http"/>

</Server>
<Server CloneID="s56"
ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String2"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="wasvm56.example.com" Port="9080" Protocol="http"/>

</Server>
<Server CloneID="vm28"
ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String3"
ServerIOTimeout="900"

6-274 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tagt_jobmgr_liberty_plugin_merge.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tagt_jobmgr_liberty_plugin_merge.html
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_session_persistence.html?lang=en

WaitForContinue="false">
<Transport Hostname="wasvm28.example.com" Port="9080" Protocol="http"/>

</Server>
<PrimaryServers>

<Server Name="default_node_String1"/>
<Server Name="default_node_String2"/>
<Server Name="default_node_String3"/>

</PrimaryServers>
</ServerCluster>

b. Ensure that each Liberty server is started.
c. Verify that round-robin load-balancing is successfully routing application

requests to each of the backend Liberty servers.

Troubleshooting IBM HTTP Server startup
Problems to start the IBM HTTP Server during deployment of a IBM MobileFirst
Platform Server on a WebSphere Application Server Liberty profile farm might be
caused by an exception in the runtime library.

About this task

When you set up IBM MobileFirst Platform Foundation on a WebSphere
Application Server Liberty profile farm, you are instructed to start the IBM HTTP
Server by running the following command:
/opt/HTTPServer/bin/httpd -d /opt/HTTPServer -k start -f /opt/HTTPServer/conf/httpd.conf

If the attempt fails with the following message, the problem might be caused by an
attempt to start IBM HTTP Server outside a WebSphere Application Server
environment in which certain libraries cannot be found.
/opt/HTTPServer/bin/httpd: error while loading shared libraries: libexpat.so.0: cannot open shared object file: No such file or directory

If a similar message is displayed, you can make the required libraries available as
follows.

Procedure
1. Check the IBM HTTP Server libraries:

ldd /opt/HTTPServer/bin/httpd

The output shows that libexpat.so.0 cannot be found:
linux-vdso.so.1 => (0x00007fff8c9d3000)
libm.so.6 => /lib64/libm.so.6 (0x00000039fb000000)
libaprutil-1.so.0 => /usr/lib64/libaprutil-1.so.0 (0x00007fc371a7d000)
librt.so.1 => /lib64/librt.so.1 (0x00000039fac00000)
libcrypt.so.1 => /lib64/libcrypt.so.1 (0x0000003a07c00000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00000039fa800000)
libdl.so.2 => /lib64/libdl.so.2 (0x00000039fa000000)
libexpat.so.0 => not found
libapr-1.so.0 => /usr/lib64/libapr-1.so.0 (0x00007fc37184f000)
libc.so.6 => /lib64/libc.so.6 (0x00000039fa400000)
libuuid.so.1 => /lib64/libuuid.so.1 (0x0000003a04c00000)
libexpat.so.1 => /lib64/libexpat.so.1 (0x00000039ff400000)
libdb-4.7.so => /lib64/libdb-4.7.so (0x00000039fd800000)
/lib64/ld-linux-x86-64.so.2 (0x00000039f9c00000)
libfreebl3.so => /lib64/libfreebl3.so (0x0000003a08000000)

2. Find the library on the file system.
ls -l `locate libexpat.so.0`

Installing and configuring 6-275

3. Check /etc/ld.so.conf.
cat /etc/ld.so.conf

The output shows that it includes all conf files under /etc/ld.so.conf.d/.
include ld.so.conf.d/*.conf

4. Add the IBM HTTP Server library to the configuration.
a. cd /etc/ld.so.conf.d/

b. Add the http library to the system configuration. The location of the IBM
HTTP Server lib is shown in Step 1.
echo /opt/HTTPServer/lib > httpd-lib.conf

c. Remove the ldd cache.
rm /etc/ld.so.cache

d. Reload the ldd configuration.
/sbin/ldconfig

5. Check the IBM HTTP Server libraries again:
ldd /opt/HTTPServer/bin/httpd

The output shows that libexpat.so.0 is available:
linux-vdso.so.1 => (0x00007fffd594a000)
libm.so.6 => /lib64/libm.so.6 (0x00000039fb000000)
libaprutil-1.so.0 => /opt/HTTPServer/lib/libaprutil-1.so.0 (0x00007f20474bf000)
librt.so.1 => /lib64/librt.so.1 (0x00000039fac00000)
libcrypt.so.1 => /lib64/libcrypt.so.1 (0x0000003a07c00000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00000039fa800000)
libdl.so.2 => /lib64/libdl.so.2 (0x00000039fa000000)
libexpat.so.0 => /opt/HTTPServer/lib/libexpat.so.0 (0x00007f204739c000)
libapr-1.so.0 => /opt/HTTPServer/lib/libapr-1.so.0 (0x00007f2047271000)
libc.so.6 => /lib64/libc.so.6 (0x00000039fa400000)
/lib64/ld-linux-x86-64.so.2 (0x00000039f9c00000)
libfreebl3.so => /lib64/libfreebl3.so (0x0000003a08000000)

6. Start the IBM HTTP Server.

Integrating IBM WebSphere DataPower with a cluster of
instances of MobileFirst Server

You can use IBM WebSphere DataPower as a gateway for all incoming connections
for IBM MobileFirst Platform Foundation and Application Center, and IBM HTTP
Server (IHS) for load-balancing MobileFirst Server that are deployed on an IBM
WebSphere Application Server 8.5 cluster or a Liberty profile server farm.

Before you begin

Ensure that the following environments are available:
v MobileFirst Server is deployed on an IBM WebSphere Application Server ND

cluster or on a Liberty profile server farm and is configured to use DB2 or any
compatible database. For more information, see “Typical topologies of a
MobileFirst instance” on page 6-255.

v IBM MobileFirst Platform Foundation Application Center is set up on an IBM
WebSphere Application Server ND cluster. For more information, see “Installing
and configuring the Application Center” on page 6-177.

6-276 IBM MobileFirst Platform Foundation V6.3.0

v IBM WebSphere DataPower XI52.
v IBM HTTP Server.
v Any LDAP server with SSL enabled.

About this task

This procedure explains how to set up IBM MobileFirst Platform Foundation in the
topology similar to the one shown in Figure 6-19.
.

DataPower XI52 acts as the gateway for all IBM MobileFirst Platform Foundation
and Application Center requests. DataPower validates all incoming user credentials
against an LDAP registry. If the validation is successful, DataPower generates an
LTPA token, which is present as part of a session cookie. This cookie is only valid
for one session and is used for all further requests during that session. The cookies
themselves contain information about the user that has been authenticated, the
realm for which the user was authenticated (such as an LDAP server) and a
timestamp. A request with a valid LTPA cookie can access a server that is a
member of the same authentication domain as the first server. The request is
automatically authenticated, thereby enabling single-sign-on (SSO).

Figure 6-19. IBM MobileFirst Platform Foundation integration with an IBM WebSphere Application Server 8.5 Cluster or
a Liberty profile Server Farm

Installing and configuring 6-277

All requests that reach the MobileFirst cluster or the backend application validate
only the LTPA token. If the LTPA token is valid, the request is authenticated
according to the rules that are set. The LTPA token guarantees that as long as the
token is valid, all requests have SSO capability into all backend servers, including
IBM MobileFirst Platform Foundation and Application Center.

The following sequence of events takes place when a mobile application makes a
request (see Figure 6-20):
1. The mobile application makes a request to the DataPower gateway.
2. DataPower checks for an LTPA token in the incoming request.
3. If a valid LTPA token is present, the request is sent to the IBM MobileFirst

Platform Foundation cluster.
v If an LTPA token is not present or if the token is not valid, DataPower

throws an authentication challenge. The mobile application handles the
challenge and then prompts for user credentials.

4. The MobileFirst cluster validates the LTPA token and sends the request to the
backend application server along with the LTPA token.

5. The backend application server validates the LTPA token and sends the
response back to IBM MobileFirst Platform Foundation.

6. IBM MobileFirst Platform Foundation forwards the request to DataPower, and
DataPower forwards it to the requesting mobile application.

Figure 6-20. Mobile application request-response flow

6-278 IBM MobileFirst Platform Foundation V6.3.0

The Application Center request-response flow takes a similar route to the mobile
application flow, except that requests are routed to the Application Center server
instead of to the MobileFirst cluster (see Figure 6-21).

Procedure
1. Configure server security.
v On a WebSphere Application Server cluster:

a. Login to the WebSphere Application Server integrated solutions console.
b. Enable and configure application security.

1) Navigate to Security > Global security, and then click Security
Configuration Wizard.

2) In the "Specify extent of protection" pane, select Enable application
security.

3) In the "Select user repository" pane, click Federated repositories to
integrate with the LDAP server. Several different repositories, both
LDAP and non-LDAP, can be configured in the federated repository.
Enter the LDAP server details. Refer to the WebSphere Application
Server documentation for detailed instructions.

4) Complete the configuration steps and save your changes.
5) On the "Global security" page, confirm that the following settings

apply:
– The Enable administrative security is selected.
– The user account repository is set to LDAP.

Figure 6-21. Application Center request-response flow

Installing and configuring 6-279

c. Enable WebSphere Application Server LTPA SSO between the MobileFirst
Server cluster and backend servers. To support SSO across multiple
WebSphere Application Server domains or cells, you must share the LTPA
keys and the password among the domains. You need to export the LTPA
keys from one of the domains and import them into all other domains in
which you want to enable SSO. For detailed instructions, see Configuring
LTPA and working with keys.

d. Stop and restart the WebSphere Application Server cluster for the
application security changes to take effect.

v On a Liberty profile server farm:
a. Integrate the LDAP server with Liberty profile, For detailed instructions,

see Configuring LDAP user registries with the Liberty profile. You must
configure LDAP user registries on each member of the liberty server
farm. The following file is a sample LDAP configuration for Liberty
server:
<!-- LDAP configuration Start -->
<ldapRegistry id="IBMDirectoryServerLDAP" realm="WASLTPARealm"

host="9.186.9.169" port="389" ignoreCase="true"
baseDN="dc=worklight,dc=com"
bindDN="cn=admin,dc=worklight,dc=com"
bindPassword="passw0rd"
ldapType="IBM Tivoli Directory Server">

<idsFilters userFilter="(&(uid=%v)(objectclass=posixAccount))"
groupFilter="(&(cn=%v)(objectclass=posixGroup))"
userIdMap="*:uid"
groupIdMap="*:cn"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember;groupOfNames:member;groupOfUniqueNames:uniqueMember" />

</ldapRegistry>

b. Configure SSO for the Liberty server farm. To enable SSO on Liberty, you
must configure an LTPA key file for each Liberty server in the Liberty
farm. See Configuring LTPA on the Liberty profile. The following file is a
sample LTPA configuration for Liberty server:
<ltpa keysFileName="${server.config.dir}/resources/security/ltpa.keystore" keysPassword="passw0rd" expiration="120" />

2. Configure MobileFirst Server.
You can secure IBM MobileFirst Platform Foundation in a typical WebSphere
Application Server runtime environment in two ways:

Option 1
Securing WebSphere Application Server using application security and
securing the IBM MobileFirst Platform Foundation WAR file.

Option 2
Securing WebSphere Application Server using application security but
not securing the IBM MobileFirst Platform Foundation WAR file.

Option 1 provides greater authentication security. The application server, such
as the IBM WebSphere Application Server Liberty profile (Liberty) protects all
resources and forces users to log in before any other authentication mechanism.
The behavior occurs regardless of the expected authentication order for a
security test. See “Supported configurations for LTPA” on page 11-87 for more
information.
Once the user has been successfully authenticated, an LTPA token is returned.
This LTPA token needs to be present as part of all future requests from the
mobile application, including adapter invocations. On the MobileFirst Server
side, the call to the backend application should be modified to carry this LTPA
token.

6-280 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_ltpa_and_keys.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_ltpa_and_keys.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ldap.html
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_sec_ltpa.html

For the purpose of explaining how this is done, assume that authentication
configuration has a security test that uses a realm called WASLTPARealm, which is
of type WebSphere LTPA. Assume also that there is an HTTP adapter defined on
the server. Assume that the adapter is called SecureAdapter, and that it contains
a procedure called getAccountInfo.
The following code snippet shows how to pass the LTPA token when invoking
an adapter procedure from the mobile application.
function getAccountInfo(){

var ltpaToken
if(WL.Client.isUserAuthenticated(’WASLTPARealm’)){
var attrs = WL.Client.getUserInfo(’WASLTPARealm’, ’attributes’);
if(attrs){

ltpaToken = attrs.LtpaToken;
console.log(’Set ltpaToken again: ’+ltpaToken);

}
}

var token = {’LtpaToken2’ : ltpaToken};
var invocationData = {
adapter: "SecureAdapter",
procedure: "getAccountInfo",
parameters: [token]

};

WL.Client.invokeProcedure(invocationData, {
onSuccess: <on success callback>,
onFailure: <on failure callback>

});
}

On the server side, the adapter procedure needs to get the token, which is
passed as a parameter. This parameter holds the LTPA token information that is
used by the adapter to contact the backend service.
function getAccountInfo(token) {

WL.Logger.info(token);

var input = {
method : ’get’,
returnedContentType : ’xml’,
cookies: token,
path : ’<path to the backend service>’

};

return WL.Server.invokeHttp(input);
}

Since V6.2.0, MobileFirst Server is composed of one or more runtime
environments, an administration console and administration services, an
enterprise application store, and an operational analytics feature. MobileFirst
Server components run as web applications on an application server. For more
information about MobileFirst Server components, see Introduction to the
MobileFirst Server components.
The roles associated with the MobileFirst Operations Console and
Administration Services components are different from the role defined in the
WASLTPAModule login module (see “WASLTPAModule login module” on
page 8-522). The MobileFirst Operations Console and Administration services
roles should be mapped to the IT administrator users who are responsible for
running administration tasks on the mobile application such as application
deployment, management, version enforcement, and management of push
notifications.
The roles defined in the WASLTPAModule login module are part of the
MobileFirst runtime environments. These roles should be mapped to the users

Installing and configuring 6-281

or user groups that have been cleared to access the MobileFirst applications.
MobileFirst Operations Console and Administration Services must be set up
and configured before you proceed to deploy the MobileFirst runtime services
See the following instructions depending on your application server, to map the
administration user roles for MobileFirst Operations Console and
Administration Services:
v “Configuring WebSphere Application Server full profile for MobileFirst

Server administration” on page 6-90
v “Configuring WebSphere Application Server Liberty profile for MobileFirst

Server administration” on page 6-91
Once the runtime deployment is completed, you need to map the users against
the roles defined in the WASLTPAModule login module or web.xml. In the
WebSphere Application Server console, open the application configuration tab
of the deployed MobileFirst Server and click Security role to user/group
mapping to map the LDAP user to the MobileFirst roles.

Select your role name and click Map users to map the LDAP user to this
application.
For IBM Worklight V6.0 and earlier, you must edit the web.xml file and add the
user roles. For V6.1.0 and later, the roles can be added as part of the
WASLTPAModule login module. See “WASLTPAModule login module” on page
8-522.

3. Configure Application Center.
a. Complete the following configuration tasks depending on the server being

used:
v “Configuring WebSphere Application Server full profile” on page 6-204
v “Configuring WebSphere Application Server Liberty profile” on page

6-206
b. Manage users with LDAP.

Application Center uses two security roles: appcenteradmin and
appcenteruser. The LDAP users need to be mapped against the security
roles.

Figure 6-22. Mapping the LDAP user to WebSphere Application Server

6-282 IBM MobileFirst Platform Foundation V6.3.0

Depending on the server that you are using, refer to the "Configuring LDAP
authentication" section under one of the following documentation links:
v “LDAP with WebSphere Application Server V7” on page 6-210
v “LDAP with WebSphere Application Server V8.x” on page 6-216
v “LDAP with Liberty profile” on page 6-220

c. Define the endpoint of the application resources.
In this configuration, Application Center is behind DataPower, which is
acting as a secure reverse proxy. To manage the applications on your device,
the Application Center console must be able to locate the Application Center
REST services and generate the required number of URI that enable the
mobile client to find the Application Center REST services.
By default, the URI protocol, host name, and port are the same as those
defined in the web application server used to access the Application Center
console; the context root of the Application Center REST services is
applicationcenter. When the context root of the Application Center REST
services is changed or when the internal URI of the web application server
is different from the external URI that can be used by the mobile client, the
externally accessible endpoint (protocol, host name, and port) of the
application resources must be defined by configuring the web application
server. (Reasons for separating internal and external URI could be, for
example, a firewall or a secured reverse proxy that uses HTTP redirection.)
The following Application Center JNDI properties must reference the
DataPower gateway's details:
v ibm.appcenter.services.endpoint

v ibm.appcenter.proxy.protocol

v ibm.appcenter.proxy.host

v ibm.appcenter.proxy.port

Depending on the server type, set the Application Center JNDI properties
by completing one of the following procedures:
v “Configuring the endpoint of the application resources (full profile)” on

page 6-231
v “Configuring the endpoint of the application resources (Liberty profile)”

on page 6-232
4. Configure DataPower. DataPower XI52 acts as the gateway for all IBM

MobileFirst Platform Foundation and Application Center requests. DataPower
validates all incoming user credentials against an LDAP registry. The following
sections show how to configure DataPower.
a. Create a new multi-protocol gateway. Complete the following steps:

1) From the DataPower XI52 control panel, click the Multi-Protocol
Gateway icon to open the Multi-Protocol Gateway main page.

Installing and configuring 6-283

2) Click Add to add a new gateway.
3) Provide a name for the gateway and set Type to dynamic-backend.
4) Make sure that Request Type and Response Type are set to Non-XML.
5) On the Advanced tab page, select Follow Redirects and Process

Backend Errors.
6) On the Stylesheet Params tab page, add the parameters listed in

Table 6-57:

Table 6-57. Stylesheet parameters

Parameter name Value

{http://www.datapower.com/param/
config}applicationcenterBackend

http://<appcenterHostName>:<port>

{http://www.datapower.com/param/
config}worklightBackend

http://<worklightIHSHostName>:<port>

7) On the General tab page, add an HTTPS (SSL) Front Side Handler with
reverse SSL Proxy profile. Ensure that the following methods and
versions are selected:
v HTTP 1.0
v HTTP 1.1
v POST method
v GET method
v PUT method
v HEAD method
v OPTIONS
v DELETE method
v URL with Query Strings
v URL with Fragment Identifiers

8) Click the plus sign (+) to add a new multi-protocol gateway policy.
9) Provide a name for the policy, click Apply Policy, and then click Close

Window. The policy is added to the gateway.
10) Apply your configuration.

Figure 6-23. Accessing the Multi-Protocol Gateway main page

6-284 IBM MobileFirst Platform Foundation V6.3.0

b. Edit the multi-protocol gateway policy. Add the following rules to provide
form-based authentication, generate an LTPA token and verify the LTPA
token. All the rules are described in the following tables. You must list them
in the same order.
1) worklight-ssl-policy_skipFavicon: see Table 6-58
2) worklight-ssl-policy_verifyLTPA: see Table 6-59
3) worklight-ssl-policy_allowSSLLoginPage: see Table 6-60
4) worklight-ssl-policy_worklightSSLLogin: see Table 6-61 on page 6-286

Table 6-58. Properties of worklight-ssl-policy_skipFavicon

Property Value

Direction Client to Server.

Match v Type = URL

v Pattern = /favicon.ico

Advanced "Set Variable" -> var://service/mpgw/skip-
backside = 1

Result Not applicable.

Table 6-59. Properties of worklight-ssl-policy_verifyLTPA

Property Value

Direction Client to Server.

Match v Type = HTTP

v HTTP tag = Cookie

v Pattern = *LtpaToken*

AAA v Input: INPUT

v Output: NULL

Add a new AAA Policy named VerifyLTPA
with the following configuration:

v Extract Identity: LTPA token

v Method: Accept LTPA Token.

v Acceptable LTPA versions: WebSphere
version 1 and WebSphere version 2

v LTPA key file: upload the LTPA keyfile.

v LTPA key file password: specify the
password for the LTPA keyfile.

v Extract Resource: URL Sent by Client

v Authorization: Allow any authenticated
client.

Transform Upload route.xsl. See “Sample dynamic
routing stylesheet” on page 6-287.

v Input: INPUT

v Output: auth

Result Not applicable.

Table 6-60. Properties of worklight-ssl-policy_allowSSLLoginPage

Property Value

Direction Client to Server.

Installing and configuring 6-285

Table 6-60. Properties of worklight-ssl-policy_allowSSLLoginPage (continued)

Property Value

Match v Type = URL

v Pattern = /(Login|Error)Page\.htm(l)?(\
?originalUrl=.*)?

AAA v Input: INPUT

v Output: NULL

Add a new AAA Policy named
AllowSSLLoginPage with the following
configuration:

v Method: HTML Form-based
Authentication

v HTML Form Policy: Create one with the
default values, but edit these values:

– Use SSL For Login: enabled

– SSL Port: port on which the
multi-protocol gateway is listening.

v Authentication: Pass identity token to
authorization phase

v Resource extraction: URL sent by client

v Authorization: Always allow

Result Not applicable.

Table 6-61. Properties of worklight-ssl-policy_worklightSSLLogin

Property Value

Direction Client to Server.

Match v Boolean Or Combinations: On

v Type = URL

v Pattern: /worklightconsole/*

v Type = URL

v Pattern: /wladmin/*

v Type = URL

v Pattern: /worklight/*

v Type = URL

v Pattern: /j_security_check

v Type = URL

v Pattern: /applicationcenter/*

v Type = URL

v Pattern: /appcenterconsole/*

Advanced “Convert Query Params to XML Action”

6-286 IBM MobileFirst Platform Foundation V6.3.0

Table 6-61. Properties of worklight-ssl-policy_worklightSSLLogin (continued)

Property Value

AAA Create a new AAA Policy named
worklightSSLFormLogin with the following
configuration:

v Extract Identity:

– Method: HTML Form-based
Authentication

– HTML Form Policy: Select the same
policy created in the previous step.

v Authentication:

– Method: Bind to LDAP server

– Enter the HostName, Port(636)

– Create an SSL Forward proxy profile
with the LDAP server's SSL certificate.

– LDAP Bind DN, in this case would be:
cn=admin,dc=worklight,dc=com

– Enter the LDAP Bind Password.

– LDAP Prefix : uid=

– LDAP Suffix :
ou=people,dc=worklight,dc=com

v Resource extraction: URL sent by client

v Authorization: Allow any authenticated
client.

v Post Processing: Generate LTPA Token ->
on.

– LTPA Token Version: WebSphere
version 2

– LTPA Key File: Select the ltpa key file

– LTPA key file password: Specify the
password for the ltpa keyfile.

Transform Upload route.xsl file. See “Sample dynamic
routing stylesheet.”

v Input: INPUT

v Output: auto

Result Not applicable.

Results

The different pieces of the topology are now configured and provide a seamless
SSO experience for mobile applications as well as for Application Center.

Sample dynamic routing stylesheet
You can use this sample stylesheet to handle the dynamic routing of requests
between IBM MobileFirst Platform Foundation and IBM MobileFirst Platform
Application Center. You refer to the stylesheet when you create rules to define a
form-based authentication policy that generates and verifies LTPA tokens.

You provide a custom dynamic routing stylesheet when you define rule
worklight-ssl-policy_verifyLTPA (see “Integrating IBM WebSphere DataPower
with a cluster of instances of MobileFirst Server” on page 6-276, Table 6-59 on page
6-285), and when you define rule worklight-ssl-policy_worklightSSLLogin (see

Installing and configuring 6-287

“Integrating IBM WebSphere DataPower with a cluster of instances of MobileFirst
Server” on page 6-276, Table 6-61 on page 6-286).
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dp="http://www.datapower.com/extensions"
xmlns:dpconfig="http://www.datapower.com/param/config"
xmlns:re="http://exslt.org/regular-expressions"
extension-element-prefixes="dp re dpconfig"
exclude-result-prefixes="dp">

<xsl:param name="dpconfig:worklightBackend"/>
<xsl:param name="dpconfig:applicationcenterBackend"/>
<xsl:template match="/">

<xsl:variable name="worklight" select="’worklight’"/>
<xsl:variable name="worklightconsole" select="’worklightconsole’"/>
<xsl:variable name="wladmin" select="’wladmin’"/>
<xsl:variable name="applicationcenter" select="’applicationcenter’"/>
<xsl:variable name="appcenterconsole" select="’appcenterconsole’"/>

<xsl:variable name="worklightBackend" select="$dpconfig:worklightBackend"/>
<xsl:variable name="applicationcenterBackend" select="$dpconfig:applicationcenterBackend"/>

<xsl:variable name="incomingURI" select="dp:variable(’var://service/URI’)"/>
<xsl:variable name="httpContentType" select="dp:http-request-header(’Content-Type’)"/>
<xsl:variable name="accessControlRequestHeaders" select="dp:http-request-header(’Access-Control-Request-Headers’)"/>
<xsl:variable name="accessControlRequestMethod" select="dp:http-request-header(’Access-Control-Request-Method’)"/>

<xsl:choose>
<!-- set the backend server if the url is /worklight -->
<xsl:when test="contains(dp:variable(’var://service/URI’), $worklight) or contains(dp:variable(’var://service/URI’), $worklightconsole) or contains(dp:variable(’var://service/URI’), $wladmin)">
<dp:set-http-request-header name="’Content-Type’" value="$httpContentType"/>
<dp:set-variable name="’var://service/routing-url’" value="$worklightBackend"/>
<dp:set-variable name="’var://service/URI’" value="$incomingURI"/>

</xsl:when>

<xsl:when test="contains(dp:variable(’var://service/URI’), $applicationcenter) or contains(dp:variable(’var://service/URI’), $appcenterconsole)">
<dp:set-http-request-header name="’Content-Type’" value="$httpContentType"/>
<dp:set-http-request-header name="’Access-Control-Request-Headers’" value="$accessControlRequestHeaders"/>
<dp:set-http-request-header name="’Access-Control-Request-Method’" value="$accessControlRequestMethod"/>
<dp:set-variable name="’var://service/routing-url’" value="$applicationcenterBackend"/>
<dp:set-variable name="’var://service/URI’" value="$incomingURI"/>

</xsl:when>

<xsl:when test="contains(dp:variable(’var://service/URI’), ’j_security_check’)">
<dp:set-http-request-header name="’Content-Type’" value="$httpContentType"/>
<dp:set-variable name="’var://service/routing-url’" value="$applicationcenterBackend"/>
<dp:set-variable name="’var://service/URI’" value="’/appcenterconsole/login/j_security_check’"/>

</xsl:when>

<xsl:otherwise>
<xsl:message dp:type="all" dp:priority="error"> No matching url found. </xsl:message>

</xsl:otherwise>
</xsl:choose>

<xsl:value-of select="."/>
</xsl:template>

</xsl:stylesheet>

Endpoints of the MobileFirst Server production server
You can enable white- and blacklists to the endpoints of the MobileFirst Server.

6-288 IBM MobileFirst Platform Foundation V6.3.0

Note: Information regarding URLs that are exposed by IBM MobileFirst Platform
Foundation is provided as a guideline for organizations to make informed
decisions and ensure they are tested in an enterprise infrastructure, based on what
has been enabled for white and black lists.

Table 6-62. MobileFirst Server production endpoints

API URL Description Suggested whitelist For more information

MFP Applications

<application root context>/apps/services/api/* Used by client applications for operations such as init, Direct
Update requests, invocation of adapter procedures, and more.

Yes “HTTP Interface of the production server” on page 6-290

<application root context>/apps/services/random/* Used for generating a random number. Used by JSON store
implementation and encrypted cache on the client side.

Yes, if you plan to use offline storage
such as JSON store.

“JSONStore overview” on page 8-401

<application root context>/apps/services/reach Used for the reach API, this servlet returns status 200 with OK,
letting you verify that the MobileFirst Server is up and running.

Yes

<application root context>/apps/services/www/* Used by mobile web or desktop application to access its resources. Yes Web application resource requests

<application root context>/apps/services/download/* Deprecated No

<application root context>/apps/services/preview/* Used to preview the application. No. Used for development and
administration purposes.

Preview application resource requests

Direct Update

<application root context>/directUpdate/* Used for serving the direct update zip file. Yes, if you plan to use Direct Update. “Direct Update as a security realm” on page 8-166

Node Sync

<application root context>/node/integration/* Used to receive notifications from IBM MobileFirst Platform
Foundation adapters that are based on Node.js. Not in use and can
be blocked.

No

Vitality

<application root context>/ws/rest/vitality Used to check server availability. Returns a list of applications and
adapters. For use of admin personnel.

No “Vitality queries for checking server health” on page 13-2

Invoke back end procedure

<application root context>/invoke Used to invoke an adapter procedure. Yes, if application uses adapter
authentication features, or if you
want to access the adapter directly
and not from the application. Note
that if this API passes the firewall,
everyone will be able to invoke any
adapter procedure and it will be
protected only by the adapter
security test and not by the
application security test.

“Adapter invocation service” on page 8-364

<application root context>/subscribeSMS Push subscription service API. Used by applications. Yes, if application uses push
subscription API.

“Web-based SMS subscription” on page 8-469

<application root context>/receiveSMS SMS subscription service API. Used by applications. Yes, if application uses SMS
subscription API.

“Using two-way SMS communication” on page 8-475

External Server Security

<application root context>/oauth/* Used to create an SSO between IBM MobileFirst Platform
Foundation and external services.

Yes, if the application uses SSO
between IBM MobileFirst Platform
Foundation and external services.

“Using SSO between IBM MobileFirst Platform Foundation and
external services” on page 8-541

Client side logging

<application root context>/apps/services/loguploader/* Used by client applications to upload their accumulated debug and
analytics logs.

Yes “Client-side log capture” on page 8-601

Installing and configuring 6-289

Table 6-62. MobileFirst Server production endpoints (continued)

API URL Description Suggested whitelist For more information

<application root context>/apps/services/configprofile/* Used by client applications to GET their log configuration, which
the admin set via the Log Configuration tab in the IBM MobileFirst
Platform Operations Console.

Yes “Client-side log capture” on page 8-601

Dev

<application root context>/dev/* Development service API such as /invoke, /appdata, /preview,
and others. Used in development environments only.

No, only for the development
environment and not for QA,
pre-production, or production.

USSD

<application root context>/ussd/* Used for communication with the USSD (Unstructured
Supplementary Service Data) gateway.

Yes “USSD Support” on page 8-396

HTTP Interface of the production server
You can use the HTTP interface of the production server to make application API
requests or web application resource requests. Use the following request structures,
headers, and elements.

Application API requests

Use the following request structure to perform an application API request:
{Protocol}://{Worklight Server}/apps/services/api/{Application ID}/{Application Environment}/{Action}

Table 6-63. Application API request headers

Header Name Data Type Description Valid values

x-wl-app-version String Version of the
application

WL-Instance-ID String Protection
mechanism for XSS
attacks.

Table 6-64. Application API request elements

Header Name Data Type Description Valid values

Protocol String HTTP

Worklight Server String Host name or IP
address (and
possibly port)
identifying the
MobileFirst
Server

Application ID String Unique Identifier
of the
application
within the
MobileFirst
Server. Every
application
deployed on the
MobileFirst
Server must have
a unique
identifier

Up to 256
alphanumeric
and underscore
characters

6-290 IBM MobileFirst Platform Foundation V6.3.0

Table 6-64. Application API request elements (continued)

Header Name Data Type Description Valid values

Application Environment String Name of the
environment that
the application
is running on

air, android,
Androidnative,
blackberry,
desktopbrowser,
iOSnative,
ipad, iphone,
JavaMEnative,
mobilewebapp,
windows8,
windowsphone

Action String Requested action Details in
following table

Table 6-65. Actions

Action HTTP Request Parameters

init POST x, isAjaxRequest – see the
following table showing
common parameters.

heartbeat POST x, isAjaxRequest – see the
following table showing
common parameters.

logactivity POST x, isAjaxRequest – see the
following table showing
common parameters.

activity – string.

query POST x, isAjaxRequest – see the
following table showing
common
parameters.filterList –
JSON block

parameterList – JSON block

sorterList – JSON block
Note: When the action is
query, the request URL has
the following structure:
.../query/{Adapter
Name}/{Procedure Name}
where Adapter Name and
Procedure Name are strings.

logout POST x, isAjaxRequest - see the
following table showing
common parameters.

login POST x, isAjaxRequest – see the
following table showing
common parameters.

realm – string.

Installing and configuring 6-291

Table 6-65. Actions (continued)

Action HTTP Request Parameters

updates POST x, isAjaxRequest – see the
following table showing
common parameters.

skin – current skin name
(string)

checksum – the checksum of
the current skin (string)

skinLoaderChecksum – the
checksum of the skin
selection code (string)

getup POST x, isAjaxRequest - see the
following table showing
common parameters.

deleteup POST x, isAjaxRequest – see the
following table showing
common parameters.

userprefkey – the user
preference to delete.

getuserinfo POST x, isAjaxRequest – see the
following table showing
common parameters.

getgadgetprefs POST x, isAjaxRequest - see the
following table showing
common parameters.

notifications POST x, isAjaxRequest – see the
following table showing
common parameters.

subscribe – JSON string
containing subscribe options

unsubscribe – when
specified, designates an
unsubscribe action

updateToken – the update
notification token (string)

adapter – the name of the
notification adapter (string)

eventSource – the name of
the notification event source
(string)

alias – notification
subscription alias (string)

tag – the name of the tag
(string)

6-292 IBM MobileFirst Platform Foundation V6.3.0

Table 6-65. Actions (continued)

Action HTTP Request Parameters

fbcallback GET or POST x, isAjaxRequest – see the
following table showing
common parameters.

popup – string

composite POST x, isAjaxRequest - see the
following table showing
common parameters.

requests – a JSON string
containing information about
other actions to invoke.

This action is used to
combine several actions in a
single HTTP request.

appversionaccess GET x, isAjaxRequest – see the
following table showing
common parameters.

setup POST x, isAjaxRequest - see the
following table showing
common parameters.

userprefs contains JSON
pairs of preference key and
value

authentication POST x, isAjaxRequest - see the
following table showing
common parameters.

action values are popup,
test, or test_img

authenticate POST x, isAjaxRequest - see the
following table showing
common parameters.

This is an empty handler
used to allow the client to
respond to authentication
challenges with a
challengeResponse that
cannot fit in a single header
or when all headers
combined are bigger than the
limit for header size.

Table 6-66. Common parameters

Parameter Values Comments

isAjaxRequest true Included with every GET and
POST request only from
Adobe™ AIR application.

Installing and configuring 6-293

Table 6-66. Common parameters (continued)

Parameter Values Comments

_ None Included with every POST
request only from
Webkit-based browsers and
application frameworks:
Safari, Chrome, and Adobe
AIR.

Web application resource requests

Use the following request structure to submit a web application resource request:
{Protocol}://{Worklight Server}/apps/services/www/{Application ID}/{Application Environment}/{Application Resource Path}

Request elements

See Application API Request Elements for details about the following request
elements: Protocol, Worklight Server, Application ID, and Application
Environment.

Table 6-67. Request elements

Element Data Type Description Valid Values

Application
Resource Path

String HTML, image,
JavaScript, CSS, and
any other
application resource

Example values:
img/bg.png,
myWidget.html,
js/myWidget.js

Preview application resource requests

Use the following request structure to preview application resource requests:
{Protocol}://{Worklight Server}/apps/services/preview/{Application ID}/{Application Environment}/{Application Version}/{Application Resource Path}

Request elements

See Application API Request Elements for details about the following request
elements: Protocol, Worklight Server, ApplicationID, and Application
Environment.

Table 6-68. Request elements

Element Data Type Description Valid Values

Application
Resource Path

String HTML, image,
JavaScript, CSS,
and any other
application
resource

Example values:
img/bg.png, myWidget.html,
js/myWidget.js

Troubleshooting IBM MobileFirst Platform Server
You can troubleshoot to locate the server and databases on Windows 8, Windows
7, and Windows XP, or to find the cause of installation or database creation failure.

6-294 IBM MobileFirst Platform Foundation V6.3.0

Troubleshooting to find the cause of installation failure
You can troubleshoot to find the cause of installation failure.

About this task

If installation failed but the cause is not obvious, you can troubleshoot by
completing the following procedure:

Procedure

See the failed-install.log file in the installation directory or, if this file does not
exist, the install.log file in the installation directory. On Windows systems, if the
default installation location was chosen, the directory is C:\Program
Files\IBM\Worklight\. This file contains details about the installation process.

What to do next

If you still cannot determine the cause of the installation failure, you can use the
manual installation instructions to investigate the problem more thoroughly. See
“Deploying a project WAR file and configuring the application server manually”
on page 11-37.

Troubleshooting failure to create the DB2 database
An incompatible database connection mode might result in failure to create the
DB2 database.

About this task

If the following message is displayed when you attempt to create a DB2 database,
proceed as follows:

"Creating database <WL_DB> (this may take 5 minutes) ... failed: Cannot
connect to database <WL_DB> after it was created:
com.ibm.db2.jcc.am.SqlException: DB2 SQL Error: SQLCODE=-1035,
SQLSTATE=57019, SQLERRMC=null, DRIVER=<driver_version>"

Procedure
1. Wait a few minutes for the current DB2 database connections to close, and then

click Back, and then Next to check whether the issue is solved.
2. If the problem persists, contact your database administrator to solve the

database connection issue that is documented on the SQL1035N web page.

Troubleshooting a MobileFirst Server upgrade with Derby as
the database

If IBM MobileFirst Platform Application Center is installed and uses Apache Derby
as a database, stop the application server that runs the application before you run
IBM Installation Manager to upgrade a IBM MobileFirst Platform Server
installation.

Installing and configuring 6-295

http://ibm.biz/knowctr#SSEPGG_10.1.0/com.ibm.db2.luw.messages.sql.doc/doc/msql01035n.html

About this task

During an upgrade of MobileFirst Server, if Application Center is installed, the
installer migrates the database that is used by Application Center. When Apache
Derby is the database, this operation can fail if the application server that runs
Application Center is not stopped.

The symptom of this problem is that the upgrade fails and the log file contains the
error message Another instance of Derby may have already booted the
database.

Procedure

Before you run IBM Installation Manager to upgrade an installation of MobileFirst
Server and Application Center, stop the application server that runs the
Application Center application.

Troubleshooting failure to authenticate to Application Center
and applications that use the basic registry element

Authentication fails when attempting to log in to the Application Center and other
applications that run on WebSphere Application Server Liberty profile and use the
basicRegistry element.

About this task

When IBM MobileFirst Platform Foundation is installed with Application Center
on WebSphere Application Server Liberty profile, it adds a basicRegistry element
in the server.xml file of the Liberty server instance, with demo users, even if a
basicRegistry element already exists. Authentication into the Application Center
and other applications that use users from the basic registry no longer works. For
example, after an attempt to log in to the Application Center, the following error
message is displayed:
Error 404: java.io.FileNotFoundException: SRVE0190E: File not found: /j_security_check

The liberty server log file contains the following error message:
[ERROR] CWWKS3006E: A configuration exception has occurred. There are multiple available UserRegistry implementation services; the system cannot determine which to use.

When IBM MobileFirst Platform Foundation is uninstalled, the basic registry that
was created during the installation by the IBM MobileFirst Platform Server installer
is removed from the server.xml file, even if other users have been added to that
basic registry. If other applications than Application Center use the basic registry,
authentication on these applications is no longer possible. This issue might include
installations of the IBM MobileFirst Platform Operations Console and
Administration Services.

Procedure
1. Move the content of the basic registry that was created by IBM Installation

Manager in the initial basic registry element. For an installation that is not for
test purposes only, do not copy the users demo and appcenteradmin, and remove
them from the appcentergroup. Remove the following code from the
server.xml file:
<!-- Declare the user registry for the Application Center. -->
<basicRegistry id="applicationcenter-registry" realm="ApplicationCenter">

<!-- The users defined here are members of group "appcentergroup", thus have role "appcenteradmin", and can therefore perform administrative tasks through the Application Center console. -->
<user name="appcenteradmin" password="admin"/>

6-296 IBM MobileFirst Platform Foundation V6.3.0

<user name="demo" password="demo"/>
<group name="appcentergroup">
<member name="appcenteradmin"/>
<member name="demo"/>

</group>
</basicRegistry>

2. When you uninstall IBM MobileFirst Platform Foundation, the uninstaller of
MobileFirst Server creates a backup of the server.xml file under the name
server.xml.saved2. Open the server.xml.saved2 file, and copy the
basicRegistry element back in the server.xml file. Remove the users and
groups that were only needed by the Application Center.

Troubleshooting server farm configuration issues
When you start the Administration Services and the MobileFirst runtime
environments, several exception types can be emitted in the application server logs
if the configuration of the server farm is incorrect.

Invalid farm plug-in definition file

Checking farm nodes definition file <file name> failed due to the following
exception: <exception>.

The validation of the farm plug-in file failed because the XML is not valid,
according to the FarmSchema.xsd schema definition. The exception gives
details about the element that is not valid, according to the schema
definition.

You must edit the farm plug-in file, and modify the XML value that is not
valid, based on the exception. Then, restart all the servers of the farm.

Server ID not unique in the farm plug-in file definition file

The ServerID <server id> is not unique in the plug-in file <file name>.

This is because the value of the ServerID attribute in the farm plug-in file
is already used. Each node of the farm must have a ServerID attribute that
is not already used in another node.

You must edit the farm plug-in file and make sure that all the ServerID
attributes are unique. Restart all the servers of the farm.

Server ID is not set

MBeanRegistrationException "server id JNDI property is not set".

This is because in the application server configuration, the JNDI property
ibm.worklight.admin.serverid is not set.

You must configure the property ibm.worklight.admin.serverid in the
application server. This property must have the same value than the
ServerID attribute of this node, which is defined in the farm plug-in file.
Restart the application server. For more information, see “Configuring a
MobileFirst project in production by using JNDI environment entries” on
page 11-56.

Administration Services MBean is already registered

The Administration Services MBean <MBean name> is already registered on
another node of the farm, which means that the JNDI property
ibm.worklight.admin.serverid has the same value on other nodes.

Installing and configuring 6-297

This is because the Administration Services MBean is already registered
under the same name on another server of the farm. The value of the JNDI
property ibm.worklight.admin.serverid is the same than the one defined
in another server of the farm.

You must configure the property ibm.worklight.admin.serverid in the
application server. This property must have the same value than the
ServerID attribute of this node, which is defined in the farm plug-in file,
and must be unique among the servers of the farm. Restart the application
server.

6-298 IBM MobileFirst Platform Foundation V6.3.0

Upgrading to IBM MobileFirst Platform Foundation V6.3.0

This section contains the procedures for upgrading from IBM Worklight V5.0.6 or
later to V6.3.0 and migrating the applications you created in earlier versions of the
product to work with IBM MobileFirst Platform Foundation V6.3.0.

About this task

Upgrading from one version of the product to another involves upgrading the
software, upgrading your database, if needed, and sometimes upgrading your
apps. Most of this upgrade is automatically done for you when you use the
installer. However, the upgrade might also involve some manual operations, such
as setting various properties, using special command facilities, and running
supplied Ant tasks. The complete upgrade procedures are detailed in the following
topics.

Those topics cover how to upgrade to V6.3.0 of MobileFirst Studio and MobileFirst
Server, and how to migrate your applications for V6.3.0.

Version compatibility
Compatibility among different versions of the IBM MobileFirst Platform
Foundation client and server depends on several factors.

The following table describes different situations and the compatibility rules that
apply to each.

To understand the compatibility rules, it can be useful to understand the IBM
product release conventions. Each full number of a release is composed of the
following parts, where each part is replaced by a digit from 0 to 9:
version.release.modification.fixpack

Note: Version numbers cited in the table examples are for illustrative purposes
only, and might not correspond to actual releases.

Table 7-1. Version compatibility rules

Description Compatibility rule Examples

Server and client have same
version and release.
(Modification and fix pack
release numbers can be
different.)

Server and client with the same
version and release are fully
compatible. If the the modification or
fixpack number differ, they are still
compatible if the version and release are
the same.

6.3.0.0 server is
compatible with
6.3.0.1 client.

Newer server than client. Compatible. 6.3.0.0 server is
compatible with
6.2.0.0 client

Older server than client. Not compatible. 6.2.0.0 server is not
compatible with
6.3.0.0 client

© Copyright IBM Corp. 2006, 2015 7-1

Table 7-1. Version compatibility rules (continued)

Description Compatibility rule Examples

Server artifacts created with
older version of MobileFirst
Studio or the MobileFirst
Platform Command Line
Interface than the version of
the server.

For complete details of which server,
.war file, and artifacts work together,
see Table 2. However, the following
guidelines apply:

For versions prior to 6.1.0, only the
same versions of server, .war file, and
application (.wlapp file) and adapters
can work together.

If the initial server version is
Worklight Server 6.1 or 6.2, the .war
file that was created with the same
version of Worklight Studio or
Command Line Interface for IBM
Worklight Developers can be migrated
to a newer server version, but the
newer server can accommodate only
artifacts (.wlapp and adapter files) that
were built from the initial version.

If the initial server version is
Worklight Server 6.2.0.1 or later,
including MobileFirst Server 6.3 or
later, the .war file that was created
with the same initial version of Studio
or the Command Line Interface can be
migrated to the newer server version.
The migrated .war file can
accommodate artifacts that were
created with any of the following
versions of Studio or the Command
Line Interface:

v Initial version

v Newer server version that .war file
is migrated to

v Any version prior to the initial
version

The artifacts will behave as though
they are running on the older version
of the server.

For information about migrating the
.war file, see “Migrating a project
WAR file for use with a new
MobileFirst Server” on page 11-37.

Example 1:

Artifacts built with
MobileFirst Studio
6.2.0.0 can run on
server 6.3.0.0.
However, the
artifacts will
behave as though
they are running
on server version
6.2.0.0.

Example 2:

Initially, a version
6.2.0.1 .war file can
run the artifacts
from 6.2.01 and
below on a 6.2.0.1
server. If this .war
file is migrated to
6.3, then the
migrated .war file
can run 6.3
artifacts.

Server artifacts created with
newer version of MobileFirst
Studio or the MobileFirst
Platform Command Line
Interface than the version of
the server.

Not compatible. Artifacts built with
MobileFirst Studio
6.3.0.0 cannot run
on server 6.2.0.0.

7-2 IBM MobileFirst Platform Foundation V6.3.0

Table 7-1. Version compatibility rules (continued)

Description Compatibility rule Examples

Direct Update feature If the version of MobileFirst Studio or
the MobileFirst Platform Command
Line Interface that was used to build
an update package differs from the
version of MobileFirst Studio or the
MobileFirst Platform Command Line
Interface that was used to build the
original application package then the
update will not be applied.

Original application
was built with
MobileFirst Studio
6.2.0.0; update was
built with
MobileFirst Studio
6.3.0.0. Update will
not occur.

The following table shows which .war file and artifact versions can work with each
server version. Application behavior remains as with the original version of the
application. Version numbers prior to 6.3 apply to Worklight products. Version
numbers of 6.3 and above apply to MobileFirst products.

Table 7-2. Server, project and artifact compatibility

Server version Can work with the following project versions (.war file created
with this version of Studio or Command Line Interface)

Can work with the following artifact versions (application and adapter files created with this version of Studio or
Command Line Interface)

6.3.0 6.3.0 5.0.6, 6.0.0, 6.1.0, 6.2.0, 6.3.0

6.3.0 6.2.0 migrated to 6.3.0 6.2.0

6.3.0 6.1.0 migrated to 6.3.0 6.1.0

6.3.0 6.0.0 migrated to 6.3.0 6.0.0

6.3.0 5.0.6 migrated to 6.3.0 5.0.6

6.2.0.1 6.2.0.1 5.0.6, 6.0.0, 6.1.0, 6.2.0, 6.2.0.1

6.2.0.1 6.2.0 migrated to 6.2.0.1 6.2.0

6.2.0.1 6.1.0 migrated to 6.2.0.1 6.1.0

6.2.0 6.2.0 6.2.0

6.2.0 6.1.0 migrated to 6.2.0 6.1.0

6.2.0 6.0.0 migrated to 6.2.0 6.0.0

6.2.0 5.0.6 migrated to 6.2.0 5.0.6

6.1.0 6.1.0 6.1.0

6.1.0 6.0.0 migrated to 6.1.0 6.1.0

6.1.0 5.0.6 migrated to 6.1.0 6.0.0

6.0.0 6.0.0 6.0.0

5.0.6 5.0.6 5.0.6

Separation of lifecycle between MobileFirst Server and MobileFirst
Studio

There is a separation of the MobileFirst Studio and the MobileFirst Server upgrade
lifecycles, which provides benefits to both developers and IT staff.

Since V6.1.0, IBM MobileFirst Platform Foundation allows a separation between the
MobileFirst Server and MobileFirst Studio lifecycles. This separation means that
you can deploy project WAR files, apps, and adapters that are developed with any

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-3

supported version of MobileFirst development tools to a more recent instance of
MobileFirst Server. For more information, see “Version compatibility” on page 7-1.
v For project WAR files that were built with versions earlier than V6.2.0.x, the

apps and adapters that you deploy must be built with the same version of
Worklight Studio as the version that you used to build the project WAR file. For
example, if you develop a project with Worklight Studio V5.0.6 and deploy it to
Worklight Server V6.2.0, the WAR file is deployed as a V5.0.6 project. You can
deploy to this project only applications and adapters that are developed with
Worklight Studio V5.0.6.

v For project WAR files that were built with versions V6.2.0.x and later, apps and
adapters that were built with any version V5.0.6.x and above (but not later than
the project WAR version itself) can be deployed.

Some limitations of this lifecycle separation are as follows:
v Only application environments that are supported by MobileFirst Server V6.3.0

can be migrated. Older application environments that are not supported by
MobileFirst Server V6.3.0 (for example, iGoogle, Windows Phone 7.5, or
Facebook) will no longer be available after the server upgrade.

v To deploy a project WAR file, you must use the tools that are provided with the
target MobileFirst Server version you are deploying to. That is, to deploy with
an Ant task to MobileFirst Server, you must use the worklight-ant-deployer.jar
file that is located in the WorklightServer directory of the MobileFirst Server
installation directory.

Terminology

In the topics that deal with migration and updating, the following definitions of
several important terms are used:
v Upgrade – Moving from one version of software to the next. For example, you

upgrade an installation of Worklight Server V6.1.0 to MobileFirst Server V6.3.0.
v Migrate – Updating, either automatically or manually, a piece of software so that

it is able to use the next level of the software. For example, you migrate
database schema of a MobileFirst project to use the next version level of
MobileFirst Server. Or you migrate a MobileFirst application to use the next
version level of MobileFirst Studio.

v Deploy – Installing an application on a server. For example, you deploy a
MobileFirst application to a production instance of MobileFirst Server running
on an application server.

Upgrade paths

The topics under this section apply to the following types of upgrade and
migration paths:
v Major version change – For example, upgrading from V5.0.6.x to V6.3.0.
v Minor version change – For example, upgrading from V6.2.0 to V6.3.0.
v Fix pack upgrades – For example, upgrading from V6.3.0 to V6.3.0.x.
v Interim fix – For example, upgrading from V6.3.0 to an interim fix identified by a

build number.
Related concepts:
“Version compatibility” on page 7-1
Compatibility among different versions of the IBM MobileFirst Platform
Foundation client and server depends on several factors.

7-4 IBM MobileFirst Platform Foundation V6.3.0

Upgrading to MobileFirst Studio V6.3.0
How to upgrade your current version of MobileFirst Studio to the latest version.
v To upgrade to MobileFirst Studio V6.3.0 from previous versions of MobileFirst

Studio Consumer Edition or MobileFirst Studio Enterprise Edition, you must
perform an Eclipse P2 update operation.

v You cannot directly upgrade to MobileFirst Studio V6.3.0 from a previous
version of MobileFirst Studio Developer edition. You must first uninstall your
current instance of MobileFirst Studio, and install MobileFirst Studio V6.3.0.
After MobileFirst Studio V6.3.0 is installed, you can then point to your earlier
workspace and work with your existing projects.

Upgrading MobileFirst Studio in the Consumer or Enterprise
Editions to MobileFirst Studio V6.3.0

How to upgrade MobileFirst Studio in IBM MobileFirst Platform Foundation
Consumer Edition or MobileFirst Enterprise Edition V6.2.x, or earlier, to
MobileFirst Studio V6.3.0.

About this task

The upgrade to MobileFirst Studio V6.3.0 is performed as an Eclipse P2 update
operation. After MobileFirst Studio V6.3.0 is installed, you can then point to your
earlier workspace and work with your existing projects.

Procedure
1. Start your Eclipse IDE workbench and verify your version of Eclipse
v MobileFirst Studio V6.3.0 cannot be installed in versions of Eclipse that are

older than Juno or V4.2.2.
v If you have an older version of Eclipse, update it to Juno or Kepler before

continuing this procedure.
2. Click Help > Install new software.
3. In the Add Repository window, click Archive.
4. Browse to the update site directory on the installation disk or to your

downloaded installation files.
5. Select the update site .zip file and then click OK.
6. On the Available Software page, select IBM MobileFirst Platform Studio

Development Tools, and click Next. If you want to see the components to be
installed, expand IBM MobileFirst Platform Studio Development Tools, and
select the components you want:
v Always select IBM MobileFirst Platform Studio.
v Select IBM Dojo Mobile Tools if you anticipate using that JavaScript

library.
v Select IBM jQuery Mobile Tools if you anticipate using that JavaScript

library.
7. On the Install Details page, review the features of MobileFirst Studio to be

installed.
You may see one or more messages in the lower part of the page similar to
Your original request has been modified. "IBM Dojo Mobile Tools" is
already installed, so an update will be performed instead. This is
expected, and indicates that an update is being performed.

8. Click Next.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-5

9. On the Review Licenses page, review the license text. If you agree to the
terms, select I accept the terms of the license agreement and then click
Finish.

10. The installation process starts. Follow the prompts (during which you may be
asked to restart Eclipse) to complete the installation.

Results

MobileFirst Studio is now updated.

Note:
If the update appears to hang, it might be because you are using a bad mirror site.
Add this line to your eclipse.ini file to solve the problem:
-Declipse.p2.mirrors=false

What to do next

The topic “Migrating projects to MobileFirst Studio V6.3.0” on page 7-7 contains
information about how to migrate and work with your existing projects.

Upgrading MobileFirst Studio in the Developer Edition to
MobileFirst Studio V6.3.0

How to upgrade from IBM MobileFirst Platform Foundation Developer Edition
V6.2.x, or earlier, to MobileFirst Studio V6.3.0.

About this task

You cannot directly upgrade to MobileFirst Studio V6.3.0 from an earlier version of
IBM MobileFirst Platform Foundation Developer Edition. Instead, you must
uninstall IBM MobileFirst Platform Foundation Developer Edition, and install
MobileFirst Studio V6.3.0.

Note: The Eclipse menu Help > Check for Updates does not find a new version of
IBM MobileFirst Platform Foundation. You must explicitly search for IBM
MobileFirst Platform Foundation in Eclipse Marketplace.

Procedure
1. Start your Eclipse IDE workbench and verify your version of Eclipse:
v MobileFirst Studio V6.3.0 cannot be installed in versions of Eclipse that are

older than Juno or V4.2.2.
v If you have an older version of Eclipse, update it to Juno or Kepler before

you continue with this procedure.
2. Uninstall your current MobileFirst Studio Developer Edition. For more

information, see “Uninstalling MobileFirst Studio” on page 6-7.
3. Install MobileFirst Studio V6.3.0 by clicking Get the Developer Edition on the

Developer Center for IBM MobileFirst Platform website, and by following the
indicated steps.

What to do next

You can now point to your earlier workspace, and work with your existing
projects. The topic “Migrating projects to MobileFirst Studio V6.3.0” on page 7-7
contains information about how to migrate and work with your existing projects.

7-6 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform

Migrating projects to MobileFirst Studio V6.3.0
How to migrate your existing projects to MobileFirst Studio V6.3.0.

Migrating older MobileFirst projects to MobileFirst Studio V6.3.0

Open your existing projects (that is, projects originally created in Worklight Studio
V5.0.5 through V6.2) as you would normally. This action triggers a migration
process that updates them to work with V6.3.0.

When the migration process finishes, redeploy your applications and adapters.

Note: To migrate projects that were created in versions of Worklight Studio older
than V5.0.5, you must first migrate these projects to an intermediate level such as
V5.0.5, V5.0.6, or V6.0. For example, if you have a V5.0.0.3 project:
1. Migrate the V5.0.0.3 project to Worklight Studio V5.0.5.x, using the procedures

that are listed in Migrating to a newer version of IBM MobileFirst Platform
Foundation of the IBM Worklight V5.0.5 user documentation.

2. Open the project (now migrated to V5.0.5) in MobileFirst Studio V6.3.0 to
complete the migration process.

Note: Access to authenticity-protected resources is denied when you upgrade
existing applications to MobileFirst Studio V6.3.0. When you upgrade MobileFirst
Studio, rebuild the project WAR and .wlapp, and deploy those files to the server,
the existing clients that use authenticity stop working. To resolve the problem,
complete the following steps:
1. Upgrade the project by using the new MobileFirst Studio, as described above.
2. Increment the versions of the upgraded applications.
3. Deploy the new WAR file that was built with the new Studio.
4. Deploy the new applications to the server alongside the applications that were

built with the old version of IBM MobileFirst Platform Foundation.
5. Normally, both applications work as expected. If you want to use the new ones

only, block the old ones and refer to the new ones for upgrade.

If for any reason you need to access the pre-migrated versions of your MobileFirst
projects, a compressed file backup is made of those files. The location of this file is
displayed in the second step of the migration procedure.

If any of your existing target environments are removed in the newest version of
MobileFirst Studio, a message notifies you, and those folders are marked as plain
source folders in your file hierarchy.

If any applications in your existing projects use the obsolete database login module
for user authentication, modify them to use adapter-based authentication with the
SQL adapter instead.

Migrating MobileFirst Native API projects

Projects of type Worklight Native API that were created in earlier versions of
Worklight Studio have the JAR files that contain their native code rebuilt when
they are migrated to MobileFirst Studio V6.3.0. As a result, after you migrate your
existing Native API project, you must recopy the library and the client property
files of your Native API application into your MobileFirst project.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-7

http://ibm.biz/knowctr#SSZH4A_5.0.5/com.ibm.worklight.help.doc/admin/r_migrating_to_a_newer_version_of_ibm_worklight.html
http://ibm.biz/knowctr#SSZH4A_5.0.5/com.ibm.worklight.help.doc/admin/r_migrating_to_a_newer_version_of_ibm_worklight.html

v For iOS Native API projects, follow the instructions in “Copying files of native
API applications for iOS” on page 8-186.

v For Android Native API projects, follow the instructions in “Copying files of
Native API applications for Android” on page 8-191.

v For JavaME Native API projects, follow the instructions in “Copying files of
Native API applications for Java Platform, Micro Edition (Java ME)” on page
8-197.

ARC-enablement for upgraded iOS projects

The MobileFirst upgrade process does not enable ARC (Automatic Reference
Counting) by default in existing iOS projects. Although ARC is enabled for the
MobileFirst library, you must manually enable ARC for the upgraded project by
following the steps that are described in the Apple Documentation.

iOS: changes in Xcode linker options

Before IBM Worklight Foundation V6.2.0, the iPhone and iPad environments
specified the -all_load option in the Other Linker Flags of the Build Settings to
load all symbols from all libraries into the app. Starting with IBM Worklight
Foundation V6.2.0, this -all_load flag is replaced with -force_load <library>
flags for each library from which all symbols are loaded.

Generally, the linker loads the symbols that are used within an app. However, in
some cases, such as when Objective-C categories are used, the linker does not load
all the necessary symbols, which results in unresolved symbol errors from the
linker.

New V6.3.0 iOS environments and the iOS environments that are migrated from
previous versions of IBM MobileFirst Platform Foundation have the -force_load
flag specified for the following libraries:
v libCordova.a

v libWorklightStaticLibProject.a

v libTLFLib.a (added by the Tealeaf® SDK optional feature)
v libfipshttp.a (added by the FIPS 140-2 optional feature)

Note: You might need to add a -force_load flag for third-party libraries that you
include in your project.

If you use xcodebuild to build your projects, you must specify an extra flag or
property to indicate the location of the libraries for which you use -force_load.
You can use either the -scheme flag (if the project was previously opened in Xcode)
or the SYMROOT property (whether the project was previously opened in Xcode or
not):

Note: In the following examples, the values used for -configuration and -sdk are
only indicated for illustration purposes. The values that you specify might be
different.
1. If Xcode was not previously run on the generated .xcodeproj project, then

specify SYMROOT (it can be any directory):
xcodebuild -project <PathToProject>/TestProjectTestAppIphone.xcodeproj -configuration Release -sdk iphonesimulator7.0 SYMROOT=<PathToProject>/build

2. If Xcode was previously run on the generated .xcodeproj project, then you can
specify the scheme:
xcodebuild -project <PathToProject>/TestProjectTestAppIphone.xcodeproj -scheme TestProjectTestAppIphone -configuration Release -sdk iphonesimulator7.0

7-8 IBM MobileFirst Platform Foundation V6.3.0

https://developer.apple.com/library/ios/releasenotes/objectivec/rn-transitioningtoarc/Introduction/Introduction.html

Targeting new iOS architectures for your existing apps
v For hybrid applications: To target armv7, armv7s and arm64, or only one

architecture, you must manually change the architecture selection in the
Architectures menu of the Xcode Build Settings:
1. In Valid Architectures, select armv7 or armv7s or arm64, or all the three

architectures.
2. In Architectures, depending on the slice that you want to create, select one,

or several architectures that you chose in step 1.

Note: To compile or to create a slice, you must include the slice name in
both Valid Architectures and Architectures (so for armv7s, you must add
armv7s to both menus). Valid Architectures specifies declaratively which
slice can be created. In Architectures, select only the slice that you want to
create.

v For native applications: After you replace the IBM Worklight V6.1.0 files with the
V6.2.0 files in your Xcode project, you can change the selections in the Xcode
Valid Architectures and Architectures menus to include any combination of
armv7, armv7s, and arm64. You can then compile your project for the selected
architectures.

Note: FIPS is not yet supported on 64-bit architecture even though MobileFirst
library does support 64-bit architecture. Therefore, FIPS must not be enabled on
64-bit target platform when XCode Build Setting (Architecture) is also set to 64 bit.

Manually upgrading existing MobileFirst iOS hybrid applications

IBM MobileFirst Platform Foundation V6.3.0 supports existing applications that
were created before V6.3.0. These applications can continue to work as is.
However, if you want to simplify the usage of native code at the start of your
application, you must manually update the application code.

To manually migrate an application to IBM MobileFirst Platform Foundation
V6.3.0, and use native code more easily at the start of your application, follow
these steps:
1. Set the main app delegate, MyAppDelegate (in appName.h), to extend

WLAppDelegate instead of WLCordovaAppDelegate.
2. Implement the protocol WLInitWebFrameworkDelegate (for example, set

MyAppDelegate to implement it), and implement its method
wlInitWebFrameworkDidCompleteWithResult.

Note: The method didFinishWLNativeInit is deprecated and cannot be called.
If you had custom code in this method, move it to
wlInitWebFrameworkDidCompleteWithResult.
For example, in appName.h, change
@interface MyAppDelegate : WLCordovaAppDelegate{}

to
@interface MyAppDelegate : WLAppDelegate <WLInitWebFrameworkDelegate> {}

and implement the method of the protocol:
-(void)wlInitWebFrameworkDidCompleteWithResult:(WLWebFrameworkInitResult *)result

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-9

Note: CDVMainViewController and WLCordovaAppDelegate are deprecated
and are no longer necessary (if some custom applicative code interacts with
these classes, it continues to work as is).

3. Call [[WL sharedInstance]
initializeWebFrameworkWithDelegate:someDelegate] whenever it applies,
according to the logic of the application (it is recommended to call it as early as
possible in the application lifecycle).

4. When the MobileFirst initialization process is complete, the framework notifies
the delegate by calling the wlInitWebFrameworkDidCompleteWithResult
method with a WLWebFrameworkInitResult object. Check the initialization
result by using the statusCode method of WLWebFrameworkInitResult. The
success and failure scenarios are handled according to the logic of the app.

5. If the initialization finishes successfully, you can load the Cordova WebView to
run the MobileFirst JavaScript framework:
a. Call [[WL sharedInstance] mainHtmlFilePath] to get the path of the main

HTML file of the app.
b. Create the Cordova ViewController CDVViewController, and set its

startPage to the HTML path.
c. Display the Cordova WebView.

Managing the splash screen in iOS hybrid applications created
before V6.2.0 that are migrated to V6.3.0

In iOS hybrid applications created before V6.2.0 that are migrated to V6.3.0, the
splash screen is still managed internally by a compatibility layer in the same way it
was managed in previous versions. Before V6.2.0, the showing and hiding of the
splash screen was managed internally in native code by the MobileFirst Hybrid
SDK. To be able to use the new splash API, migrate your application as described
in “Manually upgrading existing MobileFirst iOS hybrid applications” on page 7-9.

Working with Android projects

In IBM MobileFirst Platform Foundation V6.3.0, developers are encouraged to use
the latest Android SDK API level that is supported by the MobileFirst Studio –
Android 4.4 (API Level 19). Using the latest Android SDK allows the Android
system to disable compatibility behaviors that slow the mobile application and
to use the latest capabilities and features it includes.

When a new Android project is created, an attribute named
android:targetSdkVersion is added in the androidManifest.xml file under the
<uses-sdk> element, with a default value of 19. This value specifies that the API
Level of the application targets is Android 4.4.

The default Android SDK API level is not changed for existing projects that are
opened in MobileFirst Studio V6.3.0.

Note: (Only for projects that were created with versions older than IBM Worklight
V6.1) The Cordova libraries are updated during the installation of Worklight
Studio V6.1.0. Therefore, for Android applications, if you have any user/custom
plug-in that refers to the org.apache.cordova.api package, you must replace
org.apache.cordova.api with org.apache.cordova.

7-10 IBM MobileFirst Platform Foundation V6.3.0

Change from Tealeaf V8 to Tealeaf V9
v Starting with IBM Worklight Foundation V6.2.0, Tealeaf Client SDK V9 is

delivered under the optional feature Tealeaf Client SDK. In previous version of
IBM Worklight, the name of this optional feature was Analytics.

v WL.Analytics JavaScript API no longer delegates to Tealeaf TLT JavaScript API.
WL.Analytics JavaScript API now delegates to MobileFirst internal SDK and
achieves the same results as the previous behavior.

v For IBM Worklight V6.1 projects in which the Analytics optional feature is
already enabled and that you upgrade to MobileFirst Studio V6.3.0: the Tealeaf
artifacts are replaced, including uicandroid.jar and
TLFConfigurableItems.properties on Android, all Tealeaf .h, .plist and
libTLFLib.a files on iOS, and tealeaf.min.js.

Note: The three Tealeaf import statements are commented out in the main.m file
of iPhone and iPad environments. This is necessary to avoid compile errors that
are related to unresolved import statements, as the Tealeaf header files were
removed from the Worklight SDK. The header files are available as part of the
Tealeaf Client SDK optional feature. Applications that use the Tealeaf Client SDK
optional feature must add the appropriate header file imports based on the
Tealeaf version that is used.

v Applications are not automatically instrumented with Tealeaf Client SDK API
calls. Make sure to instrument the application appropriately to capture the
required events for Tealeaf CX server replay and analysis.

Impact of migrating to a new version of MobileFirst Studio for
applications already in production

Since IBM Worklight Foundation V6.2.0, there is a separation between the
MobileFirst Server runtime environment and the MobileFirst apps or adapters.

This separation generally means the following:
v When you deploy a runtime environment that was built using MobileFirst

Studio V6.2.0 into MobileFirst Server V6.2.0.1 or later, you can deploy
applications and adapters of any version, from V5.0.6.

v If you do not increase the application version when you rebuild it in the new
MobileFirst Studio, important features such as app authenticity will fail for the
old clients and they will not be able to connect to the MobileFirst Server.

For Direct Update and app authenticity to work, both the client application and
the server-side artifacts (wlapp) must be generated from the same version of
MobileFirst Studio.

In certain cases, if you migrate your MobileFirst project to a new version of
MobileFirst Studio, and even if you do not change the code of the application, you
must still increment the version number of the application. If you deploy a new,
upgraded runtime environment (meaning one that was built with the new
MobileFirst Studio), it is possible to deploy both versions of applications - the one
built with an older version of MobileFirst Studio and the one that was upgraded
and built with a new version of MobileFirst Studio, with a different application
version. You can still serve the older, existing client application along with new
ones, or block the old ones and refer to download of the new ones.

There are three such cases:

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-11

v Applications that were created with a version of Worklight Studio older than
V5.0.0.3. The communication protocol of Worklight Server V6.1.0 supports the
protocols of client applications that are built with IBM Worklight V5.0.0.3 or
later. Device users who use apps that were built with IBM Worklight V5.0.0.3 or
later, and whose server-side artifacts have been successfully deployed to IBM
Worklight V6.1.0 and tested on a test server should continue to work without
requiring the device user to download a new version of the application.
Device users who use applications that were built with IBM Worklight V5.0.0.3
or later, whose server-side artifacts were regenerated using the newer version of
Worklight Studio, and that are successfully deployed to Worklight Server V6.1.0
and tested on a test server should continue to work without requiring the device
user to download a new version of the application. However, Direct Update and
app authenticity are not available for these applications.

v Applications that use the Direct Update feature. The Direct Update feature
(“Direct updates of app versions to mobile devices” on page 8-163) to
automatically update application versions stops working after some migration
paths. Worklight Studio V6.1.0 displays a warning when such situations are
detected when migrating apps created in older versions.
To notify your users that a new version of the application is available, you can
use the startup display notification feature that is documented at “Displaying a
notification message on application startup” on page 12-5. If the application
update is mandatory, another alternative is to deny access to the old application
version by using the feature that is documented at “Remotely disabling
application connectivity” on page 12-3.
If you need to upload a new version of your application to a public application
store such as the Apple Store or Google Play, you must in some cases resubmit
the app for approval by the store.

v Applications that use application authenticity. App authenticity will not work
properly for clients built with an older version of MobileFirst Studio when the
app that is deployed on the server was built with a newer version of MobileFirst
Studio, and both have the same application version. Requests from those clients
to access resources that are authenticity-protected will always be denied.

Migrating projects to V6.3.0 using MobileFirst Platform Command Line
Interface

If you are using IBM MobileFirst Platform Command Line Interface to develop an
IBM MobileFirst Platform Foundation project that is from any release before V6.3.0,
your project is automatically migrated to V6.3.0.

When you run the mfp add command or the mfp build command, or when the
MobileFirst Server starts, your MobileFirst project is migrated to V6.3.0.

Migrating IBM SmartCloud Analytics Embedded to IBM MobileFirst
Platform Operational Analytics

If you used IBM SmartCloud Analytics Embedded in previous versions of IBM
MobileFirst Platform Foundation, you must now migrate to IBM MobileFirst
Platform Operational Analytics.

About this task

In IBM MobileFirst Platform Foundation V6.3.0, IBM MobileFirst Platform
Operational Analytics replaces IBM SmartCloud Analytics Embedded. Complete

7-12 IBM MobileFirst Platform Foundation V6.3.0

the following steps to migrate to IBM MobileFirst Platform Operational Analytics.
For more information about IBM MobileFirst Platform Operational Analytics, see
“Operational analytics” on page 13-11.

Procedure
1. Install the analytics WAR file on your application server, but do not start the

server. For detailed information about installing the analytics WAR file, see
“Installing the IBM MobileFirst Platform Operational Analytics” on page 6-170.

2. Locate the data folder on your IBM SmartCloud Analytics Embedded server. If
the installation path for IBM SmartCloud Analytics Embedded was not
modified, this folder is located in /opt/IBM/analytics/data.

3. Copy the data folder to the same machine as the machine where the analytics
WAR file is hosted.

Note: The data folder then becomes the location where all analytics data is
stored, so make sure to place this folder in an appropriate location.

4. Modify the datapath JNDI variable on your application server to point to the
data folder that was copied from the IBM SmartCloud Analytics Embedded
server folder in step 3. For example:
<jndiEntry jndiName="analytics/datapath" value="/home/system/data"/>

Important: Make sure the JNDI property points to a copied version of the data
folder. This is to ensure that your data is still backed up in case of data
corruption due to a migration failure.

5. Identify the cluster name that was specified when IBM SmartCloud Analytics
Embedded was installed. This name will be the name of the folder at the root
of the data folder.

6. Modify the clustername JNDI variable on your application server to match the
cluster name that was installed by IBM SmartCloud Analytics Embedded. For
example:
<jndiEntry jndiName="analytics/clustername" value="WLCLUSTER"/>

7. Start the Analytics WAR server and review the console. The migration process
begins automatically. The data is available to view after the migration process is
completed.

Upgrading to MobileFirst Server V6.3.0 in a production environment
Upgrading MobileFirst Server in a production environment is a more exacting
process than in your development environment because you must back up your
data and prepare for the upgrade carefully to minimize production downtime. This
section provides a series of steps to upgrade your production server or servers
efficiently and in the shortest time possible.

When you upgrade from Worklight Server V5.0.6.x or later to V6.3.0 in a
production environment, the process can be more complicated than upgrading to a
new version in your development environment. The upgrade procedure can also
take longer if you have existing MobileFirst applications that run in a production
MobileFirst Server environment. For step-by-step instructions on how to upgrade
your production MobileFirst Server to V6.3.0, see the following topics.

Note: The documentation in the topics that follow assumes the following facts:
v Your database type is IBM DB2, MySQL, or Oracle (not Apache Derby).

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-13

v Your application server type is WebSphere Application Server full profile,
WebSphere Application Server Liberty profile, or Apache Tomcat.

Important: The topics are in a specific order, and must be completed in the order
shown.

The upgrade procedure can take some time, several hours in fact, and so these
activities must be scheduled to create the least disruption and downtime to
production servers and the applications that run on them.

The topics provide essential information about backing up any existing databases
or application server data, migrating your existing MobileFirst projects and
applications to the new version, and performing other preparation tasks that must
be completed before you install the new version of MobileFirst Server. These
preparatory steps are followed by postinstallation, verification, and configuration
tasks that must be completed before you restart the new MobileFirst Server and
finish migrating your MobileFirst applications.

Read through the entire set of topics before you begin the actual upgrade process
to become familiar with the tasks ahead of you, what must be done, and in what
order.

Start with “Overview of the upgrade to MobileFirst Server V6.3.0 process,” and
then read through the steps under each of the major topics that follow.

Overview of the upgrade to MobileFirst Server V6.3.0 process
An overview of the MobileFirst Server V6.3.0 upgrade process, including what is
updated and what is not.

A typical instance of MobileFirst Server includes the following elements:
v A Database Management System (DBMS) that runs databases for the Application

Center and for MobileFirst Server. This DBMS hosts and run the following
databases:
– The Application Center database (if Application Center is installed on that

server).
– The administration database.
– One or more runtime databases. Each runtime environment requires one

runtime database and an optional reports database.
v One or more application servers. These application servers host and run the

following web applications:
– The Application Center application (if Application Center is installed on that

server).
– The MobileFirst Operations Console application. One MobileFirst Operations

Console can be used to administer several MobileFirst runtime environments.
It is defined by a WAR file, which is worklightconsole.war.

– The Administration Services application. This application provides the
necessary services for the MobileFirst Operations Console and hosts all the
services (REST services) and administration tasks. The Administration
Services application is defined by a WAR file, which is worklightadmin.war,
and is connected to the administration database.

– One or more MobileFirst runtime environments. Each MobileFirst runtime
environment:

7-14 IBM MobileFirst Platform Foundation V6.3.0

- Is defined by a WAR file that is created with the MobileFirst Studio
development tool.

- Is connected to two databases, one for runtime and one for reports.
- Can run on one or more physical servers, for both workload and service

availability considerations.
v An installation of the MobileFirst Server programs, usually on the same

computer as the application server or deployment manager.

Other items can belong to an IBM MobileFirst Platform Foundation configuration,
for example, an IBM HTTP Server, IBM DataPower, or an LDAP system.

The topics in this section focus on the task of upgrading and configuring the
following entities:
v The MobileFirst Server programs.
v The databases, including the creation of the administration database.
v The MobileFirst project runtime applications and Application Center applications

that are deployed in the application server.

Note: The upgrade of the MobileFirst project runtime applications includes the
installation and setup of the MobileFirst Operations Console and administration
services applications.

The actual steps that you must complete for the upgrade can change, depending
on the particular upgrade path you are pursuing. Your upgrade path is determined
by whether you are upgrading:
v From a previous version of Worklight Server to MobileFirst Server V6.3.0 (for

example, from V6.0.0.x to V6.3.0 or from V6.1.0.x to V6.3.0).
v From MobileFirst Server V6.3.0 to a fix pack release or an interim fix (for

example, from V6.3.0 to V6.3.0.x).

The spreadsheet at the following link lists the individual steps for each of these
upgrade paths, and helps you to determine:
v Whether the step is required or not required, depending on your MobileFirst

upgrade path.
v Whether your Application Center and MobileFirst Server (old version),

uninstalled, stopped, or upgraded (and running) during this step as the result of
actions in the current step or previous steps.

The spreadsheet can be downloaded here: MobileFirst Server Upgrade Steps
spreadsheet

To provide further assistance, at the beginning of each topic a shorter version of
this spreadsheet is provided for that step.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-15

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/MobileFirst_Server_Upgrade_Steps.xls
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/MobileFirst_Server_Upgrade_Steps.xls

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes/No Yes/No Yes/No Yes/No Yes/No Running/
Stopped/

Uninstalled/
Upgraded

Running/
Stopped/

Uninstalled/
Upgraded

Preparation for upgrades to MobileFirst Server
Before you begin the actual upgrade to MobileFirst Server V6.3.0, you must
complete several preparation tasks.

Upgrading to a new version of MobileFirst Server in a development environment
is quick and easy because in most cases no critical data must be preserved in IBM
MobileFirst Platform Foundation databases. In a production environment, however,
more time and effort are required for the upgrade, to minimize production
downtime and inconvenience to users of existing applications.

Complete the following preparation tasks before you begin upgrading to a new
MobileFirst Server version. You can start any time before the upgrade, but you
must complete these tasks before you move to the next major step, “Starting the
MobileFirst Server V6.3.0 upgrade process” on page 7-29.

Gathering information for MobileFirst Server V6.3.0 upgrades
To avoid having to stop the upgrade process to look up required information,
gather it in advance and have it handy.

About this task

One of the purposes of these instructions is to minimize the time for upgrades to
MobileFirst Server. You do not want to start the procedure and then discover that
you are missing some piece of information that is required by the installer.

To avoid this situation, prepare a list of information that you are likely to be asked
for and keep it handy during the upgrade process.

In addition, it is often necessary to pre-plan certain aspects of the upgrade and
clear them with your application server administrator and your database
administrator. For example, you must know the correct user name. You must also
either have sufficient permissions to create or update databases, or have your
database administrator do it for you.

7-16 IBM MobileFirst Platform Foundation V6.3.0

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Running Running

Procedure

Go through the following checklist.
v Verify that your operating system, application server, and Database Management

System (DBMS) meet the system requirements for MobileFirst Server V6.3.0 at
Detailed System Requirements for IBM MobileFirst Platform Foundation and
IBM Mobile Foundation.

v Make a list of the host names and IP addresses of all servers that must be
upgraded.

v Make a similar list of all database names and locations.
v Ensure that the correct JDBC drivers for the target databases are available on

your computer. IBM Installation Manager needs access to these drivers to
upgrade the Application Center database. Ant scripts also need access to these
drivers to create the administration database and upgrade the MobileFirst
runtime databases.

v Gather the credentials to the MobileFirst Server administration, the MobileFirst
runtime environments, the MobileFirst reports, and Application Center
databases. If you do not know the correct schemas, user names, and passwords,
ask your database administrator for assistance.

Note: The MobileFirst Server administration database does not exist for IBM
Worklight 6.1 or earlier.

v Stop and restart the application server and verify its configuration. If you do not
know the correct schemas, user names, and passwords, ask your database
administrator for assistance.

v If the URL to the Application Center or the MobileFirst Server applications or
their console changes, identify all the systems that you must update. If you
upgrade from V6.1.0 to V6.3.0, the URLs to the Application Center and the
MobileFirst runtime environment do not change, but a new URL is introduced
for the MobileFirst Operations Console.

Planning installation of the MobileFirst Administration Services
and MobileFirst Operations Console
You must plan the steps that you perform later to upgrade the Administration
Services and the MobileFirst Operations Console. These components were
introduced in V6.2.0, and if you upgrade from an earlier version, you must install
them first.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-17

http://www.ibm.com/support/docview.wss?uid=swg27024838
http://www.ibm.com/support/docview.wss?uid=swg27024838

Before you begin

Worklight Server V6.2.0 introduced a new architecture for the unified console
based on several core elements that are described in Introduction to the MobileFirst
Server components.

If you upgrade from IBM Worklight V6.1.0 or earlier, you must install the
following new components as part of the upgrade process: the Administration
Services, and the MobileFirst Operations Console.

The present topic lists the items that you must plan before you perform that
upgrade process. The actual installation procedure for the Administration Services,
and optionally the MobileFirst Operations Console, is at “Installation or upgrade of
MobileFirst Server Administration Services” on page 7-43.

About this task

The following table lists the upgrade paths for which this step is mandatory.

Table 7-3. Upgrade paths

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes No No Running Running

If you upgrade from V6.1.0 or earlier, install the Administration Services as part of
the upgrade process.

To minimize downtime or issues while you follow the upgrade procedure, start
with reviewing the installation procedure and configuration options:
1. Define your upgrade strategy if multiple MobileFirst runtimes are installed

(project WAR files).
2. Prepare the configuration of the application.
3. Set up the MobileFirst administration database.
4. Review the configuration of the application server.

The following procedure emphasizes important items that you must prepare before
running an upgrade. You must also review the installation instructions at
“Installing the MobileFirst Server administration” on page 6-46.

The following steps are for planning only, and you do not have to start the
installation of the MobileFirst Server administration at this stage. The actual
installation is described later in the upgrade procedure, at “Installation or upgrade
of MobileFirst Server Administration Services” on page 7-43.

7-18 IBM MobileFirst Platform Foundation V6.3.0

Procedure
1. Define your upgrade strategy if multiple MobileFirst runtimes are installed

(project WAR files).

Note: You must perform this step only if you have more than one MobileFirst
runtimes (project WAR files) to upgrade. If you have only one MobileFirst
runtime to upgrade, you can skip this test.
You can either manage all the runtimes with the same MobileFirst
Administration Services and Console runtime environment or install this
environment for each runtime.
v Manage all the runtimes with the same MobileFirst Administration Services

and Console runtime environment: This is the default setting. Carefully
review the context root of each runtime. The context root is used to identify a
runtime in the administration database. After the MobileFirst administration
data is migrated to the administration database, you can no longer change
the context root of a MobileFirst Server runtime. For more information, see
“Upgrade the runtime and reports databases” on page 7-45.

v Install a MobileFirst Administration Services and Console environment for
each runtime: In this case, define the environment IDs as follows:
– If you install by running an Ant file, add an environmentID attribute to the

Ant tasks for installation administration: <installworklightadmin>,
<updateworklightadmin>, <uninstallworklightadmin>,
<configureapplicationserver>, <updateapplicationserver>,
<unconfigureapplicationserver>. For more information, see “Ant tasks
for installation of MobileFirst runtime environments” on page 15-16 and
“Ant tasks for installation of MobileFirst Operations Console and
Administration Services” on page 15-8.

– If you install manually, update the ibm.worklight.admin.environmentid
JNDI property as documented in “List of JNDI properties for MobileFirst
Server administration” on page 6-92 and “Configuring a MobileFirst
project in production by using JNDI environment entries” on page 11-56.

2. Prepare the configuration of the application.
Since IBM Worklight Foundation V6.2.0, the protection of the Administration
Services and the MobileFirst Operations Console is configured by security roles
that are managed in the application server. For more information, see
“Configuring user authentication for MobileFirst Server administration” on
page 6-88. To prepare the installation and configuration of the Administration
Services and the MobileFirst Operations Console, you must identify the users
who need access to the console, and verify that these users are declared in the
application server. This way, you can configure their access to the
Administration Services and MobileFirst Operations Console when the
applications are installed.

3. Set up the MobileFirst administration database.
A MobileFirst administration database is necessary for the Administration
Services. This database can be created at installation time, if you have an
administrator access to the database server. Otherwise, you must contact your
database administrator so that the database is created in advance, and you
must provide your database administrator with the information listed at
“Optional creation of the administration database” on page 6-46.

4. Review the configuration of the application server.
For IBM MobileFirst Platform Foundation V6.3.0, you must configure your
application server to enable Java Management Extensions (JMX) communication
between the Administration Services and the MobileFirst Server runtime.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-19

Review the topic “Configuration of the application server” on page 6-49 to see
if there is a need to configure your application server to support JMX for a
production environment. For example, in the case of WebSphere Application
Server Liberty profile, the Ant tasks that you use to install the Administration
Services can configure a default secure JMX connection, which includes the
generation of a self-signed SSL certificate with a validity period of 365 days.
But this configuration is not intended for production use.

Identify the MobileFirst WAR file and prepare the Ant deployment
script
In this task, you identify the MobileFirst project WAR file that contains numerous
resources and configuration settings for MobileFirst Server and prepare the Ant
script that is used to deploy it.

About this task

The MobileFirst WAR file is a web application archive that contains a MobileFirst
Operations Console, default values for server-specific configuration settings, and
other resources that can be required to run MobileFirst applications and adapters.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Running Running

Procedure

In the upgrade process, the MobileFirst runtime environment must be redeployed
to the application server. It is important to deploy the same WAR file. To ensure
this, you must complete the following steps:
1. Find the WAR file that was previously deployed to the application server.
v If you are upgrading from Worklight Server V6.0.0.x or later, find the JNDI

properties that were set for the deployed Worklight project to override the
default worklight.properties file. If you used an Ant script with the
configureapplicationserver task to deploy the WAR file, you can find in
that script the JNDI properties that were set at installation time. For more
information, see “Configuration of MobileFirst applications on the server” on
page 11-45.
For upgrading from Worklight Server V6.0.0.x or later, the procedure to
deploy the WAR file is described at “Deploying the project WAR file” on
page 11-5.

v When you upgrade from Worklight Server V5.0.6.x, a MobileFirst WAR file is
installed by the installer. If you have not modified this WAR file on your
production server, you must create a modified file by following the
instructions at “Building a project WAR file with Ant” on page 11-4.

7-20 IBM MobileFirst Platform Foundation V6.3.0

When you modify the WAR file, use Worklight Studio V5.0.6.x or the Ant
tasks (worklight-ant.jar) from an installation of Worklight Studio V5.0.6.x
that was used to build the apps previously deployed to the server. The
version of Worklight Studio that was used to build the project WAR file must
exactly match the version of Worklight Studio that was used to build the
apps previously deployed to the server.
The WAR file is automatically upgraded to MobileFirst Server V6.3.0 format
during the deployment procedure that is described in later steps.

2. Prepare the Ant deployment script that is used to upgrade this WAR file to
MobileFirst Server V6.3.0 and to deploy this WAR file to the application server,
with the upgraded MobileFirst runtime library.
v When you upgrade from Worklight Server V6.0.0.x or later, you can reuse the

script that you used for initial deployment. Make a copy of this file and
modify it as follows:
a. In the Ant file, make sure that the reference to the JAR file is

worklight-ant-deployer.jar, and not worklight-ant.jar. Since IBM
Worklight V6.1.0, this library is named worklight-ant-deployer.jar. For
example, in the V6.0.0 script looks contains these lines:

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<fileset dir="${worklight.server.install.dir}/WorklightServer">
<include name="worklight-ant.jar"/>

</fileset>
</classpath>

</taskdef>

Replace the reference to the JAR file as highlighted:
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<fileset dir="${worklight.server.install.dir}/WorklightServer">

<include name="worklight-ant-deployer.jar"/>
</fileset>

</classpath>
</taskdef>

b. In the Ant file, you must add the following targets, which are specific to
IBM MobileFirst Platform Foundation V6.3.0:
– adminstall

– minimal-admupdate

– admuninstall

– admdatabases

– minimal-update

c. Add <adminDatabase> to the <configuredatabase kind ="Worklight">
Ant task. This element upgrades the administration data to the new
administration database.
Those targets are required to install the MobileFirst Operations Console
and Administration Services. You can find examples of such targets in
“Sample configuration files” on page 15-30. If you use the XML extracts
of the sample configuration files, replace the variables ({$...}) by the
corresponding variables of your Ant file. For more information about the
references of the Ant tasks, see:
– “Ant configuredatabase task reference” on page 15-1
– “Ant tasks for installation of MobileFirst Operations Console and

Administration Services” on page 15-8

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-21

– “Ant tasks for installation of MobileFirst runtime environments” on
page 15-16

v If you upgrade from Worklight Server V5.0.6.x:
– Install MobileFirst Server V6.3.0 on your computer, but without installing

Application Center.
– Navigate to directory <WorklightInstallDir>/WorklightServer/

configuration-samples.
– Select the file that corresponds to your combination of application server

and database. The files are named with the convention
redeploy506-<appserver>-<db>.xml.

– Make a copy of this file.
– Edit the copied file and change the values of the properties to match your

installation configuration.
3. Verify that the environmentID attribute for the MobileFirst runtime

environments matches the environmentID attribute that is used to install the
MobileFirst Server administration Ant file.
If you install the MobileFirst Server administration components with a different
Ant file than the one that you used to install the MobileFirst runtime
environment, for example if you install the MobileFirst Server administration
with the Server Configuration Tool, you might have a different environmentId
for the administration and the runtime. In this case, the MobileFirst Server
administration components would not find the MobileFirst runtime
environments.
The environmentID is an attribute of the following Ant tasks:
v installworklightadmin, updateworklightadmin, and

uninstallworklightadmin Ant tasks, which are documented at “Ant tasks for
installation of MobileFirst Operations Console and Administration Services”
on page 15-8.

v configureapplicationserver, updateapplicationserver,
unconfigureapplicationserver Ant tasks, which are documented at “Ant
tasks for installation of MobileFirst runtime environments” on page 15-16.

Review and note the Application Server configuration for
Worklight Server and Application Center
In this task, if it is required for your upgrade path, you prepare for the
undeployment and redeployment of applications to the application server to
correct information that can potentially be modified or deleted by IBM Installation
Manager.

About this task

In some upgrade scenarios, the applications that are deployed to the application
server must be undeployed, and then redeployed. As a consequence, the
configurations that were previously made to these applications are erased and
must be reconfigured after the application is deployed again to the application
server.

The applications to review are as follows:
v For Application Center:

– The Application Center Console and Application Center Services
v For Worklight Server or MobileFirst Server:

– The Administration Console and Administration Services

7-22 IBM MobileFirst Platform Foundation V6.3.0

– Each project runtime

The JDBC data sources to review are as follows:
v For Application Center: the Application Center database
v For Worklight Server or MobileFirst Server:

– The runtime database
– The reports database
– The administration database

If these items were previously configured, note the configuration details so you can
reconfigure them after the applications are reinstalled and redeployed. The
configurations affected can include security settings, lists of users authorized to use
the application, startup behaviors, connection pool settings, JNDI properties, and
other items.

The upgrade paths in which this step is mandatory are listed in the following
table.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes No See fix
pack or

interim fix
installation
instructions

Running Running

Procedure

To review the configuration of the data sources and applications:
v For WebSphere Application Server full profile, use the console.
v For WebSphere Application Server Liberty profile:

– Open the server.xml file. The settings that can be modified or removed by
IBM Installation Manager are between the marker comments, as shown in the
following sample:
<!-- Begin of configuration added by IBM Worklight installer. -->
...
<!-- End of configuration added by IBM Worklight installer. -->

v For Apache Tomcat:
– Open the server.xml and the tomcat-users.xml files. The settings that can be

modified or removed by IBM Installation Manager are between the marker
comments, as shown in the following sample:
<!-- Begin of Context and Realm configuration added by IBM Worklight installer. -->
...
<!-- End of Context and Realm configuration added by IBM Worklight installer. -->

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-23

Verify environments of deployed apps
Before you upgrade to MobileFirst Server V6.3.0, verify that all of the
environments that are targeted in your MobileFirst applications are still supported.

About this task

After the migration is completed, your MobileFirst applications contain only the
environments that are supported by the current version of MobileFirst Server.

In IBM Worklight Foundation V6.2.0, no mobile operating system is dropped or
deprecated. Since IBM Worklight V6.1.0, some of the MobileFirst environments
such as iGoogle, Facebook, Apple OS X Dashboard, Vista that were supported in
IBM Worklight V5.0.6 are no longer supported. If a target mobile device has an
application that is installed on it which requires an environment that is no longer
supported by a version of MobileFirst Server anterior to V6.3.0, the application on
this device stops working after an upgrade of MobileFirst Server to V6.3.0.

Therefore, if you upgrade Worklight Server from V6.0.0.x or earlier to MobileFirst
Server V6.3.0, you must pay particular attention to the following procedure.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes No No No Running Running

Procedure

If your current version of MobileFirst Server includes existing applications that
target environments that are no longer supported by MobileFirst Server V6.3.0:
v For old, no-longer-supported environments, your application developers must

update the MobileFirst application to run with an environment supported by
MobileFirst Server V6.3.0 before you can run it.

v For new environments for which support is added after the release of
MobileFirst Server V6.3.0, check for the availability of a fix pack release that
provides support for this environment.

The following table can help to determine the IBM Worklight versions in which
support for older environments was discontinued, and to suggest possible
replacement environments for those environments.

Environment Support removed in Suggested replacement path

Facebook IBM Worklight V6.0.0 Desktop web app

iGoogle IBM Worklight V6.0.0 Review environments
supported by IBM Worklight
V6.1.0

7-24 IBM MobileFirst Platform Foundation V6.3.0

Environment Support removed in Suggested replacement path

Apple OS X Dashboard IBM Worklight V6.0.0 Review environments
supported by IBM Worklight
V6.1.0

Windows 7 and Vista IBM Worklight V6.0.0 Review environments
supported by IBM Worklight
V6.1.0

Windows Phone 7.5 IBM Worklight V6.1.0 Review environments
supported by IBM Worklight
V6.1.0

In-place upgrade or rolling upgrade to MobileFirst Server V6.3.0
You can upgrade to a new version of the product in one of two ways: as an in-place
upgrade or as a rolling upgrade. An in-place upgrade replaces the previous version
while a rolling upgrade does not.

You can replace the previous version by the new one or you can install the new
version alongside the previous one.

In-place upgrade
An upgrade by which the old version of Worklight Server is no longer
installed after the new version of MobileFirst Server is installed.

In-place upgrades require some downtime of the service.

Rolling upgrade
An upgrade that installs the new version of MobileFirst Server such that it
runs side-by-side with the old version of Worklight Server in the same
application server or in a different application server.

The procedure for a rolling upgrade to apply a fix pack to IBM MobileFirst
Platform Foundation V6.3.0 is documented in “Rolling upgrade procedure
to apply a fix pack to IBM MobileFirst Platform Foundation V6.3.0” on
page 7-59.

The following table shows possible upgrade paths.

Table 7-4. Upgrade paths

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Running Running

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-25

Packaging change of WebSphere Application Server Liberty
profile in IBM Worklight V6.x
Important information about how WebSphere Application Server Liberty profile is
delivered since IBM Worklight V6.0.0, and what is the impact on the upgrade of
your production MobileFirst Server.

About this task

Important: The information on this page applies to you if you previously installed
Worklight Server V5.x with the embedded WebSphere Application Server Liberty
profile option.

Since IBM Worklight V6.1.0, WebSphere Application Server Liberty Core is not
embedded in the IBM Installation Manager wizard of MobileFirst Server. Instead, it
is provided as a separate IBM Installation Manager wizard.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes No No No No Running Running

Procedure

As a result of this packaging, the MobileFirst Server upgrade process does not
upgrade your installed version of WebSphere Application Server Liberty profile,
and will not apply fix packs to it in the future. At the end of the upgrade process,
your Liberty server remains installed in <WorklightServerInstallationDirectory>/
server/wlp, but is considered as an external file from the perspective of upgrades,
uninstall, and updates from the IBM Installation Manager wizard of MobileFirst
Server.

To prevent this existing server from being uninstalled during the upgrade process,
the IBM Installation Manager wizard temporarily renames its directory during the
upgrade process. It is critical to apply the steps that are defined in section Special
steps for WebSphere Application Server Liberty profile before you start the
upgrade process. The result of not completing these steps can be a non-functional
server.

Alternate Method: Move your MobileFirst apps and data to a new
Liberty server

This alternate upgrade method migrates your MobileFirst Operations Console and
Application Center to a new WebSphere Application Server Liberty profile server
installed by IBM Installation Manager. This server can be updated by IBM
Installation Manager when new updates for Liberty are made available.

7-26 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSZH4A_6.0.0/com.ibm.worklight.upgrade.doc/devenv/t_upgrade_srvr_prod_start_steps_for_liberty.html
http://ibm.biz/knowctr#SSZH4A_6.0.0/com.ibm.worklight.upgrade.doc/devenv/t_upgrade_srvr_prod_start_steps_for_liberty.html

1. Stop the Liberty server that was installed with the previous version of IBM
MobileFirst Platform Foundation.

2. Install WebSphere Application Server Liberty Core with IBM Installation
Manager. The installer for WebSphere Application Server Liberty Core is part of
the IBM MobileFirst Platform Foundation package.

3. Create a server in this new WebSphere Application Server Liberty profile
installation. If you are not familiar with the creation of a server for Liberty, see
the “Tutorial for a basic installation of MobileFirst Server” on page 6-20.

4. Configure the Liberty server for your production environment.
5. Modify the Ant files created in section “Identify the MobileFirst WAR file and

prepare the Ant deployment script” on page 7-20 to point to the newly
installed WebSphere Application Server Liberty Core.

6. When you reach the step “Running IBM Installation Manager and completing
the Application Center upgrade” on page 7-34, follow the instructions for
“Upgrading from Worklight Server V5.0.6.x (changing the Liberty server)” on
page 7-38.

Become familiar with IBM Installation Manager before you start
Before you start the actual installation, verify that you have all the products that
you want to install and that you are familiar with IBM Installation Manager
procedures.

About this task

You use IBM Installation Manager to complete the actual upgrade. Before you start,
verify that you have all of the necessary installation components, and that you
understand the installation procedure.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Running Running

Procedure

Before you use IBM Installation Manager to upgrade your production server,
familiarize (or refamiliarize) yourself with how it works:
1. Make sure that you have the appropriate version of IBM Installation Manager

installed on the installation workstation.

Note: IBM Installation Manager is sometimes referred to as IBM Rational
Enterprise Deployment on the eXtreme Leverage, Passport Advantage sites, and
on the distribution disks. The file names for the images take the form IBM

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-27

Rational Enterprise Deployment <version number><hardware platform>
<language>; for example, IBM Rational Enterprise Deployment
V1.6.3.1Windows Multilingual.
Use IBM Installation Manager V1.7.2, especially on Windows. For more
information about IBM Installation Manager procedures, see the IBM
Installation Manager user documentation.

Important: If you are performing an in-place upgrade, and you have IBM
Installation Manager installed on your computer in several different modes, for
example, administrator mode and nonadministrator (single user) mode, you
must use the same mode used to install the previous version of Worklight
Server.

2. Download the repositories that are required for the update from Passport
Advantage, or have them available if they are on physical media.
For more information about the types of upgrade repositories available, see
“Information about the repositories.”

3. Verify that the products that you want to update are contained in the IBM
Installation Manager repositories.

4. If you do not plan to use IBM Installation Manager in graphical mode but in
silent install mode, review the procedures for a silent install as documented in
“Command-line installation with XML response files (silent installation)” on
page 6-29 and “Working with sample response files for IBM Installation
Manager” on page 6-30 and prepare your response file.
To prepare your response file from sample response files, create a response file
based on the following versions of MobileFirst Server, and sample files:

Table 7-5. Sample upgrade response files in the Silent_Install_Sample_Files.zip

Initial version of MobileFirst Server Sample file

Worklight Server V5.x upgrade-initially-worklightv5.xml

Worklight Server V6.x upgrade-initially-worklightv6.xml

IBM MobileFirst Platform Server V6.x upgrade-initially-mfpserverv6.xml

In the <offering> element in the <install> element, set the version attribute to
match the release you want to upgrade to, or remove the version attribute if
you want to upgrade to the newest version available in the repositories.

Information about the repositories

There are three types of repositories: base repositories, delta repositories, and
interim fix repositories:
v A base repository is an installation package that is available on Passport

Advantage or on physical media. It is self-contained.
v A delta repository is an installation package that is available from FixCentral and

is labeled as an update pack. It requires a base repository of the previous release
version to be functional.

v An interim fix repository is an installation package that is available from
FixCentral and is labeled as an interim fix, and that is only versioned by a build
number. It requires the repositories of the previous release version to be
functional: either a base repository, or both a base repository and a delta
repository.

To install a major release (for example, MobileFirst Server V6.3.0), you need only:

7-28 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html?cp=SSDV2W_1.7.0%2F0
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html?cp=SSDV2W_1.7.0%2F0

v The base repository V6.3.0 installation package from Passport Advantage or
physical media.

To install a fix pack release (for example, MobileFirst Server V6.3.0.1), you need:
v The corresponding base repository (such as MobileFirst Server V6.3.0)

installation package from Passport Advantage or physical media. The
corresponding base repository for V6.3.0.x fix packs is the V6.3.0 release.

v The appropriate V6.3.0.x installation package from FixCentral.

For a fix pack installation, you must add both repositories to the list known to IBM
Installation Manager. Then, in the example given, IBM Installation Manager
recognizes the V6.3.0 release as an Install choice and the V6.3.0.x release (or
interim fix) as an Update choice.

To install an interim fix release, you can need up to three repositories:
v The repositories for the release to which the fix applies.
v The repository for the fix.

For installing an interim fix, you must add all these repositories to the list known
to IBM Installation Manager. Then IBM Installation Manager recognizes the interim
fix as an Update choice.

Review of the basic IBM Installation Manager steps

Attention: The following steps are not the actual installation. They are
preparatory tasks to help you ensure that you have everything that is required for
the upgrade. Be sure to click Cancel in the last step.
1. Start IBM Installation Manager.
2. Click File > Preferences > Repositories to add references to the repositories

that you downloaded and extracted on a local disk, or that you can access
through the internet.
See Repository preferences for details.

3. Click Install.
4. Verify that the products list contains everything that you need.
5. Click Cancel. Do not proceed with the installation.

Starting the MobileFirst Server V6.3.0 upgrade process
In this phase of the upgrade process, you shut down and back up the application
server and MobileFirst databases and perform other pre-installation tasks.

When you finish the tasks that are listed in “Preparation for upgrades to
MobileFirst Server” on page 7-16, you can begin the actual upgrade process.

Note: After you complete this phase of the upgrade process, your MobileFirst
Server, Application Center, databases, and application server(s) are (or can be)
offline. They are no longer available to support existing apps or provide service to
existing users of those apps. The upgrade process itself can take several hours.
Therefore, you must plan the timing of this process for non-critical hours to have
minimal impact on users.

The following topics present the steps, in the order in which they must be
completed.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-29

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/topics/t_specifying_repository_locations.html

Verify the ownership of your MobileFirst Server files
Before you begin the actual installation, check the ownership of all MobileFirst
Server files.

About this task

The upcoming step “Running IBM Installation Manager and completing the
Application Center upgrade” on page 7-34 attempts to remove and replace many
files in theMobileFirst Server installation directory. This step can fail if the
single-user mode of IBM Installation Manager is used and some of the files or
directories are not owned by that user. Therefore, it is useful to guard against this
case.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Running Running

Procedure

If you previously installed MobileFirst Server with the nonadministrator
(single-user) mode of IBM Installation Manager, check whether all files and
directories in the product_install_dire installation directory are owned by the
current user.

For more information about Installation Manager administrator and
nonadministrator modes, see Administrator, nonadministrator, and group mode.
Group mode is not supported for MobileFirst Server installation.

On UNIX, you can use the following command to list the files and directories that
do not fulfill this condition.

cd product_install_dir
find . ’!’ -user "$USER" -print

This command is expected to return nothing.

What to do next

See also: “File system prerequisites” on page 6-16

Back up your application server
Back up the directory that contains the application server and its configuration.

7-30 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/topics/c_admin_nonadmin_group.html

About this task

Back up your application server so that you can recover in case of an unsuccessful
server upgrade. This strategy covers the rare cases in which the new application
server version fails to work correctly if errors occur in the forthcoming
configuration changes.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Running Running

Procedure

Back up all the application servers (or network deployment nodes) where the
Application Center and MobileFirst Server administration applications are
installed.

For WebSphere Application Server Liberty profile:
v Back up the usr directory. By default this directory is located in

<LibertyInstallDir>/usr, but its location can be redefined by the WLP_USER_DIR
variable in <LibertyInstallDir>/env/server.env.

For WebSphere Application Server full profile:
v If your original installation was to one or more servers under the control of a

deployment manager, and not a single stand-alone server:
– Either use the WebSphere backupConfig command to back up the

deployment manager node.
– Or back up the config directory inside the deployment manager profile

directory.
v If your original installation was to a stand-alone server:

– Either use the WebSphere backupConfig command to back up the entire node.
– Or back up the application server profile directory.

See the documentation for Apache Tomcat to determine the directories to back up
for this application server.

Shutting down the application server
If you use WebSphere Application Server Liberty profile or Apache Tomcat, you
must shut down the application server during this step.

About this task

You must shut down the application server before running IBM Installation
Manager in the following three cases:

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-31

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rxml_backupconfig.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rxml_backupconfig.html

v If your application server is Apache Tomcat.
v If your application server is WebSphere Application Server Liberty Core.
v If your application server is the embedded version of WebSphere Application

Server Liberty profile that is installed by the Worklight Server V5.0.6 or earlier
installer.
– In this case, you must also shut down all processes that have either their

current working directory inside or opened files inside the MobileFirst
installation directory hierarchy.

– On Windows, you must also shut down all such processes inside the Liberty
MobileFirst Server directory hierarchy, which is in C:\ProgramData\IBM\
Worklight\WAS85liberty-server.

Otherwise, if the application server is running when IBM Installation Manager
starts the upgrade, some upgrade operations might fail, leaving the MobileFirst
Server installation in an inconsistent state.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Stopped
(Liberty

and
Tomcat)
Running
(others)

Stopped
(Liberty

and
Tomcat)
Running
(others)

Procedure

For Apache Tomcat and WebSphere Application Server Liberty Core, use the
administration commands to shut down the application server as you would
normally.

For the embedded version of WebSphere Application Server Liberty Server, you
can use the following procedure:
1. Ensure that the JAVA_HOME environment variable points to the installation

directory of a Java 6 or 7 implementation (JRE or JDK), or that the PATH
environment variable contains a java program from a Java 6 or 7
implementation.

2. Shut down the server.
a. On UNIX, enter the following commands, changing the installation location

if necessary:
cd /opt/IBM/Worklight
cd server/wlp/bin
./server stop worklightServer

b. On Windows, enter the following commands, changing the installation
location if necessary:

7-32 IBM MobileFirst Platform Foundation V6.3.0

cd C:\Program Files (x86)\IBM\Worklight
cd server\wlp\bin
server.bat stop worklightServer

3. Verify that no other runaway Liberty server processes are running in the same
directory. On Linux and AIX®, you can list such processes with the following
command:
ps auxww | grep java | grep /wlp/

Stop all instances of the Application Center applications
Stop the applications currently running on Application Center.

About this task

If you have installed Application Center on multiple servers, networked or not,
then all instances of the IBM Application Center Console and IBM Application
Center Services must be stopped before you run IBM Installation Manager to
upgrade the MobileFirst Server installation.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes (if
installed on

multiple
servers)

Yes (if
installed on

multiple
servers)

Yes (if
installed on

multiple
servers)

Yes (if
installed on

multiple
servers)

See fix
pack or

interim fix
installation
instructions

Stopped
(all

instances)

Stopped
(Liberty

and
Tomcat)
Running
(others)

Procedure

The reason this step is required is that IBM Installation Manager migrates the
schema of the database so that it can be used with MobileFirst Server V6.3.0. No
instance of Application Center can be running while this operation is performed.

After the database is migrated, only migrated Application Center applications must
be run, because only migrated applications are able to read and write to the new
databases. Otherwise, the Application Center database might be corrupted.

If you installed Application Center only once, this operation is done automatically
by IBM Installation Manager.

Back up the Application Center database
Before you run IBM Installation Manager to install MobileFirst Server V6.3.0, back
up your Application Center database.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-33

About this task

In the upgrade process, the Application Center database is updated and migrated
to a schema compatible with MobileFirst Server V6.3.0. This operation cannot be
undone. If, for any reason, you decide to roll back the upgrade of MobileFirst
Server, you need this backup.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes See interim
fix

installation
instructions

Stopped
(all

instances)

Stopped
(Liberty

and
Tomcat)
Running
(others)

Procedure

Use the standard procedures for your DBMS (IBM DB2, Oracle, or MySQL) to back
up the Application Center database. The default name for the Application Center
database, unless you modified it at install time, is as follows:
v For IBM DB2, MySQL, and Oracle, if you installed IBM Worklight V5.0.6:

APPCNTR

v For IBM DB2 and MySQL if you installed IBM Worklight V6.0.0 or later: APPCNTR
v For Oracle, if you installed IBM Worklight V6.0.0 or later: ORCL

.

The runtime and reports databases are backed up as well, but in a later step of this
procedure. For more information, see step “Back up the runtime and reports
databases” on page 7-44 of this upgrade procedure.

Running IBM Installation Manager and completing the
Application Center upgrade

Use IBM Installation Manager to install the new MobileFirst Server version.

Before you continue, make sure that you completed all of the steps in the
“Preparation for upgrades to MobileFirst Server” on page 7-16 and “Starting the
MobileFirst Server V6.3.0 upgrade process” on page 7-29 sections that preceded
this step.

It is also possible to run IBM Installation Manager in silent install mode, using
response files that are either generated by using it in wizard mode on a machine
where a GUI is available, or by working with sample response files supplied with
IBM MobileFirst Platform Foundation. For more information, see “Command-line

7-34 IBM MobileFirst Platform Foundation V6.3.0

installation with XML response files (silent installation)” on page 6-29 and
“Working with sample response files for IBM Installation Manager” on page 6-30.

Upgrading from MobileFirst Server V6.3.0
In this step, you run IBM Installation Manager to perform the upgrade from
MobileFirst Server V6.3.0.

About this task

IBM Installation Manager completes the following tasks:
v It installs on your disk the files and tools that are required to deploy IBM

MobileFirst Platform Foundation on your application server.
v If Application Center was installed in the previous version of MobileFirst Server,

the installer also:
– Undeploys the previous version of the Application Center from the

application server.
– Upgrades the databases of Application Center to the format used by the

current version of IBM MobileFirst Platform Foundation V6.3.0. To see a copy
of the upgrade scripts, you can install MobileFirst Server in a new package
group and review a copy of the upgrade scripts in <MobileFirstInstallDir>/
ApplicationCenter/databases.

– Deploys the new version of Application Center to the application server and
connects it to the upgraded database.

– Configures the application server for running the Application Center.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.0.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.0.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

No No No No Yes Stopped
(all

instances)

Stopped
(Liberty

and
Tomcat)
Running
(others)

Procedure

Having prepared for this step by becoming familiar with IBM Installation Manager
and ensuring that you have all the proper repositories for the upgrade, start the
actual installation using the following steps:
1. Start IBM Installation Manager.
2. Click Update.
3. Step through the installation wizard, following the onscreen prompts to

complete the upgrade.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-35

Upgrading from Worklight Server V6.0.0, V6.1.0, or V6.2.0
In this step, you run IBM Installation Manager to perform the actual upgrade from
IBM Worklight V6.x to MobileFirst Server V6.3.0.

About this task

IBM Installation Manager completes the following tasks:
v It installs on your disk the files and tools that are required to deploy IBM

MobileFirst Platform Foundation on your application server.
v If Application Center was installed in the previous version of IBM Worklight, the

installer also:
– Undeploys the previous version of the Application Center from the

application server.
– Upgrades the databases of Application Center to the format used by IBM

MobileFirst Platform Foundation V6.3.0. To see a copy of the upgrade scripts,
you can install MobileFirst Server in a new package group and review a copy
of the upgrade scripts in <MobileFirstInstallDir>/ApplicationCenter/
databases.

– Deploys the new version of Application Center to the application server and
connects it to the upgraded database.

– Configures the application server for running the Application Center.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

No Yes Yes Yes No Stopped
(all

instances)

Stopped
(Liberty

and
Tomcat)
Running
(others)

Procedure

Having prepared for this step by becoming familiar with IBM Installation Manager
and ensuring that you have all the proper repositories for the upgrade, start the
actual installation using the following steps:
1. Start IBM Installation Manager.
2. Click Install.

Note: In IBM MobileFirst Platform Foundation, you must upgrade by clicking
Install, because the package name for Worklight Server changed between
Worklight Server and MobileFirst Server.

3. Select the package group that contains your Worklight Server installation.

7-36 IBM MobileFirst Platform Foundation V6.3.0

4. Step through the installation wizard, following the onscreen prompts to
complete the upgrade.

Upgrading from Worklight Server V5.0.6.x
Use this procedure to upgrade from Worklight Server V5.0.6.x to MobileFirst
Server V6.3.0 in a stand-alone WebSphere Application Server or Apache Tomcat
environment.

About this task

If you originally installed IBM Worklight on:
v A stand-alone WebSphere Application Server Liberty profile server,
v A stand-alone WebSphere Application Server full profile server, or
v A stand-alone Apache Tomcat server,

use the following procedure, with the IBM Installation Manager Install function.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes (unless
Liberty

server was
installed by
Worklight

Server
V5.0.6)

No No No No Stopped
(all

instances)

Uninstalled

Procedure
1. Start IBM Installation Manager.
2. Click Install. The package name for MobileFirst Server has changed between

Worklight Server V5.x and MobileFirst Server V6.3.0, so the upgrade must be
done with the 'Install' process.

3. If you are doing an in-place upgrade (see “In-place upgrade or rolling upgrade
to MobileFirst Server V6.3.0” on page 7-25), select the package group that
contains your Worklight Server installation. If you are doing a rolling upgrade,
select Create a new package group.

4. Step through the installation wizard. If you are doing an in-place upgrade,
most choices are disabled (displayed in gray). But you can change the
passwords for the database or for WebSphere Application Server access if they
are different from the original installation.

5. IBM Installation Manager completes the following tasks:
v It installs on your disk the files and tools that are required to deploy IBM

MobileFirst Platform Foundation in your application server.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-37

v It undeploys the previous version of IBM Worklight from the Application
Server.

v It removes the application server configurations that were set by the previous
installer of Worklight Server.

v If Application Center was installed in the previous version of Worklight
Server, the installer also:
– Undeploys the previous version of the Application Center from the

application server.
– Upgrades the databases of Application Center to the format used by the

current version of MobileFirst Server. To see a copy of the upgrade scripts,
you can install MobileFirst Server in a new package group and review a
copy of the upgrade scripts in <MobileFirstInstallDir>/
ApplicationCenter/databases.

– Deploys the new version of Application Center to the application server
and connects it to the upgraded database.

– Configure the application server for running the Application Center.

Upgrading from Worklight Server V5.0.6.x (changing the Liberty
server)
This step contains special instructions if you are migrating to a new instance of
WebSphere Application Server Liberty profile.

About this task

This task is part of the “Alternate Method: Move your MobileFirst apps and data
to a new Liberty server” on page 7-26 section of the “Packaging change of
WebSphere Application Server Liberty profile in IBM Worklight V6.x” on page 7-26
step.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes (if
Liberty

server was
installed by
Worklight

Server
V5.0.6)

No No No No Stopped
(all

instances)

Uninstalled

Procedure

Having prepared for this step by becoming familiar with IBM Installation Manager
and ensuring that you have all the proper repositories for the upgrade, start the
actual installation using the following steps:

7-38 IBM MobileFirst Platform Foundation V6.3.0

1. Start IBM Installation Manager.
2. Click Install.
3. Select a new package group.
4. Step through the installation wizard. Enter the database settings used to install

Application Center for V5.0.6.
5. For the Application Server choice, select the newly installed WebSphere

Application Server Liberty Core.

Restore the Application Center configurations and restart the
application server
In this step, you restore the required configurations of Application Center that you
made note of in a previous step.

About this task

Restore the configurations that you previously identified in step “Review and note
the Application Server configuration for Worklight Server and Application Center”
on page 7-22.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes No No See fix
pack or

interim fix
installation
instructions

Upgraded Running (if
upgrading

from V6.0.x
or later),

Stopped (if
upgrading

from
V5.0.6.x)

Procedure
1. The applications to restore are as follows:
v For the applications:

– The Application Center Console
– The Application Center Services

2. The JDBC data sources to restore are as follows:
v The Application Center database

3. When you have restored these configurations, restart the application server that
was upgraded.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-39

Results

At the end of this step, Application Center is upgraded. All applications previously
loaded in Application Center should be available.

However, if this Application Center is running on the same application server as a
MobileFirst Operations Console, that application server is shut down again in a
later step, and is only restarted in subsequent steps.

Upgrading the MobileFirst runtime environment for MobileFirst
Server V6.3.0

In these postinstallation steps, you set or restore configurations for MobileFirst
Server, its databases, and MobileFirst Operations Console, and restart the
application server.

Since IBM Worklight V6.0.0, it is possible to deploy several MobileFirst runtime
environments to an application server. You must perform these steps for each
MobileFirst runtime environment that you deployed and that you want to upgrade
to V6.3.0. If you migrated a MobileFirst runtime environment and deployed it on
multiple application servers, all instances must be upgraded.

Complete each of the following steps, as required for your particular upgrade path.

Stop all Worklight Server instances
Before you complete subsequent upgrade steps, you must shut down all Worklight
runtime environments. You must also disable the auto start mode of the Worklight
Console if you upgrade from IBM Worklight V6.0.0.x on WebSphere Application
Server full profile.

About this task

If you installed Worklight Server on multiple servers, whether networked or not,
you must stop all Worklight runtime environments before you move on to the next
steps.

Note: You must do so even if you installed only one Worklight runtime
environment.

This step is mandatory because in step “Upgrade the runtime and reports
databases” on page 7-45, you upgrade the schema of the databases so that it can be
used with MobileFirst Server V6.3.0. No database schema can be upgraded while a
Worklight runtime environment is running.

After the database is upgraded, only upgraded MobileFirst runtime environments
can run, because only upgraded applications can read and write to the new
databases. Otherwise, the database might be corrupted.

7-40 IBM MobileFirst Platform Foundation V6.3.0

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes See the
installation
instructions
for the fix
pack or
interim fix

Upgraded Stopped
(all

instances)

Important: In addition to stopping all Worklight runtime environments, if you
upgrade from IBM Worklight V6.0.0.x on WebSphere Application Server full
profile, you must also disable the auto start mode of the Worklight Console
application during the upgrade before you shut down the Worklight Server. If the
auto start mode is not disabled, the Worklight Console modifies the database when
the server is started in step “Upgrading the MobileFirst runtime environment for
MobileFirst Server V6.3.0” on page 7-40 and prevents the new MobileFirst runtime
environment from starting.

To disable the auto start mode:
1. Log in to the WebSphere Console.
2. Go to the menu Applications > Application Types > WebSphere enterprise

applications, and list the applications.
3. In the table, click Worklight Console application, whose default name is

IBM_Worklight_Console.
4. In Detail Properties click Target Specific Application Status.
5. Select all the target servers, or the cluster where the application is installed.
6. Click Disable Auto Start.
7. Click Save to save the configuration.
8. Verify that the Auto Start property in the table is set to No.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-41

Shutting down the application server to be upgraded
For certain configurations, in this step you shut down the application server before
completing subsequent steps.

About this task

For certain types of application servers (see the following table and “Procedure”
section), you must shut down the application server before proceeding to
subsequent steps.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other
cases)

Stopped
(all

instances)

Procedure

In the following cases, you must shut down the application server before you
undeploy applications from the MobileFirst Operations Console application:
v If the application server is WebSphere Application Server Liberty profile and the

OS is Windows.

Figure 7-1.

7-42 IBM MobileFirst Platform Foundation V6.3.0

v If the application server is Apache Tomcat, and the OS is Windows or the
database type is Apache Derby.

If these application servers are not shut down, the undeploy operations might fail.

Installation or upgrade of MobileFirst Server Administration
Services
As part of the MobileFirst Server upgrade, you must install the Administration
Services, and optionally the MobileFirst Operations Console.

The following table lists the upgrade paths in which this step is mandatory.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same
application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Stopped
(embedded
Liberty,
Liberty on
Windows,
Tomcat on
Windows),
upgraded
(other
cases)

Stopped
(all

instances)

The procedure is different depending on whether you upgrade from a previous
version to V6.3.0, or to a fix pack or interim fix.

For an upgrade from Worklight Server V6.1.0 or earlier to MobileFirst Server
V6.3.0 Follow the steps in “Installing the MobileFirst Server administration” on

page 6-46.

For an upgrade from Worklight Server V6.2.0 to MobileFirst Server V6.3.0

1. Back up the administration database
2. Find the Ant file that you created in “Identify the MobileFirst WAR file

and prepare the Ant deployment script” on page 7-20.
3. Make sure that the taskdef for the worklight-ant-deployer.jar file

uses the correct directory. The correct directory is the directory that
contains the upgraded installation of MobileFirst Server V6.3.0.

4. Set the ANT_HOME environment variable to product_install_dir/tools/
apache-ant-1.8.4/.

5. Upgrade the administration database:
product_install_dir/tools/apache-ant-1.8.4/bin/ant -f your_file admdatabases

6. Run the minimal-admupdate target of the Ant file:
product_install_dir/tools/apache-ant-1.8.4/bin/ant -f your_file minimal-admupdate

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-43

For an upgrade from MobileFirst Server V6.3.0 to a fix pack or to an interim fix

1. Find the Ant file that you created in “Identify the MobileFirst WAR file
and prepare the Ant deployment script” on page 7-20.

2. Make sure that the taskdef for the worklight-ant-deployer.jar file
uses the correct directory. The correct directory is the directory that
contains the upgraded installation of MobileFirst Server V6.3.0.

3. Set the ANT_HOME environment variable to product_install_dir/tools/
apache-ant-1.8.4/.

4. Run the minimal-admupdate target of the Ant file:
product_install_dir/tools/apache-ant-1.8.4/bin/ant -f your_file minimal-admupdate

Back up the runtime and reports databases
Back up the contents of your MobileFirst project databases.

About this task

Important: Before performing this step, verify that you have completed step “Stop
all Worklight Server instances” on page 7-40, and that no instance of MobileFirst
Server is still running, and thus still using these databases.

During the upgrade process in the steps “Upgrade the runtime and reports
databases” on page 7-45 and “Upgrade the MobileFirst Server runtime
environment” on page 7-47, the data that is specific to administration and runtime
environments are split into distinct databases:
v The MobileFirst data that is related to administration is moved to the

administration database.
v The runtime and reports databases that you previously updated are migrated to

a schema compatible withMobileFirst Server V6.3.0.

The previous operations cannot be undone.

If, for some reason, you decide to roll back the upgrade of MobileFirst Server, you
need this backup.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes See fix
pack or

interim fix
installation
instructions

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other
cases)

Stopped
(all

instances)

7-44 IBM MobileFirst Platform Foundation V6.3.0

Procedure

The default names for the databases, unless you modified them at installation time,
are as follows:
v For IBM DB2, Derby, MySQL, and Oracle, if you installed IBM Worklight

V5.0.6.x: WRKLGHT and WLREPORT
v For IBM DB2, Derby, and MySQL, if you installed IBM Worklight V6.x: WRKLGHT

and WLREPORT
v For Oracle, if you installed IBM Worklight V6.x, for Oracle: ORCL

Upgrade the runtime and reports databases
You must move the data that is related to administration to the administration
database. You must also upgrade the runtime and the reports databases to a
schema that is compatible with MobileFirst Server V6.3.0.

Before you begin
1. Make sure that you complete step “Stop all Worklight Server instances” on

page 7-40, and that no instance of Worklight Server is still running, and
therefore is still using these databases.

2. Make sure that you complete step “Installation or upgrade of MobileFirst
Server Administration Services” on page 7-43 and that the administration
database exists.

Note: This procedure explains how to upgrade the database with Ant tasks. For a
manual upgrade of the databases, see “Manually upgrading the MobileFirst Server
V6.3.0 databases” on page 7-51 instead.

About this task

In this step, you run Ant scripts to perform operations on your MobileFirst Server
databases.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes See fix
pack or

interim fix
installation
instructions

Stopped
(embedded
Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded
(Other
cases)

Stopped
(all

instances)

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-45

Procedure
1. If you upgrade from IBM Worklight V6.0.0.x, and the application server is

WebSphere Application Server full profile, make sure that you disabled the
auto start mode for all instances of the Worklight Console application, as
specified in “Stop all Worklight Server instances” on page 7-40.

2. Locate the Ant file that you created in section “Identify the MobileFirst WAR
file and prepare the Ant deployment script” on page 7-20.

3. Verify that taskdef for the worklight-ant-deployer.jar uses the directory that
contains the upgraded installation of MobileFirst Server V6.3.0.
In this example, check the value of the worklight.server.install.dir property
because this property defines the directory of the worklight-ant-deployer.jar
in the taskdef tag:
<property name="worklight.server.install.dir" value="c:/Program File/IBM/Worklight"/>

[...]

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<fileset dir="${worklight.server.install.dir}/WorklightServer">
<include name="worklight-ant-deployer.jar"/>

</fileset>
</classpath>

</taskdef>

Important: This verification step defines the version of IBM MobileFirst
Platform Foundation that you use to upgrade the databases, to deploy the
WAR file, and to install the MobileFirst runtime library for the MobileFirst
Operations Console.

4. Set the ANT_HOME environment variable to product_install_dir/tools/apache-
ant-1.8.4/.
This version of Apache Ant is the one for which the MobileFirst deployment
scripts are tested. If you do not set this environment variable before you run
the script if and have another installation of Ant on your computer, that
installation might be used.

5. In the Ant file, make sure that the Ant task <configuredatabase kind
="Worklight"> contains an <admindatabase> subelement.

Note: In the following example code, DB2 is the DBMS. The ${contextRoot}
property contains the value of the context root of the MobileFirst project.
<configuredatabase kind="Worklight">

<db2 database="WRKLGHT" server="proddb.example.com"
user="wl6admin" password="wl6pass" schema="WLRT">

<dba user="db2inst1" password="db2IsFun"/>
</db2>
<driverclasspath>
<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>
<admindatabase runtimeContextRoot=${contextRoot}>
<db2 database="WLADMIN" server="proddb.example.com"

user="wl6admin" password="wl6pass" schema="ADMIN">
</db2>
<driverclasspath>
<fileset dir="/opt/database-drivers/db2-9.7">

7-46 IBM MobileFirst Platform Foundation V6.3.0

<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</admindatabase>
</configuredatabase>

6. Start the databases target of the Ant file with this command:
product_install_dir/tools/apache-ant-1.8.4/bin/ant -f your file databases

Note: If you created an Ant file with your own target names, the Ant task to
start is configuredatabase.

7. If you use push notifications and you want to upgrade from V6.1.0 or earlier,
configure your runtime database manually for push notifications by following
the instructions in “Runtime database configuration for Push notifications” on
page 7-55.

This procedure loads the administration database and upgrades the database
schemas for the runtime and reports databases to V6.3.0.

Upgrade the MobileFirst Server runtime environment
In this step, you run the Ant script to upgrade MobileFirst runtime environment to
V6.3.0. You must repeat this procedure as many times for each runtime
environment to upgrade.

About this task

In this step, you run the same Ant script as in the previous step, but with a
different parameter to indicate the Ant target and the nature of the upgrade.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Stopped
(Embedded
Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded
(other
cases)

Stopped
(Embedded
Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Partially
upgraded
(other
cases)

Procedure
1. Locate the Ant file that you created in section “Identify the MobileFirst WAR

file and prepare the Ant deployment script” on page 7-20.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-47

2. Verify that the taskdef for the worklight-ant-deployer.jar uses the correct
directory containing the upgraded installation of MobileFirst Server V6.3.0.
In the example shown below, you need to check the value of the property
worklight.server.install.dir because this property is used to define the
directory of the worklight-ant-deployer.jar in the taskdef tag:
<property name="Worklight.server.install.dir" value="c:/Program File/IBM/Worklight"/>

[...]

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<fileset dir="${product_install_dir}/WorklightServer">
<include name="worklight-ant-deployer.jar"/>

</fileset>
</classpath>

</taskdef>

This verification step is extremely important. It defines the version of IBM
MobileFirst Platform Foundation that you use to migrate the databases, to
deploy the WAR file, and to install the MobileFirst runtime library for the
MobileFirst Operations Console.

3. Verify that the environmentID attribute for the MobileFirst runtime environment
matches the environmentID attribute that you used to install the MobileFirst
Server administration file. For more information, see “Identify the MobileFirst
WAR file and prepare the Ant deployment script” on page 7-20.

4. Set the environment variable ANT_HOME to product_install_dir/tools/apache-
ant-1.8.4/.
This is the version of Apache Ant for which the MobileFirst deployment scripts
have been tested. If you do not set this environment variable before running
the script, and have another installation of Ant on your computer, that
installation may be used.

5. Select the Ant target.
v To upgrade from V5.0.6.x, use install.
v To upgrade from V6.0.0.x, or V6.1.0.x, use uninstall, and then install.
v To upgrade from V6.3.0 to a fix pack or interim fix, use:

– Either uninstall, then install or minimal-update.
– Or minimal-update.

Your choice depends on the nature of the changes in the fix. For more
information, see the installation instructions for the fix pack or interim fix.

6. Run Ant with the selected target:
product_install_dir/tools/apache-ant-1.8.4/bin/ant -f your file target defined in step 4

This script has the following effects:
v It migrates the WAR file to match the runtime environment of the

MobileFirst Server installation.
v It installs the MobileFirst runtime environment to the application server, with

the root context as defined in the Ant file.

Note: The context root of the runtime environment cannot be changed
because the mobile applications that you previously deployed keep pointing
to this context root.

v It connects the runtime environment to the Administration Services through
a Java Management Extensions (JMX) mechanism.

7-48 IBM MobileFirst Platform Foundation V6.3.0

v If you choose to install the MobileFirst Operations Console, it connects the
MobileFirst Operations Console to the Administration Services to manage the
MobileFirst runtime environment.

Restore the Worklight Server Configuration
In this step you restore the required configurations of Worklight Server that you
made note of in a previous step.

About this task

Restore the configurations that you previously identified in step “Review and note
the Application Server configuration for Worklight Server and Application Center”
on page 7-22.

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes No See fix
pack or

interim fix
installation
instructions

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other
cases)

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other
cases)

Procedure
1. The applications to restore are as follows:
v For the applications:

– The MobileFirst runtime environments.
v For the JDBC data source:

– The runtime and reports database.

Restart the application server
In this final step, you restart the application server.

About this task

Now that the upgrade of MobileFirst Server is completed, restart your application
server.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-49

Is this step required for your upgrade path? System status after this
step, if both

Application Center and
MobileFirst Server are

on the same application
server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V6.3.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V6.3.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V6.3.0

V6.3.0 to
V6.3.0.x

(fix pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Upgraded Upgraded

Procedure
1. Use your standard procedures to start the application server, or restart the

application server if it was running in this step, so that all changes are taken
into account.

At the end of this step, the MobileFirst Server is upgraded. All applications that
you previously deployed are available, along with their environments (those that
are supported by MobileFirst Server V6.3.0).

The URL of the MobileFirst Operations Console changed. If you did not specify a
context root in the Ant file, its context root is /worklightconsole.

Additional MobileFirst Server V6.3.0 upgrade information
This section contains additional information that may be of use if you have
additional test or pre-production databases that must be updated, if you need to
update HTTP redirections on networked servers, if you are manually upgrading
the application server, or in the event of a failed upgrade.

Recovering from an unsuccessful upgrade to MobileFirst Server
V6.3.0
Instructions for how to recover from a failed installation or to revert to the
previous version of Worklight Server.

About this task

If the MobileFirst Server upgrade fails for any reason, use the following procedure
to restore the previous Worklight Server version.

Procedure

The Roll Back button of IBM Installation Manager is not supported for MobileFirst
Server. Therefore, to return to the previous version:
1. Uninstall MobileFirst Server, with IBM Installation Manager.
2. Install the old version of Worklight Server with IBM Installation Manager,

specifying the same installation parameters that you used previously.
3. Restore the databases. For more information, see “Back up the runtime and

reports databases” on page 7-44.
4. Restore the application server. For more information, see “Back up your

application server” on page 7-30.

7-50 IBM MobileFirst Platform Foundation V6.3.0

5. If the server fails to start and load the applications, delete workarea of the
server before starting it again. For example, for a WebSphere Application Server
Liberty profile backup, the workarea is the directory <LibertyInstallDir>/usr/
servers/<serverName>/workarea.

Manually installing the MobileFirst Server administration during
the upgrade
You can manually install the MobileFirst Server administration as part of the
MobileFirst Server upgrade.

Since IBM Worklight Foundation V6.2.0, you must install the administration
components. To manually set up the MobileFirst Server administration, follow the
steps detailed in “Manually installing MobileFirst Server administration” on page
6-64.

Manually upgrading the MobileFirst Server V6.3.0 databases
Follow these instructions to manually update the MobileFirst project databases.
First set up the MobileFirst Server administration environment

If you prefer to update databases manually instead of using the Ant tasks, you
must update their sets of tables and columns manually. For example, if you have
test or preproduction databases as part of your production environment, each
served by a different runtime database or schema, you can use this procedure to
update their schemas.

Updating the reports (by default WLREPORT) and Application Center (by default
APPCNTR) databases is done by running a sequence of database scripts.

Updating the runtime database (by default WRKLGHT) and administration database
(by default WLADMIN) is done by running a sequence of database scripts, if you
upgrade from IBM Worklight Foundation V6.2.0 or later.

In IBM Worklight Foundation V6.2.0, the process of updating the runtime database
(by default WRKLGHT) required to move the runtime administrative data to the
administration database. When you upgrade from IBM Worklight V6.1.0 or older,
before you call the script WorklightServer/databases/upgrade-worklight-61-62-
<dbms>.sql, run the data migration tool to update the administration database to
V6.3.0. Then run the SQL scripts from V6.2.0 to the current release to update the
WRKLGHT database schema. If you forgot to run the data migration tool before you
run the SQL script, WorklightServer/databases/upgrade-worklight-61-62-
<dbms>.sql is likely to fail, and indicates that the data migration was not run. In
that case, the WRKLGHT schema is not updated, or is incorrect.

The data migration tool and the database upgrade scripts are both contained in the
MobileFirst Server directory that you just installed.

Procedure

For the WRKLGHT database, if you upgrade from IBM Worklight V6.1.0 or earlier:
1. Apply the proper SQL scripts to upgrade the database to IBM Worklight V6.1.0.
2. Comment the line that refers to the index I_USERPRF_USERID if it was already

created.
3. Run the data migration tool to update the administration database to V6.3.0.
4. Apply the proper SQL script to upgrade the database from the previous version

to IBM MobileFirst Platform Foundation V6.3.0.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-51

For the WRKLGHT and WLADMIN databases, if you upgrade from V6.2.0 or later, you
must apply the proper SQL scripts to upgrade the databases to IBM MobileFirst
Platform Foundation V6.3.0.

For the WLREPORT and APPCNTR databases, you must apply the proper SQL scripts to
upgrade the databases to IBM MobileFirst Platform Foundation V6.3.0.

See the following paragraphs to get information about the index I_USERPRF_USERID,
the data migration tool, and the SQL scripts.

Running the data migration tool

Note: You must run the data migration tool only if you upgrade from V6.1.0 or
earlier.
Before you run the tool in command line, make sure that the library
worklight-ant-deployer.jar is in your current directory, or that your CLASSPATH
variable references the directory it is in. Example on a Unix/Linux machine:
Go to the directory library that worklight-ant-deployer.jar is in
$ cd $product_install_dir/WorklightServer
Print the usage
$ java -cp worklight-ant-deployer.jar com.ibm.worklight.config.dbmigration.MigrationTool usage
Usage:

java -cp worklight-ant-deployer.jar com.ibm.worklight.config.dbmigration.MigrationTool [options]

Options:
-p <project> The name of the project to create.
-sourceurl The path to the source database.
-sourceschema The name of the schema of the source database.
-sourcedriver The fully qualified driver class name of the source

database. This driver must be in the class path.
-sourceuser The user name of the source database.
-sourcepassword The password of the source database.
-sourceproperty <key> <value> Adds additional OpenJPA properties to the connection

of the source database.
-targeturl The path to the target database.
-targetschema The name of the schema of the target database.
-targetdriver The fully qualified driver class name of the target

database. This driver must be in the class path.
-targetuser The user name of the target database.
-targetpassword The password of the target database.
-targetproperty <key> <value> Adds additional OpenJPA properties to the connection

of the target database.

Example with DB2 as DBMS
$ java -cp worklight-ant-deployer.jar com.ibm.worklight.config.dbmigration.MigrationTool

-p worklight
-sourceurl jdbc:db2://proddb.example.com:50000/WRKLGHT
-sourceschema WLRT
-sourcedriver com.ibm.db2.jcc.DB2Driver
-sourceuser wluser1
-sourcepassword wluser1_pswd
-targeturl jdbc:db2://proddb.example.com:50000/WLADMIN
-targetschema ADMIN
-targetdriver com.ibm.db2.jcc.DB2Driver
-targetuser wluser2
-targetpassword wluser2_pswd

To run the data migration tool, you must add the database drivers to the class
path. For example, to migrate a DB2 database, you must add the db2jcc4.jar file
and the license JAR file (for example db2jcc_license_cu.jar), to the class path:
$ java -cp worklight-ant-deployer.jar:/path/to/db2jcc4.jar:/path/to/db2jcc_license_cu.jar com.ibm.worklight.config.dbmigration.MigrationTool usage

7-52 IBM MobileFirst Platform Foundation V6.3.0

Note:

v The name of the project to create (worklight in the example) must be the context
root where the MobileFirst runtime component (project WAR file) is deployed.
For example, if the runtime component is deployed in the application server
with a context root /worklight, then the project name must be worklight. The
applications will be assigned to this project name. When a runtime component
starts, it contacts the administration service to get the applications and the
adapters it needs to serve. The runtime component uses its project name,
computed by removing the initial / from its context root, to indicate which
applications it needs. If the project name is not the same as the context root
without the initial slash, then the migrated applications and the adapters are not
visible by the runtime component.

v For MySQL databases, the schema options ’-sourceschema’ and
’-targetschema’ must be left unspecified. The name of the schema to use will
be the name of the database specified in the connection URL.

SQL scripts

Important: Before you apply the SQL scripts that upgrade the WRKLGHT database
from the previous version to IBM MobileFirst Platform Foundation V6.3.0, you
must check whether the index I_USERPRF_USERID, in column USER_ID of the table
GADGET_USER_PREF, exists. If it does, in the WorklightServer/databases/upgrade-
worklight-61-62-<dbms>.sql script, comment the following line that refers to its
creation before running it:
INDEX I_USERPRF_USERID ON GADGET_USER_PREF (USER_ID);

For more information about this index, see the technote IBM Worklight queries on
the GADGET_USER_PREF table might take time.

Scripts for DB2

For an upgrade from IBM Worklight V5.0.6.x to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-db2.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-db2.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-db2.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.0.0.x to V6.1.0:
v WorklightServer/databases/upgrade-worklight-60-61-db2.sql (for WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-60-61-db2.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-60-61-db2.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.1.0.x to IBM Worklight Foundation V6.2.0:
v WorklightServer/databases/upgrade-worklight-61-62-db2.sql (for WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-61-62-db2.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-61-62-db2.sql (for

APPCNTR)

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-53

http://www.ibm.com/support/docview.wss?uid=swg21663021
http://www.ibm.com/support/docview.wss?uid=swg21663021

For an upgrade from IBM Worklight Foundation V6.2.0.x to IBM MobileFirst
Platform Foundation V6.3.0:
v WorklightServer/databases/upgrade-worklightadmin-62-63-db2.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-62-63-db2.sql (for WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-62-63-db2.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-62-63-db2.sql (for

APPCNTR)

These scripts are applied similarly to steps 4 and 6 in “Setting up your DB2
databases manually” on page 11-18

Note: If you are using Application Center, the size limit for applications stored on
Application Center with IBM DB2 is 1 GB. If you have applications larger than 1
GB in the Application Center, remove them before starting the upgrade process.

Scripts for MySQL

For an upgrade from IBM Worklight V5.0.6 to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-mysql.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-mysql.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.0.0.x to V6.1.0:
v WorklightServer/databases/upgrade-worklight-60-61-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-60-61-mysql.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-60-61-mysql.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.1.0.x to IBM Worklight Foundation V6.2.0:
v WorklightServer/databases/upgrade-worklight-61-62-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-61-62-mysql.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-61-62-mysql.sql (for

APPCNTR)

For an upgrade from IBM Worklight Foundation V6.2.0.x to IBM MobileFirst
Platform Foundation V6.3.0:
v WorklightServer/databases/upgrade-worklightadmin-62-63-mysql.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-62-63-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-62-63-mysql.sql (for

REPORTS)

7-54 IBM MobileFirst Platform Foundation V6.3.0

v ApplicationCenter/databases/upgrade-appcenter-62-63-mysql.sql (for
APPCNTR)

These scripts are applied similarly to step 1.b in “Setting up your MySQL
databases manually” on page 11-28.

Scripts for Oracle

For an upgrade from IBM Worklight V5.0.6 to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-oracle.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.0.0.x to V6.1.0:
v WorklightServer/databases/upgrade-worklight-60-61-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-60-61-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-60-61-oracle.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.1.0.x to IBM Worklight Foundation V6.2.0:
v WorklightServer/databases/upgrade-worklight-61-62-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-61-62-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-61-62-oracle.sql (for

APPCNTR)

For an upgrade from IBM Worklight Foundation V6.2.0.x to IBM MobileFirst
Platform Foundation V6.3.0:
v WorklightServer/databases/upgrade-worklightadmin-62-63-oracle.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-62-63-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-62-63-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-62-63-oracle.sql (for

APPCNTR)

These scripts are applied similarly to step 3 in “Setting up your Oracle databases
manually” on page 11-32.

Runtime database configuration for Push notifications

Note: The following section applies if you use push notifications and you upgrade
from V6.1.0 or earlier.

To ensure that push notifications work as expected, you must complete some
additional manual configuration. After your migration to V6.3.0 is complete (this

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-55

includes a complete migration of both the runtime database and the runtime
environment) and the application server is restarted, complete the steps based on
your database type. No changes are required if you use MySQL or Derby.

This task requires administrator access privileges.

DB2

1. Change SCHEMANAME instances to actual names.
2. Replace X and Y values based on the given description.

SELECT MAX(ID) FROM SCHEMANAME.PUSH_DEVICES;
SELECT MAX(ID) FROM SCHEMANAME.PUSH_SUBSCRIPTIONS;

--Value of X = Result of the selected query of PUSH_DEVICES + 1. For example, if SELECT MAX(ID) FROM
--SCHEMANAME.PUSH_DEVICES returns 100, then X = 101;
--Value of Y = Result of the selected query of PUSH_SUBSCRIPTIONS + 1. For example, if SELECT MAX(ID) FROM
--SCHEMANAME.PUSH_SUBSCRIPTIONS returns 100, then Y = 101;

ALTER SEQUENCE SCHEMANAME.PUSHDEVICE_SEQ RESTART WITH X ;
ALTER SEQUENCE SCHEMANAME.PUSHSUBSCRIPTION_SEQ RESTART WITH Y ;

VALUES NEXT VALUE FOR SCHEMANAME.PUSHDEVICE_SEQ;
VALUES NEXT VALUE FOR SCHEMANAME.PUSHSUBSCRIPTION_SEQ;

Oracle

1. Change SCHEMANAME instances to actual names.
2. Replace X and Y values (based on the given description) while running

the query.
SELECT MAX(ID) FROM SCHEMANAME.PUSH_DEVICES;
SELECT MAX(ID) FROM SCHEMANAME.PUSH_SUBSCRIPTIONS;

SELECT LAST_NUMBER FROM ALL_SEQUENCES WHERE SEQUENCE_NAME=’PUSHDEVICE_SEQ’;
SELECT LAST_NUMBER FROM ALL_SEQUENCES WHERE SEQUENCE_NAME=’PUSHSUBSCRIPTION_SEQ’;

--Take note of the resulting value of each query above to use in the following X and Y calculations

--Value of X = (MAX(ID) OF PUSH_DEVICES - LAST_NUMBER OF PUSHDEVICE_SEQ) + 20. For example, if SELECT MAX(ID) FROM
--SCHEMANAME.PUSH_DEVICES returned 100 and SELECT LAST_NUMBER FROM ALL_SEQUENCES
--(where SEQUENCE_NAME=’PUSHDEVICE_SEQ’ is 50), then X=100-50+20 = 70

--Value of Y = (MAX(ID) OF PUSH_SUBSCRIPTIONS - LAST_NUMBER OF PUSHSUBSCRIPTION_SEQ) + 20. For example, if SELECT
--MAX(ID) FROM SCHEMANAME.PUSH_SUBSCRIPTIONS returned 100, then Y = 101 and SELECT --LAST_NUMBER
--FROM ALL_SEQUENCES (where SEQUENCE_NAME=’PUSHSUBSCRIPTION_SEQ’ is 50), then Y=100-50+20 = 70

ALTER SEQUENCE SCHEMANAME.PUSHDEVICE_SEQ INCREMENT BY X ;
SELECT SCHEMANAME.PUSHDEVICE_SEQ.NEXTVAL FROM dual;
ALTER SEQUENCE SCHEMANAME.PUSHDEVICE_SEQ INCREMENT BY 1;

ALTER SEQUENCE SCHEMANAME.PUSHSUBSCRIPTION_SEQ INCREMENT BY Y ;
SELECT SCHEMANAME.PUSHSUBSCRIPTION_SEQ.NEXTVAL FROM dual;
ALTER SEQUENCE SCHEMANAME.PUSHSUBSCRIPTION_SEQ INCREMENT BY 1;

Manually upgrading the application server
Follow these instructions to manually upgrade the application server.

The recommended way to upgrade Worklight Server is to use IBM Installation
Manager, either in its graphical mode or in silent mode with a response file, and
the Ant tasks, as described previously.

However, if this is not applicable to your installation and you must update your
application server manually, use a different series of steps.

7-56 IBM MobileFirst Platform Foundation V6.3.0

Instead of completing the tasks “Running IBM Installation Manager and
completing the Application Center upgrade” on page 7-34 and “Upgrade the
MobileFirst Server runtime environment” on page 7-47, use the following
procedure:
v Upgrade the databases manually as specified in section “Manually upgrading

the MobileFirst Server V6.3.0 databases” on page 7-51.
v Review the manual installation procedures at:

– “Manual installation of Application Center” on page 6-182
– “Deploying a project WAR file and configuring the application server

manually” on page 11-37
v Update the items manually. This includes, at a minimum:

– The WAR file for the Application Center console, Application Center services,
and the MobileFirst Operations Console.

– The MobileFirst library worklight-jee-library.jar.
– The MobileFirst runtime environment, which must be migrated to the current

version of the server using the migrate Ant task described at “Migrating a
project WAR file for use with a new MobileFirst Server” on page 11-37.

Verifying and updating the HTTP redirections for MobileFirst
Server V6.3.0
If you are upgrading to MobileFirst Server on a clustered application server
environment, you should also update IBM HTTP Server after you install IBM
MobileFirst Platform Foundation V6.3.0.

If your MobileFirst Server upgrade is to be installed on a WebSphere Application
Server Network Deployment clustered environment or a WebSphere Application
Server Liberty profile farm, you might have to update IHS after you install
MobileFirst Server V6.3.0. For general information about installing these types of
application server, see:
v “Setting up IBM MobileFirst Platform Foundation in WebSphere Application

Server cluster environment” on page 6-257
v “Setting up an IBM HTTP Server in an IBM WebSphere Application Server

Liberty profile farm” on page 6-268

If your application server receives HTTP requests forwarded by an HTTP server,
the HTTP server configuration may require updating.

For IBM HTTP Server, in the IHS plugin file the context root of the applications
must be updated especially for the session affinity configuration section. The
following example is a configuration for Application Center that is deployed with
its default settings, and a project that is deployed with a root context of
/worklight.
<UriGroup Name="default_host_defaultServer_default_node_Cluster_URIs">

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/worklight/*"/>

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/applicationcenter/*"/>

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/appcenterconsole/*"/>

</UriGroup>

Updating DB2 schema names in the case of a manual installation
In this step, you must update the DB2 schema if you are using DB2 for the
runtime database or the reports database.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-57

About this task

For the runtime database and the reports database, IBM MobileFirst Platform
Foundation V6.3.0 expects the schema name without surrounding double quotation
marks.

Procedure

Perform one of the following steps, based on your installation.
1. WebSphere Application Server Liberty profile:

a. Edit the server.xml file in the usr/servers/serverName directory.
b. Look for the <properties.db2.jcc .../> element in the <dataSource

jndiName="contextroot/jdbc/WorklightDS" ...> and <dataSource
jndiName="contextroot/jdbc/WorklightReportsDS" ...> elements.

c. Optional: If there are double quotation marks around the value of the
currentSchema attribute, you must remove them. For example, change
currentSchema=’"wrkschem"’ or currentSchema=""wrkschem"" to
currentSchema=’wrkschem’.

2. WebSphere Application Server full profile:
a. Sign in to WebSphere Application Server administrative console.
b. Click Resources > JDBC > Data sources

c. For each database with the JNDI name jdbc/WorklightDS or
jdbc/WorklightReportsDS, possibly with a suffix:
1) Select the data source
2) Click Additional properties > Custom properties.
3) Select the currentSchema property.
4) If the value is not empty, remove the double quotation marks around

the value. For example, change the value "wrkschem" to wrkschem.
5) Click OK.
6) Click Save to save the changes.

3. Tomcat:
a. Edit the server.xml file in the conf directory.
b. In the <Resource name="jdbc/WorklightDS" .../> and <Resource

name="jdbc/WorklightReportsDS" .../> elements, remove the double
quotation marks around the value of the currentSchema connection property
in the url attribute, if this property is present. For example, change
url=’jdbc:db2://dbserver.example.com:50000/
WRKLGHT:currentSchema="wrkschem";’ to url=’jdbc:db2://
dbserver.example.com:50000/WRKLGHT:currentSchema=wrkschem;’.

Updating deployment scripts
If you use Ant tasks app-deployer or adapter-deployer to deploy apps or adapters,
you must update the Ant scripts to use the Ant task wladm.

If you have Ant scripts that deploy apps or adapters by using the Ant tasks
app-deployer or adapter-deployer, you must update them to use the Ant task
wladm. The Ant tasks app-deployer or adapter-deployer no longer apply in IBM
MobileFirst Platform Foundation V6.3.0.

Note: In the following code samples, mf_install_dir is the directory where you
installed MobileFirst Server.

7-58 IBM MobileFirst Platform Foundation V6.3.0

1. In the initialization commands of the Ant script, replace the path as follows:
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<pathelement location="mf_install_dir/WorklightServer/worklight-ant-deployer.jar"/>

</classpath>
</taskdef>

With
<taskdef resource="com/worklight/ant/deployers/antlib.xml">

<classpath>
<pathelement location="mf_install_dir/WorklightServer/worklight-ant-deployer.jar"/>

</classpath>
</taskdef>

2. Replace <app-deployer> calls.
<app-deployer deployable="myApp.wlapp"

worklightserverhost="http://server-address:port/project-name"
userName="username" password="password"/>

With
<wladm url="https://server-address:secure-port/worklightadmin" user="username" password="password">

<deploy-app runtime="project-name" file="myApp.wlapp"/>
</wladm>

Set the placeholders as follows:
v For worklightadmin, substitute the actual context root of the MobileFirst

administration services web application
v For username and password, pick a user that is in the role worklightadmin or

worklightdeployer.
3. Replace <adapter-deployer> calls.

<adapter-deployer deployable="myAdapter.adapter"
worklightserverhost="http://server-address:port/project-name"
userName="username" password="password"/>

With
<wladm url="https://server-address:secure-port/worklightadmin" user="username" password="password">

<deploy-adapter runtime="project-name" file="myAdapter.adapter"/>
</wladm>

Set the placeholders as follows:
v For worklightadmin, substitute the actual context root of the MobileFirst

administration services web application.
v For username and password, you need to pick a user that is in the role

worklightadmin or worklightdeployer.

For more information about the wladm Ant task, see “Administering MobileFirst
applications through Ant” on page 12-12.

Rolling upgrade procedure to apply a fix pack to IBM MobileFirst
Platform Foundation V6.3.0

You can perform a rolling upgrade to apply a fix pack or an interim fix to an
installation of MobileFirst Server V6.3.0 without downtime of the MobileFirst
runtime environment. Performing this rolling upgrade ensures that there is no
interruption of service for the mobile applications that query the MobileFirst Server
.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-59

To perform this rolling upgrade, you must install the upgraded version of IBM
MobileFirst Platform Foundation in a different environment, for example a new
cluster in WebSphere Application Server Network Deployment. This environment
must be connected to the same databases as the initial IBM Worklight Foundation
installation. You must then switch HTTP traffic progressively from the old
environment to the new environment.

The procedure for an in-place upgrade, with interruption of service, is documented
at “Upgrading to IBM MobileFirst Platform Foundation V6.3.0” on page 7-1.

Important: This procedure applies to a MobileFirst Server installation, including
the Administration Services, the MobileFirst Operations Console, and the
MobileFirst runtime environment, but does not apply to the Application Center.

The following topics explain what you must plan for your production
environment, and the steps of the rolling upgrade procedure for IBM MobileFirst
Platform Foundation, installed in one cluster in IBM WebSphere Application
Server, with the HTTP traffic routed by an IBM HTTP Server, and web server
plug-ins for IBM WebSphere Application Server.

Planning the rolling upgrade procedure
You must plan the steps of the rolling upgrade procedure to install a fix pack to
IBM MobileFirst Platform Foundation without downtime.

You must review, adapt, and test this upgrade procedure for your production
environment. Other components that interact with IBM MobileFirst Platform
Foundation in your production environment might require extra steps or changes
to that procedure.

The goal of this procedure is to switch HTTP-based traffic from a previous
installation of Worklight Server to an upgraded installation of MobileFirst Server.
This is done without losing any data in the former Worklight databases, and
without visible impact for users of applications that have an active session while
this procedure is applied.

If other protocols than HTTP are used by some components of your application to
interact with the MobileFirst Server, then you must include in your upgrade plan a
way to route that traffic during a rolling upgrade procedure.

For example, if you use a pull mechanism for push notifications, you must review
the risk of double notification or lost notification in a rolling upgrade procedure.
For more information, see “Possible MobileFirst push notification architectures” on
page 8-456.

You must review, with the development team, the code of all your adapters to
identify extra steps that might be required for a rolling upgrade procedure. This is
the case especially if these adapters require external resources, or use other
communication protocols than HTTP, such as JMS or WebSphere MQ.

During the rolling upgrade, you must also stop management operations, such as
uploading a new application or a new adapter to the console. If a new version of a
MobileFirst application or adapter is uploaded to the MobileFirst Server during the
upgrade procedure, some servers on the clusters might not be notified of this
change and might continue to operate with the old artifact. If a new MobileFirst
application is uploaded to the MobileFirst Server and the runtimes do not all have

7-60 IBM MobileFirst Platform Foundation V6.3.0

the same version, it might trigger arbitrary direct update sessions for the users of
MobileFirst apps, depending on the server to which they were routed. Identify all
MobileFirst administration users that have a privilege to upgrade an application.
Their role is defined as worklightadmin or worklightdeployer. You can then notify
them of the beginning and the end of the rolling upgrade. During that period, they
must not upload any adapter or application.

This procedure requires to temporarily duplicate the environment. You might find
it convenient to apply this procedure at a period of low traffic, so that you can use
existing hardware resources for the servers of the new environment. You must
double the number of instances of WebSphere Application Server during the
rolling upgrade, and the hardware must have enough memory to run these servers
without paging. The CPU requirements must not increase significantly during that
procedure because the use on the servers that are being brought online would
ramp up as new sessions get routed to the new version of the application. The
CPU use on the servers that run the old version of the application must ramp
down as existing sessions end.

Overview of the rolling upgrade procedure
Learn about the steps of a rolling upgrade procedure.

You must perform the following actions to complete a rolling upgrade procedure.
These steps are detailed in the following topics.
v Stop management operations while you apply the rolling upgrade procedure.

No management operation, such as uploading a new application version or a
new adapter, must be performed during a rolling upgrade.

v Duplicate the application server environment and install the fix pack IBM
MobileFirst Platform Foundation V6.3.0.x in that duplicated environment, for
example in a new cluster. You must use the existing administration database,
MobileFirst runtime database, and MobileFirst reports database.

v Start a server in the duplicated environment.
v Direct some of the new HTTP sessions to the new servers and drain the servers

of the previous installation so that they do not receive new HTTP sessions.

Note: IBM MobileFirst Platform Foundation uses session affinity and locally
stores data about the state of sessions in a server. When routing traffic to the
new cluster, existing sessions must continue to be routed to the old server with
which they started.

v When the old servers are all drained and there is no longer any active session,
and the new MobileFirst Server is confirmed to work correctly, shut down the
old servers. If required, uninstall the old IBM MobileFirst Platform Foundation
version from those servers.

v When the old environment is shut down, you can authorize management
operations again.

Performing a rolling upgrade to install a fix pack
Learn how to perform a rolling upgrade to install a fix pack to IBM MobileFirst
Platform Foundation, assuming the following topology: IBM MobileFirst Platform
Foundation is installed in one cluster in IBM WebSphere Application Server, and
the HTTP traffic is routed by an IBM HTTP Server and web server plug-ins for
IBM WebSphere Application Server.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-61

About this task

The following topics present the steps of the rolling upgrade procedure, in the
order in which they must be completed.

Note: The cluster in which your current installation of the product is installed is
called cluster_WL61 in the following topics.

Stopping management operations
Managements operations must not be performed during a rolling upgrade.

Procedure

You must ensure that all management operations, such as uploading a new
application or a new adapter, are stopped while you perform the rolling upgrade
procedure.

Notify users with the privilege worklightadmin or worklightdeployer that they
cannot deploy any artifact until the upgrade procedure is complete.

Installing the IBM MobileFirst Platform Foundation fix pack in a
new cluster
You must create a new cluster, in which you install the IBM MobileFirst Platform
Foundation fix pack. Here, the procedure targets an installation in a WebSphere
Application Server Network Deployment environment, in a single cell, with IBM
HTTP Server and web server plug-ins for IBM WebSphere Application Server.

Procedure
1. Create a cluster in IBM WebSphere Application Server. In the rest of this

document, this cluster is called cluster_WL61FP1.
2. Create servers in this cluster.
3. For each server, set a weight of 0.
4. Install the IBM MobileFirst Platform Foundation fix pack in this cluster. You

can install this fix pack with the IBM MobileFirst Platform Foundation Ant
tasks, or manually.
v To install this fix pack with the IBM MobileFirst Platform Foundation Ant

tasks, follow the steps 5 - 9 on page 7-63.
v To install this fix pack manually, follow the steps 10 on page 7-63 - 14 on

page 7-64.

Installing the fix pack with the IBM MobileFirst Platform Foundation Ant tasks:
5. With IBM Installation Manager, install the IBM MobileFirst Platform

Foundation fix pack on the computer where the WebSphere Application
Server Deployment Manager is installed.

Note: Do not install the Application Center.
6. Verify that WebSphere Application Server is not set to automatically generate

and propagate the web plug-in. To be sure that the installation of the product
fix-pack does not generate and propagate a new web plug-in that you did not
review, perform the following steps.
a. Open the WebSphere Application Server administration console.
b. Go to Servers > Server Types > Web Servers.
c. In the table, click the web server.
d. Under Additional Properties, click Plug-in properties.

7-62 IBM MobileFirst Platform Foundation V6.3.0

e. Make sure that the check box for Automatically generate the plug-in
configuration file is not selected.

f. Make sure that the check box for Automatically propagate plug-in
configuration file is not selected.

7. Copy the Ant file that you used to install IBM MobileFirst Platform
Foundation in the cluster cluster_WL61.
a. Modify the cluster name, for example ${was.nd.cluster.name} in the code

example in step 8.
b. Modify the environment ID.

You use this environment ID to distinguish the Administration Services
and MobileFirst runtime environment from the two clusters. The new ID
also generates different application names to avoid name conflicts in the
WebSphere Application Server cell.

c. You must make these modifications for the following Ant tasks. Use the
same environment ID in all the tasks.
v configureapplicationserver

v updateapplicationserver

v unconfigureapplicationserver

v installworklightadmin

v updateworklightadmin

v uninstallworklightadmin

Important: The environment ID determines which instance of
Administration Services manages the deployed runtime environments. All
runtime environments must have the same environment ID as the
MobileFirst Server administration components.

8. Run the adminstall target of the Ant file.
9. Run the install target of the Ant file that installs the MobileFirst runtime

environment. If you have more than one MobileFirst runtime environment,
repeat this operation for all of them:

Note: Do not change the database settings, the context roots, or the other
parameters of the installation.
<!-- Start of the install target Generated by IBM MobileFirst Platform Foundation -->

<target name="install">
<configureapplicationserver environmentId="${worklight.environment.id}" contextroot="${worklight.contextroot}" id="${worklight.deployment.id}">

<project warfile="${worklight.project.war.file}"/>
<applicationserver>

<websphereapplicationserver installdir="${appserver.was.installdir}"
profile="${appserver.was.profile}"
user="${appserver.was.admin.name}"
password="${appserver.was.admin.password}">

<cluster name="${appserver.was.nd.cluster}"/>
</websphereapplicationserver>

</applicationserver>

Installing the fix pack manually:
10. Install the data sources that point to the administration and MobileFirst

runtime databases in the cluster.
v For instructions about the administration database, see the following

documentation:
– “Configuring WebSphere Application Server for DB2 manually for

MobileFirst Server administration” on page 6-66

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-63

– “Configuring WebSphere Application Server for Oracle manually for the
MobileFirst Server administration” on page 6-77

v For instructions about the runtime database, see the following
documentation:
– “Configuring WebSphere Application Server for DB2 manually” on page

11-20
– “Configuring WebSphere Application Server for Oracle manually” on

page 11-34
11. Select a name for an environment ID that is used for all the web applications

that you installed in step 12.
For example, FP1.

Note: You must not have any other installation of IBM MobileFirst Platform
Foundation in the WebSphere Application Server cell that is using the same
environment ID.

12. Install the Administration Services as documented in “Configuring WebSphere
Application Server for MobileFirst Server administration manually” on page
6-82, with the following change:
In Environment entries for Web modules for the Administration Services, set
the value of ibm.worklight.admin.environmentid to the environment ID that
you selected in step 11.

13. Install the MobileFirst runtime environment as documented in “Configuring
WebSphere Application Server for MobileFirst Server administration
manually” on page 6-82, with the following change:
In Environment entries for Web modules for the MobileFirst runtime
environment, set the value of ibm.worklight.admin.environmentid to the
environment ID that you selected in step 11.

14. Use a different name for the WebSphere applications than the one that you
used in the first cluster.

Completing the configuration of the new installation of IBM
MobileFirst Platform Foundation
You must complete the configuration of the new installation of IBM MobileFirst
Platform Foundation with security settings, update of the JNDI properties, and
other configuration settings.

About this task

This configuration includes the following parameters for the Administration
Services application, and for the MobileFirst Operations Console application. For
more information, see “Configuring MobileFirst Server” on page 6-118.

Procedure
1. Configure the security settings that define the users for each of the following

roles: worklightadmin, worklightdeployer, worklightmonitor,
worklightoperator.

2. Update the JNDI properties that you modified during the installation in the
WL61FP1 cluster:
v For the Administration Services and the MobileFirst Operations Console.
v For each MobileFirst runtime environment.

7-64 IBM MobileFirst Platform Foundation V6.3.0

Verifying the new installation of IBM MobileFirst Platform
Foundation
You must make sure that IBM MobileFirst Platform Foundation is installed
properly.

Procedure
1. Start all the servers in the Worklight61FP1 cluster. This action starts all the

MobileFirst runtime environments. They synchronize with the Administration
Services, and download the application and adapter artifacts they need to be
ready to serve requests.

2. Log to the MobileFirst Operations Console. At this stage, IBM HTTP Server
must not route traffic to that installation, so you must connect directly to the
host name and port of a server. If the MobileFirst Operations Console is
installed with the default context root, which is worklightconsole, the URL
looks like the following example: http://<hostname>:<httpPortOfServer>:/
worklightconsole/

3. Verify that the MobileFirst runtime environments are present and that they do
not report any error.

4. Optional: You might also perform an additional smoke test of the adapters that
are specific to your IBM MobileFirst Platform Foundation installation.

Switching progressively the HTTP traffic to the new cluster, with
session affinity
You must modify the HTTP plug-in file to route the HTTP traffic to the new
installation of IBM MobileFirst Platform Foundation

Before you begin

The following procedure requires modifications of the HTTP plug-in file,
plugin-cfg.xml. Before you perform this procedure in production, you must test it
in a test environment.

Important: If errors occur during these steps, it would result in incorrect traffic
routing and might impact all applications in the cell of the WebSphere Application
Server.

About this task

The procedure to route the traffic is based on the following properties of the web
plug-in:
v The plug-in routes traffic to a server cluster that is based on the definition of the

cluster members in its <ServerCluster> listing. The HTTP plug-in has no other
information about the target servers other than what is defined in the plug-in
configuration file. Even if a collection of servers is defined in a WebSphere cell
as being in two separate clusters, they can be defined in one cluster from the
point of view of the plug-in. With this property, you can use the plug-in to route
traffic between the clusters cluster_WL61 and cluster_WL61FP1.

v The LoadBalanceWeight attribute of the Server element is used to statically
assign a weighting factor that is associated with the round-robin distribution of
new requests among the servers that are in a cluster. When this attribute is set to
zero, this is a signal to the plug-in to stop sending new requests to that
application server. Requests that are associated with existing sessions on that
server continue to flow to it, but as those sessions get terminated, the server
stops having any active sessions.

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-65

v The plugin-cfg.xml file is re-read periodically by the plug-in to the HTTP
server, with a default refresh interval of 1 minute.

For more information about updating the plugin-cfg.xml file, see “Setting up IBM
MobileFirst Platform Foundation in WebSphere Application Server cluster
environment” on page 6-257.

Procedure
1. Progressively, set the weight of a server in the cluster_WL61 to 0.
2. Move a server of the cluster cluster_WL61FP1 to the definition of cluster_WL61,

with a weight of 2.
3. Wait for the server in cluster cluster_WL61 to drain so that most of the session

terminates and that it stops using CPU resources.
4. Repeat the procedure for the next server.

Example

Before you start the procedure:
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61">

<Server CloneID="a8er1kj2" LoadBalanceWeight="2" Name="ServerWL61_1">
<Transport Hostname="test1.ibm.com" Port="9081" Protocol="http"/>

</Server>
<Server CloneID="a8er2kd3" LoadBalanceWeight="2" Name="ServerWL61_2">
<Transport Hostname="test2.ibm.com" Port="9082" Protocol="http"/>

</Server>
<Server CloneID="a8es3as1" LoadBalanceWeight="2" Name="ServerWL61_3">
<Transport Hostname="test3.ibm.com" Port="9083" Protocol="http"/>

</Server>
<PrimaryServers>
<Server Name="ServerWL61_1"/>
<Server Name="ServerWL61_2"/>
<Server Name="ServerWL61_3"/>

</PrimaryServers>
</ServerCluster>
[...]
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61FP1">

<Server CloneID="a8sd1kj2" LoadBalanceWeight="0" Name="ServerWL61FP1_1">
<Transport Hostname="test1.ibm.com" Port="9084" Protocol="http"/>

</Server>
<Server CloneID="a8as2kd3" LoadBalanceWeight="0" Name="ServerWL61FP1_2">
<Transport Hostname="test2.ibm.com" Port="9085" Protocol="http"/>

</Server>
<Server CloneID="a8qa3as1" LoadBalanceWeight="0" Name="ServerWL61FP1_3">
<Transport Hostname="test3.ibm.com" Port="9086" Protocol="http"/>

</Server>
<PrimaryServers>
<Server Name="ServerWL61FP1_1"/>
<Server Name="ServerWL61FP1_2"/>
<Server Name="ServerWL61FP1_3"/>

</PrimaryServers>
</ServerCluster>
[...]
<!-- Example of the UriGroups and Routes. They are not changed while you switch the traffic -->
<UriGroup Name="prod_vhost_cluster_WL61_URIs">

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklightconsole/*"/>

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklightadmin/*"/>

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklight/*"/>

</UriGroup>
<Route ServerCluster="ClusterX"

7-66 IBM MobileFirst Platform Foundation V6.3.0

UriGroup="prod_vhost_cluster_WL61_URIs" VirtualHostGroup="default_host"/>
<UriGroup Name="test_vhost_cluster_WL61FP1_URIs">

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklightconsole/*"/>

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklightadmin/*"/>

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklight/*"/>

</UriGroup>
<Route ServerCluster="ClusterY" UriGroup="test_vhost_cluster_WL61FP1_URIs"

VirtualHostGroup="test_host"/>

Moving a server:
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61">

<!-- Server ServerWL61_1 has a weight of 0 -->
<Server CloneID="a8er1kj2" LoadBalanceWeight="0" Name="ServerWL61_1">
<Transport Hostname="test1.ibm.com" Port="9081" Protocol="http"/>

</Server>
<Server CloneID="a8er2kd3" LoadBalanceWeight="2" Name="ServerWL61_2">
<Transport Hostname="test2.ibm.com" Port="9082" Protocol="http"/>

</Server>
<Server CloneID="a8es3as1" LoadBalanceWeight="2" Name="ServerWL61_3">
<Transport Hostname="test3.ibm.com" Port="9083" Protocol="http"/>

<!-- Server ServerWL61F1_1 added to the cluster_WL61 in the plugin-cfg file -->
<Server CloneID="a8sd1kj2" LoadBalanceWeight="2" Name="ServerWL61FP1_1">
<Transport Hostname="test1.ibm.com" Port="9084" Protocol="http"/>

</Server>
<PrimaryServers>
<Server Name="ServerWL61_1"/>
<Server Name="ServerWL61_2"/>
<Server Name="ServerWL61_3"/>
<Server Name="ServerWL61FP1_1"/>

</PrimaryServers>
</ServerCluster>
[...]
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61FP1">

<Server CloneID="a8as2kd3" LoadBalanceWeight="0" Name="ServerWL61FP1_2">
<Transport Hostname="test2.ibm.com" Port="9085" Protocol="http"/>

</Server>
</Server>
<Server CloneID="a8qa3as1" LoadBalanceWeight="0" Name="ServerWL61FP1_3">
<Transport Hostname="test3.ibm.com" Port="9086" Protocol="http"/>

</Server>
<PrimaryServers>
<Server Name="ServerWL61FP1_2"/>
<Server Name="ServerWL61FP1_3"/>

</PrimaryServers>
</ServerCluster>

End of the transition:
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61">

<!-- Server ServerWL61_X have a weight of 0 -->
<Server CloneID="a8er1kj2" LoadBalanceWeight="0" Name="ServerWL61_1">
<Transport Hostname="test1.ibm.com" Port="9081" Protocol="http"/>

</Server>
<Server CloneID="a8er2kd3" LoadBalanceWeight="0" Name="ServerWL61_2">
<Transport Hostname="test2.ibm.com" Port="9082" Protocol="http"/>

</Server>
<Server CloneID="a8es3as1" LoadBalanceWeight="0" Name="ServerWL61_3">
<Transport Hostname="test3.ibm.com" Port="9083" Protocol="http"/>

<!-- Server ServerWL61F1_X added to the cluster_WL61 in the plugin-cfg file -->
<Server CloneID="a8sd1kj2" LoadBalanceWeight="2" Name="ServerWL61FP1_1">
<Transport Hostname="test1.ibm.com" Port="9084" Protocol="http"/>

</Server>
<Server CloneID="a8as2kd3" LoadBalanceWeight="2" Name="ServerWL61FP1_2">
<Transport Hostname="test2.ibm.com" Port="9085" Protocol="http"/>

Upgrading to IBM MobileFirst Platform Foundation V6.3.0 7-67

</Server>
</Server>
<Server CloneID="a8qa3as1" LoadBalanceWeight="2" Name="ServerWL61FP1_3">
<Transport Hostname="test3.ibm.com" Port="9086" Protocol="http"/>

</Server>
<PrimaryServers>
<Server Name="ServerWL61_1"/>
<Server Name="ServerWL61_2"/>
<Server Name="ServerWL61_3"/>
<Server Name="ServerWL61FP1_1"/>
<Server Name="ServerWL61FP1_2"/>
<Server Name="ServerWL61FP1_3"/>

</PrimaryServers>
</ServerCluster>
[...]
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61FP1">

<PrimaryServers>
</PrimaryServers>

</ServerCluster>

Performing a rollback procedure
You might want to perform a rollback procedure to restore your initial
configuration if a problem occurs.

Procedure

If a problem is detected while you are switching the traffic, you must restore the
plugin-cfg.xml to its initial state so that the HTTP traffic is routed again to the
initial installation of IBM MobileFirst Platform Foundation.

Uninstalling IBM MobileFirst Platform Foundation from the old
cluster
You must uninstall IBM MobileFirst Platform Foundation from the cluster that it
was previously installed in, and update the appropriate settings accordingly.

Procedure
1. When the migration is complete and the sessions are stopped, shutdown the

cluster_WL61 cluster.
2. You can allow management operations to start again and notify users with

privilege worklightadmin or worklightdeployer that they are allowed to deploy
MobileFirst artifacts because the upgrade procedure is complete.

3. Uninstall IBM MobileFirst Platform Foundation from the cluster cluster_WL61.
4. Update the plugin-cfg.xml so that it no longer references the old cluster

cluster_WL61.
5. Verify that the HTTP traffic is routed correctly to the new cluster. For example,

you can activate the log file of the web plug-in, and review the log.

7-68 IBM MobileFirst Platform Foundation V6.3.0

Developing MobileFirst applications

You use MobileFirst Studio, the MobileFirst client, and the server-side API to
develop cross-platform mobile applications, desktop applications, or web
applications.

This information is designed to help users develop applications for various
channels by using IBM MobileFirst Platform Foundation. It is intended for
developers who are familiar with web, or native application development.

This section covers client-side development and server-side development topics,
such as the integration with back-end services, and push notifications.

Development framework features

IBM MobileFirst Platform Foundation provides a framework that enables the
development, optimization, integration, and management of secure apps. This
framework provides the following features:
v Guidelines and design patterns that promote compatibility across multiple

consumer environments.
v Automatic packaging and provisioning of application resources to multiple

consumer environments.
v A flexible UI optimization and globalization scheme.
v Tools that provide uniform access to back-end enterprise data, processes, and

transactions.
v Uniform persistence.
v A uniform personalization model.
v A flexible authentication model and automatic application protection from web

attacks.

IBM MobileFirst Platform Foundation does not introduce a proprietary
programming language or model that users must learn. You can develop apps by
using HTML5, CSS3, and JavaScript. You can optionally write native code (Java,
Objective-C, or C#), and IBM MobileFirst Platform Foundation provides an SDK
that includes libraries that you can access from native code.

Seamlessly mix web and native components in your application

You can mix web and native components in your application, allowing you to
build a hybrid application with any composition of web and native capabilities.
The following features support this flexibility in hybrid app development.
v The architecture of hybrid applications (iOS and Android) allows you to easily

use native code when the application starts. You can add code at the beginning
of the application lifecycle, before the MobileFirst framework is initialized, and
have full control over when to initialize the MobileFirst framework, including
being able to initialize it in the background. This flexibility allows you, for
example, to add a custom splash screen or to control the default splash screen
behavior, and to start an application with a native screen.

© Copyright IBM Corp. 2006, 2015 8-1

v You can navigate seamlessly between the native and web parts of your
application without having to reauthenticate, and you can invoke both native
and JavaScript WLClient APIs in any order. For example, the following scenarios
are possible:
– Start the application in a web view page, connect to the MobileFirst Server,

and then login to access protected resources. You can then switch to a native
view and access the same protected resources without the need to
reauthenticate.

– Start the application in a native page, connect to the MobileFirst Server, and
then login to access protected resources. You can then switch to a web view
and access the same protected resources without the need to reauthenticate.

v The MobileFirst API allows you to easily send actions (events) and data between
the native and web modules of your app. This makes it easier to build
applications that mix hybrid and web components, for example:
– You have an application with a JavaScript communication module and a

native presentation layer. You can use the MobileFirst API to easily send the
data acquired by the communication module to the native layer, so that you
can present it to the user in a native screen.

– You can easily trigger complex native actions using JavaScript, without
implementing a Cordova plugin. You can also call JavaScript code from native
code.

– You can easily show native and web components on the same screen, using
the MobileFirst API for communication.

MobileFirst Studio overview
IBM MobileFirst Platform Studio is an Eclipse-based integrated development
environment (IDE). You can use MobileFirst Studio to create mobile applications
for various mobile operating systems, and to integrate applications with existing
services.

With MobileFirst Studio, you can add custom plug-ins to Eclipse. For instance, you
can use a Rational Team Concert plug-in to control your source code, track
changes, and create daily builds without installing an extra development
application. You can also build server applications, and applications for different
mobile device operating systems, from a single IDE.

Note: If you use non-Latin characters in your application, you must make sure
that your Eclipse editor uses UTF-8 encoding. To set the Eclipse text file encoding
to UTF-8:
1. In MobileFirst Studio, go to Window > Preferences > General > Workspace.
2. In Text file encoding, select Other, and select UTF-8 from the list.

Native and web development technologies

MobileFirst Studio supports native and web development technologies such as
HTML5, Apache Cordova, and Java. With these development technologies, you can
use the following capabilities:
v Develop mobile applications with pure HTML5.
v Use a compatible JavaScript framework, such as jQuery Mobile, Dojo Mobile, or

Sencha Touch. You can use the user interface widgets and functions that are
provided by these frameworks.

8-2 IBM MobileFirst Platform Foundation V6.3.0

v Use Apache Cordova so that your mobile application can access native device
functionality. To access a special device module, such as one for near field
communication (NFC), you can develop a native extension that you expose to
JavaScript through an Apache Cordova plug-in, which is a small
native-to-JavaScript wrapper.

Shell development

For hybrid mobile applications, MobileFirst Studio uses a default hybrid shell that
provides you with capabilities to use web and native technologies. With shell
development, you can use the following capabilities:
v Separate native-component implementation from web-based implementation,

and split this work between different developers. For example, you can create a
custom shell, and add third-party native libraries, implement custom security, or
provide extended features that are specific to your company.

v Use shells to restrict or enforce specific corporate guidelines, such as design or
security rules. For example, you can use a shell to add a default style to your
mobile application, or to disable the camera of the device.

Runtime skinning

With MobileFirst Studio, you use a common environment as a basic development
point and all environments can share base code. You can then create a version of
this environment that is specific to a device, for example an iPad, by creating a
variant of the base and implementing only the required changes. At run time, an
extra function that is called runtime skinning makes your mobile application
switch between different sets of customization.

Integration of device-specific SDKs

Each vendor of mobile devices supplies its own development environment as part
of a software development kit (SDK). MobileFirst Studio generates a project for
each supported SDK, such as Xcode for iOS development. Some vendors require
that you use their SDK for specific tasks, such as building the binary application.
The integration of device-specific SDKs within MobileFirst Studio links your
MobileFirst Studio project with the native development environment (such as
Xcode). You can then switch between a native development environment and
MobileFirst Studio. Any change in the native development environment is reflected
to your MobileFirst Studio project, which reduces manual copying steps.

Third-party library integration

Depending on your programming approach, your mobile application can include
several JavaScript frameworks, such as Sencha Touch, jQuery Mobile, or Dojo
Mobile. This third-party library integration facilitates code reuse and reduces
implementation times. If you have a shell project, several types of compatible
native code or libraries can be included.

Integrated build engine

The build chain of MobileFirst Studio combines common implementation code,
which is used on all target platforms, with platform-unique implementation code,
which is used on a specific target platform. At build-time, the integrated build
engine combines these implementations into a complete mobile application. You
can then use a single, common implementation for as much of the mobile

Developing MobileFirst applications 8-3

application function as possible, instead of a unique implementation for every
supported platform.

Integrated development tools

You can extend the Eclipse IDE with custom plug-ins, and use MobileFirst Studio
to develop all components of your application from within the same development
environment. These components include the mobile application and the integration
code, which is called MobileFirst adapters. With integrated development tools, you
can develop and test these MobileFirst adapters within MobileFirst Studio.

Mobile Browser Simulator

MobileFirst Studio includes a Mobile Browser Simulator that you can use during
the development cycle. You can use the Mobile Browser Simulator to test mobile
web and hybrid applications that are displayed in a desktop browser. This Mobile
Browser Simulator support cross-platform browser testing for mobile devices.

Many desktop browsers and mobile browsers use the WebKit engine as their
underlying core technology, which provides a common platform for developing
applications that support HTML5, CSS3, and JavaScript. If you use a desktop
browser that is based on WebKit, such as Chrome or Safari, to host the Mobile
Browser Simulator, you can validate the behavior of the application in the browser
before you deploy it on the device. When you test your application on the device
or mobile emulator, you can verify that the core WebKit engine provides the same
consistent user experience that you verify when you test with the browser.

The Mobile Browser Simulator also provides default implementations of the
various Apache Cordova APIs. You can then use these default implementations to
test hybrid applications that leverage the device features, without having to run
the applications on the actual device.

Ant tasks

MobileFirst Studio provides a set of Ant tasks that you can use to run a mobile
application build for various platforms. For example, you can distribute build tasks
to various build machines that run Apple OS X (for an Apple iOS binary file), or
Microsoft Windows (for a Microsoft Windows Phone 8 binary file). If you use this
mechanism, you do not need to access multiple build machines to create several
builds for specific mobile platforms.

Startup behavior

Every project has an associated WAR file. In MobileFirst Studio, you deploy the
WAR file to MobileFirst Development Server during standard development
activities. MobileFirst Studio remembers the last deployed project to the server.
When MobileFirst Studio restarts, all deployed MobileFirst WAR applications are
deleted from the server, except from the last one. The behavior is to avoid a
Timeout error with the MobileFirst Development Server during server startup in
case there are many WAR applications deployed.

Note: You can inhibit this behavior and make it work exactly like IBM Worklight
V6.1 by using the following steps:
v Close MobileFirst Studio.

8-4 IBM MobileFirst Platform Foundation V6.3.0

v Go to the following path: /<workspace_path>/.metadata/.plugins/
org.eclipse.core.runtime/.settings

v Open com.worklight.studio.plugin.prefs file with a text editor.
v Add com.worklight.studio.plugin.avoidServerCleanup=true.
v Save the file and restart MobileFirst Studio.

Artifacts produced during development cycle
When you use IBM MobileFirst Platform Foundation to develop a mobile
application, you produce client and server artifacts.

Client artifacts
A mobile binary file ready for deployment on a mobile device. For
example, an Android .apk file, or an iPhone .ipa file. These are usually
uploaded to an “App Store” such as the Apple Store or Google Play.

Application metadata and resources (.wlapp)
A .wlapp file. Metadata and web resources of a MobileFirst application
deployed on the MobileFirst Server. Used by the MobileFirst Server to
identify and service mobile applications.

Adapter files (.adapter)
An adapter file (.adapter) contains server-side code written by the
MobileFirst developer (for example, retrieve data from a remote database).
Adapter code is accessed by MobileFirst applications via a simple
invocation API.

.wlapp and .adapter files are referred to in this topic as content. These are
typically identical between the organization’s development, testing, and
production environments.

A project web archive (WAR) file to be deployed on your application server
This file contains the default server-specific configurations such as security
profiles, server properties, and more. .wlapp and .adapter files use these
properties at various stages. Typically, the project WAR file is adapted to
the test and production environment, when you deploy the file to your
application server. For more information, see “Deploying the project WAR
file” on page 11-5.

MobileFirst projects, environments, and skins
With MobileFirst Studio, you can develop mobile applications within projects,
build your applications for different environments, and create skins for specific
devices.

MobileFirst projects

To develop your mobile applications with IBM MobileFirst Platform Foundation,
you must first create a project in MobileFirst Studio.

A project in MobileFirst Studio is a place for you to develop one or several mobile
applications, which you can build for different environments.

In your project, when you create an application, you have a main application
folder, in which you can find several subfolders and files:
v A common folder, for you to store the code that is shared between all

environments, such as HTML, CSS, or JavaScript code.

Developing MobileFirst applications 8-5

v One folder for each environment that is supported by the application, and where
you store the code that is specific to this environment, such as Java code for
Android or Objective-C code for iOS.

v A legal folder, for you to store all the license-related documents.
v An application-descriptor.xml file that contains the application metadata. For

more information about this file, see “The application descriptor” on page 8-24.
v A build-settings.xml file, for you to prepare minification and concatenation

configurations for each environment. For more information about this file, see
“MobileFirst application build settings” on page 8-321.

Within your project, you can create the graphical user interface of your mobile
application by using the Rich Page Editor. The Rich Page Editor is a WYSIWYG
editor in MobileFirst Studio.

When the application is finished, you can test it with the Mobile Browser
Simulator in MobileFirst Studio. However, you cannot test native code with
MobileFirst Studio. To test native code, you must test it with a real device or with
the development kit of the appropriate environment. To test your application:
1. Build and deploy your application: MobileFirst Studio creates the project with

your native code that you can then view and update.
2. Test it with the Mobile Browser Simulator, which emulates the target device, or

with a real device.

MobileFirst environments

You can build your mobile applications for different environments, such as:
v Mobile environments, which include iPhone, iPad, Android phones and tablets,

BlackBerry 6 and 7, BlackBerry 10, and Windows Phone 8.
v Desktop environments, which include Adobe AIR and Windows 8.
v Web environments, which include Mobile web app and Desktop Browser web

page.

There is a difference between the Mobile web app environment and the Desktop
Browser web page environment.
v Mobile web apps are only used in a mobile device browser. Choose the Mobile

web app environment when you want your users to surf to your application by
using their mobile device.

v Desktop browser web pages are used only in a desktop web browser. With the
Desktop Browser web page environment, you can develop an application that
you then embed inside your website, but this application is not meant for use in
a mobile device.
– For example, since Facebook uses iframes as containers to its apps, you can

use the Desktop Browser web page environment to create Facebook apps by
setting https://host:port/apps/services/www/application_name/
desktopbrowser/ as the canvas URL in the Facebook dashboard.

If your web application is not based on IBM MobileFirst Platform Foundation, you
must first port it to IBM MobileFirst Platform Foundation. If your web application
is based on IBM MobileFirst Platform Foundation, you can add the Desktop
Browser web page environment to your existing project.

8-6 IBM MobileFirst Platform Foundation V6.3.0

MobileFirst skins

Different types of devices exist for a same environment. If you want to write a
piece of code that is specific to a certain device, you must create a skin. Skins are
subvariants of an environment and they provide support for multiple form factors
in a single executable file for devices of the same OS family. Skins are packaged
together in one app. At run time, only the skin that corresponds to the target
device is applied.

Creating MobileFirst projects
You use MobileFirst Studio to create a project.

About this task

With MobileFirst Studio, you create a project as a place where you develop your
apps. When you create a project, you create a first app in it. This first app can be
of the following types:
v Hybrid application: A Hybrid application can target multiple environments. You

can write it primarily in HTML5, CSS, and JavaScript. It can access device
capabilities by using the MobileFirst JavaScript API. You can also extend it with
native code.

v Inner application: An Inner application contains the HTML, CSS, and JavaScript
parts that run within a Shell component. Before you can deploy this application,
you must package it within a shell component to create a full hybrid application.

v Native application: A Native application targets a specific environment, and can
use the MobileFirst API for integration, security, and application management.

v Shared Templates: A project based on existing templates that were created for
sharing and reuse. You select those templates from your download folder.

v Shell component: A Shell component provides custom native capabilities and
security features that an Inner application can use.

After you created a MobileFirst project, you can later add further apps to it.

Procedure

To create a project and a first app in it:
1. In Eclipse Design perspective, click File > New > MobileFirst Project.
2. In the Name field, enter a name for your new project.
3. From the list of project templates, select the template that applies to the first

application in your project:

Option Description

Hybrid Application To create a project with an initial hybrid
application

Inner Application To create a project with an initial inner
application and point to a built shell
component

Native Application To create a project with an initial Native
application

Developing MobileFirst applications 8-7

Option Description

Shared Templates To create a project that is based on an
existing template. For more information, see
“Creating MobileFirst projects from
MobileFirst project templates” on page
8-303.

Shell Component To create a project with an initial shell
component application

4. Click Next, and in the field Application name or Component name, set the
name of your application or component.

5. Set the properties of your application, as described in the following sections:
v Hybrid application:

a. Optional: To add JavaScript libraries to your application, click Configure
JavaScript Libraries, and select the check boxes that correspond to the
layers that you need:

Table 8-1. JavaScript libraries

Add jQuery Mobile To add jQuery Mobile support to the
application. You must identify the directory
where the required files for jQuery Mobile
are located.

Add Dojo Toolkit To add the Dojo facet and Dojo support to
the application. When you build a mobile
web application, Dojo is included to create
the native application, such as an iPhone or
Android application.

Add Sencha Touch (deprecated) To add Sencha Touch support to the
application. You must identify the directory
where the required files for Sencha Touch
are located.

Note: If you add jQuery Mobile to your application, and you use
Windows Phone 8, you must ensure that the following conditions are
met:
– The $.mobile.allowCrossDomainPages option is set to true (in jQuery

Mobile).
– An absolute URL is used for file, for example x-wmapp0:/www/default/

app-pages/myPage.html.
b. Optional: Click Environments in the left pane, and select the

environments that you want to add to your new application.

Note: You can also add new environments later by clicking File > New >
MobileFirst Environment. For more information about how to add an
environment to an existing app, see “Setting up a new MobileFirst
environment for your application” on page 8-32.

v Inner application:
a. In the field Shell archive name, set the path of your Shell archive file.

The path can be either absolute or relative, if a Shell archive exists within
your project.

8-8 IBM MobileFirst Platform Foundation V6.3.0

b. Optional: To add JavaScript libraries to your application, click Configure
JavaScript Libraries, and select the check boxes that correspond to the
layers that you need: jQuery Mobile, Dojo Toolkit, Sencha Touch (see
Table 8-1 on page 8-8).

v Native API:
– In the field Environment, select the environment that you need: Android,

iOS, Java ME, or WindowsPhone8.
v Shared Templates:

– Select one of the templates available from the list.
v Shell component:

– Select the check boxes that correspond to the layers that you need: jQuery
Mobile, Dojo Toolkit, Sencha Touch (see Table 8-1 on page 8-8).

6. Click Finish to close the wizard.

Creating an application in a MobileFirst project
With MobileFirst Studio, you can create different types of applications within an
existing project.

About this task

You create and develop an application in an existing project.

Procedure
1. In Eclipse Design perspective, click File > New, and select the type of

application that you want to create:
v MobileFirst Hybrid Application

v MobileFirst Inner Application

v MobileFirst Native API

v MobileFirst Shell Component

A dialog opens, based on the type of application that you selected.
2. Depending on the selected type of application, set the properties of your

application, as described in the following sections.
v Hybrid application:

a. In the field Project name, select your existing project.
b. In the field Application name, set the name of your application.
c. Optional: To add JavaScript libraries to your application, click Configure

JavaScript Libraries, and select the check boxes that correspond to the
layers that you need: jQuery Mobile, Dojo Toolkit, Sencha Touch
(deprecated).

Note: If you add jQuery Mobile to your application, and you are using
Windows Phone 8, you must ensure that the following conditions are
met:
– The $.mobile.allowCrossDomainPages option is set to true (in jQuery

Mobile).
– An absolute URL is used for file, for example x-wmapp0:/www/default/

app-pages/myPage.html.
v Inner application:

a. In the field Project name, select your existing project.

Developing MobileFirst applications 8-9

b. In the field Application name, set the name of your application.
c. In the field Shell archive name, set the path of your Shell archive file.

The path can be either absolute or relative, if a Shell archive exists within
your project.

d. Optional: To add JavaScript libraries to your application, click Configure
JavaScript Libraries, and select the check boxes that correspond to the
layers that you need: jQuery Mobile, Dojo Toolkit, Sencha Touch
(deprecated).

v Native API:
a. In the field Project name, select your existing project.
b. In the field Application name, set the name of your application.
c. In the field Environment, select the environment that you need: Android,

iOS, Java ME, or WindowsPhone8.
v Shell component:

a. In the field Project name, select your existing project.
b. In the field Component name, set the name of your component.
c. Select the check boxes that correspond to the layers that you need:

jQuery Mobile, Dojo Toolkit, Sencha Touch (deprecated).
3. Click Finish to save your choices.

Results

An application of the type that you selected is now visible in your MobileFirst
project, and the application descriptor opens.

Creating the client-side of a MobileFirst application
You use MobileFirst Studio to create the client-side of a MobileFirst application.

In MobileFirst Studio, you have two methods to create the client-side of a
MobileFirst application:
v Use an existing MobileFirst project, and create your application in it, as

described in “Creating an application in a MobileFirst project” on page 8-9.
v Create a MobileFirst project, and your application in it as its first application, as

described in “Creating MobileFirst projects” on page 8-7

You can build your MobileFirst application for specific mobile, desktop, and web
environments that you can select in MobileFirst Studio.
v To learn about the available environments, see “MobileFirst environments” on

page 8-6
v To learn how to set up environments for your MobileFirst application, see

“Setting up a new MobileFirst environment for your application” on page 8-32

After you create your MobileFirst application, you can develop its code by using
different APIs:
v “JavaScript client-side API for hybrid apps” on page 8-11
v “Objective-C client-side API for native iOS apps” on page 8-11
v “Java client-side API for native Android apps” on page 8-11
v “Java client-side API for Java ME apps” on page 8-11
v “C# client-side API for Windows Phone 8 apps” on page 8-11

8-10 IBM MobileFirst Platform Foundation V6.3.0

You can also use your own custom libraries or third-party libraries when you
create mobile applications in MobileFirst Studio.

For more information about how to develop your applications, see “Developing
hybrid and web applications” on page 8-14 and “Developing native applications”
on page 8-180.

JavaScript client-side API for hybrid apps

With the JavaScript client-side API, you can develop hybrid applications that target
all environments. You can use the capabilities of the MobileFirst runtime client API
for mobile applications, desktop, and web to develop your applications.

For more information, see “JavaScript client-side API” on page 10-2.

Objective-C client-side API for native iOS apps

IBM MobileFirst Platform Foundation provides the MobileFirst Objective-C
client-side API that you can use to develop native iOS applications.

For more information, see “Objective-C client-side API for iOS apps” on page 10-5.

Java client-side API for native Android apps

IBM MobileFirst Platform Foundation provides the MobileFirst Java client-side API
that you can use to develop native Android applications.

For more information, see “Java client-side API for Android apps” on page 10-6.

Java client-side API for Java ME apps

IBM MobileFirst Platform Foundation provides the MobileFirst Java client-side API
that you can use to develop native Java ME applications.

For more information, see “Java client-side API for Java Platform, Micro Edition
(Java ME) apps” on page 10-6.

C# client-side API for Windows Phone 8 apps

IBM MobileFirst Platform Foundation provides the MobileFirst C# client-side API
that you can use to develop native Windows Phone 8 applications.

For more information, see “C# client-side API for Windows Phone 8 apps” on page
10-6.

Integrating with source control systems
Some source code files should be held in a version control system: others should
not.

There are two types of files and folders in a standard MobileFirst project hierarchy:
v Your own source code files and some source code files that are provided in the

MobileFirst device runtime libraries.
You should commit these files to a version control system.

Developing MobileFirst applications 8-11

v Files that are generated from your web source code and some JavaScript files
that are provided with IBM MobileFirst Platform Foundation (such as
wlclient.js).
These files and folders are added to the file system every build.
You should not commit them to a version control system.
In the next figure, these files and folders are marked with a star (*) after their
names.

8-12 IBM MobileFirst Platform Foundation V6.3.0

Project Name
|
+---Java Resources
+---JavaScript Resources
+---adapters
+---apps
| +--Application Name
| | application-descriptor.xml
| | build-settings.xml
| |
| +---android
| | +---css
| | +---images
| | +---js
| | +---native
| | | | Application Name.iml
| | | | AndroidManifest.xml
| | | | project.properties
| | | |
| | | +---assets
| | | | | wlclient.properties
| | | | |
| | | | +---featurelibs
| | | | +---www (*)
| | | +---libs
| | | +---res
| | | +---src
| | +---nativeResources
| |
| +---blackberry
| | +---css
| | +---images
| | +---js
| | +---native
| | | config.xml
| | | icon.png
| | | splash.png
| | | .wldata
| | |
| | +---ext
| | | WLExtension.jar
| | |
| | +---www (*)
| |
| +---blackberry10
| | +---css
| | +---images
| | +---js
| | +---nativeResources
| | | |
| | | +---www (*)
| +---common
| | | index.html
| | |
| | +---css
| | +---images
| | +---js
| |
| +---ipad
| | +---css
| | +---images
| | +---js
| | +---native
| | | | buildtime.sh
| | | | config.xml
| | | | Entitlements-Debug.plist
| | | | Entitlements-Release.plist
| | | | main.m
| | | | Project Name Application NameIpad_Prefix.pch
| | | | Project Name Application NameIpad-Info.plist
| | | | README.txt
| | | | worklight.plist
| | | |
| | | +---Classes
| | | | Application Name.h
| | | | Application Name.m
| | | |
| | | +---CordovaLib (*)
| | | +---FipsHttp
| | | +---Frameworks
| | | | sqlcipher.framework (*)
| | | |
| | | +---Project Name Application NameIpad.xcodeproj
| | | +---Resources
| | | +---Settings.bundle
| | | +---Tealeaf
| | | +---WorklightSDK (*)
| | | +---www (*)
| | +---nativeResources
| +---iphone
| | +---css
| | +---images
| | +---js
| | +---native
| | | | buildtime.sh
| | | | config.xml
| | | | Entitlements-Debug.plist
| | | | Entitlements-Release.plist
| | | | main.m
| | | | Project Name Application NameIphone_Prefix.pch
| | | | Project Name Application NameIphone-Info.plist
| | | | README.txt
| | | | worklight.plist
| | | |
| | | +---Classes
| | | | Application Name.h
| | | | Application Name.m
| | | |
| | | +---CordovaLib (*)
| | | +---FipsHttp
| | | +---Frameworks
| | | | sqlcipher.framework (*)
| | | |
| | | +---Project Name Application NameIphone.xcodeproj
| | | +---Resources
| | | +---Settings.bundle
| | | +---Tealeaf
| | | +---WorklightSDK (*)
| | | +---www (*)
| | +---nativeResources
| +---legal
| |
| +---windowsphone8
| +---css
| +---images
| +---js
| +---native
| | | Application Name.csproj
| | | App.xaml
| | | App.xaml.cs
| | | ApplicationIcon.png
| | | Background.png
| | | config.xml
| | | MainPage.xaml
| | | MainPage.xaml.cs
| | | Newtonsoft.Json.dll
| | | SplashScreenImage.jpg
| | | wlclient.properties
| | | WLWPNativeLib.dll
| | | WPCordovaClassLib.dll
| | |
| | +---applicationBar
| | +---buildtarget
| | +---Properties
| | +---Resources
| | +---www (*)
| +---nativeResources
|
+---bin (*)
+---externalServerLibraries
+---server
| +---conf
| +---java
| +---lib
+---services

Figure 8-1. Integration of MobileFirst project hierarchy with source control systems

Developing MobileFirst applications 8-13

Note: In iOS environments, the Frameworks folder contains a default .framework
file, sqlcipher.framework, that is automatically generated by the MobileFirst
builder if it is not already in the Frameworks folder. The Frameworks folder should
be committed to your source control system, but the sqlcipher.framework file can
be ignored.

To ensure that your source code is always synchronized with your source control
system, add the (*) files and folders to the ignore list in your source control
system. For Subversion, for example, perform the following steps:
v Step 1: Using the Tortoise extension for Subversion, right-click each file or folder

that is to be ignored and add it to the ignore list.
v Step 2: Go up one level in the file system and commit the change to the SVN

repository. The changes take effect from now on for every developer who
updates the code.

For more information about the folders that are shown in the figure, see “Anatomy
of a MobileFirst application” on page 8-15.

Developing hybrid and web applications
Develop hybrid and web applications as detailed here.

Anatomy of a MobileFirst project
The file structure of a MobileFirst project helps you organize the code that is
required for your apps.

When you develop mobile apps with IBM MobileFirst Platform Foundation, all
development assets including source code, libraries, and resources are placed in a
MobileFirst project folder.

Table 8-2. A MobileFirst project has the following structure:

<project-name> Root project folder

adapters Source code for all
adapters belonging to
the project

apps Source code for all
applications
belonging to the
project

bin Artifacts resulting
from building
adapters, apps, and
server-side
configuration and
libraries

components Source code for all
shell components
belonging to the
project

externalServerLibraries Libraries to be placed
in external service
servers and used for
access token
validation.

8-14 IBM MobileFirst Platform Foundation V6.3.0

Table 8-2. A MobileFirst project has the following structure: (continued)

<project-name> Root project folder

www Source code of the
Dojo JavaScript
framework, if
installed as part of
MobileFirst Studio

server

conf MobileFirst Server
configuration files,
such as
worklight.properties
and
authenticationConfig.xml

java Java code that must
be compiled and
packaged into jar
files deployable to
the MobileFirst
Server

lib Pre-compiled
libraries that must be
deployed to the
MobileFirst Server

services Description, at
development stage,
of back-end services
that are discovered
for consumption by
the applications in
the project

Initialization options

The initOptions.js file is included in the project template. It is used to initialize
the MobileFirst JavaScript framework. It contains a number of tailoring options,
which you can use to change the behaviour of the JavaScript framework. These
options are commented out in the supplied file. To use them, uncomment and
modify the appropriate lines.

The initOptions.js file calls WL.Client.init, passing an options object that
includes any values you have overridden.

Content of the www folder

If you installed the Dojo JavaScript framework, the www folder contains a minified
version of Dojo Mobile libraries. This minified version contains all the Dojo mobile
components. If you need to add more Dojo components or Dojo features to your
application, see the topic “Creating Dojo-enabled MobileFirst projects” on page
8-79.

Anatomy of a MobileFirst application
This collection of topics describes the files within a MobileFirst application

Developing MobileFirst applications 8-15

With IBM MobileFirst Platform Foundation, you can write applications by using
web technologies or native technologies, or combine both types of technology in a
single app. All client-side application resources, both web and native, must be
located under a common file folder with a predefined structure. MobileFirst Studio
builds these resources into various targets, depending on the environments
supported by the application.

The application folder
The application folder contains all application resources.

Table 8-3. The folder has the following structure:

<app-name>
Main application
folder

common Application resources
common to all
environments

css Style sheets to define
the application view

images Thumbnail image
and default icon

js JavaScript files

index.html An HTML5 file that
contains the
application skeleton

android Web and native
resources specific to
Android

blackberry10 Web and native
resources specific to
BlackBerry 10

blackberry Web and native
resources specific to
BlackBerry 6 and 7

ipad Web and native
resources specific to
iPad

iphone Web and native
resources specific to
iPhone

windowsphone8 Web and native
resources specific to
Windows Phone 8

air Resources specific to
Air

desktopbrowser Resources specific to
desktop browsers

mobilewebapp Web resources
specific to mobile
web applications

windows8 Resources specific to
Windows 8

8-16 IBM MobileFirst Platform Foundation V6.3.0

Table 8-3. The folder has the following structure: (continued)

<app-name>
Main application
folder

legal License documents
for the application or
third-party software
used in the
application

application-descriptor.xml

build-settings.xml

Application resources
You must provide various types of resources if you are to create applications that
can run in multiple environments.

You must provide the following resources to create applications that can run in
multiple environments. IBM MobileFirst Platform Foundation automatically
generates any missing resources that are not supplied. However, for production
quality, you must provide all resources that are required by the environments in
which the application runs.

Application descriptor

The application descriptor is a mandatory XML file that contains application
metadata, and is stored in the root directory of the app. The file is automatically
generated by MobileFirst Studio when you create an application, and can then be
manually edited to add custom properties.

Main file

The main file is an HTML5 file that contains the application skeleton. This file
loads all the web resources (scripts and style sheets) necessary to define the
general components of the application, and to hook to required document events.
This file is in the \common folder of the app directory and optionally in the
optimization and skin folders.

The main file contains a <body> tag. This tag must have an id attribute that is set
to content. If you change this value, the application environment does not
initialize correctly.

Style sheets

The app code can include CSS files to define the application view. Style sheets are
placed under the \common folder (normally under \common\css) and optionally in
the optimization and skin folders.

Scripts

The app code can include JavaScript files that implement interactive user interface
components, business logic and back-end query integration, and a message
dictionary for globalization purposes. Scripts are placed under the \common folder
(normally under \common\js) and optionally in the optimization and skin folders.

Developing MobileFirst applications 8-17

Thumbnail image

The thumbnail image provides a graphical identification for the application. It
must be a square image, preferably of size 128 by 128 pixels. It is used to identify
the app in the MobileFirst catalog.

MobileFirst Studio creates a default thumbnail image when the app is created. You
can override this default image (using the same file name) with a replacement
image that matches your application. The file is in the \common\images folder of the
app.

Splash image

The splash image applies for mobile environments and Windows 8 apps. The
splash image (or splash screen) is displayed while the application is being
initialized. It must be in the exact dimensions of the app.

MobileFirst Studio creates a default splash image when you create an application
environment. These default images are stored in the following locations:
v For Apple iOS platforms, the default splash images are stored as follows:

– For iPhone, under iphone\native\Resources
– For iPad, under ipad\native\Resources
The file names of the default splash images are as follows, and vary according to
iOS version and target device:
– For iPhone Non-Retina display (iOS6.1 and earlier): Default~iphone.png 320

by 480 pixels
– For iPhone Retina display (iOS6.1 and earlier): Default@2x~iphone.png 640 by

960 pixels
– For iPhone 4-inch Retina display (iOS6.1 and earlier):

Default568h@2x~iphone.png 640 by 1136 pixels
– For iPhone Retina display (iOS7): Default@2x~iphone.png 640 by 960 pixels
– For iPhone 4-inch Retina display (iOS7): Default568h@2x~iphone.png 640 by

1136 pixels
– For iPad (iOS6.1 and earlier): Default-Portrait~ipad.png 768 by 1004 pixels
– For iPad Retina display (iOS6.1 and earlier): Default-Portrait@2x~ipad.png

1536 by 2008 pixels
– For iPad (iOS6.1 and earlier): Default-Landscape~ipad.png 1024 by 748 pixels
– For iPad Retina display (iOS6.1 and earlier): Default-Landscape@2x~ipad.png

2048 by 1496 pixels
– For iPad (iOS7): Default-Portrait~ipad.png 768 by 1004 pixels
– For iPad Retina display (iOS7): Default-Portrait@2x~ipad.png 1536 by 2008

pixels
– For iPad (iOS7): Default-Landscape~ipad.png 1024 by 748 pixels
– For iPad Retina display (iOS7): Default-Landscape@2x~ipad.png 2048 by 1496

pixels
v For Android platforms, the file name of the default splash image is

splash.9.png; it is stored:
– For all resolutions, under android\native\res\drawable

v For BlackBerry 10, under blackberry10\native\www. The file must be in .png
format and there are four different splash screen sizes:
– splash 1024 pixels width by 600 pixels height: splash-1024x600.png

8-18 IBM MobileFirst Platform Foundation V6.3.0

– splash 1280 pixels width by 768 pixels height: splash-1280x768.png
– splash 600 pixels width by 1024 pixels height: splash-600x1024.png
– splash 768 pixels width by 1280 pixels height: splash-768x1280.png

v For BlackBerry 6 and 7, the file name of the splash image is splash.png, stored
under blackberry\native.

v For Windows Phone 8, the file name of the splash image is
SplashScreenImage.jpg, stored under windowsphone8\native. This file must be in
.jpg format, with a width of 768 pixels and height of 1280 pixels.

v For Windows 8, the file name of the splash image is splashscreen.png, stored
under windows8\native\images. This file must be in .png format, with a width of
620 pixels and height of 300 pixels.

Adding a custom splash image

You can override the default images that are created by MobileFirst Studio with a
splash image that matches your application.

The procedures for doing this differ, depending on the target platform. But in all
cases, your custom splash image must match the size of the default splash image
you are replacing, and must use the same file name.
v For Apple iOS platforms:

– There are two ways of creating a custom splash image:
1. Replace the default image in ipad\native\Resources (or

iphone\native\Resources), OR

2. Add the new (replacement) image to ipad\nativeResources\Resources (or
iphone\nativeResources\Resources).

3. Rebuild the application by clicking Run As > Run on MobileFirst
Development Server or Run As > Build....

The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build. The replacement splash
image must not be placed in any folder other than Resources.

v For Android:
– There are two ways of creating a custom splash image:

1. Replace the default image in android\native\res\drawable, OR

2. Add the new (replacement) image to android\nativeResources\res\
drawable.

3. Rebuild the application by clicking Run As > Run on MobileFirst
Development Server or Run As > Build....

The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build. The replacement splash
image must not be placed in any folder inside the res folder other than
drawable.

v For BlackBerry 10:
– There are two ways of creating a custom splash image:

1. Replace the default image in blackberry10\native\www, OR

2. Add the new (replacement) image to blackberry10\nativeResources\www.

Developing MobileFirst applications 8-19

3. Rebuild the application by clicking Run As > Run on MobileFirst
Development Server or Run As > Build....

The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build.

v For BlackBerry 6 and 7:
1. Replace the default image in blackberry\native. If the original splash image

is not backed up in a source code control system, it is advisable to rename or
back up the original image first.

2. Rebuild the application by clicking Run As > Run on MobileFirst
Development Server or Run As > Build....

v For Windows Phone 8:
– There are two ways of creating a custom splash image:

1. Replace the default image in windowsphone8\native, OR

2. Add the new (replacement) image to windowsphone8\nativeResouces.
3. Rebuild the application by clicking Run As > Run on MobileFirst

Development Server or Run As > Build....
The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build.

v For Windows 8:
1. Replace the default image in windows8\native\images. If the original splash

image is not backed up in a source code control system, it is advisable to
rename or back up the original image first.

2. Rebuild the application by clicking Run As > Run on MobileFirst
Development Server or Run As > Build....

Application icons

MobileFirst Studio creates default application icons when you create the app. You
can override them with images that match your application. For Android, iPad,
and iPhone, put your replacement icons (using the same file names, except as
noted with an asterisk * below) in the location indicated by the Location of
overriding icon column in the following table.

The following table summarizes the sizes and location of each application icon.

Table 8-4. Application icons

Environment File name Description
Location of
default icon

Location of
overriding icon

Adobe AIR icon16x16.png
icon32x32.png
icon48x48.png
icon128x128.png

Application
icons of various
sizes that are
attached to the
AIR version of
the application.

The dimensions
of each icon are
specified in its
name.

air\images

8-20 IBM MobileFirst Platform Foundation V6.3.0

Table 8-4. Application icons (continued)

Environment File name Description
Location of
default icon

Location of
overriding icon

Android icon.png An icon that is
displayed on the
device
springboard. You
can provide a
different icon for
each device
density that you
want to support.

android\native\
res\drawable

⌂\android\
nativeResources\
res\drawable or
android\
nativeResources\
res\drawable-
ldpi -hdpi or
other options.

BlackBerry 10 icon.png An icon that is
displayed on the
device.

Its dimensions
are 114 by 114
pixels.

For best
practices on
creating
application
icons, see
https://
developer.blackberry.com/
devzone/
design/
application_icons.html.

blackberry10\
native\www

blackberry10\
nativeResources\
www

BlackBerry 6 and
7

icon.png An icon that is
displayed on the
device.

Its dimensions
are 80 by 80
pixels.

blackberry\
native

Developing MobileFirst applications 8-21

https://developer.blackberry.com/devzone/design/application_icons.html
https://developer.blackberry.com/devzone/design/application_icons.html
https://developer.blackberry.com/devzone/design/application_icons.html
https://developer.blackberry.com/devzone/design/application_icons.html
https://developer.blackberry.com/devzone/design/application_icons.html

Table 8-4. Application icons (continued)

Environment File name Description
Location of
default icon

Location of
overriding icon

iPad icon-xxxx.png

* Filename
varies by size
and target
device. Exact file
name can
change as long
as it is listed in
the plist file.

An icon that is
displayed on the
device
springboard.
Size depends on
iOS version and
target device.

iOS6.1 and
earlier:

v Non-Retina
display: 72 by
72 pixels

v Retina
display: 144
by 144 pixels

iOS7:

v Non-Retina
display: 76 by
76 pixels

v Retina
display: 152
by 152 pixels

ipad\native\
resources

\ipad\
nativeResources\
Resources

iPhone icon-xxxx.png

* Filename
varies by size
and target
device. Exact file
name can
change as long
as it is listed in
the plist file.

An icon that is
displayed on the
device
springboard.
Size depends on
iOS version and
target device.

iOS6.1 and
earlier:

v Non-retina
display: 57 by
57 pixels

v Retina
display: 114
by 114 pixels

iOS7:

v 120 by 120
pixels

iphone\native\
resources

\iphone\
nativeResources\
Resources

8-22 IBM MobileFirst Platform Foundation V6.3.0

Table 8-4. Application icons (continued)

Environment File name Description
Location of
default icon

Location of
overriding icon

Windows Phone
8

Background.png

ApplicationIcon.png

Both icons are
used to identify
the application.

Background.png
is displayed on
the device home
screen, and must
be 300 by 300
pixels.

ApplicationIcon.png
is displayed in
the list of
applications, and
must be 100 by
100 pixels.

windowsphone8\
native

Developing MobileFirst applications 8-23

Table 8-4. Application icons (continued)

Environment File name Description
Location of
default icon

Location of
overriding icon

Windows 8 storelogo.png

logo.png

smalllogo.png

All icons are
used to identify
the application.

storelogo.png is
the image the
Windows Store
uses when it
displays the app
listing in search
results and with
the app
description in
the listing page.
The image must
be 50 by 50
pixels.

logo.png
represents the
square tile image
of the app in the
Start screen. The
image must be
150 by 150
pixels.

smalllogo.png is
displayed with
the app display
name in search
results on the
Start screen.
smalllogo.png is
also used in the
list of searchable
apps and when
the Start page is
zoomed out. The
image must be
30 by 30 pixels.

windows8\
native\images

The application descriptor
The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory.

General structure

The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory and has the name
application-descriptor.xml.

The following example shows the format of the file:

8-24 IBM MobileFirst Platform Foundation V6.3.0

<application>
The <application> element is the root element of the descriptor. The
</application> element is the closing tag.
<?xml version="1.0" encoding="UTF-8"?>
<application id="fcb" platformVersion="5.0">
xmlns="http://www.example.com/application-descriptor" xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://www.example.com/application-descriptor
../../../../../gadgets/application-descriptor/src/main/resources/schema/application-descriptor.xsd">

The root element takes two mandatory attributes.

id Contains the identifier of the application. The identifier must be
identical to the application folder name. It must be an
alphanumeric string that starts with a letter. It can also contain
underscore ("_") characters. It must not be a reserved word in
JavaScript.

platformVersion
Contains the IBM MobileFirst Platform Foundation version on
which the application was developed.

<displayName> and <description>
The <displayName> and <description> elements contain the name and
description of the application. They are displayed in the MobileFirst
Operations Console and are copied to the descriptor files of various web
and desktop environments.
<displayName>First Bank</displayName>
<description>Conveniently and securely manage your checking, savings, and credit card accounts using FCB’s banking widget.</description>

<author>

You can use the <author> element and its subelements to provide
information about the application author. This data is copied to the
descriptor files of the web and desktop environments that require it.
<author>
<name>ACME</name>
<email> info@acme.com </email>
<homepage> acme.com </homepage>
<copyright> (C) ACME 2014 </copyright>
</author>

<mainFile> and <thumbnailImage>
The <mainFile> element contains the name of the main HTML file of the
application.

The <thumbnailImage> element contains the path to the thumbnail image
for the application, including the image file name. The path is relative to
the main application folder.
<mainFile>index.html</mainFile>
<thumbnailImage>common/images/thumbnail.png</thumbnailImage>

<smsGateway>
The <smsGateway> element defines the SMS gateway to be used for SMS
push notifications. It has one mandatory attribute, id, which contains the
identifier of the SMS gateway. The ID must match one of the gateway
identifiers that are defined in the SMSConfig.xml file.
<smsGateway id=”kannelgw”/>

<tags> The <tags> element is supported by Android, iOS and Windows Phone 8
environments. During application deployment, the specified tags are
created, updated, or deleted on the MobileFirst management database

Developing MobileFirst applications 8-25

tables. In the following example, the <tags> specifies customer categories.
Tags represent topics of interest to the user and provide user with an
ability to receive notifications according to the chosen interest. This feature
enables ability for sending and receiving messages by tags. A message is
targetted to only the devices subscribed for a tag.
<tags>

<tag>
<name>Silver</name>
<description>Silver customers</description>

</tag>
<tag>
<name>Gold</name>
<description>Gold customers</description>

</tag>
</tags>

environment <version>

Each environment on which the application can run must be declared with
a dedicated XML element: <iphone>, or <ipad>. Each such element has one
mandatory attribute: version (except for web apps). The value of the
version attribute is a string of the form x.y, where x and y are digits (0-9).
v For mobile apps, the version is shown to users who download the app

from the app store or market.
v For desktop apps, the version determines whether MobileFirst Server

automatically downloads a new version of the app to the user's desktop.
<iphone version="1.0" />
<android version="1.0" />
<blackberry10 version="1.0" />
<blackberry version="1.0" />
<windowsPhone8 version="1.0">

<uuid>87e096eb-6882-4cef-9f66-e68769de3926</uuid>
</windowsPhone8>
<windows8 version="1.0">

<certificate PFXFilePath="Path to certificate file" password="certificate password"/>
<uuid>556a98a3-63fb-4602-827c-0b6bd9d00490</uuid>

</windows8>
<ipad version="1.0" />
<mobileWebApp />
<air version="1.0" />

bundleId

In the <iphone> and <ipad> elements, you must provide the bundle
ID of the application in the bundleId attribute. Each time the IBM
MobileFirst Platform Foundation builder builds your application, it
copies the value of this attribute to the appropriate native
configuration file in the Xcode project of the application. Do not
modify this value directly in the native configuration file because it
is overridden by the builder with the value that you indicate in
this attribute.
<iphone version="1.0" bundleId="com.mycompany.myapp"> (or <ipad>)
<pushSender password="${push.apns.senderPassword}"/>
<worklightSettings include="false"/>
<security> ... </security>
</iphone>

v For iOS apps that use the Apple Push Notification Service
(APNS), use the <pushSender> element to define the password to
the SSL certificate that encrypts the communication link with
APNS. The password attribute can refer to a property in the
worklight.properties file and can therefore be encrypted.

8-26 IBM MobileFirst Platform Foundation V6.3.0

The app user can use the MobileFirst settings page to change the
address of the MobileFirst Server with which the app
communicates. By default, the settings page is disabled. To
enable it for the app, change the include attribute of
<worklightSettings> element to true. When the settings page is
enabled, that page is accessible by using the settings app on the
iOS device.

v For Android apps that use Google Cloud Messaging (GCM), use
the <pushSender> element to define the connectivity details to
GCM. The key is the GCM API key, and the senderId is the
GCM Project Number.
For more information about GCM API key and GCM Project
Number, see the Enabling the GCM Service page on the Android
website for developers.
The app user can use the MobileFirst settings page to change the
address of the MobileFirst Server with which the app
communicates. By default, the settings page is disabled. To
enable it for the app, change the include attribute of the
<worklightSettings> element to true. When the page is
included in the app, for Android, a menu item is automatically
appended to the options menu of the app. Users can tap this
menu item to reach the page.

For more information, see the “The <security> element” on page
8-29.

sharedUserId

The sharedUserId attribute is optional. Set it only when device
provisioning is activated on the application by the
<authentication> element. When the sharedUserId attribute is set,
multiple applications with the same value for this attribute can
access the same keystore item on the device. The applications can
thus use the same secure device ID as the one assigned to the
device by the MobileFirst app.

Note: Android apps that have the same sharedUserId but are
signed with different certificates cannot be installed on the same
device.
<android version="1.0" sharedUserId="com.mycompany">
<pushSender key="AIzaSyDcSz7OvxQwr7XKg_0UdOaNJz0pYXuaS_c" senderId="54385266031"/>
<worklightSettings include="false"/>
<security> ... </security>
</android>

<windowsPhone8>

The <windowsPhone8> element has three subelements:
v The <uuid> subelement is used to uniquely identify a Windows

Phone 8 application on the device. It is automatically generated
by MobileFirst Studio when you create the Windows Phone 8
environment for the application.

v For Windows Phone 8 apps that use the Microsoft Push
Notification Service (MPNS), use the <pushSender> subelement to
indicate that the app is a "pushable" application. That is, the app
subscribes to event sources and receives push notifications. You
also use the <pushsender> subelement to set attributes for

Developing MobileFirst applications 8-27

http://developer.android.com/google/gcm/gs.html#gcm-service

authenticated push. For more information, see “Setting up push
notifications for Windows Phone 8” on page 8-460.

v The <allowedDomainsForRemoteImages> subelement is used to
enable the application tile to access remote resources. Use
subelement <domain> within <allowedDomainsForRemoteImages>
to define the list of allowed remote domains from which to
access remote images. Each domain in the list is limited to 256
characters.

Note: You cannot add thee <allowedDomainsForRemoteImages>
subelement to the application descriptor by using the Design
editor. You must use the Source editor instead.
<windowsPhone8 version="1.0">
<uuid>87e096eb-6882-4cef-9f66-e68769de3926</uuid>
<pushSender/>
<allowedDomainsForRemoteImages>

<domain>http://icons.aniboom.com</domain>
<domain>http://media-cache-ec2.pinterest.com</domain>

</allowedDomainsForRemoteImages>
</windowsPhone8>

<windows8>
The <windows8> element contains the following subelements:
v Use the <certificate> subelement to sign the Windows 8

application before you publish it. For more information, see
“Signing Windows 8 apps” on page 8-161.

v Use the <uuid> subelement to uniquely identify a Windows 8
application. The UUID is automatically generated by MobileFirst
Studio when you create the Windows 8 environment for the
application.

<windows8 version="1.0">
<certificate PFXFilePath="Path to certificate file" password="certificate password"/>
<uuid>556a98a3-63fb-4602-827c-0b6bd9d00490</uuid>
</windows8>

<mobileDeviceSSO>
When the <mobileDeviceSSOelement> element is specified, device single
sign-on (SSO) is enabled for the application. Therefore, when a session
requires authentication in a realm and a session is already active from the
same device as authenticated in that realm, the authentication details from
the existing session are copied to the new session. The user does not have
to re-authenticate when starting the new session.
<mobileDeviceSSO join="true" />

<air>

The optional <air> element has the following structure:
v The showOnTaskbar attribute determines behavior of the AIR application

on the taskbar. For more information, see “Specifying the application
taskbar for Adobe AIR applications” on page 8-159.

v Use the <certificate> element to sign the AIR application before you
publish it. For more information, see “Signing Adobe AIR applications”
on page 8-161.

v Use the <height> element to determine the height of the application on
desktop environments.

v Use the <width> element to set the width of the application on desktop
environments.

8-28 IBM MobileFirst Platform Foundation V6.3.0

<air version="1.0" showOnTaskbar="always">
<certificate password="password" PFXFilePath="path-to-pfx"/>
<height>410</height>
<width>264</width></air>

<popup>

When login is configured as popup, you must provide the dimensions of
the login window.
<loginPopupHeight> Height in pixels </loginPopupHeight>
<loginPopupWidth> Width in pixels </loginPopupWidth>

The <security> element

The <security> element is a subelement of the <iphone>, <ipad>, <android>, and
<windowsPhone8> elements. It is used to configure security mechanisms for
protecting your iOS, Android, and Windows Phone 8 apps against various
malware and repackaging attacks. The element has the following structure:

<encryptWebResources>
The <encryptWebResources> element controls whether the web resources
that are associated with the application are packaged and encrypted within
the application binary file (a file with the .apk or .app name extension). If
its enabled attribute is set to true, the IBM MobileFirst Platform
Foundation builder encrypts the resources. The application decrypts them
when it first runs on the device.

<testWebResourcesChecksum>
The <testWebResourcesChecksum> element controls whether the application
verifies the integrity of its web resources each time it starts running on the
mobile device. If its enabled attribute is set to true, the application
calculates the checksum of its web resources and compares the checksum
with a value that was stored when the application was first run. Checksum
calculation can take a few seconds, depending on the size of the web
resources. To make it faster, you can provide a list of file extensions to be
ignored in this calculation.

<publicSigningKey>
The <publicSigningKey> element is valid only in the Android environment,
under <android>/<security>. This element contains the public key of the
developer certificate that is used to sign the Android app. For instructions
on how to extract this value, see “Extracting a public signing key” on page
8-55.

<productId>
The <productId> element is valid only in the Windows Phone 8
environment, under <windowsPhone8>/<security>. The default value is the
GUID for the project (128 bit). During the app submission process, a new
product ID is inserted into the WMAppManifest.xml file.

<applicationId>
The <applicationId> element is valid only in the Windows Phone 8
environment, under <windowsPhone8>/<security>. The application ID value
must match the value of the wlAppId property, located in the
wlclient.properties file.

<security>
<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>
<!-- publicSigningKey is valid only for Android -->
<publicSigningKey> value </publicSigningKey>

Developing MobileFirst applications 8-29

<!-- productId and applicationId are valid only for Windows Phone 8 -->
<productId>22cbbacb-e323-4419-befb-d3aff42f2126</productId>
<applicationId>MyProj</applicationId>
</security>

The <features> element

Since IBM Worklight V6.0.0, you can control which features are included in your
application. This capability gives you a finer degree of control over the size of your
application, and therefore over its capacity to download and start quickly.

In the application-descriptor.xml file, the <features> element is added
automatically when the application is first created, but with no contents. If later
you add JSONStore features and want to include these resources in the application
build, you can edit the <features> element. You can do so by using the
Application Descriptor Editor or an XML editor, as shown in the following
example:
<application xmlns="http://www.worklight.com/application-descriptor" id="MyProj" platformVersion="6.0.0">

...
<features>

<JSONStore/>
</features>

</application>

If you do not include JSONStore in the build but use it in your code, an error is
raised when you run the app, and you can add it to the <features> element with a
QuickFix.

If, during the testing phase, you find that your application does not use the
JSONStore resources, you can reduce the size of your Android app by removing
the JSONStore argument from the <features> element. When you add or remove a
feature, build the application again for the change to take effect.

Note: The JSONStore resources are still included in your iOS application builds.

For more information about the <features> element, see Including and excluding
application features.

The <cacheManifest> element

A new element now exists in the application-descriptor.xml named
<cacheManifest>. By using this element, you can manage and edit the contents of
the application cache for Desktop Browser and Mobile Web applications, and thus
control which resources are fetched when the application starts. Unused resources
such as large images or unused files, when included in the Cache Manifest file,
increase the startup time for these applications. By editing this file, you can remove
these unnecessary resources and speed up your application.

The cacheManifest element accepts three values, as shown in the following table.

8-30 IBM MobileFirst Platform Foundation V6.3.0

Table 8-5. cacheManifest properties

Property Description

no-use In this mode (which is the default), the cache
manifest is not included in the application
HTML files. This setting means that there is
no cache manifest and that decisions about
which resources are cached are up to the
browser.

generated In this mode, the MobileFirst Studio builder
generates a default cache manifest and
includes it in the application HTML files. The
default cache manifest is generated depending
on the environment:

v For Desktop Browser environments, all
resources are under NETWORK, which
means: no cache at all.

v For Mobile Web environments, all resources
are under CACHE, which means: cache
everything.

In generated mode, in addition to creating the
cache manifest, the builder creates a backup
of the previous cache manifest, called
worklight.manifest.bak. This file is
overwritten in every build.

user In this mode, the MobileFirst Studio builder
does not generate the cache manifest, but it
does include it in the application HTML files.
This setting means that the user must
maintain the cache manifest manually.

If you open the application descriptor in Design view, you can view and set the
current mode of the <cacheManifest> element with the DDE editor:

In Design view, each option is given a description:
v Not Included in the application (default): no-use mode
v Managed by Worklight: generated mode
v Managed by user: user mode

Developing MobileFirst applications 8-31

You can also edit the value in the <cacheManifest> element of the
application-descriptor.xml file itself, as shown in the following code sample:
<application xmlns="http://www.worklight.com/application-descriptor" id="MyProj" platformVersion="6.0.0">

...
<mobileWebApp cacheManifest="generated"/>
<desktopBrowser cacheManifest="generated"/>

</application>

For more information about the cache manifest, see “Application cache
management in Desktop Browser and Mobile Web apps” on page 8-316.

The <languagePreferences> element

The<languagePreferences> element contains a comma-separated list of languages
to enforce IBM MobileFirst Platform Foundation to display system messages. For
more information, see “Enforce language preference for MobileFirst messages” on
page 8-578.

Deprecated elements

The following table lists deprecated and removed elements:

Table 8-6. Deprecated and removed elements in application descriptors

Element
IBM MobileFirst Platform Foundation
version

<provisioning>

<viralDistribution>

<adapters>

<mobile>

Deprecated as of V4.1.3

<worklightRootURL Deprecated as of V5.0

<usage> Deprecated as of V5.0.0.3

<worklightServerRootURL> This element was a replacement for
<worklightRootURL> and was removed in
IBM Worklight V6.0.0:

Login form and authenticator
If your application needs a login form, you can use the default one as is or change
it as necessary.

Applications that require user authentication might have to display a login form as
part of the authentication process. In web widgets, the login form is not part of the
widget resources. It can be triggered by the authentication infrastructure that is
used by the organization or by the MobileFirst Server.

For more information about authentication, see the tutorials on the Getting Started
page.

Setting up a new MobileFirst environment for your application
With MobileFirst Studio, you can build applications for different mobile, desktop,
or web environments within your project.

8-32 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

Before you begin

Note: Starting with IBM Worklight V6.1.0, the structure of Project Explorer is
simplified and focuses on three main components that the user is interested in:
adapters, apps, and services. The following figure shows the directory structure.

About this task

With MobileFirst Studio, you can add environments to your application, and write
code that is specific to one or several mobile, desktop, or web environments. If you
want to create a version of your application for a specific platform, you must add
the environment that corresponds to that platform to your application. For
example, if you want to create an iPhone version of your application, you must
add an iPhone environment. When you add an environment to your application, a
new folder for that environment is created. This folder contains the resources of
the new environment:

images: This folder contains images that override the images in the common
environment that have the same name.

css: This folder contains files that extend or override the CSS files in the common
environment.

js: This folder contains JavaScript files that extend the common application
instance JavaScript object. The class that is defined in this environment folder
extends the common app class.

HTML: This HTML file overrides the HTML file in the common environment that
has the same name.

Note: The common folder in your MobileFirst application folder contains the code
and resources that are common to several environments.

You can add environments to your application either while you create your
application, or later, when your application is created and already located in your
project. This procedure only describes how to add environments to an existing app.
To learn how to create a project, a first hybrid application, and to add
environments to this app, see “Creating MobileFirst projects” on page 8-7. To learn
how to create a hybrid application and to add environments to this app, see
“Creating an application in a MobileFirst project” on page 8-9.

Note: The Keychain Sharing capability is mandatory while running iOS apps in
the iOS Simulator when using Xcode 8. You need to enable this capability
manually before building the Xcode project.

Figure 8-2. Project Explorer showing simplified structure

Developing MobileFirst applications 8-33

Procedure
1. In MobileFirst Studio, go to your application, which is in your project.

You can see your application within your project in the Project Explorer.

2. From the menu on top of the screen, click File > New > MobileFirst
Environment.
A window opens where you can select the environment that you want to add.

3. In the Project name list, select your project.
4. In the Application/Component list, select your application.
5. Select the environments that you want to add.

Figure 8-3. Your MobileFirst application folder

Figure 8-4. New MobileFirst Environment window

8-34 IBM MobileFirst Platform Foundation V6.3.0

You can see the folders corresponding to the environments you added in your
application folder.

The MobileFirst Development Server and the MobileFirst
Operations Console

Learn about the MobileFirst Development Server, how it is viewed in the
MobileFirst Operations Console, and how to access it for Java remote debugging.

Figure 8-5. Selecting the mobile, desktop, and web environments that you want to add to your application

Figure 8-6. MobileFirst application folder that contains folders for the environments you selected

Developing MobileFirst applications 8-35

In IBM Worklight V6.0.0, the Jetty server was replaced with an embedded instance
of WebSphere Application Server Liberty profile. This Liberty profile server is
installed with MobileFirst Studio, and becomes the default test server.

As a result, you see a MobileFirst Development Server element in your Eclipse
Project Explorer view, even before you begin creating new projects and working
with them.

Viewing the MobileFirst Development Server in the MobileFirst
Operations Console

A menu item in MobileFirst Studio allows you to open this console even more
easily. You can automatically redeploy applications in Eclipse studio if you click
Project > Open MobileFirst Console.. If a development server does not have any
applications that are deployed, the server deploys all applications under the
project. Any updated applications that require redeployment will automatically be
deployed again using this command.

You can work with additional instances of MobileFirst Server other than the
embedded MobileFirst Development Server. For example, if you have an additional
instance of WebSphere Application Server Liberty profile or Apache Tomcat that is
installed in your development environment, you can change the context root to the
correct server when building, deploying, or viewing its actions in the console. To
do this, you use the Changing the MobileFirst Server associated with a project
procedure described in “Working with multiple MobileFirst Server instances in
MobileFirst Studio” on page 8-38.

Note: The MobileFirst Development Server is secured with the credentials of a
user named admin and the password admin. The user name and password cannot
be changed in the MobileFirst Development Server. When you open the
MobileFirst Operations Console through MobileFirst Studio, it is not necessary to
enter the user name and password. If you keep the window of the MobileFirst
Operations Console open a very long time, you might receive a request to
reconfirm the password.

Creating a URL to access the MobileFirst Operations Console
directly

In previous releases of MobileFirst Studio, the URL of the MobileFirst Operations
Console used to view the development test server in a browser had the following
format:

http://localhost:<port>/console

Since IBM Worklight Foundation V6.2.0, in MobileFirst Studio, the URL of the
MobileFirst Operations Console has the following format:

http://localhost:<port>/worklightconsole

8-36 IBM MobileFirst Platform Foundation V6.3.0

The default <port> after the installation of MobileFirst Studio is 10080. Therefore,
the URL of the MobileFirst Operations Console becomes:

http://localhost:10080/worklightconsole

The MobileFirst Operations Console can be used to manage several projects. If only
one project is deployed, this project is included directly in the URL of the console.
If several projects are deployed, you can select a project from a page. The format of
the URL of a project selected in this way is:

http://localhost:<port>/worklightconsole/index.html#<projectname>,catalog

The URL of the MobileFirst Operations Console for a project named “myProject”
becomes:

http://localhost:10080/worklightconsole/index.html#myProject,catalog

Note: The Open MobileFirst Console menu command in MobileFirst Studio can
only point to one instance of MobileFirst Server at a time. It displays the console
for the server instance for which the context root was set by using the Run As >
Build Settings and Deploy Target command. If you need to work with several
different servers for test purposes (for example, one instance of Liberty profile and
another of Apache Tomcat), you should save the URLs for the MobileFirst
Operations Console of these servers as bookmarks in your default browser.

Java remote debug and the MobileFirst Development Server

Since IBM Worklight V6.1.0, the Liberty profile instance used as the MobileFirst
Development Server has Java remote debug enabled. The default port is 10777, and
can be viewed in the Console view of MobileFirst Studio when the server is
started:

This default port can be changed by editing the jvm.options file in the MobileFirst
Studio Servers view:

Developing MobileFirst applications 8-37

Removing a project from MobileFirst Operations Console
You can undeploy a MobileFirst project from the development test server in the
Servers view in Eclipse.

About this task

Since the version of MobileFirst Studio available in IBM MobileFirst Platform
Foundation V6.2.0, you can use MobileFirst Operations Console to administer
several MobileFirst projects. When a new project is deployed, it is added to the
development test server. If the project is no longer required, you must undeploy it
manually from the development test server.

Procedure
1. To undeploy projects, open the Servers view in Eclipse.
2. Select MobileFirst Development Server.
3. Right-click to display the menu and select Add and remove.
4. Remove any projects that are no longer required. MobileFirst Operations

Console automatically detects that you have removed the projects.

Working with multiple MobileFirst Server instances in
MobileFirst Studio

Information about how to work in MobileFirst Studio in a development
environment with multiple instances of MobileFirst Server.

As noted in “The MobileFirst Development Server and the MobileFirst Operations
Console” on page 8-35, in IBM Worklight V6.0.0 the embedded Jetty test server
was replaced with an instance of WebSphere Application Server Liberty Profile.

8-38 IBM MobileFirst Platform Foundation V6.3.0

This server is referred to as the MobileFirst Development Server, and is associated
with MobileFirst projects as the default development server. The Open MobileFirst
Console menu item enables you to view it in the MobileFirst Operations Console.
You can think of this instance of Liberty profile as the embedded or internal
development server.

MobileFirst Studio can also work with additional external MobileFirst Server
instances, for example, an instance of Liberty profile that is installed on your
development computer. These external servers are defined in Eclipse's Servers
view. This topic covers the information that you need to know to work with these
external servers.

Starting and stopping MobileFirst Server

Because MobileFirst Server can support multiple MobileFirst projects, there are no
longer Start Server and Stop Server menu options that are associated directly with
the MobileFirst project. Instead, the server that is associated with a MobileFirst
project is started automatically (if the server is not already running) when you
perform an action against that server or adapter. For example, the target server
starts when you use the MobileFirst Studio command Run As > Run on
MobileFirst Development Server.

Path to the MobileFirst Development Server and its console

As previously noted, the default server that is associated with MobileFirst projects
is the embedded MobileFirst Development Server. The default path for this server
is: http://localhost:10080/PROJECT_NAME. The path to the MobileFirst Operations
Console for this embedded server is: http://localhost:10080/worklightconsole.

There are two consoles now. The first is the MobileFirst Operations Console, which
contains the builder and plug-in logs. The second is the MobileFirst Development
Server Console, which contains the MobileFirst Server logs and Liberty profile logs.
For more information about setting logging levels for these consoles, see
“Configuring logging in the development server” on page 13-4.

Working with multiple development servers

You can create and run multiple MobileFirst projects against the same MobileFirst
Server. Therefore, if you have an additional instance of Liberty profile that is
installed in your development environment, you must ensure that the project you
are working with is pointing to the correct server when building, deploying, or
viewing it in the console.

Every change that is made to the project source that is related to the project WAR
file (under the /server folder) is automatically built and deployed to the current
target server. The database connector JAR files and MobileFirst JAR file are also
automatically deployed to this target server when you deploy the WAR file. That
means that the project WAR file (not applications or adapters) is always updated
on the target server. Every time that the project WAR file is built, it also gets
deployed to the server associated with that project.

Note: The status of the server and its projects as it appears in the Eclipse Servers
view does not always reflect its current status. This is a known issue.

Developing MobileFirst applications 8-39

Changing the MobileFirst Server associated with a project

You can change the target test server or change the MobileFirst project context
root (which MobileFirst Server it is associated with) by right-clicking the
application and selecting Run As > Build Settings and Deploy Target.

This action displays the following window:

If the MobileFirst Server instance you want to associate with this project is visible
in the Server drop-down list, select it, update the Context path if necessary, and
click OK. The outcome of this action is:
1. The project WAR file is automatically updated with the new context root value

the next time you build.
2. After rebuilding and deploying the application, the new context root is also

saved in the client-side files.

The selected server now becomes your default test MobileFirst Server. This action
also changes the URL under the Open MobileFirst Console menu command, so
that it now points to the new server.

Note: If the MobileFirst Server instance you want is not displayed in the list on
this Configure MobileFirst Build and Deploy Target window, use the following
procedure to add it.

Adding a new MobileFirst Server

If the MobileFirst Server instance that you want to select is not visible in the
Server dropdown list, you can add a new MobileFirst Server by using the
following procedure. In this example, the user creates a new server entry for an
instance of WebSphere Application Server Liberty Profile that is installed on his
development computer.
1. First, on the Configure MobileFirst Build and Deploy Target window, click Add

Server to display the following window:

8-40 IBM MobileFirst Platform Foundation V6.3.0

2. Select the server type that you want (in this example, WebSphere Application
Server V8.5 Liberty Profile), and click Add:

Developing MobileFirst applications 8-41

3. On the resulting screen, set Path to point to the directory containing the new
external Liberty profile server.

8-42 IBM MobileFirst Platform Foundation V6.3.0

4. After you add the new server, it displays under Server runtime environment.

Developing MobileFirst applications 8-43

5. The new external server now is displayed in the Server field of the Configure
MobileFirst Build and Deploy Target window. If you select the new server on
the Configure MobileFirst Build and Deploy Target window, it becomes the
default target test server, and all builds, deployments, and updates of the
project WAR files made using the Run As > Run on MobileFirst Development
Server command will go there.

An alternate method of reaching this New Server window is to right-click the entry
for an existing server in the Eclipse Servers view and select New > Server from the
menu, as shown in the following screen capture:

8-44 IBM MobileFirst Platform Foundation V6.3.0

In the New Server window, select the type of server you want to add and click
Next. Continue with the remaining screens of the New Server wizard to define
your new server.

Setting the port for new MobileFirst Server instances

When your new server is added, you can see it in the Eclipse Servers view. When
you double-click it, you can view an Overview page on which you can change the
Server Name, change the Host name, and other settings.

When you connect a project in MobileFirst Studio to an existing Liberty profile
server (not the MobileFirst Development Server), you must check one thing before
you attempt to build and deploy MobileFirst applications:

Developing MobileFirst applications 8-45

v In the server.xml file of the target server, inside the httpEndpoint element, make
sure that the Liberty server listens on an external network interface host. Either
use a wildcard symbol (for example, host="*") or use a true public listening IP.
Do not use localhost.

Any change that is done directly in the Liberty server.xml file and is related to the
Liberty configuration causes a server restart.

Writing server-side Java code in a MobileFirst project

Server-side Java code can be added to a MobileFirst project under the
<project>/server/java folder. If that code uses specific server runtime classes, be
sure to add the Server Runtime Library to the Project Build Path:
1. Right-click the project and select Build Path > Configure Build Path.
2. Then, on the Libraries tab, click Add Library.
3. On the Add Library window, select Server Runtime and click Next.
4. On the next screen, select a server runtime library to add to the path and click

Finish.

Otherwise, compilation markers can appear in the Java code.

Developing hybrid applications
Use IBM MobileFirst Platform Foundation to create hybrid applications.

With IBM MobileFirst Platform Foundation, you can perform the following tasks:
v Add MobileFirst capabilities into existing native applications
v Show your splash screen as soon as the application starts
v Generally control the application startup flow and control the business logic of

your apps, by running native code in your apps before they start the web view
By default, hybrid applications start the web view immediately. However, you
can use native code in the startup process and start the web view later.

v Call a MobileFirst hybrid web view from native code and call a native page
from a web view

v Send actions and data objects between JavaScript code and native code.
The actions are received by action receivers. Actions that cannot be delivered
immediately are queued by the MobileFirst framework and delivered after a
suitable action receiver is registered.

Developing hybrid applications for iOS
Develop hybrid applications for iOS as detailed here.

Note: The MobileFirst iOS SDK supports ARC (Automatic Reference
Counting).The default MobileFirst application that is generated for the
iPhone/iPad environment also supports ARC. Refer to the Apple documentation
for more details on ARC.

Understanding the default startup process in iOS-based hybrid applications:

By default, the MobileFirst framework is initialized to display a web view in the
iOS-based hybrid application. The default startup process for iOS-based hybrid
applications is demonstrated here.

initializeWebFrameworkWithDelegate is called to start the initialization process.
After the initialization process is complete,

8-46 IBM MobileFirst Platform Foundation V6.3.0

https://developer.apple.com/library/ios/releasenotes/objectivec/rn-transitioningtoarc/Introduction/Introduction.html

wlInitWebFrameworkDidCompleteWithResult is called. In case of success,
wlInitWebFrameworkDidCompleteWithResult creates the Cordova ViewController
and loads the main HTML file (through mainHtmlFilePath) into the Cordova
WebView. In case of failure, an error dialogue is displayed.

The appName.h file
@interface MyAppDelegate : WLAppDelegate <WLInitWebFrameworkDelegate> {

}

@end

Note: WLCordovaAppDelegate, CDVMainViewController, and
didFinishWLNativeInit APIs are deprecated since V6.2.

The appName.m file
@interface Compatibility50ViewController : UIViewController
@end

@implementation Compatibility50ViewController
/**
In iOS 5 and earlier, the UIViewController class displays views in portrait mode only. To support additional orientations, you must override the shouldAutorotateToInterfaceOrientation: method and return YES for any orientations your subclass supports.
*/
- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation {

return YES;
}
@end

@implementation MyAppDelegate

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

BOOL result = [super application:application didFinishLaunchingWithOptions:launchOptions];

// A root view controller must be created in application:didFinishLaunchingWithOptions:
self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
UIViewController* rootViewController = [[Compatibility50ViewController alloc] init];

[self.window setRootViewController:rootViewController];
[self.window makeKeyAndVisible];

[[WL sharedInstance] showSplashScreen];

[[WL sharedInstance] initializeWebFrameworkWithDelegate:self];

return result;
}

// This method is called after the WL web framework initialization is complete and web resources are ready to be used.
-(void)wlInitWebFrameworkDidCompleteWithResult:(WLWebFrameworkInitResult *)result
{

if ([result statusCode] == WLWebFrameworkInitResultSuccess) {
[self wlInitDidCompleteSuccessfully];

} else {
[self wlInitDidFailWithResult:result];

}
}

-(void)wlInitDidCompleteSuccessfully
{

UIViewController* rootViewController = self.window.rootViewController;

// Create a Cordova View Controller
CDVViewController* cordovaViewController = [[CDVViewController alloc] init] ;

Developing MobileFirst applications 8-47

cordovaViewController.startPage = [[WL sharedInstance] mainHtmlFilePath];

// Adjust the Cordova view controller view frame to match its parent view bounds
cordovaViewController.view.frame = rootViewController.view.bounds;

// Display the Cordova view
[rootViewController addChildViewController:cordovaViewController];
[rootViewController.view addSubview:cordovaViewController.view];

}

-(void)wlInitDidFailWithResult:(WLWebFrameworkInitResult *)result
{

UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:@"ERROR"
message:[result message]
delegate:self
cancelButtonTitle:@"OK"
otherButtonTitles:nil];

[alertView show];
}

Implementing a custom startup process for iOS-based Hybrid applications:

You can implement a custom startup process to first display a native page in
iOS-based hybrid applications.

About this task

The following application demonstrates the flexibility of the MobileFirst
architecture: The application starts from a native page that runs custom native
code. The MobileFirst and Cordova frameworks are used only later in the flow :
v The user clicks a button to initialize the MobileFirst framework. A second button

is enabled only when initialization completes successfully,
v The second button loads the Cordova web view with the main HTML file of the

application.

Procedure

1. Create a hybrid app, which creates the .h file that extends WLAppDelegate. For
example:
@interface MyAppDelegate : WLAppDelegate
{ }
@end

Note: WLCordovaAppDelegate, CDVMainViewController, and
didFinishWLNativeInit APIs are deprecated since V6.2.0.

2. Create a custom native view.

Note: The MobileFirst framework is not used at this point.
For example:
@implementation MyAppDelegate

// Create a custom view before initializing the Worklight framework
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

BOOL res = [super application:application didFinishLaunchingWithOptions:launchOptions];

// code for building a window

// Build custom native UI
MyCustomViewController* customViewController = [[MyCustomViewController alloc]init];

8-48 IBM MobileFirst Platform Foundation V6.3.0

// Set root view controller
self.window.rootViewController = customViewController;

// Show window
[self.window makeKeyAndVisible];

return res;
}
@end

3. Create a custom view controller. The view controller performs some custom
business logic, and contains two buttons
v one to trigger the MobileFirst initialization
v one to load the Cordova Webview

A custom delegate is used to handle the UI actions and to respond to the
initialization completion For example:
@interface MyCustomViewController : UIViewController
{ }
@property (retain, nonatomic) MyWLDelegate* wlDelegate;
@end

@implementation MyCustomViewController
//
- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{

self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
init wlDelegate

return self;
}

- (void)viewDidLoad
{

[super viewDidLoad];
//Run some business logic here

}
//Run some more business logic

// Start Worklight initialization
- (IBAction)onInitWLClicked:(id)sender {

[[WL sharedInstance] initializeWebFrameworkWithDelegate:self.wlDelegate];}

// Load the Cordova web view
- (IBAction)onShowWebViewClicked:(id)sender {

[self.wlDelegate showCordovaWebView];
}}
@end

4. Create the custom delegate that implements WLInitWebFrameworkDelegate
and some custom logic. For example:
@interface MyWLDelegate : NSObject <WLInitWebFrameworkDelegate>
//
@end

@implementation MyWLDelegate

// Implement WLInitWebFrameworkDelegate protocol
-(void)wlInitWebFrameworkDidCompleteWithResult:(WLWebFrameworkInitResult *)result
{

if ([result statusCode] == WLWebFrameworkInitResultSuccess) {
[self wlInitDidCompleteSuccessfully];

} else {
[self wlInitDidFailWithResult:result];

}
}

-(void)wlInitDidCompleteSuccessfully{

Developing MobileFirst applications 8-49

// Enable the button on the viewController
}

// load and show the Cordova WebView
-(void)showCordovaWebView
{

// build the cordova view controller
CDVViewController* cordovaViewController = [[[CDVViewController alloc]init]];

// Set URL of main HTML file
cordovaViewController.startPage = [[WL sharedInstance]mainHtmlFilePath];

// Show the Cordova web view
UIViewController* rootViewController = self.window.rootViewController;
[rootViewController addChildViewController:cordovaViewController];
[rootViewController.view addSubview:cordovaViewController.view];

}

// Handle initialization failure
-(void)wlInitDidFailWithResult:(WLWebFrameworkInitResult *)result
{

UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:@"ERROR" message:[result message] delegate:self cancelButtonTitle:@"OK" otherButtonTitles:nil];
[alertView show];
[alertView release];

}
@end

Specifying the icon for an iPhone application:

Put the icon in your application's /iphone/nativeResources/Resources folder. It is
copied from there at build time.

About this task

You want to use a particular icon for your application in the iPhone environment.

Procedure

1. Place the icon that you want to use in the project/apps/application/iphone/
nativeResources/Resources folder.

2. Build and deploy your application.

Results

The icon is copied to the project/apps/application/iphone/native/Resources
folder.

Though you can place the icon directly into the project/apps/application/iphone/
native/Resources folder, you risk losing the icon if that folder is deleted for any
reason.

Customizing iOS applications:

You can further customize your iOS application by extending a different class than
the default MobileFirst class.

Before you begin

These features require you to create your application in IBM MobileFirst Platform
Foundation V6.2.0 and later. If you created your application in a previous version

8-50 IBM MobileFirst Platform Foundation V6.3.0

of IBM Worklight, follow the upgrade procedures to upgrade your application to
V6.2.0.

About this task

By default, the application delegate extends the WLAppDelegate class, which
provides you with access to various features provided by IBM MobileFirst Platform
Foundation, such as push notifications and local notifications. However, if your
application delegate extends a class other than WLAppDelegate, you can still
access MobileFirst features by following these steps.

Procedure

1. Create a hybrid iOS application
2. In MyAppDelegate.h, have MyAppDelegate extend a different class than

WLAppDelegate. For example,
MyAppDelegate : UIResponder <WLInitWebFrameworkDelegate,UIApplicationDelegate>

3. Add the window property to MyAppDelegate.h, following iOS guidelines.
@property (nonatomic, retain) IBOutlet UIWindow* window;

4. Add the launchOptions property to MyAppDelegate.h
@property (nonatomic, retain) NSMutableDictionary* launchOptions;

5. Synthesize the two properties in MyAppDelegate.m
@synthesize window, launchOptions;

6. In MyAppDelegate.m, make the following changes to
applicationDidFinishLaunchingWithOptions:
a. Make necessary changes to the super call. In this example, remove the line

BOOL result = [super application :application didFinishLaunchingWithOptions:launchOptions]

and return YES instead of result.
b. Add the following line to keep the launchOptions. For example,

self . launchOptions = [NSMutableDictionary dictionaryWithDictionary :launchOptions];

Results

You can now run your application and access most of the MobileFirst features.
Some features, such as custom URL schemas, local notifications, and push
notifications require extra steps.

What to do next

To enable the use of custom URL schemas, add the following method to your
application delegate (MyAppDelegate), and follow the Cordova documentation on
handleOpenURL

- (BOOL)application:(UIApplication*)application handleOpenURL:(NSURL *)url
{

[[NSNotificationCenter defaultCenter] postNotificationName: WLapplicationHandleOpenURL object :url];
return YES;

}

To use Local Notifications, add the following method to your application delegate
(MyAppDelegate), and follow the Cordova documentation on sending local
notifications to Cordova plug-ins.

Developing MobileFirst applications 8-51

- (void)application:(UIApplication*)application
didReceiveLocalNotification:(UILocalNotification*)notification
{

[[NSNotificationCenter defaultCenter] postNotificationName: WLapplicationDidReceiveLocalNotification object:notification];
}

To enable MobileFirst Hybrid Push Notifications, add the following three methods
to your application delegate (MyAppDelegate), and follow the MobileFirst
documentation on Hybrid Push Notifications.
- (void)application:(UIApplication *)application didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken
{

[[NSNotificationCenter defaultCenter] postNotificationName :WLapplicationDidRegisterForRemoteNotificationsWithDeviceToken object:deviceToken];
}

- (void)application:(UIApplication *)application didFailToRegisterForRemoteNotificationsWithError:(NSError *)error {
[[NSNotificationCenter defaultCenter] postNotificationName :WLapplicationDidFailToRegisterForRemoteNotificationsWithError object:error];

}

- (void)application:(UIApplication *)application didReceiveRemoteNotification:(NSDictionary *)userInfo {
[[NSNotificationCenter defaultCenter] postNotificationName :WLapplicationDidReceiveRemoteNotification object:userInfo];

}

Developing hybrid applications for Android
Develop hybrid applications for Android as detailed here.

Note: When Android runs in debuggable mode, which can be set in the
application’s manifest file, unintended consequences can occur. One consequence is
that SSL errors are not displayed by Cordova, such as when the server certificate is
not trusted.

Important: When building an Android application for deployment to a production
environment, do not build it to run in debuggable mode. Ensure that the
AndroidManifest.xml file does not include an android:debuggable attribute, or set
its value to false. For more information, see Configuring Your Application for
Release.

Note: If you are targeting devices on API level below 14, add the following
permission to your AndroidManifest.xml file: <uses-permission
android:name="android.permission.GET_TASKS"/>. This permission is required for
the heartbeat functionality to function properly.

Enabling a Cordova app to support Android SDK version 23 permissions:

You might need to update some items to support permission handling for your
IBM MobileFirst Platform Foundation version 6.3 Apache Cordova applications
that target Android SDK version 23 and request permissions at runtime.

About this task

The original version of the IBM MobileFirst Platform Foundation version 6.3 did
not support permission handling for Android SDK version 23. Enabling this
support required some changes to the cordova-android platform and the following
Cordova core plug-ins that are included with IBM MobileFirst Platform
Foundation:
v Camera
v Contacts
v File
v Media

8-52 IBM MobileFirst Platform Foundation V6.3.0

http://developer.android.com/tools/publishing/preparing.html#publishing-configure
http://developer.android.com/tools/publishing/preparing.html#publishing-configure

v Media-capture

To enable this support in your third-party Cordova plug-ins, complete the
following steps:

Procedure

1. Update your third-party Cordova plug-ins to a version that supports requesting
permissions at runtime.

2. Add the PermissionHelper.java file. This file is a dependency for any plug-in
that uses the Android SDK version 23 permissions. If you do not have any
third-party Cordova plug-ins that depend on permissions, then you do not
need to add the PermissionHelper.java file.
a. Create an org.apache.cordova package.
b. Download the PermissionHelper.java file from the Apache

cordova-plugin-compat GitHub repository at: https://github.com/apache/
cordova-plugin-compat/blob/master/src/android/PermissionHelper.java.

c. Add the PermissionHelper.java file into the package directory that you
created in step 2a. You only need to add the PermissionHelper.java file to
your project once, even if you have more than one third-party plug-in.

Understanding the Default startup process in Android-based Hybrid
applications:

By default, the MobileFirst framework is initialized to display a web view in the
Android-based hybrid application. The default startup process for Android-based
hybrid applications is described here.

The default activity

The default activity for the Android environment extends CordovaActivity and
implements WLInitWebFrameworkListener.

For example:
public class AndroidWebview extends CordovaActivity implements WLInitWebFrameworkListener {

@Override
public void onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState);

Note: The WLDroidGap API is deprecated since V6.2.

WL APIs

The WL APIs are called before any other IBM MobileFirst Platform Foundation API
to initialize the IBM MobileFirst Platform Foundation framework.

For example:
//Create Worklight framework, show splash screen, and initialize
//the web framework, passing ’this’ as the listener for the web
//initialization process

WL.createInstance(this);

WL.getInstance().showSplashScreen(this);

Developing MobileFirst applications 8-53

https://github.com/apache/cordova-plugin-compat/blob/master/src/android/PermissionHelper.java
https://github.com/apache/cordova-plugin-compat/blob/master/src/android/PermissionHelper.java

WL.getInstance().initializeWebFramework(getApplicationContext(), this);

// Add additional code here
}

Initialization status

If the initialization status is SUCCESS, the webpage is loaded with the
WL.getMainHtmlFilePath() method. For example:
@Override

//Start the Cordova web view using the main HTML file path that it gets
//from Worklight framework

public void onInitWebFrameworkComplete(WLInitWebFrameworkResult result){
if(result.getStatusCode() == WLInitWebFrameworkResult.SUCCESS) {
super.loadUrl(WL.getInstance().getMainHtmlFilePath());

Initialization failure

The initialization status can be:
v FAILURE_INTERNAL
v FAILURE_UNZIP
v FAILURE_CHECKSUM
v FAILURE_NOT_ENOUGH_SPACE

For example:
} else {
AlertDialog.Builder alertDialogBuilder = new AlertDialog.Builder(this);
alertDialogBuilder.setNegativeButton(R.string.close, new OnClickListener() {
@Override
public void onClick(DialogInterface dialog, int which) {
finish();

}
}};

alertDialogBuilder.setTitle(R.string.error);
alertDialogBuilder.setMessage(result.getMessage());
alertDialogBuilder.setCancelable(false);
alertDialogBuilder.create();
alertDialogBuilder.show();
}

Implementing a custom startup process in Android-based hybrid applications:

You can display a native page when you start an Android-based hybrid
application.

About this task

You can choose to initialize the MobileFirst framework whenever you want to
display a web view.

Procedure

1. Create the main launcher activity that extends Activity and implements
WLInitWebFrameworkListener. For example:
public class NativeCustomActivity extends Activity implements WLInitWebFrameworkListener {

public void onCreate(Bundle savedInstanceState) {

8-54 IBM MobileFirst Platform Foundation V6.3.0

super.onCreate(savedInstanceState);
WL.createInstance(this);
WL.getInstance().initializeWebFramework(getApplicationContext(), this);

}

public void onInitWebFrameworkComplete(WLInitWebFrameworkResult result){
if (result.getStatusCode() == WLInitWebFrameworkResult.SUCCESS) {

openMainNativeActivity();
} else {

handleWebFrameworkInitFailure(result);
}

}

}

Note: The WLDroidGap API is deprecated since V6.2.
2. Create the main UIActivity that extends Activity. For example:

public class NativeMainActivity extends Activity {

public void onStart(){
super.onStart();
// The rest of the code for regular native activity,
// and opening a CordovaActivity when ever it’s needed
openHybridPage();

}

}

Specifying the icon for an Android application:

Put the icon in your application's /android/nativeResources/res folder. It is
copied from there at build time.

About this task

You want to use a particular icon for your application in the Android environment.

Procedure

1. Place the icon that you want to use in the project/apps/application/android/
nativeResources/res folder.

2. Build and deploy your application.

Results

The icon is copied to the project/apps/application/android/native/res folder.

Though you can place the icon directly into the project/apps/application/
android/native/res folder, you risk losing the icon if that folder is deleted for any
reason.

Extracting a public signing key:

Copy the public signing key from the keystore to the application descriptor.

Procedure

1. In the Eclipse project explorer, right-click the android folder for the application
and then click Extract public signing key.

Developing MobileFirst applications 8-55

A wizard window opens.

Figure 8-7. Extracting the public signing key

8-56 IBM MobileFirst Platform Foundation V6.3.0

2. In this window, enter the path to your keystore.
The keystore is usually in one of the following directories, depending on
operating system.

Option Description

Windows C:\Documents and Settings\user_name\
.android\

OS X and Linux ~/.android/

3. Enter the password to your keystore and click Load Keystore.
The password is usually android.

4. When the keystore is loaded, select an alias from the Key alias menu and click
Next. For more information about the Android keystore, see the Signing Your
Applications page of the Android site at http://developer.android.com/guide/
publishing/app-signing.html .

5. In the window, click Finish to copy the public signing key directly into the
application descriptor.

Figure 8-8. Adding the Android public signing key

Developing MobileFirst applications 8-57

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html

Results

The public key is copied to the application descriptor. See the following code
example:
<android version="1.0">

<worklightSettings include="false"/>
<security>
<testAppAuthenticity enabled="false"/>
<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>
<publicSigningKey>MIGfMA0CSqGSIb3DQEBAQUAA4GNADCBiQKBgQCE+TiHbDxPx0HA6rARXoJWC071hLLBytTDSdNe/>

</security>
</android>

Managing device orientation:

When you develop Android applications that target an API level equal or higher
than 13, you must include the screenSize value to the android:configChanges
attribute in the AndroidManifest.xml file. Otherwise, the application fails to run
properly when the device orientation changes.

Assuming that IBM MobileFirst Platform Foundation is the first main activity in
the AndroidManifest.xml file of your application:
v If your target API is equal or higher than 13, you must add the screenSize value

to the android:configChanges attribute of the <activity> element, as shown in
the following example:
<activity android:name=".worklightStarter" android:label="@string/app_name" android:configChanges="orientation|keyboardHidden|screenSize" android:launchMode="singleTask">

Figure 8-9. Android public signing key

8-58 IBM MobileFirst Platform Foundation V6.3.0

v If your target API is smaller than 13, your activity always handles this
configuration change itself, and you do not need to add the screenSize value to
the <activity> element.

Preparing a project that uses the Cordova camera plug-in with the Android
platform:

You must complete extra steps for the Cordova camera plug-in to work correctly
with your IBM MobileFirst Platform Foundation Cordova app for the Android
platform.

About this task

Starting with Android N, the Cordova camera plug-in requires a fix that enables
the file URI of the photo to be accessed by the camera plug-in. The fix requires
some extra setup steps for the camera plug-in to work correctly. You must
complete these steps when you create a Cordova app that uses the Cordova
camera plug-in with the Android platform or when you modify an existing
Cordova app to use the camera plug-in. If you do not complete the steps, your app
crashes when it starts, and returns the following error messages:
java.lang.RuntimeException: Unable to get provider android.support.v4.content.FileProvider

java.lang.ClassNotFoundException: Didn’t find class "android.support.v4.content.FileProvider"

Complete the following steps to prepare the project:

Procedure

1. Add the android-support-v4.jar file to your project.
a. In a file explorer, browse to your Android SDK directory, which is where

your Android SDK Manager downloads the updates.

Tip: If you are using Android Studio, you can open the SDK Manager from
the toolbar.

b. If it is not already installed, install the Android Support Repository in your
Android environment.

c. Browse to extras/android/m2repository/com/android/support/support-
core-utils.

d. Select version 24.2.0, or higher, of the support-core-utils repository.
e. Extract the classes.jar file from the support-core-utils-24.2.0.aar

package.

Tip: If you do not have a file archive tool, you can change the .aar file
extension to .zip to extract the classes.jar file.

f. Add the classes.jar file to the libs directory of your Android platform.
2. Update the AndroidManifest.xml file.

a. Open the AndroidManifest.xml file that is in the platforms/android folder.
b. Add the following lines inside of the ending <application> tag:

<provider android:authorities="{PACKAGE_ID}.provider" android:exported="false"
android:grantUriPermissions="true" android:name="android.support.v4.content.FileProvider">
<meta-data android:name="android.support.FILE_PROVIDER_PATHS" android:resource="@xml/provider_paths" />
</provider>

Where {PACKAGE_ID} is replaced with the Android Package ID of your
project.

Developing MobileFirst applications 8-59

c. Save the AndroidManifest.xml file.
3. Update the config.xml file.

a. Open the config.xml file that is in your project folder.
b. Inside the <platform name="android"> tag, add the following tag:

<preference name="applicationId" value="{PACKAGE_ID}"/>

Where {PACKAGE_ID} is replaced by the Android Package ID of your
project.

c. Save the config.xml file.

Building Android applications with Android Studio:

From MobileFirst Studio, point to the directory that contains your Android Studio
installation, and run your Android application as an Android Studio project.

About this task

You want to use Android Studio as the IDE to customize and build your Android
application.

Procedure

1. In MobileFirst Studio, go to Window > Preferences > MobileFirst (or Eclipse >
Preferences > MobileFirst on Mac OS), click Browse, and specify the directory
where your Android Studio is installed.

2. Right-click the Android environment folder of your project, and click Run As >
Android Studio project to start Android Studio.

Developing hybrid applications for BlackBerry
Develop hybrid applications for BlackBerry as detailed here.

IBM MobileFirst Platform Foundation supports development of BlackBerry 6, 7,
and 10 hybrid mobile applications.

Important: Blackberry 6 and 7 hybrid mobile application performance might not
be on par with the latest BlackBerry 10 operating system due to older embedded
browser technologies and hardware. It is best to use prototypes to validate that
applications meet your performance targets on Blackberry 6 and 7. When advanced
performance is needed, native development should be preferred.

Creating a MobileFirst BlackBerry 10 environment:

Follow these instructions to create a MobileFirst BlackBerry 10 environment.

About this task

The BlackBerry 10 environment uses the latest version of Cordova. Use either
Ripple or Cordova Ant scripts to create a MobileFirst BlackBerry 10 environment,
and follow the steps in the Procedure section to ensure that your program runs
correctly.

Note: BlackBerry OS 10 is not supported by the current version of the Application
Center.

8-60 IBM MobileFirst Platform Foundation V6.3.0

Procedure

1. Follow all instructions to install WebWorks SDK, described at HTML5
WebWorks.

2. Install Ant Version 1.8 (or later) if it is not already installed. You can obtain Ant
Version 1.8 from http://ant.apache.org/.

3. Download the ant-contrib-1.03b.jar file from http://central.maven.org/
maven2/ant-contrib/ant-contrib/1.0b3/ant-contrib-1.0b3.jar, and save the .jar
file in the lib folder of the Ant installation folder, ANT_HOME.

4. If you use Ant scripts, manually modify the project.properties file. Provide
values for the following variables in project.properties. This step is not
relevant if you are using Ripple.
BB10 Code Signing Password
qnx.sigtool.password=

For simulator:
QNX Simulator IP
#
If you leave this field blank, then
you cannot deploy to simulator
#
qnx.sim.ip=

QNX Simulator Password
#
If you leave this field blank, then
you cannot deploy to simulator
#
qnx.sim.password=

for device:

The initial device ip is 169.254.0.1, that is, the one that is usually given when connected via USB to the computer; you can change if setup on device is different
QNX Device IP
#
If you leave this field blank, then
you cannot deploy to device
#
qnx.device.ip=169.254.0.1

You also must change
QNX Device Password
#
If you leave this field blank, then
you cannot deploy to device
#
qnx.device.password=

QNX Device PIN
#
Fill this value in to use debug tokens when debuging on the device
qnx.device.pin=

5. Do ▌not▐ delete or change the following elements in config.xml:
<!-- start_worklight_host_server do not change this line-->

<access subdomains="true" uri="http://9.148.225.82" />
<!-- end_worklight_host_server do not change this line-->

The correct server TCP/IP address is automatically put in the <access> element
on each MobileFirst build. If this element is deleted or changed, the TCP/IP
address cannot be automatically updated.

Developing MobileFirst applications 8-61

https://developer.blackberry.com/html5/documentation/
https://developer.blackberry.com/html5/documentation/
http://ant.apache.org/
http://central.maven.org/maven2/ant-contrib/ant-contrib/1.0b3/ant-contrib-1.0b3.jar
http://central.maven.org/maven2/ant-contrib/ant-contrib/1.0b3/ant-contrib-1.0b3.jar

6. BlackBerry 10 supports Ripple. If you intend to use Ripple, specify {project
name}/apps/{app name}/blackberry10/native/www as the root folder in Ripple.
Before you package or start the application with Ripple, perform the following
steps:
a. Install Ant if it is not already installed.
b. Open a command window, and navigate to the {project name}/apps/{app

name}/blackberry10/native folder.
c. In the {project name}/apps/{app name}/blackberry10/native folder, run

the ant qnx copy-extensions command.

Note: If you uninstall and install back the WebWorks SDK, make sure to run
the ant qnx copy-extensions command again.

7. BlackBerry 10 is based on QNX. To run the application on the phone by using
Cordova Ant scripts, use ant qnx <command>, where <command> is one of the
commands that are defined in the native/qnx.xml file. For example, use ant
qnx debug-device to build, deploy, and run the app on the device.

MobileFirst BlackBerry 10 project with WebWorks SDK 2.0:

Follow these instructions to make a MobileFirst BlackBerry 10 project work with
BlackBerry WebWorks SDK 2.0.

With WebWorks SDK 2.0, BlackBerry inverts their model. Instead of Cordova being
the facade on top of WebWorks, WebWorks is now the facade on top of Cordova.
The specific function of WebWork is implemented as Cordova plug-ins.

Note: WebWorks SDK 2.0 is built upon Apache Cordova 3.4 and the platform
aligns with the Apache Cordova open source project now.

According to the documentation of WebWorks SDK 2.0, it basically describes how
to create a new WebWorks 2.0 project and move all the assets over. For more
information, see Upgrading to WebWorks 2.0.

However, there are implications on MobileFirst projects. The webworks.js file is no
longer available in WebWorks 2.0. It is replaced with cordova.js file (BlackBerry
version). There is also a difference in the project folder structure between
WebWorks 1.x and WebWorks 2.0. As a result, the existing instructions in IBM
MobileFirst Platform Foundation do not work as-is with WebWorks 2.0. Complete
the following instructions to make IBM MobileFirst Platform Foundation work
with WebWorks 2.0.

Add an environment

1. Define a WEBWORKS_HOME environment variable. The value of this
variable must be the path to your WebWorks SDK.

2. Create your MobileFirst BlackBerry 10 application.
3. Click the MobileFirst icon, and select MobileFirst Environment to add

an environment to your application.

8-62 IBM MobileFirst Platform Foundation V6.3.0

http://developer.blackberry.com/html5/documentation/v2_0/upgrading_to_webworks_20.html

4. Select BlackBerry 10, and click Finish.

5. A blackberry10 environment folder is automatically added. This
environment folder includes the following subfolders:
v css – The properties that are specified here override the CSS files

from the common folder.
v images – The specific images of BlackBerry can be added here. If an

image with the same file name exists in the common folder, it is
overwritten in the BlackBerry application.

v js – The JavaScript that can extend and, if required, overrides
JavaScript from the common folder.

Developing MobileFirst applications 8-63

Upgrade MobileFirst BlackBerry 10 Project

1. Install Ant. Ignore this step if Ant is installed.
2. Open a command window. Browse to the project_name/apps/app_name/

blackberry10/native folder.
3. In the project_name/apps/app_name/blackberry10/native folder, run

the ant qnx upgrade-webworks-SDK-2.x command.

Creating a project with WebWorks SDK 2.0

1. Setup BlackBerry 10 WebWorks SDK 2.0. For more information, see
WebWorks: Setting up your tools.

2. Create a WebWorks SDK 2.0 project by using the following WebWorks
command: webworks create project_name

3. Remove contents from project_name/www folder of the project.
4. Copy the webresources folder and the images under www folder of the

MobileFirst BlackBerry 10 environment folder.

5. Paste the copied files under project_name/www folder of the WebWorks
SDK 2.0 project.

8-64 IBM MobileFirst Platform Foundation V6.3.0

https://developer.blackberry.com/html5/documentation/v2_0/setting_up_your_tools.html

6. Copy the config.xml file of the MobileFirst BlackBerry 10 environment
folder, and paste it under the root folder of WebWorks SDK 2.0 project.
Replace the existing one.

Add Device and Globalization Cordova plug-ins

Add Device and Globalization Cordova plug-ins to WebWorks project, as
they are used in MobileFirst JavaScript files. Use the following command
to add these two plug-ins:
v webworks plugin add org.apache.cordova.device

v webworks plugin add org.apache.cordova.globalization

Note: These two plug-ins must be added before you run your application,
otherwise the app would not connect to MobileFirst Server. Add other
plug-ins based on your requirement.

Basic commands to Build and Deploy

v Add plug-ins, if required.
– webworks plugin add plugin_id

–
v Build and deploy on the device.

– Connected through USB.
webworks run –-devicepass device_password –-keystorepass
keystore_password

– Connected through wireless.
Create target:
- target add target_id ip-address -t device -p password --pin

device_pin

Then, run:
- webworks run --devicepass device_password --target=target_id

--keystorepass keystore_password

– Interactive mode.

Developing MobileFirst applications 8-65

Developer is asked to provide input for the device password, the
keystore password, and so on.
Run the command:
- webworks run

v Help
– Run the WebWorks command to get help.

Developing hybrid applications for Windows Phone
Develop hybrid applications for Windows Phone 8 as detailed here.

To develop applications for Windows Phones on IBM MobileFirst Platform
Foundation, you must add a Windows Phone 8 environment to your hybrid
application. When you build a MobileFirst application with the Windows Phone 8
environment, a Visual C# Silverlight Windows Phone project is created. You can
build and test this project from Microsoft Visual Studio.

Direct update consideration in development environment

You can get an unintended direct update in the development environment. This
behavior is because IBM MobileFirst SDK stores the direct update resources in the
isolated storage of the device or simulator. When you redeploy the app from
Visual Studio, the isolated storage contents are not cleared. This leads to a
mismatch in the version information of the app in the MobileFirst Server and what
is in the isolated storage on the device or simulator. The solution is to explicitly
uninstall the app in the device or simulator and proceed with reinstallation from
Visual Studio. Alternately, you can accept the direct update and continue with the
development.

This behavior occurs only when you have already done a direct update at least
once. For more information about isolated storage, see Isolated Storage.

Choosing a target platform

Depending on the target device or simulator, you must choose x86, or ARM from the
Configuration Manager. The AnyCPU configuration is not supported.

Managing the splash screen
Show and hide the splash screen.

Managing the splash screen with JavaScript APIs:

You can choose to show and hide the splash screen with JavaScript.

In JavaScript code, you can use the WL.App.showSplashScreen() and
WL.App.hideSplashScreen() methods to show and hide the splash screen.

By default, the MobileFirst JavaScript library auto-hides the splash screen when the
application is launched. You can choose to disable the automatic hiding of the
splash screen by setting the option autoHideSplash to false in the initOptions.js
file and use the WL.App.hideSplashScreen() method to hide the splash screen after
all of the page initialization tasks (including loading other JavaScript frameworks)
are completed.

8-66 IBM MobileFirst Platform Foundation V6.3.0

http://msdn.microsoft.com/en-us/library/3ak841sy%28v=vs.110%29.aspx

In case the application main web file is set to an external web page (the URL for
the file starts with http:// or https://), the splash screen is automatically hidden
when the web view finishes loading the page.

Managing the splash screen in an Android-based hybrid application:

You can choose how to manage the splash screen for Android during application
initialization.

Java APIs for showing and hiding the splash screen

In Java, you can use the methods WL.getInstance().showSplashScreen(Activity
activity) and WL.getInstance().hideSplashScreen() to show and hide the splash
screen from native code.

Changing the default splash image

You can change the default splash image that is located in the res/drawable folder
and is named splash.png.

Disabling the splash screen in Android

For Android, you can disable the splash screen either by:
v Editing the Native Android App class and removing or commenting out the

WL.getInstance().showSplashScreen(this) API call.
v Deleting the splash.png file in the res/drawable folder.

Cordova splash screen API

If you use the splash screen API offered in Cordova, do not use the MobileFirst
splash screen APIs at the same time.

Showing a custom image

You can show a custom image when you use Cordova splash screen APIs by
storing the image in the res/drawable folder and then either:
v Declaring it in the config.xml file.

<preference name="SplashScreen" value="splash_for_cordova_activity" />
<preference name="SplashScreenDelay" value="60000" />

v Adding it programmatically in the CordovaActivity class.
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

//Add these two lines to enable the Cordova splash screen

this.splashscreen = R.drawable.splash_for_cordova_activity;
this.showSplashScreen(60000);

this.loadUrl(WL.getMainHtmlFilePath());
}

When the web view is ready to be shown, you can hide the splash screen by using:
navigator.splashscreen.hide();

Developing MobileFirst applications 8-67

Showing a custom splash screen by adding a custom activity

You can implement a custom splash screen by adding a custom activity to be used
as a splash screen. Here is an example of code where you to declare an activity in
AndroidManifest.xml.

Note: The activity must have an intent-filter with MAIN and LAUNCHER properties
that are defined in order to be launched.
<activity

android:name="com.MyApp.MySplashScreen"
android:label="@string/app_name"
android:screenOrientation="portrait"
android:theme="@android:style/Theme.Black.NoTitleBar" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

In your activity onCreate() method, after you show the custom UI, you can use the
WL.createInstance().initializeWebFramework() API to initialize IBM MobileFirst
Platform Foundation. Once initialization is complete, you can hide your custom
splash screen activity or move to a different CordovaActivity in order to show the
application's web view.

Showing a custom loading spinner

You can enable a Cordova loading spinner by declaring it in the custom.xml file.
<preference name="LoadingDialog" value="Please wait while the application loads."/>

You can also set the Cordova Activity background color to transparent instead of
the default black by declaring it in the config.xml file.
<preference name="BackgroundColor" value="0"/>

Note:

v By default, the MobileFirst JavaScript library auto-hides the splash screen when
the application is launched. To have a smooth transition from the splash screen
to the web view, set the option autoHideSplash to false in the initOptions.js
file and use the WL.App.hideSplashScreen() method to hide the splash screen
after all of the page initialization tasks (including loading other JavaScript
frameworks) are completed.

v Make sure that your application initialization flow does not block the JavaScript
call to hide the splash screen. For example, a problem can occur when you set
the application to connect to the server on application startup, and you define
form-based authentication that waits for the user to enter login credentials. In
this case, the application shows a web login form behind the splash screen
without a way for the user to interact with it.

Managing the splash screen in an iOS-based hybrid application:

You can choose how to manage the splash screen for iOS during application
initialization.

By default, iOS hybrid applications show a splash screen image during application
initialization. This image is selected at run time from the launch images that are

8-68 IBM MobileFirst Platform Foundation V6.3.0

supplied in the application Xcode project. You can also use a custom splash screen
by replacing the default set of splash images in the native/Resources folder of
your MobileFirst project.

The code that shows the splash screen is in the {AppName}.m class in the
didFinishLaunchingWithOptions method. You can use the [[WL.sharedInstance]
showSplashScreen] API to show the splash screen.

Note:

v You must define a root view controller before you call this API. For example:
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

...
UIViewController* rootViewController = ...
[self.window setRootViewController:rootViewController];
...
[[WL sharedInstance] showSplashScreen];
...

}

By default, the MobileFirst JavaScript library auto-hides the splash screen when
the application is launched. To have a smooth transition from the splash screen
to the web view, set the option autoHideSplash to false in the initOptions.js
file and use the WL.App.hideSplashScreen() method to hide the splash screen
after all of the page initialization tasks (including loading other JavaScript
frameworks) are completed.

v Make sure that your application initialization flow does not block the JavaScript
call to hide the splash screen. For example, a problem can occur when you set
the application to connect to the server on application startup, and you define
form-based authentication that waits for the user to enter login credentials. In
this case, the application shows a web login form behind the splash screen
without a way for the user to interact with it.

v If you use the splash screen API offered in Cordova, do not use the MobileFirst
splash screen APIs at the same time.

v iOS automatically displays the app's launch image when the app is launched
and hides it when the app is ready (after
applicationDidFinishLaunchingWithOptions). After this image is removed, you
can use the MobileFirst splash screen as required by your application's logic. The
documentation in this section describes the MobileFirst splash screen API.

Enabling high-resolution splash images for iPhone 6 and 6 Plus devices:

Use a UILaunchImages dictionary to enable high-resolution splash images.

During app startup on earlier versions of iPhone, iOS looked for splash images
among application resources. IBM MobileFirst Platform Foundation looked for the
same images and displayed them during WebView initialization. For iPhone 6 and
6 Plus, however, iOS is unable to automatically detect high-resolution images and
IBM MobileFirst Platform Foundation is therefore not aware of them. To enable a
high-resolution splash screen image on iPhone 6 and 6 Plus, developers must
create a dictionary that references the set of images in the application resources.
The dictionary comprises UILaunchImages key-value pairs and must be located in
the Info.plist file. When the reference to the set appears in the Info.plist, both
iOS and IBM MobileFirst Platform Foundation are able to select the splash image
that is most suited to the device resolution.

Developing MobileFirst applications 8-69

The following code is a sample dictionary. To enable default MobileFirst splash
images, copy the code as-is into the Info.plist file to enable high-resolution
splash images for iPhone 6 or 6 Plus, along with low-resolution images for iPhone
3, 4, and 5.

Note: Images with lower resolutions must also appear in the dictionary.
The code uses the following image names:
v Default-667h.png: image for iPhone 6
v Default-736h.png: image for iPhone 6 Plus
v Default-736h-Landscape.png: image for iPhone 6 Plus in landscape orientation

Of course, you can customize the code to use your own images.

Note: The name of the splash image must be identical in both the dictionary and
the application resources.

<key>UILaunchImages</key>
<array>

<dict>
<key>UILaunchImageMinimumOSVersion</key>
<string>8.0</string>
<key>UILaunchImageName</key>
<string>Default</string>
<key>UILaunchImageOrientation</key>
<string>Portrait</string>
<key>UILaunchImageSize</key>
<string>{320, 480}</string>

</dict>
<dict>

<key>UILaunchImageMinimumOSVersion</key>
<string>8.0</string>
<key>UILaunchImageName</key>
<string>Default-568h</string>
<key>UILaunchImageOrientation</key>
<string>Portrait</string>
<key>UILaunchImageSize</key>
<string>{320, 568}</string>

</dict>
<dict>

<key>UILaunchImageMinimumOSVersion</key>
<string>8.0</string>
<key>UILaunchImageName</key>
<string>Default-667h</string>
<key>UILaunchImageOrientation</key>
<string>Portrait</string>
<key>UILaunchImageSize</key>
<string>{375, 667}</string>

</dict>
<dict>

<key>UILaunchImageMinimumOSVersion</key>
<string>8.0</string>
<key>UILaunchImageName</key>
<string>Default-736h</string>
<key>UILaunchImageOrientation</key>
<string>Portrait</string>
<key>UILaunchImageSize</key>
<string>{414, 736}</string>

</dict>
<dict>

<key>UILaunchImageMinimumOSVersion</key>
<string>8.0</string>
<key>UILaunchImageName</key>
<string>Default-736h-Landscape</string>
<key>UILaunchImageOrientation</key>
<string>Landscape</string>

8-70 IBM MobileFirst Platform Foundation V6.3.0

<key>UILaunchImageSize</key>
<string>{414, 736}</string>

</dict>
</array>

Managing the splash screen in a Windows Phone 8 based hybrid application:

You can choose how to manage the splash screen for Windows Phone 8 during
application initialization.

Java APIs for showing and hiding the splash screen

In C#, you can use the methods WL.getInstance().showSplashScreen() and
WL.getInstance().hideSplashScreen() to show and hide the splash screen from
native code (App.xaml.cs).

For example,
private void InitializePhoneAppliation()
{

if (phoneApplicationInitialized)
return;
...........

WL.getinstance().showSplashScreen();
}

Changing the default splash image

You can change the default splash image that is in the application root folder and
is named SplashScreenImage.jpg.

Disabling the splash screen in Windows Phone 8

For Windows Phone 8, you can disable the splash screen either by:
v Editing the native Windows Phone 8 App.xaml.cs/MainPage.xaml.cs file and

removing or commenting out the WL.getInstance().showSplashScreen() API
call.

v Deleting the SplashScreenImage.jpg file in the application root folder.

Note:

v By default, the MobileFirst JavaScript library auto-hides the splash screen when
the application is started. To have a smooth transition from the splash screen to
the web view, set the option autoHideSplash to false in the initOptions.js file.
Use the WL.App.hideSplashScreen() method to hide the splash screen after all of
the page initialization tasks (including loading other JavaScript frameworks) are
completed.

v Make sure that your application initialization flow does not block the JavaScript
call to hide the splash screen. For example, a problem can occur when you set
the application to connect to the server on application startup, and you define
form-based authentication that waits for the user to enter login credentials. In
this case, the application shows a web login form behind the splash screen
without a way for the user to interact with it.

v If you use the splash screen API offered in Cordova, do not use the MobileFirst
splash screen APIs at the same time.

Developing MobileFirst applications 8-71

Sending actions and data objects between JavaScript code and
native code
Send actions and data objects from JavaScript code to native code and from native
code to JavaScript code.

The actions are received by action receivers. Actions that cannot be delivered
immediately are queued by the MobileFirst framework and delivered after a
suitable action receiver is registered.

Sending actions and data objects from native code to JavaScript code:

IBM MobileFirst Platform Foundation lets you send actions with optional data
objects from C#, iOS or Java code to JavaScript code.

About this task

You might want to send a custom action from native code to JavaScript code (for
example, for updating the user interface).

Actions are received by action receivers. Actions that cannot be delivered
immediately are queued by the MobileFirst framework and delivered as soon as a
suitable action receiver is registered.

Procedure

1. Add action receiver function in JavaScript code. For example:
WL.App.addActionReceiver ("MyActionReceiverId", actionReceiver);

2. Send action from native code to JavaScript code. For example:
Android
JSONObject data = new JSONObject();
data.put("someProperty", 12345);
WL.getInstance().sendActionToJS("doSomething", data);

iOS
NSMutableDictionary *data = [[NSMutableDictionary alloc] init];
[data setValue:@"12345" forKey:@"testParam"];
[[WL sharedInstance] sendActionToJS:@"nativeToJsWithParams" withData:data];

Windows Phone 8
JObject data = {someProperty:1234};
WL.getInstance().sendActionToJS("doSomething", data);

3. Implement a JavaScript action receiver function to receive and handle incoming
actions and data. For example:
function actionReceiver(received){

if (received.action === "doSomething" && received.data.someProperty === "12345"){
//perform required actions, e.g., update web user interface

}
}

Sending actions and data objects from JavaScript code to native code:

IBM MobileFirst Platform Foundation lets you send actions with optional data
objects from JavaScript to C#, iOS or Java code.

About this task

You might want to send a custom action from JavaScript code to native code, for
example, for updating the user interface.

8-72 IBM MobileFirst Platform Foundation V6.3.0

Any object can receive actions. To do so, it must implement the WLActionReceiver
interface (for Android, Windows Phone 8) or protocol (for iOS).

Android
void onActionReceived (String action, JSONObject data);

Example
public class MyReceiver implements WLActionReceiver{

void onActionReceived(String action, JSONObject data){
//process received action
}

}

Note: Actions are always delivered on a background thread. If you want to update
the application user interface from the received action, do so on a main user
interface thread, for example by using the Context.runOnUIThread method.

iOS
-(void)actionReceived:(NSString*)action withData:(NSDictionary*)data;

Example
// MyReceiver.h file
#import "WLActionReceiver.h";
@interface MyReceiver: NSObject <WLActionReceiver>{}
@end

// MyReceiver.m file
@implementation MyReceiver
-(void)onActionReceived:(NSString *)action withData:(NSDictionary *)data{

// process received action
}
@end

Note: Actions are always delivered on a background thread. If you want to update
the application user interface from the received action, do so on a main user
interface thread, for example by using the performSelectorOnMainThread method.

Windows Phone 8
void onActionReceived (String action, JObject data)

Example
public class MyReceiver : WLActionReceiver {

public void onActionReceived(string action, JObject data) {
//process received action
}

}

Actions are received by action receivers. Actions that cannot be delivered
immediately are queued by the MobileFirst framework and delivered as soon as a
suitable action receiver is registered.

Procedure

1. Add an action receiver in native code. For example:
Android
WL.getInstance().addActionReceiver(myReceiver);

iOS
[[WL sharedInstance] addActionReceiver:myReceiver];

Developing MobileFirst applications 8-73

Windows Phone 8
WL.getInstance().addActionReceiver(myReceiver);

2. Send action from JavaScript code to native code. For example:
var data = {someproperty:1234};
WL.App.sendActionToNative("doSomething", data);

3. Implement the native onActionReceived. For example:
Android
void onActionReceived(String action, JSONObject data){
if (action.equals("doSomething")){
//perform required actions, e.g., update native user interface
}

}

iOS
-(void) onActionReceived:(NSString *)action withData:(NSDictionary *) data {

if ([action isEqualToString:@"doSomething"]){
// perform required actions, e.g., update native user interface

}
}

Windows Phone 8
void onActionReceived(string action, JObject data) {
if (action == "doSomething") {
//perform required action, e.g., update native user interface
}

}

Guidelines for testing hybrid MobileFirst applications
When you test hybrid applications, take into consideration several scenarios in
which unexpected behaviors can manifest themselves.

Feature-specific scenarios

Certain features of a MobileFirst application, if not handled correctly, can cause
unexpected behaviors. These behaviors, in turn, create unpleasant user experience.
The features are:
v Remote Disable
v Adapter requests
v Direct Update
v Authentication flow

While the approach described in the coming sections relates to specific features, it
is recommended you embrace the methodology for all aspects of your app. In so
doing, you can verify the integrity of the app over the course of its lifecycle, as
well as during runtime.

Remote Disable
Whenever an application is started, returns to the foreground, or sends an
adapter request to the MobileFirst Server, a check for the Remote Disable
state is first performed by the MobileFirst client-side framework against
the MobileFirst Server.

If the MobileFirst Server determines that a request from an application
must be blocked, a dialog is displayed to the user, by default. This dialog
presents an OK button that upon tapping, returns the user to the
application. Any further attempt to perform an operation that requires
access to the server again displays the dialog. A possible scenario where
this can cause annoying user experience is when the application performs

8-74 IBM MobileFirst Platform Foundation V6.3.0

an adapter request at the same time that the application is started, or
returns to the foreground, expecting to display the result of the request. If
access to the server is blocked, no response is received by the application,
possibly leaving the screen blank and preventing the user from using the
application.

The problem can be remedied either by avoiding dead-end scenarios such
as the one just described, or, if required, by creating a custom Remote
Disable behavior. For more information, see this blog post.

Adapter requests
Most MobileFirst applications use adapters to retrieve data from back-end
services. Using an adapter can cause connectivity errors such as timeouts
that are caused by slow networks. To prevent such scenarios, take the
following actions:
v Define a larger timeout value for the WL.Client.invokeProcedure()

method.
v Use the onSuccess option to do data processing.
v Use the onFailure option to provide appropriate error messages.

Sometimes, even though a response was provided by the back end,
processing may still fail. For more information on handling adapter
invocation responses, see this blog post.

Direct Update
There are two implementations of Direct Update:
v Default: The MobileFirst framework is responsible and controls the

Direct Update lifecycle.
v Custom: The developer is responsible and controls the Direct Update

lifecycle.

Whether you choose the default or custom implementation, it is important
to test that updates to be deployed in future to the MobileFirst Server do
not break the application. In addition, when implementing a custom Direct
Update, the developer is responsible to verify the following outcomes:
v The way in which the update is presented to the end user
v The success condition of the update
v The failure condition of the update

For more information, see “Customizing the direct update interface and
process” on page 8-174.

Authentication flow
Authentication can be performed in various ways, from form-based and
custom-based authentication through to device provisioning. For all types
of authentication, you must verify the following:
v That the authentication form takes failure, timeout, and logout

conditions properly into account and handles them.
v When and how failure, timeout, and logout conditions should be

applied.
v That the user does not experience a malformed or non-functional UI on

failure, timeout, or logout.

Network-specific scenarios

Most applications require a reliable Internet connection. This dependency makes
apps prone to errors such as timeouts that are caused by slow networks or to

Developing MobileFirst applications 8-75

https://www.ibm.com/developerworks/community/blogs/worklight/entry/how_to_create_a_customized_remote_disable_behavior?lang=en
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
https://www.ibm.com/developerworks/community/blogs/worklight/entry/handling_backend_responses_in_adapters?lang=en

complete breakdowns in connectivity. The issue can manifest itself at some point
during the application runtime: when connecting to the MobileFirst Server, or
when invoking adapters. To solve this problem, define a larger timeout value for
any of the following:
v The WL.Client.connect() method
v The WL.Client.invokeProcedure() method
v The<connectionTimeoutInMilliseconds> element of the adapter XML file.

General error condition scenarios

In general, by implementing proper error conditions in the logic of the app, you
protect it from crashes and other unexpected behaviors.

Developing user interface of hybrid applications
Develop the user interface of hybrid applications as detailed here.

JavaScript API for UI controls
You can use a JavaScript API to call common user-interface controls, regardless of
the environment.

With IBM MobileFirst Platform Foundation, you can use a JavaScript API to call
user-interface controls that are common to most environments, such as modal
pop-up windows, loading screens, or tab bars.

You can use the following API to render these controls automatically sin a native
way for each mobile platform.

For more information about common UI controls, see the tutorials on the Getting
Started page.

WL.BusyIndicator

The WL.BusyIndicator class implements a common API to display a modal activity
indicator. This method uses native implementation on Android, iPhone, and
Windows Phone platforms.

For more information about the functions of this API, see WL.BusyIndicator.

WL.OptionsMenu

The WL.OptionsMenu class implements a common API to display a menu of options
for Android and Windows Phone.

For more information about the functions of this API, see WL.OptionsMenu.

WL.SimpleDialog

The WL.SimpleDialog class implements a common API for showing a dialog
window with buttons. This method uses native implementation on mobile
platforms. The dialog closes when the user presses any of the buttons.

For more information about the functions of this API, see WL.SimpleDialog.

8-76 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.BusyIndicator.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.OptionsMenu.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.SimpleDialog.html

WL.TabBar

The WL.TabBar class implements a common API to support tabbed application
navigation with a tab bar component for Android and iOS environments.

For more information about the functions of this API, see “Fixing the Tab Bar on
the screen – Android 2.2 and higher” and WL.TabBar.

Fixing the Tab Bar on the screen – Android 2.2 and higher:

Fix the position of the tab bar by updating HTML and CSS.

About this task

To fix the tab bar in one location on the screen on Android 2.2 and higher, perform
the following steps:

Procedure

1. Add the following meta tag to the HTML HEAD section:
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0, user-scalable=no" />

2. Update the Android CSS BODY tag to also apply to the HTML tag, as follows:
html, body {

height: auto;
overflow: auto;

}

Using JavaScript toolkits
Learn how to use javascript toolkits such as JQuery, Dojo Mobile, Sencha Touch.

During the development process, you must design and implement the user
interface of your application. You can achieve a high level of customization by
writing entirely your own CSS style for each component. However, doing so
requires a large amount of resources. You can also use existing JavaScript UI
frameworks such as jQuery Mobile, Sencha Touch (deprecated. See “Deprecated
features” on page 3-15), or Dojo Mobile to optimize your development process.

Dojo Mobile

IBM MobileFirst Platform Foundation supports Dojo Mobile for building the user
interface of your hybrid mobile application. Dojo Mobile is a world class HTML5
open Source mobile JavaScript framework that you can use to develop mobile web
and hybrid applications. Dojo Mobile is part of the Dojo Toolkit, which is
developed and maintained by the Dojo Foundation. You can find information
about Dojo Mobile, including its documentation, at http://dojotoolkit.org/.

You can use Dojo Mobile to develop mobile web applications that have the
appearance of the native device on iPhone, iPod Touch, iPad, Android, and
BlackBerry touch devices.

IBM MobileFirst Platform Foundation V6.3.0 supports the Dojo Toolkit version
1.10.1, which is embedded in MobileFirst Studio.

Note: To use Dojo 1.10.1 in MobileFirst Studio V6.3.0, you must be using Eclipse
Luna SR1 for Java Developers (Eclipse 4.4.1) or higher. If you import an existing

Developing MobileFirst applications 8-77

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.TabBar.html
http://dojotoolkit.org/

workspace with a previous version of Dojo, you do not need Eclipse Luna SR1 for
Java Developers. This limitation exists only when you create a new project that
targets Dojo 1.10.1.

When you create an IBM MobileFirst hybrid application, you can select Dojo
Mobile among several JavaScript toolkit choices. If you select this option, a copy of
Dojo Mobile is added in your project, and a Dojo library project is created in your
workspace to support advances usages of Dojo Mobile.

With MobileFirst Studio you can do the following tasks:
v Create a hybrid application that uses Dojo Mobile. For more information, see

“Creating Dojo-enabled MobileFirst projects” on page 8-79.
v Create the user interface of your Dojo Mobile application with the Rich Page

Editor, which is a WYSIWYG editor that MobileFirst Studio provides. The Rich
Page Editor supports HTML, Dojo Mobile, and JQuery Mobile. For more
information, see “Rich Page Editor” on page 8-103.

v Use predefined application templates to speed up the development of your
application. For more information, see “Mobile patterns” on page 8-114.

v Use all the power of Dojo Mobile through the Dojo library project. For more
information, see “Working with the Dojo Library Project that serves Dojo
resources” on page 8-80.

v For information about how to use Dojo to create a globalized MobileFirst
application, and how to achieve this process by using Dojo Mobile, see
“Developing globalized hybrid applications” on page 8-555.

v For information about how to change Dojo versions that are used by your
MobileFirst projects, see “Changing the Dojo version for MobileFirst projects” on
page 8-91.

Sencha Touch

With Sencha Touch, developers can build mobile web applications that have the
appearance of the native device on iPhone, Android, and BlackBerry touch devices.
Sencha Touch is developed and maintained by Sencha Inc. To download the
Sencha Touch package, see http://www.sencha.com/products/touch/. To begin
the development of your application, you need the sencha-touch.js, and
sencha-touch.css files.

jQuery Mobile

jQuery Mobile is a touch-optimized web framework for smartphones and tablets.
You need jQuery to run jQuery Mobile.

Note: jQuery Core is provided in the MobileFirst library.

You can download the required jQuery Mobile components, which are in the .js
and .css files, at http://jquerymobile.com/download/. Download the zip file,
which has a version number as part of the file name, for example
jquery.mobile-1.4.2.zip. New versions of jQuery are released frequently.

Note: The tools require the non-minified version of the scripts (if necessary, replace
anything with a “min” segment in the file name with the corresponding “full” file).
1. Create a MobileFirst project.
2. Right-click the project and select Hybrid Application.
3. Name the application and configure.

8-78 IBM MobileFirst Platform Foundation V6.3.0

http://www.sencha.com/products/touch/
http://jquerymobile.com/download/

4. Browse for the folder where you downloaded the jquery.mobile-Version.zip.

From the populated selection, choose the required jQuery Mobile components, as
follows:
v jquery.mobile-Version.css, contains all the styling for the mobile widgets and

framework
v jquery.mobile-Version.js, the jQuery mobile framework
v images, which is the whole folder of images that are used by the style sheet for

jQuery's built-in icons

If your project is already created, go ahead and create an application.

Note: MobileFirst Studio also provides a WYSIWYG editor that supports HTML,
Dojo Mobile, and JQuery Mobile. You can use this editor to create the JQuery
Mobile user interface of your application. For more information, see “Rich Page
Editor” on page 8-103.

Creating Dojo-enabled MobileFirst projects:

You can create Dojo-enabled MobileFirst projects that hold all of the resources that
are created and used when you develop a Dojo mobile application.

Procedure

1. In the main menu, click File > New > MobileFirst Project to open the New
MobileFirst Project wizard.

2. In the Name field, enter a name for your new project.
3. From the list of project templates, click one of the following templates to

generate an application for your MobileFirst project, and then click Next.

Template Description

Hybrid Application To create a MobileFirst project with an initial
hybrid application.

Inner Application To create a MobileFirst project with an initial
inner application and point to a built shell
component.

Native API To create a MobileFirst project with a Native
API.

Shell Component To create a MobileFirst project with an initial
shell component application.

4. In the Application name field, enter a name for your new application.
5. Click Configure javaScript Libraries.
6. In the Dojo installation section, select Add Dojo Toolkit to add the Dojo facet

and Dojo support to the application. When you build a mobile web application,
Dojo is included to create the native application, such as an iPhone or Android
application.

7. Specify the Dojo library project that you want to use in your new MobileFirst
project:

Developing MobileFirst applications 8-79

Option Description

Select an existing Dojo library project From the list of available Dojo library
projects, select the library that you want to
use in your MobileFirst project. For example,
dojoLib.

Create a Dojo library project 1. Click New Dojo Library to open the
Dojo Library Setup wizard.

2. In the Name field, enter a name for your
new Dojo library project.

3. Specify the version of Dojo that you
want to install.

4. Configure how your Dojo library project
accesses the Dojo Toolkit and which
version of the toolkit to use:

v Click Provided to select a Dojo
Toolkit that is provided with the
product.

v Click On Disk and then choose one of
the following options:

– Click Archive File to select an
archive file of a compressed Dojo
distribution. When you click Finish,
the contents of the archive file are
automatically extracted into your
project.

– Click Folder to browse to the root
Dojo folder in another project in
your workspace.

5. Expand the Select the Dojo components
to be included in the project section and
select the Dojo components that you
want to include in your project.

6. Click Finish. The new project is now
displayed as an option in the list of
available Dojo library projects.

8. Click Finish. Both the MobileFirst project and the Dojo library project are
created.

Working with the Dojo Library Project that serves Dojo resources:

IBM MobileFirst Platform Foundation projects that use Dojo contain a small subset
of Dojo resources. This subset of Dojo resources is supplemented with resources
(that might not be typical within mobile applications) from a separate Dojo library
project.

The Dojo library project contains a full distribution of Dojo. This version of Dojo
includes both mobile and desktop Dojo resources. You can test your application by
using any of the widgets from the Dojo library. The Dojo library project contains a
full Dojo that you can use in a Dojo application. It is provided on an internal
server, separate from your MobileFirst application.

A MobileFirst project is initialized with only a minimal set of mobile layers and
themes. It contains the Dojo resources that are deployed as part of the MobileFirst

8-80 IBM MobileFirst Platform Foundation V6.3.0

application. The Dojo that is contained in the MobileFirst project is optimized for
size and includes only the features that are required for a basic mobile application.

The Dojo library project provides only the resources that are requested directly by
the Dojo loader, such as the JavaScript modules, their template HTML fragments,
and associated images. The Dojo library project, running separately on an internal
server, provides faster builds, smaller projects, and accurate lists of the Dojo files
that your application is requesting. Here is a view of the improved Dojo workflow
for application size and development speed:

To demonstrate, here are illustrations that show the start of a new MobileFirst
project. After you click Configure JavaScript Libraries, a wizard opens where you
must click Add Dojo Toolkit. An extra field in the template is displayed called
New Dojo Library.

Developing MobileFirst applications 8-81

8-82 IBM MobileFirst Platform Foundation V6.3.0

Note: You can create multiple libraries each for a different version of Dojo. A
MobileFirst project is linked to one library.
The New Dojo Library feature is where access to the full distribution of Dojo is
initiated by linking to the internal server. When you develop your application and
test it, this feature supplies your Dojo Library Requests view with all the Dojo
files requested during execution of your application. Select the files and move
them to your project.

The minimum set of Dojo files that are provided in a MobileFirst project, are in a
www folder in the navigation. It includes these files:
v Nano AMD loader (Dojo.js)
v Two layers for mobile widgets
v en-us NLS bundles for the two layers
v deviceTheme.js and mobile themes

Developing MobileFirst applications 8-83

Note: The deviceTheme.js.map file is not provided by the Dojo Library because of
the way deviceTheme.js is requested by the main web page. deviceTheme.js is
requested by a direct request instead of an asynchronous request. You can obtain
this file from /dojoLib/toolkit/dojo/dojox/mobile only if dojoLib is the library
project. You must copy the file manually.
With this formation, you can develop mobile pages by using Dojox mobile
widgets.

You can manually set up more themes. First copy a theme into the www folder, and
then set up the project css settings. Dijit widgets require a theme, Dojox widgets
each bundle their own theme css.

8-84 IBM MobileFirst Platform Foundation V6.3.0

You can start coding your application. Use any Dojo modules (you no longer need
to consider what files to import into the project). In this example, the
“DateTextBox” comes from dijit/form but this module and its dependencies are

Developing MobileFirst applications 8-85

not in the project yet.

The Dojo loader is redirected to an internal server for modules in these packages:
Dojo, dijit and Dojox.
<script scr="worklight/cordova.js"></script>
<script scr="worklight/wljq.js"></script>
<script scr="worklight.js"></script>
<script scr="worklight/checksum.js"></script>
<script scr="worklight/plugins/org.apache.cordova.core.camera/www/ios/CameraPopoverHandle.js"></script>
<script scr="worklight/plugins/org.apache.cordova.core.contacts/www/ios/Contact.js"></script>
<script scr="worklight/plugins/org.apache.cordova.core.contacts/www/ios/contacts.js"></script>
<script scr="worklight/plugins/org.apache.cordova.core.file/www/ios/Entry.js"></script>
<script>windows.$ = window.jQuery = WLJQ;</script>
<script scr="http://192.168.0.100:9988/dojoLib/factory/inventory/iphone/dojo/dojo.js"> type="text/javascript" data-dojo-config=...></script>

Turn on the Provide Missing Dojo Resources function first, this action injects code
to redirect the Dojo Loader to the server during the MobileFirst build.

8-86 IBM MobileFirst Platform Foundation V6.3.0

To do this open Dojo Library Requests view and then click Provide Missing Dojo
Resources, as illustrated here:

The special view output gives an accurate list of the Dojo files that are requested
by the application. You can use this output as a guide to use the Copy to Project
or Copy to application actions to copy files from the library into the project.

You must turn off the library and verify all the Dojo files are present in the
application. Turn off the server

Developing MobileFirst applications 8-87

then, rebuild the environment and deploy (so that the injected Dojo loader config
is removed) and then run the application again.

You can build the layers that are based on the code that is imported into the
project (which is optional).

The IBM MobileFirst Platform Studio tools use the Dojo that is contained in the
MobileFirst project and the associated Dojo Library project. The following
MobileFirst Studio tools use the Dojo library content:

Rich Page Editor
The Rich Page Editor displays all of the widgets that are available in the
Dojo library.

You can explore and test various Dojo artifacts. You could run and test
your application outside of the Dojo library project. If you test on an
external device or emulator, IDE must be running and must have Internet
connectivity.

8-88 IBM MobileFirst Platform Foundation V6.3.0

MobileFirst Studio provides the Dojo Library Requests view which shows
what resources were requested from the Dojo library project. For example,
if you add the dijit.Calendar Dojo widget (that is not part of the mobile
layers) to the MobileFirst application HTML page, Rich Page Editor uses
the Dojo library to display this widget.

Note: If you run and test your application on a mobile device or use a
device emulator, Eclipse must be running to provide Dojo Library
resources. To shut down Eclipse and test your application in an
environment that is similar to a production environment, you must remove
Dojo Library instrumentation. See “Removing Dojo library
instrumentation” on page 8-91.

JavaScript source validation and content assist
Content assist suggests all of the Dojo widgets that are contained in the
Dojo library, or contained within the MobileFirst project, and new widgets
that you have added to either of these. For example, if you have added
your own Dojo widgets in either project, these new widgets will show up
on the palette and in content assist.

Mobile Browser Simulator
The Mobile Browser Simulator can run with or without the Dojo library
resources. You can use the Dojo Library Requests view to turn on and off
the Dojo library resources.

Select the Provide Library Resources option to specify that you want the
Mobile Browser Simulator to use the Dojo library project when it runs. For
example, when this option is selected the dijit.Calendar widget is
displayed correctly.

Developing MobileFirst applications 8-89

While the Mobile Browser Simulator is running, the Dojo Library
Requests view shows which resources are served from the Dojo library
project, which indicates the particular resources that are requested by the
application but are not included as part of the application.

If the missing resources are required by the final MobileFirst application,
you must add all of the missing resources to the MobileFirst project. The
resources that are logged in the Dojo Library Requests are not available
outside of the MobileFirst Studio development environment.

To add the missing resources to your application, the view provides two
copy actions.

The Copy to Project action

copies selected resources into the project's
www folder. Resources here are built into all Dojo-enabled applications in the
project, which is useful when your applications use a common module or

resource. The Copy to application action

copies selected resources into
the requesting application's common folder, which is useful when an
application uses resources that are unique to that application.

If you disable the Provide Library resources option , the Mobile
Browser Simulator does not use the Dojo library project when it runs. The
Mobile Browser Simulator uses only the resources that are contained in the
MobileFirst project. For example, when this option is selected, the
dijit.Calendar widget is not displayed. When the Mobile Browser
Simulator runs in this mode, the preview emulates the mobile device. The
preview provides only the resources that are available to the application
when it is deployed to a mobile device. No entries are shown in the Dojo
Library Requests view.

8-90 IBM MobileFirst Platform Foundation V6.3.0

Removing Dojo library instrumentation:

If you run and test your application outside of the Dojo library project, you must
remove the Dojo library instrumentation.

Procedure

1. Copy all resources that are provided by the Dojo library project and are
required by the application into the www folder of the MobileFirst project. The
Dojo Console view helps you determine which resources were provided by the
Dojo library project. Only the resources in thewww folder are available when an
application is running on a native platform.

2. In the Dojo Library Requests console view, ensure that Provide Library
Resources is cleared. When Provide Library Resources is cleared, the
dojoConfig mapping that points to the Dojo library project is removed.

3. Run Preview. You can complete debugging actions in the Preview window.
4. Build and deploy the application. All required Dojo resources are in the

MobileFirst project www folder.
Related concepts:
“Working with the Dojo Library Project that serves Dojo resources” on page 8-80
IBM MobileFirst Platform Foundation projects that use Dojo contain a small subset
of Dojo resources. This subset of Dojo resources is supplemented with resources
(that might not be typical within mobile applications) from a separate Dojo library
project.

Changing the Dojo version for MobileFirst projects:

You can change the version of Dojo that is used by an existing MobileFirst project.

Before you begin

Note: A “pre-built” folder for versions of the Dojo toolkit is provided by IBM
MobileFirst Platform Foundation and is officially supported. If you download Dojo
from the Dojo website http://dojotoolkit.org/ and use that for the Dojo library,
Step 5 in the following procedure does not happen.

The procedure explains how to upgrade from the version of Dojo that is included
with IBM MobileFirst Platform Foundation to a new version of Dojo that is
included with IBM MobileFirst Platform Foundation. If you want to take
advantage of a version of Dojo in open source that is not yet included in IBM
MobileFirst Platform Foundation, extra steps are required, see Alternate Procedure.

Procedure

1. In the Project Explorer view, locate the MobileFirst project that you want to
change the Dojo version for.

2. Right-click the MobileFirst project and select Properties to open the Properties
dialog.

3. In the left pane, click Dojo Toolkit to open the properties page for the Dojo
Toolkit that is used by the selected MobileFirst project.

4. Choose one of the following options to change the Dojo version that is used by
the MobileFirst project:
v From the Dojo Library Project list, select an existing Dojo library project that

you want to use in your MobileFirst project.

Developing MobileFirst applications 8-91

http://dojotoolkit.org/

v Click New Dojo Library to create a Dojo library project for use in your
MobileFirst project.

5. Click OK. A dialog box opens prompting you to confirm whether you want to
overwrite the existing Dojo layer files with the new Dojo layer files.

Note: To avoid unpredictable behavior, use Dojo layer files that match the Dojo
library. For example, by using Dojo 1.8 layer files with a Dojo 1.9 library, may
cause unpredictable behavior. If you choose not to overwrite the Dojo layer
files now, you can manually overwrite them later using the pre-built files that
are contained within the Dojo library project. In the Project Explorer view,
expand Dojo library project > toolkit > pre-built.

Alternate Procedure

6. Follow the Procedure steps 1-4. Then continue with the following steps:
a. Ensure the resources that are being used by the application are copied into

the application. Follow the documentation that is outlined for the Dojo
Library Requests view or Console (depending on Studio version).

b. One suitable method involves building new layers from the new version of
Dojo so that the same core and mobile UI layers are created from the
updates. Manually copy them into the project's www folder.

c. The alternative way is to remove the references to the core and mobile UI
layers (“layers/core-web-layer” and “layers/mobile-ui-layer”) from the
application's JavaScript file, and use the Dojo Library Requests view or
Console to find out what's used and then start copying them into the
project.

Implementing a different version of the Dojo Toolkit:

If you need to use a different Dojo Toolkit version, a special procedure is required.

MobileFirst Studio facilitates the integration of Dojo Toolkit into hybrid mobile
applications. However, this Dojo Toolkit and its corresponding optimized resources
(called Dojo layers) are tied to a fixed version per release, which is bundled within
MobileFirst Studio.

MobileFirst Studio has a set of tools to facilitate the integration of latest available
Dojo toolkit into a hybrid application. It also supplies a pre-built set of Dojo files
(called Dojo layers) that bundle the Dojo Mobile modules in a few optimized
resources. These files are copied by default into your Hybrid Dojo project under
the www folder.

Note: Having these custom built layers is required for production deployments,
not just for performance improvements but for a known limitation in Android
environments. For more information, see the Dojo Toolkit website..

Even though MobileFirst Studio provides all the necessary resources to work with
the most updated Dojo Toolkit, there is a chance that you might need to move to a
different Dojo version or even modify the contents of the pre-defined layers. You
also need to optimize your resources for production deployment.

Here is described how those layers are built and the necessary changes that need
to be done in order to have a fully working application with a modified or
updated Dojo toolkit.

8-92 IBM MobileFirst Platform Foundation V6.3.0

http://dojotoolkit.org/reference-guide/1.9/dojox/mobile/faq.html#i-can-t-seem-to-run-dojo-mobile-pages-on-android-devices-when-using-libraries-like-phonegap-what-am-i-doing-wrong

Building standard Dojo layers:

Here are the steps for how to build the standard Dojo layers.

Procedure

1. Download the latest version of the Dojo-Build-Factory build tool.
a. Go to https://github.com/pruzand/Dojo-Build-Factory
b. Select the branch for the Dojo version you are using in your project.
c. Download the compressed repository from the website, which is usually a

file with a name similar to Dojo-Build-Factory-Dojo-Version.zip
d. Extract the file to a known location on your system.

Alternatively, if you Git is installed on your system, you can clone the
Dojo-Build-Factory branch for the Dojo version you need, entering the
following command from your system's command line: git clone -b
<Dojo-Version-Branch> https://github.com/pruzand/Dojo-Build-Factory.git
After you have the Dojo-Build-Factory build tool, a directory structure is
created that contains the following files and folders:
v build
v releases
v LICENSE
v README

2. Open MobileFirst Studio and create a simple project:
a. File > New > Other > Project

b. Give project a valid name, such as DojoBuildFactoryProject.
c. Click Finish.

3. Copy and paste the contents of the Dojo-Build-Factory/build folder to your
new project root.

4. Add the Dojo source from which you want to generate your optimized version
to the src folder of the project. The Dojo source must be a full, decompressed
source release of the Dojo Toolkit. Therefore, it must contain the util folder,
since it is used for the layers generation. The project now has the following
structure and files:

Developing MobileFirst applications 8-93

https://github.com/pruzand/Dojo-Build-Factory

5. Open profiles/env-config.js and change the localeList to specify the
relevant locales you want to include. By default, Dojo Build Factory includes
only US English as the default language, so you see the following entry:
“localeList”: “en-us”. If you want to specify additional locales, you can set
this variable to something like: "localeList" : "en-
us,ar,az,ca,cs,da,de,el,es,fi,fr,he,hr,hu,it,ja,kk,ko,nb,nl,pl,pt,pt-
pt,ro,ru,sk,sl,sv,th,tr,zh,zh-tw"

Note: If the language setting for the target mobile phone is expected to not be
US English, then you must specify that language in this localeList. Otherwise,
it is highly possible that your application will not work.

6. Run the Dojo Mobile build.
a. From within MobileFirst Studio, select Run > External Tools > External

Tools Configuration. The External Tools Configurations window is
displayed.

b. Select Ant Build and click New launch configuration.

c. Set the Buildfile field to point to the build.xml in the root of your Dojo
build factory project.

d. Set the Base Directory to your Dojo build factory project root. Here is an
example of what your configuration could look like.:

Figure 8-10. New launch configuration

8-94 IBM MobileFirst Platform Foundation V6.3.0

e. Go to the Properties tab and confirm that Use global properties as
specified in the Ant runtime preferences is cleared.

f. Add a new property with Name set to profileFile and value set to the
name of the profile file that is located in your project/profiles folder
without the .js extension. For example, profile-1.9

g. After you set up the configuration, click Run. The build takes about 6-15
minutes and can be monitored in the console view.

Results

After completion, the generated Dojo layer files are located inside your project in
the result/compressed/dojo directory, following the *-layer.js naming
convention. If you cannot see those files, do a refresh (F5) on your project root.
There are several different layer files available there, which is much more than just
the mobile-ui-layer.js. You can find the details on what every layer contains on
the Github website.. These instructions can only guide you through the process of
replicating the structure that MobileFirst Studio provides. Depending on your

Developing MobileFirst applications 8-95

https://github.com/pruzand/Dojo-Build-Factory/wiki#standard-layer-files
https://github.com/pruzand/Dojo-Build-Factory/wiki#standard-layer-files

MobileFirst hybrid application requirements, you might want to append extra
layers to your project to make additional optimized Dojo resources available.

Note: There can be problems when you produce the Dojo 1.9 custom build. You
might see errors such as: error(303) Missing include module for layer.
missing: gridx/allModules; layer: dojo/gridx-desktop-layer To resolve these
errors, navigate to project/profiles, open theprofile-version.js file, then look
for the failing layer(s) (in this case gridx-desktop-layer, but also gridx-mobile-layer
fails) and comment out the corresponding layer(s) definition to pull it out from the
custom build:

What to do next

Repeat build execution until it finishes successfully.

Switching an existing project to a new Dojo library:

Here are the steps for moving to a different Dojo Library with the resources you
created previously.

Before you begin

You must already have a Hybrid Dojo Project with a Hybrid app that points to an
existing dojoLib project to complete the following steps.

Procedure

1. Switch the current Dojo project to a different Dojo Library.
a. In MobileFirst Studio, right click <your Dojo project name>, and select

Properties.
b. Select Dojo Toolkit from the menu.

8-96 IBM MobileFirst Platform Foundation V6.3.0

c. Click New Dojo Library

d. Give the library a valid name. For example, NewDojoLib
e. Select On Disk and then fill it with the archive file or folder that contains

the Dojo source. For example, dojo-release-1.9.2-src.tar.gz Use the same
you previously used to create the Dojo Custom build. For the archive file,
specify the Create internal selected folder only under the Import options
section if available.

f. Click Finish to close this dialog. Confirm that the properties page indicates
it uses the new Dojo Library, then click OK.

Developing MobileFirst applications 8-97

A new Dojo Library project must be created, but it is still incomplete because it
lacks the optimized layers you created previously, so there are still few steps to
complete.

2. Go to the newly created Dojo Library project and create a new folder that is
called pre-built under the existing toolkit one.

3. Populate the pre-built folder by creating the following directory structure.

8-98 IBM MobileFirst Platform Foundation V6.3.0

Copy the files from the result/compressed folder in the Dojo Build Factory
project.

Updating the optimized resources in the Dojo project:

Follow these steps to update the optimized resources currently hosted in your Dojo
Project.

Developing MobileFirst applications 8-99

Before you begin

Verify that you switched your project to use the new Dojo Library project to get
the MobileFirst Studio tooling from it. However, the project still contains all the old
resources that were previously copied from the old Dojo Library into the project,
which needs to be updated as well.

Procedure

1. Back up any customization you did to the www folder before you start. It is
unlikely that you did any customization, but if so you must have a backup to
be able to restore it later.

2. Copy the content from the pre-built folder of the Dojo Library project into the
www folder of your current Dojo project.

3. Rebuild the Dojo applications in your Dojo Project to update the resources in
the environments to the new ones.

4. Restart MobileFirst Studio to make sure that the entire tooling suite refreshes
any session-specific resources.

5. Exercise your application as described in “Working with the Dojo Library
Project that serves Dojo resources” on page 8-80.

6. Use the MobileFirst Studio tooling to copy the additional missing Dojo
resources into your project

7. Merge the customizations you did in the first step, if applicable.

Changing the jQuery version for MobileFirst applications:

When you develop an application in MobileFirst Studio, the bundled version of
jQuery might not be sufficient for development needs. This procedure provides
instructions about how to use a different version of jQuery.

About this task

jQuery is bundled as a library within IBM MobileFirst Platform Foundation. By
default, every new application includes a main HTML file, which contains the
following code that is required to use the embedded jQuery:
<script>window.$ = window.jQuery = WLJQ;</script>

To use a different version of the jQuery library, complete the following steps:

Procedure

1. Remove the <script>window.$ = window.jQuery = WLJQ;</script> code from
the main HTML file of your application.

2. Add jQuery files to your project.
3. Add the <script> tag that refers to the files that you added in step 2.

Results

The updated version of jQuery will be used for all environments.

Locate Dojo API:

The Locate Dojo API dialog can be found under the Navigate menu and is enabled
when a Dojo project resource is open in the active editor. It is enabled if a Dojo
project resource is selected in a project explorer view.

8-100 IBM MobileFirst Platform Foundation V6.3.0

The dialog locates the Asynchronous Module Definition (AMD) modules that
contain the API that you need. Enter the characters of the API you need, and the
locator finds the AMD modules that define that API. For example, if you were to
type “push” into the search box it finds all the modules that contain types,
methods, and field names that begin with “push”.

Two actions are always provided once a module is selected. The Open action
opens the JavaScript file that contains the selected module. The Copy action
computes the selected module’s path and copies it to the clipboard.

A third action that is called Add is provided if a JavaScript file that contains either
a require() or define() function is open in the active editor. When Add is
selected, the module’s path is automatically inserted into the appropriate
require() or define() function.

Application skins
An application skin is a set of web resources that govern the appearance and
behavior of the application. Skins are used to adjust the application to different
devices of the same family. You can package multiple skins in your application and
decide at run time, on application startup, which skin to apply to the application.

Note: Only the following environments support application skins: Android,
iPhone, iPad, BlackBerry 6, 7 and 10.

When you use MobileFirst Studio to define a skin, MobileFirst Studio generates a
folder for the skin resources and adds a <skin> element in the application
descriptor file. The <skin> element includes the name of the skin and a list of
resource folders. When MobileFirst Studio builds the application, it applies the
optimization rules on the resource folders in the order in which they occur within
the <skin> element.

Developing MobileFirst applications 8-101

In the following example, two skins are packaged with the Android application:
the default skin and another skin called android.tablet. Resources for the
android.tablet skin are in the android.tablet folder.
<android>
<skins>
<skin name="default">
<folder name="common" />
<folder name="android" />
</skin>
<skin name="android.tablet">
<folder name="common" />
<folder name="android" />
<folder name="android.tablet" />
</skin>
</skins>
</android>

You can also create custom skin hierarchies, by creating resource folders under the
application folder and manually defining the skin hierarchy in the application
descriptor. For example, you can define a phone folder to include resources that are
related to rendering the app on a phone, and a tablet folder to include resources
for rendering the app on a tablet. Then you can create four skins by using these
resources in the following way:
v android.phone: common > android > phone
v android.tablet: common > android > tablet
v ios.phone: common > iphone > phone
v ios.tablet: common > iphone > tablet

Applying skins at run time

To set which skin to apply at run time, implement the function getSkinName() in
the file skinLoader.js. This file is located under the environment/js folder of the
application.

Deleting a skin

To delete a skin, remove the element that defines the skin from the app descriptor,
delete the skin directory, and delete or modify the skinLoader.js file.

Settings page to change the server URL
With IBM MobileFirst Platform Foundation, you can create a settings page to
change the URL of the MobileFirst Server.

Figure 8-11. The skinLoader.js file

8-102 IBM MobileFirst Platform Foundation V6.3.0

With IBM MobileFirst Platform Foundation, you can create a settings page that
allows the following changes:
1. Directs the application to connect to a different MobileFirst Server by changing

the <protocolca>://<hostname>:<port>/<contextRoot> values.
2. Loads web resources that belong to a different application or version of the

application.

Note: This technique works only if the different MobileFirst Server already exists
and these resources or applications are already deployed. This feature is meant
only for use in the development environment and not in production.

The settings page is available for the following environments: Android, iPhone,
and iPad.

By default, the settings page is disabled with the include attribute of
<worklightSettings> set as false in the relevant environment element of the
application-descriptor.xml file.

To activate the settings page for the supported environments, change the include
attribute of <worklightSettings> to true. For example:
<iphone version="1.0" bundleId="com.mycompany.myapp">

<worklightSettings include="true"/>
<security>
...
</security>

</iphone>

Rich Page Editor
Use Rich Page Editor to easily edit HTML files, add Dojo widgets to HTML pages,
and create and edit web pages for mobile devices. Rich Page Editor is a
multi-tabbed editor that provides multiple views to show different representations
of your page.

Views

You can use the Source, Design, and Split views in Rich Page Editor to view and
work with your files or pages. Each view in Rich Page Editor works with several
other views and tools that are included in the web perspective, including the
following interface elements:
v Mobile Navigation, Outline, and Properties views
v Toolbar buttons
v Menu bar options
v Pop-up (right-click) menus
v Palette components

Note: Since IBM Worklight V6.0, the jQuery Mobile widget of MobileFirst Studio
might be not visible in the palette of the Rich Page Editor if you are using jQuery
V1.3.2. To resolve this issue, use jQuery Mobile V1.3.1 instead of jQuery Mobile
V1.3.2.

Developing MobileFirst applications 8-103

Table 8-7. Rich Page Editor views

Editor view Description

Source The Source view helps you to view and work directly with the source
code of a file. The Mobile Navigation, Palette, Outline, Page Data, and
Properties views have features that supplement the Source view.

Split The Split view combines the Source and Design views in a split screen
view. Changes that you make in one part of the split screen are
automatically updated in the other part. You can split the view
horizontally or vertically.

Design The Design view is a WYSIWYG environment. This view helps you to
create and work with a file while viewing how your web page and
dynamic content might look on a mobile device. You can use this view to
visually edit files. For example, the Design view includes features that
you can use to complete the following tasks:

v Drag items from the Palette and Enterprise Explorer views.

v Rotate the screen orientation when you use a mobile device profile to
view your mobile web page in either portrait or landscape mode.

v Scale the mobile device to fit the size of the current Design view. Using
this feature, you can see the entire visual canvas without the need to
scroll.

v View how your page is displayed on different devices by selecting a
device from the device list. The selected device specifies the size of the
mobile device that you want to view and affects the size of the Design
view area.

v View how your mobile web page is displayed in different styles. For
example, Android, iPhone, or BlackBerry. By choosing a particular
skin, you can switch to another device-specific style to view the layout
and appearance of your page as it would appear on this specific
device.
Note: The Skin list is available only for MobileFirst application pages.

Design Mode editing

You can use the Design Mode editing features of Rich Page Editor to add and edit
widgets in the Design view. To enable the Design Mode editing features, click the
Design Mode icon.

The following screen capture shows what a table looks like in the Design view of
Rich Page Editor when Design Mode is enabled.

8-104 IBM MobileFirst Platform Foundation V6.3.0

The following screen capture shows what the same table looks like in the Design
view of Rich Page Editor when Design Mode is not enabled.

The Design Mode editing features guide the placement of code when you drop a
widget on a container widget. Visual cues highlight the possible drop locations and
pop-up cues indicate the editing function that is available for the selected widget.
Design Mode also adds dashed borders to empty table cells. For example, dragging
a tag from the Palette to a table provides a visual cue for placement:

Selecting a cell in a table opens a pop-up cue that you can use to add a column or
row:

Browser requirements for Rich Page Editor:

Rich Page Editor uses embedded browsers to produce a visual representation of a
web page in the Design view. The browsers that are available in Rich Page Editor
and their installation requirements vary according to the platform.

Procedure

The following table lists and describes the supported browsers in Rich Page Editor,
by platform:

Developing MobileFirst applications 8-105

Platform Supported browsers

Windows
Internet Explorer

Available for all installations; uses
the native browser code in
Windows.

Firefox Firefox support for Windows is
embedded in the product and is
functionally equivalent to a Firefox
version 3.6 installation. Firefox is
available only on 32-bit installations
of the product.

Safari Safari for Windows can be installed
separately. After installation Rich
Page Editor can be used in Safari.
Safari support is only available on
32-bit installations of the product.

Linux
Firefox or WebKit

The product attempts to locate and
use browser code:

v WebKitGTK+libraries

v XULRunner installation

The editor operates with a
compatible XULRunner installation
that is in the range of Firefox
version 3.0 to version 3.6. You can
also use WebKitGTK+ libraries with
some additional setup. The Firefox
indicators are still used in the
editor even if you create a
webkit-based browser. For more
information about setting up the
Linux browser, see “Embedded
browsers for Linux.”

Mac
Safari The native Safari browser is

automatically used for products
that are available on the Mac
platform.

The supported browsers are available from the editor toolbar in both the design
and split views.

On the toolbar, click the icon for the browser you want to use. For example, in the
following screen capture, Firefox, Internet Explorer, and Safari are supported.

Embedded browsers for Linux:

On Linux systems, to ensure that product features, such as the Rich Page Editor
use an appropriate embedded web browser, additional steps to configure the
browser are necessary.

Product features that use an embedded web browser might not work correctly if
an inappropriate browser is used. Using an inappropriate browser can cause

8-106 IBM MobileFirst Platform Foundation V6.3.0

problems such as: scenarios that fail, error messages, or an unexpected output.
Product features that use an embedded browser include:
v Rich Page Editor
v Web Browser component
v Welcome page

The Eclipse Standard Widget Toolkit (SWT) supports the following browser types
for Linux systems:
v Mozilla (Firefox) through the XULRunner package
v WebKit through WebKitGTK+ shared libraries

The version of Eclipse included in the product determines the default browser type
used by SWT. However, you can explicitly configure the default browser type.
Only one browser type is available at a time within the product.
v For Eclipse versions 3.7 and later, the WebKit browser is the default browser on

Linux. If suitable WebKit libraries are not found, the XULRunner browser is
used.

Configuring for the WebKit embedded browser:

A WebKit embedded browser is supplied as a separate installation of the
WebKitGTK+ shared libraries, however; these libraries are included in many of the
supported Linux distributions.

Procedure

If necessary, install the WebKitGTK+ package onto the system and ensure that it is
included on the default library path.

Configuring for the XULRunner embedded browser:

The XULRunner package enables Mozilla as the embedded browser. If several
XULRunner packages are installed on the same system, version mismatches can
occur even if a specific XULRunner installation is registered as the default version.
To clearly define the XULRunner browser and level to be used in your
configuration, you must set up an explicit pointer to a XULRunner version.

About this task

The supported XULRunner versions are:
v 1.8.x
v 1.9.2
v 3.6.x

Note: The XULRunner package must match the architecture (32-bit or 64-bit) of the
product installation.
To download the XULRunner 1.9.2, click one of the following links:
v XULRunner 32-bit download
v XULRunner 64-bit download

Procedure

To set up an explicit pointer to a XULRunner version, complete the following
steps.

Developing MobileFirst applications 8-107

http://ftp.mozilla.org/pub/mozilla.org/xulrunner/releases/1.9.2.19/runtimes/xulrunner-1.9.2.19.en-US.linux-i686.tar.bz2
http://ftp.mozilla.org/pub/mozilla.org/xulrunner/nightly/2010/12/2010-12-01-03-mozilla-1.9.2/xulrunner-1.9.2.13.en-US.linux-x86_64.tar.bz2

1. In the eclipse.ini file included in the product installation, locate the -vmargs
section.

Note:

For users of IBM MobileFirst Platform Foundation only:
v If a Worklight.sh file is present in the same product directory as the

eclipse.ini file, add your updates to the -vmargs sections of both files.
v Some installations use JRE arguments from the Worklight.sh script instead of

from the eclipse.ini file.
2. In the -vmargs section, add the following JVM system variable where

/home/myuser/xulrunner is the path to the root of an uncompressed XULRunner
package.
-Dorg.eclipse.swt.browser.XULRunnerPath=/home/myuser/xulrunner

Complete the following step to use the XULRunner browser instead of the WebKit
browser.
3. Add the following JVM parameter to the -vmargs section at the end of the

eclipse.ini file.

Note:

For users of MobileFirst Studio only: If the Worklight.sh file is present, add the
same code to the end of this file.
-Dorg.eclipse.swt.browser.DefaultType=mozilla

Setting the Rich Page Editor preferences:

You can customize the display of Rich Page Editor by setting the preferences for
view shortcuts, pane visibility and layout, design mode, and web browser.

Procedure

1. In the main menu, click Window > Preferences.
2. Expand Web > Rich Page Editor.
3. Specify the default preference settings for Rich Page Editor.

Editor preference Description

View shortcuts Specify whether to show or hide the
shortcut toolbar buttons in Rich Page Editor
for these views: Palette, Properties, Outline,
and Mobile Views.

Visible pane Select which view to show when you open a
file with Rich Page Editor. You can choose
from these views: Design, Source, and Split.

Pane layout Set the Split view layout, which is a
combination of the Source view and Design
view, to split the editor view either
horizontally or vertically.

8-108 IBM MobileFirst Platform Foundation V6.3.0

Editor preference Description

Design mode Specify whether to enable or disable Design
Mode.

When Design Mode is available, the editing
features help you to add and edit widgets in
the Design view of the editor. For example,
the editing features guide the placement of
code when you drop a widget on a
container widget. Visual cues highlight the
possible drop locations and pop-up cues
indicate the editing function that is available
for the selected widget. Design Mode also
adds dashed borders to empty table cells.

When Design Mode is unavailable, elements
in the Design view are displayed exactly as
they are shown in the web browser, without
any visual aids for editing.

Web browser Select the web browser in which to show the
page that is being edited.
Note: The list of available web browsers is
dependent on the platform and web
browsers that are installed on your
computer.

Tip: When you are working with Rich Page Editor, you can change these
settings from the editor window. To change the view shortcuts, pane layout,
design mode, and web browser settings, use the toolbar in the upper-right
corner of the editor window. To change the visible pane, use the tabs in the
lower-left corner.

4. Optional: To specify that you want to remember these preference settings for
each resource, selectRemember settings for each individual resource.

5. Specify the Smart Highlight settings for Rich Page Editor.

Smart Highlight preference Description

jQuery Specify whether to highlight nodes in the
Design and Outline views that are matched
by jQuery expression selectors in the Source
view or Javascript editors.
Tip: By default, matched nodes are
highlighted in yellow. To change the
highlight color, click Change Highlight
Color.

6. Click Apply and then save your changes by clicking OK.

Opening web pages in Rich Page Editor:

You can open web pages in Rich Page Editor to edit HTML files, add Dojo widgets
to HTML pages, and edit web pages for mobile devices.

Before you begin

You must complete the following tasks before you can open a web page in Rich
Page Editor:

Developing MobileFirst applications 8-109

1. Create a project.
2. Create a web page.

Procedure

In the Enterprise Explorer view, use one of the following methods to open a web
page in Rich Page Editor:
v Double-click your web page.
v Right-click your web page and select Open.

Working in the Design and Split views:

You can use the Design and Split views in Rich Page Editor to edit HTML files in
WYSIWYG mode.

When you edit in the Design view, your work reflects the layout and style of the
web pages that you build. The Design view removes the added complexity of
source tag syntax, navigation, and debugging.

Use the Split view to show both the Design view and the Source view in a split
screen view. Changes that you make in one part of the split screen are
automatically updated in the other part. You can split the view horizontally or
vertically.

About this task

The design and split views provide full access to the following features:
v Editor menu options
v Pop-up menu actions
v User interface options, such as those in the Styles view
v Drag-and-drop behavior

The Design and Split views also provide support for absolute positioning. You can
see the immediate impact of design decisions more quickly than in a text editor.
Using these views, you can efficiently and precisely change the composition and
attributes of pages, tags, images, and effects.

Many actions available through the editor menus are also available from design
element pop-up menus. To access the design element pop-up menus, select a page
object, and then right-click the object.

Working in the Source view:

You can use the Source view in Rich Page Editor to edit HTML and other markup
text, such as embedded JavaScript. Any changes you make in the source view are
also reflected in the Design and Split views.

About this task

You can also show the Source view by opening the Split view. The Split view
shows both the Design and Source views, split vertically or horizontally. If you add
or update an attribute value in the Source view while the Properties view is
visible, the properties are also refreshed.

8-110 IBM MobileFirst Platform Foundation V6.3.0

Table 8-8. Source view features

Feature Description

Syntax highlighting Each tag type uses different highlighting to
make it easy to find a specific type of tag for
editing. For example, you cannot edit
read-only regions of the page which are
highlighted in gray.

Unlimited undo and redo You can incrementally undo and redo every
change made to a file for the entire editing
session. For text, changes are incremented
one character or set of selected characters at
a time.

Content assist Content assist helps you to finish tags or
lines of code, and insert macros. The
available options in the content assist list are
based on the tags that are defined by the
tagging standard specified for the file being
edited. If content assist does not
automatically open, press Ctrl + Space. The
content assist text is displayed in a yellow
box as you type.

User-defined macros You can access user-defined templates,
which are chunks of predefined code, with
content assist to help you add the tagging
combinations that are used often.

Element selection The element selection indicator is located
within the vertical border in the left area of
the Source view. Based on the location of
your cursor, the element selection indicator
highlights the line numbers that contain the
elements being edited.

Pop-up menu options You can right-click at a specific position in
the editor to open the editor pop-up menu.
This menu contains many of the same
editing options that are available in the
workbench Edit menu.

Drag-and-drop You can drag objects from the Palette view
to the position of the cursor in the Source
view.

Copy and paste You can press Ctrl + C and Ctrl + V to copy
and paste a selected tag in the Source view.

Validation You can configure an option on the
preferences page to validate your code as
you type:

1. From the main menu, select Window >
Preferences > General > Editors >
Structured Text Editor.

2. On the Structured Text Editor preferences
page, select Report problems as you
type.

Developing MobileFirst applications 8-111

Table 8-8. Source view features (continued)

Feature Description

Customization You can customize the appearance of the
editor on either of the following preferences
pages:

v Window > Preferences > General >
Editors > Editors (or Structured Text
Editors)

v Window > Preferences > Web > HTML
Files > Editor

The HTML 5 specification is supported only in the Source view. For example, you
can use content assist to insert the <canvas> tag.

You can use any of the following methods to enter, insert, or delete tags and text in
the Source view:
v Type the tags directly.
v Use content assist to receive prompts for valid tags.
v Select the menu items.
v Select the toolbar buttons.
v Use the Properties view to change tags.

Procedure

To edit an HTML file in the Source view:
1. Open the HTML file that you want to work with in the editor.
2. In the Source tab, use the available features to edit the code, as required.

Tip: You can select attribute values, attribute-value pairs, and entire tag sets by
using the double-click feature available in the editor. Use this feature to quickly
update, copy, or remove content.

3. At intervals, to see the nesting hierarchies more clearly in the file, format
individual elements or the entire document to restore element and attribute
indentation. Right-click the editor window and select Source > Format.

4. Save the file.

Creating web pages in Rich Page Editor:

You can create interactive web pages in Rich Page Editor.

Before you begin

Before you can create a web page in Rich Page Editor, you must create a project.

Procedure

1. Click File > New > Web Page to open the New Web Page wizard.
2. Specify a file name and template for the new web page, and then click Finish.

Your new web page opens in Rich Page Editor.

Creating web pages for mobile devices:

You can create interactive web pages that are optimized for mobile devices.

8-112 IBM MobileFirst Platform Foundation V6.3.0

Before you begin

Ensure that you complete the following tasks before you create a web page for a
mobile device in Rich Page Editor:
1. Create a project.
2. Set the target device for your project.
3. Set Rich Page Editor as the default web page editor.

Procedure

1. Click File > New > Web Page to open the New Web Page wizard.
2. Specify a file name and choose one of the following mobile templates for the

new web page:

Dojo Mobile HTML template
Sets up the web page for Dojo. Generates content into the web page to
prepare the web page for use with Dojo libraries. This content can
include:
v JavaScript and CSS includes.
v Basic widgets that are typically required for Dojo Mobile web pages,

such as a mobile View widget.

jQuery Mobile HTML template
Sets up the web page for jQuery. Generates content into the web page
to prepare the web page for use with its libraries. This content can
include:
v JavaScript and CSS includes.
v Basic widgets that are typically required for jQuery Mobile web

pages, such as a Page widget.
3. Optional: To open the New Web Page Options page and add more options to

your mobile web page, click Options.

Option Description

Set the document type declaration to
HTML 5 and cache the page

1. From the list of options, click Document
Markup.

2. From the Document Type list, select
HTML 5 to show more options.

3. Specify the icon that is used by mobile
devices when users add bookmarks. To
select an icon from your workspace, click
Browse next to the File href field.

4. Enable browser application caching. In
the Manifest Section field, select
CACHE and then specify a manifest file.
For example, WebContent/META-INF/
cache.mf.

HTML 5 application caching ensures
performance and availability when the
mobile device is offline. For more
information about cache manifest files,
see the latest HTML5 specification at:
http://dev.w3.org/html5/spec, and
search for "cache manifest".

Developing MobileFirst applications 8-113

http://dev.w3.org/html5/spec

Option Description

Set the device detection and stylesheet
options

1. From the list of options, click Mobile
Web Page.

2. Select one of the following options:

Detect device
The web page detects the device
that shows the content and
loads the appropriate CSS by
including the script
dojox/mobile/deviceTheme.js.

Select dojox.mobile stylesheet
The selected style sheet is
loaded by using the <link> tag.
You can select one of the
following style sheets:

v blackberry.css

v android.css

v ipad.css

v iphone.css

No CSS
Use a style sheet other than the
ones that are available when
you select the dojox.mobile style
sheet option. When you specify
the No CSS option, you can
select Stylesheets from the list
of options and add the style
sheets that you want to use.

4. Click Finish. Your web page opens in Rich Page Editor.

Mobile patterns:

Mobile patterns provide templates that you can use to develop pages that are
associated with a jQuery or Dojo mobile application. Using mobile patterns
accelerates development of your mobile application by providing views common to
many mobile applications.

You can choose from many mobile patterns available in the Default Mobile Pattern
Set, or you can create your own Mobile Pattern Sets. For more information, see
“Creating mobile pattern projects” on page 8-115.

All the available Pattern Sets in your workspace and the Default Mobile Pattern Set
appear grouped in the Pattern Set combination box. You can select any Mobile
Pattern Set and see its content on the Add Mobile Page window.

Each Pattern Set contains categories and each category groups a list of patterns, for
example: The Default Mobile Pattern Set are grouped into four categories.

Selecting a category on the Add Mobile Page window displays a list of available
patterns that are associated with the category.

Lists Choose from a number of different list formats from simple to complex.
You can choose unordered lists patterns or ordered list patterns.

8-114 IBM MobileFirst Platform Foundation V6.3.0

Authentications
Choose the type of login page for your application that contains only a
User ID and password fields. Or, select a template that contains more input
areas or buttons, such as forgot password and register.

Navigation and search
Choose from various navigation patterns, which include toolbars,
navigation lists, or lists with searchable content.

Configuration
Choose from blank configuration pages to pages that contain predefined
configuration items, such as language.

Some mobile patterns are sets where mobile views within the set are appropriately
linked. For example, selecting a login page with Reset password, the Reset
password template page is also created. When you select a mobile pattern that is a
set, you see all pages in the preview.

Choosing a mobile pattern adds the appropriate code into your application after
which you can alter it as required.
Related tasks:
“Adding a mobile pattern to an application”
Use mobile patterns to accelerate development of mobile applications. Select from
a predefined list of mobile patterns to quickly add code to your application.

Adding a mobile pattern to an application:

Use mobile patterns to accelerate development of mobile applications. Select from
a predefined list of mobile patterns to quickly add code to your application.

Before you begin

If the Mobile Navigation View is not shown, go to Window > Show View > Other
> Web > Mobile Navigation to display it.

Procedure

1. In the Mobile Navigation View, click the plus sign icon.
2. In the add window, select a category and click Create view from UI pattern.

The available patterns that are associated with the category are loaded in the
view.

3. Required: Select the mobile pattern and click Finish to insert into your
application.

Related concepts:
“Mobile patterns” on page 8-114
Mobile patterns provide templates that you can use to develop pages that are
associated with a jQuery or Dojo mobile application. Using mobile patterns
accelerates development of your mobile application by providing views common to
many mobile applications.

Creating mobile pattern projects:

The UI Pattern is a container for mobile patterns. You can add mobile patterns to
either a Dojo or jQuery app. You can also add your own mobile patterns into the
tool.

Developing MobileFirst applications 8-115

Procedure

1. Use the UI Pattern Project wizard to create your own pattern project.
a. Click File > New > Project.
b. Expand the Web folder and select UI Pattern Project.
c. Click Next.
d. Give your UI Pattern Project a name.
e. Optional: You can click include jQuery and add jQuery Resources to the

project.

Note: Files are jQuery Mobile (JS and CSS files) and jQuery JS Core so
you can properly preview the app by using the Rich Page Editor.

f. Click Finish. A UI Pattern Project is created.
2. Right-click your UI Pattern Project and select New > UI Pattern.

Note: Your project must contain either Dojo framework or jQuery framework,
or both, for you to be able to continue in the UI Pattern wizard. For
instructions, see “Adding Dojo framework to a UI Pattern Project” on page
8-117 and “Adding jQuery framework to a UI Pattern Project” on page 8-117.

3. Define the name of your pattern and click Finish. A folder with the name of
your new pattern is added to the WebContent folder. This folder contains the
pattern's resources.

4. Open the pattern.html file that is found in one of the following locations:
WebContent/pattern_name/Dojo or WebContent/pattern_name/jQuery.
v Adding widgets in the view for Dojo.
v Adding widgets in the page for jQuery.

Note: If you are creating a Dojo pattern, ensure that the following two script
tags are included in the pattern.html file under the Dojo folder.
<script type="text/javascript" pattern.discardNode="true">

require(["dojox/mobile/parser", "dojox/mobile/compat"]);
</script>

This script tag is required to preview the pattern in the Mobile Pattern Browser.
The pattern.discardNode attribute is used by patterns to identify when an
element is discarded from pattern insertion.
<script type="text/javascript">

require([/*START_DEPENDENCIES*/ "dojox/mobile/ScrollableView" /*END_DEPENDENCIES*/]);
</script>

In the second script tag, when a pattern is added to a mobile page, the require
elements between the START_DEPENDENCIES comment and the END_DEPENDENCIES
comment are translated to Dojo module requests. Then, they are inserted into
the Dojo require section in the final application. The require elements outside
the DEPENDENCIES comments are not added to the final application. When you
add a Dojo widget to your mobile pattern, add the necessary modules for that
widget between the DEPENDENCIES comments

5. Save your UI Pattern project. You can add the mobile pattern to a Dojo or
jQuery project by creating or opening a MobileFirst hybrid project with Dojo or
jQuery support. Open the index.html file that is found under
apps/app_name/common in Rich Page Editor.

6. Click (+) from the Mobile Navigation view. Use the following figure for
guidance:

8-116 IBM MobileFirst Platform Foundation V6.3.0

If the Mobile Navigation view is not visible, click Window > Show view >
Other, expand the Web folder, select Mobile Navigation, and click OK.

7. Complete the Add jQuery Mobile Page or Add Dojo Mobile Page wizard.
a. Type the name of your UI Pattern in the Id field.
b. Select the Create from UI pattern option.
c. From the Pattern Set menu, select UI_Pattern_project_name. Your mobile

pattern is displayed in the Mobile Pattern Browser.
d. Select your mobile pattern and click Finish.

Your new UI Pattern is displayed in the preview.
8. Save your Dojo or jQuery project where the pattern was added.

Results

The new pattern is available for you to use with other Dojo and jQuery projects in
the workspace.

What to do next

To add a mobile pattern to an application, see “Adding a mobile pattern to an
application” on page 8-115.

Adding Dojo framework to a UI Pattern Project:

To create UI Patterns in a Pattern Project, Dojo or jQuery framework, or both, must
be present in the project.

Before you begin

Before you add Dojo framework to a UI Pattern Project, a UI Pattern Project must
already be created.

Procedure

1. In MobileFirst Studio, right-click your UI Pattern Project and select Properties.
2. In the Properties for <Your project name> window that appears, select Project

Facets from the list.
3. In the Project Facet table, expand Web 2.0.
4. Select Dojo Toolkit and click Apply.
5. Click OK.

Adding jQuery framework to a UI Pattern Project:

To create UI Patterns in a Pattern Project, Dojo or jQuery framework, or both, must
be present in the project.

Figure 8-12. Mobile Navigation view

Developing MobileFirst applications 8-117

Before you begin

Before you add jQuery framework to a UI Pattern Project, a UI Pattern Project
must already be created.

Procedure

Copy jQuery Mobile (JavaScript, CSS, and images) from jQuery Mobile
downloads and jQuery JS Core from the jQuery Core - All Versions page into the
WebContent folder of your MobileFirst Studio UI Pattern Project.

Adding elements to web pages from the palette:

You can populate a web page with content by dragging elements from the Palette
view to the web page in Rich Page Editor.

Before you begin

You must complete the following tasks before you can add elements to a web page
in Rich Page Editor:
1. Create a project.
2. Create a web page.

Procedure

1. In the Enterprise Explorer view, double-click your web page to open it in Rich
Page Editor.

2. Add various elements to your web page by dragging objects from the different
drawers in the Palette view, such as radio buttons, check boxes, and submit
buttons.

Tip: In the Web perspective, the Palette view is located by default on the right
side of the workbench, underneath the Outline and Snippets views.

3. You can select multiple elements by pressing Ctrl and then performing actions
on the selected elements from the menu, such as copy, paste, or delete.

4. When you finish adding elements to your web page, save your changes by
pressing Ctrl + S.

HTML5 tags in palette:

HTML5 tags are available to use in the Rich Page Editor palette when you are
creating an HTML5 web page.

The HTML5 tags can be found in the palette under the Table tag. The following
tags are HTML5 tags:
v Canvas

v Audio

v Embed

v Video

v Figure

v Meter

v Progress

v Time

8-118 IBM MobileFirst Platform Foundation V6.3.0

http://jquerymobile.com/download/
http://jquerymobile.com/download/
https://code.jquery.com/jquery/

v Article

v Details

v Dialog

v Figcaption

v Footer

v Header

v Main

v Section

If you drag one of these widgets into the Design pane, a new tag is added to the
Source pane with the correct format.

Note: This function is only visible when you are working on an HTML5 page,
where these tags are legal. For example, if you create a new HTML4 web page,
these HTML5 tags do not appear in the palette.

Properties view associated with Rich Page Editor:

The Properties view that is associated with Rich Page Editor displays specific
information for the currently selected tag in a web page. You can use the
Properties view to edit properties that are related to the appearance of tags in a
web browser. For example, you can change CSS style information, default attribute
values, Dojo properties, and jQuery properties, as required.

You can use the Properties view to edit JavaScript, HTML, or JSP tags when the
Design, Source, or Split view is open in Rich Page Editor. Changes in the
Properties view are displayed in Rich Page Editor when you change the cursor
focus or press Enter. If you update tags in the Source view of Rich Page Editor,
your changes take effect immediately in the Properties view.

Breadcrumb navigation

When you select a node in Rich Page Editor, the Properties view uses a
breadcrumb trail to provide context for the selected node:

You can scroll through the breadcrumb trail without losing the position of your
cursor in Rich Page Editor. Using this feature, you can quickly update the
properties of ancestor elements.

Categorized property pages

The Properties view organizes properties into various categories, including:

Styles Use to manipulate basic CSS style information (such as an attribute or the
class that is associated with it) or various font, color, and alignment
properties.

Layout
Use to configure properties that control the layout of the element within
the presentation of the page.

All Use to view all of the attributes for an element, in a tabbed list.

Dojo Use to configure Dojo-specific properties on certain widgets.

Developing MobileFirst applications 8-119

Note: This category applies only to Dojo-enabled projects.

jQuery
Use to configure jQuery-specific properties on certain widgets.

Note: This category applies only to jQuery-enabled projects.

Mobile Navigation view:

You can use the Mobile Navigation view to manage Dojo mobile view widgets and
jQuery mobile web page widgets.

For example, by using the Mobile Navigation view, you can:
v Add or remove mobile views and pages.
v Switch visibility from one mobile view or page to another.
v Rename mobile views and pages.
v Set the default mobile view or page that is shown the first time that a web page

opens.
v Link mobile views or pages.

The Mobile Navigation view is available from both the Web perspective and Rich
Page Editor:
v To open the view from the Web perspective, select Window > Show view >

Other > Web > Mobile Navigation.
v To open the view from Rich Page Editor, on the toolbar click Show/Hide Mobile

Navigation:

A mobile web page can contain multiple views or pages. You can create these
views and pages inline or in external files.

Inline mobile view or page
A mobile view or page that is written within the source code of the mobile
web page.

External mobile view or page
A mobile view or page that is written in a separate file or fragment.
Creating mobile views or pages in separate files or fragments makes source
code shorter and easier to manage.

When you open a mobile web page in Rich Page Editor, the mobile views or pages
that are contained within that web page are displayed in the Mobile Navigation
view. The icon to the left of each of the mobile views and pages indicates which
one is visible in Rich Page Editor. If the mobile web page references external
mobile views or pages, they are displayed in the Mobile Navigation view with a
decorated icon. To open a new instance of Rich Page Editor for an external mobile
view or page, double-click the mobile view or page.

8-120 IBM MobileFirst Platform Foundation V6.3.0

The following table lists and describes the features available for mobile web pages in the
Mobile Navigation view.

What you can do in the Mobile Navigation
view Description

Create mobile views or pages You can create the following types of Dojo
widgets:

View A container that represents the
entire mobile device screen.

ScrollableView
A view widget with touch scrolling
capability that you can use to
provide fixed position header and
footer bars.

SwapView
A view widget that you can swipe
horizontally to show adjacent
SwapView widgets.

You can create the following types of jQuery
widgets:

Page A container that represents the
entire mobile device screen.

Dialog page
A container that is shown in the
form of a dialog box.

Switch between mobile views or pages You can switch visibility between views or
pages to specify which view or page is
available in Rich Page Editor. In the
following screen capture, the home view is
visible in Rich Page Editor; the calendar,
messages, and contacts views are not visible.

To switch to the calendar view, click the icon
to the left of calendar.

Rename mobile views or pages Right-click the view or page that you want
to rename and then click Rename. For
example, to rename the calendar view to
internet:

1. Right-click calendar and then click
Rename.

2. In the Mobile View id field, specify
internet.

Set the default mobile view or page Right-click the view or page that you want
to set as the default and click Set as default.

Remove mobile views or pages Right-click the view or page that you want
to remove and click Remove.

Developing MobileFirst applications 8-121

The following table lists and describes the features available for mobile web pages in the
Mobile Navigation view.

What you can do in the Mobile Navigation
view Description

Link mobile views or pages You can link widgets, such as buttons or list
view items, to mobile views or pages. You
can drag a widget from the Design view in
Rich Page Editor to a mobile view or page
in the Mobile Navigation view. You can also
drag mobile views or pages from the Mobile
Navigation view to widgets in the Design
view within Rich Page Editor.
Tip: You can link Dojo mobile widgets to
mobile views by using the Link to Mobile
View action.

1. In the Design view within Rich Page
Editor, click the Dojo mobile widget that
you want to link to a mobile view to
open the toolbar.

2. To open the Link to Mobile View dialog,
on the toolbar click Link to Mobile
View:

3. Select one of the following options.

v Click Inline Mobile View; from the
list, select the mobile view that you
want to link to the widget.

v Click Page Fragment, and then click
Browse to browse to the mobile page
file that you want to link to the mobile
view.

4. Click Finish.

Mobile Browser Simulator
The Mobile Browser Simulator is a web application that helps you test mobile web
applications without having to install device vendor native SDK.

Important: The Mobile Browser Simulator supports the following web browsers:
v Firefox version 3.6 and later.
v Chrome 17 and later.
v Safari 5 and later.

You can use the Mobile Browser Simulator to preview MobileFirst applications on
Android, iPhone, iPad, BlackBerry 6 and 7, BlackBerry 10, Windows Phone 8, and
mobile web application environments.

Restriction: Mobile Browser Simulator is not deployed to the production console.

Tip: When you preview a MobileFirst application on an Android, iPhone, iPad,
BlackBerry 6 and 7, BlackBerry 10, or Windows Phone 8 environment, only the
devices for the created environments are available. For example, if you preview a
MobileFirst application on an Android environment, you can select both from the
list of available Android devices and from the device lists from any other

8-122 IBM MobileFirst Platform Foundation V6.3.0

environments that were added to your application.
You can also use the Ripple emulator to simulate the WebWorks API in your
BlackBerry application.
1. Using Chrome as your web browser, click Open Simple Preview in the

simulator.
A new tab opens in Chrome with your application loaded.

2. Open the Ripple emulator from this tab.

You can preview all environments from the application folder. Each
environment-specific preview allows for the addition of devices from available
environments.

In the Mobile Browser Simulator, you can test skins per device. Only the skins that
are available for that platform are shown. You can save a file in Rich Page Editor
and then instantly preview it by clicking Go/Refresh.

You can select the link icon on the device toolbar to debug an application in a
separate, simple preview.

Whenever a new environment or skin is added to a MobileFirst app, you must
restart the Mobile Browser Simulator from Eclipse. Only from the Eclipse Studio
does the Run As > Preview command supports skin changes. The console preview
does not support skin changes.

You can select the Quick Response (QR) code icon on the device toolbar to show a
QR code that is specific to the environment URL. This QR code generator therefore
allows for quick testing on a physical device.

The Mobile Browser Simulator contains a frame that emulates a target device. It
shows what your page looks like inside the mobile device browser. You can switch
the frame to emulate different screen resolutions and form factors, including
BlackBerry 6 and 7, BlackBerry 10, Android, iPad, iPhone, and Windows Phone 8
mobile devices. You can also rotate the frame to mimic orientation change (portrait
or landscape). You can add multiple devices to the frame to view the various
displays simultaneously. If a device detection servlet is configured for your web
project, the simulator emulates requests from different device-specific agents.

Developing MobileFirst applications 8-123

Testing mobile applications with the Mobile Browser Simulator:

You can use the Mobile Browser Simulator to emulate various mobile devices and
test your mobile applications without the need to install device vendor native SDK.

Before you begin

1. Create a MobileFirst project.
2. Add MobileFirst environments.
3. Add HTML Tags and UI widgets to your index.html page.

About this task

Important: The Mobile Browser Simulator supports the following web browsers:
v Firefox version 3.6 and later.
v Chrome 17 and later.
v Safari 5 and later.

Procedure

1. In Eclipse select Window > Preferences > Web Browser. Then, select Use
external web browser.

2. Right-click your environment folder (Android for instance) or Application
folder name and select Run As > Preview.

What to do next

After your web page is running in the Mobile Browser Simulator, you can view
how your page renders in different devices.

8-124 IBM MobileFirst Platform Foundation V6.3.0

Switching devices:
Before you begin

To view your web application in the simulated devices by using the appropriate
style sheets, ensure that these tasks are completed:
1. “Creating web pages for mobile devices” on page 8-112
2. Enable user agent switching.

Procedure

In the simulator, click the device list and then select the device that you want to
simulate.

Adding devices:
Before you begin

To view your web application in the simulated devices by using the appropriate
style sheets, ensure that these tasks are completed:
1. “Creating web pages for mobile devices” on page 8-112
2. Enable user agent switching.

Procedure

In the simulator, click Add Device and then select the device that you want to
simulate.

Tip: You can customize the list of device options that are available in the Mobile
Browser Simulator.

Developing MobileFirst applications 8-125

1. In MobileFirst Studio, select Window > Preferences > Web > Target Devices.
2. Add your custom device to the current list of target devices, and then start the

simulator again.

The custom device that you added is now available as an option from the Add
Device list in the simulator.

Calibrating the Mobile Browser Simulator:

Since browsers cannot accurately paint physical dimensions, you must calibrate the
Mobile Browser Simulator.

Before you begin

Test your application using the Mobile Browser Simulator.

Procedure

1. From the Scale All Devices list, select Physical device size.
2. Click Calibrate Physical Size to open the Physical Size Calibration dialog.
3. Follow the instructions in the dialog to calibrate your Mobile Browser

Simulator. After you complete all of the steps in the dialog, close the dialog.

Enabling user agent switching:

You can use the Mobile Browser Simulator to render your web applications on
different mobile devices. To render your web applications with the appropriate
style sheets and theme, you must enable user agent switching.

Before you begin

v Enable the detect device option when you create your web page.
v Test your application by using the Mobile Browser Simulator.

About this task

The Useragent Switcher Extension is a browser extension that provides the user
agent switching feature. The Mobile Browser Simulator supports implementations
of this browser extension for the following web browsers:
v Mozilla Firefox.
v Chrome 17 and later, with limitations.

Useragent Switcher Extension for Chrome
The Useragent Switcher Extension emulates requests from different
device-specific agents. When a web application checks the user agent on
the server to create content, it is correctly simulated.

The Useragent Switcher Extension includes support for Dojo Mobile 1.7
and later. If you enabled the detect device option when you created your
Dojo Mobile page, the Useragent Switcher Extension uses the automatic
device detection and theme loading for Dojo Mobile to select the
appropriate theme.

Procedure

1. Click Enable Useragent Switching.
2. If the latest version of the Useragent Switcher Extension is not installed, the

Install Useragent Switcher Extension dialog opens. Click Install Browser

8-126 IBM MobileFirst Platform Foundation V6.3.0

Extension. If you are using Chrome, you can download the extension from the
Chrome Web Store.

Results

You can now view your web application with the appropriate style sheets and
theme in the simulated mobile devices.

Previewing your MobileFirst applications
You can use the Mobile Browser Simulator to preview MobileFirst applications on
iPhone, iPad, Android phones and tablets, BlackBerry 6 and 7, BlackBerry 10,
Windows Phone 8, Windows 8 desktop and tablets, and Mobile web app
environments. You can simulate several mobile devices simultaneously.

Tip: This preview is only available when the
com.ibm.imp.worklight.simulation.ui plug-in is enabled.

The Apache Cordova API simulation user interface is packaged with the Mobile
Browser Simulator. When the Mobile Browser Simulator opens, the various data
types and values that are used by Cordova are displayed in the left side. The
Cordova simulation is available on the following environments:
v Android
v BlackBerry 10
v iPhone
v iPad
v Windows Phone 8
v Windows 8 desktop and tablets environments

Developing MobileFirst applications 8-127

Tip: If you do not want to use the Cordova simulation to preview your
MobileFirst applications, clear Cordova to disable the Cordova simulation.

Device
Shows the property values for the window.device object of each simulated
device. This data is read-only. To show the values for other devices, click
Previous or Next.

Events
Triggers any of the following Cordova events:
v pause
v resume
v online

8-128 IBM MobileFirst Platform Foundation V6.3.0

v offline
v backbutton
v menubutton
v searchbutton
v startcallbutton
v endcallbutton
v volumedownbutton
v volumeupbutton

To trigger a Cordova event, click the corresponding button:

Accelerometer
Defines the Accelerometer values returned by the Cordova API when
querying Accelerometer data. To generate a new set of values, click Next.
To generate the values periodically, click Start.

Battery
Defines battery-related data, such as the battery level. You can use the
slider to change the battery level and trigger a batterystatus event. The
following battery levels trigger events:
v Twenty percent triggers the batterylow event
v Five percent triggers the batterycritical event

To define the plugged in status of your mobile device, select or clear
Plugged In.

Developing MobileFirst applications 8-129

Camera
Specifies which image to use for the camera and for the album:
v Simulate a photo taken with the camera (Camera.sourceType ==

Camera.PictureSourceType.CAMERA)
v Photo from the device photo album or library (Camera.sourceType ==

Camera.PictureSourceType.PHOTOLIBRARY or Camera.sourceType ==
Camera.PictureSourceType.SAVEDPHOTOALBUM)

To change the size of the selected photos, click XS, S, M, L, or XL.

Capture
Simulates the Cordova capture API by using the following methods:
v capture.captureAudio
v capture.captureVideo

8-130 IBM MobileFirst Platform Foundation V6.3.0

You can select the audio and video recordings that you want to use, and
play these recordings by using the HTML5 players.

Note: The Capture section is available on both Mozilla Firefox and Google
Chrome. For improved support of the HTML 5 players, upgrade these
browsers to the latest version.

Compass
Defines the values returned by the Cordova API when querying Compass
data. To generate a new set of values, click Next. To generate the values
periodically, click Start. You can also set the compass values by directly
interacting with the compass widget.

Developing MobileFirst applications 8-131

Contacts
Shows the available contacts for the mobile device. You can delete contacts
and refresh the list of available contacts.

To create new contacts for the mobile device, use the Cordova Contacts
API from your simulated mobile web page. The contacts are stored in the
Web SQL Database which is supported by default by Google Chrome and
Safari. To simulate the Contacts API with Firefox, you must install an
Add-on in your browser that adds basic WebSQL support to Firefox.

File Simulates the Cordova File API by running an applet. To update the
display of the file system that you can access through the Cordova API,
click Refresh. Use the Cordova API to access this file system to read and
write.

Double click anywhere on the file tree to open a file viewer. The file viewer
allows for manual manipulation of your simulated file system.

Geolocation
Generates the Geolocation values returned by the Cordova API when
querying Geolocation data. To generate a new set of values, click Next. To
generate the values periodically, click Start.

8-132 IBM MobileFirst Platform Foundation V6.3.0

Network
Defines the active connection of the device.

The Cordova API also contains media simulation. Media simulation is available
only for audio playback; audio recording is not supported. The media simulation
uses an HTML audio player and audio playback is supported on Mozilla Firefox
and Google Chrome. Since some browsers might not support all audio file formats,
use OGG audio files.

The Cordova Notification API is simulated but does not require any user interface
in the Mobile Browser Simulator.

Developing MobileFirst applications 8-133

Previewing web resource changes on an emulator or mobile
device
During development, you can build and deploy a hybrid application to an
emulator or to an actual native device to test its function.

Before you begin

If the web resources are still being changed frequently, some additional setup to
the deployed test application can speed up the preview process between revisions.
With the modified configuration, the native app can update itself to use the latest
web artifacts in your MobileFirst Studio workspace without the need to rebuild
and redeploy the application after each change.

To enable the faster preview and refresh cycle, replace the name of the
application's main page with the full URL of the application that is running on the
preview server. To find the correct preview URL, follow these steps:

Procedure
1. Under the hybrid application's root folder in the MobileFirst Studio workspace,

find the environment folder that you plan to test on a native device. For
example: Android or iPad.

2. Right-click the folder and select Run As > Preview to open the Mobile Browser
Simulator with the page. This action starts the MobileFirst Development Server
if necessary.

3. When the page opens in the Mobile Browser Simulator, find and click the

icon in the toolbar above the preview page: A new page opens in the
browser that points directly to the specific environment's preview page.

4. Copy the URL of the preview page. http://[servername]:10080/[project
name]/apps/services/preview/[app name]/[environment]/1.0/default/
index.html

5. Paste this URL into the relevant configuration file within the native application
resources.
a. Select the application's folder in the navigator and perform Run As > Build

Only (All Environments). The native resources are built from the current
project source. This action overwrites the configuration files that you
changed in the previous process. You can continue to develop and preview
the web resources in your hybrid application without doing any rebuilds.
Then you can run the build action again after application development is
complete to generate the final native applications. If it is necessary to
rebuild frequently, optionally re-execute the previous steps to restore the
faster preview function.

b. Underneath the environment folder that you plan to test natively, find the
native folder. The configuration file is located under this folder.
v For Android environments, edit /native/assets/wlclient.properties.
v For iPhone and iPad environments, edit /native/worklight.plist.

c. Find the value of the wlMainFilePath or wlMainFile configuration parameter
(whichever is present). The default page name is index.html.

d. Replace the page name with the full URL that you previously copied from
the Mobile Browser Simulator page.

A prompt appears to change the file from a read-only state.
6. Select Yes to commit your changes and save the file.

8-134 IBM MobileFirst Platform Foundation V6.3.0

7. Start the application on the native emulator or mobile device by using the
normal process for the environment that you are previewing.

What to do next

As you continue to develop your web resources, you can update the native
application in one of two ways:
v If the device or emulator supports accelerometer events, shake the device

vigorously for a short time until a prompt dialog box opens. Click Refresh in
the dialog to update to the latest web resources.

v For scenarios where shake-detection is unavailable, simply close the application
and restart it within the emulator or native device. When the application
restarts, it retrieves the latest web resources from the MobileFirst Development
Server.

Note:

– The shake preview feature is for web resource preview and does not use the
native device features.

– The MobileFirst Development Server must be running for the application to
function correctly under this modified configuration. An error message
indicates whether the application cannot connect to the preview server.

Testing hybrid location service applications
You can use the Mobile Browser Simulator to test applications within a browser,
and preview MobileFirst applications on Android, iOS, and Windows Phone 8.
Location services only support these platforms, other platforms must be removed.
With the Geolocation, Network and Scenario widgets, you can test applications in
Mobile Browser Simulator that use the JavaScript location service APIs.

Mobile Browser Simulator geolocation widget:

The geolocation widget can be used to provide a simulation of the device's
geolocation information to the application. The application can access this
information by using the W3C geolocation APIs or MobileFirst location services
APIs for hybrid applications.

Note: Location services for hybrid applications are only supported for Android,
iOS, and Windows Phone 8. Other platforms must be removed.

The geolocation information can be directly configured in the widget.

Developing MobileFirst applications 8-135

You can use the Latitude and Longitude options to set specific GPS coordinates.
You can click the map to update the latitude and longitude. A Heading of 0o

corresponds to North. By clicking the Play, the device's movement is simulated
from the current location in the direction that is given by Heading, at the speed
specified. An update is given once a second. After you click Play, the button
changes to Stop, and clicking it stops the simulation. Alternatively, a single
1-second step can be taken by using Step.

To simulate various errors that might occur, select the appropriate error and click
Generate Error. This action causes the next call to a geolocation API to have its
failure function is called with the selected error.

Accuracy is used to set the accuracy of the position, and can affect geofences when
you are using the confidenceLevel parameter. For more information, see “Triggers”
on page 8-585.

Altitude and Altitude Accuracy appear in the position information, but are not
used by location services APIs.

You can use Step and Play to simulate the movement of devices. For example, if
the Speed setting is increased, you can see the effect in the simulator window by
clicking Step to generate a new set of values for the app, or Play to generate new
values periodically.

8-136 IBM MobileFirst Platform Foundation V6.3.0

Mobile Browser Simulator network widget:

The network widget can be used to provide network information, for example
information that is accessible by the WL.Device.getNetworkInfo API or that can
activate WiFi based triggers in MobileFirst location services.

WiFi access points can be configured in this widget for testing the use of location
services, for example see the section on WiFi triggers in “Triggers” on page 8-585.

Click Add Access Point to define a new access point. There you must define the
SSID and MAC addresses. You can also specify visibility and signal strength.

Click an access point to open a dialog to edit its properties.

The Visible check box indicates whether the access point is visible to the device,
and whether it could be returned by a call to
WL.Device.Wifi.acquireVisibleAccessPoints.

Click Connect to set an access point to be the connected access point, and
Disconnect to disconnect it. Clicking Connect also changes the data connection to
WiFi Network.

Developing MobileFirst applications 8-137

Only one access point can be connected at a time. The access point is connected to
the data network, which switches to WiFi. When you switch the network to
something that is not WiFi, then the connected access point is disconnected.

To simulate various errors that can occur, select the appropriate error from the
drop-down list and click Generate Error. This action causes the next acquisition
that is performed to call its failure function with the selected error.

Location scenarios:

Location scenarios are intended for developers who want to develop and test
location-dependent behavior of mobile apps, as part of the MobileFirst mobile tools
suite. Location scenarios represent a multi-sensor simulation environment for
mobile apps.

Note: The scenario widget only runs on the following web browsers:
v Chrome 17 and later.
v Safari 5 and later.

MobileFirst Mobile Browser Simulator allows developers to quickly test, debug,
and experiment with their hybrid applications from the convenience of the web
browser. Although Mobile Browser Simulator provides sensor simulation it
requires manual updates each time a new sensor data update is required, which is
slow and not repeatable. With the new location scenario widget, testing
location-aware apps becomes much easier.

The process for working with a location scenario widget is as follows:
1. The user defines a scenario on a map, which comprises the following items:
v A route, with the time for each point
v WiFi hot spots
v No-GPS zones

2. As the user plays back the scenario, the sensor inputs are simulated:

8-138 IBM MobileFirst Platform Foundation V6.3.0

v Location updates arrive according to the route and no-GPS zone definitions.
These include the generation of timeout errors based on the acquisition
policy, when the scenario moves through no-GPS zones.

v WiFi hot spots become visible according to the current location. These hot
spots include the calculated signal strength on each update.

The testing scenarios that are listed here demonstrate the versatility of the scenario
widget.

Background: You have implemented an application for improved hotel check-in.
This application defines a geo-fence with a five-kilometer radius around a hotel,
within which a guest is invited to check in. In addition, the application defines a
WiFi trigger when the hotel WiFi is visible, to welcome the hotel guest and alert
the hotel manager that the guest has arrived.

Testing a scenario for entering a geofence: You would like to test the geofence
that is defined in this application. Complete the following steps:
1. Right-click the environment you want to test (hybrid Android, iOS, or

Windows Phone 8) and click Preview to start the Mobile Browser Simulator
and open the scenario widget.

2. Create a new scenario and move to the correct location on the map. Create the
path to the hotel by clicking the map to indicate the points on the path. For
each path point you can specify the time. When completed, you can save the
scenario to a local file.

3. Click Play . The current location on the route is clearly visualized for the
application, as it is simulated. When the current location is five kilometers from
the hotel (the defined trigger), you see a message appear on the mobile
application indicating that the correct event was triggered and handled by your
application, prompting the guest to check in remotely.

Testing a scenario for entering a WiFi zone: You would like to test your
application when the guest enters the hotel. Complete the following steps:
1. Edit the scenario widget and add a visible network with the hotel SSID and

MAC address in the hotel location.
2. Click Play . You can clearly see the current location that is simulated for your

application. When the first geo-fence is entered, you work with the application
to confirm the remote check-in. While you are operating the application the
current location is still changing, as planned. As the current location enters the
hotel WiFi zone, you can see that the correct event was triggered and handled
by your application, welcoming the guest to the hotel.

Loading and editing a location scenario: You would like to test a scenario you
created in the past. Complete the following steps:
1. Open the scenario widget and click Import to select a scenario.
2. Edit the scenario by moving some of the points in the route, by deleting some

of the points in the route, and by adding more points to the route. When you
have finished editing, click Apply. You can then play the scenario to test your
application. To save the scenario to a file that you can play in the future, click
Export.

Manually editing a location scenario: Complete the following steps:
1. Open a scenario file that you have tested in a text editor. The format is readable

and you can clearly understand how the path, WiFi zones, and no-GPS zones
are represented.

Developing MobileFirst applications 8-139

2. Manually edit the no-GPS polygon to a different polygon. You save the file and
load it in the Mobile Browser Simulator. You can see the new polygon on the
scenario map.

Location scenarios: demonstration:

This demonstration shows what is provided by the scenario widget, which can be
used to develop and test location-dependent behavior of mobile apps, as part of
the MobileFirst mobile tools suite.

Clicking the scenario widget presents a scenario template. You can create, import,
load, export, edit scenarios, and play or restart scenarios.

v To name the scenario, enter a name in the Name field.
v To edit the scenario, click Edit.

Note: You provide the longitude and latitude for the location, which is based on
the behavior of the application you want to test. To test geofences, enter a location
close to their boundary. For example, if your application defines a geofence around
a store, you could provide the location of that store.

Figure 2 shows a map displaying an area of roads and buildings and also includes
the location of a shopping mall. The template supplies the Longitude, Latitude
field which must be completed.

Figure 8-13.

8-140 IBM MobileFirst Platform Foundation V6.3.0

Provide the location for the user's device to be set up and tested in the Longitude,
Latitude field. This is where the movement of the device will be simulated. After
entering the longitude and latitude click Go to move the map to that location.

The template also shows the various buttons and tools that are used for
navigating, and for creating paths and zones in your scenario.
v To move around the map click the directional arrows or click and drag the map.
v To zoom in or out use the +/- track below the directional arrows, or use the

scroll wheel.
v These buttons are provided for use, as necessary.

– Click Go to move the map to the specified location.
– Click Cancel to cancel all changes made to the scenario and close the editor.
– Click Apply to apply the changes to the scenario and close the editor.

The three icon buttons are used to define the scenario by creating paths and zones.
v The first button is used to create a simulated path for the mobile subscriber. For

example, you could simulate defining a route along a road, then turning into a
parking lot, and then entering the shopping mall.
– Click this button to define a path. Click the map to add vertices (points) to

the path. Double-clicking adds the final point to the path.

Figure 8-14.

Developing MobileFirst applications 8-141

– Click a vertex to change the time at which the simulated subscriber will pass
that vertex. The first vertex is fixed at time 0. When you click on a vertex, a
Delete Path button is also visible, which deletes the entire path if clicked.

– Click on the path between vertices to show two blue circles. The circle on the
path can be clicked and dragged to move the path. The circle to the lower
right of the path can be clicked and dragged to resize or rotate the path.

– Only a single path can be defined at one time. Beginning a new path deletes
the previously defined path.

When you play the scenario, the geolocation widget automatically updates the
location, the heading and the calculated speed, based on the simulated user's
position along the path.

v The second button can be used to define WiFi access points and their coverage
zones.
– After you have clicked the button, clicking on the map defines a new access

point. Click on the map where the center of the coverage zone for the WiFi
access point should be, and drag to set the size that you want. The coverage
zone is displayed. The gray outer circle corresponds to a signal strength of
15%, which is the default signal strength threshold for the WiFi acquisition
policy. The yellow inner circle corresponds to a 50% signal strength, which is
the medium confidence level. The innermost orange circle indicates 80%
signal strength, which is the high confidence level.

– Click on the WiFi zone to edit the properties for the access point. You can set
the SSID and MAC, or you can click Delete to delete the access point.

– After clicking on a WiFi zone you can also see two blue circles. Clicking the
circle in the center of the zone and dragging it can be used to move the WiFi
zone. The circle to the lower left of the zone can be clicked and dragged to
resize the WiFi zone.

– It is possible to define multiple WiFi zones.
When you play the scenario, the network widget automatically updates the
visible access points, including their simulated signal strengths, based on the
simulated device position. WiFi zones are not used to simulate the geolocation of
the device.

v The third button is used to define no-GPS coverage zones.
– Click this button to define no-GPS coverage zones. Click the map to add

vertices (points) to define the boundary of the zone. Double-clicking adds the
final point to the zone.

– Click a no-GPS zone to move it, or delete it by clicking Delete. After you
click a no-GPS zone, two blue circles appear. The blue circle at the center of
the no-GPS zone can be clicked and dragged to move the no-GPS zone. The
circle to the lower right of the zone can be clicked and dragged to resize and
rotate the no-GPS zone.

– It is possible to define multiple no-GPS zones.
When you play the scenario, the geolocation does not change from its previous
value while the simulated user's position is inside a no-GPS zone. This behavior
can be seen in the geolocation widget, which does not update while the
simulated user moves through a no-GPS zone.

Figure 3 shows the Access Point that requires data to be entered in the fields.

8-142 IBM MobileFirst Platform Foundation V6.3.0

When you click the WiFi zone, the Access Point presents the SSID and MAC
fields, so that you can enter the relevant data. Here you can use the name of a
restaurant or store, for example. A Delete button is provided if you want to delete
the WiFi zone. Two blue circles, or handles, are also visible. These can be used to
move or resize the WiFi zone. In figure 4, the WiFi Zone is moved and enlarged. A
no-GPS zone has been defined, see the gray polygon.

Figure 8-15.

Developing MobileFirst applications 8-143

If you click the path, it produces a Route Point dialog, which is used to enter how
much time it takes the simulated user to reach various points along the route. The
first Route Point is set at 0, which cannot be edited.

The second Route Point can be set as 11, for example

The third Route Point can be set as 17, for example

Figure 8-16.

8-144 IBM MobileFirst Platform Foundation V6.3.0

You can change the times, but each value must be increasing from the last. When
you play the simulation, the simulated user is at point 1 at time 0, at point 2 at
time 11, at point 3 at time 17.

When the scenario is completed, click Apply and then Play to play the scenario;
see Figure 5.

On your screen you see the user moving along the path, and the information that
you receive can be used to interact with the application that is being tested. As the
user enters various areas, if a geofence or WiFi trigger is set up then you see that
the user's device would register the geofences or WiFi fences.

Click Export to save the scenario to disk. You can reload it by clicking Import,
selecting the file where it was previously saved, and clicking Play. After clicking
Play, the button changes to Pause and can be clicked to pause the scenario.
Clicking Restart plays the scenario from the beginning.

Connecting to MobileFirst Server
By default, an application starts in offline mode. You can make it start in online
mode or connect to MobileFirst Server later.

About this task

By default, an application starts in offline mode. You can connect your application
to MobileFirst Server either when it starts or at some appropriate point in its
processing. You are responsible for maintaining the offline or online state within
your application, and ensuring that your application can recover from failed
attempts to connect to the server. For example, before the application logs in a new
user or accesses the server under a new user, the application must ensure that the
server received a successful logout.

Procedure
v To make your application begin communicating with MobileFirst Server as soon

as it starts, use the WL.Client.connect method in common/js/main.js inside the
WlCommonInit method.

v To make your application communicate with the server at a later stage, call the
WL.Client.connect method, as defined in the WL.Client class.
Call this method only once, before any other WL.Client methods that
communicate with the server. Remember to implement the onSuccess and
onFailure callback functions. For example:
WL.Client.connect({

onSuccess: onConnectSuccess,
onFailure: onConnectFailure

});

Note: UserPrefs are updated only after the call to the WL.Client.connect
method.

Configuring the MobileFirst Logger
You can configure how the MobileFirst Logger runs on a range of client operating
systems by modifying WL.Logger methods.

Figure 8-17. View of Scenario showing the path into the shopping mall.

Developing MobileFirst applications 8-145

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

Set log level after IBM MobileFirst Platform Foundation starts
Logger is always on, but you can set the log level after IBM MobileFirst Platform
Foundation starts.
WL.Client.init({

onSuccess : function() {
WL.Logger.config({’level’ : ’fatal’});

},
onFailure : function(err){
WL.Logger.error(’Caught an exception’, err);

}
});

Select log levels
You can select from among various log levels.

Debug
Add a debug message.
WL.Logger.debug(’Loop finished’);

// Loop finished.

Log
Add a log message.
WL.Logger.log(’Got’, response.statusCode, ’from server.’);

// Got 200 from the server.

Info
Add an informative message.
WL.Logger.info(’Public IP address is’, getIpAddress());

// Public IP address is 192.168.1.102.

Warn
Add a warning message.
if (!window.indexedDB) {

WL.Logger.warn(’IndexedDB not supported, falling back to LocalStorage.’);
// IndexedDB not supported, falling back to LocalStorage.

}

Error
Add an error message.
try {

// Code that may throw new Error(’Something failed here.’).
} catch (e) {

WL.Logger.error(’Caught an exception’, e);
// Caught an exception Error: Something failed here.

}

Log different data types
You can log a range of data types including numbers, strings, and arrays

Strings

WL.Logger.info(’Hello’, ’world.’);
//Hello World.

Booleans

WL.Logger.info(true, false);
//true false

Numbers

WL.Logger.info(1,2,3.14,4,5,6,7);
//1 2 3.14 4 5 6 7

8-146 IBM MobileFirst Platform Foundation V6.3.0

Arrays

WL.Logger.info([1,2,3], [[1,2,3], [1,2,3]])
//[1,2,3] [[1,2,3], [1,2,3]]

Objects

WL.Logger.info({hello: ’world’}, {hey: {test: [1,2,3, {hello: ’world’}]}});
//{"hello" : "world"} {"hey" : {"test": [1,2,3, {"hello": "world"}]}}

Exceptions

var e = new Error(’Something failed’);
var te = new TypeError(’Wrong type’);
WL.Logger.info(e, te);
//Error: Something failed TypeError: Wrong type

undefined

var undef;
WL.Logger.info(undefined, undef);
//undefined undefined

null

var n = null;
WL.Logger.info(null, n);
//null null

Any Combination

WL.Logger.info(’Hey’, 1, 2, true, false, [1,2,3], {hey: ’world’}, new Error(’Uh oh’), undefined, null);
//Hey 1 2 true false [1,2,3] {"hey": "world"} Error: Uh oh undefined null

Set Logger priority
You can configure the Logger to display only warning and error log messages.

To display only warning and error log messages, set the priority of the logger to
'warn' or 200.
WL.Logger.config({level: ’warn’});

var WARN = 200;
WL.Logger.config({level: WARN})

Possible string values:
’trace’,
’debug’,
’log’,
’info’,
’warn’,
’error’,
’fatal’
’analytics’

Note: These values are not case-sensitive, for example LOG and Log are also
possible values.

Possible int values:
25 (analytics)
50 (fatal)
100 (error)
200 (warn)
300 (info)
400 (log)
500 (debug)
600 (trace)

Developing MobileFirst applications 8-147

Filter log levels
You can filter logs to display only logs of equal or lower priority, set by the level
property.

Show only warn, error, and fatal logs:
WL.Logger.config({level: [’warn’]});

Show only error and fatal logs:
WL.Logger.config({level: [’error’]});

Show all logs:
WL.Logger.config({level : []});

Log package whitelist and blacklist
You can associate a set of log messages with a specific part of the application.

Add packages to the whitelist to include the packages in logging:
WL.Logger.config({filters : {’wl.jsonstore’ : ’info’});

Associate a log message with a package, and log a message. To exclude packages
from logging (blacklist), exclude them from the filter object:
var JSONSTORE_PKG = ’wl.jsonstore’;

WL.Logger.info(’Hey!’); // Ignored.

WL.Logger.ctx({pkg: JSONSTORE_PKG}).info(’JSONStore started’);
// JSONStore started.

WL.Logger.ctx({pkg: JSONSTORE_PKG}).warn(’JSONStore finished executing find.’);
// JSONStore finished executing find.

WL.Logger.ctx({pkg: ’wl.analytics’}).warn(’Hello.’); // Ignored.

You can list the packages that are on the whitelist or the blacklist:
WL.Logger.status();
//{ enabled : true, stringify: true, whitelist : [], blacklist : [], level : [], pkg : ’’, tag: {level: false, pkg: true}, android: false }

The list of keys returned match the options that you can pass to WL.Logger.config.

Create log for package
You can create a logger for a specific package.

To avoid writing a package name every time a log message is written, you can
create a logger for a specific package.
var JSONStoreLogger = new WL.Logger.create({pkg: ’wl.jsonstore’});

JSONStoreLogger.info(’Hello’, ’world.’);
//Hello world.

JSONStoreLogger.warn(1,2,3,4);
//1 2 3 4

var AnalyticsLogger = new WL.Logger.create({pkg: ’wl.analytics’});

AnalyticsLogger.error(new Error(’BOOM.’);
//Error: BOOM.

Stringify
You can convert arguments to strings using the stringify function.

8-148 IBM MobileFirst Platform Foundation V6.3.0

Some environments, for example the Xcode console, can print the arguments
passed to the logger only if the arguments are converted to strings and
concatenated first. Other environments, for example Google Chrome, can provide
better visualization of arguments if the arguments are not turned into strings and
concatenated.

By default, all logs are stringified. To disable this feature:
WL.Logger.config({stringify: false});

To re-enable this feature:
WL.Logger.config({stringify: true});

Callback
You can pass a callback function to WL.Logger.config that will be called after every
log message.

The callback takes these arguments:
v message (string or array)
v priority (string)
v package (string)

If stringify : true is set, the message is a string. Otherwise it is an array. If the
package is not defined, the message is an empty string.

Send all log messages to a backend using jQuery.ajax:
var ajaxSender = function (message, priority, pkg) {

$.ajax({
url: ’http://localhost:3000/logs’
type: ’POST’,
data: {

message: message,
priority: priority,
pkg: pkg

}
});

};

WL.Logger.config({callback: ajaxSender});

Sends all log messages to a backend using a invokeProcedure method as defined in
the WL.Client class.
var adapterSender = function (message, priority, pkg) {

var invocationData = {
adapter: ’Logger’,
procedure: ’sendLogs’,
parameters: [message, priority, pkg]

Developing MobileFirst applications 8-149

http://api.jquery.com/jQuery.ajax/
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

}

WL.Client.InvokeProcedure(invocationData);
};

WL.Logger.config({callback: adapterSender});

Log JavaScript errors for a specific package using the logActivity method as
defined in the WL.Client class.
var activitySender = function (message, priority, pkg) {

if (priority === ’ERROR’ && pkg === ’my.app.db’) {
WL.Client.logActivity(message);

}

};

WL.Logger.config({callback: activitySender});

Log message tags
You can add context to a log message by appending the level tag, the package tag,
or both.

Add level and error tags to a defined package:
WL.Logger.config({tag: {level: true, pkg: true} });

WL.Logger.info(’Hello’);
// [INFO] Hello

WL.Logger.ctx({pkg: ’wl.jsonstore’}).error(’Hey’);
// [ERROR] [wl.jsonstore] Hey

Turn off the tags:
WL.Logger.config({tag: {level: false, pkg: false} });

WL.Logger.info(’Hello’);
// Hello

WL.Logger.ctx({pkg: ’MYPKG’}).error(’Hey’);
// Hey

Note: Tags only show in web applications and not in hybrid applications.

Method chaining
You can invoke multiple method calls by chaining logger methods.

You can chain these logger methods:
WL.Logger.ctx
WL.Logger.create

This example carries out these steps:
v Sets the package context to com.my.app
v Logs Hello.
WL.Logger.ctx({pkg: ’com.my.app’}).log(’Hello’);
// ’[com.my.app] Hello’

Pretty-print JSON objects
You can format JSON objects by enabling stringify.

8-150 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

By enabling (pretty: true) you can display JSON objects in a more readable
format.
var obj = {name: ’carlos’, age: 100};
WL.Logger.config({stringify: true, pretty: true});

WL.Logger.config({pretty: false});

Print stack traces
You can print stack traces for certain objects.

You can print stack traces for an object if the object is an instance of Error (if
(object instance of Error) evaluates true).
WL.Logger.config({stringify: true, stacktrace : true});
WL.Logger.error("BOOM");

WL.Logger.config({stacktrace: false});
WL.Logger.error(object);

Logger Android check and override
Logger checks the operating system on which it is running to determine whether
to use the Android logger. You can override this behavior.

By default, WL.Logger checks the operating system at run time, and if it is running
on Android it attempts to use the cordova plug-in. If the plug-in fails, it falls back
to console.log. There are several differences between the cordova plug-in logger
and console log:

Cordova plugin logger
Asynchronous

Provides better output in LogCat

Requires that the deviceready event previously fired.

Developing MobileFirst applications 8-151

Console log
Synchronous

Native logger + LogCat:

console.log + LogCat:

To override the Android check, do one of the these:
v Pass android: false to WL.Logger.config

Note: Logs with WL.Logger.log are treated as verbose by LogCat.

Environment-specific settings
You can specify that logger options are selected according to the client
environment.

Use initOptions.js to select options for each environment:
//General logger options
wlInitOptions.logger = {enabled: true, stringify: false};

//Environment specific logger options
if (WL.Client.getEnvironment() === WL.Environment.IPHONE) {

wlInitOptions.logger.stringify = true;
}

WL.Client.init(wlInitOptions);

For other options that can take advantage of environment-specific settings, see
“Logger Android check and override” on page 8-151 “Callback” on page
8-149,“Log message tags” on page 8-150, “Log package whitelist and blacklist” on
page 8-148, and “Select log levels” on page 8-146.

As examples, you can use environment-specific options settings to specify no logs
in production, selected logs for development, and only error logs for testing:
//Change accordingly
var CURRENT_ENV = ’production’;

//General init options
var wlInitOptions = {};

//General logger options
wlInitOptions.logger = {enabled: true};

8-152 IBM MobileFirst Platform Foundation V6.3.0

//Give your application a small speed boost by not logging in production
if (CURRENT_ENV === ’production’) {

wlInitOptions.logger.enabled = false;
}

WL.Client.init(wlInitOptions);

JavaScript module example
View an example of how to use WL.Logger to add log messages to a JavaScript
module.

This example demonstrates how to use WL.Logger to add log messages to a
JavaScript module by using these methods:
v myApp.Greeter.start() Initializes the module.
v myApp.Greeter.sayHello(name) Alerts a greeting to the name that is passed.

The example uses the default initOptions.js file for IBM Worklight V6.0. This list
contains some of the principles that are demonstrated by the example:
v The module, myApp.Greeter.js, uses the JavaScript Revealing Module Pattern,

however the concepts in the example apply no matter how you structure your
JavaScript code.

v By using WL.Logger.create({pkg: ’[package-name]’}) you can create a
LogInstance linked to a package.

v Using a short variable name such as 1for the LogInstance makes it easier to
write logs, for example: (l.log(msg), l.info(msg)

v You can log errors by using the JavaScript try/catch block (synchronous code)
and failure callbacks (asynchronous code).

v You can avoid problems by using correct log levels, precise package names, and
by filtering as necessary.

myApp.Greeter.js

var myApp = myApp || {};
myApp.Greeter = (function (WL) {

//ECMAScript 5 strict mode
’use strict’;

//Dependencies
var WL_LOGGER = WL.Logger;
//... other dependencies

//Constants
var PKG_NAME = ’myApp.Greeter’;
var DEFAULT_NAME = ’Stranger’;
//... other constants

//LogInstance local to this module
var l = WL_LOGGER.create({pkg: PKG_NAME});

//Private function to the module that does validation and alerts a name
var __alertName = function (name) {

l.debug(’Calling __alertName with name =’, name);

if (typeof name !== ’string’ || name.length < 1) {
l.warn(’Name was not a string or empty string, setting name to’, DEFAULT_NAME);
name = DEFAULT_NAME;

}

else if (name === ’*’) {

Developing MobileFirst applications 8-153

https://www.google.com/search?q=JavaScript+Revealing+Module+Pattern

throw new Error(’Name can not be *’);
}

//Assume ’alert’ is always a global function that exists
alert(’Hello ’ + name);

l.debug(’Done calling __alertName’);
};

//Public API function that does initialization
var _start = function () {

l.info(’Started’, PKG_NAME ,’module’);

//... init code
};

//Public API function that alerts ’Hello [name]’
var _sayHello = function (name) {

l.debug(’Starting _sayHello’);

try {
__alertName(name);

} catch (e) {
//Log any errors
l.error(e);

}

l.debug(’End _sayHello’);
};

//Public API
return {

start : _start,
sayHello: _sayHello

};

}(WL)); //Pass global variables to the module

main.js

function wlCommonInit () {
myApp.Greeter.start(); //Start our application’s greeter module
myApp.Greeter.sayHello(’Carlos’); //should alert ’Hello Carlos’
myApp.Greeter.sayHello(); //should alert ’Hello Stranger’
myApp.Greeter.sayHello(’*’); //should log an error

}

index.html

<!-- ... other html tags -->
<body id="content" style="display: none;">

<!-- ... application UI -->

<script src="js/initOptions.js"></script>
<script src="js/myApp.Greeter.js"></script>
<script src="js/main.js"></script>

<!-- ... other script tags -->
</body>

8-154 IBM MobileFirst Platform Foundation V6.3.0

Web and native code in iPhone, iPad, and Android
Using IBM MobileFirst Platform Foundation, you can include, in your applications,
pages that are developed in the native operating system language.

The natively developed pages can be invoked from your web-based pages and can
then return control to the web view. You can pass data from the web page to the
native page, and return data in the opposite direction. You can also animate the
transition between the pages in both directions.

Switching between native and web views
In iOS and Android applications, natively developed pages can be invoked from
your web-based pages and can then return control to the web view and vice versa.
You can pass data from the web page to the native page, and return data in the
opposite direction. You can also animate the transition between the pages in both
directions.

Switching to a native view from a web view

To switch the display from the web view to a native page, use the
WL.NativePage.show method.

Authenticating in native and retrieving user information in web view

The MobileFirst JavaScript API provides the following methods for retrieving
authenticated user information, such as the login name, display name, or any other
custom user identity property.
v WL.Client.updateUserInfo()
v WL.Client.getLoginName()
v WL.Client.getUserInfo()
v WL.Client.getUserName()

Note: The preceding methods are available in the JavaScript API only. If your
application implements authentication in the native layer and only then moves to
the web layer, you must invoke WL.Client.updateUserInfo() methods in order to
retrieve authenticated user information from the MobileFirst Server.

Receiving data from the web view in an Objective-C page
To receive data from the calling web view, follow these instructions.

Figure 8-18. Log output

Developing MobileFirst applications 8-155

Before you begin

The native page must be implemented as an Objective-C class that inherits from
UIViewController. This UIViewController class must be able to initialize through
the init method alone. The initWithNibName:bundle: method is never called on
this class instance.

Procedure

Write a UIViewController class that implements the method setDataFromWebView:.
-(void) setDataFromWebView:(NSDictionary *)data{

NSString = (NSString *) [data valueForKey:@"key"];
}

Related information:

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/
UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/
UIViewController

Returning control to the web view from an Objective-C page
To switch back to the web view, follow these instructions.

Before you begin

The native page must be implemented as an Objective-C class that inherits from
UIViewController. This UIViewController class must be able to initialize through
the init method alone. The initWithNibName:bundle: method is never called on
this class instance.

Procedure

In the native page, call the [NativePage showWebView:] method and pass it an
NSDictionary object (the object can be empty). This NSDictionary can be structured
with any hierarchy. The MobileFirst runtime framework encodes it in JSON format,
and then sends it as the first argument to the JavaScript callback function.
// The NSDictionary object will be sent as a JSON object to the JavaScript layer in the webview
[NativePage showWebView:[NSDictionary dictionaryWithObject:@"value" forKey:@"key"]]

Related information:

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/
UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/
UIViewController

Animating the transition from an Objective-C page to a web view
To implement a transition animation when switching the display from the native
page to the web view, follow these instructions.

Procedure

Within your animation code, call the [NativePage showWebView] method.
-(IBAction)returnClicked:(id)sender{
NSString *phone = [phoneNumber text];
NSDictionary *returnedData = [NSDictionary dictionaryWithObject:phone forKey:@"phoneNumber"];

// Animate transition with a flip effect
CDVAppDelegate *cordovaAppDelegate = (CDVAppDelegate *)[[UIApplication sharedApplication] delegate];

8-156 IBM MobileFirst Platform Foundation V6.3.0

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.5];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight
forView:[cordovaAppDelegate window] cache:YES];

[UIView commitAnimations];

// Return to WebView
[NativePage showWebView:returnedData];
}

Animating the transition from a web view to an Objective-C page
To implement a transition animation when switching the display from the web
view to the native page, follow these instructions.

Procedure

Implement the methods: onBeforeShow and onAfterShow. These methods are
called before the display switches from the web view to the native page, and after
the transition.
-(void)onBeforeShow{
CDVAppDelegate *cordovaAppDelegate = (CDVAppDelegate *)[[UIApplication sharedApplication] delegate];
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.5];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight forView:[cordovaAppDelegate window] cache:YES];
}
-(void)onAfterShow{
[UIView commitAnimations];
}

Receiving data from the web view in a Java page
To receive data from the calling web view, follow these instructions.

Before you begin

The page must be implemented as an Activity object or extend an Activity. As
with any other activity, you must declare this activity in the AndroidManifest.xml
file.

Procedure

To receive data from the calling web view, use the Intent object defined on the
native Activity. The MobileFirst client framework makes the data available to the
Activity in a Bundle.

Example

Sending data from web view to the native Activity:
WL.NativePage.show(’com.example.android.tictactoe.library.GameActivity’, this.callback, {"gameLevel":1,"playerName":"john",isKeyboardEnable:false});

Receiving the data in the native Activity:
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

//Read int value, default = 0
Integer gameLevel = getIntent().getIntExtra("gameLevel", 0);

//Read String value
String playerName = getIntent().getStringExtra("playerName");

Developing MobileFirst applications 8-157

//Read boolean value, default = false
Boolean isKeyboardEnable = getIntent().getBooleanExtra("isKeyboardEnable", false);

}

Related information:

http://developer.android.com/reference/android/content/Intent.html

http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/os/Bundle.html

Returning control to the web view from a Java page
To switch back to the web view, follow these instructions

Before you begin

The page must be implemented as an Activity object or extend an Activity. As
with any other activity, you must declare this activity in the AndroidManifest.xml
file.

Procedure

In the native page, call the finish() function of the Activity. You can pass data
back to the web view by creating an Intent object.

Example

Passing data and control to the web view:
Intent gameInfo = new Intent ();
gameInfo.putExtra("winnerScore", winnerScore);
gameInfo.putExtra("winnerName", winnerName);
setResult(RESULT_OK, gameInfo);
finish();

Receiving the data in the web view:
this.callback = function(data){$(’resultDiv’).update(’The winner is: ’ + data.winnerName + " with score: " + data.winnerScore);};

Related information:

http://developer.android.com/reference/android/app/Activity.html

Animating the transitions from and to a Java page
To animate the transitions between a web view and a native page, follow these
instructions.

Procedure

To add transition animation, use the Activity function
OverridePendingTransition(int, int).

Example
// Transition animation from the web view to the native page
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
overridePendingTransition(android.R.anim.fade_in, android.R.anim.fade_out);
}

8-158 IBM MobileFirst Platform Foundation V6.3.0

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/app/Activity.html

// Transition animation from the native page to the web view
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
//your code goes here....
finish();
overridePendingTransition(android.R.anim.fade_in, android.R.anim.fade_out);
}

Related information:

http://developer.android.com/reference/android/app/
Activity.html#overridePendingTransition(int, int)

Guidelines for using native code in MobileFirst projects
Follow these guidelines to keep your project's native code intact during a build.

As a rule, MobileFirst builds are non-destructive with respect to files in the native
folder. The exception is the target web folder (meaning /www, or assets/www), which
is overwritten during each build with the optimized web resources from common
and environment-specific folders. Keep to the following rules to ensure that your
native code remains intact during a build:
v If you have edited native code in either Android Studio or Xcode, ensure that

your changes are under the app's native folder before the next build in
MobileFirst Studio.

v You can safely place and edit non-web assets in the native folder. No
duplication or copying of files under native to other locations occurs during a
build.

v Additionally, you can place a limited number of assets (for example, icons)
under the nativeResources folder that is then copied into the native folder
during a build. However, make this the exception, rather than the rule.

v Never edit web assets directly in the native folder. Edit web assets in either the
common or environment-specific folders, as appropriate. These folders are merged
and optimized during a build and placed in the proper web target folder.

v Do not manually delete the native folder as it may contain critical custom code
that you have implemented. If you must delete the folder, first ensure that you
have backed up the code.

v Follow the guidelines for using source control systems with MobileFirst projects:
See “Integrating with source control systems” on page 8-11.

v Use the nativeResources folder to hold static resources only, such as images.

Development guidelines for desktop and web environments
This collection of topics gives instructions for implementing various functions in
desktop and web applications.

Specifying the application taskbar for Adobe AIR applications
How to display or suppress a taskbar button for a widget.

About this task

Adobe AIR applications can be displayed on the system taskbar. Widgets that are
opened for a short time (for example, to perform a specific task) and are then
closed should normally have a taskbar button. Conversely, widgets that remain
constantly open on the desktop should not have a taskbar button, to save the
space required by the button. Instead, such widgets have a tray icon that allows
access to the widget.

Developing MobileFirst applications 8-159

http://developer.android.com/reference/android/app/Activity.html#overridePendingTransition(int, int)
http://developer.android.com/reference/android/app/Activity.html#overridePendingTransition(int, int)

If the taskbar button is not displayed, IBM MobileFirst Platform Foundation adds
a tray icon for the widget. You can use the tray icon to minimize the application,
restore it, and close it.

Procedure
v To control whether your desktop widget is displayed on the taskbar, specify the

<air> element in the application descriptor. If the <air> element is not specified,
the taskbar button is displayed.

v To display a taskbar button for the widget, specify: <air
showInTaskbar="always" />.

v To avoid displaying a taskbar button for the widget, specify: <air
showInTaskbar="never" />

Configuring the authentication for web widgets
Add a realm to the authenticationConfig.xml file.

About this task

The authenticationConfig.xml file, in the Worklight Project Name/server/conf
folder, is used to configure how widgets and web applications authenticate users.

For more information about configuring realms, see “MobileFirst security
framework” on page 8-480.

Procedure

In the authenticationConfig.xml file, add a realm that uses the login forms, as
follows:
<realm name="realm-name" loginModule="login-module-name">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>
<parameter name="login-page" value="/apps/services/login-file-name" />
</realm>

Writing login form files for web widgets
Write two files, in HTML or JSP, with the ability to carry out a security check.

Procedure
1. Create two files, one displaying the login form and another one displaying the

form after a login error occurred. The files can be HTML or JSP. Both login
page and login error page must be able to submit a form with the action
j_security_check and have j_username and j_password parameters. This
technique is shown in the following code example:
<form method="post" action="j_security_check">
<input type="text" name="j_username"/>
<input type="password" name="j_password"/>
</form>

2. Save both files in the Worklight_Project_Name/server/webapps/gadgets-
serving folder.

Setting the size of the login screen for web widgets
If your login page is displayed in a separate browser window, configure its height
and width.

8-160 IBM MobileFirst Platform Foundation V6.3.0

Procedure

If your login page is displayed in a separate browser window, configure its height
and width in the application descriptor, by using the <loginPopupHeight> and
<loginPopupWidth> elements.

Signing Adobe AIR applications
IBM MobileFirst Platform Foundation provides a default certificate for
development and test purposes. For production, obtain a certificate from a
certificate authority and install it.

About this task

Adobe AIR applications must be digitally signed in order for users to install them.
IBM MobileFirst Platform Foundation provides a default certificate for signing AIR
applications that can be used for development and test purposes.

To sign an AIR application for production distribution, using your own certificate,
follow these instructions:

Procedure
1. Obtain a PKCS12 certificate from a certificate authority, and export it as a PFX

file.
2. Place this certificate on your hard disk.
3. Set the <certificate> element under the <air> element in the application

descriptor. The structure of the <certificate> element is:
<certificate password="password" PFXFilePath="path-to-pfx"/>

where password is the password for the PFX certificate, and path-to-pfx can
either be relative to the root of the application, or an absolute path.

Signing Windows 8 apps
For development and test, you can create a test certificate by using Microsoft
Visual Studio. You can use this created certificate to sign the application. For
production, obtain a certificate from a certificate authority and install it.

About this task

Windows 8 apps should be digitally signed before users install them. For
development and test, you can create a test certificate by using Microsoft Visual
Studio. You can use this created certificate to sign the application.

To sign a Windows 8 app for production distribution, using your own certificate,
follow these instructions:

Note: : You can sign Windows 8 apps only on Windows systems.

Procedure
1. See http://msdn.microsoft.com/en-us/library/windows/apps/br230260.aspx

for details on obtaining a PKCS12 certificate.
2. Export the PKCS12 certificate as a PFX file.
3. Place this certificate on your hard disk.
4. Set the <certificate> subelement under the <windows8> element in the

application descriptor. The structure of the <certificate> subelement

Developing MobileFirst applications 8-161

http://msdn.microsoft.com/en-us/library/windows/apps/br230260.aspx

is:<certificate PFXFilePath="Path to certificate file"
password="certificate password"/>, where Path to certificate file can either be
relative to the root of the application, or an absolute path, and password is the
password for the PFX certificate.

Embedding widgets in predefined web pages
Follow these instructions to incorporate widgets into web pages.

Before you begin

If your MobileFirst Studio internal application server does not run on the default
port 10080, make sure that you also set this port as the value of the configuration
publicWorkLightPort. Otherwise, the action Embed in Web Page does not provide
you with the correct URL. For descriptions of publicWorkLightPort and other
MobileFirst configuration properties, see “Configuring a MobileFirst project in
production by using JNDI environment entries” on page 11-56. For information
about how to specify MobileFirst configuration properties, see “Configuration of
MobileFirst applications on the server” on page 11-45.

About this task

MobileFirst widgets can be embedded in predefined web pages, such as corporate
websites or intranet portals.

Procedure

To embed a widget in a predefined web page:
1. In the MobileFirst Operations Console, on the Catalog tab page, locate the

widget, and then click Embed in web page. A window is displayed, which
contains the URL of the application to which you point in your website to
embed the widget.

2. Paste the URL in an HTML snippet in the web page where you want to embed
the widget.
<iframe src="URL_to_embed" width="widget_width" height="widget_height" style="border:none;"> </iframe>

Configuring and customizing direct update
Direct update is the direct delivery of updated web resources to deployed
applications. Subject to the terms and conditions of the target platform,
organizations are not required to upload new app versions to the app store or
market. In IBM MobileFirst Platform Foundation, this option is available for
iPhone, iPad, Windows Phone 8, and Android apps.

For an introduction to direct updates of app versions to mobile devices, see “Direct
updates of app versions to mobile devices” on page 8-163. A direct updates
mechanism is available for desktop apps. For more information, see “Direct
updates of app versions to desktop apps” on page 8-166.

The MobileFirst Server can push data at the rate of 250 MB per second. For
example, if an application is 5 MB in size, assuming that the network bandwidth is
not a bottleneck, the MobileFirst Server can serve 50 direct updates per second,
and a MobileFirst Server cluster of four servers can serve 200 direct updates per
second.

To serve direct updates at higher rates, consider using a CDN (content delivery
network) instead of the MobileFirst Server.

8-162 IBM MobileFirst Platform Foundation V6.3.0

Direct updates of app versions to mobile devices
Direct Update allows you to quickly update application web resources (HTML,
JavaScript, and CSS) without going through the vendor (Apple/Google) app store
review process.

When you deploy the latest build without changing its version to the MobileFirst
Server, the next time the app tries to access the server, it will automatically retrieve
the latest web resources after prompting the user to accept the update. Direct
Update cannot be used to update native code.

For client apps built on versions of IBM Worklight Foundation up to V6.2.0.1, the
entire web resources package is downloaded to the application during the Direct
Update process.

Client applications built on IBM MobileFirst Platform Foundation V6.3 and later:
v Receive a differential direct update by default if the web resources of the

application are only one build behind those in the application now being
deployed. Only the web resources that were changed since the last deployment
are downloaded and updated.

v Receive a full direct update if the web resources of the application are more than
one build behind those in the application now being deployed.

Note: The differential direct update is applicable for Android and iOS only. It is
not available for Windows Phone 8. The client apps of Windows phone 8 receive
full direct update.

See “Upgrading MobileFirst Studio in the Consumer or Enterprise Editions to
MobileFirst Studio V6.3.0” on page 7-5 for instructions to reenable direct update
after an upgrade of MobileFirst Server.

When the app connects to the MobileFirst Server, it starts downloading the newly
deployed resources, as shown in the following figures. If the download fails
mid-way, the direct update will resume from where the download was broken the
previous time.

Note: The user notifications seen in the following figures show the default method
of implementing Direct update. You can customize the direct update process and
interface of apps developed in MobileFirst Studio, V6.2.0 and later. For more
information, see “Customizing the direct update interface and process” on page
8-174.

Developing MobileFirst applications 8-163

Figure 8-19. Update notice from Android

Figure 8-20. Downloading newly deployed resources to Android

8-164 IBM MobileFirst Platform Foundation V6.3.0

Figure 8-21. Update notice from iOS

Figure 8-22. Downloading newly deployed resources to iOS

Figure 8-23. Update notice from Windows Phone 8

Developing MobileFirst applications 8-165

Direct updates of app versions to desktop apps
A direct updates mechanism is available for desktop apps as well as for mobile
devices.

When you redeploy a desktop app with a new version, the MobileFirst Server
automatically pushes the app to the user's desktop. When the desktop app
connects to the MobileFirst Server and an update is available, it displays a dialog
box for the user, asking the user to accept a new version. If the user accepts the
new version, it is automatically downloaded to the user's desktop. The user must
then open the downloaded app to install it on the desktop.

This option is only available for Adobe AIR applications.

Direct Update as a security realm
Since IBM Worklight Foundation V6.2.0, Direct Update is part of the MobileFirst
security framework, and is defined as a security realm.

The incorporation of Direct Update into the MobileFirst security framework
provides greater flexibility and consistency. Direct Update is enabled by default on
all supported platforms, including iPhone, iPad, Android, and Microsoft Windows
Phone 8. Checks for Direct Update occur during requests to the server. If an
update is available, the client displays a confirmation dialog. When the user
accepts, the new resources are downloaded from the MobileFirst Server and the
app restarts.

Configuring the Direct Update realm

You configure Direct Update in the authenticationConfig.xml file. A Direct
Update test can be added to any mobile security test or custom security test.

Example of a Direct Update test in a mobile security test
<mobileSecurityTest name="mobileWithDirectUpdate">

<testDirectUpdate mode="perRequest"/>
<testDeviceId provisioningType="none"/>
<testUser realm="wl_anonymousUserRealm"/>

</mobileSecurityTest>

Figure 8-24. Downloading newly deployed resources to Windows Phone 8

8-166 IBM MobileFirst Platform Foundation V6.3.0

Example of a Direct Update test in a custom security test
<customSecurityTest name="customWithDirectUpdate">

<test realm="wl_directUpdateRealm" mode="perRequest" step="1"/>
<test realm="wl_anonymousUserRealm" isInternalUserID="true" step="1"/>
<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" step="2"/>

</customSecurityTest>

Mode

You can use the optional mode property to configure when the server checks for
direct updates. The following table describes the possible modes:

Table 8-9. Values of the mode attribute

Mode Description

perSession The server checks whether a Direct Update
is available (and if so, delivers it) once per
session, on the first request to the server.
This is the default mode.

perRequest The server checks whether a Direct Update
is available (and if so, delivers it) on every
request to the server.

disabled The server never checks whether a Direct
Update is available (not even during an
explicit call to WL.Client.login, as described
in “Check for Direct Update on demand” on
page 8-168).

Mobile security test

If a Direct Update test is not specified in a mobile security test, it is enabled with
the default perSession mode. To change the direct update mode to perRequest in a
mobile security test, add a direct update test with mode="perRequest" to a mobile
security test: <testDirectUpdate mode="perRequest"/>. To disable direct update in
a mobile security test, add a direct update test with mode="disabled" to the mobile
security test: <testDirectUpdate mode="disabled"/>.

Custom security test

To add a Direct Update test to a custom security test, add the following test to the
security test: <test realm="wl_directUpdateRealm"/>. The default mode is
perSession. To change the mode, specify a value for the mode attribute: <test
realm="wl_directUpdateRealm" mode="perRequest"/>. To disable automatic Direct
Update in a custom security test, either set the mode to disabled or do not add a
test with a Direct Update realm.

Changes from previous versions of IBM MobileFirst Platform
Foundation

In IBM Worklight V6.1.0 and earlier versions, the server checks for direct
updates as part of the WL.Client.connect() request. Since IBM Worklight
Foundation V6.2.0, the server checks for updates outside the WL.Client.connect()
request. Because Direct Update is now part of the security framework, the server
can check for direct updates on every request from the client to the server, on first
request, or not at all, depending on the configuration.

In IBM Worklight V6.1.0 and earlier versions, returning the application to the
foreground triggered a server request to check for direct updates. Since IBM

Developing MobileFirst applications 8-167

Worklight Foundation V6.2.0, you can configure MobileFirst Server to check for
direct updates on every request; therefore direct updates are no longer explicitly
checked when the application returns to the foreground. You can impose the
behavior of earlier versions by listening to the “resume” event fired by Cordova
and manually checking for direct updates:
$(document).on("resume", function(){

WL.Client.login("wl_directUpdateRealm", {onSuccess:..., onFailure:...});
});

Check for Direct Update on demand

You can configure Direct Update so that the server checks for direct updates only
when there is an explicit call to do so. To apply this setting, protect the application
with a custom security test that does not contain a test with wl_directUpdateRealm.
In the application code, use WL.Client.login("wl_directUpdateRealm",
{onSuccess:.., onFailure:...}), which causes the server to check for direct
updates. (See the documentation for the login method of WL.Client.) This
configuration does not work if the custom security test that protects the application
contains wl_directUpdateRealm with mode="disabled".

Native applications and Direct Update

Direct Update is supported only by the JavaScript WL.Client. For applications that
are protected by a direct update realm that is configured to use perSession mode,
when such applications initiate a server session by using a native WLClient call, the
server assumes that Direct Update is not required for this session even if
subsequent requests are made by using a JavaScript WL.Client call. In such cases,
to enable Direct Update to work when using the JavaScript WL.Client, configure
the direct update realm to use perRequest mode.

Direct Update Customization

Developers can customize the Direct Update process for hybrid applications on
iOS, Android, and Microsoft Windows Phone 8. For more information, see
“Customizing the direct update interface and process” on page 8-174.

Upgrading projects

When you import a project from Worklight Studio V6.1.0 or earlier versions into
MobileFirst Studio, the following Direct Update test is added automatically to
every custom security test in the project authenticationConfig.xml file: <test
realm="wl_directUpdateRealm" step="1"/>. Direct Update then continues to work
in a similar way to how it worked in versions earlier than V6.2 (that is, Direct
Update checks are made once per session).

Direct Update Authenticity
Client applications can check the authenticity of a direct update package
downloaded from the MobileFirst Server or CDN.

When you enable the Direct Update Authenticity feature, the direct update
package is digitally signed during deployment. After the client has downloaded
the package, it performs a security check on it to validate its authenticity. This
means that if the direct update package has been altered or replaced, the client will
not install it. Additionally, the client reports direct update authenticity failure to

8-168 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

the MobileFirst Server. These reports appear in the server logs with a log level
SEVERE. For more information, see “Customizing the direct update interface and
process” on page 8-174.

Follow the instructions below to enable this feature for new applications and for
existing applications that have been upgraded. It is not enabled by default.

Enabling direct update authenticity checks

The following instructions are for all supported environments.
1. In the MobileFirst project, under the server folder, in the

conf/worklight.properties file, update the keystore data for the
following properties:
v wl.ca.keystore.path - The path to the keystore, relative to the server

folder in the MobileFirst project, for example: conf/default.keystore.
v wl.ca.keystore.type - The type of the keystore file. Valid values are

jks or pkcs12.
v wl.ca.keystore.password - The password to the keystore file, for

example: MobileFirst.
v wl.ca.key.alias - The alias of the entry where the private key and

certificate are stored, in the keystore, for example: keypair1.
v wl.ca.key.alias.password - The password to the alias in the

keystore for example: MobileFirst.

Note: The maximum permitted key length is 3072 bits.
2. In the applicationDescriptor.xml file for your app, update the client

with the public key that will be used to authenticate the direct update
zip file.

Note: The public key must use Base64 encoding.
Use any of the following three ways to update the file:
v Edit source manually

Use your preferred text editor to edit the application-
descriptor.xml file directly, in the <application> section. For
example:
<directUpdateAuthenticityPublicKey>public_key</directUpdateAuthenticityPublicKey>

v Use the Application Descriptor editor
– Click the Design view to display the Application Descriptor

Editor.

Developing MobileFirst applications 8-169

– In the Direct update authenticity public key field, enter the
authenticity public key.

v Use the public key extraction wizard
a. Right-click the apps/<app> folder in your project.
b. Select Extract public key for direct update authenticity to

display the Extract public signing key from keystore wizard.

c. Specify the location and password of the keystore file and click
Load Keystore.

8-170 IBM MobileFirst Platform Foundation V6.3.0

d. Select Key alias and click Next to display the key.

e. Click Finish to insert the key into the application-
descriptor.xml file.

3. After you have updated the required information, rebuild and redeploy
your application to IBM MobileFirst Platform Server.

Serving direct update requests from a CDN
You can configure direct update requests to be served from a CDN (content
delivery network) instead of from the MobileFirst Server.

Advantages of using a CDN

Using a CDN instead of the MobileFirst Server to serve direct update requests has
the following advantages:
v Removes network overheads from the MobileFirst Server.
v Increases transfer rates above the 250 MB/second limit when serving requests

from a MobileFirst Server.
v Ensures a more uniform direct update experience for all users regardless of their

geographical location.

Developing MobileFirst applications 8-171

General requirements

To serve direct update requests from a CDN, ensure that your configuration
conforms to the following conditions:
v The CDN must be a reverse proxy in front of the MobileFirst Server (or in front

of another reverse proxy if needed).
v When building the application from MobileFirst Studio or from the command

line interface, you need to supply the CDN host and port instead of the host and
port of the MobileFirst Server.

v In the CDN administration panel, you need to mark the following direct update
URLs for caching to ensure that the CDN passes all requests to the MobileFirst
Server except for the direct update requests. For direct update requests, the CDN
determines if it has already obtained the content. If it has, it returns it without
going to the MobileFirst Server; if not, it goes to the MobileFirst Server, gets the
direct update zip file, and stores it for the next requests for that specific URL.
– For applications that are built with versions of MobileFirst Studio earlier than

V6.2.0, the direct update URL is: PROTOCOL://DOMAIN:PORT/CONTEXT_PATH/
apps/services/api/APP_NAME/ENVIRONMENT/updates?skin=SKIN_NAME&x-wl-
app-version=VERSION.

– For applications that are built with MobileFirst Studio V6.2.x, the direct
update URL is: PROTOCOL://DOMAIN:PORT/CONTEXT_PATH/directUpdate/
APP_NAME/ENVIRONMENT/VERSION?skin=SKIN_NAME.

– For applications that are built with MobileFirst Studio V6.3.0 and later, the
direct update URL is: PROTOCOL://DOMAIN:PORT/CONTEXT_PATH/directUpdate/
APP_NAME/ENVIRONMENT/VERSION/CHECKSUM/TYPE/SKIN_NAME. Where
CHECKSUM is a numeric value, and TYPE is either full or delta.

Note: The prefix PROTOCOL://DOMAIN:PORT/CONTEXT_PATH is constant for all
runtime requests and cannot be changed just for direct update requests.

v The CDN must support TTL on the direct update response. This is needed to
support multiple direct updates for the same version.

v The CDN must not change or remove the HTTP headers that are used in the
MobileFirst server-client protocol.

v The CDN must allow caching of the request parameters. Two different direct
update zip files might differ only by the request parameters (x-wl-app-version or
skin).

Example configuration

This example is based on using an Akamai CDN configuration that caches the
direct update zip file. The following tasks are completed by the network
administrator, the MobileFirst administrator, and the Akamai administrator:

Network administrator:

1. Create an additional domain in the DNS for your MobileFirst Server.
For example if your server domain is yourcompany.com you need to
create an additional domain such as cdn.yourcompany.com.

2. In the DNS for the new cdn.yourcompany.com domain, set a CNAME
to the domain name that is provided by Akamai; for example,
yourcompany.com.akamai.net.

MobileFirst administrator:

v Set the new cdn.yourcompany.com domain as the MobileFirst Server
URL for the MobileFirst applications. For example, for the Ant builder

8-172 IBM MobileFirst Platform Foundation V6.3.0

task, the property is: <property name="wl.server" value="http://
cdn.yourcompany.com/${contextPath}/"/>

Akamai administrator :

1. Open the Akamai property manager and set the property hostname to
the value of the new domain.

2. On the Default Rule tab, configure the original MobileFirst Server host
and port, and set the Custom Forward Host Header value to the newly
created domain.

3. From the Caching Option list, select No Store.

4. From the Static Content configuration tab, configure the matching
criteria according to the direct update URL of the application. For
example, create a condition that states If Path matches one of
direct_update_URL.

5. Set values similar to the following to configure the caching behavior to
make cache the direct update URL and to set TTL.

Developing MobileFirst applications 8-173

Table 8-10. Configuring caching

Field Value

Caching Option Cache

Force Revaluation of Stale Objects Serve stale if unable to validate

Max-age 3 minutes

6. Configure the cache key behavior to use all request parameters in the
cache key (you must do this to cache different direct update zip files
for different applications or versions). For example, from the Behavior
list, select Include all parameters (preserve order from request).

7. Save and activate the configuration.

Customizing the direct update interface and process
You can change the default user interface for the direct update dialog boxes and
the messages that are displayed to the user. You can also control when an
application checks for a direct update, run the direct update process without
presenting a user interface to the user, link the checking for available direct
updates to a call to an adapter, and control what happens when the direct update
process fails.

Use the handleDirectUpdate function of the direct update challenge handler to
customize the direct update process and interface on iOS, Android, and Windows
Phone 8. The handleDirectUpdate function has the following format:
wl_directUpdateChallengeHandler.handleDirectUpdate = function (directUpdateData,directUpdateContext){...}

The function accepts the following arguments:

directUpdateData
A JSON object that contains the downloadSize property that represents the
files size in bytes of the update package to be downloaded from server.

directUpdateContext
A JavaScript object that exposes .start() and .stop() functions that start
and stop the direct update flow.

If the web resources are newer on the MobileFirst Server than in the application,
direct update challenge data is added to the server response. Whenever the
MobileFirst client-side framework detects this direct update challenge, it starts the
wl_directUpdateChallengeHandler.handleDirectUpdate function.

The function provides a default direct update look and feel: a default message
dialog that is displayed when a direct update is available and a default progress

8-174 IBM MobileFirst Platform Foundation V6.3.0

screen that is displayed when the direct update process is initiated. For examples
of default screens, see “Direct updates of app versions to mobile devices” on page
8-163. You can implement custom direct update user interface behavior
or customize the direct update dialog box by overriding this function and
implementing your own logic.

The following example handleDirectUpdate function implements a custom message
in the direct update dialog:
wl_directUpdateChallengeHandler.handleDirectUpdate = function(directUpdateData,directUpdateContext) {

var customDialogTitle = ’Custom Title Text’;
var customDialogMessage = ’Custom Message Text’;
var customButtonText = ’Custom Button Text’;

WL.SimpleDialog.show(customDialogTitle, customDialogMessage, [{
text : customButtonText,
handler : function() {

directUpdateContext.start();
}

}]);
};

You can start the direct update process by running the
directUpdateContext.start() method whenever the user clicks the pop-up dialog
button. This method supports the following types of invocation:
v When no parameters are specified, IBM MobileFirst Platform Foundation uses

the default progress screen, which resembles the one in IBM Worklight V6.1.0.
v When a listener function such as

directUpdateContext.start(directUpdateCustomListener) is supplied, the direct
update process runs in the background while the process sends lifecycle events
to the listener. The custom listener must implement the following methods:

var directUpdateCustomListener = {
onStart: function(totalSize){

},
onProgress: function(status,totalSize,completedSize){

},
onFinish: function(status){

}
};

The listener methods are started during the direct update process according to
following rules:
v onStart is called with the totalSize parameter that holds the size of the update

file.
v onProgress is called multiple times with status DOWNLOAD_IN_PROGRESS,

totalSize, and completedSize (the volume that is downloaded so far).
v onProgress is called with status UNZIP_IN_PROGRESS.
v onFinish is called with one of the following final status codes:

Table 8-11. Status codes for the onFinish rule

Status code Description

SUCCESS Direct update finished with no errors.

CANCELED Direct update was canceled (for example,
because the stop() method was called).

Developing MobileFirst applications 8-175

Table 8-11. Status codes for the onFinish rule (continued)

Status code Description

FAILURE_NETWORK_PROBLEM There was a problem with a network
connection during the update.

FAILURE_DOWNLOADING The file was not downloaded completely.

FAILURE_NOT_ENOUGH_SPACE There is not enough space on the device to
download and unpack the update file.

FAILURE_UNZIPPING There was a problem unpacking the update
file.

FAILURE_ALREADY_IN_PROGRESS The start method was called while direct
update was already running.

FAILURE_INTEGRITY Authenticity of update file cannot be
verified.

FAILURE_UNKNOWN Unexpected internal error.

If you implement a custom direct update listener, you must ensure that the app is
reloaded when the direct update process is complete and the onFinish() method
has been called. You must also call
wl_directUpdateChalengeHandler.submitFailure() if the direct update process fails
to complete successfully.

The following example shows an implementation of a custom direct update
listener:
var directUpdateCustomListener = {

onStart: function(totalSize){
//show custom progress dialog

},
onProgress: function(status,totalSize,completedSize){
//update custom progress dialog

},
onFinish: function(status){

if (status == ’SUCCESS’){
//show success message
WL.Client.reloadApp();

}
else {

//show custom error message

//submitFailure must be called is case of error
wl_directUpdateChallengeHandler.submitFailure();

}
}

};

wl_directUpdateChallengeHandler.handleDirectUpdate = function(directUpdateData, directUpdateContext){

WL.SimpleDialog.show(’Update Avalible’, ’Press update button to download version 2.0’, [{
text : ’update’,
handler : function() {

directUpdateContext.start(directUpdateCustomListener);
}

}]);
};

8-176 IBM MobileFirst Platform Foundation V6.3.0

Scenario: Running UI-less direct updates

IBM MobileFirst Platform Foundation supports UI-less direct update when the
application is in the foreground.

To run UI-less direct updates, implement directUpdateCustomListener. Provide
empty function implementations to the onStart and onProgress methods. Empty
implementations cause the direct update process to run in the background.

To complete the direct update process, the application must be reloaded. The
following options are available:
v The onFinish method can be empty as well. In this case, direct update will

apply after the application has restarted.
v You can implement a custom dialog that informs or requires the user to restart

the application. (See the following example.)
v The onFinish method can enforce a reload of the application by calling

WL.Client.reloadApp().

Here is an example implementation of directUpdateCustomListener:
var directUpdateCustomListener = {

onStart: function(totalSize){
},
onProgress: function(status,totalSize,completeSize){
},
onFinish: function(status){
WL.SimpleDialog.show(’New Update Available’, ’Press reload button to update to new version’, [{

text : WL.ClientMessages.reload,
handler : WL.Client.reloadApp

}]);
}

};

Implement the wl_directUpdateChallengeHandler.handleDirectUpdate function.
Pass the directUpdateCustomListener implementation that you have created as a
parameter to the function. Make sure
directUpdateContext.start(directUpdateCustomListener) is called. Here is an
example wl_directUpdateChallengeHandler.handleDirectUpdate implementation:
wl_directUpdateChallengeHandler.handleDirectUpdate = function(directUpdateData, directUpdateContext){

directUpdateContext.start(directUpdateCustomListener);
};

Note: When the application is sent to the background, the direct-update process is
suspended.

Scenario: Triggering direct updates on demand

By default, the application checks for direct updates once per session. You can
program the application to check for direct updates at a different point in time, for
example, you can trigger a check for direct updates whenever a user clicks a
button.

The mobile security test that is provided by default (in the
authenticationConfig.xml file under the server/conf folder) contains a direct
update security test. You must disable this test if you want to trigger direct update
on demand. For example:

Developing MobileFirst applications 8-177

Custom security test:
<customSecurityTest name="customNoDirectUpdate">

<test realm="wl_anonymousUserRealm" isInternalUserID="true" step="1"/>
<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" step="2"/>

</customSecurityTest>

Mobile security test:
<mobileSecurityTest name="mobileTests">

<testDeviceId provisioningType="none" />
<testUser realm="wl_anonymousUserRealm" />

</mobileSecurityTest>

In your JavaScript code, when you decided to run direct update (for example,
through a WiFi connection or when the application is in the background) call
WL.Client.checkForDirectUpdate(). This call triggers direct update on demand.

Scenario: Checking for direct updates when a specific adapter is
called

This scenario shows how you can link the checking for direct updates to adapter
calls.

Program your application to use a custom security test without direct update. The
following example shows such a custom security test in the
authenticationConfig.xml file:
<customSecurityTest name="customNoDirectUpdate">

<test realm="wl_anonymousUserRealm" isInternalUserID="true" step="1"/>
<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" step="2"/>

</customSecurityTest>

Program your adapter to use a custom security test with direct update defined.
The following example shows such a custom security test in the
authenticationConfig.xml file:
<customSecurityTest name="customWithDirectUpdateRequest">

<test realm="wl_directUpdateRealm" mode="perRequest"/>
<test realm="wl_anonymousUserRealm" isInternalUserID="true" step="1"/>
<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" step="2"/>

</customSecurityTest>

In this case, the application does not require direct update even if it is available on
the server until the adapter is called from your JavaScript code as shown in the
following example:
WL.Client.invokeProcedure({adapter : ’RSSReader’, procedure : ’getFeeds’});

Scenario: Handling a direct update failure

This scenario shows how to handle a direct update failure that might be caused,
for example, by loss of connectivity. In this scenario, the user is prevented from
using the app even in offline mode. A dialog is displayed offering the user the
option to try again.

Create a global variable to store the direct update context so that you can use it
subsequently when the direct update process fails. For example:
var savedDirectUpdateContext;

Implement a direct update challenge handler. Save the direct update context here.
For example:

8-178 IBM MobileFirst Platform Foundation V6.3.0

wl_directUpdateChallengeHandler.handleDirectUpdate = function(directUpdateData, directUpdateContext){

savedDirectUpdateContext = directUpdateContext; // save direct update context

var downloadSizeInMB = (directUpdateData.downloadSize / 1048576).toFixed(1).replace(".", WL.App.getDecimalSeparator());
var directUpdateMsg = WL.Utils.formatString(WL.ClientMessages.directUpdateNotificationMessage, downloadSizeInMB);

WL.SimpleDialog.show(WL.ClientMessages.directUpdateNotificationTitle, directUpdateMsg, [{
text : WL.ClientMessages.update,
handler : function() {

directUpdateContext.start(directUpdateCustomListener);
}

}]);
};

Create a function that starts the direct update process by using the direct update
context. For example:
restartDirectUpdate = function () {

savedDirectUpdateContext.start(directUpdateCustomListener); // use saved direct update context to restart direct update
};

Implement directUpdateCustomListener. Add status checking in the onFinish
method. If the status starts with “FAILURE”, open a modal only dialog with the
option “Try Again”. For example:
var directUpdateCustomListener = {

onStart: function(totalSize){
alert(’onStart: totalSize = ’ + totalSize + ’Byte’);

},
onProgress: function(status,totalSize,completeSize){
alert(’onProgress: status = ’ + status + ’ completeSize = ’ + completeSize + ’Byte’);

},
onFinish: function(status){
alert(’onFinish: status = ’ + status);
var pos = status.indexOf("FAILURE");
if (pos > -1) {

WL.SimpleDialog.show(’Update Failed’, ’Press try again button’, [{
text : "Try Again",
handler : restartDirectUpdate // restart direct update

}]);
}

}
};

When the user clicks the Try Again button, the application restarts the direct
update process.

Troubleshooting unintended direct update requests on Windows
Phone 8
When the hostname or IP address of the MobileFirst Server that is configured in a
hybrid Windows Phone 8 application differs from what has been deployed on the
server (either the MobileFirst Development Server embedded within MobileFirst
Studio or a production server), the application might receive an unintended direct
update request. If the user proceeds with the direct update, the application is no
longer able to connect to the MobileFirst Server.

Depending on whether you deploy the application to the MobileFirst Development
Server or a production server, take one of the following measures to resolve the
problem:

On a production MobileFirst Server:
When the IP address of the MobileFirst Server is modified in an

Developing MobileFirst applications 8-179

application by using the Build settings and Deploy Target command in
MobileFirst Studio, the resulting .wlapp file must be redeployed on the
MobileFirst Server.

On the MobileFirst Development Server:
The Build settings and Deploy Target command is intended to be used for
modifying an application to connect to a different server. However, it can
be used to change the IP address of the server and connect to the
MobileFirst Development Server that is embedded in MobileFirst Studio. In
such cases, the host name of the server must be modified to the
appropriate IP address and host name. To change it, go to the Servers view
in MobileFirst Studio, double-click the MobileFirst Development Server,
change the hostname field, and save the settings.

Developing native applications
Whatever the environment, the process for developing native applications shares
some common elements: a native API application in MobileFirst Studio, a second
project in the specific IDE, an application descriptor, and a client property file. In
some environments, you can use the web view to view the application.

Development guidelines for using native API
Native applications need native API content, which depends on your development
environment. You start from a MobileFirst project, add a second project, and define
the native application from the native API application. To build and deploy the
native application, you create a .wlapp file and upload it to the console.

Options to create MobileFirst applications

As for other types of mobile applications, you start the development of your native
app in MobileFirst Studio by creating a MobileFirst application. To develop a
native application, you must create a MobileFirst application of type Native API.
Your native application requires the content of such a Native API application to use
the corresponding MobileFirst native API. This content depends on the selected
mobile environments.
v For iOS, the MobileFirst Objective-C client-side API. Specific steps apply if you

use Apple Swift, a language that is compatible with Objective-C. For more
information, see “Developing native applications for iOS” on page 8-183.

v For Android, the MobileFirst Java client-side API.
v For the Java Platform, Micro Edition (Java ME), the MobileFirst Java client-side

API.
v For Windows Phone 8, the MobileFirst C# client-side API.
v For Windows 8, the MobileFirst C# client-side API.

The process to create a native API application differs depending on whether the
MobileFirst project exists or not.
v If you already have a MobileFirst project, you can create and add your native

API application to it. You work in MobileFirst Studio.
1. Click File > New > MobileFirst Native API.
2. Select the existing project.
3. Set the application name.
4. To specify the environment, select Android, iOS, Java ME, WindowsPhone8,

or Windows 8.

8-180 IBM MobileFirst Platform Foundation V6.3.0

5. Click Finish.
v If you do not have a MobileFirst project, you create a MobileFirst project of type

native API in MobileFirst Studio. Then you create a native API application as its
first application.
1. Click File > New > MobileFirst Project, and then select the Native API

template.
2. Set the application name.
3. To specify the environment, select Android, iOS, Java ME, WindowsPhone8,

or Windows 8.
4. Click Finish.

For more information on calling adapter procedures from native iOS applications,
see the tutorials on the Getting Started page.

Application files

In both cases, you create the native API application in MobileFirst Studio. Such
applications contain the following files:
v The application descriptor file: This file is the application-descriptor.xml file

in the application root directory.
v The MobileFirst native library and the client property file: Their name and

format depend on the environment.

iOS

– The WorklightAPI folder defines the MobileFirst native library.
– The worklight.plist file is the client property file.

Android

– The worklight-android.jar file defines the MobileFirst native library.
– The wlclient.properties file is the client property file.

Java ME

– The worklight-javame.jar file and the json4javame.jar file together
define the MobileFirst native library.

– The wlclient.properties file is the client property file.

Windows Phone 8

– The worklight-windowsphone8.dll file defines the MobileFirst native
library. The Newtonsoft.Json.dll library is required for using JSON
objects in C#.

– The wlclient.properties file is the client property file.

Windows 8

– The worklight-windows8.dll file defines the MobileFirst native
library. The Newtonsoft.Json.dll is a library that is required for using
JSON objects in C#.

– The wlclient.properties file is the client property file.

Complementary project for native applications

Unlike hybrid applications, which you can develop entirely within MobileFirst
Studio, native applications need a second project, which you create in a different
IDE. For example:

Developing MobileFirst applications 8-181

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3

v For iOS, a project in the Xcode IDE to develop a native application with
Objective-C or Swift. If you choose to write in Swift, follow the Swift-specific
steps that are described in Table 2: Hello Worklight of “Tutorials, samples, and
additional resources” on page 5-1.

v For Android or Java ME, a project in the Eclipse IDE to develop a native
application with Java.

v For Windows Phone 8, a project in Visual Studio Express for Windows Phone or
Visual Studio 2012 Professional or higher.

v For Windows 8, a project in Visual Studio Express for Windows 8 or in Visual
Studio 2012 Professional or higher.

Creation of the native application from the native API application

After the native API application is created, create the native application as follows:
1. Define the various aspects of your application by setting the appropriate values

in the application descriptor file.
2. Update the client property file as necessary.
3. Copy the client property file and the native library to the appropriate location

of your native project. You must also create references from your native app
project to this content to use the MobileFirst native API.

iOS

1. To update the application descriptor file, see “Application descriptor of
native API applications for iOS” on page 8-183.

2. To update the client property file, see “Client property file for iOS” on
page 8-185.

3. To copy the client property file and the native library into the
appropriate location of your native project, and create appropriate
references, see “Copying files of native API applications for iOS” on
page 8-186.

Android

1. To update the application descriptor file, see “Application Descriptor of
Native API application for Android” on page 8-189.

2. To update the client property file, see “Client property file for Android”
on page 8-190.

3. To copy the client property file and the native library into the
appropriate location of your native project, and create appropriate
references, see “Copying files of Native API applications for Android”
on page 8-191.

Java ME

1. To update the application descriptor file, see “Application descriptor of
native API applications for Java Platform, Micro Edition (Java ME)” on
page 8-195.

2. To update the client property file, see “Client property file for Java
Platform, Micro Edition (Java ME)” on page 8-197.

3. To copy the client property file and the native library into the
appropriate location of your native project, and create appropriate
references, see “Copying files of Native API applications for Java
Platform, Micro Edition (Java ME)” on page 8-197.

Windows Phone

8-182 IBM MobileFirst Platform Foundation V6.3.0

1. To update the application descriptor file, see “Application descriptor of
native C# API application for Windows Phone 8” on page 8-198.

2. To update the client property file, see “Client property file for Windows
Phone 8” on page 8-199.

3. To copy the client property file and the native library into the
appropriate location of your native project, and create appropriate
references, see “Copying files of Native API applications for Windows
Phone 8” on page 8-200.

Windows 8

1. To update the application descriptor file, see “Application Descriptor of
native C# API application for Windows 8” on page 8-201.

2. To update the client property file, see “Client property file for Windows
8” on page 8-202.

3. To copy the client property file and the native library into the
appropriate location of your native project, and create appropriate
references, see “Copying files of native API applications for Windows
8” on page 8-202.

Build and deployment

You build and deploy native API applications by following the same procedure as
for hybrid applications. You create the .wlapp file and upload it to the MobileFirst
Operations Console. For more information about deployment, see “Deploying
applications and adapters to MobileFirst Server” on page 11-73.

Developing native applications for iOS
After you have created the native API application in MobileFirst Studio and added
the second project from Xcode IDE, you edit the application descriptor and client
property files, and then copy the files to the appropriate project. If you want to
work with Apple Swift language, you create a Swift project.

Note: The Keychain Sharing capability is mandatory while running iOS apps in
the iOS Simulator when using Xcode 8. You need to enable this capability
manually before building the Xcode project.

Application descriptor of native API applications for iOS
In the application descriptor, you define various aspects of your native API
application for iOS.

The application descriptor file is a metadata file in which you define various
aspects of the application. It is in the application root directory and its name is
application-descriptor.xml.

The following example shows the format of the application descriptor file of native
API applications for iOS:
<?xml version="1.0" encoding="UTF-8"?>
<nativeIOSApp

id="ios"
platformVersion="6.0.0"
version="1.0"
securityTest="security test name"
bundleId="com.ios"
xmlns="http://www.worklight.com/native-ios-descriptor">

Developing MobileFirst applications 8-183

<displayName>application display name</displayName>
<description>application description</description>
<pushSender password="${push.apns.senderpassword}"/>

</nativeIOSApp>

The content of the application descriptor file is as follows.
<?xml version="1.0" encoding="UTF-8"?>
<nativeIOSApp

id="ios"
platformVersion="6.0.0"
version="1.0"
securityTest="security test name"
bundleId="com.ios"
xmlns="http://www.worklight.com/native-ios-descriptor">

The <nativeIOSApp> element is the root element of the descriptor. It takes three
mandatory attributes and two optional attributes:

id This attribute specifies the ID of the application. The ID must be identical to
the application folder name. It must be an alphanumeric string that starts with
a letter. It can contain underscore ("_") characters. It must not be a reserved
word in JavaScript.

platformVersion
Contains the version of IBM MobileFirst Platform Foundation on which the
app was developed.

version
This attribute specifies the version of the application. This version is a string of
the form x.y, where x and y are numbers. It is visible to users who download
the app from the app store or market.

securityTest
This optional attribute specifies a security configuration that is defined in the
authenticationConfig.xml file. When a client attempts to access a protected
resource, IBM MobileFirst Platform Foundation checks whether the client is
already authenticated according to the security test. If the client is not yet
authenticated, IBM MobileFirst Platform Foundation starts the process to
obtain the client credentials and to verify them.

bundleId
This optional attribute specifies the bundle ID of the application.

<displayName>
This element contains the application name. This name is visible in the
MobileFirst Operations Console and is copied to the descriptor files of various
web and desktop environments.

<displayName>application display name</displayName>

<description>
This element contains the application description. This description is visible in
the MobileFirst Operations Console and is copied to the descriptor files of
various web and desktop environments.

<description>application description</description>

<pushSender>
This element defines the password to the SSL certificate that encrypts the
communication link with the Apple Push Notification Service (APNS).

<pushSender password="${push.apns.senderpassword}"/>

</nativeIOSApp>
This tag closes the content of the application descriptor file.

8-184 IBM MobileFirst Platform Foundation V6.3.0

</nativeIOSApp>

Client property file for iOS
This file defines the client-side properties so that your native app uses the
MobileFirst native API for iOS.

The worklight.plist client property file contains the necessary information for
initializing WLClient instances. Before you use this file in your native application
for iOS, you must define the properties as specified in the following table.

Table 8-12. Properties of the worklight.plist file

Property Description Example values

protocol The communication protocol
with MobileFirst Server.

http or https

host The host name of MobileFirst
Server.

localhost

port The port of MobileFirst Server.
If this value is left blank, the
default port is used. If the
protocol property value is
https, you must leave this
value blank.

10080

wlServerContext The server URL context. /
Note: If you use IBM
MobileFirst Platform
Foundation Developer Edition,
you must set the value of this
property to the name of your
MobileFirst project.

application id The application ID, as defined
in the application-
descriptor.xml file.

myApp

application version The application version, as
defined in the
application-descriptor.xml
file.

1.0

environment This property defines the
MobileFirst environment. The
value of this property must be
iOSnative.
Important: You must not
modify the value of this
property value.

iOSnative

languagePreferences This property defines a
comma-separated list of
preferred languages to be
used byIBM MobileFirst
Platform Foundation to
display system messages. This
property is optional.

en, fr, de, es

platformVersion This property defines the
version number of the IBM
MobileFirst Platform
Foundation.

6.3.0.00.20140813-0730

Developing MobileFirst applications 8-185

Table 8-12. Properties of the worklight.plist file (continued)

Property Description Example values

wlUid This property is for internal
usage. You must not modify
the value.

wY/mbnwKTDDYQUvuQCdSgg==

Copying files of native API applications for iOS
To use the MobileFirst native API for iOS in your native application, you must
copy the library and the client property file of your native API application into the
project of your native app for iOS.

About this task

You copy the files from MobileFirst Studio and then to add them to your native
application project, you work in your development IDE (typically, Xcode).

Procedure

In MobileFirst Studio:
1. Select the WorklightAPI folder and the worklight.plist file of your native API

application and copy them to a location that you can access from your native
iOS project.

In your project for the native app for iOS (for example, in Xcode IDE):
2. Add the WorklightAPI folder and the worklight.plist file of your native API

application to your project.
a. In the Choose options for adding these files window, select Copy items

into destination group’s folder (if needed) and Create groups for any
added folders.

3. In the Build Phases tab, link the following frameworks and libraries to your
project.
v SystemConfiguration.framework

v MobileCoreServices.framework

v CoreData.framework

v CoreLocation.framework

v Security.framework

v sqlcipher.framework

Note: The framework sqlcipher.framework might already be linked.
v libstdc++.6.dylib

v libz.dylib

Important: If you are using Xcode 7, link libz.tbd and libstdc++.6.tbd,
instead of the corresponding .dylib files. Using Xcode 7 requires the latest
interim fix.

4. Select the project name and the target for your application.
5. Click the Build Phases tab.
6. In the Build Phases page, open the list in the Link Binary with Libraries

section, and make sure that libWorklightStaticLibProjectNative.a is visible in
the list.

7. Click the Build Settings tab.

8-186 IBM MobileFirst Platform Foundation V6.3.0

8. On the Build Settings page, proceed as follows.
a. Click All (in the upper left corner) to show all settings.
b. Add the following entry: $(SRCROOT)/WorklightAPI/include for

HEADER_SEARCH_PATH

c. In the Other Linker Flags field, enter the following value: -ObjC
d. In the Deployment section, select a value for the iOS Deployment Target

field that is greater than or equal to 5.0.
9. Optional: Set the build options.

Important: If you are using Xcode 7, in the Build Settings tab:
a. Open the Build Options section.
b. Set Enable Bitcode to No.

For more information, see “Disabling bitcode in Xcode builds” on page 8-188.

Creating a Swift project
Because Apple Swift is compatible with Objective-C, you can use the MobileFirst
API from within an iOS Swift project.

Procedure
1. Create a Swift project and install the native API into an iOS native application

as explained in “Development guidelines for using native API” on page 8-180.
2. After you follow the steps for an iOS application, select Build Settings > Swift

Compiler - Code Generation.
3. In Objective-C Bridging Header, add this file: $SRCROOT/WorklightAPI/include/

WLSwiftBridgingHeader.h.
If you already have your own Bridging Header for other purposes, include the
MobileFirst Bridging Header inside your own Bridging Header instead.

Results

All the MobileFirst classes are now available from any of your Swift files. The
XCode IDE provides code autocompletion, converted to the Swift style.

What to do next

A tutorial is available on the Getting Started page.

Enforcing TLS-secure connections in iOS apps
For development purposes, hybrid iOS projects that are created in IBM MobileFirst
Platform Studio or by using CLI bypass the iOS 9 requirement to enforce Transport
Layer Security (TLS) protocol version 1.2 in all apps.

About this task

Apple’s App Transport Security (ATS) is a new feature of iOS 9 that enforces best
practices for connections between the app and the server. By default, this feature
enforces some connection requirements that improve security. These include
client-side HTTPS requests and server-side certificates and connection ciphers that
conform to Transport Layer Security (TLS) version 1.2 using forward secrecy.

For development purposes, you can override the default behavior by specifying an
exception in the Info.plist file in your app, as described in App Transport

Developing MobileFirst applications 8-187

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3
https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/

Security Technote. However, in a full production environment, all iOS apps must
enforce TLS-secure connections for them to work properly.

Using the latest interim fix of IBM MobileFirst Platform Foundation V6.3.0, the
apps that you develop in IBM MobileFirst Platform Foundation V6.0.0 and later
automatically turn off transport security to allow all non-secure connections to the
MobileFirst Development Server. The latest interim fix is required for working with
iOS 9 and Xcode 7.

To enable non-TLS connections, the following exception must appear in the
<projectname>info.plist file in the <project>\Resources folder:
<key>NSExceptionDomains</key>

<dict>
<key>yourserver.com</key>
<dict>

<!--Include to allow subdomains-->
<key>NSIncludesSubdomains</key>
<true/>

<!--Include to allow insecure HTTP requests-->
<key>NSTemporaryExceptionAllowsInsecureHTTPLoads</key>
<true/>

</dict>
</dict>

Procedure
1. To prepare for production, remove or comment out the code that appears

earlier in this page.
2. Set up the client to send HTTPS requests by using the following entry to the

dictionary:
<key>protocol</key>
<string>https</string>

<key>port</key>
<string>10443</string>

The SSL port number is defined on the server in server.xml in the
httpEndpoint definition.

3. Configure a server that is enabled for the TLS 1.2 protocol. For more
information, see Configuring MobileFirst Server to enable TLS V1.2.

4. Make settings for ciphers and certificates, as they apply to your setup. For
more information, see App Transport Security Technote, Secure communications
using Secure Sockets Layer (SSL) for WebSphere Application Server Network
Deployment, and Enabling SSL communication for the Liberty profile.

Disabling bitcode in Xcode builds
You must disable the new bitcode option in Xcode builds for IBM MobileFirst
Platform Foundation projects.

About this task

Note: The latest interim fix of IBM MobileFirst Platform Foundation is required for
working with iOS 9 and Xcode 7.
Starting with Xcode 7, bitcode is a default, but optional option for iOS apps. The
bitcode option is not currently supported in IBM MobileFirst Platform Foundation.
To use the MobileFirst SDK in your Xcode projects, you must disable bitcode.

8-188 IBM MobileFirst Platform Foundation V6.3.0

https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/
http://www.ibm.com/support/docview.wss?uid=swg21965659
https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html?cp=SSAW57_8.5.5%2F1-3-11-0-4-1-0

Note: Applications that are based on Apple watchOS 2 require the bitcode to be
enabled and are currently not supported in IBM MobileFirst Platform Foundation.

Procedure

On the Xcode Build Settings tab, in the Build Options group, set Enable Bitcode
to No.

Developing native applications for Android
After you have created the native API application in MobileFirst Studio and added
the second project from Eclipse IDE, you edit the application descriptor and client
property files, and then copy the files to the appropriate project.

Application Descriptor of Native API application for Android
The application descriptor is a metadata file that is used to define various aspects
of the Native API application for Android.

The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory, and its name is
application-descriptor.xml.

The following example shows the format of the application descriptor file of
Native API applications for Android:
<?xml version="1.0" encoding="UTF-8"?>
<nativeAndroidApp

id="android"
platformVersion="6.0.0"
securityTest="security test name"
version="1.0"
xmlns="http://www.worklight.com/native-android-descriptor">
<displayName>application display name</displayName>
<description>application description</description>
<pushSender key="gcm api key" senderId="gcm project number"/>
<publicSigningKey>application public signing key</publicSigningKey>

</nativeAndroidApp>

The content of the application descriptor file is as follows.
<?xml version="1.0" encoding="UTF-8"?>
<nativeAndroidApp

id="android"
platformVersion="6.0.0"
securityTest="security test name"
version="1.0"
xmlns="http://www.worklight.com/native-android-descriptor">

The <nativeAndroidApp> element is the root element of the descriptor. It has three
mandatory attributes and one optional attribute:

id This attribute specifies the ID of the application. The ID must be identical
to the application folder name. It must be an alphanumeric string that
starts with a letter. It can contain underscore ("_") characters. It must not be
a reserved word in JavaScript.

platformVersion
Contains the version of IBM MobileFirst Platform Foundation on which the
app was developed.

version
This attribute specifies the version of the application. This version is a

Developing MobileFirst applications 8-189

string of the form x.y, where x and y are numbers. It is visible to users
who download the app from the app store or market.

securityTest
This attribute specifies a security configuration that is defined in the
authenticationConfig.xml file. When a client attempts to access a
protected resource, IBM MobileFirst Platform Foundation checks whether
the client is already authenticated according to the security test. If the
client is not yet authenticated, IBM MobileFirst Platform Foundation starts
the process to obtain the client credentials and to verify them.

This attribute is optional.
<displayName>application display name</displayName>

<displayName>
This element contains the application name. This name is visible in
theMobileFirst Operations Console and is copied to the descriptor files of
various web and desktop environments.

<description>application description</description>

<description>
This element contains the application description. This description is
visible in the MobileFirst Operations Console and is copied to the
descriptor files of various web and desktop environments.

<pushSender key="gcm api key" senderId="gcm project number"/>

<pushSender>
This element contains the connectivity details to Google GCM (Android
push notification service). The key is the GCM API key, and the senderId is
the GCM Project Number.

<publicSigningKey>application public signing key</publicSigningKey>

<publicSigningKey>
This element contains the public key of the developer certificate that is
used to sign the Android app. To extract this value, see “Extracting a
public signing key from native apps” on page 8-192.

</nativeAndroidApp>

</nativeAndroidApp>
This tag closes the content of the application descriptor file.

Client property file for Android
The wlclient.properties file defines the properties that your native app for
Android requires to use the MobileFirst native API for Android.

You must define these properties before you use the file in your native app for
Android.

The following table lists the properties of the wlclient.properties file, their
descriptions, and possible examples for their values.

Table 8-13. Properties and values of the wlclient.properties file

Property Description Example values

wlServerProtocol The communication protocol with the
MobileFirst Server.

http or https

wlServerHost The host name of the MobileFirst Server. localhost

8-190 IBM MobileFirst Platform Foundation V6.3.0

Table 8-13. Properties and values of the wlclient.properties file (continued)

Property Description Example values

wlServerPort The port of the MobileFirst Server. If you
leave this value blank, the default port is
used. If the wlServerProtocol property
value is https, you must leave this value
blank.

10080

wlServerContext The server context. /
Note: If you use IBM
MobileFirst Platform
Foundation Developer
Edition, you must set the
value of this property to
the name of your
MobileFirst project.

wlAppId The application identifier, as defined in the
application-descriptor.xml file.

myApp

wlAppVersion The application version, as defined in the
application-descriptor.xml file.

1.0

wlEnvironment This property defines the MobileFirst
environment. Its value must be
Androidnative. Do not modify it.

Androidnative

GCMSenderID This property defines the GCM sender
identifier that you must use for push
notifications. By default, this property is
commented out.

languagePreferencesThis property defines a list of preferred
languages, separated by comma, to be
used by IBM MobileFirst Platform
Foundation to display system messages.

en, fr, de, es

wlUid This property is for internal usage. You
must not modify the value.

wY/mbnwKTDDYQUvuQCdSgg==

Copying files of Native API applications for Android
To copy the files in the Native API application for Android into the project that
defines the native app for Android

About this task

To use the MobileFirst Native API for Android in your native app, you must copy
the library and the client property file of your Native API application into your
native app for Android project.

Procedure

In your project for the native app for Android:
1. Copy the worklight-android.jar file, the android-async-http.jar file, the

bcprov.jar file, and the uicandroid.jar file from the Native API application,
and paste them into the libs folder of your native app for Android.

2. Copy the wlclient.properties client property file from the Native API
application into the assets folder of your native app for Android.

3. If the push notification support is required:
a. Copy the gcm.jar file from the Native API application.

Developing MobileFirst applications 8-191

b. Paste the gcm.jar into the libs folder of your native app for Android.
c. Copy the push.png file from the Native API application.
d. In the res folder of your native app for Android, identify the folders with a

name that starts with drawable (such as res/drawable or
res/drawable-ldpi), and then paste the push.png file into each of these
folders.

4. Add the following lines to the AndroidManifest.xml file of your native app for
Android:
a. <activity android:name="com.worklight.wlclient.ui.UIActivity"/> With

this line, a designated MobileFirst UI activity can run in the user
application.

b. <uses-permission android:name="android.permission.INTERNET"/> This
line adds Internet access permissions to the user application.

c. <uses-permission android:name="android.permission.GET_TASKS"/> This
line adds the permission to get a list of running tasks that are required for
the heartbeat functionality. This permission is required if you are targeting
your apps for Android API level 13 and below.

d. <uses-permission
android:name="android.permission.ACCESS_WIFI_STATE"/>

5. If push notification support is required, add the following permissions to the
AndroidManifest.xml file of your native app for Android:
a. <uses-permission

android:name="com.worklight.androidnativepush.permission.C2D_MESSAGE"/>

b. <uses-permission
android:name="com.google.android.c2dm.permission.RECEIVE"/>

c. <uses-permission android:name="android.permission.WAKE_LOCK"/>

d. <uses-permission android:name="android.permission.GET_ACCOUNTS"/>

e. <uses-permission android:name="android.permission.USE_CREDENTIALS"/>

f. <uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

6. Optional: If JSONStore is required, copy the contents of the jsonstore/assets/
and jsonstore/libs/ folders into your application's assets/ and libs/ folders,
respectively.

7. Manage your splash screens: In the res folder of your native app for Android,
identify the folders with a name that starts with drawable (such as
res/drawable or res/drawable-ldpi), and then:
a. If you want to use a splash screen in your app, you must create a

splash.png file or splash.9.png file and place it in each of these folders.
b. If you do not want to use a splash screen in your app, ensure that no

splash.png file or splash.9.png file is present in these folders.

Note: If you create a hybrid Android app, the splash.9.png file is
automatically created. If you do not want to use the splash screen in your app,
you must delete it from these drawable folders.

8. Optional: If app authenticity is required, copy the armeabi\libauthjni.so,
armeabi-v7a\libauthjni.so, mips\libauthjni.so, and x86\libauthjni.so
folders into your application's libs/ folder.

Extracting a public signing key from native apps
Copy the public signing key from the keystore to the application descriptor.

8-192 IBM MobileFirst Platform Foundation V6.3.0

Procedure
1. In the Eclipse project explorer, right-click your Native API folder created for the

Android environment and click Extract public signing key.

A wizard window opens.

Developing MobileFirst applications 8-193

2. In this window, enter the path to your keystore. The keystore is usually in one
of the following directories, according to operating system:

Option Description

Windows C:\Documents and Settings\user_name\
.android\

OS X and Linux ~/.android/

3. Enter the password to your keystore and click Load Keystore.
The password is usually android.

4. When the keystore is loaded, select an alias from the Key alias menu and click
Next.
For more information about the Android keystore, see http://
developer.android.com/guide/publishing/app-signing.html.

5. In the window, click Finish to copy the public signing key directly into the
application descriptor.

Figure 8-25. Adding the Android public signing key

8-194 IBM MobileFirst Platform Foundation V6.3.0

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html

Results

The public key is copied to the application descriptor. See the following code
example:
<android version="1.0">

<worklightSettings include="false"/>
<security>
<testAppAuthenticity enabled="false"/>
<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>
<publicSigningKey>MIGfMA0CSqGSIb3DQEBAQUAA4GNADCBiQKBgQCE+TiHbDxPx0HA6rARXoJWC071hLLBytTDSdNe/>

</security>
</android>

Developing native applications for Java Platform, Micro
Edition

After you have created the native API application in MobileFirst Studio and added
the second project from Eclipse IDE, you edit the application descriptor and client
property files, and then copy the files to the appropriate project.

Application descriptor of native API applications for Java
Platform, Micro Edition (Java ME)
The application descriptor is a metadata file that is used to define various aspects
of the native API application for Java ME.

The application-descriptor.xml file, in the application root directory, is a
metadata file that is used to define various aspects of the application.

Figure 8-26. Android public signing key

Developing MobileFirst applications 8-195

The following example shows the format of the application descriptor file of native
API applications for Java ME:
<?xml version="1.0" encoding="UTF-8"?>
<nativeJavaMEApp

id="JavaME"
platformVersion="6.0.0"
version="1.0"
securityTest="security test name"
xmlns="http://www.worklight.com/native-javame-descriptor">
<displayName>application display name</displayName>
<description>application description</description>

</nativeJavaMEApp>

The content of the application descriptor file is as follows.
<?xml version="1.0" encoding="UTF-8"?>
<nativeJavaMEApp MEApp

id="JavaME"
platformVersion="6.0.0"
version="1.0"
securityTest="security test name"
xmlns="http://www.worklight.com/native-javame-descriptor">

The <nativeJavaMEApp> element is the root element of the descriptor. It takes three
mandatory attributes and one optional attribute:

id This attribute specifies the identifier of the application. This identifier must be
identical to the application folder name. It must be an alphanumeric string that
starts with a letter. It can contain underscore ("_") characters. It must not be a
reserved word in JavaScript.

platformVersion
Contains the version of IBM MobileFirst Platform Foundation on which the
app was developed.

version
This attribute specifies the version of the application. This version is a string of
the form x.y, where x and y are numbers. It is visible to users who download
the app from the app store or market.

securityTest
This optional attribute specifies a security configuration that is defined in the
authenticationConfig.xml file. When a client attempts to access a protected
resource, IBM MobileFirst Platform Foundation checks whether the client is
already authenticated according to the security test. If the client is not yet
authenticated, IBM MobileFirst Platform Foundation starts the process to
obtain the client credentials and to verify them.

<displayName>application display name</displayName>

<displayName>
This element contains the application name. This name is visible in the
MobileFirst Operations Console and is copied to the descriptor files of various
web and desktop environments.

<description>
This element contains the application description. This description is visible in
the MobileFirst Operations Console and is copied to the descriptor files of
various web and desktop environments.

<description>application description</description>

</nativeJavaMEApp>
This tag closes the content of the application descriptor file

8-196 IBM MobileFirst Platform Foundation V6.3.0

</nativeJavaMEApp>

Client property file for Java Platform, Micro Edition (Java ME)
This file defines the properties that your native app for Java Platform, Micro
Edition (Java ME) requires to use the MobileFirst native API for Java ME.

The wlclient.properties client property file contains the necessary data to use the
MobileFirst API for Java ME.

You must define the properties of this client property file before using it in your
native app for Java ME.

The following table lists the properties of the wlclient.properties file, their
descriptions, and possible examples for their values.

Table 8-14. Properties and values of the wlclient.properties file

Property Description Example values

wlServerProtocol The communication protocol with the
MobileFirst Server.

http or https

wlServerHost The host name of the MobileFirst Server. localhost

wlServerPort The port of the MobileFirst Server. 10080

wlServerContext The server context. /
Note: If you use IBM
MobileFirst Platform
Foundation Developer
Edition, you must set the
value of this property to
the name of your
MobileFirst project.

wlAppId The application ID, as defined in the
application-descriptor.xml file.

myApp

wlAppVersion The application version, as defined in the
application-descriptor.xml file.

1.0

wlEnvironment This property defines the MobileFirst
environment. The value of this property
must be JavaMEnative. You must not
modify the value of this property value.

JavaMEnative

languagePreferencesThis property defines a list of preferred
languages separated by comma, to be used
by IBM MobileFirst Platform Foundation
to display system messages.

en, fr, de, es

Copying files of Native API applications for Java Platform, Micro
Edition (Java ME)
To copy the files in the Native API application for Java ME into the project that
defines the app for Java ME.

About this task

To use the MobileFirst Native API for Java ME in your native app, you must copy
the library and the client property file of your Native API application into your
native app for Java ME project.

Developing MobileFirst applications 8-197

Procedure
1. Create a lib folder in your native Java ME application.

Note: You can name this folder differently. If you select a folder name other
than lib, ensure that you use this folder name instead of lib in the following
steps.

2. Make sure that the build path of your native Java ME application includes this
lib folder.

3. Copy the worklight-javame.jar file of your Native API application into this
lib folder of your native Java ME application.

4. Copy the json4javame.jar file of your Native API application into this lib
folder of your native Java ME application.

5. Copy the wlclient.properties file of your Native API application into the res
folder of your native Java ME application.

Developing native C# applications for Windows Phone 8
After you have created the native API application in MobileFirst Studio and added
the second project Visual Studio Express®, you edit the application descriptor and
client property files, and then copy the files to the appropriate project.

Application descriptor of native C# API application for Windows
Phone 8
The application descriptor is a metadata file that is used to define various aspects
of the native C# API application for Windows Phone 8.

The application-descriptor.xml file, in the application root directory, is a
metadata file that is used to define various aspects of the application.

The following example shows the format of the application descriptor file of native
C# API applications for Windows Phone 8:
<?xml version="1.0" encoding="UTF-8"?>
<nativeWindowsPhone8App

xmlns="http://www.worklight.com/native-windowsphone8-descriptor">
id="WP8"
platformVersion="6.2.0"
version="1.0"
<displayName>application display name</displayName>
<description>application description</description>
<pushSender>
<authenticatedPush serviceName="MPNS Service name" keyAlias="certificate alias" keyAliasPassword="certificate password"/>

</pushSender>

</nativeWindowsPhone8App>

The <nativeWindowsPhone8App> element is the root element of the descriptor. This
element has three mandatory attributes:

id This attribute specifies the identifier of the application. The identifier must be
identical to the application folder name. It must be an alphanumeric string that
starts with a letter. It can contain underscore ("_") characters. It must not be a
reserved word in C# or JavaScript.

platformVersion
This attribute contains the version of IBM MobileFirst Platform Foundation on
which the app was developed.

8-198 IBM MobileFirst Platform Foundation V6.3.0

version
This attribute specifies the version of the application. This version is a string of
the form x.y, where x and y are numbers. It is visible to users who download
the app from the app store or market.

<displayName>
This element contains the application name. This name is visible in the
MobileFirst Operations Console and is copied to the descriptor files of various
web and desktop environments.

<displayName>application display name</displayName>

<description>
This element contains the application description. This description is visible in
the MobileFirst Operations Console and is copied to the descriptor files of
various web and desktop environments.

<description>application description</description>

<pushSender>
This element indicates to the MobileFirst Server that the app is designed to
receive push notifications. It also contains information necessary to provide to
MPNS for sending authenticated push notifications.

<pushSender>

<authenticatedPush>

<authenticatedPush serviceName="MPNS Service name" keyAlias="certificate alias" keyAliasPassword="certificate password"/>

This element has three attributes:

serviceName
The common name (CN) found in the subject value of the MPNS
certificate.

keyAlias
The alias that is used to access the keystore as specified by the
following properties in the worklight.properties file:
v ssl.keystore.path

v ssl.keystore.type

v ssl.keystore.password

keyAliasPassword
The password for your key alias.

</nativeWindowsPhone8App>
This tag closes the content of the application descriptor file.
</nativeWindowsPhone8App>

Client property file for Windows Phone 8
This file defines the properties that your native C# app for Windows Phone 8
requires to use the MobileFirst native C# API for Windows Phone 8.

The wlclient.properties client property file contains the necessary data to use the
MobileFirst API for Windows Phone 8.

You must define the properties of this client property file before you use it in your
native C# app for Windows Phone 8.

The following table lists the properties of the wlclient.properties file, their
descriptions, and possible examples for their values.

Developing MobileFirst applications 8-199

Table 8-15. Properties and values of the wlclient.properties file

Property Description Example values

wlServerProtocol The communication protocol with the
MobileFirst Server.

http or https

wlServerHost The host name of the MobileFirst Server. localhost

wlServerPort The port of the MobileFirst Server. If you
leave this value blank, the default port is
used. If the wlServerProtocol property
value is https, you must leave this value
blank.

10080

wlServerContext The server context. /
Note: If you use IBM
MobileFirst Platform
Foundation Developer
Edition, you must set the
value of this property to
the name of your
MobileFirst project.

wlAppId The application id, as defined in the
application-descriptor.xml file.

myApp

wlAppVersion The application version, as defined in the
application-descriptor.xml file.

1.0

wlEnvironment This property defines the MobileFirst
environment. The value of this property
must be WindowsPhone8native. You must
not modify the value of this property.

WindowsPhone8native

wlMPNSServiceName The service name to be used for
authenticated push as specified in the
application descriptor. For more
information, see “Application descriptor of
native C# API application for Windows
Phone 8” on page 8-198.

MyServiceName

languagePreferencesThis property defines a list of preferred
languages separated by comma, to be used
by IBM MobileFirst Platform Foundation
to display system messages.

en, fr, de, es

Copying files of Native API applications for Windows Phone 8
To copy the files in the Native C# API application for Windows Phone 8 into the
project that defines the native C# app for Windows Phone 8.

About this task

To use the MobileFirst Native C# API for Windows Phone 8 in your native C# app,
you must copy the library and the client property file of your Native C# API
application into your native C# app for Windows Phone 8 project.

Procedure

In your Microsoft Visual Studio project for the native C# app for Windows Phone
8:
1. Add the worklight-windowsphone8.dll file as a reference to your Visual Studio

project.

8-200 IBM MobileFirst Platform Foundation V6.3.0

2. Add the Newtonsoft.Json.dll file as a reference to your Visual Studio Project.
3. Copy the wlclient.properties client property file from the Native C# API

application, and paste it into your Visual Studio project.
4. Right-click the wlclient.properties file and select Properties.
5. In the Properties window, set the Copy to Output Directory option to Copy

always.
6. Add the following capabilities to the WMAppManifest.xml file of your Windows

Phone 8 Visual Studio project:
a. ID_CAP_NETWORKING

b. ID_CAP_IDENTITY_DEVICE

c. ID_CAP_PUSH_NOTIFICATION, if the native app is used for push notifications.

Developing native C# applications for Windows 8
After you have created the native API application in MobileFirst Studio and added
the second project Visual Studio Express®, you edit the application descriptor and
client property files, and then copy the files to the appropriate project.

Application Descriptor of native C# API application for Windows
8
The application descriptor is a metadata file that is used to define various aspects
of the native API application for Windows 8.

The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory, and its name is
application-descriptor.xml.

The following example shows the format of the application descriptor file of native
API applications for Windows 8:
<?xml version="1.0" encoding="UTF-8"?>
<nativeWindows8App

xmlns="http://www.worklight.com/native-windows8-descriptor"
id="name of the app"
platformVersion="6.2.0"
version="1.0">
<displayName>application display name</displayName>
<description>application descriptor</description>

</nativeWindows8App>

The <nativeWindows8App> element is the root element of the descriptor. This
element has three mandatory attributes:

id This attribute specifies the ID of the application. The ID must be identical
to the application folder name. It must be an alphanumeric string that
starts with a letter. It can contain underscore ("_") characters. It must not be
a reserved word in JavaScript.

platformVersion
This attribute contains the version of IBM MobileFirst Platform Foundation
on which the app was developed.

version
This attribute specifies the version of the application. This version is a
string of the form x.y, where x and y are numbers. It is visible to users
who download the app from the app store or market.

<displayName>application display name</displayName>

Developing MobileFirst applications 8-201

<displayName>
This element contains the application name. This name is visible in the
MobileFirst Operations Console and is copied to the descriptor files of
various web and desktop environments.

<description>application description</description>

<description>
This element contains the application description. This description is
visible in the MobileFirst Operations Console and is copied to the
descriptor files of various web and desktop environments.

</nativeWindows8App>

</nativeWindows8App>
This tag closes the content of the application descriptor file.

Client property file for Windows 8
This file defines the properties that your native app for Windows 8 requires to use
the MobileFirst native API for Windows 8.

The wlclient.properties client property file contains the necessary data to use the
MobileFirst API for Windows 8.

You must define the properties of this client property file before you use it in your
native app for Windows 8.

The following table lists the properties of the wlclient.properties file, their
descriptions, and possible examples for their values.

Table 8-16. Properties and values of the wlclient.properties file

Property Description Example values

wlServerProtocol The communication protocol with the
MobileFirst Server.

http or https

wlServerHost The host name of the MobileFirst Server. localhost

wlServerPort The port of the MobileFirst Server. If you
leave this value blank, the default port is
used. If the wlServerProtocol property
value is https, you must leave this value
blank.

8080

wlServerContext The server context, which is automatically
generated.

/

wlAppId The application id, as defined in the
application-descriptor.xml file.

myApp

wlAppVersion The application version, as defined in the
application-descriptor.xml file.

1.0

wlEnvironment This property defines the MobileFirst
environment. You must not modify the
value of this property.

Windows8native

Copying files of native API applications for Windows 8
To copy the files in the native API application for Windows 8 into the project that
defines the native app for Windows 8.

8-202 IBM MobileFirst Platform Foundation V6.3.0

About this task

To use the MobileFirst native API for Windows 8 in your native app, you must
copy the library and the client property file of your native API application into
your native app for Windows 8 project.

Procedure

In your Microsoft Visual Studio project for the native C# app for Windows 8:
1. Locate the worklight-windows8.dll file in the native API project and add it as a

reference to your Visual Studio project. Similarly, add the Newtonsoft.Json.dll
as a reference to the Visual Studio Project. If you are copying these files from
another folder or computer, then ensure that you copy the
worklight-windows8.pri file and place it in the same folder as the
worklight-windows8.dll.

2. Copy the wlclient.properties client property file from the native API
application into your Visual Studio project. Right-click the wlclient.properties
file and click Properties. In the Properties window, set the Copy to Output
Directory option to Copy always.

3. In your Visual Studio IDE, open the Package.appxmanifest file of your
Windows 8 project. Navigate to the Capabilities tab and select the following
capabilities:
a. Internet (Client & Server)

b. Private Networks (Client & Server)

Adding MobileFirst web capabilities to an existing native app
You can add a MobileFirst web view into an existing native Android, iOS, or
Windows Phone 8 application. For example, you can transform the application
from pure native to hybrid. With such a change, you can add MobileFirst web
capabilities to an existing native application.

About this task

To add MobileFirst web capabilities to an existing native app:
1. Export the corresponding resources from an existing MobileFirst project.
2. Integrate those resources into your native app and update your code to show a

MobileFirst web view.

Procedure
1. Using either the Eclipse plug-in or the command-line interface, export the

corresponding resources from an existing MobileFirst hybrid project.

Note: When first adding the web view to a native app, you must select the
option to export the native libraries. Subsequent exports do not need to include
these libraries and will result in much smaller archives.
v With MobileFirst Studio:

a. Ensure that the latest resources are built.
b. Right-click Run As: Build Environment.
c. Right-click the environment directory. For example, right-click iphone,

android, or windowsphone8.
d. Select Export MobileFirst Hybrid Resources.

Developing MobileFirst applications 8-203

e. Specify the location in which to create the .zip file archive. For example,
hybrid_resources.zip.

v With MobileFirst Platform Command Line Interface:

a. Change the directory to the environment directory. For example: cd
apps/myhybridapp/android

b. Make sure that the latest resources are built. For example: mfp build
c. Run the mfp export command.
d. Specify the name and location where to create the .zip archive. For

example: hybrid_resources.zip
2. Integrate the hybrid resources into the native application to show a MobileFirst

web view. Here are the steps for Android, iOS, and Windows Phone 8 devices.
v For Android devices:

a. For Android devices, extract the archive, for example
hybrid_resources.zip file, to the native Android project.

b. If you are using the Android Native API, some files might need to be
replaced, such as the libraries (lib/*.jar) and the client properties
(assets/wlclient.properties).

c. When you are extracting the file, if your application contains a file with
the same path name as provided by the MobileFirst hybrid archive,
merge the contents of the two files such as res/ and values/strings.xml.

d. Update the AndroidManifest.xml file for your native Android application
with the contents of the AndroidManifest-WL.xml file, which is provided
in the MobileFirst hybrid archive.

e. If you are using Android Studio, take into account that the project
directory might differ from the Eclipse ADT. Extract the MobileFirst
hybrid archive content to the app/libs directory for libraries and the
app/src/main/ directory for assets and resources.

f. Update your code to initialize the MobileFirst Web Framework and show
a Cordova web view. See the sample in “Implementing a custom startup
process in Android-based hybrid applications” on page 8-54.

v For iOS devices:

a. If the WorklightAPI and worklight.plist files are in your iOS native
project, delete them.

b. Extract the MobileFirst hybrid resources contents from the archive, for
example the hybrid_resources.zip file, into the directory that contains
your iOS native project where the .xcodeproj file is located.

c. Add the Cordova subproject to the native application:
1) Right-click Project Navigator - Add Files to Xcode_project_name.
2) Select CordovaLib/CordovaLib.xcodeproj.
3) Select Copy items into destination group's folder (if needed).
4) Select Create groups for any added folders.

d. Add the MobileFirst files to the native application:
1) Right-click Project Navigator - Add Files to Xcode_project_name.
2) Select the following files and directories:

buildtime.sh
config.xml
FipsHttp
Frameworks/

8-204 IBM MobileFirst Platform Foundation V6.3.0

Resources/
Tealeaf/
worklight.plist
WorklightSDK

3) Select Copy items into destination group's folder (if needed).
4) Select Create groups for any added folders.

e. Add the web assets to the native application:
1) Right-click Project Navigator - Add Files to Xcode_project_name.
2) Select www/.
3) Select Copy items into destination group's folder (if needed).
4) Select Create groups for any added folders.

f. Add the Cordova library as a build dependency:
1) Select Target.
2) Select Build Phases.
3) Under Target Dependencies, add CordovaLib.

g. Add the Cordova library dependency, which is libCordova.a.
h. Add Run Script Before Copy Bundle Resources.
i. Add Run Script as last Phase.
j. Select Editor > Add Build Phase > Add Run Script Build Phase.
k. Open a shell. At the command prompt, type:

/bin/sh
touch -cm ${PROJECT_DIR}/www

l. Add Run Script After Copy Bundle Resources.
m. Select Editor > Add Build Phase > Add Run Script Build Phase.
n. Open a shell. At the command prompt, type:

/bin/sh
script_file="buildtime.sh"
echo "Running a custom build phase script: $script_file"
unsecure_project_path=${PROJECT_DIR}
secure_project_path="${unsecure_project_path// /\ }"
eval ${secure_project_path}/${script_file}
scriptExitStatus=$?
echo "DONE with script: ${script_file} (exitStatus=${scriptExitStatus})\n\n"
exit "${scriptExitStatus}"

o. Add Linker flag to link the external dependencies:
1) Select Target.
2) Click Build Settings.
3) Expand Linking and select All.
4) Double-click the value for Other Linker Flags.

Tip: Use the search box to filter the list.
5) Copy and paste the following code:

-force_load
"$(BUILT_PRODUCTS_DIR)/libCordova.a"
-force_load
"$(SRCROOT)/WorklightSDK/libWorklightStaticLibProject.a"
-ObjC

p. Check the armv7 architecture.
1) Select Project.
2) Click Build Settings.
3) Expand the Architectures section.

Developing MobileFirst applications 8-205

4) Click a value for Architectures.
5) Select Other.
6) Remove Standard architectures (including 64-bit) or

$ARCHS_STANDARD_INCLUDING_64_BIT.
7) Add armv7.

q. Verify that the following libraries and frameworks are referenced:
AddressBook.framework
AddressBookUI.framework
AssetsLibrary.framework
AudioToolbox.framework
AVFoundation.framework
CFNetwork.framework
CoreData.framework
CoreGraphics.framework
CoreLocation.framework
CoreMedia.framework
CoreMotion.framework
CoreTelephony.framework
Foundation.framework
ImageIO.framework
MediaPlayer.framework
MobileCoreServices.framework
Security.framework
SystemConfiguration.framework
QuartzCore.framework
UIKit.framework
libz.dylib
libstdc++.6.dylib

Important: If you are using Xcode 7, link libz.tbd and libstdc++.6.tbd,
instead of the corresponding .dylib files. Using Xcode 7 requires the
latest interim fix.

r. Update your code to initialize the MobileFirst web framework and show a
Cordova web view. See the sample in “Implementing a custom startup
process for iOS-based Hybrid applications” on page 8-48.

v For Windows Phone 8 devices:

a. Extract the hybrid resources, for example the hybrid_resources.zip file,
into a directory, such as WP8HybridResources.

b. Add the hybrid resources to the native application by completing the
following steps:
1) Open the native application in Visual Studio.
2) Add the www directory to the native application.
3) Add the config.xml file to the native application.
4) Add the worklight.xml file to the native application properties.
5) Add the wlclient.properties file to the native application.
6) Copy the WP8Hybridresources/buildtarget directory to the native

application root directory.
7) Add the WLCordovaClassLib.dll file to the native application.
8) Add the NewtonSoft.Json.dll file to the native application.
9) Open the native_application.csproj file, which is the Visual Studio

project file for the native application.
<ItemGroup>
<Reference Include="WLWPNativeLib.dll">

<HintPath>buildtarget\$(Platform)\WLWPNativeLib.dll</HintPath>
</Reference>
<Reference Include="WLCordovaClassLib.dll">

8-206 IBM MobileFirst Platform Foundation V6.3.0

<HintPath>.\WLCordovaClassLib.dll</HintPath>
</Reference>
<Reference Include="NewtonSoft.Json.dll">

<HintPath>.\NewtonSoft.Json.dll</HintPath>
</Reference>

</ItemGroup>

Note: This step adds the DLL references to the project.
c. Update the capabilities from the hybrid application:

1) From the native application in Visual Studio, open Native App >
Properties > WMAppManifest.xml.

2) Add the missing capabilities, which are part of the
WP8HybridResources/Properties/WMAppManifest.xml file.

d. Create a page and copy the contents from the hybrid application:
1) Add a page from native project in Visual Studio.
2) Right-click the native project and select Add > New Item > Windows

phone portrait page.
3) Provide a name for the page. For the sake of this procedure, consider

that the page name is: HybridPage.xaml
e. Open the new HybridPage.xaml page, and remove the exiting Grid XML

content.
f. Open the WP8HybridResources/MainPage.xaml page in a text editor.
g. Copy the Grid XML section and paste it into the new HybridPage.xaml

page. The following code shows the new grid XML section:
<Grid x:Name="LayoutRoot" Background="Transparent">

<Grid.RowDefinitions>
<RowDefinition Height="*"/>

</Grid.RowDefinitions>
<my:CordovaViewHorizontalAlignment="Stretch"

Margin="0,0,0,0"
x:Name="CordovaView"
VerticalAlignment="Stretch"
StartPageUri="/www/skinLoader.html"/>

</Grid>

h. Copy the xmlns:mytag from the WP8HybridResources/Mainpage.xaml file to
the HybridPage.xaml page for the phone tag. For example:
xmlns:my="clr-namespace:WPCordovaClassLib;
assembly=WPCordovaClassLib"

i. Open the App.xaml.cs file of the native application in Visual Studio.
j. In the App constructor method, after the lineInitializePhoneApplicaton

method, add the following code to initialize the native library:
new WPNativeLib.Initializer();
new HybridPluginInitializer.Initializer();

k. Open the HybridPage.xaml.cs file of the native application in Visual
Studio.

l. After the constructor, add the following method:
voidCordovaView_Loaded(object sender, RoutedEventArgs e){
}

m. Open the hybrid page from the native application.
n. Add a button in the native application.
o. For the Click method, write the following code to open the hybrid page:

NavigationService.Navigate(new Uri("/HybridPage.xaml", UriKind.Relative));

Developing MobileFirst applications 8-207

p. Open the HybridPage.xaml.cs file inside the default construction and add
the following entry:
WL.createInstance(); //create the instance of the ActionSender API

Note: Select your target architecture, such as “x86” or “ARM”, but not
“Any CPU”.

q. If you use the JSONStore feature from the JavaScript API on Windows
Phone 8, follow the next steps:
1) Open the native_application.csproj file, which is the Visual Studio

project file for the native application.
2) Copy the following XML code into this project file:

<ItemGroup>
<Content Include="buildtarget\$(Platform)\sqlite3.dll">

<Link>sqlite3.dll</Link>
<CopyToOutputDirectory>Always</CopyToOutputDirectory>

</Content>
<Reference Include="JSONStoreWP8Lib">

<HintPath>buildtarget\$(Platform)\JSONStoreWP8Lib.dll</HintPath>
</Reference>

</ItemGroup>

3) In Visual Studio, open the App.xaml.cs file of the native application.
4) In the App constructor method, after the new

WPNativeLib.Initializer() line, add the following code to initialize
the JSONStore library:
new JSONStoreWP8Lib.Initializer();

Updating mobile apps with IBM MobileFirst Platform Foundation and
the Application Center

You can choose among different ways to update a mobile application depending
on the context.

When you build applications for internal use in your organization and that are not
to be delivered through public app stores such as Google play or Apple App Store,
you could use the Application Center to deliver these applications over the air.
There are several scenarios that you might want to consider.

Changing the web part of a hybrid application

When you want to deliver a MobileFirst hybrid application that consists mainly of
HTML5 with CSS and JavaScript, and you must change the hybrid part of the
application to provide new features or to fix a defect, you do not have to ask the
application users to update it on their devices. You can use the MobileFirst direct
update mechanism to deploy new HTML with CSS and JavaScript for your
application without changing the application version on the mobile device. To
perform this kind of update, you do not recreate a native version of the
application. You only redeploy the MobileFirst application (wlapp) in the
MobileFirst Operations Console for the same application version. See “Deploying
applications and adapters to MobileFirst Server” on page 11-73.

You can implement this type of update in a way that the application user has
nothing to do to trigger it. Alternatively, you can provide a menu entry in your
application to check for available updates and to trigger the direct update
mechanism. For more details, see “Direct Update as a security realm” on page
8-166.

8-208 IBM MobileFirst Platform Foundation V6.3.0

If you use the direct update mechanism, you will not have to redeploy a new
binary version of your application to the Application Center. When new users
install applications from the Application Center, they get the latest version of the
hybrid part of the application through the direct update mechanism when they
start the application for the first time or when they use the menu option that is
implemented in the application to check for updates.

Delivering a new version of native code

The main reason that you would want to deliver a new version of an application is
probably because your application uses native code and you want to provide new
features or deliver fixes that require changes in the native code. You might also
need to provide a new native version of the application, even if your MobileFirst
application is completely written by using web technologies, to accommodate new
mobile operating systems supported only in later versions of IBM MobileFirst
Platform Foundation. You cannot use the direct update mechanism in either of
these cases. You must build and deploy a new version of the application.

You can provide the update through the Application Center.

Start by uploading the new application binary (APK, IPA, or other) to the
Application Center console. The application is listed as a new available version of
the application. For the Application Center to consider the application as a new
version of an existing application, you must keep the application identification
unchanged; for example, it must have the same package name for Android or the
same bundle ID for iOS. You change the internal version of the application; for
example, versionCode on Android or CFBundleVersion on iOS. For more
information about application properties in the Application Center console, see
“Application properties” on page 12-90.

If you configured the Application Center to send push notifications for updates,
users would receive a notification as soon as the new version is deployed. The
content of this message enables the user to open the Application Center mobile
client on the update page of the mobile application, so that he or she can trigger
an over-the-air installation.

To streamline the update process, you can remotely disable the previous version of
the MobileFirst application from the MobileFirst Operations Console. See
“Remotely disabling application connectivity” on page 12-3. By remotely disabling
the previous version, you can make sure that your users do not use the old version
anymore.

When you disable the previous version, you must provide the URL of the latest
application version, so that users have an easy way to fetch the new version.

In the Application Center, if you want to direct users of the mobile application to
the update page of the mobile client, you can use a custom URL of the format:
ibmappctr://show-app? Package-name

Where Package-name is the package name of the application that you have updated
to a new version.

The exact URL is listed in the “Application properties” page of the Application
Center console. For more information, see “Application properties” on page 12-90.

Developing MobileFirst applications 8-209

When a user launches a disabled application version, the user is directed to get the
update on the main page of the application in the Application Center mobile client.
An Update button gives access to over-the-air update of the application.

Updating the Application Center application

Since IBM Worklight Foundation V6.2.0, when a new version of the Application
Center becomes available, users do not have to uninstall the mobile application
before downloading and installing the new version on their mobile devices. For
example, when a new version of the Application Center is made available to
support new mobile operating systems. Users can be automatically notified when a
new version of the mobile client is available in the Application Center repository.
In your role as Administrator of the Application Center, you have only to upload
the new binary version of the mobile client application to the catalog.

MobileFirst Platform Command Line Interface
To help developers get a better tools experience, IBM MobileFirst Platform
provides a command-line interface (CLI) tool to easily create and manage both
native and hybrid apps. The CLI enables developers to use their preferred text
editors or alternative IDEs to create mobile applications.

The command-line interface does not require MobileFirst Studio for most standard
activities. The commands support tasks such as creating, adding, and configuring
with the MobileFirst API library, adding the client-side MobileFirst properties file
and performing the build and deploy of the MobileFirst application. From the
command-line, you can create and deploy adapters, and test them locally. You can
administer your MobileFirst project from CLI or REST services, or the Console,
where you can easily control the local server and observe the logs. You can use
command-line tools on their own, or in parallel with the MobileFirst Studio tools.

Everything that is generated by using the command-line interface is compatible
with MobileFirst Studio. You can also use the CLI to integrate third-party tools
such as ANT or Grunt to create your own tool chain for automated testing, build,
and deployment flows.

To install command-line tools, see “Installing command-line tools for developers”
on page 6-8.

CLI commands usage
The CLI commands are intended for IT developers to create MobileFirst projects
separately from the Eclipse MobileFirst Studio.

Use the command-line interface (CLI) keywords and options from a command
prompt window. To run the commands, you can use either mfp or mobilefirst.

You can run the commands in either of the following ways:
v The direct method: You enter the command and set its options on one line and

press Enter. For example: $ mfp add adapter MyAdapter --type http.
v The interactive method: You enter the command with no arguments and press

Enter. For example: $ mfp add adapter. Then, you are prompted to set the
available parameters one by one.

Examples:

8-210 IBM MobileFirst Platform Foundation V6.3.0

$ mfp create MyProject
$ cd MyProject
$ mfp add api MyiOS --platform ios
$ mfp add adapter MySQLAdapter --type sql
$ cd MySQLAdapter
$ mfp build
$ mfp deploy

Command-line flags and options

-v, --version Prints this utility's version
-d, --debug Produces verbose log output

For a complete list of the CLI commands with descriptions of their function, see
“Commands.”

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A
ADD

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron®.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

Developing MobileFirst applications 8-211

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:
v To add an environment when only one hybrid application exists in the

MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add

8-212 IBM MobileFirst Platform Foundation V6.3.0

environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:
– Environment type: Select Android smartphones and tablets, iPad, or

iPhone.
– Skin name: Enter a name for the skin.

v Direct: Enter $ mfp add skin [<your_app_environment>
<you_skin_name>].

B
BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C
CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working

Developing MobileFirst applications 8-213

directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D
DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

E
EXPORT

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

H
HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

8-214 IBM MobileFirst Platform Foundation V6.3.0

I
INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L
LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P
PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the

Developing MobileFirst applications 8-215

valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in
do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application
is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R
REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:
v Interactive: $ mfp remove feature: the [?] prompt shows what features

you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays

8-216 IBM MobileFirst Platform Foundation V6.3.0

new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S
START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

Developing MobileFirst applications 8-217

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:
v To add an environment when only one hybrid application exists in the

MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

8-218 IBM MobileFirst Platform Foundation V6.3.0

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:
– Environment type: Select Android smartphones and tablets, iPad, or

iPhone.
– Skin name: Enter a name for the skin.

v Direct: Enter $ mfp add skin [<your_app_environment>
<you_skin_name>].

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Developing MobileFirst applications 8-219

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

E:

EXPORT

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

8-220 IBM MobileFirst Platform Foundation V6.3.0

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:

Developing MobileFirst applications 8-221

v Preview in application folder: $ mfp preview. This command opens the
Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in
do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application
is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:
v Interactive: $ mfp remove feature: the [?] prompt shows what features

you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

8-222 IBM MobileFirst Platform Foundation V6.3.0

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

Developing MobileFirst applications 8-223

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:
v To add an environment when only one hybrid application exists in the

MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

8-224 IBM MobileFirst Platform Foundation V6.3.0

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:
– Environment type: Select Android smartphones and tablets, iPad, or

iPhone.
– Skin name: Enter a name for the skin.

v Direct: Enter $ mfp add skin [<your_app_environment>
<you_skin_name>].

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Developing MobileFirst applications 8-225

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

E:

EXPORT

8-226 IBM MobileFirst Platform Foundation V6.3.0

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,

Developing MobileFirst applications 8-227

the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in
do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application
is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:

8-228 IBM MobileFirst Platform Foundation V6.3.0

v Interactive: $ mfp remove feature: the [?] prompt shows what features
you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

Developing MobileFirst applications 8-229

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:
v To add an environment when only one hybrid application exists in the

MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

8-230 IBM MobileFirst Platform Foundation V6.3.0

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:
– Environment type: Select Android smartphones and tablets, iPad, or

iPhone.
– Skin name: Enter a name for the skin.

v Direct: Enter $ mfp add skin [<your_app_environment>
<you_skin_name>].

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

Developing MobileFirst applications 8-231

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.

8-232 IBM MobileFirst Platform Foundation V6.3.0

v If you run the command from the apps folder, the command deploys all
the apps in the project.

v If you run the command from the folder of a specific adapter, the
command deploys that one adapter.

v If you run the command from the folder of a specific application, the
command deploys that one application.

E:

EXPORT

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].

Developing MobileFirst applications 8-233

v Direct with a JSON file parameter: $ mfp invoke adapterName:function
--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in
do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application
is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

8-234 IBM MobileFirst Platform Foundation V6.3.0

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:
v Interactive: $ mfp remove feature: the [?] prompt shows what features

you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Developing MobileFirst applications 8-235

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:

8-236 IBM MobileFirst Platform Foundation V6.3.0

v To add an environment when only one hybrid application exists in the
MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:
– Environment type: Select Android smartphones and tablets, iPad, or

iPhone.
– Skin name: Enter a name for the skin.

v Direct: Enter $ mfp add skin [<your_app_environment>
<you_skin_name>].

B:

BD

Developing MobileFirst applications 8-237

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

8-238 IBM MobileFirst Platform Foundation V6.3.0

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

E:

EXPORT

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you

Developing MobileFirst applications 8-239

are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in
do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application

8-240 IBM MobileFirst Platform Foundation V6.3.0

is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:
v Interactive: $ mfp remove feature: the [?] prompt shows what features

you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Developing MobileFirst applications 8-241

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

8-242 IBM MobileFirst Platform Foundation V6.3.0

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:
v To add an environment when only one hybrid application exists in the

MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:

Developing MobileFirst applications 8-243

– Environment type: Select Android smartphones and tablets, iPad, or
iPhone.

– Skin name: Enter a name for the skin.
v Direct: Enter $ mfp add skin [<your_app_environment>

<you_skin_name>].

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

8-244 IBM MobileFirst Platform Foundation V6.3.0

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

E:

EXPORT

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory

Developing MobileFirst applications 8-245

consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in

8-246 IBM MobileFirst Platform Foundation V6.3.0

do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application
is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:
v Interactive: $ mfp remove feature: the [?] prompt shows what features

you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

Developing MobileFirst applications 8-247

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command

8-248 IBM MobileFirst Platform Foundation V6.3.0

generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:
v To add an environment when only one hybrid application exists in the

MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Developing MobileFirst applications 8-249

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:
– Environment type: Select Android smartphones and tablets, iPad, or

iPhone.
– Skin name: Enter a name for the skin.

v Direct: Enter $ mfp add skin [<your_app_environment>
<you_skin_name>].

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

8-250 IBM MobileFirst Platform Foundation V6.3.0

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

E:

EXPORT

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.

Developing MobileFirst applications 8-251

v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the

8-252 IBM MobileFirst Platform Foundation V6.3.0

current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in
do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application
is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:
v Interactive: $ mfp remove feature: the [?] prompt shows what features

you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

Developing MobileFirst applications 8-253

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

8-254 IBM MobileFirst Platform Foundation V6.3.0

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:
v To add an environment when only one hybrid application exists in the

MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

Developing MobileFirst applications 8-255

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:
– Environment type: Select Android smartphones and tablets, iPad, or

iPhone.
– Skin name: Enter a name for the skin.

v Direct: Enter $ mfp add skin [<your_app_environment>
<you_skin_name>].

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].

8-256 IBM MobileFirst Platform Foundation V6.3.0

v Direct with the setting and value parameters: $ mfp config
[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

E:

EXPORT

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.

Developing MobileFirst applications 8-257

v If your current working directory is an environment folder inside a
hybrid application, the hybrid web assets are exported for that
environment.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your

8-258 IBM MobileFirst Platform Foundation V6.3.0

default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in
do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application
is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:
v Interactive: $ mfp remove feature: the [?] prompt shows what features

you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

Developing MobileFirst applications 8-259

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

8-260 IBM MobileFirst Platform Foundation V6.3.0

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:
v To add an environment when only one hybrid application exists in the

MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Developing MobileFirst applications 8-261

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:
– Environment type: Select Android smartphones and tablets, iPad, or

iPhone.
– Skin name: Enter a name for the skin.

v Direct: Enter $ mfp add skin [<your_app_environment>
<you_skin_name>].

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

8-262 IBM MobileFirst Platform Foundation V6.3.0

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

E:

EXPORT

Developing MobileFirst applications 8-263

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,

8-264 IBM MobileFirst Platform Foundation V6.3.0

the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in
do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application
is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:

Developing MobileFirst applications 8-265

v Interactive: $ mfp remove feature: the [?] prompt shows what features
you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

8-266 IBM MobileFirst Platform Foundation V6.3.0

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:
v To add an environment when only one hybrid application exists in the

MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

Developing MobileFirst applications 8-267

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:
– Environment type: Select Android smartphones and tablets, iPad, or

iPhone.
– Skin name: Enter a name for the skin.

v Direct: Enter $ mfp add skin [<your_app_environment>
<you_skin_name>].

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

8-268 IBM MobileFirst Platform Foundation V6.3.0

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.

Developing MobileFirst applications 8-269

v If you run the command from the apps folder, the command deploys all
the apps in the project.

v If you run the command from the folder of a specific adapter, the
command deploys that one adapter.

v If you run the command from the folder of a specific application, the
command deploys that one application.

E:

EXPORT

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].

8-270 IBM MobileFirst Platform Foundation V6.3.0

v Direct with a JSON file parameter: $ mfp invoke adapterName:function
--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in
do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application
is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

Developing MobileFirst applications 8-271

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:
v Interactive: $ mfp remove feature: the [?] prompt shows what features

you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

8-272 IBM MobileFirst Platform Foundation V6.3.0

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:

Developing MobileFirst applications 8-273

v To add an environment when only one hybrid application exists in the
MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:
– Environment type: Select Android smartphones and tablets, iPad, or

iPhone.
– Skin name: Enter a name for the skin.

v Direct: Enter $ mfp add skin [<your_app_environment>
<you_skin_name>].

B:

BD

8-274 IBM MobileFirst Platform Foundation V6.3.0

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

Developing MobileFirst applications 8-275

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

E:

EXPORT

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you

8-276 IBM MobileFirst Platform Foundation V6.3.0

are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in
do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application

Developing MobileFirst applications 8-277

is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:
v Interactive: $ mfp remove feature: the [?] prompt shows what features

you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

8-278 IBM MobileFirst Platform Foundation V6.3.0

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface to create apps
from the command line.

A:

ADD

Syntax: mfp add [adapter|api|hybrid] [<options>]The add command
generates new MobileFirst artifacts. The current working directory must be
a child of an existing MobileFirst project. Generated artifacts go into the
appropriate folder within the project, regardless of the current working
directory. For example, adapters are generated to the adapters folder and
native APIs are generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u]]The add adapter command creates a new
adapter, which is generated into the adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron.

[--jsonstore|-j]
Your choice of JSONStore procedures.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

ADD API

Syntax: mfp add api [<name> -e
[ipad|iphone|android|javame|windowsphone8]]The add api command
generates a new native API into the apps folder of the current project. Run
the command in the current working directory, which is a child of a
MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameters:

<name>
The name that you want for the generated native API.

Developing MobileFirst applications 8-279

-e [ios|android|javame|windowsphone8]
The environment or mobile platform.

ADD ENVIRONMENT

Syntax: mfp add environment [--app|-a
<app>][ipad|iphone|android|windowsphone8][,...]This command adds a
platform-specific environment to a hybrid application.

If you run mfp add environment without any arguments, you are prompted
for the parameters. You can add multiple environment types, which are
separated by commas. Examples:
v To add an environment when only one hybrid application exists in the

MobileFirst project, or when you work in the directory of a hybrid
application, write the command as follows: $ mfp add environment
iphone,android

v To add an environment that specifies the hybrid application, write the
command as follows: $ mfp add environment iphone,android --app
myHybridApps

v The following example contains a list of all of the valid environments: $
mfp add environment [--app|-a
<app>][iphone,ipad,android,blackberry,blackberry10,windowsphone8,windows8,air,mobilewebapp,desktopbrowser][,...]

ADD FEATURE

Syntax: mfp add feature [fips|jsonstore|tealeaf]The add feature
command is a way of adding optional features to your hybrid applications.
When you use it, it enters an interactive mode where the prompt displays
a list of available features: [fips|jsonstore|tealeaf].

The current working directory must be under an existing hybrid
application. If you run $ mfp add feature without any arguments, enter
the feature option at the [?] prompt.

Note: The features that were previously installed are not displayed for
selection. Use the arrow keys to select a feature and press Enter to add it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

ADD SKIN

Syntax: mfp add skin [--environment|-e
android|blackberry|blackberry10|iphone|ipad <name>]The add skin
command is a way of creating MobileFirst skins in your hybrid
applications.

Note: Prerequisite: Make sure that the current working directory is under
an existing hybrid application and that at least one environment is added
to your hybrid app. If you need to create an environment, run the mfp add
environment command.
You can run the command either of the following ways:
v Interactive: $ mfp add skin. You are prompted for the following

parameters:

8-280 IBM MobileFirst Platform Foundation V6.3.0

– Environment type: Select Android smartphones and tablets, iPad, or
iPhone.

– Skin name: Enter a name for the skin.
v Direct: Enter $ mfp add skin [<your_app_environment>

<you_skin_name>].

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name>]This command is a global command. The
create command creates a new MobileFirst project in the current working
directory. If you enter the command without any arguments, you are
prompted for the name of the project. To generate a new MobileFirst
project that is called MyProject, enter $ mfp create MyProject.

CREATE SERVER

Developing MobileFirst applications 8-281

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is configured to work as a MobileFirst local
test server. To run the command, enter mfp create-server. This command
takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

E:

EXPORT

Syntax: mfp export [<path to zip file>] [-i|--includeNativeLibs]]The
export command creates a compressed file, which can contain the entire
MobileFirst project or the hybrid assets for use in a native application.

Note: Prerequisite: The current working directory must be under an
existing hybrid application or in the root directory. Otherwise, the
command returns an error message.
v If your current working directory is in a MobileFirst project root folder,

the source files for the entire project are exported.
v If your current working directory is an environment folder inside a

hybrid application, the hybrid web assets are exported for that
environment.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory

8-282 IBM MobileFirst Platform Foundation V6.3.0

consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-
f<path to json array file>]]The invoke command starts a procedure for
a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

P:

PREVIEW

Syntax: mfp preview [<environments>] [-n|--noshell]The preview
command displays a preview of the current application or environment in
your default browser by using the Mobile Browser Simulator. Passing the
--noshell option opens the application's environments directly in your
default browser. These environments are opened with the Mobile Browser
Simulator. You can run the preview command with one of the following
syntaxes:
v Preview in application folder: $ mfp preview. This command opens the

Mobile Browser Simulator by using the environments in the application.
If the environments are not supported or the application does not
contain any environment, then the common preview is used.

v Preview in environment folder: $ mfp preview. This command opens the
Mobile Browser Simulator to preview the application by using the
current environment. If the current environment is not supported, then
the common preview is used to view the application.

v Preview with environments: $ mfp preview <environments>. If the list of
environments contains at least one supported environment, then the
Mobile Browser Simulator is used to preview the application with the
valid environment. If the list does not contain any valid environments,
the common preview is used to view the application with the
environments that are passed in. If the environments that are passed in

Developing MobileFirst applications 8-283

do not exist in the application or are invalid environments, the preview
uses the first valid environment in the application.

v Preview with the --noshell|-n option: $ mfp preview --noshell|-n. If
this command is run inside an application folder, the common preview
is opened to view each environment in the application. If the command
is run inside an environment folder, the common preview is used to
preview the application by using that environment.

v Preview with Environments and --noshell|-n option: $ mfp preview
<environments> --noshell|-n. If the environments that are passed in do
not exist in the application or are invalid environments, the application
is previewed by using the first valid environment in the application. If
there are no valid environments, the common preview is used to view
the application.

Note: To use this command, the JAVA_HOME environment variable must
be set to a file path. This file path must be to the root directory of a Java
Development Kit (JDK).

R:

REMOVE FEATURE

Syntax: mfp remove feature [fips|jsonstore|tealeaf]The remove feature
command removes optional features from your hybrid applications.

Note: Prerequisite: The current working directory must be under an
existing hybrid application.
To run the command in one the following syntaxes:
v Interactive: $ mfp remove feature: the [?] prompt shows what features

you can remove. Use the arrow keys to select the feature and press Enter
to remove it.

fips
FIPS 140-2

jsonstore
JSONStore

tealeaf
IBM Tealeaf SDK

v Direct: $ mfp remove feature [fips|jsonstore|tealeaf].

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

8-284 IBM MobileFirst Platform Foundation V6.3.0

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Accelerating application development by reusing resources
Use application components, MobileFirst project templates, and mobile patterns to
accelerate the development of applications by reusing resources.

This section describes application components and MobileFirst project templates.
For information about mobile patterns, see “Mobile patterns” on page 8-114.

Configuring application component and template preferences
You can configure the location of your local download folder. The download folder
is the place where IBM MobileFirst Platform Foundation searches for MobileFirst
project templates and application components whenever you add an application
component to a project or create a project from a template.

About this task

You can use the default folder <USER_HOME>/IBM/templates, or you can specify an
alternative folder. If you want to use an alternative folder, you must specify it
before you create application components and templates.

Procedure
1. In MobileFirst Studio, click Window > Preferences.
2. In the left panel, click MobileFirst > Templates and Components.
3. In the right panel, click Browse, and then select the folder that you want to use

as your download folder.

Application components
Application components are reusable libraries that you can add to the applications
you develop. An application component can be a client-side library or a server
runtime block. Typical libraries might handle basic functions such as login or
payments. They can also contain various elements such as non-visual runtime
objects, visual components, integration adapters, and user interface screen
packages.

Developing MobileFirst applications 8-285

Consider the example of a banking application. The application might require an
image-processing library for processing checks, a non-visual runtime object, and an
integration adapter to connect to the banking system for verification. A developer
might consider assembling these reusable building blocks into application
components, and then add them to multiple MobileFirst projects to accelerate the
development of applications for a range of different devices.

An application component can help simplify and speed up the delivery of high
quality mobile applications across multiple devices. An application component can
also help developers in their interactions with customers, can provide value-added
services, and can help developers understand how consumers use their mobile
applications.

Creating application components from MobileFirst projects
You can create an application component based on a MobileFirst project. You
define metadata information such as the name of the component and its version
number, and you select the project resources that you want to include in the
application component.

Procedure
1. From the Explorer view in MobileFirst Studio, right-click the MobileFirst project

and click Create Application Component.
2. Provide metadata information in the fields listed in the following table:

Table 8-17. Application component metadata

Field Description

Name Name of the application component. Spaces
are allowed in this field.

ID Unique identifier for the application
component. This is a read-only field. The
identifier is the combination of information
specified in the Name field (using upper
case characters and without spaces) together
with unique identifiers.

Author Author or provider of the application
component.

Version Version of the application component
expressed in VRM (version, release,
modification) format; for example, 1.0.1.

Description Short description of the application
component.

Image Thumbnail image that represents the
application component. Supported
resolution: 15x12 pixels.

Note: If you enter metadata information using certain non-Western character
sets, the information might be displayed in XML encoded format in the
component.wcp file. This does not affect the usability of the application
component in any way. The characters are interpreted correctly by XML
processors; for example, when you view the file using a web browser such as
Firefox, it will display the correct character set.

3. From the Application list, select the application that you want to use as a basis
for the application component, and then click Next.

8-286 IBM MobileFirst Platform Foundation V6.3.0

4. In the panel that displays the project resources, select the check box next to
each resource that you want to include in the application component. Consider
including the files that you think would be useful as a component. Do not try
to include the files that are in any case generated by default by a MobileFirst
project.

5. Click Browse and specify the location and filename of the application
component, and then click Finish. The file extension must be .wlc or .zip.

Results

The application component is created with the location and filename you specified.

What to do next

You can now view the contents of the application component and add hooks to
facilitate automation.

Viewing the contents of an application component
You can open an application component to view its contents by using a file
compression tool.

The application component contains folders based on the MobileFirst project
resources that were selected when the application component was created, as well
as a mandatory COMPONENT-DATA folder.

The COMPONENT-DATA folder contains the following files:
v The thumbnail image file that was selected when the application component was

created.
v A Component Processor file named component.wcp, which contains the metadata

information that was specified when the application component was created.

Figure 8-27. File structure of a typical application component

Developing MobileFirst applications 8-287

The following contents are present in the component.wcp file:
v Component ID
v Component name
v Component author name
v Component description
v Component version
v Component thumbnail
v IBM MobileFirst Platform Foundation version number

The following example shows the contents of a typical component.wcp file:
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner_iOS</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for iOS by IBM</Description>
<Version>1.0.0</Version>
<Image>BarcodeScanner.jpg</Image>
<WLVersion>6.3.0</WLVersion>

</ComponentData>

Note: Do not modify the contents of the COMPONENT-DATA folder except to add
additional hooks to the component.wcp file according to the schema described in
“Adding hooks to an application component.”

Adding hooks to an application component
You add hooks to an application component to facilitate automation when the
component is added to a MobileFirst project. These additional hooks are optional.

To add hooks, you need to edit the component.wcp file by adding XML inner
elements. If you do this directly within MobileFirst Studio, the edited
component.wcp file is included in the next version of the application component. If
you edit the component.wcp file outside MobileFirst Studio, you must copy the
edited file manually into the MobileFirst Studio workspace location and then run
the Create Application Component command again so that the application
component is updated with the latest version of the component.wcp file.

Before you add hooks, you need to add the appropriate environment element
according to the environment that the application component supports. The
following table lists the element that you add for each supported environment:

Table 8-18. Elements for supported environments

Environment Element

Android <Android>

iPhone <IPhone>

iPad <IPad>

The following example component.wcp file includes the Android environment tag:
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description>
<Version>1.0.0</Version>

8-288 IBM MobileFirst Platform Foundation V6.3.0

<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android></Android>

</ComponentData>

Table 8-19 lists the inner elements that are supported on Android and the order in
which they must appear in the schema.

Table 8-19. Order of inner elements for the Android environment

Order Inner element

1 CordovaPlugin

2 Activities

3 UserPermissions

4 Receivers

5 Strings

6 ExternalLibraries

7 Libraries

Table 8-20 lists the inner elements that are supported on iOS and the order in
which they must appear in the schema.

Table 8-20. Order of inner elements for the iPhone and iPad environments

Order Inner element

1 CordovaPlugin

2 Files

3 Libraries

Note: Some hooks result in the insertion of properties in the config.xml file or the
AndroidManifest.xml file when the associated application component is added to a
MobileFirst project. Every insertion is enclosed in comments that mention the
element and application component unique name. For example:
<!--BEGIN ANDROID CORDAVA-PLUGIN AUTOINSERTION FOR BarCodeScannerUniqueID -->

<!--END ANDROID CORDAVA-PLUGIN AUTOINSERTION FOR BarCodeScannerUniqueID -->

Adding and removing Android library projects

Additional Android projects can be packaged as part of the component.wlc file.

Additional projects are packaged in the COMPONENT-DATA folder under the
folder ExternalProjects. Any compressed file under that folder is considered to be
an “external project” and will be automatically added.

When the component is added to a MobileFirst project, the following things
happen:
v Any additional projects are added to the Workspace.
v The additional projects are referenced from theMobileFirst project.
v If the external projects use a higher Android API level than is used by the

MobileFirst Android project, the developer is prompted to upgrade to the higher
API level.

Developing MobileFirst applications 8-289

When the component is removed, the following things happen:
v The additional projects are deleted from the Workspace (and from the file

system).
v References to those external projects are removed from the MobileFirst project.

CordovaPlugin element:

This element integrates the Cordova plug-in into the application component by
capturing the class name and its fully qualified name. When you add the
application component to a MobileFirst project, the CordovaPlugin properties are
automatically inserted into the config.xml file.

Element name

<CordovaPlugin>

Parameters

Table 8-21. CordovaPlugin elements

Element Description Occurrences

Name Name of the plug-in that
uses the Cordova plug-in.

1

ClassName Qualified class name of the
plug-in implementation that
uses the Cordova plug-in.

1

Environments supported

v Android
v iPhone
v iPad

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>
<CordovaPlugin>

<Name>BarcodeScanner</Name>
<ClassName>com.phonegap.plugins.barcodescanner.BarcodeScanner</ClassName>

</CordovaPlugin>
</Android>

</ComponentData>

Automation

When an application component that includes this element is added to a
MobileFirst project, the config.xml file of the MobileFirst project is automatically
updated to reflect the CordovaPlugin properties. The following example shows an
updated config.xml file:

8-290 IBM MobileFirst Platform Foundation V6.3.0

<feature name="InAppBrowser">
<param name="android-package" value="org.apache.cordova.inappbrowser.InAppBrowser"/>

</feature>
<feature name="Vibration">
<param name="android-package" value="org.apache.cordova.vibration.Vibration"/>

</feature>
<!--BEGIN ANDROID CORDOVA-PLUGIN AUTOINSERTION FOR BarCodeScannerUniqueID -->
<feature name="BarcodeScanner">
<param name="android-package" value="com.phonegap.plugins.barcodescanner.BarcodeScanner"/>

</feature>
<!--END ANDROID CORDOVA-PLUGIN AUTOINSERTION FOR BarCodeScannerUniqueID -->

</widget>

Activities element:

This element enables you to add activities information to the application
component. The information is declared in the Android manifest file in any
MobileFirst project that imports the component. The activities specified in the
XMLContent element get appended in the Android manifest under the application
element.

Element name

<Activities>

Parameters

Table 8-22. Activities elements

Element Description Occurrences

XmlContent The XML content of the
activities information that
needs to be placed in the
Android manifest file. You
can specify one or more
activity elements within the
XMLContent element to be
appended.

1

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>
<CordovaPlugin>

<Name>BarcodeScanner</Name>
<ClassName>com.phonegap.plugins.barcodescanner.BarcodeScanner</ClassName>

</CordovaPlugin>
<Activities>

<XmlContent>
<![CDATA[
<!-- ZXing activities -->
<activity

Developing MobileFirst applications 8-291

android:name="com.google.zxing.client.android.CaptureActivity"
android:screenOrientation="landscape"
android:clearTaskOnLaunch="true"
android:configChanges="orientation|keyboardHidden"
android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
android:windowSoftInputMode="stateAlwaysHidden"
android:exported="false">
<intent-filter>
<action android:name="com.phonegap.plugins.barcodescanner.SCAN"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>
<activity

android:name="com.google.zxing.client.android.encode.EncodeActivity"
android:label="@string/share_name">
<intent-filter>
<action android:name="com.phonegap.plugins.barcodescanner.ENCODE"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>
<activity

android:name="com.google.zxing.client.android.HelpActivity"
android:label="@string/share_name">
<intent-filter>
<action android:name="android.intent.action.VIEW"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>
]]>

</XmlContent>
</Activities>

</Android>
</ComponentData>

Automation

When a component that includes this element is added to a MobileFirst project, the
AndroidManifest.xml file of the MobileFirst project is automatically updated to
reflect the activities information. The following example shows an updated
AndroidManifest.xml file:
<!--BEGIN ANDROID AUTOINSERTION FOR BarCodeScannerUniqueID -->

<!--ZXing activities -->
<activity android:clearTaskOnLaunch="true" android:configChanges="orientation/keyboard+hidden" ...>
<intent-filter>

<action android:name="com.phonegap.plugins.barcodescanner.SCAN"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>
<activity android:label="@string/share_name" android:name="com.google.zxing.client.android.encode ...>
<intent-filter>

<action android:name="com.phonegap.plugins.barcodescanner.ENCODE"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>
<activity android:label="@string/share_name android:name="..." ...>
<intent-filter>

<action android:name="android.intent.action.VIEW"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>

<!--END ANDROID ACTIVITY AUTOINSERTION FOR BarCodeScannerUniqueID -->

8-292 IBM MobileFirst Platform Foundation V6.3.0

UserPermissions element:

This element enables you to add information about user permissions to the
application component. The information controls end-user access to the native
functions of a device, such as its camera or GPS functions.

Element name

<UserPermissions>

Parameters

Table 8-23. UserPermissions elements

Element Description Occurrences

permission Android-specific permission
constant.

1..∞

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>
<UserPermissions>

<permission>android.permission.CAMERA</permission>
<permission>android.permission.FLASHLIGHT</permission>

</UserPermissions>
</Android>

</ComponentData>

Automation

When an application component that includes this element is added to a
MobileFirst project, the AndroidManifest.xml file of the MobileFirst project is
automatically updated to reflect the user permission information. The following
example shows an AndroidManifest.xml file that is updated with user permission
information:

<!--BEGIN ANDROID USER-PERMISSION AUTOINSERTION FOR BarCodeScannerUniqueID -->
<uses-permission android:name="android.permission.CAMERA"/>

<uses-permission android:name="android.permission.FLASHLIGHT"/>
<!--END ANDROID USER-PERMISSION AUTOINSERTION FOR BarCodeScannerUniqueID -->

Receivers element:

This element enables you to add information about broadcast receivers to the
application component. The information is declared in the Android manifest file in
any MobileFirst project that imports the component.

Developing MobileFirst applications 8-293

Element name

<Receivers>

Parameters

Table 8-24. Receivers elements

Element Description Occurrences

XmlContent XML content of the broadcast
receiver information that
must be placed in the
Android manifest file. You
can specify one or more
receiver elements within the
XmlContent element to be
appended.

1

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>
<Receivers>

<XmlContent>
<![CDATA[
<receiver android:name="com.phonegap.plugin.localnotification.AlarmReceiver">
</receiver>
<receiver android:name="com.phonegap.plugin.localnotification.AlarmRestoreOnBoot" >

<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED" />

</intent-filter>
</receiver>
]]>

</XmlContent>
</Receivers>

</Android>
</ComponentData>

Automation

When an application component that includes this element is added to a
MobileFirst project, the AndroidManifest.xml file of the MobileFirst project is
automatically updated to reflect the broadcast receiver information. The following
example shows an AndroidManifest.xml file that is updated with broadcast
receivers information:
<--!BEGIN ANDROID RECEIVER AUTOINSERTION FOR BarCodeScannerUniqueID -->

<receiver android:name="com.phonegap.plugin.localnotification.AlarmReceiver">
</receiver>
<receiver android:name="com.phonegap.plugin.localnotifisation.AlarmRestoreOnBoot">
<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED"/>

8-294 IBM MobileFirst Platform Foundation V6.3.0

</intent-filter>
</receiver>

<--!END ANDROID RECEIVER AUTOINSERTION FOR BarCodeScannerUniqueID -->

Strings element:

This element enables you to add information about strings to the application
component. The information is declared in the android/native/res/values/
strings.xml file in any MobileFirst project that adds the application component.

Element name

<Strings>

Parameters

Table 8-25. Strings inner elements

Element Description Occurrences

XmlContent The XML content of the
string information that needs
to be placed in the
android/native/res/values/
strings.xml file. You can
specify one or more string
elements within the
XmlContent element to be
appended.

1

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>
<Strings>

<XmlContent>
<![CDATA[
<string name="app_picker_name">Applications</string>
<string name="bookmark_picker_name">Bookmarks</string>
<string name="button_add_calendar">Add to calendar</string>
]]>

</XmlContent>
</Strings>

</Android>
</ComponentData>

Automation

When a component that includes this element is added to a MobileFirst project, the
android/native/res/values/strings.xml file of the project is automatically
updated to reflect the strings information. The following example shows an
updated strings.xml file:

Developing MobileFirst applications 8-295

<!--BEGIN ANDROID STRING AUTOINSERTION FOR BarCodeScannerUniqueID -->
<string name="app_picker_name">Applications</string>
<string name="bookmark_picker_name>Bookmarks</string>
<string name="button_add_calendar">Add to calendar</string>

<!--END ANDROID STRING AUTOINSERTION FOR BarCodeScannerUniqueID -->

Libraries element (Android):

This element enables you to add required libraries to the application component.
The libraries are added to the android\native\libs folder in any MobileFirst
project that imports the component.

Element name

<Libraries>

Parameters

Table 8-26. Libraries elements

Element Description Occurrences

Path Path to the archive file
relative to the root location
of the application
component. The libraries
should be kept only in the
COMPONENT_DATA folder.

1..∞

Note: Do not copy libraries to the ExternalProject folder.

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>
<Libraries>

<Path>zxing.jar</Path>
</Libraries>

</Android>
</ComponentData>

Automation

When an application component that includes this element is added to a
MobileFirst project, the android\native\libs folder of the MobileFirst project is
automatically updated to reflect the dependent libraries information. Figure 8-28 on
page 8-297 shows an updated android\native\libs folder based on the example
<Libraries> element.

8-296 IBM MobileFirst Platform Foundation V6.3.0

ExternalLibraries element:

This element enables you to add information about external libraries to the
application component. The information provides pointers to external libraries that
are to be downloaded by the developer who adds the application component to a
MobileFirst project. Typically, these libraries are additional libraries that are not
packaged as part of the application component.

Element name

<ExternalLibraries>

Parameters

Table 8-27. ExternalLibraries elements

Element Description Occurrences

URL URL from where the external
library can be retrieved.

1

Message Instructional message about
addition of external libraries
that need to be displayed to
the developer after importing
the component.

1

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>
<ExternalLibraries>

<URL>http://get-library-here.com</URL >
<Message>Please download VeryUsefulLibrary and copy into the native folder of your project</Message>

</ExternalLibraries>
</Android>

</ComponentData>

Automation

When an application component that includes this element is added to a
MobileFirst project, a dialog box displays the specified message.

Figure 8-28. Example of updated libs folder

Developing MobileFirst applications 8-297

Files element:

This element enables you to add information about files that are required for the
application component to work. These files are required by the native project of
iPhone or iPad. The information specifies files that need to be added to the Xcode
project in a MobileFirst project. The information is displayed as a list in a dialog
box whenever a developer adds the application component to a MobileFirst
project. The files are not actually copied; instead, the developer is prompted to
copy them.

Element name

<Files>

Parameters

Table 8-28. Files elements

Element Description Occurrences

file Name of each file. 1..∞

Note: The dialog box only displays the list of files to be added to the XCode
project. These files must be added manually to the XCode project. The files must
be included as part of the application component.

Environments supported

v iPhone
v iPad

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<IPhone>
<Files>

<file>CDVBarcodeScanner.mm</file>
<file>zxing-all-in-one.cpp</file>

</Files>
</IPhone>

</ComponentData>

Automation

When a component that includes this element is added to aMobileFirst project, a
dialog box displays a message prompting the developer to add the listed files to
the Xcode project manually.

Note: Automatic modification of Xcode projects after adding components is
currently not supported.

8-298 IBM MobileFirst Platform Foundation V6.3.0

Libraries element (iPhone and iPad):

This element enables you to add information about libraries to be added to the
application component. The information specifies libraries that need to be added to
the Xcode project in a MobileFirst project. The information is displayed as a list in
a dialog box whenever a developer imports the application component into a
MobileFirst project.

Element name

<Libraries>

Parameters

Table 8-29. Libraries elements

Element Description Occurrences

library Name of each library. 1..∞

Note: The dialog box only displays the list of libraries to be added to the XCode
project. These libraries must be added manually to the XCode project.

Environments supported

v iPhone
v iPad

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<IPhone>
<Libraries>

<library>CoreVideo.framework</library>
<library>AVFoundation.framework</library>

</Libraries>
</IPhone>

</ComponentData>

Automation

When a component that includes this element is added to a MobileFirst project, a
dialog box displays a message prompting the developer to add the listed libraries
to the Xcode project manually.

Note: Automatic modification of Xcode projects after adding components is
currently not supported.

Validating application components
After creating an application component and adding hooks, you must validate the
component.wcp file to ensure that it conforms to the correct syntax.

Developing MobileFirst applications 8-299

About this task

Follow this procedure to validate the component.wcp file.

Procedure
1. Import the application component into a MobileFirst project. The component.wcp

file is validated during import.
2. Look for error messages in the MobileFirst Operations Console. The following

example error message indicates that the ClassName parameter is not specified
in the CordovaPlugin element:
Component = BarcodeScannerIOS.wlc
Found component.wcp
In component.wcp, one or more property values(s) are empty/invalid. For details, see below:
Reason:cvc-complex-type.2.4.b: the content of element ’CordovaPlugin’ is not complete. One of ’{ClassName}’ is expected.

3. Correct the errors by using information in the message text and by referring to
the topics under “Adding hooks to an application component” on page 8-288
that describe the syntax.

Adding application components to MobileFirst projects
After you have created and validated application components, you can add them
to your MobileFirst projects.

Before you begin

Before you add application components, you need to complete the following tasks:
1. Create a MobileFirst project with an initial hybrid application. You can only

add application components to MobileFirst projects that have been created with
an initial hybrid application (See “Creating MobileFirst projects” on page 8-7.)

2. Set up new MobileFirst environments that the application components require.
If you do not add all the required environments, error messages are displayed
when you add application components. (See “Setting up a new MobileFirst
environment for your application” on page 8-32.)

Note: Adding an environment takes some time before it is deployed. Ensure
that the environments you add are deployed before you proceed to the next
step.

3. Copy the application component files to your download folder. (For
information about specifying a download folder, see “Configuring application
component and template preferences” on page 8-285.)

About this task

Automatic modification of Xcode projects after adding components is currently not
supported.

Procedure
1. In the Explorer view in MobileFirst Studio, right-click the application and click

Add/Remove Application Component(s). The Add/Remove Application
Component(s) window opens.

2. From the Application list, select the relevant application.
3. Select the check box for each application component you want to add, and then

click Finish.

8-300 IBM MobileFirst Platform Foundation V6.3.0

Results

The selected application components are added to the MobileFirst project. Each
application component file is marked with the application component identifier.

Removing application components from MobileFirst projects
You can remove application components from a MobileFirst project if they are no
longer required.

About this task

Automatic modification of Xcode projects after removing components is currently
not supported.

Procedure
1. In the Explorer view in MobileFirst Studio, right-click the application and click

Add/Remove Application Component(s). The Add/Remove Application
Component(s) window opens.

2. From the Application list, select the relevant application.
3. Clear In Use for each application component you want to remove, and then

click Finish. In some cases, an information message might be displayed, or you
might be prompted to confirm that you want to remove an application
component.

Results

The application component files are removed from the MobileFirst project, and the
project is restored to its former state.

Troubleshooting adding and removing application components
Whenever you add or remove an application component, the existing MobileFirst
project files are backed up.

The backup of each original file is named <orig filename>.backup_<add/
remove>_<component id>_<date and time>, where:
v <orig filename> is the full name of the file being modified (for example,

AndroidManifest.xml).
v <add/remove> is the word “add” or the word “remove” according to the

operation being performed.
v <component id> is the ID of the component being added or removed.
v <date and time> is the timestamp of the operation in the format YYYYMMDD_HHMMSS.

For example, when adding the barcode scanner for the Android component, the
file config.xml is backed up to
config.xml.backup_add_BarCodeScannerUniqueID_20131015_190032.

MobileFirst project templates
MobileFirst project templates enable you to accelerate the development of
applications by not having to start from scratch. You can use MobileFirst project
templates to provide value added services and you can add elements that are
consistent with the look and feel of your brand.

Developing MobileFirst applications 8-301

Creating MobileFirst project templates
You can create MobileFirst project templates by exporting MobileFirst projects. You
define metadata information such as the name of the template, and you select the
MobileFirst project that you want to use as the basis for the template.

Before you begin

If you want to identify the source code that can be configured by developers who
use the MobileFirst project template, add FIX Me task tags in the configurable
source code before you create a template.

About this task

The following limitations apply:
v Only hybrid MobileFirst projects can be used as a basis for MobileFirst project

templates.
v You can create MobileFirst project templates only from MobileFirst projects that

contain single applications.

Procedure
1. From the Explorer view In MobileFirst Studio, right-click the required

MobileFirst project, and then click Export.
2. Expand IBM MobileFirst, select MobileFirst Project Template, and then click

Next.
3. Provide information in the fields listed in the following table, and then click

Finish:

Table 8-30. MobileFirst project template metadata

Field Description

Template Name Name of the MobileFirst project template.
Spaces are allowed.

Author Author or provider of the MobileFirst
project template.

Description Brief description of the MobileFirst project
template.

Thumbnail Thumbnail image to identify the MobileFirst
project template. Valid file formats: .jpg,
.jpeg, .png, .gif. Maximum size: 40x40
pixels.

Template Archive Location and filename of the template. Valid
filename extensions: .wlt and .zip.

Results

The MobileFirst project template is created with the location and filename you
specified.

Viewing MobileFirst project templates
You can open a MobileFirst project template to view its contents by using a file
compression tool.

The MobileFirst project template contains folders taken from the MobileFirst
project on which it is based, as well as a mandatory TEMPLATE-DATA folder.

8-302 IBM MobileFirst Platform Foundation V6.3.0

Note: Do not modify the contents of the TEMPLATE-DATA folder.

The TEMPLATE-DATA folder contains the following files:
v The thumbnail image file that was selected when the MobileFirst project

template was created.
v A template properties file named template.properties, which contains the

metadata information that was specified when the MobileFirst project template
was created.

The following contents are present in the template.properties file:
v Template title
v IBM MobileFirst Platform Foundation version used to create the template
v Template ID
v Template author
v Template description
v Template thumbnail
v IBM MobileFirst Platform Foundation version number

The following example shows the contents of a typical template.properties file:
title-Simple RSS Reader
wl_version=6.1.0.
id=RSS-09e1ac62-5c34-432e-8597-c6349eade74c
author=IBM
description=Displays entries from an RSS feed (www.example.com). The user can click an entry to read the contents without leaving the app.
image=rss_reader3.png

Creating MobileFirst projects from MobileFirst project templates
You can use MobileFirst project templates to create MobileFirst projects. You can
select templates that are available in your download folder.

Before you begin

If the owner of a MobileFirst project template has provided FIXME tasks, they are
displayed in the Tasks tab. To view them, you need to enable the FIXME tasks
view:
1. In MobileFirst Studio, click Project > Properties > General > Editors >

Structured Text Editors > Task Tags.
2. Click Enable searching for Task Tags.
3. Click Apply > OK. The Task tab is displayed. When you create a MobileFirst

project from a MobileFirst project template, the Task tab lists any FIX Me tasks
to be completed.

Procedure
1. In MobileFirst Studio, click File > New > MobileFirst Project. The New

MobileFirst Project window opens.
2. In the Name field, enter a name for the MobileFirst project.
3. From the Project Templates pane, click Shared Templates, and then click Next.

For information about the Hybrid Application, Inner Application, Native API,
and Shell Component options, see “Creating MobileFirst projects” on page 8-7.

4. In the Application name field, enter a name for your application, and then
click one of the templates available from the list. The list displays templates

Developing MobileFirst applications 8-303

available in the download folder. (For information about configuring the
download folder, see “Configuring application component and template
preferences” on page 8-285.)

5. To complete the creation of the MobileFirst project from the highlighted project
template, click Finish. The Design perspective is opened. The Tasks view shows
the FIX Me tasks available (if any) within the template content. Links are
provided to positions within the template, and accompanying descriptions
explain what is configurable.

6. Optional: Review the list of FIX Me tasks available in the Tasks view, and apply
any appropriate fixes.

Results

The new MobileFirst project is added to the Explorer view in MobileFirst Studio.
The project includes all resources that are included in the selected template.

Building and deploying in MobileFirst Studio
After you create your IBM MobileFirst project, you must build the application and
deploy it to MobileFirst Server to run and test it.

In “Developing hybrid and web applications” on page 8-14 and “Developing
native applications” on page 8-180, you learned the basics of creating and working
with your projects in MobileFirst Studio. Here is an overview of the process for
building these projects, deploying them to an instance of MobileFirst Server, and
running them.

During development, to build and deploy your application, you right-click your
application or an environment in the Project Explorer view of MobileFirst Studio,
select Run As from the menu, and then select one of its options.

Building a MobileFirst application is the process that transforms your JavaScript,
HTML, and CSS code into a mobile application for the specified environment, such
as iOS or Android. The build process produces several elements:
v A native project for the target platform that is stored in the native folder of the

environment.
v A MobileFirst application file (.wlapp) that contains the application metadata

and web resources from which MobileFirst Server identifies and services the
mobile application.

For more information about the iOS, Android, BlackBerry, and Windows Phone
development environments, see Getting Started page.

The generated native project depends on the target environment:

iPhone and iPad
The build process creates a native Xcode project, which is placed under the
native folder of the environment. You can then use Xcode to build the
final iOS application. If you are working in MobileFirst Studio on a Mac
computer, you can also right-click the iphone or ipad environment and use
the Run As > Xcode project option to build the environment and open
Xcode for that project.

Android
The native folder under the android folder contains automatically
generated Android application code that is imported into the Eclipse

8-304 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

workspace as an Android project. You use the ADT plug-in (Android
Development Tools for Eclipse) to build the final Android application. If
you are working in MobileFirst Studio on a computer with ADT installed,
you can also right-click the android environment and use the Run As >
Android Studio project option to open that project.

BlackBerry
The native folder contains BlackBerry code that you can compile by using
the Ripple development environment.

Windows Phone
The native folder contains a Visual Studio project that you compile to
build the final Windows Phone application.

The resulting files are stored in the MobileFirst Studio project hierarchy in the
project_name\bin directory, with the following naming conventions:
v project_name.war is the WAR file for the project.
v project_name-app.all.wlapp is a WLAPP file that contains all environments for

the project.
v project_name-app-common.wlapp is a WLAPP file that contains all common

resources for the project.
v project_name-app.environment_name.wlapp is a WLAPP file for each

environment in the project; for example: MyProject-app-android.wlapp.

Note: Only the latest build is contained in the project_name\bin directory at any
time. If you create multiple builds for different target servers for deployment by
using the MobileFirst Operations Console, the supplied Ant tasks, or the Server
Configuration Tool, you must deploy them after each build operation because the
next build overwrites the existing files.

You can modify the generated native projects if, for example, you want to add
native code or Cordova plug-ins to the application. If you modify the HTML,
JavaScript, CSS, the application descriptor file, or any application resources, you
must rebuild the environment by using the appropriate Run As > Build ...
command to update the MobileFirst application file (.wlapp) and the native project.

After the build of the application completes, it is deployed or not deployed
depending on which Run As command you used:
v The Run As > Run on MobileFirst Development Server option deploys the

application metadata and web resources (the .wlapp file) to the internal
MobileFirst Development Server. If you have defined an alternative test server
by using the Run As > Build Settings and Deploy Target option, you can also
deploy directly to that instance of MobileFirst Server. In this case, the command
name changes to include the name of the target server. For example, if you add
a local instance of MobileFirst Server, name it Group Test Server and designate
it as your default test server, this command appears in the menus as Run As >
Run on Group Test Server.

v The Run As > Build ... options builds the application or environment but does
not deploy it. To deploy, you use the MobileFirst Operations Console, the
supplied Ant scripts, or the Server Configuration Tooll. For more information
about deploying MobileFirst apps to remote servers, see “Deploying MobileFirst
projects” on page 11-1.

Developing MobileFirst applications 8-305

The Run on MobileFirst Development Server command
Information about the menu command that is used to build and run an application
or environment on your designated test server.

About this task

You use this menu option when you want to build your project in MobileFirst
Studio and run it on the internal MobileFirst Development Server. This instance of
MobileFirst Server is created automatically when you install MobileFirst Studio,
and is described in “The MobileFirst Development Server and the MobileFirst
Operations Console” on page 8-35.

Note: This command name is context-sensitive in that it does not always display
the name Run on MobileFirst Development Server. If you use the Configure
MobileFirst Build and Deploy Target dialog to choose a different test server, the
name of the server that is selected in the MobileFirst server to test applications
area is displayed in the command name instead. For example, if you add a local
instance of MobileFirst Server, name it "Group Test Server" and designate it as
your default test server, this command appears as Run As > Run on Group Test
Server. For consistency, when referring to this menu command in this IBM
MobileFirst Platform Foundation user documentation, the default name of this
command (Run on MobileFirst Development Server) is used throughout.

Procedure

When you choose the Run As > Run on MobileFirst Development Server option,
MobileFirst Studio performs the following actions:
v It starts the MobileFirst Development Server, if it is not already running.
v It builds your app and all of its included environments.
v It deploys the app to the MobileFirst Development Server (or designated test

server), reporting success, failure, and any error messages in the Console view of
MobileFirst Studio.

v When you open the MobileFirst Operations Console that is associated with the
MobileFirst Development Server (or designated test server), that console displays
the successfully deployed app and all of its environments. The console also
displays detailed build and deployment messages, if required.

Note: If you select more than one application node in the same project, all of them
are built and deployed to the MobileFirst Development Server.

Note: If your MobileFirst Operations Console is secured, an Authentication
Required dialog appears, prompting you to enter the User Name and Password.

If you enter the correct credentials, the deployment continues when you click OK.

The dialog also contains a Save user credentials check box. If you select it before
you click OK, the credentials are stored in Eclipse secure storage. This information
can be edited in Eclipse by selecting Preferences > General > Security > Secure
Storage. If you enter incorrect credentials, the deployment fails and the credentials
are not saved.

You can also use this menu command to run and test individual MobileFirst
environments by right-clicking on the environment in the Project Explorer and

8-306 IBM MobileFirst Platform Foundation V6.3.0

clicking Run As > Run on MobileFirst Development Server. This option runs and
tests the selected environment on the designated test server.

Important: This menu command always uses as its target server the MobileFirst
Server instance currently selected in the MobileFirst server to test applications
area of the Configure MobileFirst Build and Deploy Target dialog. It ignores any
server information that is entered in the Build the application to work with a
different MobileFirst server area of the Configure MobileFirst Build and Deploy
Target dialog.

OutOfMemoryError exceptions

If you get an OutOfMemoryError exception while deploying a large application
to the MobileFirst Development Server, consider increasing the heap size of the
server. To increase the heap size, edit the jvm.options file by double-clicking it in
the Servers view in MobileFirst Studio, then either increase the value of the flag
-Xmx if it already exists, or add this flag with the value 1024m if it does not exist
yet: -Xmx1024m.

The Build All Environments command
Information about the menu command that is used to build or rebuild an
application or an environment, without deploying and running it to a server.

About this task

You use this menu option when you want to build or rebuild your application or
environments in MobileFirst Studio, but not deploy them to the test server. This
feature is useful when you are preparing to deploy for QA or Production
environments.

Note: This command name is context-sensitive in that it does not always display
the name Build All Environments. If you right-click the name of one of your
environments, the name of that environment is displayed in the command name
instead. For example, if you right-click the android folder in your project hierarchy,
this command appears as Run As > Build Android Environment. For consistency,
when referring to this menu command in this IBM MobileFirst Platform
Foundation user documentation, the default name of this command (Build All
Environments) is used throughout.

Procedure

When you choose this command, MobileFirst Studio performs the following
actions, depending on the project element that is selected:
v If you right-click the main application node and choose Run As > Build All

Environments, MobileFirst Studio builds your application and all of its included
environments.

Note: If you select multiple application nodes, all environments for all
applications are built.

v If you right-click on only a single environment and choose (for example) Run As
> Build iPhone Environment, MobileFirst Studio builds only the selected
environment.

v No deployment takes place, either to the designated test server or to a different
MobileFirst Server.

Developing MobileFirst applications 8-307

Important: If you checked the Build the application to work with a different
MobileFirst server option in the Configure MobileFirst Build and Deploy Target
dialog, then this menu option triggers a build using that MobileFirst Server
information, and recognizes it over the test server setting. If this option is cleared,
the build occurs using the build settings for the designated test server.

The Preview command
Information about the menu command that is used to preview an application or an
environment.

About this task

You use this menu option when you want to preview an application or one of its
environments, without triggering a rebuild and redeployment of it to the
designated test server.

Note: The Preview feature requires that your designated test server is running and
that the application was built at least once for current test server configuration.

Procedure

When you select Run As > Preview, MobileFirst Studio displays an instant
preview, depending on the project element that is selected:
v Common preview – If you right-click the common folder in your project hierarchy

and choose this command, MobileFirst Studio previews all common resources.
This action opens a browser with a simple preview of your application,
independent of any development environment you might have installed.

v Single environment preview – If you right-click an environment folder in your
project hierarchy and choose this command, MobileFirst Studio previews that
environment with the Mobile Browser Simulator.

v All environments preview – If you right-click the main application node in your
project hierarchy and choose this command, MobileFirst Studio previews that
environment with the Mobile Browser Simulator, displaying a preview for every
environment you added to your application.

Important: If you use a MobileFirst Shell Component in your inner application,
you might see incorrect results with a browser-based preview of the application.

In MobileFirst Studio V6.1.0, the preview feature that you can start by selecting
Run As > Preview or from the MobileFirst Operations Console, changed. As an
unintended side-effect, the preview of an inner application that references a shell
component might not render as expected. Specifically, the fragments that normally
get injected into the HTML page for the inner application are missing. As a result,
any additional links, such as scripts, or CSS, are omitted during the preview. Also,
if an extra user interface is defined in the shell, it is omitted as well.

To see a correct preview for an inner application that uses a shell, build the
application and start it by using either a device emulator (Android or iOS) or an
actual native device.

The Build Settings and Deploy Target command
Information about the menu command that is used to create build and deploy
settings for MobileFirst applications.

8-308 IBM MobileFirst Platform Foundation V6.3.0

In previous versions of MobileFirst Studio, you accessed the build and deploy
settings for a given MobileFirst project through a number of different dialogs. Since
IBM Worklight 6.1.0, those settings are consolidated in a single dialog. As a result,
configuring a project to build and deploy to a local test server or to build for a
remote server are available through the same dialog, along with other build
settings options.

This new dialog, which is accessed by choosing the Run As > Build Settings and
Deploy Target menu command, takes the place of several commands or dialogs in
previous versions of MobileFirst Studio. It replaces:
v The Run As > Build for Remote Server menu command and its associated

dialog.
v The Run As > Apply Build Settings menu command and its associated dialog.
v The Change Target Server menu command and its associated dialog.

The Build Settings and Deploy Target dialog

When you right-click on an application or an environment and select Run As >
Build Settings and Deploy Target, the following dialog is displayed:

Important: This dialog is used only to specify configurations and settings; clicking
OK does not trigger a build. Any time that you make a modification with this
dialog, you must rebuild your application and environments for your changes to
take effect, using either the Run As > Run on MobileFirst Development Server or
the Run As > Build... menu commands.

The dialog contains three main areas, used to perform different actions. Each of
these areas is covered in the sections that follow.

Apply build optimization settings

Build optimizations are useful to reduce the size of an application, improve its
performance, or reduce its load time. The available optimizations, minification, and

Developing MobileFirst applications 8-309

concatenation, are disabled by default for every project, but you can enable them
by checking the appropriate option in the following screen capture.

You use this area of the dialog if you want to change the build settings for Desktop
Browser and Mobile Web environments for the currently selected server, and want
to apply these new minification and concatenation settings to future builds.

Important: The build optimization settings that you choose apply to the
MobileFirst Server selected in the rest of the dialog. That is, if Build the
application to work with a different server is selected, these optimization settings
apply to that server when you click OK. If Build the application to work with a
different server is not selected, they apply to the test server selected in the Server
field of the MobileFirst server to test applications area.

For more information about build settings, see “MobileFirst application build
settings” on page 8-321.

For more information about minification, see “Minification of JS and CSS files” on
page 8-324.

For more information about concatenation, see “Concatenation of JS and CSS files”
on page 8-327.

MobileFirst Server to test applications

In this area of the dialog, you can set the MobileFirst Server that you want to use
to test your applications and environments. The default setting is MobileFirst
Development Server. This name refers to the embedded instance of WebSphere
Application Server Liberty profile and MobileFirst Server that is created when you
install MobileFirst Studio.

But you can have other test servers that you want to use. For example, you can
have a local or shared instance of MobileFirst Server running on WebSphere
Application Server Liberty profile or Apache Tomcat. Using this area of the dialog,
you can choose which of these servers you want to use as a default for testing
during development.

The Server field enables you to select from a list of configured test servers in your
MobileFirst Studio development environment. You can also add a test server by
clicking Add Server.

The Context path field enables you to specify the web application context path to
be used when you deploy and run on the selected test server. By default this field
is set to /<your_project_name>.

8-310 IBM MobileFirst Platform Foundation V6.3.0

Note: If you use this area of the Configure MobileFirst Build and Deploy Target
dialog to choose a different test server than the internal MobileFirst Development
Server, the name of the server that is selected in the Server field is displayed in the
command name instead. For example, if you add a local instance of MobileFirst
Server, name it "Group Test Server" and designate it as your default test server, this
command appears in the menus as Run As > Run on Group Test Server.

Important: When you change your designated test server, the new server remains
the default for the Run As > Run on <name of test server> command until you
change it again. All subsequent builds created with this command are deployed to
and run on the test server you selected.

Build the application to work with a different MobileFirst Server

You use this option when you want to build your project in MobileFirst Studio and
run it on another instance of MobileFirst Server that is running externally to your
Eclipse development environment. For example, after you test locally, you use this
area of the dialog to build your application for deployment to a production server.

Note: Both MobileFirst Studio Consumer Edition and MobileFirst Studio
Enterprise Edition provide the capability to deploy to the internal MobileFirst
Development Server, and, using this area of the dialog, to a remote server. The
MobileFirst Studio Developer Edition is provided for evaluation purposes,
and you can deploy only to the internal MobileFirst Development Server.

This area of the Configure MobileFirst Build and Deploy Target dialog becomes
active when you select Build the application to work with a different server:

The Server field is required, and contains the URL for the remote target server. The
entry must use the format: http(s)://<hostname>:<port>.

The Context path field specifies the web application context path to be used when
deploying to this server.

To deploy the resulting WAR file and other artifacts, you must use the MobileFirst
Operations Console, the supplied Ant tasks, or the Server Configuration Tool,
following the procedures that are listed in “Deploying the project WAR file” on
page 11-5.

Additional Run As menu options
Depending on the platform and the external development environments that you
installed, specific menu commands are available in Run As menus.

The commands that are available from the Run As menus depend on
context-sensitivity, on the computer platform that you are working on, and on
which external development environments you installed on your computer.

For more information about the iOS, Android, and Windows Phone 8 development
environments, see the tutorials on the Getting Started page.

Developing MobileFirst applications 8-311

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

You are working in MobileFirst Studio on a Mac computer.
Right-click the iphone or ipad environment and use the Run As > Xcode
project option to build the environment and open the Xcode development
environment for that project.

You are working in MobileFirst Studio on a computer with the ADT plug-in
(Android Development Tools for Eclipse) installed.

Right-click the android environment and use the Run As > Android
Studio project option to open that project in the Android development
environment.

You are working in MobileFirst Studio on a computer that runs Windows 8, with
Microsoft Visual Studio installed.

Right-click the windowsphone8 or windows8 environment and use the
Run As > Visual Studio project option to open that project in the Visual
Studio development environment.

Optimizing MobileFirst applications
MobileFirst Studio has several features that you can use to reduce the size of your
application or otherwise improve its performance or reduce its load time.

During development, the applications you develop can perform well. But when
these apps are used by mobile devices, performance can be impacted by a number
of factors.

The large size of applications can make initial download times from the
Application Center too long for users. Inclusion of multiple JavaScript files in
Desktop Browser and Mobile Web applications can require multiple requests to
retrieve them when the app is started, increasing start time. Unused resources such
as large images or unneeded files included in the generated Cache Manifest file
can further slow start time for these types of applications.

MobileFirst Studio includes a number of features that can reduce the size of your
MobileFirst web applications, such as minification or removing unused features
such as JSONStore. It also includes features that can improve performance and
user satisfaction by enabling them to start faster, such as concatenation and editing
the Cache Manifest. These features are described in the following topics.

8-312 IBM MobileFirst Platform Foundation V6.3.0

Including and excluding application features
If features such as JSONStore are not used in your application or in certain
environments, you can reduce the application size by excluding them.

With IBM MobileFirst Platform Foundation, you can include or exclude features
from the application build if those features are not required. For example,
JSONStore offers many benefits, if code that references it is actually used in the
application. If it is not used, the JSONStore resources greatly increase the
application size, and thus slow both initial app download time and app start time.

There is a new <features> element in the Application Descriptor that controls the
inclusion or exclusion of resources. In the application-descriptor.xml file itself,
this element appears similar to the following example, which shows JSONStore
resources being included in the build:
<application xmlns="http://www.worklight.com/application-descriptor" id="myApp" platformVersion="6.0.0">

...
<features>

<JSONStore/>
</features>
...

</application>

For more information about Application Descriptor attributes, see “The application
descriptor” on page 8-24.

When you first create a MobileFirst application, the <features> tag is automatically
created in the application-descriptor.xml file, with no contents. What this means
is that if you use JSONStore in your code, it is not automatically added to the
builds. When you run the application, you receive an error, as shown in the
following screen capture:

You can resolve this situation by using an Eclipse QuickFix:

But you can also choose which features to include in the build with the MobileFirst
Studio editor, as shown in the following procedure.

To include or exclude features in MobileFirst Studio
1. In MobileFirst Studio, open the application-descriptor.xml file for your

application with the Application Descriptor Editor:

Developing MobileFirst applications 8-313

If the Optional Features element is empty (as in the screen capture), no
features such as JSONStore are included in the build.

2. To add features, click Add to display the Add Item window:

8-314 IBM MobileFirst Platform Foundation V6.3.0

3. Choose the feature that you want to add to the build (in this example,
JSONStore), and click OK.

4. The Application Description Editor now displays JSONStore as an attribute of
Optional Features, along with Details about the feature in the right panel:

Developing MobileFirst applications 8-315

5. To remove a feature, select it in the left panel and click Remove.

Application cache management in Desktop Browser and
Mobile Web apps

MobileFirst Studio provides mechanisms by which you can control the contents of
the application cache for Desktop Browser and Mobile Web environments.

The application cache

Ideally, you want mobile and desktop web applications to be able to work when
the user is offline. Older browsers had their own caching mechanisms, but they
were not always reliable. The release of HTML5 addressed this need with the
introduction of the application cache, which provides users three advantages:
v Offline browsing – users can work with the application when they are offline.
v Speed – cached resources are local, and thus load faster.
v Reduced server load – the browser only downloads resources that are updated

or changed from the server.

For more information, see HTML5 Application Cache.

The application cache manifest

The Cache Manifest is a simple text file that lists the resources that the browser is to
cache for offline access. It contains a list of resources that are explicitly cached after
the first time they are downloaded. The Cache Manifest can contain three sections:
v CACHE – Files and resources that are listed under this heading (or immediately

after the CACHE MANIFEST heading if no sections are present) will be explicitly
cached after the first time they are downloaded.

v NETWORK – Files listed under this heading are white-listed resources that require a
connection to the server. All requests to these resources bypass the cache, even if
the user is offline.

8-316 IBM MobileFirst Platform Foundation V6.3.0

http://www.w3schools.com/html/html5_app_cache.asp

v FALLBACK – An optional section that specifies fallback pages if a resource is
inaccessible. The first URI listed is the primary resource, and the second URI is
the fallback. Both URIs must be relative and from the same origin as the
manifest file.

When the browser opens a document that includes the manifest attribute, the
browser loads the document and then fetches all the entries that are listed in the
Cache Manifest file. If no application cache exists, the browser creates the first
version of the application cache.

If unnecessary or redundant files are included, they must all be fetched before the
application can start, which can create a poor user experience. The procedure that
follows documents ways in which you can edit the Cache Manifest to reduce the
start time for your Desktop Browser and Mobile Web applications.

Managing the application Cache Manifest in MobileFirst Studio
The procedures for managing and editing the contents of the application cache for
Desktop Browser and Mobile Web applications are listed in this section.

With IBM MobileFirst Platform Foundation, you can control the Cache Manifest in
web environments (Desktop Browser and Mobile Web). The name of the Cache
Manifest file is worklight.manifest. This file is located in the folder for each of
these types of environments.

You can now view (and edit) the contents of this file in MobileFirst Studio, as
shown in the following screen capture:

A new attribute now exists in the Application Descriptor (application-
descriptor.xml) for Desktop Browser and Mobile Web elements. The current
setting of this attribute, called <cacheManifest>, can be easily viewed, as shown in
the following screen capture:

Developing MobileFirst applications 8-317

For more information about Application Descriptor attributes, see “The application
descriptor” on page 8-24.

The <cacheManifest> attribute accepts three values, as shown in the following
table. No matter which value or mode is selected, if the Cache Manifest does not
exist, the MobileFirst Studio builder generates the default Cache Manifest to give
you something to start with. But after creating this file, the builder leaves the
resulting Cache Manifest file in its default no-use mode unless you explicitly
change the setting.

Table 8-31. cacheManifest properties

Property Description

generated In this mode, the MobileFirst Studio builder
generates a default Cache Manifest and
includes it in the application's HTML files.
The default Cache Manifest is generated
depending on the environment:

v For Desktop Browser environments – all
resources are under NETWORK, which
means: no cache at all.

v For Mobile Web environments – all
resources are under CACHE, which
means: cache everything.

In generated mode, in addition to creating
the Cache Manifest, the builder creates a
backup of the previous Cache Manifest,
called worklight.manifest.bak. This file is
overwritten in every build.

no-use In this mode (which is the default), the
Cache Manifest is not included in the
application's HTML files. This setting means
that there is no Cache Manifest and that
decisions about which resources are cached
are up to the browser.

user In this mode, the MobileFirst Studio builder
does not generate the Cache Manifest, but it
does include it in the application's HTML
files. This setting means that the user must
maintain the Cache Manifest manually.

8-318 IBM MobileFirst Platform Foundation V6.3.0

Editing the Cache Manifest

If you select the Application Descriptor (application-descriptor.xml file) in
Design view, you can view and set the current mode of the <cacheManifest>
attribute:

In this view, each of these attribute options is given a description:
v Not Included in the application (default) corresponds to no-use mode
v Managed by MobileFirst corresponds to generated mode
v Managed by user corresponds to user mode

The only <cacheManifest> mode that enables the user to edit the Cache Manifest is
user. If you attempt to edit the file in any other mode, MobileFirst Studio displays
the following message:

If you click Yes on this window, you can change the <cacheManifest> mode
interactively and then continue to edit the file. You can also change the
<cacheManifest> mode at any time with MobileFirst Studio DDE editor.

The default <cacheManifest> setting for new MobileFirst projects is Not Included
in the application (no-use mode).

Developing MobileFirst applications 8-319

If your testing reveals that certain resources can be removed from the generated
Cache Manifest, you can change the setting to Managed by user (user mode).
Then, you can edit the Cache Manifest and conduct more performance tests before
you deploy to the production environment.

For example, you might notice that the Cache Manifest contains large images or
other resources that are not used by the web application but need to remain in the
development environment for other platforms. If you edit the Cache Manifest, you
can remove them so that the web versions of this app load more quickly.

An example of a generated Cache Manifest file for a Desktop Browser environment
is shown in the following sample:
CACHE MANIFEST
Created: 2013-05-13 16:55:34 UTC
Modifying this file is possible only when the Cache Manifest value in
the application descriptor is set to "Managed by user"
common/js/base.js
common/js/busy.js
common/js/sjcl.min.js
common/js/wl_.min.js
common/js/wlcommon.js
common/js/wljq.js
css/tptp.css
images/icon.png
images/icon114x114.png
images/icon57x57.png
images/icon72x72.png
images/thumbnail.png
js/initOptions.js
js/messages.js
js/tptp.js
tptp.html
wlclient/css/wlclient.css
wlclient/images/empty.gif
wlclient/js/analytics/Tealeaf.min.js
wlclient/js/analytics/analytics.js
wlclient/js/challengeHandlers/antiXSRFChallengeHandler.js
wlclient/js/challengeHandlers/authenticityChallengeHandler.js
wlclient/js/challengeHandlers/deviceAuthAutoProvisioningChallengeHandler.js
wlclient/js/challengeHandlers/deviceAuthNoProvisioningChallengeHandler.js
wlclient/js/challengeHandlers/remoteDisableChallengeHandler.js
wlclient/js/deviceAuthentication.js
wlclient/js/deviceSensors/acquisition.js
wlclient/js/deviceSensors/bind.js
wlclient/js/deviceSensors/geo.js
wlclient/js/deviceSensors/geoUtilities.js
wlclient/js/deviceSensors/triggers.js
wlclient/js/deviceSensors/wifi.js
wlclient/js/diagnosticDialog.js
wlclient/js/encryptedcache/encryptedcache.js
wlclient/js/encryptedcache/externs.js
wlclient/js/events/eventTransmitter.js
wlclient/js/features_stubs/jsonstore_stub.js
wlclient/js/messages.js
wlclient/js/window.js
wlclient/js/wlclient.js
wlclient/js/wlfragments.js
wlclient/js/worklight.js

NETWORK:
*

8-320 IBM MobileFirst Platform Foundation V6.3.0

MobileFirst application build settings
You can use minification to reduce the size of JavaScript and CSS files in your
Mobile Web or Desktop Browser application. You can also use concatenation to
improve the start time of the application. To do this, you use MobileFirst build
settings.

Since IBM Worklight V6.0.0, a file named build-settings.xml is created when a
new MobileFirst application is created, on the same level as application-
descriptor.xml. The purpose of the file is to prepare minification and
concatenation configurations for each environment. These configurations are then
used by the minify and concatenation engines during the build process.

The structure of the build-settings.xml file is as shown in the following example:
<buildSettings xmlns="http://www.ibm.worklight.com/build-settings">

<common>
<minification level="simple" includes="**" excludes="**/css/**"/>
<concatenation includes="**" excludes="**/*.js"/>

</common>
<desktopBrowser>
<minification level="simple" includes="**" excludes="**/css/**"/>
<concatenation includes="**" excludes="**/*.txt"/>

</desktopBrowser>
<mobileWebApp>
<minification level="simple" includes="**" excludes="**/css/**"/>
<concatenation includes="**" excludes="**/*.js"/>

</mobileWebApp>
</buildSettings>

The names of elements are aligned with names of environments. Only Mobile Web
and Desktop Browser environments can be minified or concatenated, so only those
individual environment elements can be configured. The <common> element contains
configurations that are common to all environments.

All three elements – <common>, <desktopBrowser>, and <mobileWebApp> – are
optional.

If any of these three elements are used, the <minification> attribute is mandatory
within each one. Its level attribute specifies the compilation level of minification
process and resources that can or cannot be used. Minification level options are
listed in the following table.

Table 8-32. Options for the minification level attribute

Value Description

none No minification is done on your code by the MobileFirst Studio
builder.

whitespaces Removes comments from your code and also removes line breaks,
unnecessary spaces, and other white space. The output JavaScript
is functionally identical to the source JavaScript. (In the MobileFirst
Studio Build Settings Editor, this attribute is called Remove
whitespaces and comments.)

Developing MobileFirst applications 8-321

simple Removes the same white space and comments as whitespaces, but
also optimizes expressions and functions, including renaming local
variables and function parameters to shorter names. Renaming
variables to shorter names makes the code smaller. Because the
simple setting renames only symbols that are local to functions, it
does not interfere with the interaction between the compiled
JavaScript and other JavaScript. Compilation with this setting
always preserves the functionality of syntactically valid JavaScript,
if the code does not access local variables with string names, for
example, by using eval() statements. (In the MobileFirst Studio
Build Settings Editor, this attribute is called Google Closure
Compiler Simple Optimization.)

The includes and excludes attributes must be followed by a list of file names or
regular expressions as used by Ant, separated by semicolons. Only JavaScript (.js)
and Cascading Style Sheet (.css) files can be listed. Wildcard characters are
allowed, with the following rules:
v ** – includes or excludes all files and folders
v **/foldername/** – includes or excludes all files and folders under foldername
v **/*.css – includes or excludes all files in all folders that have an extension of

.css

The includes and excludes attributes can be used in combination, such as in the
following examples:
v includes="**" and excludes="**/*.css" contains all files except .css files
v includes="**" and excludes="**/css/**" contains all files except files under the

css folder
v includes="**/js/**" contains only files that are found under the js folder
v includes="**/*.js" contains only files that have an extension of .js
v includes="**/*.js" and excludes="**/*.css" contains no files at all

For more information about minification, see “Minification of JS and CSS files” on
page 8-324.

The <concatenation> element is optional. It contains no level attribute, and its
includes and excludes attributes use the same syntax that is listed for the
<minification> element.

For more information about concatenation, see “Concatenation of JS and CSS files”
on page 8-327.

To turn on minification or concatenation for an environment

To instruct MobileFirst Studio to use minification, concatenation, or both when it
builds the application:
1. In MobileFirst Studio, right-click the desktopbrowser or mobilewebapp

element of your application (or the main application node) and choose Run As
> Build Settings and Deploy Target from the menu.
The Build Settings and Deploy Target window is displayed:

8-322 IBM MobileFirst Platform Foundation V6.3.0

2. In the Build optimization area of the dialog, select the check box of the feature
or features you want to use when you build this environment.

3. Click OK.

Note: This action does not trigger an automatic build. To build or rebuild using
these new settings, you must use either the Run As > Run on Worklight
Development Server or the Run As > Build... menu commands.

To edit the build-settings.xml file

Similar to the application-descriptor.xml file, the build-settings.xml can be
edited with the Eclipse DDE editor:
1. In MobileFirst Studio, double-click the build-settings.xml element of your

application to display the Build Settings Editor:

2. To create a configuration for Concatenation:

Developing MobileFirst applications 8-323

a. Enter the list of files to be concatenated or not concatenated in the includes
and excludes fields. Use the Ant syntax that is described earlier.

3. To create a configuration for Minification:
a. Select the wanted minification level from the Level field:
v None (Default) specifies the none attribute in the above table.
v Remove whitespaces and comments specifies the whitespaces attribute

in the above table.
v Google Closure Compiler Simple Optimization specifies the simple

attribute in the above table.
b. Enter the list of files to be minified or not minified in the includes and

excludes fields. Use the Ant syntax that is described earlier.

The build-settings.xml can also be edited with a standard XML editor. If it is not
already present, the <common> element can be added only with an XML editor. See
“MobileFirst application build settings” on page 8-321 for examples of the XML
syntax.

Building with the build-settings.xml file

At build time, the MobileFirst Studio builder minifies or concatenates all the files
that are included and not excluded, as defined in the build-settings.xml file.

During the build process, when either minification or concatenation are specified
for an environment, the builder reads the build-settings.xml file and configures
the compilation level and included and excluded files for that environment. Each
environment is minified or concatenated according to its own configuration, and
according to the following rules:
v The compilation level value of the environment overrides the compilation level

specified in the <common> element.
v The includes attribute of each environment overrides an includes attribute of

<common>.
v The excludes attribute of each environment is concatenated to the excludes

attribute of <common>.

By editing the build-settings.xml file, you can essentially create different
configurations for minification and concatenation, depending on the stage of the
development cycle. For example, you might have one setting that is commonly
used during development, in which the minification level is set to none and the
concatenation feature is disabled. But when you move the application to
production, you can edit the build settings to use a minification level of simple
and to enable concatenation.

Minification of JS and CSS files
Settings within MobileFirst Studio enable you to minimize the size of JavaScript
and CSS files deployed with your Desktop Browser and Mobile Web applications.

Minification is the process that minifies web resources to make them smaller. The
smaller size of the resources means less traffic between the MobileFirst application
and MobileFirst Server. This is true both when the app is being initially
downloaded by users, and at application start time. The feature is a counterpart to
another build optimization, concatenation, and is almost always used in conjunction
with it. Use of these features can either improve the applications' start time
(concatenation), or reduce the size of the application (minification).

8-324 IBM MobileFirst Platform Foundation V6.3.0

Minification is done at build time by the Google Closure Compiler. There are three
levels of minification that can be used in a MobileFirst application, as listed in the
following table:

Table 8-33. Options for the minification level attribute

Value Description

none No minification is done on your code by the MobileFirst Studio
builder.

whitespaces Removes comments from your code and also removes line breaks,
unnecessary spaces, and other white space. The output JavaScript
is functionally identical to the source JavaScript. (In the MobileFirst
Studio Build Settings Editor, this attribute is called Remove
whitespaces and comments.)

simple Removes the same white space and comments as whitespaces, but
also optimizes expressions and functions, including renaming local
variables and function parameters to shorter names. Renaming
variables to shorter names makes the code smaller. Because the
simple setting renames only symbols that are local to functions, it
does not interfere with the interaction between the compiled
JavaScript and other JavaScript. Compilation with this setting
always preserves the functionality of syntactically valid JavaScript,
if the code does not access local variables with string names, for
example, by using eval() statements. (In the MobileFirst Studio
Build Settings Editor, this attribute is called Google Closure
Compiler Simple Optimization.)

To configure minification in MobileFirst Studio

You create a minification configuration for your Mobile Web or Desktop Browser
application in two steps. First, you edit the Build Settings for the application, and
then you turn on minification for the individual environments.
1. To configure minification, in MobileFirst Studio, double-click the

build-settings.xml element of your application to display the Build Settings
Editor and Add or select the environment:

Developing MobileFirst applications 8-325

2. Select the wanted minification level from the Level field:
v None (Default) specifies the none attribute in the table previously mentioned.
v Remove whitespaces and comments specifies the whitespaces attribute in

the table previously mentioned.
v Google Closure Compiler Simple Optimization specifies the simple

attribute in the table previously mentioned.
3. Enter the list of files to be minified or excluded from minification in the

includes and excludes fields. When you save, these settings become part of the
application code.
Use the Ant syntax that is described in “MobileFirst application build settings”
on page 8-321.

4. To instruct MobileFirst Studio to use concatenation during the build, in
MobileFirst Studio, right-click the desktopbrowser or mobilewebapp element
of your application (or the main application node) and choose Run As > Build
Settings and Deploy Target from the menu.
The Build Settings and Deploy Target window is displayed:

8-326 IBM MobileFirst Platform Foundation V6.3.0

5. In the Build optimization area of the dialog, select Use minification to reduce
the size of JavaScript and CSS files.

6. Click OK.
7. Rebuild your application. No changes take place after an edit of the

minification parameters until after the next build.

The build-settings.xml can also be edited with a standard XML editor, and can
be invoked using Ant scripts. See “MobileFirst application build settings” on page
8-321 for examples of the XML syntax.

Concatenation of JS and CSS files
MobileFirst Studio allows concatenation of multiple JavaScript and CSS files that
are deployed with your Desktop Browser and Mobile Web applications.

Since IBM Worklight V6.0.0, the concatenation feature allows concatenation of the
multiple web resources that are used by the application (JavaScript and CSS files)
into a smaller number of files. Reducing the total number of files that are
referenced by the application HTML results in fewer browser requests when the
application starts up, which allows the application to start more quickly.

Concatenation is available for Desktop Browser and Mobile Web environments
only. The feature is a counterpart to another build optimization, minification, and is
almost always used in conjunction with it. Use of these features can either reduce
the size of MobileFirst applications (minification) or improve their start time
(concatenation).

During concatenation, several resources (for example, JavaScript files and inline
scripts) are copied into a new file, which is then referenced by the application
HTML. References to the original resources are removed from the HTML. This
means that less communication between the device and web server is required to
retrieve the application code.

At build time, the concatenation algorithm determines which resources to
concatenate into which files. Concatenation is controlled by a number of different

Developing MobileFirst applications 8-327

parameters, such as the structure of the HTML, the type of the resources to be
concatenated, and the attributes of these resources. The order of the resources in
the HTML is preserved. As a result, the concatenation process does not have any
negative effects in terms of code dependencies or functionality.

To configure concatenation in MobileFirst Studio

You create a concatenation configuration for your Mobile Web or Desktop Browser
application in two steps. First, you edit the Build Settings for the individual
environments, and then you turn on concatenation for the application.
1. To enter the list of files to be concatenated, in MobileFirst Studio, double-click

the build-settings.xml element of your application to display the Build Settings
Editor and Add or select the environment:

2. Enter the list of files to be concatenated or not concatenated in the includes
and excludes fields. When you save, these settings become part of the
application code.
Use the Ant syntax that is described in the following “Syntax and examples” on
page 8-329 section and in “MobileFirst application build settings” on page
8-321.

3. To instruct MobileFirst Studio to use concatenation during the build, in
MobileFirst Studio, right-click the appropriate desktopbrowser or
mobilewebapp element of your application (or the main application node) and
choose Run As > Build Settings and Deploy Target from the menu.
The Build Settings and Deploy Target window is displayed:

8-328 IBM MobileFirst Platform Foundation V6.3.0

4. In the Build optimization area of the dialog, select Use concatenation to
reduce the number of JavaScript and CSS files.

5. Click OK.
6. Rebuild your application. No changes take place after an edit of the

concatenation parameters until after the next build.

The build-settings.xml can also be edited with a standard XML editor, and can
be invoked using Ant scripts.

Syntax and examples

The includes and excludes attributes must be followed by a list of file names or
regular expressions as used by Ant. Only JavaScript (.js) and Cascading Style
Sheet (.css) files can be listed. Wildcard characters are allowed, with the following
rules:
v ** – includes or excludes all files and folders
v **/foldername/** – includes or excludes all files and folders under foldername
v **/*.css – includes or excludes all files in all folders that have an extension of

.css

v Multiple file names or regular expressions are separated by semicolons.
v Included files are concatenated (all files are included by default).
v Excluded files are not concatenated (no files are excluded by default).
v Files that are excluded or not included are not part of the concatenation process.
v In most cases, setting the included list to ** (the default value – all files) and

modifying only the excluded list is sufficient to achieve the wanted results

In practice, users often create more specific excludes definitions, relying on
wildcards to include the remaining files. For example, JavaScript files with the
async attribute might be good candidates for exclusion, as it might not make sense
to concatenate their content with other files.

Developing MobileFirst applications 8-329

The following example shows a MobileFirst HTML file that contains the standard
resources that are provided by IBM MobileFirst Platform Foundation, along with
other resources defined by the user:
<html>
<head>
...

<link rel="stylesheet" href="css/main.css">
<link rel="stylesheet" href="css/myStyle.css">
<link rel="stylesheet" href="css/myStyle2.css">
<link rel="stylesheet" href="css/myStyle3.css">

<script>window.$ = window.jQuery = WLJQ;</script>
<script src="js/myJSFile.js"></script>
<script src="js/myJSFile2.js"></script>
<script src="js/myJSFile3.js" async></script>
<script src="js/myJSFile4.js"></script>
<script src="js/myJSFile5.js"></script>

</head>
<body id="content" style="display: none;">

...
<script src="js/initOptions.js"></script>
<script src="js/main.js"></script>
<script src="js/messages.js"></script>

</body>
</html>

After the concatenation process (as part of the build), the resulting HTML file has
the following structure:
<html>

<head>
...

<link href="wlclient/css/wlclient.css" rel="stylesheet">
...
<link href="css/wlconcatenated0.css" rel="stylesheet">

<script>

... WL framework initialization code ...

</script>

<script src="common/js/wljq.js"></script>
<script src="wlconcatenatedhead0.js"></script>
<script src="wlconcatenatedhead1.js"></script>
<script async="" src="js/myJSFile3.js"></script>
<script src="wlconcatenatedhead2.js"></script>

</head>

<body>
...

<script src="wlconcatenatedbody0.js"></script>
</body>

</html>

The following changes were made to the HTML in the concatenation process:
v All of the CSS files under the css folder were concatenated into a single file,

wlconcatenated0.css. Note the file wlclient.css, which is not concatenated,
because it is located under a separate folder.

v All of the MobileFirst framework files were concatenated into two files – wljq.js
and wlconcatenatedhead0.js.

8-330 IBM MobileFirst Platform Foundation V6.3.0

v The inline script and the files myJSFile.jsand myJSFile2.js were concatenated
into the file wlconcatenatedhead1.js.

v The file myJSFile3.js contains the async attribute, and so it was not
concatenated into another file.

v The files myJSFile4.js and myJSFile5.js were concatenated into the file
wlconcatenatedhead2.js.

v In the body, the files initOptions.js, main.js and messages.js were
concatenated into the file wlconcatenatedbody0.js

In this example, the number of resources that are referenced by the HTML is
greatly reduced. The number of application resources and user-defined resources is
reduced from 12 to 5, and only three files are used for all of the MobileFirst
framework resources. This reduction results in fewer requests by the browser,
leading to a faster application startup time.

Optimizing MobileFirst applications for use over slow
networks

If your MobileFirst applications are meant to run under limited network
conditions, you can follow these guidelines to build your applications and improve
performance.

The data transfer rates, in places where the Internet is accessed through GSM,
GPRS, or EDGE, might be a few hundred of kilobits per second. The networks
with such limited connectivity are considered as slow networks.

When mobile devices, running a MobileFirst application, access the server over a
slow network, it is important to reduce the amount of data transfer between the
device and the server. This reduction ensures faster interaction with the user. Even
when the amount of data transfer is minimized, it is equally important to keep the
user apprised of the estimated time to complete an operation over the network.
Use the following guidelines in MobileFirst applications development to optimize
the mobile user experience over slow networks.

Use compressed response

From IBM Worklight V6.0 on, it is possible for MobileFirst applications to request
data in a compressed format in response to the invokeProcedure calls. Because the
data is returned by the MobileFirst Server in JSON format, compressing the
adapter responses greatly reduces the amount of data that is transferred. The time
to complete a response is reduced, too.

The following code snippet demonstrates how to request a compressed response
from the server in a hybrid application.
var invocationData = {

adapter : ’adapter-name’,
procedure : ’procedure-name’,
parameters : [],
compressResponse : true

}
WL.Client.invokeProcedure(invocationData, options);

Developing MobileFirst applications 8-331

Configure adapter timeout

By default, each invokeProcedure call that is made by the device times out after 30
seconds. If your invokeProcedure call expects a large amount of data from the
adapter over a slow network, you must increase the timeout.

The following code snippet demonstrates how to set the adapter timeout to 60
seconds.
var invocationData = {

adapter : ’adapter-name’,
procedure : ’procedure-name’,
parameters : [],
compressResponse : true

}
var ONE_MINUTE = 60 * 1000;

var options = { timeout : ONE_MINUTE,
onSuccess : sucessCallback,
onFailure : failureCallback

};

WL.Client.invokeProcedure(invocationData, options);

Response time from the adapter

Another factor that influences the invokeProcedure timeout on the device is the
actual time that is taken by the adapter to respond. If your adapter takes a
significant amount of time to fetch data from the back end, consider this factor in
the timeout value that you set during the call to the procedure.

In general, make sure that the following equation applies:
(invokeProcedure timeout) >= (Adapter response time) + (Transmission time over the network)

Adapt application behavior to timeout

Slow networks are often unpredictable in terms of the speed and reliability. To take
this fact into account, build resilience to timeout within your applications. For
example, your applications can try again a timed-out operation with a larger
timeout value.

The following code snippet demonstrates a typical JSON response from the
MobileFirst Server when a timeout occurs. This response can be accessed in the
onFailure callback.
{

"invocationContext" : null,
"errorCode" : "REQUEST_TIMEOUT",
"errorMsg" : "Request timed out for <REQUEST_URL>. Make sure the host address is available to the app (especially relevant for Android and iPhone apps)."

}

Use of Application Center

The Application Center provides a mobile client that can be used to download and
update applications. Delivering application updates through the Application Center
provides the devices with capabilities such as resumable downloads and automatic
reload of broken downloads. These features are useful especially for the devices
that install and update applications over slow networks.

8-332 IBM MobileFirst Platform Foundation V6.3.0

Direct update consideration

Successful direct update of applications over slow networks depends on sustained
reliability of the mobile network over a large period while the update is being
downloaded. Frequent loss of signal, network congestion can lead to direct update
failure. You must keep the application footprint as small as possible to minimize
risks of direct update failure. IBM MobileFirst Platform Foundation sends a
compressed version of the update file to the client to minimize data charges and to
increase chances of a successful direct update over slow networks. When direct
update fails over slow networks, the user must be advised to resume the direct
update when a better network, such as WiFi, is available.

The user is prompted with an error message when the direct update fails as a
result of network troubles.

Turn on compression by default

MobileFirst Server provides the compress.response.threshold configuration
property. The responses to an invokeProcedure call from a device that are above
this threshold are automatically compressed by the server. This setting ensures that
network performance is optimal even when a client application does not request
compressed data, due either to ignorance or underestimation of the payload size.
The default value of the compress.response.threshold property is 20480 bytes. For
more information, see “Miscellaneous Settings” on page 11-51.

Developing the server side of a MobileFirst application
This collection of topics relates to various aspects of developing the server-side
components of a MobileFirst application.

Overview of MobileFirst adapters
Adapters run on the server and connect to mobile apps.

Adapters are the server-side code of applications that are deployed on and
serviced by IBM MobileFirst Platform Foundation. Adapters connect to enterprise
applications (otherwise referred to as back-end systems), deliver data to and from
mobile applications, and perform any necessary server-side logic on this data.

With IBM MobileFirst Platform Foundation, you can create and configure adapters
manually, or you can also automatically generate SAP Netweaver Gateway or
SOAP adapters with the services discovery wizard. For more information about
how to automatically generate adapters, see “Generating adapters with the services
discovery wizard” on page 8-359.

Developing MobileFirst applications 8-333

Starting with IBM MobileFirst Platform Foundation V6.3, changes were made to
the XML definition and behavior of adapter timeout and concurrency. For more
information, see “Adapter timeout and concurrency” on page 8-357.

Benefits of MobileFirst adapters

Adapters provide various benefits, as follows:
v Fast Development: Adapters are developed in JavaScript and XSL. Developers

employ flexible and powerful server-side JavaScript to produce succinct and
readable code for integrating with back-end applications and processing data.
Developers can also use XSL to transform hierarchical back-end data to JSON.

v Read-only and Transactional Capabilities: MobileFirst adapters support
read-only and transactional access modes to back-end systems.

v Security: MobileFirst adapters use flexible authentication facilities to create
connections with back-end systems. Adapters offer control over the identity of
the user with whom the connection is made. The user can be a system user, or a
user on whose behalf the transaction is made.

v Transparency: Data retrieved from back-end applications is exposed in a
uniform manner, so that application developers can access data uniformly,
regardless of its source, format, and protocol.

The adapter framework

The adapter framework mediates between the mobile apps and the back-end
services. A typical flow is depicted in the following diagram. The app, the
back-end application, and the JavaScript code and XSLT components in the
MobileFirst Server are supplied by the adapter or app developer. The procedure
and auto-conversions are part of IBM MobileFirst Platform Foundation.

1. An adapter exposes a set of services, called procedures. Mobile apps invoke
procedures by issuing Ajax requests.

2. The procedure retrieves information from the back-end application.

Figure 8-29. The adapter framework

8-334 IBM MobileFirst Platform Foundation V6.3.0

3. The back-end application then returns data in some format.
v If this format is JSON, the MobileFirst Server keeps the data intact.
v If this format is not JSON, the MobileFirst Server automatically converts it to

JSON. Alternatively, you can provide an XSL transformation to convert the
data to JSON. In this case, the returned content type from the back-end must
be XML. Then, you can use an XSLT file to filter the data.

4. The JavaScript implementation of the procedure receives the JSON data,
performs any additional processing, and returns it to the calling app.
v

Note: Writing an adapter that pulls large amounts of data and transfers it to
the client application is discouraged because the data must be processed
twice: once at the adapter and once again at the client application.

v HTTP POST requests are used for client-server communications between the
MobileFirst application and the MobileFirst Server. Parameters must be
supplied in a plain text or numeric format. To transfer images (or any other
type of file data), they must be converted to base64 first.

Anatomy of adapters

MobileFirst adapters are developed by using XML, JavaScript, and XSL. Each
adapter must have the following elements:
v Exactly one XML file, describing the connectivity to the back-end system to

which the adapter connects, and listing the procedures that are exposed by the
adapter to other adapters and to applications.

v Exactly one JavaScript file, containing the implementation of the procedures
declared in the XML file.

v Zero or more XSL files, each containing a transformation from the raw XML data
retrieved by the adapter to JSON returned by adapter procedures.

The files are packaged in a compressed file with a .adapter suffix (such as
myadapter.adapter).

The root element of the XML configuration files is <adapter>. The main
subelements of the <adapter> element are as follows:
v <connectivity>: Defines the connection properties and load constraints of the

back-end system. When the back-end requires user authentication, this element
defines how the credentials are obtained from the user.

v <procedure>: Declares a procedure that is exposed by the adapter.

The structure of the <adapter> element is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
<description>
<connectivity>
<connectionPolicy>
<loadConstraints>
</connectivity>

<procedure /> <!-- One or more such elements -->
</wl:adapter>

Developing MobileFirst applications 8-335

The HTTP adapter

The MobileFirst HTTP adapter can be used to invoke RESTful services and
SOAP-based services. It can also be used to perform HTML scraping.

You can use the HTTP adapter to send GET, POST, PUT, and DELETE HTTP requests
and retrieve data from the response body. Data in the response can arrive in XML,
HTML, or JSON formats.

You can use SSL in an HTTP adapter with simple and mutual authentication to
connect to back-end services. Configure the MobileFirst Server to use SSL in an
HTTP adapter by implementing the following steps:
v Set the URL protocol of the HTTP adapter to https.
v Store SSL certificates in a keystore that is defined by using JNDI environment

entries. The keystore setup process is described in “SSL certificate keystore
setup” on page 11-50.

v If you use SSL with mutual authentication, the following extra steps must also
be implemented:
– Generate your own private key for the HTTP adapter or use one provided by

a trusted authority.
– If you generated your own private key, export the public certificate of the

generated private key and import it into the back-end truststore.
– Save the private key of the keystore that is defined by using JNDI

environment entries.
– Define an alias and password for the private key in the <connectionPolicy>

element of the HTTP adapter XML file, adaptername.xml. The
<sslCertificateAlias> and <sslCertificatePassword> subelements are
described in “The connectionPolicy element of the HTTP adapter” on page
8-341.

v If you use WebSphere Application Server, you can take benefit of the WebSphere
SSL configuration as described in WebSphere Application Server SSL
configuration when using HTTP adapters.

Note: SSL represents transport level security, which is independent of basic
authentication. It is possible to do basic authentication either over HTTP or HTTPS.

The SQL adapter

You can use the MobileFirst SQL adapter to execute parameterized SQL queries
and stored procedures that retrieve or update data in the database.

The Cast Iron adapter

The MobileFirst Cast Iron adapter initiates orchestrations in Cast Iron to retrieve
and return data to mobile clients.

Cast Iron accesses various enterprise data sources, such as databases, web services,
and JMS, and provides validation, aggregation, and formatting capabilities.

The Cast Iron adapter supports two patterns of connectivity:

Outbound pattern.
The invocation of Cast Iron orchestrations from IBM MobileFirst Platform
Foundation.

8-336 IBM MobileFirst Platform Foundation V6.3.0

Inbound pattern.
Cast Iron sends notifications to devices through IBM MobileFirst Platform
Foundation.

The Cast Iron adapter supports the invocation of a Cast Iron orchestration over
HTTP only. Cast Iron Template Integration Projects (TIPs) are provided in Cast Iron
as examples of this technique, and for you to use as a basis for your own
orchestrations. For more information, see the Cast Iron documentation.

Cast Iron uses the standard MobileFirst notification adapter and event sources to
publish notification messages to be delivered to devices by using one of the many
notification providers.

For information about defining event sources, see the createEventSource method
in the WL.Server class.

Cast Iron Template Integration Projects (TIPs) are provided in Cast Iron as
examples of this technique, and for you to use as a basis for your own notification
scenarios. For more information, see the Cast Iron documentation.

To protect the notification adapter, use basic authentication.

The JMS adapter

The MobileFirst JMS adapter can be used to send and receive messages from a
JMS-enabled messaging provider. It can be used to send and receive the headers
and body of the messages.

Troubleshooting a Cast Iron adapter – connectivity issues

Symptom: The MobileFirst adapter cannot communicate with the Cast Iron server.

Causes:
v Cast Iron provides two network interfaces, one for administration and one for

data. Ensure that you are using the correct host name or IP address of the Cast
Iron data interface. You can find this information under the Network menu item
in the Cast Iron administrative interface. This information is stored in the
adapter-name.xml file for your adapter.

v The invocation fails with a message Failed to parse the payload from backend.
This failure is typically caused by a mismatch between the data returned by the
Cast Iron orchestration and the returnedContentType parameter in the
adapter-name.js implementation. For example, the Cast Iron orchestration
returns JSON but the adapter is configured to expect XML.

The adapter XML File
The adapter XML file is used to configure connectivity to the back-end system and
to declare the procedures exposed by the adapters to applications and to other
adapters.

The root element of the document is adapter.
v For elements whose content is the same for all types of back-end application,

this section contains complete details of the tag content.

Developing MobileFirst applications 8-337

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

v For elements whose content is different for different types of back-end
applications, this section contains a general description of the content of the
elements. Full details of the content can be found in the topic that describes the
specific adapter.

The adapter element of the adapter XML file
The adapter element is the root element and has various attributes and
subelements.

The adapter element is the root element of the adapter configuration file. It has the
following structure:
<wl:adapter

name="adapter-name"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/http"
xmlns:sql="http://www.worklight.com/integration/sql"
xsi:schemaLocation="
http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/http http.xsd
http://www.worklight.com/integration/sql sql.xsd

>

IBM MobileFirst Platform Foundation provides two schemas that are used by all
adapters, and in addition, provides a specific schema for each type of adapter.
Each schema must be associated with a different namespace. Namespaces are
declared using the xmlns attribute, and are linked to their schemas by using the
xsi:schemaLocation attribute.

The mandatory schemas are http://www.w3.org/2001/XMLSchema-instance, which
is associated with the xsi namespace, and http://www.worklight.com/integration,
which is associated with the wl namespace.

Because each adapter connects to a single back-end application and uses a single
integration technology, each adapter only requires one back-end-related namespace.
For example, for an HTTP adapter you must declare the xmlns:http namespace
and associate it with the http.xsd schema.

The adapter element has the following attributes:

Table 8-34. adapter element attributes

Attribute Description

name Mandatory. The name of the adapter. This
name must be unique within the MobileFirst
Server. It can contain alphanumeric
characters and underscores, and must start
with a letter.
Note: After an adapter has been defined
and deployed, its name cannot be modified.

8-338 IBM MobileFirst Platform Foundation V6.3.0

Table 8-34. adapter element attributes (continued)

Attribute Description

xmlns:namespace Mandatory. Defines schema namespaces.

This attribute must appear three times, as
follows:

xmlns:xsi – Defines the namespace
associated with the http://www.w3.org/
2001/XMLSchema-instance schema.

xmlns:wl – Defines the namespace
associated with the http://
www.worklight.com/integration schema.

xmlns:namespace – Defines the
namespace associated with the schema
related to the back-end application, for
example, xmlns:sap or xmlns:sql.

xsi:schemaLocation Optional. Identifies the schema locations, in
the following format:

xsi:schemaLocation="http://www.worklight.com/integration location-of-integration-schema-file URI-of-specific-adapter-schema location-of-schema"

If the attribute is missing, auto-complete for
XML elements and attributes defined in the
schema will not be available in MobileFirst
Studio.

At run time, this attribute has no effect.

The adapter element has the following subelements:

Table 8-35. adapter element subelements

Subelement Description

displayName Note: This element is deprecated.

Optional. The name of the adapter to be
displayed in the MobileFirst Operations
Console.

If the <displayName> element is not
specified, the value of the name attribute is
used instead in the MobileFirst Operations
Console.

description Optional. Additional information about the
adapter, which is displayed in the
MobileFirst Operations Console.

connectivity Mandatory. Defines the connection
properties and load constraints of the
back-end system.

For more information, see “The
connectivity element of the adapter XML
file” on page 8-340.

Developing MobileFirst applications 8-339

Table 8-35. adapter element subelements (continued)

Subelement Description

procedure Mandatory. Defines a process for accessing a
service exposed by a back-end application.
Occurs once for each procedure exposed by
the adapter.

For more information, see “The procedure
element of the adapter XML file.”

The connectivity element of the adapter XML file
The connectivity element defines the mechanism by which the adapter connects
to the back-end application.

It has the following subelement:

Table 8-36. connectivity element subelement

Subelement Description

connectionPolicy Mandatory. Defines back-end-specific
connection properties.

The connectionPolicy element of the adapter XML file
The connectionPolicy element defines connection properties.

The structure of the connectionPolicy element depends on the integration
technology of the back-end application. For more information, see the related links.
Related reference:
“The connectionPolicy element of the HTTP adapter” on page 8-341
The structure of the connectionPolicy element.
“The connectionPolicy element of the SQL adapter” on page 8-346
The connectionPolicy element of the SQL adapter configures how the adapter
connects to an SQL database.
“The connectionPolicy element of the JMS adapter” on page 8-349
The structure of the connectionPolicy element.

The procedure element of the adapter XML file
The procedure element defines a process for accessing a service exposed by a
back-end application.

The service can retrieve data from the back end or perform a transaction at the
back end.

The <procedure> element has the following structure:
<procedure
name="unique-name"
connectAs="value"
audit="value"
securityTest="value"
/>

The <procedure> element has the following attributes:

8-340 IBM MobileFirst Platform Foundation V6.3.0

Table 8-37. procedure element attributes

Attribute Description

name Mandatory. The name of the procedure. This name must be
unique within the adapter. It can contain alphanumeric
characters and underscores, and must start with a letter.

connectAs Optional. Defines how to create a connection to the back end for
invoking the retrieve procedure. Valid values are as follows:

server: Default. The connection to the back end is created
according to the connection policy defined for the adapter.

endUser: The connection to the back end is created with the
user’s identity. Only valid if a user realm has been identified
in the security tests for this procedure.

audit Optional. Defines whether calls to the procedure are logged in
the audit log. The log file is Worklight Project
Name/server/log/audit/audit.log.

Valid values are as follows:

true: Calls to the procedure are logged in the audit log.

false: Default. Calls to the procedure are not logged in the
audit log.

securityTest Optional. The name of the security test that you want to use to
protect the adapter procedure, as defined in the
authenticationConfig.xml file.

The root element of the HTTP adapter XML file
The structure of the root element.

The root element of the HTTP adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/http"
xsi:schemaLocation=
"http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/http http.xsd">
...
</wl:adapter>

The connectionPolicy element of the HTTP adapter
The structure of the connectionPolicy element.

The connectionPolicy element has the following structure:
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType"; cookiePolicy="cookie-policy" maxRedirects="int">

<protocol>protocol</protocol>
<domain>host-name</domain>
<port>host-port</port>
<connectionTimeoutInMilliseconds>connection_timeout</connectionTimeoutInMilliseconds>
<socketTimeoutInMilliseconds>socket_timeout</socketTimeoutInMilliseconds>
<authentication> ... </authentication>
<proxy> ... </proxy>
<sslCertificateAlias>ssl-certificate-alias</sslCertificateAlias>
<sslCertificatePassword>ssl-certificate-password</sslCertificatePassword>
<maxConcurrentConnectionsPerNode>max_concurrent_connections</maxConcurrentConnectionsPerNode>

</connectionPolicy>

Developing MobileFirst applications 8-341

The connectionPolicy element has the following attributes:

Table 8-38. connectionPolicy element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to http:HTTPConnectionPolicyType.

cookiePolicy Optional. This attribute sets how the HTTP
adapter handles cookies that arrive from the
back-end application. Valid values are as
follows:

v RFC_2109 (The default)

v RFC_2965

v NETSCAPE

v IGNORE_COOKIES

maxRedirects Optional. The maximum number of redirects
that the HTTP adapter can follow. This
attribute is useful when the back-end
application sends circular redirects as a
result of some error, such as authentication
failures. If the attribute is set to 0, the
adapter does not attempt to follow redirects
at all, and the HTTP 302 response is
returned to the user. The default value is 10.

The connectionPolicy element has the following subelements:

Table 8-39. connectionPolicy element subelements

Subelement Description

protocol Optional. The URL protocol to use. Possible
values are http (default) and https.

domain Mandatory. The host address.

port Optional. The port address. The default
value is 80.

sslCertificateAlias The alias of the adapter private SSL key,
which is used by the HTTP adapter key
manager to access the correct SSL certificate
in the keystore.

Optional for regular HTTP authentication
and simple SSL authentication. Mandatory
for mutual SSL authentication.

The keystore setup process is described in
“SSL certificate keystore setup” on page
11-50

8-342 IBM MobileFirst Platform Foundation V6.3.0

Table 8-39. connectionPolicy element subelements (continued)

Subelement Description

sslCertificatePassword The password of the adapter private SSL
key, which is used by the HTTP adapter key
manager to access the correct SSL certificate
in the keystore.

Optional for regular HTTP authentication
and simple SSL authentication. Mandatory
for mutual SSL authentication.

The keystore setup process is described in
“SSL certificate keystore setup” on page
11-50

authentication Optional. Authentication configuration of the
HTTP adapter. See “The authentication
element of the HTTP adapter” on page
8-344.

proxy Optional. Used when the back-end
application must be accessed through a
proxy. See “The proxy element of the HTTP
adapter” on page 8-345.

maxConcurrentConnectionsPerNode Optional. Defines the maximum number of
concurrent connections which the
MobileFirst Server can open to the back end.

The default value is 50.

See “The maxConcurrentConnectionsPerNode
element of the HTTP adapter” on page
8-344.

connectionTimeoutInMilliseconds Optional. The timeout (in milliseconds) until
a connection to the back-end can be
established.

The default value is 30000.

By passing a different value for the
connectionTimeoutInMilliseconds
parameter in the invokeHttp() JavaScript
function, you can override the value defined
here. For more information, see the
WL.Server class.

socketTimeoutInMilliseconds Optional. The timeout (in milliseconds)
between two consecutive packets, starting
from the connection packet.

The default value is 30000.

By passing a different value for the
socketTimeoutInMilliseconds parameter in
the invokeHttp() JavaScript function, you
can override the value defined here. For
more information, see the WL.Server class.

Note: Setting the socketTimeoutInMilliseconds and
connectionTimeoutInMilliseconds timeouts does not ensure a timeout exception
will occur after a specific time has elapsed since the invocation of the HTTP
request.

Developing MobileFirst applications 8-343

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

For example, assume the adapter socketTimeoutInMilliseconds has been set to 10
seconds and connectionTimeoutInMilliseconds has been set to five seconds. If the
initial connection takes eight seconds (meaning, the
connectionTimeoutInMilliseconds period has not passed) and server processing
takes an additional three seconds (meaning, the socketTimeoutInMilliseconds
period has not passed), the response will occur only after 11 seconds. If network
connectivity between the MobileFirst Server and the back end has slowed severely,
and a large amount of data is transferred, no timeout will occur; however,
assuming at least one data packet is sent no more than five seconds apart, the
result will return after a long time.

The maxConcurrentConnectionsPerNode element of the HTTP
adapter
The maxConcurrentConnectionsPerNode element defines the maximum number of
concurrent HTTP connections from IMFP server to the back-end service.

IBM MobileFirst Platform Foundation does not limit the incoming service requests
from MobileFirst applications (this can be configured at the application server
level) but only limits the number of concurrent HTTP connections to the back-end
service.

The default number of concurrent HTTP connections is 50. It is recommended to
modify this number based on the expected concurrent requests to the adapter and
the maximum requests allowed on the back-end service. It is also recommended to
configure the back-end service to limit the number of concurrent incoming
requests.

Consider a two-node system, where the expected load on the system is 100
concurrent requests and the back-end service can support up to 80 concurrent
requests. It is recommended to set maxConcurrentConnectionsPerNode to 40. This
will make sure that no more than 80 concurrent requests are made to the back-end
service.
<maxConcurrentConnectionsPerNode>40</maxConcurrentConnectionsPerNode>

Note: If you increase the value, the back-end application needs more memory. To
avoid memory issues, be careful not to set this value too high. Instead, estimate the
average and peak number of transactions per second, and evaluate their average
duration. Then, calculate the number of required concurrent connections as
indicated in this example, and add a 5-10% margin. Then, monitor your back end,
and adjust this value as required, to ensure that your back-end application can
process all incoming requests.

When deploying adapters to a cluster, set the value of this attribute to the
maximum required load divided by the number of cluster members.

For more information about how to size your back-end application, see the
Scalability and Hardware Sizing document and the hardware calculator
spreadsheet at https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-
and-hardware-sizing-6-3.

The authentication element of the HTTP adapter
The HTTP adapter can use one of four protocols, and can also contain a server
identity.

You can configure the HTTP adapter to use one of four authentication protocols by
defining the authentication element. You can define this element only within the

8-344 IBM MobileFirst Platform Foundation V6.3.0

https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-6-3

connectionPolicy element. Depending on the authentication protocol that the
HTTP adapter uses, among the following ones, define the authentication element
as follows:
v Basic Authentication

<authentication>
<basic/>

</authentication>

v Digest Authentication
<authentication>

<digest/>
</authentication>

v NTLM Authentication
<authentication>

<ntlm workstation="value"/>
</authentication>

The workstation attribute is optional, and denotes the name of the computer on
which the MobileFirst Server runs. Its default value is ${local.workstation}.

v SPNEGO/Kerberos Authentication
<authentication>

<spnego stripPortOffServiceName="true"/>
</authentication>

The attribute stripPortOffServiceName is optional, and specifies whether the
Kerberos client uses the service name without the port number. The default
value is false.
When you use this option, you must also place the krb5.conf file under
Worklight Project Name/server/conf. The file must contain Kerberos
configuration such as the location of the Kerberos server, and domain names. Its
structure is described in the Kerberos V5 System Administrator's Guide in the
mit.edu website.

Specifying the Server Identity

If the adapter exposes procedures with the attribute connectAs="server", the
connection policy can contain a serverIdentity element. This feature applies to all
authentication schemes, for example:
<authentication>

<basic/>
<serverIdentity>
<username> ${DOMAIN\user} </username>
<password> ${password} </password>

</serverIdentity>
</authentication>

The proxy element of the HTTP adapter
Use a proxy element if you access an application through a proxy.

If the back-end application must be accessed through a proxy, add a proxy element
inside the connectionPolicy element. If the proxy requires authentication, add a
nested authentication element inside proxy. This element has the same structure
as the one used to describe the authentication protocol of the adapter, described in
“The authentication element of the HTTP adapter” on page 8-344.

The following example shows a proxy that requires basic authentication and uses a
server identity:

Developing MobileFirst applications 8-345

http://mit.edu

<connectionPolicy xsi:type=http:HTTPConnectionPolicyType>
<protocol>http</protocol>
<domain>www.bbc.co.uk</domain>
<proxy>
<protocol>http</protocol>
<domain>wl-proxy</domain>
<port>8167</port>
<authentication>
<basic/>
<serverIdentity>
<username>${proxy.user}</username>
<password>${proxy.password}</password>
</serverIdentity>
</authentication>
</proxy>
</connectionPolicy>

The root element of the SQL adapter XML file
The structure of the root element.

The root element of the SQL adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/sql"
xsi:schemaLocation=
"http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/sql sql.xsd">
...
</wl:adapter>

The connectionPolicy element of the SQL adapter
The connectionPolicy element of the SQL adapter configures how the adapter
connects to an SQL database.

The connectionPolicy element has two options for connecting:
v Using the dataSourceDefinition subelement
v Using the dataSourceJNDIName subelement

Connecting by using the <dataSourceDefinition> subelement

When you use this option, you specify the URL of the data source, the user, the
password, and the driver class.

Note: This method is primarily intended for development mode. In production
mode, it is recommended to use the dataSourceJNDIName subelement.

The following example shows the structure of the connectionPolicy element with
the dataSourceDefinition subelement:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceDefinition>
<driverClass>com.mysql.jdbc.Driver</driverClass>
<url>jdbc:mysql://localhost:3306/mysqldbname</url>
<user>mysqluser</user>
<password>mysqlpassword</password>

</dataSourceDefinition>
</connectionPolicy>

8-346 IBM MobileFirst Platform Foundation V6.3.0

Table 8-40. connectionPolicy element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to sql:SQLConnectionPolicy.

The connectionPolicy element has the following subelement:

Table 8-41. connectionPolicy element subelement

Subelement Description

dataSourceDefinition Mandatory. Contains the parameters needed
to connect to a data source.

The parameters (url, user, password, and driverClass) can be externalized as
custom MobileFirst properties, and can then be overridden by environment entries.
For more information, see “Configuring a MobileFirst project in production by
using JNDI environment entries” on page 11-56.

The following example illustrates this process:
adapter.xml:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceDefinition>
<driverClass>com.mysql.jdbc.Driver</driverClass>
<url>${my-mysql-url}</url>
<user>${my-mysql-user}</user>
<password>${my-mysql-password}</password>

</dataSourceDefinition>
</connectionPolicy>

worklight.properties:
my-mysql-url=jdbc:mysql://localhost:3306/mysqldbname
my-mysql-user=worklight
my-mysql-password=worklight

Connecting by using the dataSourceJNDIName subelement

You can also connect to the data source by using the JNDI name of a data source
that is provided by the application server. Application servers provide a way to
configure data sources. For more information, see “Creating and configuring the
databases manually” on page 11-17.

When you configure a data source that is provided by the application server, the
data source must have a JNDI name. This name can be used by applications that
run inside the container, to get a reference to the data source, and to use it.

The following example shows the structure of the connectionPolicy element with
the dataSourceJNDIName subelement:
adapter.xml:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceJNDIName>jdbc/myAdapterDS</dataSourceJNDIName>
</connectionPolicy>

In this example, a resource with the JNDI name: “jdbc/myAdapterDS” must be
declared inside the container.

The connectionPolicy element has the following attribute:

Developing MobileFirst applications 8-347

Table 8-42. connectionPolicy element attribute

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to sql:SQLConnectionPolicy.

The connectionPolicy element has the following subelement:

Table 8-43. connectionPolicy element subelement

Subelement Description

dataSourceJNDIName Mandatory. The JNDI name of the data
source.

You also have the option to externalize the data source JNDI name and make it
configurable from the server configuration:
adapter.xml:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceJNDIName>${my-adapter-ds}</dataSourceJNDIName>
</connectionPolicy>

worklight.properties:
my-adapter-ds=jdbc/myAdapterDS

For more information, see “Configuring a MobileFirst project in production by
using JNDI environment entries” on page 11-56.

The root element of the Cast Iron adapter XML file
Structure of the root element

The root element of the SQL adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/http"
xmlns:http="http://www.worklight.com/integration/ci"

</wl:adapter>

The connectionPolicy element of the Cast Iron adapter
Structure of the connectionPolicy element

The connectionPolicy element has the following structure:
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType"

<protocol> protocol</protocol>
<domain> host-name</domain>
<port> host-port</port>
<tcpConnectionTimeout>connection_timeout</tcpConnectionTimeout>
<tcpSocketTimeout>socket_timeout</tcpSocketTimeout>

</connectionPolicy>

The connectionPolicy element has the following attributes:

8-348 IBM MobileFirst Platform Foundation V6.3.0

Table 8-44. connectionPolicy element attributes

Attribute
Mandatory/
Optional Description

xsi:type Mandatory Set the value of this attribute to
http:HTTPConnectionPolicyType.

The connectionPolicy element has the following subelements:

Table 8-45. connectionPolicy element subelements

Subelement
Mandatory/
Optional Description

protocol Optional The URL protocol to use. Possible
values are http (default) and https.

domain Mandatory The host address.

port Optional The port address. The default value is
80.

tcpConnectionTimeout Optional.

Possible values:

v The default is 15 seconds.

v Use -1 to specify an unlimited time.

tcpSocketTimeout Optional The maximum period of inactivity
between two consecutive TCP packets
after a connection has been made.

Possible values:

v The default is 60 seconds.

v Use -1 to specify an unlimited time.

The root element of the JMS adapter XML file
The structure of the root element of the JMS adapter.

The root element of the JMS adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:jms="http://www.worklight.com/integration/jms"
xsi:schemaLocation=
"http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/jms jms.xsd">
...
</wl:adapter>

The connectionPolicy element of the JMS adapter
The structure of the connectionPolicy element.

The connectionPolicy element has the following structure:
<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- optional jndi repository connection details –->
<namingConnection
url="jndi repository url"

Developing MobileFirst applications 8-349

initialContextFactory="JMS provider initial context factory class name"
user="optional jndi repository connection user name"
password="optional jndi repository connection password">
<!-- end of optional jndi repository connection details –->

<jmsConnection
connectionFactory="jndi connection factory name"
user="messaging service connection user name"
password="messaging service connection password">
</connectionPolicy>

The connectionPolicy element has the following attributes:

Table 8-46. connectionPolicy element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to jms:JMSConnectionPolicyType.

The connectionPolicy element has the following subelements:

Table 8-47. connectionPolicy element subelements

Subelement Description

namingConnection Optional. Describes how to connect to an
external JNDI repository. Only used if the
JNDI objects are not stored in the JEE server
that the adapter is deployed in. See “The
namingConnection element of the JMS
adapter.”

jmsConnection Mandatory. Describes the connection factory
and optional security details used to connect
to the messaging system. See “The
jmsConnection element of the JMS adapter”
on page 8-351.

The namingConnection element of the JMS adapter
Use the namingConnection element to identify how the MobileFirst Server connects
to an external repository.

The JMS Adapter uses administered objects that must be predefined in a JNDI
repository. The repository can either be defined in the JEE server context or an
external JNDI repository. If you use an external repository, specify the
namingConnection element to identify how the MobileFirst Server connects to the
repository.

The namingConnection element has the following attributes:

Attribute Description

url Mandatory. The url of the external JNDI
repository. For example: iiop://localhost. The
url syntax is dependent on the JNDI
provider.

8-350 IBM MobileFirst Platform Foundation V6.3.0

Attribute Description

initialContextFactory Mandatory. The initialContextFactory class
name of the JNDI provider. For example:
com.ibm.Websphere.naming.WsnInitialContextFactory.
The driver, and any associated files, must be
placed in the /server/lib directory. If you
develop in the Eclipse environment, the
driver and associated files must be placed in
the /lib directory.
Note: If you develop for WebSphere
Application Server with WebSphere MQ, do
not add the WebSphere MQ Java archive
(JAR) files to the /lib directory. If the
WebSphere MQ JAR files are added,
classloading problems will occur because the
files already exist in the WebSphere
Application Server environment.

user Optional. User name of a user with
authority to connect to the JNDI repository.
If user is not specified, the default user
name is guest.

password Optional. Password for the user specified in
the user attribute. If user is not specified,
the default password is guest.

The jmsConnection element of the JMS adapter
Use the jmsConnection element to identify how the MobileFirst Server connects to
a messaging system.

The jmsConnection element has the following attributes:

Attribute Description

connectionFactory Mandatory. The name of the connection
factory used when connecting to the
messaging system. This is the name of the
administered object in the JNDI repository.
Note: If you are deploying in WebSphere
Application Server, the connection factory
must be a global JNDI object. The object
must be addressed without the
java:comp/env context. For example:
jms/MyConnFactory and not
java:comp/env/jms/MyConnFactory. However,
if you are deploying in Tomcat, the
connection factory must be addressed
including the java:/comp/env context. For
example: java:comp/env/jms/MyConnFactory.

user Optional. User name of a user with
authority to connect to the messaging
system.

password Optional. Password for the user specified in
the user attribute.

Developing MobileFirst applications 8-351

The root element of the SAP Netweaver Gateway adapter XML
file
The structure of the root element of the SAP Netweaver Gateway adapter.

The root element of the SAP Netweaver Gateway adapter has the following
structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>

name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:jms="http://www.worklight.com/integration/nwgateway">
...

</wl:adapter>

The connectionPolicy element of the SAP Netweaver Gateway
adapter
The structure of the connectionPolicy element.

The connectionPolicy element has the following structure:
<connectionPolicy xsi:type="nwgateway:NWGatewayHTTPConnectionPolicyType">

<protocol>protocol</protocol>
<domain>host-name</domain>
<port>host-port</port>
<client>sap-client</client>
<username>sap-username</username>
<password>sap-password</password>
<serviceRootUrl>service-root-url</serviceRootUrl>
<authentication>...</authentication>
<sslCertificateAlias>ssl-certificate-alias</sslCertificateAlias>
<sslCertificatePassword>ssl-certificate-password</sslCertificatePassword>
<proxy>...</proxy>
<tcpConnectionTimeout>connection_timeout</tcpConnectionTimeout>
<tcpSocketTimeout>socket_timeout</tcpSocketTimeout>

</connectionPolicy>

The connectionPolicy element has the following attributes:

Table 8-48. connectionPolicy element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to
nwgateway:NWGatewayHTTPConnectionPolicyType.

The connectionPolicy element has the following subelements:

Table 8-49. connectionPolicy element subelements

Subelement Description

protocol Mandatory. The URL protocol to use.
Possible values are http (default) and https.

domain Mandatory. The SAP Netweaver Gateway
server address.

port Mandatory. The SAP Netweaver Gateway
server port address. The default value is 80.

8-352 IBM MobileFirst Platform Foundation V6.3.0

Table 8-49. connectionPolicy element subelements (continued)

Subelement Description

client Mandatory. The SAP-Client to be used to
contact the Netweaver Gateway. The default
value is 1.

username Mandatory. The user name for contacting the
Netweaver Gateway. The default value is
sap-username.

password Mandatory. The password for contacting the
Netweaver Gateway. The default value is
sap-password.

serviceRootUrl Mandatory. The root URL for the SAP
Netweaver gateway service that you are
trying to access.

authentication Mandatory. Authentication configuration for
the SAP Netweaver gateway adapter. A
sample authentication follows:

<authentication>
<basic />
<serverIdentity>

<client>001</client>
<username>mygatewayuser</username>
<password>mygatewaypassword</password>

</serverIdentity>
</authentication>

For more information, see “The
authentication element of the HTTP
adapter” on page 8-344. The SAP Netweaver
Gateway adapter shares the same
authentication configuration stanza with the
HTTP adapter except that <serverIdentity>
requires one additional <client> tag.

sslCertificateAlias The alias of the adapter private SSL key.
Used by the SAP Netweaver gateway
adapter key manager to access the correct
SSL certificate in the keystore.

Optional for regular HTTP authentication
and simple SSL authentication. Mandatory
for mutual SSL authentication.

The keystore setup process is described in
“SSL certificate keystore setup” on page
11-50.

sslCertificatePassword The password of the adapter private SSL
key. Used by the SAP Netweaver gateway
adapter key manager to access the correct
SSL certificate in the keystore.

Optional for regular HTTP authentication
and simple SSL authentication. Mandatory
for mutual SSL authentication.

The keystore setup process is described in
“SSL certificate keystore setup” on page
11-50.

Developing MobileFirst applications 8-353

Table 8-49. connectionPolicy element subelements (continued)

Subelement Description

proxy Optional. Used when the backend
application must be accessed through a
proxy.

For more information, see “The proxy
element of the HTTP adapter” on page
8-345. The SAP Netweaver Gateway adapter
shares the same proxy configuration stanza
with the HTTP adapter.

tcpConnectionTimeout Optional.

Possible values:

v The default is 15 seconds.

v Use -1 to specify an unlimited time.

tcpSocketTimeout Optional. The maximum period of inactivity
between two consecutive TCP packets after a
connection has been made.

Possible values:

v The default is 60 seconds.

v Use -1 to specify an unlimited time.

Creating a MobileFirst adapter
Follow these instructions to create a MobileFirst project and configure a new
MobileFirst adapter.

About this task

On initial creation of a new adapter, MobileFirst automatically generates the
default skeleton for the adapter with all the required properties, based on the type
(HTTP, SQL, or JMS). You need only to modify the default skeleton to configure an
adapter.

Procedure
1. Optional: Perform this step only if you do not already have an existing

MobileFirst project. If you set up MobileFirst shortcuts, right-click anywhere
within the Eclipse Project Explorer view and click New > MobileFirst Project.
Otherwise, click New > Other, then select MobileFirst > MobileFirst Project
from the list of wizards and click Next.

8-354 IBM MobileFirst Platform Foundation V6.3.0

2. In the New MobileFirst Project wizard, specify a name for the project and
click Finish.

3. If you set up MobileFirst shortcuts, right-click the MobileFirst Project to which
you want to add the adapter, and select New > Adapter. Otherwise, select New
> Other, then select MobileFirst > MobileFirst Adapter from the list of
wizards and click Next.

Figure 8-30. Creating a MobileFirst project from the wizard.

Developing MobileFirst applications 8-355

The New Adapter wizard opens.
4. Select the required adapter type from the Adapter type list and enter a name

for the adapter in the Adapter name field.

Figure 8-31. Configuring a new MobileFirst adapter.

8-356 IBM MobileFirst Platform Foundation V6.3.0

5. Optional:
v Select Create procedures for offline JSONStore to include four place holder

procedures in the adapter template: a procedure that gets data, a procedure
that adds data, a procedure that replaces data, and a procedure that removes
data. These procedures are designed to help you develop a
JSONStore-enabled application that communicates with a back end.

v Select Create procedures for USSD enablement to generate sample
procedures for USSD in the adapter js file.

6. Click Finish.

Adapter timeout and concurrency
Changes in the behavior of adapter timeout and concurrency starting in IBM
MobileFirst Platform Foundation V6.3 have impact on the adapter XML schema.

Timeout and concurrency in IBM MobileFirst Platform
Foundation V6.3

Starting in IBM MobileFirst Platform Foundation V6.3, the behavior of timeout and
concurrency was modified for HTTP-based, JMS, and SQL adapters.

HTTP-based adapters
In earlier versions of IBM MobileFirst Platform Foundation, timeout and
concurrency were handled by thread pools. They are now enforced by the
underlying HTTP framework.

Figure 8-32. Selecting an adapter type.

Developing MobileFirst applications 8-357

v Timeout:
Previously, you were able to define a timeout for a single procedure.
Starting from V6.3, you can use the standard socket timeout and
connection timeout that are provided by HTTP frameworks. A socket
timeout defines the time between two consecutive packets, starting from
the connection packet. A connection timeout defines the time within
which a connection to the back-end must be established.
You can set the socket and connection timeouts in two places:
– To set the default value for an adapter, set it in the adapter XML file.

For more details on timeout in the XML file, see “The
connectionPolicy element of the HTTP adapter” on page 8-341.

– To set the timeouts for a specific back-end invocation, use the options
struct in the invokeHttp() JavaScript function. For more information,
see the WL.Server class.

v Concurrency:
You use the <maxConcurrentConnectionsPerNode> subelement of the
<connectionPolicy> element in the adapter XML file to set concurrency
limits. For more information, see “The connectionPolicy element of the
HTTP adapter” on page 8-341.

JMS adapters

v Timeout: JMS adapter provides several timeout specifications based on
the action that is attempted. There has been no change in functionality in
that sense but the per-procedure timeout has been removed.

v Concurrency: Starting from IBM MobileFirst Platform Foundation V6.3,
concurrency is no longer supported for JMS adapters.

SQL adapters
Previously, concurrency and timeout were handled by thread pools.
Starting from V6.3, the only method to define concurrency and timeout, is
to use the SQL Connection Pool obtained using a JNDI reference.

XML schema changes in IBM MobileFirst Platform Foundation
V6.3

IBM MobileFirst Platform Foundation V6.3 uses a new adapter XML schema.
Adapters using earlier schemas cannot be used in Studio V6.3 and CLI V6.3. The
following are the changes that are made to the adapter schema during upgrade:
v The requestTimeoutInSeconds attribute of the <procedure> element is no longer

supported. During project upgrades to IBM MobileFirst Platform Foundation
V6.3, the attribute is commented out in all <procedure> elements.

v The <loadConstraints> element and its attributes are no longer supported.
During project upgrades to IBM MobileFirst Platform Foundation V6.3, this
element is removed.

v In HTTP-based adapters, there are three new elements:
<connectionTimeoutInMilliseconds>, <socketTimeoutInMilliseconds>, and
<maxConcurrentConnectionsPerNode> under <connectionPolicy>. During project
upgrades to IBM MobileFirst Platform Foundation V6.3, these new elements are
added. For more information, see “The connectionPolicy element of the HTTP
adapter” on page 8-341.

8-358 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

Compatibility with earlier versions

Adapters from previous version work and can be deployed on the MobileFirst
Server V6.3. However, they behave differently, as described below.

HTTP-based adapters

v Timeout:
The value of the requestTimeoutInSeconds attribute of <procedure>
elements is now used to set the value of the HTTP socket timeout and
connection timeout per procedure. For more information about socket
and connection timeout see "HTTP-based adapters" in Adapter timeout
and concurrency changes.

v Concurrency:
The concurrency limits are enforced by the underlying HTTP framework,
instead of by a thread pool.

JMS adapters
The requestTimeoutInSeconds attribute of <procedure> and
<loadConstraints> elements is ignored.

SQL adapters
The requestTimeoutInSeconds attribute of <procedure> and
<loadConstraints> elements is ignored. Use JNDI configuration instead.

Adapter invocation failures due to large data

Adapter calls are not intended for returning very large JSON data. The adapter
response is stored in memory and string parsed. Data that exceeds the amount of
available memory might cause adapter invocation to fail. To reduce the possibility
that such a failure occurs, limit the amount of data to less than 10 MB.

Generating adapters with the services discovery wizard
With the services discovery wizard, you specify the back-end services that you
want to invoke from your MobileFirst project, and generate the adapters that
connect to those services.

About this task

The services discovery wizard supports the following types of back-end services:
v Web Services, as described by Web Services Description Language (WSDL) files.

These services are procedural in nature, with inputs and outputs that are
explicit. For example, when a web service calls a remote procedure, it gets a
result.

v Services that are exposed by an SAP Netweaver Gateway. These services are
resource-based, which means that they expose a collection of resources that you
can manipulate. Like web services, they can also have custom procedural
operations, and generate inputs and outputs.

The adapters that communicate with the chosen back-end service are automatically
generated, and placed in the adapters folder of your project.

Note: If you manually modify an adapter file, first create a copy of this file, and
make sure to modify only the copied file. The services discovery wizard might
regenerate the original file each time you add a service. The exact adapter that is
regenerated depends on the type of service that is involved.

Developing MobileFirst applications 8-359

Procedure
1. Right-click the services folder of your project in the Project Explorer tab, and

click Discover Back-end Services to start the services discovery wizard. The
Add Service Wizard window opens.

2. Select the type of service that you want to invoke from your application.
3. Depending on the selected type, define one service, or more for WSDL, that

you want to use, as described in the following sections:
v WSDL service type:

Figure 8-33. The Add Service Wizard

8-360 IBM MobileFirst Platform Foundation V6.3.0

a.

Enter a URL or select one from the URL drop-down list, and click Go; or
browse to a file in your workspace or in your system.

Note: If you enter a secure URL (https), the system fetches the certificate
from the specified server, and stores it into a private key storage area that
is created in your workspace.

b. Optional. If you are prompted to, enter your credentials.
You can now see the list of available services. Different types of
information are displayed in the Details pane, depending on the level
you select:
– The first level corresponds to the binding configuration details. When

this level is selected, the Details pane shows the SOAP version.
– The second level corresponds to the data operation details. When this

level is selected, the Details pane shows the input and the output of
the remote invoked procedure.

c.

Select one or more services that you want to invoke from your
application.

v
SAP Netweaver Gateway Services service type:

Figure 8-34. Adding a web service

Developing MobileFirst applications 8-361

a.

Set up a connection to an SAP Netweaver Gateway server by either:
– Clicking Add to create an SAP connection.
– Clicking the Manage SAP Connections link to edit existing

connections.
– Selecting an existing SAP connection from the Connection drop-down

list.
b.

Proceed with the connection configuration by entering your server URL,
client ID, user name, and password.
In the Select Service pane, you can now see the list of SAP services that
are available on the server you specified.

4. Click Finish.

Results
v

An adapter is generated under the adapters folder of your project. You can use
this adapter to invoke services with JavaScript calls.

v
An .xml service description file is also generated under the services folder of
your project. You can refer to the .xml files under the services folder of your
project to have a summary view of the target adapters.

Figure 8-35. Adding a service exposed by SAP

8-362 IBM MobileFirst Platform Foundation V6.3.0

For WSDL-based services, a sample payload of each service is available from the
Properties dialog box of the service. You can reuse this sample payload in other
adapters. To use the sample payload of a service:
1. Right-click the service name in the services folder of your project in the

Eclipse Project Explorer view, and click Properties.
2. Copy the text from the Sample Procedure Parameter field.

For more information about:
v invoking the generated SOAP adapters procedure, see “Invocation of generated

SOAP adapters.”
v the content of generated SAP adapters, see “The root element of the SAP

Netweaver Gateway adapter XML file” on page 8-352 and “The
connectionPolicy element of the SAP Netweaver Gateway adapter” on page
8-352.

Invocation of generated SOAP adapters
The generated SOAP adapters have a procedure that calls the back-end service
operation. You can invoke this procedure from your MobileFirst application in the
same way as you invoke other MobileFirst adapter procedures, by providing the
necessary parameters for the invocation.

The generated procedure accepts two parameters: the message to the service, and
custom HTTP headers.

The message to send to the service (required)

This mandatory parameter is the message to send to the service in JSON format.

Figure 8-36. Files generated from the services discovery

Developing MobileFirst applications 8-363

The message parameter is a JSON representation of the XML message to include in
the SOAP body that is sent to the service.

The following examples show JSON representations for sample XML messages.
1. Simple XML message: the adapter converts the provided JSON parameter into

XML body by creating a matching element for each JSON attribute.
The following JSON parameter in the procedure:
{"GetTechnicianVisits": {"TechnicianId": "1"}}

is transformed by the adapter into the following XML fragment in the SOAP
body:
<GetTechnicianVisits>

<TechnicianId>1</TechnicianId>
<GetTechnicianVisits>

2. XML messages with namespaces
The generated adapter implementation (SoapAdapterX-impl.js) has a set of
namespace prefixes imported from the provided WSDL service. To specify
elements with specific namespaces, those prefixes must be used to name the
relevant JSON attributes.
The following JSON parameter in the procedure:
{"tns1:GetTechnicianVisits": {"tns1:TechnicianId": "1"}}

is transformed by the adapter into the following XML fragment in the SOAP
body:
<GetTechnicianVisits xmlns:tns1="http://namespace/sample">

<TechnicianId>1</TechnicianId>
</GetTechnicianVisits>

Note: Since IBM MobileFirst Platform Foundation V6.2.0, if the names of the
elements are unique, the generated SOAP adapters no longer require the use of
namespace prefixes on all the fields in the payload.

3. XML messages with attributes
Adding the @ prefix to a JSON attribute name instructs the adapter to create an
attribute instead of creating an element.
The following JSON parameter in the procedure:
{"GetTechnicianVisits": {"@technicianId": "1"}}

is transformed by the adapter into the following XML fragment in the SOAP
body:
<GetTechnicianVisits technicianId="1"/>

A JSON object that holds custom HTTP headers for the invocation
(optional)

This optional parameter is a JSON object that lists custom HTTP headers (key
values). These custom HTTP headers are added to the service call when the POST
request is invoked with the generated SOAP message.
{ ’custom-header-1’: ’value1’, ’custom-header-2’: ’value2’ }

Adapter invocation service
Adapter procedures can be invoked by issuing an HTTP request to the MobileFirst
invocation service: http(s)://<server>:<port>/<Context>/invoke.

8-364 IBM MobileFirst Platform Foundation V6.3.0

The following parameters are required:

Table 8-50. Parameters for adapter invocation

Property Description

adapter The name of the adapter

procedure The name of the procedure

parameters An array of parameter values

The request can be either GET or POST.

Note: The invocation service uses the same authentication framework as
described in the “MobileFirst security framework” on page 8-480 section.

The default security test for adapter procedures contains Anti-XSRF protection, but
this configuration can be overridden by either:
v Implementing your own authentication realm (see “Authenticators and login

modules” on page 8-494 for more details).
v Disabling the authentication requirement for a specific procedure. You can do so

by adding the securityTest="wl_unprotected" property to the <procedure>
element in the adapter XML file.

Note: Disabling authentication requirement on a procedure means that this
procedure becomes completely unprotected and anyone who knows the adapter
and the procedure name can access it. Therefore, consider protecting sensitive
adapter procedures.

Implementing adapter procedures
Implement a procedure in the adapter XML file, using an appropriate signature
and any return value.

Before you begin

You have declared a procedure in the adapter XML file, using a <procedure> tag.

Procedure

Implement the procedure in the adapter JavaScript file. The signature of the
JavaScript function that implements the procedure has the following format:
function funcName (param1, param2, ...),

Where:
v funcName is the name of function which the procedure implements. This name

must be the same as the value specified in the name attribute of the <procedure>
element in the adapter XML file.

v param1 and param2 are the function parameters. The parameters can be scalars
(strings, integers, and so on) or objects.

In your JavaScript code, you can use the MobileFirst server-side JavaScript API to
access back-end applications, invoke other procedures, access user properties, and
write log and debug lines.
See the next section for an example.
You can return any value from your function, scalar or object.

Developing MobileFirst applications 8-365

Example

This example demonstrates how to use JavaScript on the server side. Note the
following when performing procedures on the server side:
v Procedures are implemented in the adapter JavaScript file.
v The service URL is used for procedure invocations.
v Some parts of the URL are constant; for example, http://example.com/. They are

declared in the XML file. Other parts of the URL can be parameterized; that is,
substituted at run time by parameter values that are provided to the MobileFirst
procedure. The following URL parts can be parameterized:
– Path elements
– Query string parameters
– Fragments

For advanced options for adapters, such as cookies, headers, and encoding, see
“The connectionPolicy element of the HTTP adapter” on page 8-341.

In the JavaScript file, use the same procedure name as in the XML file. The
mandatory parameters to call the procedure are method, path, and
returnedContentType. The procedure can be parameterized at run time, for
example:
function getFeeds() {

var input = {
method : ’get’,
returnedContentType : ’xml’,
path : "rss.xml"

};

return WL.Server.invokeHttp(input);
}

To call an HTTP request, use the WL.Server.invokeHttp method. Provide an input
parameter object, which must specify the following options:
v The HTTP method: GET, POST, PUT, or DELETE
v The returned content type: XML, JSON, HTML, or plain
v The service path
v The query parameters (optional)
v The request body (optional)
v The transformation type (optional)

For a complete list of options, see WL.Server class.

The Rhino container
IBM MobileFirst Platform Foundation uses Rhino as the engine for running the
JavaScript script used to implement adapter procedures.

Rhino is an open source JavaScript container developed by Mozilla. In addition to
being part of Java 6, Rhino has two other advantages:
v It compiles the JavaScript code into byte code, which runs faster than interpreted

code.
v It provides access to Java code directly from JavaScript. For example:
var date = new java.util.Date();
var millisec = date.getTime()

8-366 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

Note: Global variables are handled according to the following rules:
v In the same user session (for example, an application loaded in a browser), the

values of global variables persist from one method call of an adapter to another
method call of the same adapter (that is, they are not reset).

v If you create two different user sessions that connect to the same adapter (for
example, by opening the same app in different browsers or devices), every user
session holds its own global variable state.

v If a user session expires, the Rhino session expires, and variables are no longer
defined.

Encoding a SOAP XML envelope
Encode a SOAP XML envelope within a request body when you need to invoke a
SOAP-based service in an HTTP adapter.

About this task

Important: This workaround is only for WebSphere Application Server.

Procedure
1. Encode XML within JavaScript by using E4X.

E4X is officially part of JavaScript 1.6. This technology can be used to encode
any XML document, not necessarily SOAP envelopes. You can use the
WL.Server.signSoapMessage() method only inside a procedure declared within
an HTTP adapter. It signs a fragment of the specified envelope with ID wsId by
using the key in the specified keystoreAlias, and inserting the digital signature
into the input document.
To use WL.Server.signSoapMessage() API when running IBM MobileFirst
Platform Foundation on IBM WebSphere Application Server, you might need to
add a JVM argument that instructs the application server to use a specific
SOAPMessageFactory implementation instead of a default one.

2. To do this, go to Application servers > {server_name} > Process definition >
Java Virtual Machine and provide the following argument under Generic JVM
arguments.
Type in the code phrase exactly as it is presented here:
-Djavax.xml.soap.MessageFactory=com.sun.xml.internal.messaging
.saaj.soap.ver1_1.SOAPMessageFactory1_1Impl

3. Restart the JVM.

Example
var request =
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<requestMessageObject xmlns="http://acme.com/ws/">
<messageHeader>
<version>1.0</version>
<originatingDevice>{originatingDevice}</originatingDevice>
<originatingIP>
{WL.Server.configuration["local.IPAddress"]}
</originatingIP>
<requestTimestamp>
{new Date().toLocaleString()}
</requestTimestamp>
</messageHeader>
<messageData>
<context>
<userkey>{userKey}</userkey>

Developing MobileFirst applications 8-367

<sessionid>{sessionid}</sessionid>
</context>
</messageData>
</requestMessageObject>
</S:Body>
</S:Envelope>;

Backend responses in adapters
Understanding the logic of invocation results both on the client side and inside
adapters helps you handle different failure scenarios.

HTTP adapter flow

For a general description of an adapter flow, see “Overview of MobileFirst
adapters” on page 8-333. The following sections explain how to handle backend
responses in the case of an HTTP adapter. A typical HTTP adapter flow might
involve the following sequence of events:
1. The client (that is, the mobile app) uses the invokeProcedure method of the

WL.Client class to invoke one of the adapter's procedures from the MobileFirst
Server.

2. The adapter then uses the invokeHttp method of the WL.Server class to call the
backend service.

3. The adapter procedure processes the data from the backend and returns a
JSON object to the client.

4. The client calls its onSuccess handler to process the data received by the
adapter.

Responses from the invoke procedure

The adapter flow starts with a WL.Client class invokeProcedure call, which
supports onSuccess and onFailure handlers. Both handlers receive an object, which
is a standard JSON object. The following table describes some of its properties:

Table 8-51. Properties of the object received following the invoke procedure

Property Description

isSuccessful Whether the procedure call is successful.
Note: The text following the table explains
the circumstances when a request is
considered to be successful.

status HTTP status code from the procedure call.
This is not the HTTP code from the backend
service, only from the connection with the
MobileFirst Server.

errorCode A possible error code if the call is not
successful.

errorMsg A possible error message if the call is not
successful.

invocationContext An optional object that is sent in the
procedure call and is returned as-is.

invocationResult JSON object that is returned by your
procedure call. This object may be
augmented with additional data such as
session information.

8-368 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

Which handler is called depends on the value of the isSuccessful property in the
invocation result:
v If isSuccessful is set to true, onSuccess is called.
v If isSuccessful is set to false, onFailure is called.

As long as your adapter returns something, the procedure invocation is considered
successful and so the isSuccessful property is set to true. The isSuccessful
property is set to false under the following circumstances:
v When calling a procedure that does not exist.
v When calling an adapter that does not exist.
v When the MobileFirst Server is unresponsive (for example, due to a bad

hostname or because the MobileFirst Server is currently unavailable).
v When the invocation times out (you can set a timeout value as one of the

invokeProcedure options).
v When the adapter throws an exception.
v When the code in the procedure specifically overwrites the onSuccess property.

The isSuccessful property is set to false if there is a connection issue between the
client and the adapter; not if there is an error in the backend service. This means,
for example, that if your procedure calls a backend service which returns an error
(such as a "404" error) but your procedure still returns a valid JSON object, your
procedure invocation is still considered to be successful from the perspective of the
client. If you simply return the result of invokeHttp straight to the client, since you
are returning something, isSuccessful is true by default and onSuccess is called.
This may or may not be what you want to happen. You need to make sure that
your procedure code is capable of handling cases when a backend service returns
an error.

Invocations from the adapter to the backend

From your procedure, you call a remote backend service by using the invokeHttp
method of the WL.Server class. The returned object from this call is a JSON object
that represents the result of the HTTP request. If the response is an XHTML or
XML tree, it is converted to JSON. For example, if the response is an HTML page,
you see a property called “html” (the root HTML tag) with the content tree inside.

The following table describes some of the other properties. Additional arbitrary
properties might also be returned by the backend service.

Table 8-52. Properties of the object received following the invocation from the adapter to the
backend

Property Description

errors Array of errors during the request.

isSuccessful Boolean value summarizing whether the
request is successful.
Note: The text following the table explains
the circumstances when a request is
considered to be successful.

responseHeaders JSON object representing the different HTTP
headers of the response.

responseTime HTTP response time.

statusCode HTTP status code of the remote invocation.

Developing MobileFirst applications 8-369

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

Table 8-52. Properties of the object received following the invocation from the adapter to the
backend (continued)

Property Description

statusReason Short text description that explains the
status code.

totalTime Response time plus any additional time for
IBM MobileFirst Platform Foundation to
complete processing or convert formats.

Similar to the client side, if isSuccessful is set to true, the data that you receive is
not necessarily exactly what you expect. It merely indicates that something was
returned. You can therefore assume that isSuccessful is true by default. This
includes the following cases:
v The remote HTTP server returns an OK status code such as 200.
v The remote HTTP server returns any valid status code such as 2XX, 3XX, 4XX.

5XX, and other codes.

The isSuccessful property is set to false under the following circumstances:
v The HTTP host cannot be reached or is invalid.
v The HTTP request has timed out.

Because isSuccessful is set to true by default, you might not receive the data that
you want or expect. For example, you might want a “404” error to be treated as a
failure whereasIBM MobileFirst Platform Foundation considers it a success. You
can use properties such as the statusCode property that is returned in the result of
a WL.Server.invokeHttp call (or any other interesting data from the response) to
decide if the procedure should be considered successful or not. You can then
handle situations that should be considered unsuccessful in one of the following
ways:
v Overwrite the isSuccessful property by setting its value to false in your JSON

response.
v Consider the request as successful, set some custom flags in your JSON

response, and handle the situation in your client's onSuccess handler. You might
also want to place a try/catch block around your procedure code and handle
any exceptions accordingly. If an exception is thrown, the client will receive an
isSuccessful response that is set to false.

In a production environment, returning the result of the invokeHttp call back to the
client might not be the ideal value to return at the end of the procedure for the
following reasons:
v The meaning of a "successful" request might vary in different cases.
v The backend response might include additional data that should not be

forwarded to the client; such as certain response headers, architecture of the
backend, or any data that is not relevant to the logic of the app. Instead,
consider building a new JSON object with your own data, which might possibly
include parts of the original response.

Example

Here is an example of an adapter that receives a “404” error as a result of trying to
get data from an invalid URL: www.ibm.com/no-such-place.

adapt.xml

8-370 IBM MobileFirst Platform Foundation V6.3.0

This file can be generated from the Design view in MobileFirst Studio. The
backend hostname is set to www.ibm.com.
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter name="adapt"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.ibm.com/mfp/integration"
xmlns:http="http://www.ibm.com/mfp/integration/http"

<displayName>adapt</displayName>
<description>adapt</description>
<connectivity>

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>http</protocol>
<domain>www.ibm.com</domain>
<port>80</port>

</connectionPolicy>
</connectivity>
<procedure name="test"/>

</wl:adapter>

adapt-impl.js

This is the implementation of the procedure. It calls a remote URL and
generates a response. If the HTTP status code is anything other than 200,
the isSuccessful property is set to false.
function test(){

var input = {
method : ’get’,
path : ’no-such-place’ //Replace this with a valid path to see success

};
var backendResponse = WL.Server.invokeHttp(input);
var procedureResponse = {};

if(backendResponse.isSuccessful && backendResponse.statusCode == 200){
//For simplicity, considering only 200 as valid
//Do something interesting with the data
procedureResponse.interestingData = backendResponse.html.head.title;

}
else{

procedureResponse.isSuccessful = false; //Overwrite to failure
}

return procedureResponse;
}

main.js

The client app invokes the procedure. If the request is successful, the app
logic continues. If the request is not successful, an error message is
displayed.
WL.Client.invokeProcedure({

adapter : ’adapt’,
procedure : ’test’

}, {
onSuccess : function(result) {

//Do something interesting with resulting JSON
$(’#someDiv’).html(result.invocationResult.interestingData);

},
onFailure: function(result){

WL.SimpleDialog.show("Error","The service is temporarily not available. Please try again later.",[{text: "OK"}]);
}

});

Developing MobileFirst applications 8-371

Calling Java code from a JavaScript adapter
Follow these instructions to instantiate Java objects and call their methods from
JavaScript code in your adapter.

Before you begin

Attention: The name of any Java package to which you refer from within an
adapter must start with the domains com, org, or net.

Procedure
1. Instantiate a Java object by using the new keyword and apply the method on

the newly instantiated object.
2. Optional: Assign a JavaScript variable to be used as a reference to the newly

instantiated object.
3. Include the Java classes that are called from the JavaScript adapter in your

MobileFirst project under Worklight Project Folder/server/java. They are
automatically built and deployed to the MobileFirst Server, and the result of the
build is placed under Worklight Project Folder/bin

Example
var x = new MyJavaClass();
var y = x.myMethod(1, "a");

Features of MobileFirst Studio
MobileFirst Studio provides the facilities to automatically complete attribute
values, validate adapters on three levels, and to fix errors in adapter configuration.

Auto-complete

The auto-complete feature offers a list of possible values for attribute values. In the
following example, the JavaScript Editor displays a list of values for the possible
field types of a record field. In this way, the auto-complete feature helps correct
configuration of an adapter.

8-372 IBM MobileFirst Platform Foundation V6.3.0

Adapter validation

MobileFirst Studio provides adapter validation on three levels:

Schema validation
The XML Editor validates the XML file as well-formed and conforming to
the rules defined in the validating schema.

Logical validation of the XML
MobileFirst Studio provides logical validation of the XML, based on
MobileFirst adapter constraints. For example, if a procedure is a JavaScript
procedure, then field mapping is not permitted.

XML/JavaScript validation
MobileFirst Studio provides validation between XML and JavaScript. It
verifies that each declared JavaScript procedure has a corresponding
procedure in the adapter JavaScript file with the appropriate signature
(that is, input parameters and return values).

Quick fix

The MobileFirst Studio provides Quick Fix options for adapter configuration errors.

Whenever an error is detected, the error console displays the offending code. To
activate the Quick Fix window, right-click the error in the console and select Quick

Figure 8-37. Adapter configuration through the auto-complete feature.

Developing MobileFirst applications 8-373

Fix. Alternatively, press Ctrl+1.

Figure 8-38. Quick Fix options for adapter configuration problems.

8-374 IBM MobileFirst Platform Foundation V6.3.0

Specifically, MobileFirst Studio provides a Quick Fix option for missing JavaScript
functions. The Quick Fix creates the missing function in the corresponding
JavaScript file (also creating the file if one does not exist).

Figure 8-39. Quick Fix option for missing JavaScript functions.

Developing MobileFirst applications 8-375

Procedure invocation
You can test a procedure by running it within the MobileFirst Studio.

Note: This feature is available only when you are running MobileFirst Studio. It is
not available when you run an adapter on a stand-alone server based on
WebSphere Application Server or Tomcat.

In MobileFirst Studio, you can select a procedure, enter a set of parameters, and
invoke the procedure on the MobileFirst Server. Only procedure invocations are
supported, with results displayed in a browser window. For each invoked
procedure, the MobileFirst Studio remembers the most recent parameter values, so
you can reinvoke the procedure without re-entering parameter values.

In the dialog box, provide a comma-separated list of procedure parameters.

Figure 8-40. Invoking MobileFirst procedures.

8-376 IBM MobileFirst Platform Foundation V6.3.0

Invoking a back-end service
You can use MobileFirst Studio to invoke a back-end service and receive the data
retrieved by the service.

About this task

Note: This feature is only available when running within MobileFirst Studio. It is
not available when running an adapter on a stand-alone server based on
WebSphere Application Server or Tomcat.

In MobileFirst Studio, you can invoke a back-end service and immediately receive
the data retrieved by the service in XML and JSON formats. You can also define
and test a custom XSL transformation that converts the resulting XML into JSON.

Procedure

To run a back-end service:
1. Right-click an adapter file, and select Run As > Invoke MobileFirst Back-end

Service.

Figure 8-41. Invoking a MobileFirst back-end service

Developing MobileFirst applications 8-377

2. In the dialog box, provide the invocation service parameters. You can copy
them from your code and paste them directly into the dialog box.
A browser window opens, displaying the retrieved data in XML and JSON

format, and the XSL transformation (if defined) that was used to convert the
XML to JSON.

3. Optional: Change the XSL transformation by editing it in the edit box, then
click Apply XSL to regenerate the JSON format.

Figure 8-42. Invocation parameters.

8-378 IBM MobileFirst Platform Foundation V6.3.0

Deploying an adapter
In MobileFirst Studio, you can automatically deploy a new or modified adapter to
the MobileFirst Server.

Procedure

Right-click the adapter folder and select Run As > Deploy MobileFirst Adapter.

Figure 8-43. Browser window, showing retrieved data in XML and JSON format.

Developing MobileFirst applications 8-379

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Note: When the development server is started, adapters are automatically
deployed after they are created or modified and saved. You can view this feature
by clicking Window > Preferences. Select MobileFirst. To change this feature, clear
the Automatically Deploy Adapters on Change check box. The default value of
this feature is true. The preview command automatically deploys all adapters that
are not deployed for a project if this preference is set to true.

JMS adapters
Java messaging service (JMS) is the standard messaging Java API for sending
messages between two or more clients. The MobileFirst JMS adapter provides
reading and writing capabilities to messaging providers that implement the JMS
API.

Figure 8-44. Deploying a MobileFirst adapter.

8-380 IBM MobileFirst Platform Foundation V6.3.0

You can configure a JMS adapter to work with such messaging providers as a
Liberty profile server or a WebSphere MQ message broker.

Connecting a JMS adapter to the WebSphere Application Server
messaging provider
You can develop and test MobileFirst adapters that use Java Message Service (JMS)
on a WebSphere Application Server messaging provider. The WebSphere
Application Server messaging provider can be the default messaging provider, a
WebSphere MQ messaging provider, or a third-party provider.

Before you begin

You must have configured the WebSphere Application Server messaging provider
and JMS resources such as the queue connection factories and the queues or topics.

About this task

The following procedure shows how to connect a JMS adapter to a WebSphere
Application Server messaging provider.

Procedure
1. Create a MobileFirst JMS adapter.
2. Because the adapter runs on a JMS-enabled server, the naming connection

section of the adapter.xml file is not necessary. It can remain commented out.
3. Enter the JNDI name for the queue connection factory that was created in the

server.xml file.
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- <namingConnection url="MY_JNDI_URL"
initialContextFactory="providers_initial_context_factory_class_name"
user="JNDIUserName"
password="JNDIPassword"/> -->

<jmsConnection
connectionFactory="jms/WASQCF"
user="admin"
password="admin"
/>

</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="10"/>
</connectivity>

4. In the JMS adapter implementation file, enter the JNDI name for the queue as
the destination for both the read and write methods:
function readMessage() {

var result = WL.Server.readSingleJMSMessage({
destination:"jms/WASQueue",
timeout: 60

});
if (!result.message) {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> no message in queue");
return {};

} else {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> message received ::");
return result.message;

};
}

Developing MobileFirst applications 8-381

5. Change the MobileFirst target server in MobileFirst Studio to point to your
WebSphere Application Server environment. For more information, see
“Working with multiple MobileFirst Server instances in MobileFirst Studio” on
page 8-38.

6. Build and deploy the MobileFirst adapter to the WebSphere Application Server
environment. You can test the JMS adapter in your browser by using the
following URL syntax:
http://<was-hostname>:<port>/<context-root>/invoke?adapterName=
<adapterName>&procedure=<procedureName>¶meters=["<parameters>"]

An example of a URL pointing to an external WebSphere Application Server
server:
http://localhost:9080/worklight/invoke?adapter=JMSAdapter&procedure=
writeMessage¶meters=[“Hello World”]

Connecting a JMS adapter to a Liberty profile server
You can develop and test MobileFirst adapters that use Java Message Service (JMS)
on a WebSphere Application Server Liberty profile ND server.

Before you begin

If you want to create adapters that use the JMS API, you must understand that the
WebSphere Application Server Liberty profile included with IBM MobileFirst
Platform Foundation does not contain the built-in Liberty JMS features. Therefore,
an embedded MobileFirst Development Server or a local external instance of this
bundled WebSphere Application Server Liberty profile server cannot act as a JMS
provider.

About this task

JMS is supported by the WebSphere Application Server Liberty profile V8.5 ND
(Network Deployment) server. If you have a local copy of this application server
that is installed on the same workstation as your MobileFirst tools, you can use it
to develop and test your JMS applications.

Because WebSphere Application Server Liberty profile does not support remote
JNDI lookups, it is not possible to make remote connections to the JMS server. The
MobileFirst adapter must be running on the same local Liberty profile server that
has JMS enabled.

The following procedure shows how to connect to an external Liberty profile
server that supports JMS.

Procedure
1. Enable JMS on your Liberty profile ND server by using the procedures in the

WebSphere Application Server user documentation at Configuring
point-to-point messaging for a single Liberty profile server. Make a note of the
JNDI connection factory and queue name, as shown in the following code
example:
<!-- Enable features -->
<featureManager>

<feature>jsp-2.2</feature>
<feature>wasJmsServer-1.0</feature>
<feature>wasJmsClient-1.1</feature>
<feature>jndi-1.0</feature>

</featureManager>

8-382 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SS7JFU_8.5.5/com.ibm.websphere.wlp.express.doc/ae/twlp_msg_single_p2p.html
http://ibm.biz/knowctr#SS7JFU_8.5.5/com.ibm.websphere.wlp.express.doc/ae/twlp_msg_single_p2p.html

<messagingEngine id="defaultME">
<queue
id="libertyQ"
forceReliability="ReliablePersistent"
maxQueueDepth="5000">

</queue>
</messagingEngine>

<jmsQueueConnectionFactory jndiName="jms/libertyQCF" connectionManagerRef="ConMgr2">
<properties.wasJms
nonPersistentMapping="ExpressNonPersistent"
persistentMapping="ReliablePersistent"/>

</jmsQueueConnectionFactory>

<connectionManager id="ConMrg2" maxPoolSize="2"/>

<jmsQueue jndiName="jms/libertyQue">
<properties.wasJms
queueName="libertyQ"
deliveryMode="Application"
timeToLive="500000"
priority="1"
readAhead="AsConnection" />

</jmsQueue>

2. Create a MobileFirst JMS adapter.
3. Because the adapter runs on a JMS-enabled Liberty profile server, the naming

connection section of the adapter.xml file is not necessary. It can remain
commented out.

4. Enter the JNDI name for the connection factory that was created in the
server.xml file.
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- <namingConnection url="MY_JNDI_URL"
initialContextFactory="providers_initial_context_factory_class_name"
user="JNDIUserName"
password="JNDIPassword"/> -->

<jmsConnection
connectionFactory="jms/libertyQCF"
user="admin"
password="admin"
/>

</connectionPolicy>
</connectivity>

5. In the JMS adapter implementation file, enter the JNDI name for the queue as
the destination for both the read and write methods:
function readMessage() {

var result = WL.Server.readSingleJMSMessage({
destination:"jms/libertyQue",
timeout: 60

});
if (!result.message) {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> no message in queue");
return {};

} else {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> message received ::");
return result.message;

};
}

6. Change the MobileFirst target server in MobileFirst Studio to point to your
Liberty ND server. For more information, see “Working with multiple
MobileFirst Server instances in MobileFirst Studio” on page 8-38.

Developing MobileFirst applications 8-383

7. Build and deploy the MobileFirst adapter to the Liberty profile ND server. You
can test the JMS adapter in your browser by using the following URL syntax:
http://<liberty-hostname>:<port>/<context-root>/invoke?adapterName=
<adapterName>&procedure=<procedureName>¶meters=["<parameters>"]

An example of a URL pointing to an external Liberty profile ND server:
http://localhost:9080/worklight/invoke?adapter=JMSAdapter&procedure=
writeMessage¶meters=[“Hello World”]

Connecting a JMS adapter to WebSphere MQ
You can connect a MobileFirst Java Message Service (JMS) adapter to WebSphere
MQ.

Before you begin

If you are running the adapter on WebSphere Application Server, use the
WebSphere Application Server messaging provider. For more information, see
“Connecting a JMS adapter to the WebSphere Application Server messaging
provider” on page 8-381.

Ensure that you have prior knowledge of WebSphere MQ and have a WebSphere
MQ Message Broker setup with the appropriate JMS administered objects. For
more information about setting up WebSphere MQ for JMS, see the IBM
WebSphere MQ user documentation.

About this task

The MobileFirst JMS adapter does not support connecting to WebSphere MQ
through bindings mode, only in client mode. A TCP connection is created for each
JMS request, even if the JMS broker and MobileFirst adapter are running on the
same computer.

To connect a MobileFirst JMS adapter to WebSphere MQ, you create a project, copy
some JAR files to the project directory, and modify the adapter file.

Procedure

Include the required WebSphere MQ Java libraries
1. Create a MobileFirst project.
2. Locate the java/lib directory in your WebSphere MQ directory.

Example: /opt/mqm/java/lib
3. Copy the following JAR files from the java/lib directory into the server/lib

directory of your MobileFirst project:
v CL3Export.jar

v CL3Nonexport.jar

v com.ibm.mq.axis2.jar

v com.ibm.mq.commonservices.jar

v com.ibm.mq.defaultconfig.jar

v com.ibm.mq.headers.jar

v com.ibm.mq.jar

v com.ibm.mq.jmqi.jar

v com.ibm.mq.jms.Nojndi.jar

v com.ibm.mq.pcf.jar

8-384 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSFKSJ_7.0.1/com.ibm.mq.doc/help_home_wmq.htm
http://ibm.biz/knowctr#SSFKSJ_7.0.1/com.ibm.mq.doc/help_home_wmq.htm

v com.ibm.mq.postcard.jar

v com.ibm.mq.soap.jar

v com.ibm.mq.tools.ras.jar

v com.ibm.mqjms.jar

v connector.jar

v dhbcore.jar

v fscontext.jar

v jta.jar

v providerutil.jar

v rmm.jar

Modify the adapter XML file
4. Create a MobileFirst JMS adapter.
5. Open the adapter.xml file.
6. In the namingConnection element of the xml file, set the URL to the location of

your bindings file that was generated by WebSphere MQ.
Example:
url="file:/home/user/JMS"

7. In the namingConnection element of the XML file, set the
initialContextFactory attribute to
com.sun.jndi.fscontext.RefFSContextFactory.

8. In the jmsConnection element, set the connectionFactory attribute to the name
of the connection factory that was set up in WebSphere MQ.

9. Optional: If security is enabled in WebSphere MQ, include the credentials as
shown in the following code example.
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">
<namingConnection

url="file:/home/user/JMS"
initialContextFactory="com.sun.jndi.fscontext.RefFSContextFactory"
user="admin"
password="password"/>

<jmsConnection
connectionFactory="myConnFactory"
user="admin"
password="password"/>

</connectionPolicy>
</connectivity>

Modify the adapter implementation file
10. Open the adapter’s implementation file.
11. In the autogenerated read and write methods, replace the destination

property with the name that was configured in your JMS administered object
in WebSphere MQ.
Example:
function readMessage() {

var result = WL.Server.readSingleJMSMessage({
destination: "JMS1",
timeout: 60

});
WL.Logger.debug(result);
if (result.errors) {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> errors occured");
return result;

} else if (!result.message) {

Developing MobileFirst applications 8-385

WL.Logger.debug(">> JMS adapter >> readNextMessage >> no messages in queue");
return result;

} else {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> message received ::");

};
}

Results

The MobileFirst JMS adapter is now properly configured to connect to WebSphere
MQ. You can test the JMS adapter in your browser by using the following URL:
http://<hostname>:<port>/<context-root>/invoke?adapterName=<adapterName>&procedure=
<procedureName>¶meters=['<parameters>']

Example
http://localhost:10080/worklight/invoke?adapter=JMSAdapter&procedure=
writeMessage¶meters=['Hello World']

SAP adapters
Your IBM MobileFirst Platform Foundation applications can communicate with
SAP Netweaver Gateway back-end services by using SAP adapters. Using HTTP
rest calls and the OData protocol, applications can remotely create, retrieve,
update, and delete entities through the adapter.

For information about using the Service Discovery Wizard, see “Generating
adapters with the services discovery wizard” on page 8-359

Starting an SAP adapter
You can create, retrieve, update, delete, and analyze Entities that exist on an SAP
system by using the MobileFirst SAP adapter.

Creating an entity:

You can create entity remotely through SAP Gateway.

About this task

Table 8-53. Attributes

Attribute Mandatory or Optional Description

content Mandatory Defines the properties of the
entity. Supports JSON and
Atom/XML formatting.

Procedure

v To create an entity in JSON format, write the input parameters as shown in the
following example.
"City": "Midland",

"Country": "USA",
"LanguageCode": "3",
"LocalCurrencyCode": "324",
"MimeType": "",
"Name": "Destination Paradise",
"POBox": "322",
"PostalCode": "48642",
"Region": "B",

8-386 IBM MobileFirst Platform Foundation V6.3.0

"Street": "100 Electric Ave",
"TelephoneNumber": "5558675309",
"TravelAgencyID": "0000099",
"URL": "www.foo.com"

v To create an entity in XML format, write the input parameters as shown in the
following example.
"<?xml version=\"1.0\" encoding=\"utf-8\"?>

<entry xml:base=\"http:\/\/sapwl01.austin.ibm.com:8003\/sap\/opu\/odata\/iwbep\/RMTSAMPLEFLIGHT_2\/\"
xmlns=\"http:\/\/www.w3.org\/2005\/Atom\" xmlns:m=\"http:\/\/schemas.microsoft.com\/ado\/2007\/08\/dataservices\/metadata\"
xmlns:d=\"http:\/\/schemas.microsoft.com\/ado\/2007\/08\/dataservices\">

<id>http:\/\/sapwl01.austin.ibm.com:8003\/sap\/opu\/odata\/iwbep\/RMTSAMPLEFLIGHT_2\/TravelAgencies(’00000099’)<\/id>
<title type=\"text\">TravelAgencies(’00000099’)<\/title>
<updated>2014-07-18T14:10:27Z<\/updated>
<category term=\"RMTSAMPLEFLIGHT_2.TravelAgency\"

scheme=\"http:\/\/schemas.microsoft.com\/ado\/2007\/08\/dataservices\/scheme\"\/><link href=\"TravelAgencies(’00000099’)\" rel=\"edit\"
title=\"TravelAgency\"\/>

<content type=\"application\/xml\">
<m:properties>

<d:TravelAgencyID>00000099<\/d:TravelAgencyID>
<d:Name>Destination Paradise<\/d:Name>
<d:Street>100 Electric Ave<\/d:Street>
<d:POBox>322<\/d:POBox>
<d:PostalCode>48642<\/d:PostalCode>
<d:City>Midland<\/d:City>
<d:Country>USA<\/d:Country>
<d:Region>B<\/d:Region>

<d:TelephoneNumber>9896002072<\/d:TelephoneNumber>
<d:URL>www.foo.com<\/d:URL>

<d:LanguageCode>34<\/d:LanguageCode>
<d:LocalCurrencyCode>324<\/d:LocalCurrencyCode>
<d:MimeType>xml<\/d:MimeType>

<\/m:properties>
<\/content>

<\/entry>"

Results

If you use the previous examples, you receive the following response from
MobileFirst Server.
{

"d": {
"City": "Midland",
"Country": "USA",
"LanguageCode": "3",
"LocalCurrencyCode": "324",
"MimeType": "",
"Name": "Destination Paradise",
"POBox": "322",
"PostalCode": "48642",
"Region": "B",
"Street": "100 Electric Ave",
"TelephoneNumber": "5558675309",
"TravelAgencyID": "00000099",
"URL": "www.foo.com",
"__metadata": {
"id": "http:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwbep\/RMTSAMPLEFLIGHT_2\/TravelAgencies(’00000099’)",
"type": "RMTSAMPLEFLIGHT_2.TravelAgency",
"uri": "http:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwbep\/RMTSAMPLEFLIGHT_2\/TravelAgencies(’00000099’)"
}

},
"isSuccessful": true,
"responseHeaders": {
"content-length": "554",
"content-type": "application\/json; charset=utf-8",

Developing MobileFirst applications 8-387

"dataserviceversion": "2.0",
"location": "http:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwbep\/RMTSAMPLEFLIGHT_2\/TravelAgencies(’00000099’)",
"server": "SAP NetWeaver Application Server \/ ABAP 731"

},
"statusCode": 201,
"statusReason": "Created"

}

Retrieving an entity:

You can retrieve an entity through an SAP Gateway server.

About this task

Table 8-54. Attributes

Attribute Mandatory or Optional Description

expand Optional Indicates that the response
from the Gateway represents
navigation properties inline,
rather than referenced.
Formatted as a JSON array.

keys Mandatory Identifies which entity is to
be retrieved based on its key
property or properties.
Formatted as a JSON object.

select Optional Indicates that a response
from the Gateway is
formatted with a subset of
specified properties.
Formatted as a JSON array.

Procedure

To retrieve an entity in JSON format, write the input parameters as shown in the
following example.
{

"keys":{
"carrid":"LH"

},
"select":["carrid", "carrierFlights"],
"expand":["carrierFlights"]

}

Results

If you use the previous example, you receive the following response from
MobileFirst Server.
{

"__metadata": {
"content_type": "image\/gif",
"edit_media": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\/CarrierCollection(’LH’)\/$value",
"media_src": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\/CarrierCollection(’LH’)\/$value",
"type": "RMTSAMPLEFLIGHT.Carrier",
"uri": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\/CarrierCollection(’LH’)"

},
"carrid": "LH",
"carrierFlights": {
"results": [

{

8-388 IBM MobileFirst Platform Foundation V6.3.0

"CURRENCY": "EUR",
"FlightCarrier": {

"__deferred": {
"uri": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\/FlightCollection(carrid=’LH’,connid=’0400’,fldate=datetime’2013-12-21T00%3A00%3A00’)\/FlightCarrier"

}
},
"PAYMENTSUM": "209124.00",
"PLANETYPE": "A310-300",
"PRICE": "666.00",
"SEATSMAX": 280,
"SEATSMAX_B": 22,
"SEATSMAX_F": 10,
"SEATSOCC": 267,
"SEATSOCC_B": 22,
"SEATSOCC_F": 9,
"__metadata": {

"type": "RMTSAMPLEFLIGHT.Flight",
"uri": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\/FlightCollection(carrid=’LH’,connid=’0400’,fldate=datetime’2013-12-21T00%3A00%3A00’)"

},
"carrid": "LH",
"connid": "0400",
"fldate": "\/Date(1387584000000)\/",
"flightBookings": {

"__deferred": {
"uri": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\/FlightCollection(carrid=’LH’,connid=’0400’,fldate=datetime’2013-12-21T00%3A00%3A00’)\/flightBookings"
}

...

Updating an entity:

You can update an entity from an SAP Gateway server.

About this task

Table 8-55. Attributes

Attribute Mandatory or Optional Description

content Mandatory This attribute is the new set
of properties for the specified
entity. Any properties that
are not defined in content
are set to an empty string
when the update is complete.
Supports JSON and
Atom/XML formatting.

Procedure

To update an entity in XML format, write the input parameters as shown in the
following example.
{

“keys”:{
“TravelAgencyID”

}

Results

If you use the previous example, you receive the following response from
MobileFirst Server.

Developing MobileFirst applications 8-389

"City": "Midland",
"Country": "USA",
"LanguageCode": "3",
"LocalCurrencyCode": "324",
"MimeType": "",
"Name": "Destination Paradise",
"POBox": "322",
"PostalCode": "48642",
"Region": "B",
"Street": "100 Electric Ave",
"TelephoneNumber": "5558675309",
"TravelAgencyID": "00000099",
"URL": "www.foo.com"

Deleting an entity:

You can delete an existing entity through an SAP Gateway server.

About this task

Table 8-56. Attributes

Attribute Mandatory or Optional Description

keys Mandatory Identifies which entity must
be deleted, based on its key
properties. Formatted as a
JSON object.

Procedure

To delete an entity in JSON format, write the input parameters as shown in the
following example.
{

"keys":{
"TravelAgencyID":"99"

}
}

If you use the previous example, you receive the following response from
MobileFirst Server.
{

"isSuccessful": true,
"responseHeaders": {
"content-length": "0",
"dataserviceversion": "2.0",
"server": "SAP NetWeaver Application Server \/ ABAP 731"

},
"statusCode": 204,
"statusReason": "No Content"

}

Results

A successful deletion results in a 204 No Content response from the server.

Querying an existing entity:

You can search for existing Collections within an SAP Gateway server.

8-390 IBM MobileFirst Platform Foundation V6.3.0

About this task

Table 8-57. Attributes

Attribute Mandatory or Optional Description

expand Optional Indicates that the response
from the Gateway represents
navigation properties inline,
rather than referenced.
Formatted as a JSON array.

filter Optional Uses logic operators to
indicate that only the
matching criteria are
returned in the response.
Formatted as a String. For
examples, see: Filter System
Query Option.

custom Optional Overrides all other input
parameters and directly
appends this query to your
resource path. You can use
this parameter to generate
more complex queries. For
example:
$expand=Products($filter=Date
eq null).

select Optional Indicates that a response
from the Gateway is
formatted with a subset of
specified properties.
Formatted as a JSON array.

skip Optional Identifies that the first input
number of items of a
Collection are skipped in
the response.

top Optional Identifies how many items of
a Collection are returned in
a response. Formatted as a
non-negative integer, which
is enclosed in quotation
marks.

Procedure

v To use the select parameter for querying an existing entity in JSON format,
write the input parameter as shown in the following example.
{

"select": ["TravelAgencyID"]
}

v To use the filter parameter for querying an existing entity in JSON format,
write the input parameter as shown in the following example.
{

"filter": “TelephoneNumber eq ’5558675309’”
}

v To use the expand parameter for querying an existing entity in JSON format,
write the input parameter as shown in the following example.

Developing MobileFirst applications 8-391

http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html#_Toc372793804
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html#_Toc372793804

{
"expand": ["carrierFlights"]

}

v To use the skip parameter for querying an existing entity in JSON format, write
the input parameter as shown in the following example.
{

"skip": "2"
}

v To use the top parameter for querying an existing entity in JSON format, write
the input parameter as shown in the following example.
{

"top": "2"
}

Retrieving a property of an entity:

You can retrieve a specific property from an entity through an SAP Gateway
server.

About this task

Table 8-58. Attributes

Attribute Mandatory or Optional Description

keys Mandatory Identifies the entity to be
retrieved based on its key
properties. Formatted as a
JSON Object.

property Optional Defines the Property to be
retrieved. Formatted as a
String.

Procedure

v To retrieve a property from an entity in JSON format, write the input parameters
as shown in the following example.
{

"keys":{
"carrid":’IBM Air’,
"connid":’0017’,
"fldate":"2013-12-18T00:00:00"

},
"property":"carrierFlights"

}

If you use the previous example, you receive the following response from
MobileFirst Server.
{

"isSuccessful": true,
"results": [

{
"CURRENCY": "USD",
"FlightCarrier": {

"__deferred": {
"uri": "https:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\/FlightCollection(carrid=’IBM Air’,connid=’0017’,fldate=datetime’2013-12-18T00%3A00%3A00’)\/FlightCarrier"
}

},
"PAYMENTSUM": "192281.41",
"PLANETYPE": "747-400",
"PRICE": "422.94",

8-392 IBM MobileFirst Platform Foundation V6.3.0

"SEATSMAX": 385,
"SEATSMAX_B": 31,
"SEATSMAX_F": 21,
"SEATSOCC": 374,
"SEATSOCC_B": 28,
"SEATSOCC_F": 21,
"__metadata": {

"type": "RMTSAMPLEFLIGHT.Flight",
"uri": "https:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\/FlightCollection(carrid=’IBM Air’,connid=’0017’,fldate=datetime’2013-12-18T00%3A00%3A00’)"

},
"carrid": "IBM Air",
"connid": "0017",
"fldate": "\/Date(1387324800000)\/",
"flightBookings": {

"__deferred": {
"uri": "https:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\/FlightCollection(carrid=’IBM Air’,connid=’0017’,fldate=datetime’2013-12-18T00%3A00%3A00’)\/flightBookings"

}
},
"flightDetails": {

"__metadata": {
"type": "RMTSAMPLEFLIGHT.FlightDetails"

},
"airportFrom": "JFK",
"airportTo": "SFO",

...

v To retrieve a property from an entity in JSON format, write the input parameters
as shown in the following example.
{

"keys":{
"carrid":’AA’,
"connid":’0017’,
"fldate":"2013-12-18T00:00:00"

},
"property":"CARRNAME/$value"

}

If you use the previous example, you receive the following response from
MobileFirst Server.
{

"RETURN": "American Airlines",
"isSuccessful": true,
"responseHeaders": {

"content-length": "17",
"content-type": "text\/plain; charset=utf-8",
"dataserviceversion": "2.0",
"server": "SAP NetWeaver Application Server \/ Tampa 1234",
"x-csrf-token": "9PfsXHsbriIR4PNwfLKBAg=="

},
"statusCode": 200,
"statusReason": "OK"

}

Configuring an SAP adapter for user-based authentication
To configure an SAP adapter for user-based authentication, you edit the
authenticationConfig.xml configuration file.

Procedure
1. Expand the server folder of your MobileFirst project and right-click

authenticationConfig.xml.
2. Select Open With > Authenication Configuration Editor and ensure that you

are using the Design view.

Developing MobileFirst applications 8-393

3. In the Authentication Configuration Editor view, select Realms and click Add.
a. In the Add Item window, select Realm and click OK.

4. Expand Realms. Your view looks similar to the following example.

5. Select the newly created realm and proceed as follows.
a. Name the realm. This example uses SAPAuthRealm.
b. Type com.worklight.integration.auth.AdapterAuthenticator into the

Class name field.
c. Type StrongDummy into the Login Module field. For more information on

login modules, see “Configuring login modules” on page 8-520.
6. Save your MobileFirst project.
7. Create a login parameter.

a. Select your Realm from the Realms folder. Click Add.
b. In the Add Item window that appears, select Parameter and click OK.
c. Type login-function in the Name field.
d. Type <SAP Adapter name>.onLogin in the Value field.
e. Save the file.

8. Create a log out parameter.
a. Select your Realm from the Realms folder. Click Add.
b. In the Add Item window that appears, select Parameter and click OK.
c. Type logout-function in the Name field.
d. Type <SAP Adapter name>.onLogout in the Value field.
e. Save the file.

9. Select Security Tests from the list and click Add.
a. In the Add Item window, select Custom Security Test. Click OK.

10. Select your Custom Security Test to view its details and Type
SAPAuthAdapter-securityTest into the Name field.

11. With the Custom Security Test still selected, click Add. In the Add Item
window, select Test. Click OK.

12. Select your Test to complete the following fields.
a. In the Is internal user id field, select true from the drop-down menu.
b. Type the name of the realm that you created in step 5a.

13. Save the changes that you made in the authenticationConfig.xml file.

8-394 IBM MobileFirst Platform Foundation V6.3.0

14. In the project explorer, right-click adapters > <SAP Adapter name>.xml and
select Open With > Adapter Editor.

15. In the Adapter Editor view, click Add.
a. In the Add Item window that appears, select Procedure and click OK.

16. Select your new procedure to view its details and type submitAuthentication
in the Name field.

17. Select a procedure that requires user-based authentication and proceed as
follows.
a. From the Connect as drop-down menu, select endUser.
b. Type SAPAuthAdapter-securityTest in the Security test field.

18. Repeat step 17 for any other procedures that require user-based
authentication.

19. Save the changes that you made in the adapter.
20. Define three functions at the bottom of the JavaScript file that is associated

with your SAP adapter.
a. Expand the adapters folder.
b. Expand the Your SAP Adapter name folder and open Your SAP Adapter

name-impl.js.
c. Copy and paste the following three functions at the bottom of your

JavaScript file.
function onLogin(headers, errorMessage) {

errorMessage = errorMessage ? errorMessage : null;

return {
authRequired : true,
errorMessage : errorMessage

};
}

function submitAuthentication(username, password) {

var userIdentity = {
userId : username,
displayName : username,
credentials : password,
attributes : {

foo : "bar"
}

};

WL.Server.setActiveUser("SAPAuthRealm", userIdentity);

return {
authRequired : false

};
}

function onLogout() {
WL.Server.setActiveUser("SAPAuthRealm", null);
WL.Logger.debug("Logged out");

}

21. Save the JavaScript file.

Results

Your SAP adapter is now configured to start procedures on a user-based
authentication basis.

Developing MobileFirst applications 8-395

What to do next

Now you must pass your SAP Netweaver credentials toMobileFirst Server. You can
use the submitAuthentication function to pass your credentials. For more
information about how to start an SAP procedure, see “Procedure invocation” on
page 8-376. For more information about adapter authentication, see the tutorials on
the Getting Started web site.

Configuring an SAP adapter with a system user
You can connect to an SAP back end with a system user. However, you should use
user-based authentication for most scenarios. Check your SAP license terms.

Before you begin

Make sure that SAP adapters exist in yourMobileFirst project.

Procedure
1. Expand the adapters folder of your MobileFirst project, right-click <SAP

Adapter name>.xml, and select Open With > Adapter Editor.
2. In the Adapter Editor view, expand Connectivity and select Connection Policy.
3. Click Add, select authentication from the Add Item window, and click OK.
4. Under Connection Policy, select authentication and click Add.

a. Select the appropriate authentication mechanism of your SAP server. This
example uses basic. The results look something like the following image.

5. To see the changes in the source code, select the Source tab at the bottom of the
Adapter Editor view.

Results

Your SAP adapter is configured to start procedures on a server-identity
authentication basis.

USSD Support
Unstructured Supplementary Service Data (USSD) is a communication technology
that is used by GSM cellular telephones to send text messages between a mobile
phone and an application program in the network.

8-396 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3

USSD establishes a real-time session between the mobile phone and the application
that handles the service.

IBM MobileFirst Platform Foundation uses the HTTP/HTTPS protocol to
communicate with the USSD gateway, which is a third-party entity. The USSD
gateway routes USSD messages to the MobileFirst Server. Adapter procedures need
to be defined to process these requests and send back a response. You need to
define USSD event handler to route the requests to the adapter procedure that
handles those requests.

Note: For more information, see the WL.Server.createUSSDEventHandler and
WL.Server.createUSSDResponse APIs in WL.Server.

Here is a sample flow for USSD:
1. A mobile user enters a USSD short code, such as *123#.
2. The request is forwarded to a USSD gateway.
3. The gateway maps the short code to a known URL provided by IBM

MobileFirst Platform Foundation, creates the USSD session, and forwards the
request to the URL.

4. A MobileFirst adapter with the matching filter receives the request and
responds to the gateway request with the configurable USSD menu/simple
text.

Configuration required at USSD Gateway
http://<hostname>:<port>/<contextroot>/ussd

This URL can be followed by parameters specific to the gateway. Refer to your
USSD Gateway documentation for more details.

Developing MobileFirst applications 8-397

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

Server-side APIs required at MobileFirst adapter side

To create a filter to process the USSD request:
WL.Server.setEventHandlers([WL.Server.createUSSDEventHandler({
’shortcode’ : ’*123#’
}, handleUSSDRequest)]);

To send back a response:
WL.Server.createUSSDResponse("This is my response", "text/plain", true))

Security

To prevent entities with malicious intent from sending requests to the MobileFirst
Server via a USSD URL, the USSD feature is protected by default. The
authenticationConfig.xml file is configured to reject all requests to the USSD
servlet with a rejecting login module. To allow restricted access to USSD,
MobileFirst administrators must modify the authenticationConfig.xml file with
appropriate authenticator and login modules, or comment the URL pattern /ussd*
to allow unrestricted access. For example, the following configuration in the
authenticationConfig.xml file ensures that only requests with a specific user name
in the header of the HTTP request are allowed:
<staticResources>

<resource id="subscribeServlet" securityTest="SubscribeServlet">
<urlPatterns>/subscribeSMS*;/ussd*</urlPatterns>

</resource>
...

</staticResources>

<securityTests>
<customSecurityTest name="SubscribeServlet">

<test realm="SubscribeServlet" isInternalUserID="true"/>
</customSecurityTest>
...

</securityTests>

<realms>
<realm name="SubscribeServlet" loginModule="headerLogin">

<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>
</realm>
...

</realms>

<loginModules>
<loginModule name="headerLogin">

<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="username"/>

</loginModule>
...

</loginModules>

Invoking a back-end service for USSD
You can invoke a MobileFirst HTTP adapter to test the USSD functionality.

Before you begin

This feature is only available within MobileFirst Studio for HTTP adapters. It is not
available when you run an adapter on a stand-alone server that is based on
WebSphere Application Server or Tomcat.

8-398 IBM MobileFirst Platform Foundation V6.3.0

About this task

In MobileFirst Studio, you can invoke an HTTP-based USSD adapter and see the
results that are returned to the USSD gateway to verify that the adapter is
performing correctly.

Procedure
1. Right-click an adapter file, and select Run As > Invoke MobileFirst Back-end

Service.

2. In the dialog box, from the Connect as drop-down list, select gateway. Then
provide the options for invoking the USSD handler in the text box. The USSD
gateway can send HTTP parameters, headers, cookies, or body.

Figure 8-45. Invoking a MobileFirst back-end service

Developing MobileFirst applications 8-399

A browser window opens, displaying the result of the adapter invocation
3. You can follow this procedure as many times as required to test the menu flow

with the USSD gateway. Here are some examples that use the different types of
parameters that are passed from the USSD gateway.
Example 1: Passing query string parameters.

Example 2: Passing JSON parameters in the body.

Figure 8-46. Invocation parameters.

8-400 IBM MobileFirst Platform Foundation V6.3.0

Example 3: Passing XML in the body.

Note: If the body that you pass is not a JSON object, then enclose the object in
quotes (" "). If it is a JSON object, then surround it with curly brackets ({ }).

JSONStore
Learn about JSONStore.

JSONStore overview
JSONStore features add the ability to store JSON documents in MobileFirst
applications.

JSONStore is a lightweight, document-oriented storage system that is included as a
feature of IBM MobileFirst Platform Foundation, and enables persistent storage of
JSON documents. Documents in an application are available in JSONStore even
when the device that is running the application is offline. This persistent,

Developing MobileFirst applications 8-401

always-available storage can be useful for customers, employees, or partners, to
give them access to documents when, for example, there is no network connection
to the device.

For JSONStore API reference information for hybrid applications, see WL.JSONStore
in the API reference section. Hybrid applications are supported for iOS, Android,
Windows 8, and Windows 8 Phone.

For existing customers who have issues with running JSONStore on Windows 8.1
and above, install the Microsoft Visual Studio 2012 C++ runtime library on the
development box and reference it in the application. For Microsoft Visual Studio
2013, install the Microsoft Visual Studio 2013 C++ runtime library and update
SQLite for Microsoft Visual Studio 2013.

For JSONStore API reference information for native iOS applications, see the
JSONStore Class Reference in the API reference section.

For JSONStore API reference information for native Android applications, see the
com.worklight.jsonstore.api Package in the API reference section.

Here is a high-level summary of what JSONStore provides:
v A developer-friendly API that gives developers the ability to populate the local

store with documents, and to update, delete, and search across documents.
v Persistent, file-based storage matches the scope of the application.
v AES 256 encryption of stored data provides security and confidentiality. You can

segment protection by user with password-protection, in the case of more than
one user on a single device.

v Ability to keep track of local changes.

A single store can have many collections, and each collection can have many
documents. It is also possible to have a MobileFirst application that contains
multiple stores. For information, see “JSONStore multiple user support” on page
8-440.

8-402 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_j_s_o_n_store.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/jsonstore/api/package-summary.html

Note: Because it is familiar to developers, relational database terminology is used
in this documentation at times to help explain JSONStore. There are many
differences between a relational database and JSONStore however. For example,
the strict schema that is used to store data in relational databases is different from
JSONStore's approach. With JSONStore, you can store any JSON content, and index
the content that you need to search.

Features table

Compare JSONStore features to those features of other data storage technologies
and formats.

JSONStore is a JavaScript API for storing data inside hybrid MobileFirst
applications, an Objective-C API for native iOS applications, and a Java API for

Figure 8-47. A basic graphic representation of JSONStore.

Figure 8-48. Components and their interaction with the server when you use JSONStore for data synchronization.

Developing MobileFirst applications 8-403

native Android applications. For reference, here is a comparison of different
JavaScript storage technologies to see how JSONStore compares to them.

JSONStore is similar to technologies such as LocalStorage, Indexed DB, Cordova
Storage API, Cordova File API, and MobileFirst Encrypted Cache. The table shows
how some features that are provided by JSONStore compare with other
technologies. The JSONStore feature is only available on iOS and Android devices
and simulators.

Table 8-59. A comparison of data storage technologies..

JSONStore
Encrypted

Cache LocalStorage IndexedDB
Cordova
Storage

Cordova
File

Android
Support
(Hyrbid &
Native
Applications)

⌂ ⌂ ⌂ ⌂ ⌂ ⌂

iOS
Support
(Hybrid &
Native
Applications)

⌂ ⌂ ⌂ ⌂ ⌂ ⌂

Windows 8
and
Windows 8
Phone
Support

⌂ ⌂ ⌂ ⌂ - ⌂

Web Dev Only
(See Note

1)

⌂ ⌂ ⌂ - -

Data
encryption

⌂ ⌂ - - - -

Maximum
Storage

Available
Space

~5 MB ~5 MB >5 MB Available
Space

Available
Space

Reliable
Storage
(See Note
2)

⌂ - - - ⌂ ⌂

Keep Track
of Local
Changes

⌂ - - - - -

Multi-user
support

⌂ - - - - -

Indexing ⌂ - - ⌂ ⌂ -

Type of
Storage

JSON
Documents

Key/Value
Pairs

Key/Value
Pairs

JSON
Documents

Relational
(SQL)

Strings

Note: 1. Dev Only means designed only for development, with no security features
and a ~5 MB storage space limit.

Note: 2. Reliable Storage means that your data is not deleted unless one of the
following events occurs:
v The application is removed from the device.

8-404 IBM MobileFirst Platform Foundation V6.3.0

v One of the methods that removes data is called.

General JSONStore terminology
Learn about general JSONStore terminology.

JSONStore document

A document is the basic building block of JSONStore.

A JSONStore document is a JSON object with an automatically generated identifier
(_id) and JSON data. It is similar to a record or a row in database terminology. The
value of _id is always a unique integer inside a specific collection. Some functions
like the add, replace, and remove methods in the JSONStoreInstance class take an
Array of Documents/Objects. These methods are useful to perform operations on
various Documents/Objects at a time.

Example

Single document
var doc = { _id: 1, json: {name: ’carlos’, age: 99} };

Example

Array of documents
var docs = [

{ _id: 1, json: {name: ’carlos’, age: 99} },
{ _id: 2, json: {name: ’tim’, age: 100} }

]

JSONStore collection

A JSONStore collection is similar to a table, in database terminology

Example

Customer collection
[

{ _id: 1, json: {name: ’carlos’, age: 99} },
{ _id: 2, json: {name: ’tim’, age: 100} }

]

This code is not the way that the documents are stored on disk, but it is a good
way to visualize what a collection looks like at a high level.

JSONStore store

A store is the persistent JSONStore file that contains one or more collections.

A store is similar to a relational database, in database terminology. A store is also
referred to as a JSONStore.

JSONStore search fields

A search field is a key/value pair.

Developing MobileFirst applications 8-405

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_j_s_o_n_store_collection.html

Search fields are keys that are indexed for fast lookup times, similar to column
fields or attributes, in database terminology.

Extra search fields are keys that are indexed but that are not part of the JSON data
that is stored. These fields define the key whose values (in the JSON collection) are
indexed and can be used to search more quickly.

Valid data types are: string, boolean, number, and integer. These types are only
type hints, there is no type validation. Furthermore, these types determine how
indexable fields are stored. For example, {age: ’number’} will index 1 as 1.0 and
{age: ’integer’} will index 1 as 1.

Examples

Search fields and extra search fields.
var searchField = {name: ’string’, age: ’integer’};
var additionalSearchField = {key: ’string’};

It is only possible to index keys inside an object, not the object itself. Arrays are
handled in a pass-through fashion, meaning that you cannot index an array or a
specific index of the array (arr[n]), but you can index objects inside an array.

Indexing values inside an array.
var searchFields = {

’people.name’ : ’string’, // matches carlos and tim on myObject
’people.age’ : ’integer’ // matches 99 and 100 on myObject

};

var myObject = {
people : [

{name: ’carlos’, age: 99},
{name: ’tim’, age: 100}

]
};

JSONStore queries

Queries are objects that use search fields or extra search fields to look for
documents.

The example presumes that the name search field is of type string and the age
search field is of type integer.

Examples

Find documents with name that matches carlos:
var query1 = {name: ’carlos’};

Find documents with name that matches carlos and age matches 99:
var query2 = {name: ’carlos’, age: 99};

JSONStore query parts

Query parts are used to build more advanced searches. Some JSONStore
operations, such as some versions of find or count take query parts. Everything
within a query part is joined by AND statements, while query parts themselves are
joined by OR statements. The search criteria returns a match only if everything

8-406 IBM MobileFirst Platform Foundation V6.3.0

within a query part is true. You can use more than one query part to search for
matches that satisfy one or more of the query parts.

Find with query parts operate only on top-level search fields. For example: name,
and not name.first. Use multiple collections where all search fields are top-level to
get around this. The query parts operations that work with non top-level search
fields are: equal, notEqual, like, notLike, rightLike, notRightLike, leftLike, and
notLeftLike. The behavior is undetermined if you use non-top-level search fields.

Enabling JSONStore
To use JSONStore in IBM Worklight V6.0 and later, you must take steps to enable
it.

About this task

To use JSONStore in a native MobileFirst iOS application, you can import the
JSONStore.h header file to use the JSONStore API. For more information about
creating native MobileFirst iOS applications, see “Developing native applications
for iOS” on page 8-183.

For native Android applications, you must copy the JAR files that are generated by
IBM MobileFirst Platform Foundation into your application's libs folder. After you
do so, you can use the classes inside the com.worklight.jsonstore.api package to
use JSONStore. For more information about creating native MobileFirst Android
applications, see “Copying files of Native API applications for Android” on page
8-191.

For hybrid applications, JSONStore is an optional feature in IBM Worklight V6.0
and later. To use JSONStore in a hybrid application, you must enable it by
modifying the application-descriptor.xml file.

Procedure
1. Using the Application Descriptor Editor, open the file application-

descriptor.xml

2. Click the Design tab.
3. Under Overview, expand Application [your application's name].
4. Click Optional Features.
5. Click Add.
6. Select JSONStore.
7. Click Ok.
8. In the Project Explorer view, right-click the folder that is titled with your

application name.
9. Click Run As.

10. Click Run on MobileFirst Development Server.

JSONStore API concepts
JSONStore provides API reference information for hybrid Android, iOS, Windows
8, and Windows Phone 8, and native Android and iOS applications.

Store

Developing MobileFirst applications 8-407

Open and initialize a collection

Starts one or more collections. Starting or provisioning a JSONStore collection
means that the persistent storage that is used to contain collections and documents
is created, if it does not exist. If the store is encrypted and a correct password is
passed, the required security procedures to make the data accessible are run. There
is minimal effort in initializing all the collections when an application starts.

After you open a collection, an accessor to the collection is available, which gives
access to collection APIs. It allows developers to call functions such as find, add,
and replace on an initialized collection.

It is possible to initialize multiple times with different collections. New collections
are initialized without affecting collections that are already initialized.

Destroy

Completely wipes data for all users, destroys the internal storage, and clears
security artifacts. The destroy function removes the following data:
v All documents.
v All collections.
v All stores. For more information, see “JSONStore multiple user support” on page

8-440.
v All JSONStore metadata and security artifacts. For more information, see

“JSONStore security” on page 8-437.

Close all

Locks access to all the collections in a store until the collections are reinitialized.
Where initialize can be considered a login, close can be considered a logout.

Start, commit, and rollback transaction

A transaction is a set of operations that must all succeed for the operations to
manipulate the store. If any operation fails, the transaction can be rolled back to
revert the store to its previous state. After a transaction is started, it is important
that you handle committing or rolling back your transactions to prevent excess
processing. Three operations exist in the Store API for transactions:
v

Start transaction
Begin a snapshot in which the store is reverted to if the transaction fails.

v

Commit transaction
Inform the store that all operations in the transaction succeeded, and all
changes can be finalized.

v

Rollback transaction
Inform the store that an operation in the transaction failed, and all
changes must be discarded.

Note: Due to system limitations with multi-threaded transactions, transactions are
not supported in Android 2.3.x for hybrid applications. To use transactions in a
hybrid application in Android 2.3.x, you can create a Cordova plug-in that uses the

8-408 IBM MobileFirst Platform Foundation V6.3.0

native Android JSONStore API to execute the code for the transaction. The whole
transaction must be done in the same thread because multi-threaded transactions
do not work properly in Android 2.3.x.

Collection

Store and add a document

You can add a document or array of documents to a collection. You can also pass
an array of objects (for example [{name: ’carlos’}, {name: ’tim’}]) instead of a
single object. Every object in the array is stored as a new document inside the
collection.

Remove a document

Marks one or more documents as removed from a collection. Removed documents
are not returned by the find or count operations.

Find All Documents, Find Documents by Id, and Find With Query

You can find documents in a collection by their search fields and extra search
fields. An internal search field, _id, holds a unique integer identifier that can be
used to find the document (Find by Id). You can search for documents with the
following APIs:
v

Find All Documents
Returns every document in a collection.

v

Find All Dirty Documents
Returns every document in a collection that is marked dirty.

v

Find by Id
Find the document with the corresponding _id search key value.

v

Find With Query or Query Parts
Find all documents that match a query or all query parts. For more
information, see the Search Query format section at “Additional
references” on page 8-410.

Filter returns what is being indexed, which might be different than what was
saved to a collection. Some examples of unexpected results are:
1. If your search field has upper case letters, the result is returned in all

lower-case letters.
2. If you pass something that is not a string, it is indexed as a string. For example,

1 is '1', 1.0 is '1.0', true is '1', and false is '0'.
3. If your filter criteria includes non top-level search fields, you might get a single

string with all the terms that are joined by a special identifier (-@-). For
example, ’carlos-@-mike-@-dgonz’.

Developing MobileFirst applications 8-409

Replace a document and change documents

You can use the Replace API to replace the contents of a document in the
collection with new data, which is based on the _id. If the data contains the _id
field of a document in the database, the document is replaced with the data and all
search fields are reindexed for that document.

The Change API is similar to the Replace API, but the Replace is based on a set of
search field criteria instead of _id. The Replace API can be emulated by
performing the Change API with the search field criteria of only _id. All search
fields in the search field criteria must exist in the documents in the store, and in
the data that is passed to the Change API.

Count All Documents, Count All Dirty Documents, and Count
With Query

The Count API returns an integer number by counting the total number of
documents that match the query. There are three Count APIs:
v

Count All Documents
Give the total count of all documents in the collection.

v

Count All Dirty Documents
Give the total number of documents in the collection that are currently
marked dirty.

v

Count With Query or Query Parts
Give the total number of documents that match a specific search query.
For more information, see the Search Query format section at
“Additional references.”

Remove Collection and Clear Collection

Removing a collection deletes all data that is associated with a collection, and
causes the collection accessor to be no longer usable.

Clearing a collection deletes all documents in the collection. This operation keeps
the collection open after it completes.

Mark Clean

The Mark Clean API is used to remove the dirty flag from a document in the
collection, and deletes the document completely from the collection if it was
marked dirty by a remove document operation. The Mark Clean API is useful
when used with the Find All Dirty Documents API to sync the collection with a
remote database.

Additional references

Search Query format

When an API requires a search query, a common format is followed for the
collection. A query consists of an array of objects where each key/value pair is
ANDed together. Each object in the array is ORed together. For example:

8-410 IBM MobileFirst Platform Foundation V6.3.0

[{fn: "Mike", age: 30}, {fn: "Carlos", age: 36}]

is represented as (with fuzzy search):
(fn LIKE "%Mike%" AND age LIKE "%30%") OR (fn LIKE "%Carlos%" AND age LIKE "%36%")

Search Query Parts format

The following examples use pseudocode to convey how query parts work. A query
such as {name: ’carlos’, age: 10} can be passed a modifier such as {exact:
true}, which ensures only items that exactly match name and age are returned.
Query parts give you the flexibility of adding modifiers to any part of the query.
For example:
queryPart1 = QueryPart().like(’name’, ’carlos’).lessThan(’age’, 10);

The previous example is transformed into something like:
(’name’ LIKE %carlos%) AND (age < 10)

You can also create another query part, for example:
queryPart2 = QueryPart().equal(’name’, ’mike’)

When you add various query parts with the find API, for example:
find([queryPart1, queryPart2]

You get something like:
((’name’ LIKE %carlos%) AND (age < 10)) OR (name EQUAL ’mike’)

Limit and Offset

Passing a limit to an API's options restricts the number of results by the number
specified. It is also possible to pass an offset to skip results by the number
specified. To pass an offset, a limit must also be passed. This API is useful for
implementing pagination or for optimization. By limiting the data to a subset that
is necessary, the memory and processing power is reduced.

Fuzzy Search versus Exact Search

The default behavior is fuzzy searching, which means that queries return partial
results. For example, the query {name: ’carl’} finds ’carlos’ and ’carl’ (for
example, name LIKE ’%carl%’). When {exact: true} is passed, matches are exact
but not case-sensitive. For example, ’hello’ matches ’Hello’ (for example,
name.toLowerCase() = ’hello’). Integer matching is not type-sensitive. For
example, "1" matches both "1" and "1.0". Numbers are stored as their decimal
representation. For example, "1" is stored as "1.0". Boolean values are indexed as
1 (true) and 0 (false).

JSONStore troubleshooting
Find information to help resolve issues that you might encounter when you use
the JSONStore API.

JSONStore troubleshooting overview
Find information to help resolve issues that you might encounter when you use
the JSONStore API.

Developing MobileFirst applications 8-411

Provide information when you ask for help

It is better to provide more information than to risk not providing enough
information. The following list is a good starting point for the information that is
required to help with JSONStore issues.
v Operating system and version. For example, Windows XP SP3 Virtual Machine

or Mac OSX 10.8.3.
v Eclipse version. For example, Eclipse Indigo 3.7 Java EE.
v JDK version. For example, Java SE Runtime Environment (build 1.7).
v IBM MobileFirst Platform Foundation version. For example, IBM Worklight

V5.0.6 Developer Edition.
v iOS version. For example, iOS Simulator 6.1 or iPhone 4S iOS 6.0.
v Android version. For example, Android Emulator 4.1.1 or Samsung Galaxy

Android 4.0 API Level 14.
v Windows version. For example, Windows 8 or Windows Phone 8.1.
v adb version. For example, Android Debug Bridge version 1.0.31.
v Logs, such as Xcode output on iOS or logcat output on Android.

Try to isolate the issue

Follow these steps to isolate the issue to more accurately report a problem.
1. Reset the emulator (Android) or simulator (iOS) and call the destroy API to

start with a clean system.
2. Ensure that you are running on a supported production environment.
v Android >= 2.3 ARM v7/ARM v8/x86 emulator or device
v iOS >= 6.0 simulator or device
v Windows Phone 8.0 ARM/x86 emulator or device
v Windows 8.0-8.1 ARM/x86/x64 simulator or device

3. Try to turn off encryption by not passing a password to the init or open APIs.
4. Look at the SQLite database file that is generated by JSONStore. Encryption

must be turned off.
v Android emulator:

$ adb shell
$ cd /data/data/com.<app-name>/databases/wljsonstore
$ sqlite3 jsonstore.sqlite

v iOS simulator:
$ cd ~/Library/Application Support/iPhone Simulator/7.1/Applications/<id>/Documents/wljsonstore
$ sqlite3 jsonstore.sqlite

v Windows Phone 8:
$ cd C:\Data\Users\DefApps\AppData\<id>\Local\wljsonstore
$ sqlite3 jsonstore.sqlite

v Windows 8 simulator
$ cd C:\Users\<username>\AppData\Local\Packages\<id>\LocalState\wljsonstore
$ sqlite3 jsonstore.sqlite

v

Note: JavaScript only implementation that runs on a web browser (Firefox,
Chrome, Safari, Internet Explorer) does not use an SQLite database. The file
is stores in HTML5 LocalStorage.

8-412 IBM MobileFirst Platform Foundation V6.3.0

v Look at the searchFields with .schema and select data with SELECT * FROM
<collection-name>;. To exit sqlite3, type .exit. If you pass a user name to
the init method, the file is called <username>.sqlite. If you do not pass a
user name, the file is called jsonstore.sqlite by default.

5. (Android only) Enable verbose JSONStore.
adb shell setprop log.tag.jsonstore-core VERBOSE
adb shell getprop log.tag.jsonstore-core

6. Use the debugger.

Common issues

Understanding the following JSONStore characteristics can help resolve some of
the common issues that you might encounter.
v The only way to store binary data in JSONStore is to first encode it in base64.

Store file names or paths instead of the actual files in JSONStore.
v Accessing JSONStore data from native code is possible only in IBM MobileFirst

Platform Foundation V6.2.0.
v There is no limit on how much data you can store inside JSONStore, beyond

limits that are imposed by the mobile operating system.
v JSONStore provides persistent data storage. It is not only stored in memory.
v The init API fails when the collection name starts with a digit or symbol. IBM

Worklight V5.0.6.1 and later returns an appropriate error:
4 BAD_PARAMETER_EXPECTED_ALPHANUMERIC_STRING

v There is a difference between a number and an integer in search fields. Numeric
values like 1 and 2 are stored as 1.0 and 2.0 when the type is number. They are
stored as 1 and 2 when the type is integer.

v If an application is forced to stop or crashes, it always fails with error code -1
when the application is started again and the init or open API is called. If this
problem happens, call the closeAll API first.

v The JavaScript implementation of JSONStore expects code to be called serially.
Wait for an operation to finish before you call the next one.

v Transactions are not supported in Android 2.3.x for hybrid applications. For
more information, see “JSONStore API concepts” on page 8-407.

v When you use JSONStore on a 64-bit device, you might see the following error:
java.lang.UnsatisfiedLinkError: dlopen failed: "..." is 32-bit instead of 64-bit

This error means that you have 64-bit native libraries in your Android project,
and JSONStore does not currently work when you use these libraries. To
confirm, go to src/main/libs or src/main/jniLibs under your Android project,
and check whether you have the x86_64 or arm64-v8a folders. If you do, delete
these folders, and JSONStore can work again.

Store internals
See an example of how JSONStore data is stored.

The key elements in this simplified example:
v _id is the unique identifier (for example, AUTO INCREMENT PRIMARY KEY).
v json contains an exact representation of the JSON object that is stored.
v name and age are search fields.
v key is an extra search field.

Developing MobileFirst applications 8-413

Example

Table 8-60. Contents of a store in JSONStore

_id key name age JSON

1 c carlos 99 {name: 'carlos',
age: 99}

2 t time 100 {name: 'tim', age:
100}

When you search by using one of the following queries or a combination of them:
{_id : 1}, {name: ’carlos’}, {age: 99}, {key: ’c’}, the returned document is
{_id: 1, json: {name: ’carlos’, age: 99} }.

The other internal JSONStore fields are:

_dirty
Determines whether the document was marked as dirty or not. This field is
useful to track changes to the documents. For more information, see
“JSONStore API concepts” on page 8-407 or “Work with external data” on page
8-443.

_deleted
Marks a document as deleted or not. This field is useful to remove objects
from the collection, to later use them to track changes with your backend and
decide whether to remove them or not.

_operation
A string that reflects the last operation to be performed on the document (for
example, replace).

JSONStore errors
Learn about JSONStore errors.

Possible JSONStore error codes that are returned are listed in “JSONStore error
codes” on page 8-415.

JavaScript

JSONStore uses an error object to return messages about the cause of failures.

When an error occurs during a JSONStore operation (for example the find, and
add methods in the JSONStoreInstance class) an error object is returned. It provides
information about the cause of the failure.

Example
var errorObject = {

src: ’find’, // Operation that failed.
err: -50, // Error code.
msg: ’PERSISTENT_STORE_FAILURE’, // Error message.
col: ’people’, // Collection name.
usr: ’jsonstore’, // User name.
doc: {_id: 1, {name: ’carlos’, age: 99}}, // Document that is related to the failure.
res: {...} // Response from the server.

}

Not all the key/value pairs are part of every error object. For example, the doc
value is only available when the operation failed because of a document (for

8-414 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.JSONStoreInstance.html

example the remove method in the JSONStoreInstance class) failed to remove a
document.

Objective-C

All of the APIs that might fail take an error parameter that takes an address to an
NSError object. If you don not want to be notified of errors, you can pass in nil.
When an operation fails, the address is populated with an NSError, which has an
error and some potential userInfo. The userInfo might contain extra details (for
example, the document that caused the failure).

Example
// This NSError points to an error if one occurs.
NSError* error = nil;

// Perform the destroy.
[JSONStore destroyDataAndReturnError:&error];

Java

All of the Java API calls throw a certain exception, depending on the error that
happened. You can either handle each exception separately, or you can catch
JSONStoreException as an umbrella for all JSONStore exceptions.

Example
try {

WL.JSONStore.closeAll();
}

catch(JSONStoreException e) {
// Handle error condition.

}

JSONStore error codes
Definitions of the error codes that are related to JSONStore.

-100 UNKNOWN_FAILURE
Unrecognized error.

-75 OS_SECURITY_FAILURE
This error code is related to the requireOperatingSystemSecurity flag. It can
occur if the destroy API fails to remove security metadata that is protected by
operating system security (Touch ID with passcode fallback), or the init or
open APIs are unable to locate the security metadata. It can also fail if the
device does not support operating system security, but operating system
security usage was requested.

-50 PERSISTENT_STORE_NOT_OPEN
JSONStore is closed. Try calling the open method in the JSONStore class class
first to enable access to the store.

-48 TRANSACTION_FAILURE_DURING_ROLLBACK
There was a problem with rolling back the transaction.

-47 TRANSACTION_FAILURE_DURING_REMOVE_COLLECTION
Cannot call removeCollection while a transaction is in progress.

-46 TRANSACTION_FAILURE_DURING_DESTROY
Cannot call destroy while there are transactions in progress.

Developing MobileFirst applications 8-415

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_j_s_o_n_store.html

-45 TRANSACTION_FAILURE_DURING_CLOSE_ALL
Cannot call closeAll while there are transactions in place.

-44 TRANSACTION_FAILURE_DURING_INIT
Cannot initialize a store while there are transactions in progress.

-43 TRANSACTION_FAILURE
There was a problem with transactions.

-42 NO_TRANSACTION_IN_PROGRESS
Cannot commit to rolled back a transaction when there is no transaction is
progree.

-41 TRANSACTION_IN_POGRESS
Cannot start a new transaction while another transaction is in progress.

-40 FIPS_ENABLEMENT_FAILURE
Something is wrong with FIPS. See the tutorial on the Getting Started page.

-24 JSON_STORE_FILE_INFO_ERROR
Problem getting the file information from the file system.

-23 JSON_STORE_REPLACE_DOCUMENTS_FAILURE
Problem replacing documents from a collection.

-22 JSON_STORE_REMOVE_WITH_QUERIES_FAILURE
Problem removing documents from a collection.

-21 JSON_STORE_STORE_DATA_PROTECTION_KEY_FAILURE
Problem storing the Data Protection Key (DPK).

-20 JSON_STORE_INVALID_JSON_STRUCTURE
Problem indexing input data.

-12 INVALID_SEARCH_FIELD_TYPES
Check that the types that you are passing to the searchFields are
stringinteger,number, orboolean.

-11 OPERATION_FAILED_ON_SPECIFIC_DOCUMENT
An operation on an array of documents, for example the replace method can
fail while it works with a specific document. The document that failed is
returned and the transaction is rolled back.

-10 ACCEPT_CONDITION_FAILED
The accept function that the user provided returned false.

-9 OFFSET_WITHOUT_LIMIT
To use offset, you must also specify a limit.

-8 INVALID_LIMIT_OR_OFFSET
Validation error, must be a positive integer.

-7 INVALID_USERNAME
Validation error (Must be [A-Z] or [a-z] or [0-9] only).

-6 USERNAME_MISMATCH_DETECTED
To log out, a JSONStore user must call the closeAll method first. There can be
only one user at a time.

-5 DESTROY_REMOVE_PERSISTENT_STORE_FAILED
A problem with the destroy method while it tried to delete the file that holds
the contents of the store.

8-416 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3

-4 DESTROY_REMOVE_KEYS_FAILED
Problem with the destroy method while it tried to clear the keychain (iOS) or
shared user preferences (Android).

-3 INVALID_KEY_ON_PROVISION
Passed the wrong password to an encrypted store.

-2 PROVISION_TABLE_SEARCH_FIELDS_MISMATCH
Search fields are not dynamic. It is not possible to change search fields without
calling the destroy method or the removeCollection method before you call
the init or openmethod with the new search fields. This error can occur if you
change the name or type of the search field. For example: {key: ’string’} to
{key: ’number’} or {myKey: ’string’} to {theKey: ’string’}.

-1 PERSISTENT_STORE_FAILURE
Generic Error. A malfunction in native code, most likely calling the init
method.

0 SUCCESS
In some cases, JSONStore native code returns 0 to indicate success.

1 BAD_PARAMETER_EXPECTED_INT
Validation error.

2 BAD_PARAMETER_EXPECTED_STRING
Validation error.

3 BAD_PARAMETER_EXPECTED_FUNCTION
Validation error.

4 BAD_PARAMETER_EXPECTED_ALPHANUMERIC_STRING
Validation error.

5 BAD_PARAMETER_EXPECTED_OBJECT
Validation error.

6 BAD_PARAMETER_EXPECTED_SIMPLE_OBJECT
Validation error.

7 BAD_PARAMETER_EXPECTED_DOCUMENT
Validation error.

8 FAILED_TO_GET_UNPUSHED_DOCUMENTS_FROM_DB
The query that selects all documents that are marked dirty failed. An example
in SQL of the query would be: SELECT * FROM [collection] WHERE _dirty > 0.

9 NO_ADAPTER_LINKED_TO_COLLECTION
To use functions like the push and load methods in the JSONStoreCollection
class, an adapter must be passed to the init method.

10 BAD_PARAMETER_EXPECTED_DOCUMENT_OR_ARRAY_OF_DOCUMENTS
Validation error

11
INVALID_PASSWORD_EXPECTED_ALPHANUMERIC_STRING_WITH_LENGTH_GREATER_THAN_ZERO

Validation error

12 ADAPTER_FAILURE
Problem calling WL.Client.invokeProcedure, specifically a problem in
connecting to the MobileFirst Server adapter. This error is different from a
failure in the adapter that tries to call a backend.

13 BAD_PARAMETER_EXPECTED_DOCUMENT_OR_ID
Validation error

Developing MobileFirst applications 8-417

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_j_s_o_n_store_collection.html

14 CAN_NOT_REPLACE_DEFAULT_FUNCTIONS
Calling the enhance method in the JSONStoreCollection class to replace an
existing function (find and add) is not allowed.

15 COULD_NOT_MARK_DOCUMENT_PUSHED
Push sends the document to an adapter but JSONStore fails to mark the
document as not dirty.

16 COULD_NOT_GET_SECURE_KEY
To initiate a collection with a password there must be connectivity to the
MobileFirst Server because it returns a 'secure random token'. IBM Worklight
5.0.6 and later allows developers to generate the secure random token locally
passing {localKeyGen: true} to the init method via the options object.

17 FAILED_TO_LOAD_INITIAL_DATA_FROM_ADAPTER
Could not load data because WL.Client.invokeProcedure called the failure
callback.

18 FAILED_TO_LOAD_INITIAL_DATA_FROM_ADAPTER_INVALID_LOAD_OBJ
The load object that was passed to the init method did not pass the
validation.

19 INVALID_KEY_IN_LOAD_OBJECT
There is a problem with the key used in the load object when you call the add
method.

20 UNDEFINED_PUSH_OPERATION
No procedure is defined for pushing dirty documents to the server. For
example: the init method (new document is dirty, operation = 'add') and the
push method (finds the new document with operation = 'add') were called, but
no add key with the add procedure was found in the adapter that is linked to
the collection. Linking an adapter is done inside the init method.

21 INVALID_ADD_INDEX_KEY
Problem with extra search fields.

22 INVALID_SEARCH_FIELD
One of your search fields is invalid. Verify that none of the search fields that
are passed in are _id,json,_deleted, or _operation.

23 ERROR_CLOSING_ALL
Generic Error. An error occurred when native code called the closeAll method.

24 ERROR_CHANGING_PASSWORD
Unable to change the password. The old password passed was wrong, for
example.

25 ERROR_DURING_DESTROY
Generic Error. An error occurred when native code called the destroy method.

26 ERROR_CLEARING_COLLECTION
Generic Error. An error occurred in when native code called the
removeCollection method.

27 INVALID_PARAMETER_FOR_FIND_BY_ID
Validation error.

28 INVALID_SORT_OBJECT
The provided array for sorting is invalid because one of the JSON objects is
invalid. The correct syntax is an array of JSON objects, where each object
contains only a single property. This property searches the field with which to
sort, and whether it is ascending or descending. For example: {searchField1 :
“ASC”}.

8-418 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_j_s_o_n_store_collection.html

29 INVALID_FILTER_ARRAY
The provided array for filtering the results is invalid. The correct syntax for
this array is an array of strings, in which each string is either a search field or
an internal JSONStore field. For more information, see “Store internals” on
page 8-413.

30 BAD_PARAMETER_EXPECTED_ARRAY_OF_OBJECTS
Validation error when the array is not an array of only JSON objects.

31 BAD_PARAMETER_EXPECTED_ARRAY_OF_CLEAN_DOCUMENTS
Validation error.

32 BAD_PARAMETER_WRONG_SEARCH_CRITERIA
Validation error.

JSONStore examples
Learn about how to get started with JSONStore examples.

JavaScript API examples
You can use JSONStore for MobileFirst hybrid applications.

The following sections contain example implementations for JavaScript with
JSONStore APIs. Other helpful topics include:
v “JSONStore overview” on page 8-401 - Learn about key concepts.
v “Enabling JSONStore” on page 8-407 - Learn how to enable JSONStore in

different environments.
v “JSONStore API concepts” on page 8-407 - Learn about general information

about the APIs that apply to all implementations of the JSONStore API.
v “JSONStore troubleshooting” on page 8-411 - Learn how to debug and

understand possible errors.
v “JSONStore advanced topics” on page 8-437 - Learn about security, multiple user

support, performance, and concurrency.
v Class JSONStoreInstance - Learn about JSONStore APIs for JavaScript.
v “Work with external data” on page 8-443 - Explains how to get data from an

external source and send changes back to the external source.

Initialize and open connections, get an Accessor, and add data
var collectionName = ’people’;

// Object that defines all the collections.
var collections = {

// Object that defines the ’people’ collection.
people : {

// Object that defines the Search Fields for the ’people’ collection.
searchFields : {name: ’string’, age: ’integer’}

}
};

// Optional options object.
var options = {

// Optional username, default ’jsonstore’.
username : ’carlos’,

// Optional password, default no password.
password : ’123’,

Developing MobileFirst applications 8-419

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.JSONStoreInstance.html

// Optional local key generation flag, default false.
localKeyGen : false

};

WL.JSONStore.init(collections, options)

.then(function () {

// Data to add, you probably want to get
// this data from a network call (e.g. MobileFirst Adapter).
var data = [{name: ’carlos’, age: 10}];

// Optional options for add.
var addOptions = {

// Mark data as dirty (true = yes, false = no), default true.
markDirty: true

};

// Get an accessor to the people collection and add data.
return WL.JSONStore.get(collectionName).add(data, addOptions);

})

.then(function (numberOfDocumentsAdded) {
// Add was successful.

})

.fail(function (errorObject) {
// Handle failure for any of the previous JSONStore operations (init, add).

});

Find - locate documents inside the Store
var collectionName = ’people’;

// Find all documents that match the queries.
var queryPart1 = WL.JSONStore.QueryPart()

.equal(’name’, ’carlos’)

.lessOrEqualThan(’age’, 10)

var options = {
// Returns a maximum of 10 documents, default no limit.
limit: 10,

// Skip 0 documents, default no offset.
offset: 0,

// Search fields to return, default: [’_id’, ’json’].
filter: [’_id’, ’json’],

// How to sort the returned values, default no sort.
sort: [{name: WL.constant.ASCENDING}, {age: WL.constant.DESCENDING}]

};

WL.JSONStore.get(collectionName)

// Alternatives:
// - findById(1, options) which locates documents by their _id field
// - findAll(options) which returns all documents
// - find({’name’: ’carlos’, age: 10}, options) which finds all documents
// that match the query.
.advancedFind([queryPart1], options)

.then(function (arrayResults) {
// arrayResults = [{_id: 1, json: {name: ’carlos’, age: 99}}]

})

8-420 IBM MobileFirst Platform Foundation V6.3.0

.fail(function (errorObject) {
// Handle failure.

});

Replace - change the documents that are already stored inside a
Collection
var collectionName = ’people’;

// Documents will be located with their ’_id’ field
// and replaced with the data in the ’json’ field.
var docs = [{_id: 1, json: {name: ’carlitos’, age: 99}}];

var options = {

// Mark data as dirty (true = yes, false = no), default true.
markDirty: true

};

WL.JSONStore.get(collectionName)

.replace(docs, options)

.then(function (numberOfDocumentsReplaced) {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

Remove - delete all documents that match the query
var collectionName = ’people’;

// Remove all documents that match the queries.
var queries = [{_id: 1}];

var options = {

// Exact match (true) or fuzzy search (false), default fuzzy search.
exact: true,

// Mark data as dirty (true = yes, false = no), default true.
markDirty: true

};

WL.JSONStore.get(collectionName)

.remove(queries, options)

.then(function (numberOfDocumentsRemoved) {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

Count - gets the total number of documents that match a query
var collectionName = ’people’;

// Count all documents that match the query.
// The default query is ’{}’ which will
// count every document in the collection.
var query = {name: ’carlos’};

Developing MobileFirst applications 8-421

var options = {

// Exact match (true) or fuzzy search (false), default fuzzy search.
exact: true

};

WL.JSONStore.get(collectionName)

.count(query, options)

.then(function (numberOfDocumentsThatMatchedTheQuery) {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

Destroy - wipes data for all users, destroys the internal storage, and
clears security artifacts
WL.JSONStore.destroy()

.then(function () {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

Security - close access to all opened Collections for the current user
WL.JSONStore.closeAll()

.then(function () {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

Security - change the password that is used to access a Store
// The password should be user input.
// It is hard-coded in the example for brevity.
var oldPassword = ’123’;
var newPassword = ’456’;

var clearPasswords = function () {
oldPassword = null;
newPassword = null;

};

// Default username if none is passed is: ’jsonstore’.
var username = ’carlos’;

WL.JSONStore.changePassword(oldPassword, newPassword, username)

.then(function () {

// Make sure you do not leave the password(s) in memory.
clearPasswords();

// Handle success.
})

8-422 IBM MobileFirst Platform Foundation V6.3.0

.fail(function (errorObject) {

// Make sure you do not leave the password(s) in memory.
clearPasswords();

// Handle failure.
});

Push - get all documents that are marked as dirty, send them to a
MobileFirst adapter, and mark them clean
var collectionName = ’people’;
var dirtyDocs;

WL.JSONStore.get(collectionName)

.getAllDirty()

.then(function (arrayOfDirtyDocuments) {
// Handle getAllDirty success.

dirtyDocs = arrayOfDirtyDocuments;

var invocationData = {
adapter : ’adapter-name’,
procedure : ’procedure-name-1’,
parameters : [dirtyDocs],
compressResponse: true

};

return WL.Client.invokeProcedure(invocationData);
})

.then(function (responseFromAdapter) {
// Handle invokeProcedure success.

// You may want to check the response from the adapter
// and decide whether or not to mark documents as clean.
return WL.JSONStore.get(collectionName).markClean(dirtyDocs);

})

.then(function () {
// Handle markClean success.

})

.fail(function (errorObject) {
// Handle failure.

});

Pull - get new data from a MobileFirst adapter
var collectionName = ’people’;

var invocationData = {
adapter : ’adapter-name’,
procedure : ’procedure-name-2’,
parameters : [],
compressResponse: true

};

WL.Client.invokeProcedure(invocationData)

.then(function (responseFromAdapter) {
// Handle invokeProcedure success.

// The following example assumes that the adapter returns an arrayOfData,
// (which is not returned by default),

Developing MobileFirst applications 8-423

// as part of the invocationResult object,
// with the data that you want to add to the collection.
var data = responseFromAdapter.invocationResult.arrayOfData;

// Example:
// data = [{id: 1, ssn: ’111-22-3333’, name: ’carlos’}];

var changeOptions = {

// The following example assumes that ’id’ and ’ssn’ are search fields,
// default will use all search fields
// and are part of the data that is received.
replaceCriteria : [’id’, ’ssn’],

// Data that does not exist in the Collection will be added, default false.
addNew : true,

// Mark data as dirty (true = yes, false = no), default false.
markDirty : false

};

return WL.JSONStore.get(collectionName).change(data, changeOptions);
})

.then(function () {
// Handle change success.

})

.fail(function (errorObject) {
// Handle failure.

});

Check whether a document is dirty
var collectionName = ’people’;
var doc = {_id: 1, json: {name: ’carlitos’, age: 99}};

WL.JSONStore.get(collectionName)

.isDirty(doc)

.then(function (isDocumentDirty) {
// Handle success.

// isDocumentDirty - true if dirty, false otherwise.
})

.fail(function (errorObject) {
// Handle failure.

});

Check the number of dirty documents
var collectionName = ’people’;

WL.JSONStore.get(collectionName)

.countAllDirty()

.then(function (numberOfDirtyDocuments) {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

8-424 IBM MobileFirst Platform Foundation V6.3.0

Remove a Collection
var collectionName = ’people’;

WL.JSONStore.get(collectionName)

.removeCollection()

.then(function () {
// Handle success.

// Note: You must call the ’init’ API to re-use the empty collection.
// See the ’clear’ API if you just want to remove all data that is inside.

})

.fail(function (errorObject) {
// Handle failure.

});

Clear all data that is inside a Collection
var collectionName = ’people’;

WL.JSONStore.get(collectionName)

.clear()

.then(function () {
// Handle success.

// Note: You might want to use the ’removeCollection’ API
// instead if you want to change the search fields.

})

.fail(function (errorObject) {
// Handle failure.

});

Start a transaction, add some data, remove a document, commit the
transaction and roll back the transaction if there is a failure
WL.JSONStore.startTransaction()

.then(function () {
// Handle startTransaction success.
// You can call every JSONStore API method except:
// init, destroy, removeCollection, and closeAll.

var data = [{name: ’carlos’}];

return WL.JSONStore.get(collectionName).add(data);
})

.then(function () {

var docs = [{_id: 1, json: {name: ’carlos’}}];

return WL.JSONStore.get(collectionName).remove(docs);
})

.then(function () {

return WL.JSONStore.commitTransaction();
})

.fail(function (errorObject) {
// Handle failure for any of the previous JSONStore operation.
//(startTransaction, add, remove).

Developing MobileFirst applications 8-425

WL.JSONStore.rollbackTransaction()

.then(function () {
// Handle rollback success.

})

.fail(function () {
// Handle rollback failure.

})

});

Get file information
WL.JSONStore.fileInfo()
.then(function (res) {

//res => [{isEncrypted : true, name : carlos, size : 3072}]
})

.fail(function () {
// Handle failure.

});

Search with like, rightLike, and leftLike
// Match all records that contain the search string on both sides.
// %searchString%
var arr1 = WL.JSONStore.QueryPart().like(’name’, ’ca’); // returns {name: ’carlos’, age: 10}
var arr2 = WL.JSONStore.QueryPart().like(’name’, ’los’); // returns {name: ’carlos’, age: 10}

// Match all records that contain the search string on the left side and anything on the right side.
// searchString%
var arr1 = WL.JSONStore.QueryPart().rightLike(’name’, ’ca’); // returns {name: ’carlos’, age: 10}
var arr2 = WL.JSONStore.QueryPart().rightLike(’name’, ’los’); // returns nothing

// Match all records that contain the search string on the right side and anything on the left side.
// %searchString
var arr = WL.JSONStore.QueryPart().leftLike(’name’, ’ca’); // returns nothing
var arr2 = WL.JSONStore.QueryPart().leftLike(’name’, ’los’); // returns {name: ’carlos’, age: 10}

Objective-C API examples
You can use JSONStore for MobileFirst applications.

The following sections contain example implementations for iOS devices with
JSONStore APIs. Other helpful topics include:
v “JSONStore overview” on page 8-401 - Learn about key concepts.
v “Enabling JSONStore” on page 8-407 - Learn how to enable JSONStore in

different environments.
v “JSONStore API concepts” on page 8-407 - Learn about general information

about the APIs that apply to all implementations of the JSONStore API.
v “JSONStore troubleshooting” on page 8-411 - Learn how to debug and

understand possible errors.
v “JSONStore advanced topics” on page 8-437 - Learn about security, multiple user

support, performance, and concurrency.
v JSONStore Class Reference - Learn about JSONStore APIs for Objective-C.
v “Work with external data” on page 8-443 - Explains how to get data from an

external source and send changes back to the external source.

8-426 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_j_s_o_n_store.html

Initialize and open connections, get an Accessor, and add data
// Create the collections object that will be initialized.
JSONStoreCollection* people = [[JSONStoreCollection alloc] initWithName:@"people"];
[people setSearchField:@"name" withType:JSONStore_String];
[people setSearchField:@"age" withType:JSONStore_Integer];

// Optional options object.
JSONStoreOpenOptions* options = [JSONStoreOpenOptions new];
[options setUsername:@"carlos"]; //Optional username, default ’jsonstore’
[options setPassword:@"123"]; //Optional password, default no password

// This object will point to an error if one occurs.
NSError* error = nil;

// Open the collections.
[[JSONStore sharedInstance] openCollections:@[people] withOptions:options error:&error];

// Add data to the collection
NSArray* data = @[@{@"name" : @"carlos", @"age": @10}];
int newDocsAdded = [[people addData:data andMarkDirty:YES withOptions:nil error:&error] intValue];

Initialize with a secure random token from the server
[WLSecurityUtils getRandomStringFromServerWithBytes:32

timeout:1000
completionHandler:^(NSURLResponse *response,

NSData *data,
NSError *connectionError) {

// You might want to see the response and the connection error
// before moving forward.

// Get the secure random string by using the data that is
// returned from the generator on the server.
NSString* secureRandom = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

JSONStoreCollection* ppl = [[JSONStoreCollection alloc] initWithName:@"people"];
[ppl setSearchField:@"name" withType:JSONStore_String];
[ppl setSearchField:@"age" withType:JSONStore_Integer];

// Optional options object.
JSONStoreOptions* options = [JSONStoreOptions new];
[options setUsername:@"carlos"]; //Optional username, default ’jsonstore’
[options setPassword:@"123"]; //Optional password, default no password
[options setSecureRandom:secureRandom]; //Optional, default one will be generated locally

// This points to an error if one occurs.
NSError* error = nil;

[[JSONStore sharedInstance] openCollections:@[ppl] withOptions:options error:&error];

// Other JSONStore operations (e.g. add, remove, replace, etc.) go here.
}];

Find - locate documents inside the Store
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Add additional find options (optional).
JSONStoreQueryOptions* options = [JSONStoreQueryOptions new];
[options setLimit:@10]; // Returns a maximum of 10 documents, default no limit.
[options setOffset:@0]; // Skip 0 documents, default no offset.

// Search fields to return, default: [’_id’, ’json’].
[options filterSearchField:@"_id"];
[options filterSearchField:@"json"];

// How to sort the returned values , default no sort.
[options sortBySearchFieldAscending:@"name"];
[options sortBySearchFieldDescending:@"age"];

// Find all documents that match the query part.
JSONStoreQueryPart* queryPart1 = [[JSONStoreQueryPart alloc] init];
[queryPart1 searchField:@"name" equal:@"carlos"];

Developing MobileFirst applications 8-427

[queryPart1 searchField:@"age" lessOrEqualThan:@10];

NSArray* results = [people findWithQueryParts:@[queryPart1] andOptions:options error:&error];

// results = @[@{@"_id" : @1, @"json" : @{ @"name": @"carlos", @"age" : @10}}];

for (NSDictionary* result in results) {

NSString* name = [result valueForKeyPath:@"json.name"]; // carlos.
int age = [[result valueForKeyPath:@"json.age"] intValue]; // 10
NSLog(@"Name: %@, Age: %d", name, age);

}

Replace - change the documents that are already stored inside a
Collection
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// Find all documents that match the queries.
NSArray* docs = @[@{@"_id" : @1, @"json" : @{ @"name": @"carlitos", @"age" : @99}}];

// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the replacement.
int docsReplaced = [[people replaceDocuments:docs andMarkDirty:NO error:&error] intValue];

Remove - delete all documents that match the query
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Find document with _id equal to 1 and remove it.
int docsRemoved = [[people removeWithIds:@[@1] andMarkDirty:NO error:&error] intValue];

Count - gets the total number of documents that match a query
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// Count all documents that match the query.
// The default query is @{} which will
// count every document in the collection.
JSONStoreQueryPart *queryPart = [[JSONStoreQueryPart alloc] init];
[queryPart searchField:@"name" equal:@"carlos"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the count.
int countResult = [[people countWithQueryParts:@[queryPart] error:&error] intValue];

Destroy - wipes data for all users, destroys the internal storage, and
clears security artifacts
// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the destroy.
[[JSONStore sharedInstance] destroyDataAndReturnError:&error];

Security - close access to all opened Collections for the current user
// This object will point to an error if one occurs.
NSError* error = nil;

// Close access to all collections in the store.
[[JSONStore sharedInstance] closeAllCollectionsAndReturnError:&error];

Security - change the password that is used to access a Store
// The password should be user input.
// It is hardcoded in the example for brevity.
NSString* oldPassword = @"123";
NSString* newPassword = @"456";
NSString* username = @"carlos";

8-428 IBM MobileFirst Platform Foundation V6.3.0

// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the change password operation.
[[JSONStore sharedInstance] changeCurrentPassword:oldPassword withNewPassword:newPassword forUsername:username error:&error];

// Remove the passwords from memory.
oldPassword = nil;
newPassword = nil;

Push - get all documents that are marked as dirty, send them to a
MobileFirst adapter, and mark them clean
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs
NSError* error = nil;

// Return all documents marked dirty
NSArray* dirtyDocs = [people allDirtyAndReturnError:&error];

// ACTION REQUIRED: Handle the dirty documents here
// (e.g. send them to a MobileFirst Adapter).

// Mark dirty documents as clean
int numCleaned = [[people markDocumentsClean:dirtyDocs error:&error] intValue];

Pull - get new data from a MobileFirst adapter
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// ACTION REQUIRED: Get data (e.g. MobileFirst Adapter).
// For this example, it is hardcoded.
NSArray* data = @[@{@"id" : @1, @"ssn": @"111-22-3333", @"name": @"carlos"}];

int numChanged = [[people changeData:data withReplaceCriteria:@[@"id", @"ssn"] addNew:YES markDirty:NO error:&error] intValue];

Check whether a document is dirty
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Check if document with _id ’1’ is dirty.
BOOL isDirtyResult = [people isDirtyWithDocumentId:1 error:&error];

Check the number of dirty documents
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Check if document with _id ’1’ is dirty.
int dirtyDocsCount = [[people countAllDirtyDocumentsWithError:&error] intValue];

Remove a Collection
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Remove the collection.
[people removeCollectionWithError:&error];

Clear all data that is inside a Collection
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.

Developing MobileFirst applications 8-429

NSError* error = nil;

// Remove the collection.
[people clearCollectionWithError:&error];

Start a transaction, add some data, remove a document, commit the
transaction and roll back the transaction if there is a failure
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// These objects will point to errors if they occur.
NSError* error = nil;
NSError* addError = nil;
NSError* removeError = nil;

// You can call every JSONStore API method inside a transaction except:
// open, destroy, removeCollection and closeAll.
[[JSONStore sharedInstance] startTransactionAndReturnError:&error];

[people addData:@[@{@"name" : @"carlos"}] andMarkDirty:NO withOptions:nil error:&addError];

[people removeWithIds:@[@1] andMarkDirty:NO error:&removeError];

if (addError != nil || removeError != nil) {

// Return the store to the state before start transaction was called.
[[JSONStore sharedInstance] rollbackTransactionAndReturnError:&error];

} else {
// Commit the transaction thus ensuring atomicity.
[[JSONStore sharedInstance] commitTransactionAndReturnError:&error];

}

Get file information
// This object will point to an error if one occurs
NSError* error = nil;

// Returns information about files JSONStore uses to persist data.
NSArray* results = [[JSONStore sharedInstance] fileInfoAndReturnError:&error];
// => [{@"isEncrypted" : @(true), @"name" : @"carlos", @"size" : @3072}]

Java API examples
You can use JSONStore for MobileFirst hybrid applications.

The following sections contain example implementations for Android devices with
JSONStore APIs. Other helpful topics include:
v “JSONStore overview” on page 8-401 - Learn about key concepts.
v “Enabling JSONStore” on page 8-407 - Learn how to enable JSONStore in

different environments.
v “JSONStore API concepts” on page 8-407 - Learn about general information

about the APIs that apply to all implementations of the JSONStore API.
v “JSONStore troubleshooting” on page 8-411 - Learn how to debug and

understand possible errors.
v “JSONStore advanced topics” on page 8-437 - Learn about security, multiple user

support, performance, and concurrency.
v Package com.worklight.jsonstore.api - Learn about JSONStore APIs for Java.
v “Work with external data” on page 8-443 - Explains how to get data from an

external source and send changes back to the external source.

Initialize and open connections, get an Accessor, and add data
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
List<JSONStoreCollection> collections = new LinkedList<JSONStoreCollection>();
// Create the collections object that will be initialized.
JSONStoreCollection peopleCollection = new JSONStoreCollection("people");

8-430 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/jsonstore/api/package-summary.html

peopleCollection.setSearchField("name", SearchFieldType.STRING);
peopleCollection.setSearchField("age", SearchFieldType.INTEGER);
collections.add(peopleCollection);

// Optional options object.
JSONStoreInitOptions initOptions = new JSONStoreInitOptions();
// Optional username, default ’jsonstore’.
initOptions.setUsername("carlos");
// Optional password, default no password.
initOptions.setPassword("123");

// Open the collection.

WLJSONStore.getInstance(ctx).openCollections(collections, initOptions);

// Add data to the collection.
JSONObject newDocument = new JSONObject("{name: ’carlos’, age: 10}");
JSONStoreAddOptions addOptions = new JSONStoreAddOptions();
addOptions.setMarkDirty(true);
peopleCollection.addData(newDocument, addOptions);

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations (init, add).
throw ex;

} catch (JSONException ex) {
// Handle failure for any JSON parsing issues.

throw ex;
}

Initialize with a secure random token from the server
// Fill in the blank to get the Android application context.
Context ctx = getContext();

// Do an AsyncTask because networking cannot occur inside the activity.
AsyncTask<Context, Void, Void> aTask = new AsyncTask<Context, Void, Void>() {

protected Void doInBackground(Context... params) {
final Context context = params[0];

// Create the request listener that will have the
// onSuccess and onFailure callbacks:
WLRequestListener listener = new WLRequestListener() {

public void onFailure(WLFailResponse failureResponse) {
// Handle Failure.

}

public void onSuccess(WLResponse response) {
String secureRandom = response.getResponseText();

try {
List<JSONStoreCollection> collections = new LinkedList<JSONStoreCollection>();
// Create the collections object that will be initialized.
JSONStoreCollection peopleCollection = new JSONStoreCollection("people");
peopleCollection.setSearchField("name", SearchFieldType.STRING);
peopleCollection.setSearchField("age", SearchFieldType.INTEGER);
collections.add(peopleCollection);

// Optional options object.
JSONStoreInitOptions initOptions = new JSONStoreInitOptions();

// Optional username, default ’jsonstore’.
initOptions.setUsername("carlos");

// Optional password, default no password.
initOptions.setPassword("123");

initOptions.setSecureRandom(secureRandom);

Developing MobileFirst applications 8-431

// Open the collection.
WLJSONStore.getInstance(context).openCollections(collections, initOptions);

// Other JSONStore operations (e.g. add, remove, replace, etc.) go here.
}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations (init, add).
ex.printStackTrace(); }

}
};

// Get the secure random from the server:
// The length of the random string, in bytes (maximum is 64 bytes).
int byteLength = 32;
SecurityUtils.getRandomStringFromServer(byteLength, context, listener);
return null;

}
};
aTask.execute(ctx);

Find - locate documents inside the Store
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

JSONStoreQueryParts findQuery = new JSONStoreQueryParts();
JSONStoreQueryPart part = new JSONStoreQueryPart();
part.addLike("name", "carlos");
part.addLessThan("age", 99);
findQuery.addQueryPart(part);

// Add additional find options (optional).
JSONStoreFindOptions findOptions = new JSONStoreFindOptions();

// Returns a maximum of 10 documents, default no limit.
findOptions.setLimit(10);
// Skip 0 documents, default no offset.
findOptions.setOffset(0);

// Search fields to return, default: [’_id’, ’json’].
findOptions.addSearchFilter("_id");
findOptions.addSearchFilter("json");

// How to sort the returned values, default no sort.
findOptions.sortBySearchFieldAscending("name");
findOptions.sortBySeachFieldDescending("age");

// Find documents that match the query.
List<JSONObject> results = peopleCollection.findDocuments(findQuery, findOptions);

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations
throw ex;

}

Replace - change the documents that are already stored inside a
Collection
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {

8-432 IBM MobileFirst Platform Foundation V6.3.0

// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Documents will be located with their ’_id’ field
//and replaced with the data in the ’json’ field.
JSONObject replaceDoc = new JSONObject("{_id: 1, json: {name: ’carlitos’, age: 99}}");

// Mark data as dirty (true = yes, false = no), default true.
JSONStoreReplaceOptions replaceOptions = new JSONStoreReplaceOptions();
replaceOptions.setMarkDirty(true);

// Replace the document.
peopleCollection.replaceDocument(replaceDoc, replaceOptions);

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Remove - delete all documents that match the query
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Documents will be located with their ’_id’ field.
int id = 1;

JSONStoreRemoveOptions removeOptions = new JSONStoreRemoveOptions();

// Mark data as dirty (true = yes, false = no), default true.
removeOptions.setMarkDirty(true);

// Replace the document.
peopleCollection.removeDocumentById(id, removeOptions);

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations
throw ex;

}
catch (JSONException ex) {

// Handle failure for any JSON parsing issues.
throw ex;

}

Count - gets the total number of documents that match a query
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Count all documents that match the query.
JSONStoreQueryParts countQuery = new JSONStoreQueryParts();
JSONStoreQueryPart part = new JSONStoreQueryPart();

// Exact match.
part.addEqual("name", "carlos");
countQuery.addQueryPart(part);

// Replace the document.
int resultCount = peopleCollection.countDocuments(countQuery);
JSONObject doc = peopleCollection.findDocumentById(resultCount);

Developing MobileFirst applications 8-433

peopleCollection.replaceDocument(doc);
}
catch (JSONStoreException ex) {

throw ex;
}

Destroy - wipes data for all users, destroys the internal storage, and
clears security artifacts
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Destroy the Store.
WLJSONStore.getInstance(ctx).destroy();

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations
throw ex;

}

Security - close access to all opened Collections for the current user
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Close access to all collections.
WLJSONStore.getInstance(ctx).closeAll();

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Security - change the password that is used to access a Store
// The password should be user input.
// It is hard-coded in the example for brevity.
String username = "carlos";
String oldPassword = "123";
String newPassword = "456";

// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
WLJSONStore.getInstance(ctx).changePassword(oldPassword, newPassword, username);

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.
throw ex;

}
finally {

// It is good practice to not leave passwords in memory
oldPassword = null;
newPassword = null;

}

Push - get all documents that are marked as dirty, send them to a
MobileFirst adapter, and mark them clean
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

8-434 IBM MobileFirst Platform Foundation V6.3.0

// Check if document with _id 3 is dirty.
List<JSONObject> allDirtyDocuments = peopleCollection.findAllDirtyDocuments();

// Handle the dirty documents here (e.g. calling an adapter).

peopleCollection.markDocumentsClean(allDirtyDocuments);
} catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations
throw ex;

}

Pull - get new data from a MobileFirst adapter
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Pull data here and place in newDocs. For this example, it is hard-coded.
List<JSONObject> newDocs = new ArrayList<JSONObject>();
JSONObject doc = new JSONObject("{id: 1, ssn: ’111-22-3333’, name: ’carlos’}");
newDocs.add(doc);

JSONStoreChangeOptions changeOptions = new JSONStoreChangeOptions();

// Data that does not exist in the collection will be added, default false.
changeOptions.setAddNew(true);

// Mark data as dirty (true = yes, false = no), default false.
changeOptions.setMarkDirty(true);

// The following example assumes that ’id’ and ’ssn’ are search fields,
// default will use all search fields
// and are part of the data that is received.
changeOptions.addSearchFieldToCriteria("id");
changeOptions.addSearchFieldToCriteria("ssn");

int changed = peopleCollection.changeData(newDocs, changeOptions);
}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.
throw ex;

}
catch (JSONException ex) {

// Handle failure for any JSON parsing issues.
throw ex;

}

Check whether a document is dirty
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Check if document with id ’3’ is dirty.
boolean isDirty = peopleCollection.isDocumentDirty(3);

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Developing MobileFirst applications 8-435

Check the number of dirty documents
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Get the count of all dirty documents in the people collection.
int totalDirty = peopleCollection.countAllDirtyDocuments();

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Remove a Collection
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Remove the collection. The collection object is
// no longer usable.
peopleCollection.removeCollection();

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Clear all data that is inside a Collection
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Clear the collection.
peopleCollection.clearCollection();

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Start a transaction, add some data, remove a document, commit the
transaction and roll back the transaction if there is a failure
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

WLJSONStore.getInstance(ctx).startTransaction();

JSONObject docToAdd = new JSONObject("{name: ’carlos’, age: 99}");
// Find documents that match query.
peopleCollection.addData(docToAdd);

8-436 IBM MobileFirst Platform Foundation V6.3.0

//Remove added doc.
int id = 1;
peopleCollection.removeDocumentById(id);

WLJSONStore.getInstance(ctx).commitTransaction();
}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.

// An exception occured. Take care of it to prevent further damage.
WLJSONStore.getInstance(ctx).rollbackTransaction();

throw ex;
}
catch (JSONException ex) {

// Handle failure for any JSON parsing issues.

// An exception occured. Take care of it to prevent further damage.
WLJSONStore.getInstance(ctx).rollbackTransaction();

throw ex;
}

Get file information
Context ctx = getContext();
List<JSONStoreFileInfo> allFileInfo = WLJSONStore.getInstance(ctx).getFileInfo();

for(JSONStoreFileInfo fileInfo : allFileInfo) {
long fileSize = fileInfo.getFileSizeBytes();
String username = fileInfo.getUsername();
boolean isEncrypted = fileInfo.isEncrypted();

}

JSONStore advanced topics
Learn about JSONStore advanced topics.

JSONStore security
You can secure all of the collections in a store by encrypting them.

To encrypt all of the collections in a store, pass a password to the init (JavaScript)
or open (Native iOS and Native Android) API. If no password is passed, none of
the documents in the store collections are encrypted.

Some security artifacts (for example salt) are stored in the keychain (iOS), shared
preferences (Android), isolated storage (Windows 8 Phone), or the credential locker
(Windows 8). The store is encrypted with a 256-bit Advanced Encryption Standard
(AES) key. All keys are strengthened with Password-Based Key Derivation
Function 2 (PBKDF2).

Data encryption is only available on Android, iOS, Windows 8 Phone, and
Windows 8 environments. You can choose to encrypt data collections for an
application, but you cannot switch between encrypted and plain-text formats, or to
mix formats within a store.

The key that protects the data in the store is based on the user password that you
provide. The key does not expire, but you can change it by calling the
changePassword API.

Developing MobileFirst applications 8-437

The data protection key (DPK) is the key that is used to decrypt the contents of the
store. The DPK is kept in the iOS keychain even if the application is uninstalled. To
remove both the key in the keychain and everything else that JSONStore puts in
the application, use the destroy API. This process is not applicable to Android
because the encrypted DPK is stored in shared preferences and wiped out when
the application is uninstalled.

The first time that JSONStore opens a collection with a password, which means
that the developer wants to encrypt data inside the store, JSONStore needs a
random token. That random token can be obtained from the client or from the
server.

When the localKeyGen key is present in the JavaScript implementation of the
JSONStore API, and it has a value of true, a cryptographically secure token is
generated locally. Otherwise, the token is generated by contacting the server, thus
requiring connectivity to the MobileFirst Server. This token is required only the
first time that a store is opened with a password. The native implementations
(Objective-C and Java) generate a cryptographically secure token locally by default,
or you can pass one through the secureRandom option.

The trade-off is between opening a store offline and trusting the client to generate
that random token (less secure), or opening the store with access to the MobileFirst
Server (requires connectivity) and trusting the server (more secure).

Windows 8 and Windows Phone 8 encryption:

You can secure all of the collections in a store by encrypting them.

JSONStore uses SQLCipher as its underlying database technology. SQLCipher is a
build of SQLite that is produced by Zetetic, LLC that adds a layer of encryption to
the database.

JSONStore uses SQLCipher on all platforms. On Android and iOS a free, open
source version of SQLCipher is available, known as the Community Edition and is
incorporated into the versions of JSONStore that is included in IBM MobileFirst
Platform Foundation. The Windows versions of SQLCipher are only available
under a commercial license and cannot be directly redistributed by IBM
MobileFirst Platform Foundation.

Instead, JSONStore for Windows 8 and Windows Phone 8 include SQLite as the
underlying database. If you need to encrypt data for either of these platforms, you
need to acquire your own version of SQLCipher and swap out the SQLite version
that is included in IBM MobileFirst Platform Foundation. For more information,
see “SQLCipher on Windows Phone 8 and Windows 8 or 8.1.”

If you do not need encryption, the JSONStore is fully functional (minus
encryption) by using the SQLite version in IBM MobileFirst Platform Foundation.

SQLCipher on Windows Phone 8 and Windows 8 or 8.1:

To use JSONStore encryption on Windows, you must replace SQLite with
SQLCipher.

8-438 IBM MobileFirst Platform Foundation V6.3.0

http://sqlcipher.net/

Replacing SQLite with SQLCipher for Windows Phone 8:

To use JSONStore encryption on Windows Phone 8, you must replace SQLite with
SQLCipher.

Procedure

1. Run the SQLCipher for Windows Phone extension that comes with the
SQLCipher for Windows Phone Commercial Edition.

2. After the extension finishes installing, locate the SQLCipher version of the
sqlite3.dll file that was just created. There is one for x86, one for x64, and
one for ARM.
C:\Program Files (x86)\Microsoft SDKs\Windows Phone\v8.0\ExtensionSDKs\SQLCipher.WP80\3.0.1\Redist\Retail\<platform>

3. Copy and replace this file to your MobileFirst application.
<Worklight project name>\apps\<application name>\windowsphone8\native\buildtarget\<platform>

Replacing SQLite with SQLCipher for Windows 8:

To use JSONStore encryption on Windows 8, you must replace SQLite with
SQLCipher.

Procedure

1. Run the SQLCipher for Windows Runtime 8.0 extension that comes with the
SQLCipher for Windows Runtime Commercial Edition.

2. After the extension finishes installing, locate the SQLCipher version of the
sqlite3.dll file that was just created. There is one for x86, one for x64, and
one for ARM.
C:\Program Files (x86)\Microsoft SDKs\Windows\v8.0\ExtensionSDKs\SQLCipher.WinRT80\3.0.1\Redist\Retail\<platform>

3. Copy and replace this file to your MobileFirst application.
<Worklight project name>\apps\<application name>\windows8\native\buildtarget\<platform>

Replacing SQLite with SQLCipher for Windows 8.1:

To use JSONStore encryption on Windows 8.1, you must replace SQLite with
SQLCipher.

Procedure

1. Run the SQLCipher for Windows Runtime 8.1 extension that comes with the
SQLCipher for Windows Runtime Commercial Edition.

2. After the extension finishes installing, locate the SQLCipher version of the
sqlite3.dll file that was just created. There is one for x86, one for x64, and
one for ARM.
C:\Program Files (x86)\Microsoft SDKs\Windows\v8.1\ExtensionSDKs\SQLCipher.WinRT81\3.0.1\Redist\Retail\<platform>

3. Copy and replace this file to your MobileFirst application.
<Worklight project name>\apps\<application name>\windows8\native\buildtarget\<platform>

Setting up Touch ID support for JSONStore:

Developers can use Touch ID to store passwords in a protected keychain on iOS
that can be unlocked only with the user's fingerprint. This feature can be used to
store a password that can be used to decrypt a user's JSONStore. The first time a
user opens a JSONStore instance, a random password is generated and stored in
the keychain. This password is used to encrypt the JSONStore. The second time a
user opens a JSONStore instance, the password can be fetched from the keychain,
which is retrieved with Touch ID authentication.

Developing MobileFirst applications 8-439

Before you begin

You must compile your iOS project against the iOS 8 SDK or above for Touch ID
support. As a result, you must use XCode 6 or above.

About this task

You can download the sample application at Touch_ID_for_JSONStore.zip. The
following list of files are included:
v KeychainSecurityUtilities.h: Native header file for JSONStore specific Touch

ID methods. See this file for method documentation.
v KeychainSecurityUtilities.m: Native implementation file for JSONStore specific

Touch ID methods.
v KeychainSecurityUtilitiesPlugin.h: Native header file for the Cordova plug-in.
v KeychainSecurityUtilitiesPlugin.m: Native implementation file for the Cordova

plug-in.
v JSONStoreTouchIdPlugin.js: JavaScript wrapper file for Cordova hybrid calls

that connecting JavaScript to the native Cordova plug-in.
v main.js: Example use of the hybrid API calls.

Note: The JSONStore destroy API does not work with Touch ID.

Procedure

1. For Touch ID to work, you must link against the Apple-provided
Local.Authentication.framework. Add the framework under Project Settings >
Build Phases > Link Binary with Libraries.

2. For native, copy the KeychainSecurityUtilities.h and
KeychainSecurityUtilities.m files to your native project's classes folder. If
your project is a hybrid project, copy the KeychainSecurityUtilitiesPlugin.h
and KeychainSecurityUtilitiesPlugin.m files too.

3. Optional: For hybrid, add the JavaScript interface for the Cordova plug-in
(JSONStoreTouchIdPlugin.js) in the www/default/js/ folder. For more
information about how to use the Cordova plug-in in a MobileFirst hybrid
application, see the main.js file.

4. Optional: Add the following feature tag to the application's config.xml file to
add the KeychainSecurityUtilitiesPlugin to the available plug-ins at run time.
<feature name="KeychainSecurityUtilitiesPlugin">

<param name="ios-package" value="KeychainSecurityUtilitiesPlugin" />
</feature>

Results

When you run the sample application the first time, the application does not
prompt for Touch ID because an existing password is not in the keychain.
Internally, a random password is generated and stored in the keychain. Data is
added and retrieved without a Touch ID prompt. On subsequent runs, Touch ID
authentication is prompted because the password is available in the keychain.
After the JSONStore instance is unlocked, the password is retrieved and used as
the password to decrypt the user's JSONStore.

JSONStore multiple user support
With JSONStore, you can create multiple stores that contain different collections in
a single MobileFirst application.

8-440 IBM MobileFirst Platform Foundation V6.3.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/Touch_ID_for_JSONStore.zip

The init (JavaScript) or open (Native iOS and Native Android) API can take an
options object with a user name. Different stores are separate files in the file
system. The user name is used as the file name of the store. These separate stores
can be encrypted with different passwords for security and privacy reasons.
Calling the closeAll API removes access to all the collections. It is also possible to
change the password of an encrypted store by calling the changePassword API.

An example use case would be various employees that share a physical device (for
example an iPad or Android tablet) and MobileFirst application. In addition, if the
employees work different shifts and handle private data from different customers
while they use the MobileFirst application, multiple user support is useful.

JSONStore performance
Learn about the factors that can affect JSONStore performance.

Network
v IBM MobileFirst Platform Foundation provides APIs for getting information

about the network, for example, WL.Device.getNetworkInfo (JavaScript). Ideally,
getting and sending data from and to a MobileFirst adapter should be done
when the application is using a WiFi network.

v Check network connectivity before you perform operations, such as sending all
dirty documents to a MobileFirst adapter.

v The amount of data that is sent over the network to a client heavily affects
performance. Send only the data that is required by the application, instead of
copying everything inside your backend database.

v If you are using a MobileFirst adapter, consider setting the compressResponse
flag to true. That way, responses are compressed, which generally uses less
bandwidth and has a faster transfer time than without compression.

Memory
v When you use the JavaScript API, JSONStore documents are serialized and

deserialized as Strings between the Native (Objective-C, Java, or C#) Layer and
the JavaScript Layer. One way to mitigate possible memory issues is by using
limit and offset when you use the find API. That way, you limit the amount of
memory that is allocated for the results and can implement things like
pagination (show X number of results per page).

v Instead of using long key names that are eventually serialized and deserialized
as Strings, consider mapping those long key names into smaller ones (for
example:myVeryVeryVerLongKeyName to k or key). Ideally, you map them to short
key names when you send them from the adapter to the client, and map them to
the original long key names when you send data back to the backend.

v Consider splitting the data inside a store into various collections. Have small
documents over various collections instead of monolithic documents in a single
collection. This consideration depends on how closely related the data is and the
use cases for said data.

v When you use the add API with an array of objects, it is possible to run into
memory issues. To mitigate this issue, call these methods with fewer JSON
objects at a time.

v JavaScript and Java have garbage collectors, while Objective-C has Automatic
Reference Counting. Allow it to work, but do not depend on it entirely. Try to
null references that are no longer used and use profiling tools to check that
memory usage is going down when you expect it to go down.

Developing MobileFirst applications 8-441

CPU
v The amount of search fields and extra search fields that are used affect

performance when you call the add method, which does the indexing. Only
index the values that are used in queries for the find method.

v By default, JSONStore tracks local changes to its documents. This behavior can
be disabled, thus saving a few cycles, by setting the markDirty flag to false
when you use the add, remove, and replace APIs.

v Enabling security adds some overhead to the init or open APIs and other
operations that work with documents inside the collection. Consider whether
security is genuinely required. For example, the open API is much slower with
encryption because it must generate the encryption keys that are used for
encryption and decryption.

v The replace and remove APIs depend on the collection size as they must go
through the whole collection to replace or remove all occurrences. Because it
must go through each record, it must decrypt every one of them, which makes it
much slower when encryption is used. This performance hit is more noticeable
on large collections.

v The count API is relatively expensive. However, you can keep a variable that
keeps the count for that collection. Update it every time that you store or
remove things from the collection.

v The find APIs (find, findAll, and findById) are affected by encryption, since
they must decrypt every document to see whether it is a match or not. For find
by query, if a limit is passed, it is potentially faster as it stops when it reaches
the limit of results. JSONStore does not need to decrypt the rest of the
documents to figure out if any other search results remain.

More information

For more information about JSONStore performance, see the JSONStore
performance blog post.

JSONStore concurrency
Learn about JSONStore concurrency.

JavaScript

Most of the operations that can be performed on a collection, such as add and find,
are asynchronous. These operations return a jQuery promise that is resolved when
the operation completes successfully and rejected when a failure occurs. These
promises are similar to success and failure callbacks.

A jQuery Deferred is a promise that can be resolved or rejected. The following
examples are not specific to JSONStore, but are intended to help you understand
their usage in general.

The Options Object with onSuccess and onFailure callbacks that were used in
JSONStore for IBM Worklight V5.0.5 are deprecated in favor of promises.

Instead of promises and callbacks, you can also listen to JSONStore success
(’WL/JSONSTORE/SUCCESS’) and failure (’WL/JSONSTORE/FAILURE’ events. Perform
actions that are based on the arguments that are passed to the event listener.

Example promise definition

8-442 IBM MobileFirst Platform Foundation V6.3.0

https://www.ibm.com/developerworks/community/blogs/worklight/entry/jsonstore_performance_breakdown
https://www.ibm.com/developerworks/community/blogs/worklight/entry/jsonstore_performance_breakdown

var asyncOperation = function () {
// Assumes that you have jQuery defined via $ in the environment
var deferred = $.Deferred();

setTimeout(function() {
deferred.resolve(’Hello’);

}, 1000);

return deferred.promise();
};

Example promise usage
// The function that is passed to .then is executed after 1000 ms.
asyncOperation.then(function (response) {

// response = ’Hello’
});

Example callback definition
var asyncOperation = function (callback) {

setTimeout(function() {
callback(’Hello’);

}, 1000);
};

Example callback usage
// The function that is passed to asyncOperation is executed after 1000 ms.
asyncOperation(function (response) {

// response = ’Hello’
});

Example events
$(document.body).on(’WL/JSONSTORE/SUCCESS’, function (evt, data, src, collectionName) {

// evt - Contains information about the event
// data - Data that is sent ater the operation (add, find, etc.) finished
// src - Name of the operation (add, find, push, etc.)
// collectionName - Name of the collection

});

Objective-C

When you use the Native iOS API for JSONStore, all operations are added to a
synchronous dispatch queue. This behavior ensures that operations that touch the
store are executed in order on a thread that is not the main thread. For more
information, see the Apple documentation at Grand Central Dispatch (GCD).

Java

When you use the Native Android API for JSONStore, all operations are executed
on the main thread. You must create threads or use thread pools to have
asynchronous behavior. All store operations are thread-safe.

Work with external data
Learn about the different concepts that are required to work with external data.

For the actual API examples, see “JSONStore examples” on page 8-419.

Pull

Many systems use the term pull to refer to getting data from an external source.

There are three important pieces:

Developing MobileFirst applications 8-443

https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html#//apple_ref/c/func/dispatch_sync

External Data Source
This source can be a database, a REST or SOAP API, or many others. The
only requirement is that it must be accessible from either the MobileFirst
Server or directly from the client application. Ideally, you want this source
to return data in JSON format.

Transport Layer
This source is how you get data from the external source into your internal
source, a JSONStore collection inside the store. One alternative is a
MobileFirst adapter.

Internal Data Source API
This source is the JSONStore APIs that you can use to add JSON data to a
collection.

Note: You can populate the internal store with data that is read from a file, an
input field, or hardcoded data in a variable. It does not have to come exclusively
from an external source that requires network communication.

Example pull scenario

All of the following code examples are written in pseudocode that looks similar to
JavaScript.

Note: Use MobileFirst adapters for the Transport Layer. Some of the advantages of
using MobileFirst adapters are XML to JSON, security, filtering, and decoupling of
server-side code and client-side code.

External Data Source: Backend REST endpoint
Imagine that you have a REST endpoint that read data from a database
and returns it as an array of JSON objects.
app.get(’/people’, function (req, res) {

var people = database.getAll(’people’);

res.json(people);
});

The data that is returned can look like the following example:
[{id: 0, name: ’carlos’, ssn: ’111-22-3333’},
{id: 1, name: ’mike’, ssn: ’111-44-3333’},
{id: 2, name: ’dgonz’ ssn: ’111-55-3333’)]

Transport Layer: MobileFirst adapter
Imagine that you created an adapter that is called people and you defined
a procedure that is called getPeople. The procedure calls the REST
endpoint and returns the array of JSON objects to the client. You might
want to do more work here, for example, return only a subset of the data
to the client.
function getPeople () {

var input = {
method : ’get’,
path : ’/people’

};

return WL.Server.invokeHttp(input);
}

8-444 IBM MobileFirst Platform Foundation V6.3.0

On the client, you can use the WL.Client.invokeProcedure API to get the
data. Additionally, you might want to pass some parameters from the
client to the MobileFirst adapter. One example is a date with the last time
that the client got new data from the external source through the
MobileFirst adapter.
WL.Client.invokeProcedure({

adapter : ’people’,
procedure : ’getPeople’.
parameters : []

})

.then(function (responseFromAdapter) {
// ...

});

Note: You might want to take advantage of the compressResponse, timeout,
and other parameters that can be passed to the invokeProcedure API.

Alternatively, you can skip the MobileFirst adapter and use something like
jQuery.ajax to directly contact the REST endpoint with the data that you
want to store.
$.ajax({

type: ’GET’,
url: ’http://example.org/people’,

})
.then(function (responseFromEndpoint) {

// ...
});

Internal Data Source API: JSONStore
After you have the response from the backend, you can work with that
data by using JSONStore.

JSONStore provides a way to track local changes. It enables some APIs to
mark documents as dirty. The API records the last operation that was
performed on the document, and when the document was marked as dirty.
You can then use this information to implement features like data
synchronization.

The change API takes the data and some options:

replaceCriteria
These search fields are part of the input data. They are used to locate
documents that are already inside a collection. For example, if you
select:
[’id’, ’ssn’]

as the replace criteria, pass the following array as the input data:
[{id: 1, ssn: ’111-22-3333’, name: ’Carlos’}]

and the people collection already contains the following document:
{_id: 1,json: {id: 1, ssn: ’111-22-3333’, name: ’Carlitos’}}

The change operation locates a document that matches exactly the
following query:
{id: 1, ssn: ’111-22-3333’}

Then the change operation performs a replacement with the input data
and the collection contains:
{_id: 1, json: {id:1, ssn: ’111-22-3333’, name: ’Carlos’}}

Developing MobileFirst applications 8-445

The name was changed from Carlitos to Carlos. If more than one
document matches the replace criteria, then all documents that match
are replaced with the respective input data.

addNew
When no documents match the replace criteria, the change API looks at
the value of this flag. If the flag is set to true, the change API creates a
new document and adds it to the store. Otherwise, no further action is
taken.

markDirty
Determines whether the change API marks documents that are
replaced or added as dirty.

An array of data is returned from the MobileFirst adapter:
.then(function (responseFromAdapter) {

var accessor = WL.JSONStore.get(’people’);

var data = responseFromAdapter.invocationResult.array;

var changeOptions = {
replaceCriteria : [’id’, ’ssn’],
addNew : true,
markDirty : false

};

return accessor.change(data, changeOptions);
})

.then(function() {
// ...

})

You can use other APIs to track changes to the local documents that are
stored. Always get an accessor to the collection that you perform
operations on.
var accessor = WL.JSONStore.get(’people’)

Then, you can add data (array of JSON objects) and decide whether you
want it to be marked dirty or not. Typically, you want to set the markDirty
flag to false when you get changes from the external source. Then, set the
flag to true when you add data locally.
accessor.add(data, {markDirty: true})

You can also replace a document, and opt to mark the document with the
replacements as dirty or not.
accessor.replace(doc, {markDirty: true})

Similarly, you can remove a document, and opt to mark the removal as
dirty or not. Documents that are removed and marked dirty do not show
up when you use the find API. However, they are still inside the collection
until you use the markClean API, which physically removes the documents
from the collection. If the document is not marked as dirty, it is physically
removed from the collection.
accessor.remove(doc, {markDirty: true})

8-446 IBM MobileFirst Platform Foundation V6.3.0

Push

Many systems use the term push to refer to sending data to an external source.

There are three important pieces:

Internal Data Source API
This source is the JSONStore API that returns documents with local-only
changes (dirty).

Transport Layer
This source is how you want to contact the external data source to send
the changes.

External Data Source
This source is typically a database, REST or SOAP endpoint, among others,
that receives the updates that the client made to the data.

Example push scenario

All of the following code examples are written in pseudocode that looks similar to
JavaScript.

Note: Use MobileFirst adapters for the Transport Layer. Some of the advantages of
using MobileFirst adapters are XML to JSON, security, filtering, and decoupling of
server-side code and client-side code.

Internal Data Source API: JSONStore
After you have an accessor to the collection, you can call the getAllDirty
API to get all documents that are marked as dirty. These documents have
local-only changes that you want to send to the external data source
through a transport layer.
var accessor = WL.JSONStore.get(’people’);

accessor.getAllDirty()

.then(function (dirtyDocs) {
// ...

});

The dirtyDocs argument looks like the following example:
[{_id: 1,

json: {id: 1, ssn: ’111-22-3333’, name: ’Carlos’},
_operation: ’add’,
_dirty: ’1395774961,12902’}]

The fields are:

_id
Internal field that JSONStore uses. Every document is assigned a
unique one.

json
The data that was stored.

_operation
The last operation that was performed on the document. Possible
values are add, store, replace, and remove.

_dirty
A time stamp that is stored as a number to represent when the
document was marked dirty.

Developing MobileFirst applications 8-447

Transport Layer: MobileFirst adapter
You can choose to send dirty documents to a MobileFirst adapter. Assume
that you have a people adapter that is defined with an updatePeople
procedure.
.then(function (dirtyDocs) {

return WL.Client.invokeProcedure({
adapter : ’people’,
procedure : ’updatePeople’,
parameters : [dirtyDocs]

});
})

.then(function (responseFromAdapter) {
// ...

})

Note: You might want to take advantage of the compressResponse, timeout,
and other parameters that can be passed to the invokeProcedure API.
On the MobileFirst Server, the adapter has the updatePeople procedure,
which might look like the following example:
function updatePeople (dirtyDocs) {

var input = {
method : ’post’,
path : ’/people’,
body: {
contentType : ’application/json’,
content : JSON.stringify(dirtyDocs)

}
};

return WL.Server.invokeHttp(input);
}

Instead of relaying the output from the getAllDirty API on the client, you
might have to update the payload to match a format that is expected by
the backend. You might have to split the replacements, removals, and
inclusions into separate backend API calls.

Alternatively, you can iterate over the dirtyDocs array and check the
_operation field. Then, send replacements to one procedure, removals to
another procedure, and inclusions to another procedure. The previous
example sends all dirty documents in bulk to the MobileFirst adapter.
var len = dirtyDocs.length;
var arrayOfPromises = [];

while (len--) {

var currentDirtyDoc = dirtyDocs[len];

switch (currentDirtyDoc._operation) {

case ’add’:
case ’store’:

arrayOfPromises.push(WL.Client.invokeProcedure({
adapter : ’people’,
procedure : ’addPerson’,
parameters : [currentDirtyDoc]

}));

8-448 IBM MobileFirst Platform Foundation V6.3.0

break;

case ’replace’:
case ’refresh’:

arrayOfPromises.push(WL.Client.invokeProcedure({
adapter : ’people’,
procedure : ’replacePerson’,
parameters : [currentDirtyDoc]

}));

break;

case ’remove’:
case ’erase’:

arrayOfPromises.push(WL.Client.invokeProcedure({
adapter : ’people’,
procedure : ’removePerson’,
parameters : [currentDirtyDoc]

}));
}

}

$.when.apply(this, arrayOfPromises)
.then(function () {

var len = arguments.length;

while (len--) {
// Look at the responses in arguments[len]

}
});

Alternatively, you can skip the MobileFirst adapter and contact the REST
endpoint directly.
.then(function (dirtyDocs) {

return $.ajax({
type: ’POST’,
url: ’http://example.org/updatePeople’,
data: dirtyDocs

});
})

.then(function (responseFromEndpoint) {
// ...

});

External Data Source: Backend REST endpoint
The backend accepts or rejects changes, and then relays a response back to
the client. After the client looks at the response, it can pass documents that
were updated to the markClean API.
.then(function (responseFromAdapter) {

if (responseFromAdapter is successful) {
WL.JSONStore.get(’people’).markClean(dirtyDocs);

}
})

.then(function () {
// ...

})

After documents are marked as clean, they do not show up in the output
from the getAllDirty API.

Developing MobileFirst applications 8-449

JSONStore wizard (JavaScript only)
The MobileFirst JSONStore wizard can help you create a template JavaScript file
that is based on search fields that are selected from the backend that you provide.
Using the wizard is optional.

Procedure
1. In MobileFirst Studio, create an application.

a. In the Project Explorer tab, right-click the project name.
b. Click New > MobileFirst Hybrid Application. The Hybrid Application

window opens.
c. Enter the appropriate information into the fields in this window and click

Finish. A standard application structure is created.
2. In MobileFirst Studio, create and deploy an adapter.

a. In the Project Explorer tab, right-click the project name.
b. Click New > MobileFirst Adapter. The New MobileFirst Adapter window

opens.
c. Select the appropriate adapter type, enter an adapter name, and select the

JSON Data available offline check box.
d. Optional: To change the suggested procedure names, type over them.
e. Click Finish. A standard adapter structure is created.
f. Deploy the adapter.

3. Retrieve a JSON object with the adapter:
a. Right-click the adapter name.
b. Click Run As > Invoke MobileFirst Procedure. The Edit Configuration

window opens.
c. Select the procedure that is used for retrieving JSON data and click Run.

The JSON object that is returned by the procedure is displayed.
4. Create a local JSONstore:

a. In MobileFirst Studio, click File > New > MobileFirst JSONStore and select
the project and app names. The Create JSON Collection wizard starts.

b. Follow the instructions in the wizard to start the adapter, name the
collection, and specify the searchable fields.

c. Optional: To encrypt collections for an application, select the Encrypt
collections check box in the wizard. The wizard creates a JavaScript file that
is named collection_nameCollection.js in the application's common/js
directory, where collection_name is the name you specified in the wizard.

5. Review the collection_nameCollection.js file and include its content
manually in your application's .js file.

Note: The input data for the JSONStore wizard must be encoded with UTF-8.
Other data encoding is not supported.

JSONStore analytics
You can enable the collection of analytics information for Android and iOS.

Overview

You can collect key pieces of analytics information that are related to JSONStore
with the MobileFirst platform.

8-450 IBM MobileFirst Platform Foundation V6.3.0

File information
File information is collected once per application session if the JSONStore
API is called with the analytics flag set to true. An application session is
defined as loading the application into memory and removing it from
memory. You can use this information to determine how much space is
being used by JSONStore content in the application.

Performance metrics
Performance metrics are collected every time a JSONStore API is called
with information about the start and end times of an operation. You can
use this information to determine how much time various operations take
in milliseconds.

Examples

iOS
JSONStoreOpenOptions* options = [JSONStoreOpenOptions new];
[options setAnalytics:YES];

[[JSONStore sharedInstance] openCollections:@[...] withOptions:options error:nil];

Android
JSONStoreInitOptions initOptions = new JSONStoreInitOptions();
initOptions.setAnalytics(true);

WLJSONStore.getInstance(...).openCollections(..., initOptions);

JavaScript

This example applies only when the application is running on the Android or iOS
environments.
var options = {

analytics : true
};

WL.JSONStore.init(..., options);

JSONStore security utilities
Learn about JSONStore security utilities.

JSONStore security utilities overview
The MobileFirst client-side API provides some security utilities to help protect your
user's data. Features like JSONStore are great if you want to protect JSON objects.
However, it is not recommended to store binary blobs in a JSONStore collection.

Instead, store binary data on the file system, and store the file paths and other
metadata inside a JSONStore collection. If you want to protect files like images,
you can encode them as base64 strings, encrypt it, and write the output to disk.
When it is time to decrypt the data, you can look up the metadata in a JSONStore
collection, read the encrypted data from the disk, and decrypt it using the
metadata that was stored. This metadata can include the key, salt, Initialization
Vector (IV), type of file, path to the file, and others.

At a high level, the SecurityUtils API provides the following APIs:
v Key generation - Instead of passing a password directly to the encryption

function, this key generation function uses Password Based Key Derivation
Function v2 (PBKDF2) to generate a strong 256-bit key for the encryption API. It

Developing MobileFirst applications 8-451

takes a parameter for the number of iterations. The higher the number, the more
time it takes an attacker to brute force your key. Use a value of at least 10,000.
The salt must be unique and it helps ensure that attackers have a harder time
using existing hash information to attack your password. Use a length of 32
bytes.

v Encryption - Input is encrypted by using the Advanced Encryption Standard
(AES). The API takes a key that is generated with the key generation API.
Internally, it generates a secure IV, which is used to add randomization to the
first block cipher. Text is encrypted. If you want to encrypt an image or other
binary format, turn your binary into base64 text by using these APIs. This
encryption function returns an object with the following parts:
– ct (cipher text, which is also called the encrypted text)
– IV
– v (version, which allows the API to evolve while still being compatible with

an earlier version)
v Decryption - Takes the output from the encryption API as input, and decrypts

the cipher or encrypted text into plain text.
v Remote random string - Gets a random hex string by contacting a random

generator on the MobileFirst Server. The default value is 20 bytes, but you can
change the number up to 64 bytes.

v Local random string - Gets a random hex string by generating one locally, unlike
the remote random string API, which requires network access. The default value
is 32 bytes and there is not a maximum value. The operation time is
proportional to the number of bytes.

v Encode base64 - Takes a string and applies base64 encoding. Incurring a base64
encoding by the nature of the algorithm means that the size of the data is
increased by approximately 1.37 times the original size.

v Decode base64 - Takes a base64 encoded string and applies base64 decoding.

JSONStore security utilities setup
Ensure that you import the following files to use the JSONStore security utilities
APIs.

iOS
#import "WLSecurityUtils.h"

Android
import com.worklight.wlclient.api.SecurityUtils

JavaScript

No setup is required.

JSONStore security utilities examples
Learn about JSONStore security utilities examples.

JSONStore security utilities iOS examples:

Learn about JSONStore security utilities iOS examples.

Encryption and decryption
// User provided password, hardcoded only for simplicity.
NSString* password = @"HelloPassword";

// Random salt with recommended length.

8-452 IBM MobileFirst Platform Foundation V6.3.0

NSString* salt = [WLSecurityUtils generateRandomStringWithBytes:32];

// Recomended number of iterations.
int iterations = 10000;

// Populated with an error if one occurs.
NSError* error = nil;

// Call that generates the key.
NSString* key = [WLSecurityUtils generateKeyWithPassword:password

andSalt:salt
andIterations:iterations
error:&error];

// Text that is encrypted.
NSString* originalString = @"My secret text";
NSDictionary* dict = [WLSecurityUtils encryptText:originalString

withKey:key
error:&error];

// Should return: ’My secret text’.
NSString* decryptedString = [WLSecurityUtils decryptWithKey:key

andDictionary:dict
error:&error];

Encode and decode base64
// Input string.
NSString* originalString = @"Hello world!";

// Encode to base64.
NSData* originalStringData = [originalString dataUsingEncoding:NSUTF8StringEncoding];
NSString* encodedString = [WLSecurityUtils base64StringFromData:originalStringData length:originalString.length];

// Should return: ’Hello world!’.
NSString* decodedString = [[NSString alloc] initWithData:[WLSecurityUtils base64DataFromString:encodedString] encoding:NSUTF8StringEncoding];

Get remote random
[WLSecurityUtils getRandomStringFromServerWithBytes:32

timeout:1000
completionHandler:^(NSURLResponse *response, NSData *data, NSError *connectionError) {

// You might want to see the response and the connection error before moving forward.

// Get the secure random string.
NSString* secureRandom = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

}];

Get local random
NSString* secureRandom = [WLSecurityUtils generateRandomStringWithBytes:32];

JSONStore security utilities Android examples:

Learn about JSONStore security utilities Android examples.

Encryption and decryption
String password = "HelloPassword";
String salt = SecurityUtils.getRandomString(32);
int iterations = 10000;

String key = SecurityUtils.generateKey(password, salt, iterations);

String originalText = "Hello World!";

JSONObject encryptedObject = SecurityUtils.encrypt(key, originalText);

// Deciphered text will be the same as the original text.
String decipheredText = SecurityUtils.decrypt(key, encryptedObject);

Encode and decode base64
import android.util.Base64;

String originalText = "Hello World";
byte[] base64Encoded = Base64.encode(text.getBytes("UTF-8"), Base64.DEFAULT);

String encodedText = new String(base64Encoded, "UTF-8");

byte[] base64Decoded = Base64.decode(text.getBytes("UTF-8"), Base64.DEFAULT);

// Decoded text will be the same as the original text.
String decodedText = new String(base64Decoded, "UTF-8");

Developing MobileFirst applications 8-453

Get remote random
Context context; // This is the current Activity’s context.
int byteLength = 32;

// Listener calls the callback functions after it gets the response from the server.
WLRequestListener listener = new WLRequestListener(){

@Override
public void onSuccess(WLResponse wlResponse) {
// Implement the success handler.

}

@Override
public void onFailure(WLFailResponse wlFailResponse) {
// Implement the failure handler.
}

};

SecurityUtils.getRandomStringFromServer(byteLength, context, listener);

Get local random
int byteLength = 32;
String randomString = SecurityUtils.getRandomString(byteLength);

JSONStore security utilities JavaScript examples:

Learn about JSONStore security utilities JavaScript examples.

Encryption and decryption
// Keep the key in a variable so that it can be passed to the encrypt and decrypt API.
var key;

// Generate a key.
WL.SecurityUtils.keygen({

password: ’HelloPassword’,
salt: Math.random().toString(),
iterations: 10000

})

.then(function (res) {

// Update the key variable.
key = res;

// Encrypt text.
return WL.SecurityUtils.encrypt({
key: key,
text: ’My secret text’

});
})

.then(function (res) {

// Append the key to the result object from encrypt.
res.key = key;

// Decrypt.
return WL.SecurityUtils.decrypt(res);

})

.then(function (res) {

// Remove the key from memory.
key = null;

//res => ’My secret text’
})

.fail(function (err) {
// Handle failure in any of the previously called APIs.

});

Encode and decode base64
WL.SecurityUtils.base64Encode(’Hello World!’)
.then(function (res) {

return WL.SecurityUtils.base64Decode(res);
})
.then(function (res) {

//res => ’Hello World!’
})
.fail(function (err) {

// Handle failure.
});

8-454 IBM MobileFirst Platform Foundation V6.3.0

Get remote random
WL.SecurityUtils.remoteRandomString(32)
.then(function (res) {
// res => deba58e9601d24380dce7dda85534c43f0b52c342ceb860390e15a638baecc7b

})
.fail(function (err) {
// Handle failure.

});

Get local random
WL.SecurityUtils.localRandomString(32)
.then(function (res) {
// res => 40617812588cf3ddc1d1ad0320a907a7b62ec0abee0cc8c0dc2de0e24392843c

})
.fail(function (err) {
// Handle failure.

});

Push notification
Push notification is the ability of a mobile device to receive messages that are
pushed from a server. The most common form of notification is SMS (Short
Message Service). Notifications are received regardless of whether the application
is currently running.

Notifications can take several forms, and are platform-dependent:
v Alert: a pop-up text message
v Badge, Tile: a graphical representation that includes a short text or image
v Banner, Toast: a pop-up text message at the top of the device display that

disappears after it has been read
v Audio alert

The MobileFirst unified push notification mechanism enables the sending of mobile
notifications to mobile phones. Notifications are sent through the vendor
infrastructure. For example, iPhone notifications are sent from the MobileFirst
Server to specialized Apple servers, and from there to the relevant phones. The
unified push notification mechanism in IBM MobileFirst Platform Foundation
makes the entire process of communicating with the users and devices completely
transparent to the developer.

Figure 8-49. Push notification mechanism

Developing MobileFirst applications 8-455

Push notification currently works for iOS, Android, and Windows Phone 8. iOS
apps use the Apple Push Notification Service (APNS), Android apps use Google
Cloud Messaging (GCM), and Windows Phone 8 apps use the authenticated and
non-authenticated Microsoft Push Notification Service (MPNS). SMS push
notifications are supported on iOS, Android, Windows Phone 8, Java ME, and
BlackBerry devices that support SMS functions. For more information about setting
up push notification for each platform, see “Setting up push notifications” on page
8-458.

Proxy settings

Use the proxy settings to set the optional proxy through which notifications are
sent to APNS and GCM. You can set the proxy by using the push.apns.proxy.*
and push.gcm.proxy.* configuration properties. For more information, see
“Configuration of MobileFirst applications on the server” on page 11-45.

Architecture

Unlike other IBM MobileFirst Platform Foundation services, the push server
requires outbound connections to Apple, Google, and Microsoft servers using ports
that are defined by these companies.

For more information, see “Possible MobileFirst push notification architectures.”

Possible MobileFirst push notification architectures
IBM MobileFirst Platform Foundation supports two different methods of
implementing push notifications, which are based on how the enterprise back end
provides the messages to the MobileFirst Server.

Two common ways exist to create an IBM MobileFirst Platform Foundation push
notification architecture:
v The Java Message Service (JMS) polling method, in which messages are pulled

from the JMS message queue and sent by the MobileFirst Server
v The enterprise back end method, in which an enterprise back end uses a

MobileFirst adapter to deliver messages to a MobileFirst Server cluster

JMS polling architecture

This architecture relies on the enterprise backend to deliver messages to a single
instance of MobileFirst Server by using a JMS message queue. The developer must
create an IBM MobileFirst Platform Foundation JMS adapter, which pulls messages
from the queue and calls the IBM MobileFirst Platform Foundation server-side
push notification API to process the messages.

8-456 IBM MobileFirst Platform Foundation V6.3.0

When this architecture is used, the flow is as follows:
1. Messages are put into the JMS queue by the enterprise backend.
2. The MobileFirst Server polls the JMS queue by using the JMS adapter,

retrieving messages in short batches and sending them to the push providers.
3. A single MobileFirst Server instance pulls from the JMS queue and sends the

push notifications. Even in a MobileFirst Server cluster, only one MobileFirst
Server polls.

4. The process is implemented by using a MobileFirst JMS adapter, which
functions as follows:
v In a MobileFirst Server cluster, the single polling MobileFirst Server is

selected randomly, by using the IBM MobileFirst Platform Foundation
cluster-sync mechanism.

v If the server that pulls from the JMS queue is shut down, another server
takes its place.

This is the standard architecture. Pros of this method are that it involves an
asynchronous queue, into which you can put the messages that you want to send.
These messages are then processed and pulled later by the MobileFirst Server. Cons
of this method are that only one server is sending the push notifications, so the
maximum messages-per-second throughput is fixed.

Enterprise backend calling the MobileFirst Server architecture

This architecture relies on the enterprise backend to deliver messages to a
MobileFirst Server cluster by calling a MobileFirst adapter procedure.

Figure 8-50. JMS polling push notification architecture

Developing MobileFirst applications 8-457

When this architecture is used, the flow is as follows:
1. The request is routed to one of the MobileFirst Server instances, which sends a

push message to a provider.
2. In this flow, all MobileFirst Server instances can send push notifications, but for

a specific request only one of the server instances performs the task.
3. The enterprise backend initiates calls to the load balancer.

Pros of this method are that all MobileFirst Server can be used to send push
notifications, so you can add more servers if you must send more messages per
second. Cons of this method are that every push message is a transaction on the
MobileFirst Server. You can mitigate this overhead by sending a number of
messages together or by having the MobileFirst adapter procedure that is invoked
call the backend for a batch of messages rather than single messages.

Setting up push notifications
You can send push notifications to mobile devices via the MobileFirst Server. You
can set up push notifications on Android, iOS, and Windows Phone 8.

About this task

The process for setting up push notifications varies significantly for each platform,
and for Android and iOS you must refer to documentation for those products. For
more information about the processes for each platform, see the following tasks:

Setting up push notifications for Android
To set up push notifications for Android devices, you must use the Google Cloud
Messaging (GCM) service. In order to use GCM, you need a valid Gmail account.

Procedure
1. Create a Gmail account.

Figure 8-51. Enterprise backend push notification architecture

8-458 IBM MobileFirst Platform Foundation V6.3.0

a. Open the GCM web page: http://developer.android.com/google/gcm/
gs.html.

b. Open the Google APIs Console page. If you have not done this previously,
you will be asked to create a project. The project has an ID; this is the
senderID value that you use in the application-descriptor.xml file.

c. Click the option to create a new key, and choose the option to create a
server key. The generated key is the key value that you use in the
application-descriptor.xml file. When you create the server key, do not
restrict it to any specific URL. For more information about how to create the
key, see Obtaining an API key.

2. If your organization has a firewall that restricts the traffic to or from the
Internet, you must do the following steps:
a. Configure the firewall to allow connectivity with GCM in order for your

GCM client apps to receive messages. The ports to open are 5228, 5229, and
5230. GCM typically uses only 5228, but it sometimes uses 5229 and 5230.
GCM does not provide specific IP, so you must allow your firewall to accept
outgoing connections to all IP addresses contained in the IP blocks listed in
Google's ASN of 15169. For more information, see Implementing an HTTP
Connection Server.

b. Ensure that your firewall accepts outgoing connections from MobileFirst
Server to android.googleapis.com on port 443.

3. In the application-descriptor.xml file, for <android> set the following
attributes for the <pushsender> element:

Attribute Description

key The key value received from GCM.

senderID The project ID received from GCM.

Note: Android OS 2.3.x devices must be synchronized with a Gmail account.
Android OS 4.x does not impose account synchronization.

Results

Your push notifications setup is now complete.

Setting up push notifications for iOS
To set up push notifications for iOS devices, you must use the Apple Push
Notification Service (APNS). To use APNS, you must be a registered Apple iOS
Developer and obtain an Apple APNS certificate for your application.

Before you begin

Ensure that the following servers are accessible from MobileFirst Server:
v Sandbox servers:

– gateway.sandbox.push.apple.com:2195
– feedback.sandbox.push.apple.com:2196

v Production servers:
– gateway.push.apple.com:2195
– feedback.push.apple.com:2196

Developing MobileFirst applications 8-459

http://developer.android.com/google/gcm/gs.html
http://developer.android.com/google/gcm/gs.html
http://developer.android.com/google/gcm/gs.html#access-key
https://developers.google.com/cloud-messaging/http
https://developers.google.com/cloud-messaging/http

Procedure
1. Follow the required steps to obtain your APNS certificate and password. For

more information, see the developerWorks® article Understanding and setting
up artifacts required to use iOS devices and APNS in a development
environment.

2. Place the Apple APNS certificate file at the root of the application folder, in
which the application-descriptor.xml file is held.

3. Install the Entrust CA root certificate by using SSL port 443.
While you work in development mode, rename your certificate file to
apns-certificate-sandbox.p12. When you move to production, rename your
certificate file to apns-certificate-production.p12. In both cases, place the
certificate file in the environment root folder or in the application root folder.
When the hybrid application has both iPhone and iPad environments, separate
certificates are necessary for push notification. In that case, place those
certificates in the corresponding environment folders.

Note: The environment root folder takes the highest priority.
For more information, see the iOS Developer Library.

4. In the application-descriptor.xml file, for <iPhone> set the following
attributes for the <pushSender> element:

Attribute Description

password The APNS certificate password received
from Apple.

Results

Your push notification setup is now complete.

Setting up push notifications for Windows Phone 8
You can set up a web service to provide authenticated or unauthenticated push
notification on Windows Phone 8.

Before you begin

To use an authenticated push notification service, you must first set up a Secure
Sockets Layer (SSL) certificate keystore. For more information, see SSL certificate
keystore setup. The keystore can contain several certificates, one of which is the
certificate for authenticated push notifications to Microsoft Push Notification
Service (MPNS).

You must also authenticate your web service with Microsoft, as documented in the
Windows Phone Development Center at http://dev.windowsphone.com/en-us/
develop/.

About this task

Authenticated web services have no daily limit on the number of push
notifications they can send, whereas unauthenticated web services are limited to a
rate of 500 push notifications per subscription per day.

For unauthenticated push, no specific setup is required, as shown in the example
at the end of this procedure.

8-460 IBM MobileFirst Platform Foundation V6.3.0

https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en
https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en
https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html
http://dev.windowsphone.com/en-us/develop/

Practically, consider authenticated push notification for production, to protect your
data, and non-authenticated push at development time only.

Procedure

In the application-descriptor.xml file, for <windowsPhone8>, set the following
attributes for the <pushSender> element.

Attribute Setting

serviceName The common name (CN) found in the MPNS
certificate's Subject value.

keyAlias The alias that is used to access the keystore
that the following properties specify in the
worklight.properties file:

v ssl.keystore.path

v ssl.keystore.type

v ssl.keystore.password

keyAliasPassword The password for your key alias.

Results

The serviceName attribute from the application descriptor is passed to the
application's client side, and is used when a new notification channel is created.
The URI token of the notification channel starts with https, rather than http.
MobileFirst Server uses the keyAlias and keyAliasPassword attributes to extract the
certificate from the Java™ keystore file, so that the handshake process with MPNS
can use that certificate. Any push notifications that are eventually submitted to the
application are authenticated and secure.

In response to push notification requests, MPNS returns a response code and a
status. If the request is successful, the response code is 200, and the status is
Received. For details of other response codes, go to the MSDN website at
msdn.microsoft.com, and search for "push notification service response codes".

Example
v For authenticated push notification:

<windowsPhone8>
<pushSender>

<authenticatedPush serviceName="myservice"
keyAlias="janedoe"
keyAliasPassword="a1b2c3d4"</authenticatedPush>

</pushSender>
...
</windowsPhone8>

v For unauthenticated push notification:
<windowsPhone8>

<pushSender/>
...

</windowsPhone8>

Broadcast notifications
Broadcast notifications are notification messages that are targeted to all the devices
that have the MobileFirst application installed and configured for push
notifications.

Developing MobileFirst applications 8-461

http://www.msdn.microsoft.com

Broadcast notifications are enabled by default with any MobileFirst application that
is enabled for push notification. For more information about configuring your
application for push notifications, see “Setting up push notifications” on page
8-458.

Any MobileFirst application that is enabled for push notification has a predefined
subscription to the Push.ALL tag, which is used by MobileFirst Server to broadcast
notification messages to all the devices. To disable broadcast notification for native
app, use unsubscribeTag method of WLPush class, with the tag name Push.ALL.

If you want to disable broadcast notification for hybrid app, use the
unsubscribeTag method of the WL.Client.Push class, with the tag name Push.ALL.

Note: Make sure that the WL.Client.Push.onMessage method is defined in the
application that is called when the push notification arrives.

For more information about sending broadcast notification, see “Broadcast
notification” on page 8-471 section in “Sending push notifications” on page 8-471.

Event source-based notifications
Event source-based notifications are notification messages that are targeted to
devices with a user subscription.

An event source can either poll notifications from the backend system, or wait for
the backend system to explicitly push a new notification. The process of the event
source-based notifications is as follows: :
1. Notifications are retrieved by the MobileFirst adapter event source, either by

poll or by push from the backend system.
2. The adapter processes the notification and sends it to an Apple, Google, or

Microsoft push service mediator.
3. The push service mediator sends a push notification to the device.
4. The device processes the received notification.

To start receiving push notifications, an application must subscribe to an event
source. The event source is a push notification channel to which mobile
applications can register. You can create an event source by declaring a notification
event source in the MobileFirst adapter JavaScript code at a global level, outside
any JavaScript function. For example,
WL.Server.createEventSource({

name: ’PushEventSource’,
onDeviceSubscribe: ’deviceSubscribeFunc’,
onDeviceUnsubscribe: ’deviceUnsubscribeFunc’,
securityTest:’PushApplication-strong-mobile-securityTest’

});

For more information about createEventSource method, see WL.Server class.

After the creation of the event source, you can proceed with the push notification
subscriptions that is described in “Subscribing to an event source” on page 8-463.

For more information about sending event source-based notification, see Event
source-based notification section in “Sending push notifications” on page 8-471.

8-462 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_w_l_push.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.Push.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

Subscribing to an event source
Before a device can start receiving push notifications, it must first subscribe to a
push notification event source. When the user approves the push notification
subscription, the device is registered with an appropriate push server.

About this task

There are two levels of subscription: user subscription and device subscription.
v User subscription is an entity that contains a user ID, a device ID, and an event

source ID. It represents the intent of the user to receive notification from a
specific event source.

v A device subscription belongs to a user subscription, and exists in the scope of a
specific user and event source. A user subscription can have several device
subscriptions.

The user subscription for an event source is created when the user first subscribes
to the event source from any device. The event source is declared in the
MobileFirst adapter that is used by the application for push notification services.

After the user approves a push notification subscription, the device is registered
with an Apple, Google, or Microsoft push server to obtain a token that is used to
identify the device. The token is in the following form: Allow notifications for
application X on device Y. The device then sends a subscription request to the
MobileFirst Server.

To set up the device subscription for hybrid application, use the methods of the
WL.Client.Push class. For native application, use the methods of WLPush class.

Procedure
1. When the application first connects to the MobileFirst Server from the device,

the device registers with a push service mediator and obtains a device token.
This process is done automatically by IBM MobileFirst Platform Foundation.

2. When the token is obtained, the onReadyToSubscribe callback function that is
defined in the application is notified that a device is ready to subscribe to push
notifications.

3. After the onReadyToSubscribe callback is notified, the application subscribes to
a tag by using the subscribe API.

4. Optional: If push notifications are no longer required, you can unsubscribe. The
device subscription is deleted either by an application that calls the
unsubscribe API, or when the push mediator informs the MobileFirst Server
that the device is permanently inaccessible.

Results

While the user subscription exists, the MobileFirst Server can produce push
notifications for the subscribed user.

What to do next

The event source-based notifications can be delivered by the adapter code to all or
some of the devices that the user subscribed from. For more information, see Event
source-based notification section in “Sending push notifications” on page 8-471.

Developing MobileFirst applications 8-463

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.Push.html

Interactive notifications
Interactive notifications allow the users to take actions when a notification is
arrived without opening the application. When an interactive notification arrived,
the device shows the action buttons along with the notification message. Currently,
the interactive notifications are supported on iOS devices with version 8 onwards.
If an interactive notification is sent to iOS devices with version lesser than 8, the
notification actions are not displayed.

Sending interactive push notification

Prepare the notification and send notification. For more information, see “Sending
push notifications” on page 8-471.

You can set a string to indicate the category of notification with the notification
object. Based on the category value, the notification action buttons are displayed.

To set the category in event source notifications, there are two options:
v Create notification JSON object and set category in that object:

var notification = { badge:1, category: ’poll’,};

v Create notification object by using the WL.Server.createDefaultNotification API
and set category on the notification object:
notification.APNS.category= ’poll’;

For more information, see the WL.Server.createDefaultNotification and
WL.Server.notifyAllDevices APIs in WL.Server class.

In Broadcast, Tag-based and Uni-cast notifications set the type while you create the
notification object:
notification.settings.apns.category = ’poll’;

For more information, see the WL.Server.sendMessage API in WL.Server class.

Handling interactive push notifications in hybrid iOS application

You must follow these steps to receive interactive notifications:
1. In the main JavaScript, define the following method to return the registered

categories for the interactive notifications.
WL.Client.Push.getInteractivePushCategories = function(){

var categories = [{
//Category identifier, this is used while sending the notification.
id : "poll",
//Optional array of actions to show the action buttons along with the message.
actions: [

{
//Action identifier
id : "poll_ok",

//Action title to be displayed as part of the notification button.
title : "OK",

//Optional mode to run the action in foreground or background. 1-foreground. 0-background. Default is foreground.
mode: 1,

//Optional property to mark the action button in red color. Default is false.
destructive: false,

//Optional property to set if authentication is required or not before running the action.(Screen lock).
//For foreground, this property is always true.

8-464 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

authenticationRequired: true
},
{

id : "poll_nok",
title : "NOK",
mode: 1,
destructive: false,
authenticationRequired: true

}
],
//Optional list of actions that is needed to show in the case alert.
//If it is not specified, then the first four actions will be shown.
defaultContextActions: [’poll_ok’,’poll_nok’],

//Optional list of actions that is needed to show in the notification center, lock screen.
//If it is not specified, then the first two actions will be shown.
minimalContextActions: [’poll_ok’,’poll_nok’]

}];
return categories;

};

For more information, see WL.Client.Push.getInteractivePushCategories API in
WL.Client.Push class.

2. The notification callback method contains two extra properties that you can use
them to take actions.
v category: The name of the category set while sending the notification.
v action-id: If the user clicks the action button, then this represents the ID of

the action.

Handling interactive push notifications in native iOS application

You must follow these steps to receive interactive notifications:
1. Enable the application capability to perform background tasks on receiving the

remote notifications. This step is required if some of the actions are
background-enabled.

2. In the AppDelegate (application:
didRegisterForRemoteNotificationsWithDeviceTokenapplication:), set the
categories before you set the deviceToken on WLPush Object.
if([application respondsToSelector:@selector(registerUserNotificationSettings:)]){

UIUserNotificationType userNotificationTypes = UIUserNotificationTypeNone | UIUserNotificationTypeSound | UIUserNotificationTypeAlert | UIUserNotificationTypeBadge;

UIMutableUserNotificationAction *acceptAction = [[UIMutableUserNotificationAction alloc] init];
acceptAction.identifier = @"OK";
acceptAction.title = @"OK";

UIMutableUserNotificationAction *rejetAction = [[UIMutableUserNotificationAction alloc] init];
rejetAction.identifier = @"NOK";
rejetAction.title = @"NOK";

UIMutableUserNotificationCategory *cateogory = [[UIMutableUserNotificationCategory alloc] init];
cateogory.identifier = @"poll";
[cateogory setActions:@[acceptAction,rejetAction] forContext:UIUserNotificationActionContextDefault];
[cateogory setActions:@[acceptAction,rejetAction] forContext:UIUserNotificationActionContextMinimal];

NSSet *catgories = [NSSet setWithObject:cateogory];
[application registerUserNotificationSettings:[UIUserNotificationSettings settingsForTypes:userNotificationTypes categories:catgories]];

}

3. Implement new callback method on AppDelegate:
-(void)application:(UIApplication *)application handleActionWithIdentifier:(NSString *)identifier forRemoteNotification:(NSDictionary *)userInfo completionHandler:(void (⌂)())completionHandler

4. This new callback method is invoked when user clicks the action button.

Developing MobileFirst applications 8-465

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.Push.html

5. The implementation of this method must perform the action that is associated
with the specified identifier and execute the block in the completionHandler
parameter.

Tag-based notification
Tag notifications are notification messages that are targeted to all the devices that
are subscribed to a particular tag.

Tags-based notifications allow segmentation of notifications based on subject areas
or topics. Notification recipients can choose to receive notifications only if it is
about a subject or topic that is of interest. Therefore, tags-based notification
provides a means to segment recipients. This feature enables ability to define tags
and then send and receive messages by tags. A message is targeted to only the
devices that are subscribed to a tag.

You must first create the tags for the application, set up the tag subscriptions and
then initiate the tag-based notifications. For more information, see “Setting up
Tag-based notifications.”

For more information about sending tag-based notification, see “Tag-based
notification” on page 8-471 section in “Sending push notifications” on page 8-471.

Setting up Tag-based notifications
You create tags for an application by specifying tag details in the
application-descriptor.xml file. You can then set up tag subscriptions and initiate
tag-based notifications.

Before you begin

In the application-descriptor.xml file, add a <tags> element to specify the tags
that you want for the application, such as customer categories.

The <tags> element is supported by Android, iOS, and Windows Phone 8
environments. Tags represent topics of interest to the user and provide user with
an ability to receive notifications according to the chosen interest. During
application deployment, the specified tags are created, updated, or deleted on the
management database tables. This feature enables ability for sending and receiving
messages by tags. A message is targeted to only the devices that are subscribed for
a tag. In the following example, the <tags> specifies customer categories.
<tags>

<tag>
<name>Silver</name>
<description>Silver customers</description>

</tag>
<tag>
<name>Gold</name>
<description>Gold customers</description>

</tag>
</tags>

About this task

To receive notifications that are targeted to a particular tag, you subscribe the
application to the tags that you defined. To set up tag subscriptions for hybrid
application, you use the methods of the WL.Client.Push class. For native
application, use the methods of WLPush class.

8-466 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.Push.html

Procedure
1. When the application first connects to MobileFirst Server from the device, the

device registers with a push service mediator and obtains a device token. This
process is done automatically by IBM MobileFirst Platform Foundation.

2. When the token is obtained, the onReadyToSubscribe callback method that is
defined in the application is notified that a device is ready to subscribe to push
notifications.

3. After the onReadyToSubscribe callback is notified, the application subscribes to
a tag by calling the subscribeTag method.

4. Optional: You can unsubscribe the application in one of two ways:
v The device subscription is deleted by an application that calls the

unsubscribeTag method.
v The push mediator informs MobileFirst Server that the device is permanently

unaccessible.
5. Make sure that the onMessage method is defined in the application that is called

when the push notification arrives. For hybrid application, see the
WL.Client.Push class. For Android and Windows Phone 8 native application,
see the WLNotificationListener class. The implementation for iOS native
application is different. The notification comes to didReceiveRemoteNotification
method that is defined by default in your appDelegate.m file.

Results

While the tag subscription exists, MobileFirst Server can produce push notifications
for the subscribed tag. These notifications can be delivered by the adapter code to
all the devices that subscribed to the tag.

You can view the notification tags in the MobileFirst Operations Console.

What to do next

After you have set up tag subscriptions, you can send a notification. For more
information, see “Tag-based notification” on page 8-471 section in “Sending push
notifications” on page 8-471.

Silent notifications
Silent notifications are notifications that do not display alerts or otherwise disturb
the user. When a silent notification arrives, the application handing code runs in
background without bringing the application to foreground. Currently, the silent
notifications are supported on iOS devices with version 7 onwards. If the silent
notification is sent to iOS devices with version lesser than 7, the notification is
ignored if the application is running in background. If the application is running in
the foreground, then the notification callback method is invoked.

Sending silent push notification

Prepare the notification and send notification. For more information, see “Sending
push notifications” on page 8-471.

Developing MobileFirst applications 8-467

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.Push.html

The three types of notifications that are supported for iOS are represented by
constants DEFAULT, SILENT, and MIXED. When the type is not explicitly
specified, the DEFAULT type is assumed.

For MIXED type notifications, a message is displayed on the device while, in the
background, the app awakens and processes a silent notification. The callback
method for MIXED type notifications gets called twice - once when the silent
notification reaches the device and once when the application is opened by tapping
on the notification.

To set the type in event source notifications, create notification object by using the
WL.Server.createDefaultNotification API and set type on the notification object:
notification.APNS.type = "DEFAULT" | "SILENT" | "MIXED";

For more information, see the WL.Server.createDefaultNotification and
WL.Server.notifyAllDevices APIs in WL.Server class.

If the notification is event source-based, the silent notifications are ignored if they
arrive before the application registers the callback.

In Broadcast, Tag-based and Uni-cast notifications set the type while you create the
notification object:
notification.APNS.type = "DEFAULT" | "SILENT" | "MIXED";

For more information, see the WL.Server.sendMessage API in WL.Server class.

If the notification is silent, the alert, sound, and badge are ignored.

Handling silent push notifications in hybrid iOS application

In the JavaScript push notification callback method, you must do the following
steps:
1. Check the notification type. For example,

if(props[’content-available’] == 1) {
//Silent Notification or Mixed Notification. Perform non-GUI tasks here.

}
else{

//Normal notification
}

2. If the notification is silent or mixed, after you complete the background job,
invoke WL.Client.Push.backgroundJobDone API. For more information, see
WL.Client.Push class.

Handling silent push notifications in native iOS application

You must follow these steps to receive silent notifications:
1. Enable the application capability to perform background tasks on receiving the

remote notifications.
2. Implement new callback method on AppDelegate (application:

didReceiveRemoteNotification:fetchCompletionHandler:) to receive silent
notifications when the application is running on background.

3. In the callback, check whether the notification is silent or not by checking that
the key content-available is set to 1.

8-468 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.Push.html

4. After you finish processing the notification, you must call the block in the
handler parameter immediately. Otherwise, your app will be terminated. Your
app has up to 30 seconds to process the notification and call the specified
completion handler block.

Unicast notifications
Unicast notifications are notification messages that are targeted to a particular
device or a userID.

Unicast notifications do not require any additional setup and are enabled by
default when the MobileFirst application is enabled for push notifications. For
more information about configuring your application for push notifications, see
“Setting up push notifications” on page 8-458.

For more information about sending unicast notification, see “Unicast notification”
on page 8-472 section in “Sending push notifications” on page 8-471.

Web-based SMS subscription
Subscription, and unsubscription, to SMS notifications can be performed by
making HTTP GET requests to the subscribe SMS servlet. The subscribe SMS
servlet can be used for SMS subscriptions without the requirement for a user to
have an app installed on their device.

Enter the following URL to access the subscribe SMS servlet:
http://<hostname>:<port>/<context>/subscribeSMS

This URL can be used to subscribe and unsubscribe.

You must create an application and an event source within an adapter and deploy
them on the IBM MobileFirst Platform Server before you make calls to the
subscribe SMS servlet. For more information about how to create an event source,
see the createEventSource method in the WL.Server class.

Table 8-61. Subscribe SMS servlet URL parameters

URL
parameter URL parameter description

option Optional string. Subscribe or unsubscribe action to perform. The default
option is subscribe. If any non-blank string other than subscribe is
supplied, the unsubscribe action is performed.

eventSource Mandatory string. The name of the event source. The event source name is
in the format AdapterName.EventSourceName.

alias Optional string. A short ID defining the event source during subscription.
This ID is the same ID as provided in WL.Client.Push.subscribeSMS.

phoneNumber Mandatory string. User phone number to which SMS notifications are sent.
The phone number can contain digits (0-9), plus sign (+), minus sign (-), and
space (⌂) characters only.

userName Optional string. Name of the user. If no user name is provided during
subscription, an anonymous subscription is created by using the phone
number as the user name. If a user name is provided during subscription, it
must also be provided during unsubscription.

Developing MobileFirst applications 8-469

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

Table 8-61. Subscribe SMS servlet URL parameters (continued)

URL
parameter URL parameter description

appId Mandatory string for subscribe. The ID of the application that contains the
SMS gateway definition. The application ID is constructed from the
application name, application environment, and application version. For
example, version 1.0 of Android application SMSPushApp has appId =
SMSPushApp-android-1.0.

Note: If any parameter value contains special characters, this parameter must be
encoded by using URL encoding, also known as percent encoding, before the URL
is constructed. Parameter values containing only the following characters do not
need to be encoded:

a-z, A-Z, 0-9, period (.), plus sign (+), minus sign (-), and underscore (_)

Subscriptions that are created by using the subscribe SMS servlet are independent
of subscriptions that are created by using a device. For example, it is possible to
have two subscriptions for the same phone number and user name; one created by
using the device and one created by using the subscribe SMS servlet. If there are
two subscriptions for the same phone number and user name, unsubscription by
using the subscribe SMS servlet unsubscribes only the subscription that is made
through the subscribe SMS servlet. However, unsubscription by using the IBM
MobileFirst Platform Operations Console unsubscribes both subscriptions.

Security

It is important to secure the subscribe SMS servlet because it is possible for entities
with malicious intent to call the servlet and create spurious subscriptions. By
default,IBM MobileFirst Platform Foundation protects static resources such as the
subscribe SMS servlet. The authenticationConfig.xml file is configured to reject all
requests to the subscribe SMS servlet with a rejecting login module. To allow
restricted access to the subscribe SMS servlet, MobileFirst administrators must
modify the authenticationConfig.xml file with appropriate authenticator and login
modules.

For example, the following configuration in the authenticationConfig.xml file
ensures only requests with a specific user name in the header of the HTTP request
are allowed:

<staticResources>
<resource id="subscribeServlet" securityTest="SubscribeServlet">
<urlPatterns>/subscribeSMS*</urlPatterns>

</resource>
...

</staticResources>

<securityTests>
<customSecurityTest name="SubscribeServlet">

<test realm="SubscribeServlet" isInternalUserID="true"/>
</customSecurityTest>
...

</securityTests>

<realms>
<realm name="SubscribeServlet" loginModule="headerLogin">

<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>
</realm>
...

8-470 IBM MobileFirst Platform Foundation V6.3.0

</realms>

<loginModules>
<loginModule name="headerLogin">

<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="username"/>

</loginModule>
...

</loginModules>

Sending push notifications
When you have set up push notification, whether event-source based, tag-based, or
broadcast-enabled, you can send push notifications from the server.

Broadcast notification

Before you can send a broadcast notification, you must set up broadcast
notifications for the required applications. For more information, see “Broadcast
notifications” on page 8-461.

You can send a broadcast notification in the following way:
v Use the sendMessage method of the WL.Server class. The applicationId and

notificationOptions parameters are mandatory.
v The notificationOptions.target object must not be specified or empty.

Event source-based notification

Before you can send event source-based notification, you must set up the
subscriptions. For more information, see “Subscribing to an event source” on page
8-463.

An event source can either poll notifications from the backend system, or wait for
the backend system to explicitly push a new notification. In this example, a
submitNotifications() adapter function is called by a backend system as an
external API to send notifications.
function submitNotification(userId, notificationText) {

varuserSubscription = WL.Server.getUserNotificationSubscription(’PushAdapter.PushEventSource’, userId);
if(userSubscription === null) {
return{ result: "No subscription found for user :: "+ userId };

}

varbadgeDigit = 1;
varnotification = WL.Server.createDefaultNotification(notificationText, badgeDigit, {custom:"data"});
WL.Server.notifyAllDevices(userSubscription, notification);

return{
result: "Notification sent to user :: "+ userId

};
}

For more information about the various APIs to send notifications, see WL.Server.

Tag-based notification

Before you can send tag-based notifications, you must set up tag subscriptions. For
more information, see “Setting up Tag-based notifications” on page 8-466.

You can send a tag-based notification in the following way:

Developing MobileFirst applications 8-471

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

v Use the sendMessage method of the WL.Server class. The applicationId and
notificationOptions parameters are mandatory.

v Specify the tagNames as an array in the notificationOptions.target.tagNames
object.

Unicast notification

You can send a unicast notification to a particular device in the following way:
v Use the sendMessage method of the WL.Server class. The applicationId and

notificationOptions parameters are mandatory.
v The deviceId(s) as an array in the notificationOptions.target.deviceIds

object.

You can send a unicast notification to a particular user in the following way:
v Use the sendMessage method of the WL.Server class. The applicationId and

notificationOptions parameters are mandatory.
v The userId(s) as an array in the notificationOptions.target.userIds object.

Note: The notification message can target multiple devices or users by specifying
multiple deviceIDs or userIDs in the notificationOptions.tager.deviceIds or
notificationOptions.target.userIds.

Platform or environment-based notification

You can send a platform or environment-based notification in the following way:
v Use the sendMessage method of the WL.Server class. The applicationId and

notificationOptions parameters are mandatory.
v Specify the platform or platforms as an array in the

notificationOptions.target.platforms object. The supported platforms are:
– A (Apple)
– G (Google)
– M (Microsoft)

Restriction

Restriction: The sendMessage method does not support SMS notification. For more
information, see “Sending SMS push notifications.”

Sending SMS push notifications
In addition to standard push notifications, you can also send Short Message
Service (SMS) messages, more commonly known as text messages, to user devices.
To receive SMS notifications, users must first subscribe to a push notification event
source.

About this task

The SMS notification framework extends the push notification framework. SMS
support is provided for Apple, Google, and Windows Phone 8 devices, and for
BlackBerry devices that support SMS functions. IBM MobileFirst Platform
Foundation includes the capability to send SMS notifications to all platforms that
provide SMS support.

8-472 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

Procedure
1. An SMS notification infrastructure is set up.

A MobileFirst adapter acts as a connector to an app that is running on a mobile
device.

2. The user of the mobile device sends a subscribe request from the application to
the event source that is declared in the MobileFirst adapter, by using the
client-side WL.Client.Push.subscribeSMS method.

3. The user subscription to the event source is registered at the MobileFirst Server.
4. When the back-end service must notify the user, it calls a method in the

MobileFirst adapter.
5. The adapter checks whether an SMS subscription exists for that user and, if it

does, sends the SMS alert message through a preconfigured SMS aggregator.
6. Optional: If SMS notifications are no longer necessary, you can unsubscribe.

The subscription is deleted either by an application that calls the
WL.Client.Push.unsubscribeSMS method, or by using the Admin console. For
more information, see Administering push notifications with the MobileFirst
Operations Console.
For a detailed scenario-based example that shows SMS messaging, see the
developerWorks article Send SMS push notifications to your mobile app using
IBM MobileFirst Platform Foundation.

Sending push notifications from WebSphere Application
Server – IBM DB2

To issue push notifications from a WebSphere Application Server that uses IBM
DB2 as its database, a custom property must be added.

About this task

If you use WebSphere Application Server with an IBM DB2 database, errors can
arise when you try to send push notifications. To resolve this situation, you must
add a custom property in WebSphere Application Server, at the data source level.

Procedure
1. Log in to the WebSphere Application Server admin console.
2. Select Resources > JDBC > Data sources > DataSource name > Custom

properties and click New.
3. In the Name field, enter allowNextOnExhaustedResultSet.
4. In the Value field, type 1.
5. Change the type to java.lang.Integer.
6. Click OK to save your changes.
7. Select custom property resultSetHoldability.
8. In the Value field, type 1.
9. Click OK to save your changes.

Configuring a polling event source to send push notifications
Polling event sources can be used to generate notification events, such as push
notifications, that the MobileFirst client framework can subscribe to.

Developing MobileFirst applications 8-473

http://www.ibm.com/developerworks/websphere/techjournal/1305_ramachandra/1305_ramachandra.html
http://www.ibm.com/developerworks/websphere/techjournal/1305_ramachandra/1305_ramachandra.html

About this task

The MobileFirst adapter framework provides the ability to implement event
sources, which can be used to generate notification events such as push
notifications. However, notifications must be retrieved from a back-end system
before they can be sent out. Event sources can either poll notifications from the
back-end system, or wait for the back-end system to explicitly push a new
notification.

This task describes how to create a polling event source, and use it to send push
notifications. A polling event source is a long-running task that has the following
mandatory properties:
v Event source name
v Polling interval
v Polling function

Procedure
v Consider the following simple example. The diagram shows a sample for a basic

polling event source:

The doSomething() function is invoked every three seconds. If you deploy this
adapter to the MobileFirst Server, you see the following logs in the server
console:
The log shows that the doSomething() function is invoked at 3-second intervals.

v This second example shows a more realistic example of a polling event source:

The sample includes the following key elements:
– Lines 7 - 8: The polling event source continuously invokes a

sendNotifications() function with a 3-second interval.
– Lines 18 - 19: Every time the sendNotifications() function is invoked it

requests messages data from the back-end. The sample shows an HTTP
back-end, but it could be any other type of back-end that MobileFirst adapters
support; for example, SQL. The code assumes that the following JSON
markup is returned by the back-end. However, since the MobileFirst adapter
knows how to automatically convert data to JSON, the back-end data could
also be XML.

{
messages: [{

userId: "John",
text: "New incoming transition",
badge: 2,
payload: {}

}, {
userId: "Bob",
text: "Please approve withdrawal",
badge: 5,
payload: {}

}]
}

– Line 22: The code iterates over the received messages array.
– Line 25: Every message contains the user ID of a user that the notification

should be sent to.
– Line 28: Using this user ID, the code tries to obtain a userSubscription object.

8-474 IBM MobileFirst Platform Foundation V6.3.0

– Lines 30 - 33: If a userSubscription object is found for the specified user ID,
a new notification is created and is sent to all user devices.

– Line 35. If a userSubscription object is not found for the specified user ID, an
error is logged.

An important feature of a polling event source is that unlike regular adapter
procedures, the polling function is triggered by the MobileFirst Server itself, and
not by the incoming request. Therefore any data or APIs related to request or
session context are not available or functional. For example, APIs such as
WL.Server.getActiveUser() or WL.Server.getClientRequest() are not functional.
Also, you do not need to expose polling function in the adapter XML file.

Using two-way SMS communication
SMS two-way communication enables communication between a mobile phone
and the MobileFirst Server, over an SMS channel. SMS messages that originate
from the mobile device can be sent to the MobileFirst Server through an external
SMS gateway. The MobileFirst Server can then send a response message back to
the originating mobile device.

Before you begin

To run SMS two-way communication, the mobile device must support SMS
functions.

About this task

Keywords or shortcodes should be configured with the third-party SMS gateway.
The gateway should be configured to forward SMS messages to the SMS servlet of
the MobileFirst Server, either directly or through a reverse proxy URL, based on
the topology in your environment:

http://hostname:port/context/receiveSMS

The SMS messages that are sent from mobile phones are forwarded to an adapter
procedure on the MobileFirst Server, which is configured by the developer. The
adapter procedure can include the logic to process the request, or the procedure
can forward the request to a back-end system for processing. The response is
returned by using the MobileFirst notification framework. For more information,
see Push notification.

The two-way SMS architecture is summarized in the following figure:

Developing MobileFirst applications 8-475

1. The adapter registers SMS event handlers on the MobileFirst Server.
2. SMS messages are sent from mobile devices to the SMS gateway, which is

configured with an SMS servlet of MobileFirst Server.
3. The SMS gateway forwards SMS messages to a configured MobileFirst URL.
4. An SMS servlet on MobileFirst Server matches the parameters with filters that

are defined in SMS event handlers, and calls an adapter callback procedure.
5. The adapter processes SMS messages and sends an SMS message to the mobile

device by using the SMS API.

You use a series of server API methods to send and receive SMS messages:

WL.Server.createSMSEventHandler
Create an SMS event handler.

WL.Server.setEventHandlers
Set event handlers to implement callbacks for received events.

WL.Server.subscribeSMS
Subscribe a phone number to the specified event source.

WL.Server.unsubscribeSMS
Unsubscribe the phone number from the specified event source.

WL.Server.getSMSSubscription
Return an SMS subscription object for a phone number.

Using native and JavaScript push APIs in the same app
You can use Native and JavaScript push APIs in the same MobileFirst app.

Figure 8-52. Two-way SMS architecture

8-476 IBM MobileFirst Platform Foundation V6.3.0

Overview

IBM MobileFirst Platform Foundation provides two sets of APIs to handle push
notifications - native and web (JavaScript). Each of these APIs on its own allows
the application to handle push notifications in its native/JavaScript environment.
However, you can also use both API types in the same app, provided you follow
certain restrictions:

iOS Both APIs rely on an automatic process to initialize push support, triggered
when connecting to the MobileFirst Server. In case the first connection to
the server is made from native code, the Native API must be used for the
Push management operations throughout the app lifecycle (subscribe,
unsubscribe, registerEventSourceCallback, and others). If the first
connection is made form the JavaScript code, the JavaScript API must be
used for these operations.

Android
In the Android Environment, there is a stronger restriction. The native
Push API cannot be used in a hybrid application. The JavaScript API must
be used for Push management operations (subscribe, unsubscribe, and
others).

Reacting to push notifications

It is possible to react to push notifications both in native and JavaScript code in the
same app. Using both provides an enhanced user experience because it allows the
app to react to push notifications in the appropriate context. To achieve the use of
both, follow these steps:

Using a native API for managing push operations (iOS only)
If you are coding in native iOS to handle the received push, forward the
data to JavaScript using the Action Sender API.

Here is an example of JavaScript code:
// register an action receiver function
WL.App.addActionReceiver("myActionReceiverID", myActionReceiver);

// define action receiver function
function myActionReceiver(received)
{

if (received.action == "handlePushFromNative")
{

// handle notification - do something with received.data
}

}

In iOS native code, push notification is handled by the following method:
(void)application:(UIApplication*)application didReceiveRemoteNotification:(NSDictionary*)userInfo

in the implementation of the MyAppDelegate interface. For example:
(void)application:(UIApplication*)applicationdidReceiveRemoteNotification:(NSDictionary*)userInfo
{

BOOL shouldHandleInNative = some applicative logic;
if (shouldHandleInNative)
{
// handle notification in native code

}
else
{

Developing MobileFirst applications 8-477

// send the push data to a Javascript action receiver
[[WL sharedInstance]sendActionToJS:@"handlePushFromNative" withData:userInfo];

}
}

Using a JavaScript API for managing push operations
When the JavaScript API is used to handle push, the push notifications are
handled by the JavaScript callback function that is registered using the API
function WL.Client.Push.registerEventSourceCallback (alias, adapter,
eventSource, callback). To handle the notifications using the native code
of the app, code as follows:

In JavaScript code

Define and register a callback handler for the push notifications. For
example:
WL.Client.Push.registerEventSourceCallback(

"myPush",
"PushAdapter",
"PushEventSource",
pushNotificationReceived

);

function pushNotificationReceived(props, payload) {
alert("pushNotificationReceived invoked");
alert("props :: " + JSON.stringify(props));
alert("payload :: " + JSON.stringify(payload));

}

In native Android code

1. Add a default constructor to the GCMIntentService.java class. For
example:
public GCMIntentService(){
super();

setBroadcastReceiver(new BroadcastReceiver() {

@Override
public void onReceive(Context context, Intent intent) {

//This is Empty Broadcast Receiver, do not implement any logic here
}

});
}

2. In a custom native activity, implement the logic for handling the
received push notification. Define a new broadcast receiver. For
example, you can implement it in the onStart method of the native
activity, as follows:
@Override
protected void onStart() {
super.onStart();

//Action name for inner push messages
String action = getPackageName() + "." + getString(R.string.app_name) + ".C2DM_MESSAGE";

//Register Custom Push Broadcast Receiver
registerReceiver(new BroadcastReceiver() {

@Override
public void onReceive(Context context, Intent intent) {

if (isHandleInNative){ //Some variable controlled by applicative code
Message message = intent.getParcelableExtra("message");

// Custom Native Logic here using the Message class, use message.toString()

8-478 IBM MobileFirst Platform Foundation V6.3.0

// to receive the JSON object with push notification data.

//Abort will prevent from sending the broadcast to hybrid part
abortBroadcast();
}

}
}, new IntentFilter(action));

}

In native iOS codeAdd the method
-(void)application:(UIApplication*)application didReceiveRemoteNotification:(NSDictionary*)userInfo

to the implementation of the MyAppDelegate interface. The method should
implement the following logic:
- (void)application:(UIApplication*)application didReceiveRemoteNotification:(NSDictionary*)userInfo

{
BOOL shouldHandleInNative = some applicative logic;
if (shouldHandleInNative)
{
// handle notification

}
else
{
// call the worklight framework implementation - this will
// invoke the Javascript callback handler
[super application:application didReceiveRemoteNotification:userInfo];

}
}

Troubleshooting push notification problems
Find information to help resolve push notification issues that you might encounter.

Developing MobileFirst applications 8-479

iOS Push

Table 8-62. iOS Push issues

Problem Actions to take

The push notification fails to send, and you
see the following exception in the server log:

com.notnoop.exceptions.InvalidSSLConfig: java.io.IOException: Error in loading the keystore: Private key decryption error: (java.security.InvalidKeyException: Illegal key size)

at com.notnoop.apns.internal.Utilities.newSSLContext(Utilities.java:88)

at com.ibm.pushworks.server.notification.apns.ApplicationConnection.createBuilderWithCertificate(ApplicationConnection.java:180)
at com.ibm.pushworks.server.notification.apns.ApplicationConnection.<init>(ApplicationConnection.java:59)

...

To resolve this problem, complete the
following steps.

1. Download the unrestricted version of the
JCE policy files.

a. Log in to Unrestricted SDK JCE
policy files.

b. Select Unrestricted JCE Policy files
for SDK for all newer versions
(Version 1.4.2 and higher).

c. Click Continue and finish the
download process.

There are 3 files in the .zip file:

v readme.txt

v local_policy.jar

v US_export_policy.jar

2. Update the JCE policy files for the server
environment.

a. Stop the server.

b. Use the new local_policy.jar file
and the new US_export_policy.jar
file to replace the old
local_policy.jar file and the
US_export_policy.jar file that are
found in the <jdk_path>/jre/lib/
security folder.
Note: The <jdk_path> might be
bundled with the server.

c. Restart the server.

MobileFirst security framework
This collection of topics contains information about and tasks for using MobileFirst
security framework in applications.

MobileFirst security overview
An overview of security features within IBM MobileFirst Platform Foundation.

The following sections provide high-level information about the MobileFirst
security model.

Goals and structure of MobileFirst security framework

The MobileFirst security framework serves two main goals. It controls access to the
protected resources, and it propagates the user (or server) identity to the backend
systems through the adapter framework.

It is key to the success of the application that the MobileFirst security framework
does not include its own user registry, credentials storage, or access control
management. Instead, it delegates all those functions to the existing enterprise

8-480 IBM MobileFirst Platform Foundation V6.3.0

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

security infrastructure. This delegation allows MobileFirst Server to integrate
smoothly as a presentation tier into the existing enterprise landscape. Integration
with the existing security infrastructure is an important feature of the MobileFirst
security framework, and supports custom extensions that allow integration with
virtually any security mechanism.

Another feature of the IBM MobileFirst Platform Foundation security framework is
support of multi-factor authentication. It means that any protected resource can
require multiple checks to control access. A typical example of multi-factor
authentication is the combination of device, application, and user authentication.

Each type of security check has its own configuration, and a configured check is
called a realm. Multiple realms can be grouped in a named entity that is called a
security test. Each protected resource refers to the security test. All the configuration
entities are defined in a single configuration file so that the definitions can be
reused across different protected resources.

An implementation of security checks usually includes a client part and a server
part. The two parts interact with each other according to their private protocol.
This protocol is usually a sequence of 1) challenges that are sent by the server and
2) responses that are returned by the client.

The IBM MobileFirst Platform Foundation security framework provides a wire
protocol. This protocol allows the combination of challenges and responses of
multiple security checks during a single request-and-response round trip. The
protocol serves two important purposes: it allows the number of extra round trips
between the client and server to be minimized, and it separates the application
logic and the security checks implementation.

Developing MobileFirst applications 8-481

Protected resources and authentication context

A protected resource can be any of the following items:
v Application

Any request to the application requires successful authentication in all realms of
the security test that is defined in the application descriptor.

v Adapter procedure

Procedure invocation requires successful authentication in all realms of the
security test that is defined in the adapter descriptor. The user identity and
credentials that are obtained during such authentication can be propagated to
the enterprise information system represented by this adapter.

v Event source

Subscription to push notifications requires successful authentication in all realms
of the security test that are defined in the event source definition (in adapter
JavaScript).

v Static resource

Static resources are defined as URL patterns in the authentication configuration
file. They allow protection of "static" web applications such as the MobileFirst
Operations Console.

During the session, an application can access different resources. The results of the
authentication in different realms are stored in the session authentication context.
These results are then shared among all of the protected resources in the scope of
the current session.

Realms and security tests

A realm represents a fully configured security check that must be completed before
it can allow access to a protected resource. The semantics of the checks are not
limited to the authentication, but can implement any logic that can serve as
protection for the server-side application resources, for example:
v User authentication
v Device authentication and provisioning
v Application authenticity check
v Remote disable of the ability to connect to MobileFirst Server
v Direct update
v Anti-XSRF check (cross-site request forgery)

The realms are defined in the authentication configuration file on the MobileFirst
project level. A realm consists of two parts: the authenticator and the login module.
The authenticator obtains the credentials from the client, and the login module
validates those credentials, and builds the user identity.

The realms are grouped into security tests, which are defined in the same
authentication configuration files. The security test defines not only the group of
realms, but also the order in which they must be checked. For example, it often
makes sense not to ask for the user credentials until you make sure that the
application itself is authentic.

Since some realms are relevant only to mobile or only to web environments, the
configuration of a security test can be non-trivial. IBM MobileFirst Platform
Foundation provides simplified security test configurations for mobile and web
environments. It is also possible to create a custom security test from scratch.

8-482 IBM MobileFirst Platform Foundation V6.3.0

MobileFirst protocol and client challenge handlers

Each security check defines its own protocol, which is a sequence of challenges
that are sent by the server and responses that are sent by the client. On the server
side, the component that implements this private protocol is the authenticator. On
the client side, the corresponding component is called the challenge handler.

When the client request tries to access a protected resource, MobileFirst Server
checks all the appropriate realms. Several realms can decide to send a challenge.
Challenges from multiple realms are composed into a single response and sent
back to the client.

MobileFirst client infrastructure extracts the individual challenges from the
response, and routes them to the appropriate challenge handlers. When a challenge
handler finishes the processing, it submits its response to the MobileFirst client
infrastructure. As an example, this occurs when the challenge handler obtains the
user name and password from a login user interface. When all the responses are
received, the MobileFirst client infrastructure resends the original request with all
the challenge responses.

MobileFirst Server extracts those responses from the request and passes them to
the appropriate authenticators. If an authenticator is satisfied, it reports a success,
and MobileFirst Server calls the login module. If the login module succeeds in
validating all of the credentials, the realm is considered successfully authenticated.
If all the realms of the security test are successfully authenticated, MobileFirst
Server allows the request processing to proceed.

If a realm check fails, its authenticator sends another (or the same) challenge to the
client, and the whole process repeats.

Combining multiple challenges and responses into a single response and request
maximizes security efficiency by reducing the number of extra round trips. For
example, the checks for device authentication, application authenticity, and direct
update can be done in a single round trip.

The fact the MobileFirst client infrastructure automatically resends the original
request with the challenge responses allows separation between the application
logic and security aspects. Though any application request can result in a security
challenge, the application logic must not include any special processing for that
case. The challenge handlers are not related to the application context and can
focus on the security-related logic.

Integration with container security

MobileFirst Server is technically a web application hosted by an application server
(such as WebSphere Application Server). Thus, it is often desirable to reuse
authentication capabilities of the application server for MobileFirst Server, and vice
versa. Since this task can be non-trivial, it is important to understand the
differences between IBM MobileFirst Platform Foundation and Web Container
authentication models:
v The Java Platform, Enterprise Edition model allows only one authentication

scheme for a web application. Multiple resource collections are defined by URL
patterns, with authentication constraints defined by a white list of role names.

Developing MobileFirst applications 8-483

v The MobileFirst model, by contrast, allows protection of each resource by
multiple authentication checks, and the resources are not necessarily identified
by the URL pattern. In some cases, authentication can be triggered dynamically
during the request processing.

As a result, the authentication integration between MobileFirst Server and the Java
Platform, Enterprise Edition container is implemented as a custom IBM MobileFirst
Platform Foundation realm. This realm can interact with the container and obtain
and set its authenticated principal.

MobileFirst Server includes a set of login modules and authenticators for
WebSphere Application Server full profile and WebSphere Application Server
Liberty profile that implement this integration with LTPA tokens. The integration
works as follows:
v If the caller principal (an entity that can be authenticated) of the servlet request is

already set, the container authentication was successful, and the same principal
is set as the MobileFirst user identity. This case assumes that the MobileFirst
WAR file has appropriate login configuration and resource collection definitions.
Including this information can be tricky because the web.xml file for MobileFirst
project is generated automatically, and those definitions would be overwritten in
every build.

v If the incoming request contains a Lightweight Third Party Authentication
(LTPA) token, the login module validates it, and creates the MobileFirst user
identity.

v If the request does not contain an LTPA token, the authenticator requests the
user name and password from the client. The login module validates them and
creates the MobileFirst user identity. In addition, it creates the LTPA token, and
sends it back to the client as a cookie. In this case, the authentication capabilities
of WebSphere Application Server are reused by MobileFirst realms in the form of
Java utilities that implement validation and building of an LTPA token.

Integration with web gateways

Web gateways like DataPower and IBM Security Access Manager provide user
authentication so that only authenticated requests can reach the internal
applications. The internal applications can obtain the result of the authentication
that is done by the gateway from a special header, for example, an LTPA token.

When MobileFirst Server is protected by a web gateway, it means that the client
requests first encounter the gateway. The gateway sends back a login form and
validates the credentials, and if the validation is successful, submits the request to
the MobileFirst Server. This sequence implies the following requirements on the
MobileFirst security elements:
v The client-side challenge handler must be able to present the gateway's login

form, submit the credentials, and recognize the login failure and success.
v The authentication configuration must include the realm that can obtain and

validate the token that is provided by the gateway.
v The security test configuration must take into account that the user

authentication is always done first. For example, there is no point in using the
device single sign-on (SSO) feature because the user credentials are requested by
the gateway.

Further information on security, as it is implemented in IBM MobileFirst Platform
Foundation, is provided in the following overview of security features. There are

8-484 IBM MobileFirst Platform Foundation V6.3.0

links to the relevant sections of the documentation, which pertain to them.

Integration with IBM Security Access Manager

IBM Security Access Manager can be integrated with IBM MobileFirst Platform
Foundation to provide the following protections by using risk-based access
decisions to protect MobileFirst applications and adapters as listed here:
v User authentication
v SSO
v Identity attributes
v Fine-grained authorization

SSO can be achieved to the mobile client and in adapter server connections. The
context-based access policies can be defined to provide identity assurance and
strong authentication with a one time password (OTP) for adapter-based
transactions in IBM MobileFirst Platform Foundation and application
authentication.

For more information about IBM Security Access Manager, see IBM Security Access
Manager for IBM MobileFirst Platform Foundation.

MobileFirst application authenticity overview
An overview of application authenticity features and procedures within IBM
MobileFirst Platform Foundation

IBM MobileFirst Platform Foundation framework provides a number of security
mechanisms. One of them is a security test for application authenticity. Most
MobileFirst security mechanisms are based on the same concept: obtaining identity
through challenge handling. Just as the user authentication realm is used to obtain
and validate the identity of a user, an application authenticity realm is used to
obtain and validate the identity of an application. Therefore, this process is referred
to as application authenticity.

Any entity can access HTTP services (APIs) that are available from MobileFirst
Server by issuing an HTTP request. Therefore, it is suggested that you protect
relevant services with a number of security tests. Application authenticity makes
sure that any application that tries to connect to MobileFirst Server is authentic
and was not tampered with or modified by some attacker.

Note: This authenticity feature is not available if you use the internal MobileFirst
Development Server that is embedded in MobileFirst Studio. For more information,
see “Installing MobileFirst Studio” on page 6-2.

Authenticity process

Application authenticity checks use the same transport protocol as other
MobileFirst authentication framework realms:
1. The application makes an initial request to MobileFirst Server.
2. MobileFirst Server goes through the authentication configuration and finds that

this application must be protected by an application authenticity realm.
3. MobileFirst Server generates a challenge token and returns it to application.
4. The application receives the challenge token.

Developing MobileFirst applications 8-485

http://www.ibm.com/support/docview.wss?uid=swg24034222
http://www.ibm.com/support/docview.wss?uid=swg24034222

5. The application processes the challenge token and generates a challenge
response.

6. The application submits the challenge response to MobileFirst Server.
7. If the challenge response is valid, MobileFirst Server serves the application with

the required data.
8. If the challenge response is invalid, MobileFirst Server refuses to serve the

application.

The two most important things to understand about Step 5 are the following ones:
v The token is not processed by JavaScript; instead it is processed with compiled

native code. This procedure ensures that no attacker can see the logic behind the
token processing.

v Application authenticity is based on certificate keys, which are used to sign the
application bundle. Only the developer or enterprise who has access to the
original private key of the application can to modify, repackage, and resign the
bundle. This process ensures tight security.

Enabling an application authenticity check (example)

Currently, application authenticity is supported only on iOS, Android and
Windows Phone 8 environments.

The following example shows the steps for enabling application authenticity on
iOS, Android, and Windows Phone 8:
1. Modify the authenticationConfig.xml file to add relevant authenticity realms

to your security tests:
v If you use <mobileSecurityTest>, you must add the <testAppAuthenticity/>

child element to this file.
v If you use <customSecurityTest>, you must add <test

realm=”wl_authenticityRealm”/> child element to the file.

After you have updated your authenticationConfig.xml file, rebuild, and
redeploy the .war file.

2. Modify the application-descriptor.xml file of your application.

Remember: In the application-descriptor.xml file, you must also define a
security test. For more information, see “Security tests” on page 8-490.
The procedure is different for iOS, Android and Windows Phone 8
environments.

For iOS

a. Specify the bundleId attribute of your application exactly as you
defined it in the Apple Developer portal:

For example:

8-486 IBM MobileFirst Platform Foundation V6.3.0

<iphone bundleId="com.worklight.MyBankApp" version="1.0">
<worklightSettings include="false"/>
<security>

<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>

</security>
</iphone>

b. Add the applicationId attribute to the iPhone or iPad element in
the application-descriptor.xml file. The applicationId value must
match the value of the application id property, which you can find
in the worklight.plist file. For example:
<iphone bundleId="com.worklight.MyBankApp" applicationId="MyBankApp" version="1.0">

Note: If you decide to change the value of the application ID,
ensure that you change it both in the application-descriptor.xml
file and in the worklight.plist file.

c. In addition, for a native iOS app, in your XCode project, under
Build Settings > Linking > Other Linker Flags, add the -ObjC flag.

For Android

a. Extract the public signing key of the certificate that is used to sign
the application bundle (.apk file).
MobileFirst Studio provides tools to simplify this process.
v If you are building your application for distribution (production),

you must extract the public key from the certificate that you are
using to sign your production-ready application.

v If you are building your application in a development
environment, you can use the public key from a default
development certificate that is supplied by Android. You can find
the development certificate in a keystore under
{user-home}/.android/debug.keystore.

You can either extract the public key manually or use a wizard that
is provided by MobileFirst Studio. If you use the wizard, proceed as
follows:
1) Right-click your Android environment and select Extract public

signing key.
2) Specify the location and password of the keystore file and click

Load Keystore. The default password for debug.keystore is
android.

3) Select key alias and click Next.

Developing MobileFirst applications 8-487

The public key is displayed on a window:

When you click Finish, the public key is automatically pasted into
the relevant section of application-descriptor.xml.

b. Add the application package name to the application-
descriptor.xml file in either of the following ways:
v In the Application Descriptor editor (accessible from the design

view), in the Application package name field, add the value of
the package attribute of the <manifest> element in the
AndroidManifest.xml file.

v Use your preferred text editor to edit the application-
descriptor.xml file directly. For example:
<android securityTest="customTests" version="1.0">

<worklightSettings include="false"/>
<security>

8-488 IBM MobileFirst Platform Foundation V6.3.0

<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>
<publicSigningKey>my-very-long-public-key</publicSigningKey>
<packageName>com.myPackageName</packageName>

</security>
</android>

Note: If you decide to change the application package name, ensure
that you change it both in the application-descriptor.xml file and
in the AndroidManifest.xml file.

For Windows Phone 8

a. Add the productId element to the security element that is defined
in the application-descriptor.xml file. The productId value is
mentioned in Properties/WMAppManifest.xml:

b. Add the applicationId element to the security element that is
defined in the application-descriptor.xml file. The applicationId
value must match the value of the wlAppId property, which you can
find in the wlclient.properties file. For example:
<windowsPhone8 version="1.0">

<uuid>89836575-5405-4fa7-94b2-45f300201a1c</uuid>
<security>
<applicationId>HelloWorklight</applicationId>
<productId>fca81480-7b4a-4ed0-b387-078e8fa0c3d5</productId>

</security>
</windowsPhone8>

For more information about the security element, see “The
application descriptor” on page 8-24.

3. After you have updated the required elements, rebuild and redeploy your
application to MobileFirst Server.

Controlling application authenticity from MobileFirst Operations
Console

Through the MobileFirst Operations Console , you can enable or disable the
application authenticity realm at run time. This feature is useful for development
and QA environments. You can set one of the following modes:
v Enabled, blocking: The application authenticity check is enabled. If the

application fails the check, it is not served by MobileFirst Server.
v Enabled, serving: The application authenticity check is enabled. If the

application fails the check, it is still served by MobileFirst Server.
v Disabled: The application authenticity check is disabled.

Developing MobileFirst applications 8-489

Security tests
A security test defines a security configuration for a protected resource. Predefined
tests are supplied for standard web and mobile security requirements. You can
write your own custom security tests and define the sequence in which they are
implemented. In web and mobile security tests, you cannot define the sequence in
which realms are processed. If you want to define the sequence, you must write
your own custom security test and use the step property.

A security test specifies one or more authentication realms and an authentication
realm can be used by any number of security tests. A protectable resource can be
protected by any number of realms.

A protected resource is protected by a security test. When a client attempts to
access a protected resource, IBM MobileFirst Platform Foundation checks whether
the client is already authenticated according to all realms of the security test. If the
client is not yet authenticated, IBM MobileFirst Platform Foundation triggers the
process of authentication for all unauthenticated realms.

Before you define security tests, define the authentication realms that the tests use.

Define a security test for each environment in the application-descriptor.xml file,
by using the property securityTest="test_name". If no security test is defined for
a specific environment, only a minimal set of default platform tests is run.

You can define three types of security test:

webSecurityTest
A test that is predefined to contain realms that are related to web security.

Use a webSecurityTest to protect web applications.

A webSecurityTest must contain one testUser element with a realm
definition for user authentication. The identity that is obtained from this
realm is considered to be a user identity.

By default, a webSecurityTest includes protection against cross-site request
forgery (XSRF) attacks.

mobileSecurityTest
A test that is predefined to contain realms that are related to mobile
security.

Use a mobileSecurityTest to protect mobile applications.

A mobileSecurityTest must contain one testUser element with a realm
definition for user authentication. The identity that is obtained from this
realm is considered to be a user identity.

A mobileSecurityTest must contain one testDevice element with a realm
definition for device authentication. The identity that is obtained from this
realm is considered to be a device identity.

By default, a mobileSecurityTest includes protection against XSRF attacks,
automatic checking for Direct Updates every session, and the ability to
remotely disable, from the MobileFirst Operations Console, the ability for
the app to connect to MobileFirst Server.

customSecurityTest
A custom security test. No predefined realms are added. Only tests that are
included are tested.

8-490 IBM MobileFirst Platform Foundation V6.3.0

Use a customSecurityTest to define your own security requirements and
the sequence and grouping in which they occur.

You can define any number of tests within a customSecurityTest. Each test
specifies one realm. To define a realm as a user identity realm, add the
property isInternalUserId="true" to the test. The isInternalUserID
attribute means that this realm is used for user identification for reporting
and push subscriptions. There must be exactly one such realm for every
security configuration that is applied to a mobile or web resource.

For a device auto provisioning realm, the isInternalDeviceID attribute
means that this realm is used for device identification for reporting, push
subscriptions, and device SSO features. There must be exactly one such
realm for every security configuration that is applied to a mobile resource.

Important: When you use device auto provisioning in customSecurityTests,
an authenticity realm must also be present within the tests, otherwise
provisioning cannot succeed.

To specify the order in which a client must authenticate in the different
realms, add the property step="n" to each test, where n indicates the
sequence. If a sequence is not specified, then all tests are done in a single
step.

Note: Application authenticity and Device provisioning are not supported in Java
Platform, Micro Edition (Java ME).

Sample security tests

The following figure shows what a webSecurityTest and a mobileSecurityTest
contain. The security tests on the right are detailed equivalent of the security tests
on the left.

The webSecurityTest contains:
v The following realms, enabled by default: wl_anonymousUserRealm and

wl_antiXSRFRealm.
v The user realm that you must specify.

The mobileSecurityTest contains:
v The following realms, enabled by default: wl_anonymousUserRealm,

wl_antiXSRFRealm, wl_remoteDisableRealm and wl_deviceNoProvisioningRealm.
v The user and device realms that you must specify.

A customSecurityTest has no realms that are enabled by default. You must define
all realms that you want your customSecurityTest to contain.

For a webSecurityTest:
<webSecurityTest name="webTest">

<testUser realm="wl_anonymousUserRealm"/>
</webSecurityTest>

The equivalent as a customSecurityTest:
<customSecurityTest name="webTest">

<test realm="wl_antiXSRFRealm" />
<test realm="wl_anonymousUserRealm" isInternalUserId="true" />

</customSecurityTest>

Developing MobileFirst applications 8-491

For a mobileSecurityTest:
<mobileSecurityTest name="mobileTest">

<testUser realm="wl_anonymousUserRealm"/>
<testDeviceId provisioningType="none" />

</mobileSecurityTest>

The equivalent as a customSecurityTest:
<customSecurityTest name="mobileTest">

<test realm="wl_antiXSRFRealm" />
<test realm="wl_remoteDisableRealm" />
<test realm="wl_anonymousUserRealm" isInternalUserID="true" />
<test realm="wl_deviceNoProvisioningRealm" isInternalUserID="true" />

</customSecurityTest>

Usually, you add your own realm to your configuration to authenticate users. The
following example shows a configuration where the realm named
MyUserAuthRealm is the realm that the developer added.

Example with your own realm name as a realm definition for testUser:

For a webSecurityTest:
<webSecurityTest name="webTest">

<testUser realm="MyUserAuthRealm"/>
</webSecurityTest>

The equivalent as a customSecurityTest
<customSecurityTest name="webTest">

<test realm="wl_antiXSRFRealm" />
<test realm="MyUserAuthRealm" isInternalUserId="true" />

</customSecurityTest>

For a mobileSecurityTest:
<mobileSecurityTest name="mobileTest">

<testUser realm="MyUserAuthRealm"/>
<testDeviceId provisioningType="none" />

</mobileSecurityTest>

The equivalent as a customSecurityTest:
<customSecurityTest name="mobileTest">

<test realm="wl_antiXSRFRealm" />
<test realm="wl_remoteDisableRealm" />
<test realm="MyUserAuthRealm" isInternalUserID="true" />
<test realm="wl_deviceNoProvisioningRealm" isInternalUserID="true" />

</customSecurityTest>

Authentication realms
Resources are protected by authentication realms. Authentication processes can be
interactive or non-interactive.

An authentication realm defines the process to be used to authenticate users, and
consists of the following steps:
1. Specification of how to collect user credentials, for example, by using a form,

using basic HTTP authentication or using SSO.
2. Specification of how to verify the user credentials, for example, checking that

the password matches the user name, or by using an LDAP server or some
other authentication server.

8-492 IBM MobileFirst Platform Foundation V6.3.0

3. Specification of how to build the user identity, that is, how to build objects that
contain all the necessary user properties.

The same realm can be used in different security tests. In this case, clients must
undergo the authentication process that is defined for the realm only once.

Authentication processes can be interactive or non-interactive, as demonstrated in
the following authentication process examples:
v An example of interactive authentication is a login form that is displayed when

a user attempts to access a protected resource. The authentication process
includes verifying the user credentials.

v An example of non-interactive authentication is a user cookie that the
authentication process looks for when a user attempts to access a protected
resource. If there is a cookie, this cookie is used to authenticate the user. If there
is no cookie, a cookie is created, and this cookie is used to authenticate the user
in the future.

User certificate authentication realm
The user certificate authentication realm authenticates the user with X.509
certificates that are generated with the MobileFirst Server together with your
public key infrastructure (PKI).

For more information about this realm and how to set it up, see “User certificate
authentication overview” on page 13-67.

Anti-cross site request forgery (anti-XSRF) realm
The wl_antiXSRFRealm protects against cross-site request forgery attacks.

In a cross-site request forgery attack, unauthorized commands are transmitted from
a web browser that is trusted by the targeted web site. To protect against this, IBM
MobileFirst Platform Foundation provides an anti-cross site request forgery realm,
wl_antiXSRFRealm. This realm is enabled by default in the webSecurityTest and the
mobileSecurityTest.

The anti-XSRF realm is relevant only for web environments, when the application
runs in a browser. It is not relevant for installed mobile applications. Also, the
anti-XSRF realm does not protect against session hijacking.

The anti-XSRF technique is based on the same-origin constraint policy, which
requires that after an initial request, all subsequent requests come from the same
source as the initial one. A script that is loaded from a different origin is assumed
to be an attacker script.

When a new session is initiated, the first request to MobileFirst Server receives an
HTTP 401 ("Unauthorized") response that contains the WL-Instance_Id token. The
MobileFirst security framework extracts this token and uses it as a header on all
subsequent requests. If this header is not present in these subsequent requests,
HTTP 401 is returned again, and access to resources is denied.

The server-side realm implementation ensures that each incoming request has the
correct value in the WL-Instance_Id header. If the header is missing or has an
incorrect value, the realm again returns a 401 response with the challenge that
contains the correct value for WL-Instance_Id. However, due to the same-origin
constraint policy, the targeted web site does not allow the attacking web site to
read the challenge.

Developing MobileFirst applications 8-493

The server returns a challenge and does not destroy the session in the case of a
missing or incorrect token because this situation can be a result of a legitimate use
case. For example, if a session is timed-out on the server side, the client might
send a request with an expired token. Or, a session race condition might occur in
which the client sends two or more requests simultaneously when the session is
not established or is timed out. A legitimate client should be able to recover from
these situations automatically, so the server sends the same challenge in the case of
failure.

For more information, see Cross-site request forgery.

Authenticators and login modules
An authenticator collects client credentials. A login module validates them.

An authenticator is a server component which is used to collect credentials from the
client. The authenticator passes the credentials to a login module, which validates
them and builds a client identity object. Both authenticators and login modules are
components of the application's realm.

An authenticator can, for example, collect any type of information accessible from
an HTTP request object, such as cookies or any data in headers or the body of the
request.

A login module can validate the credentials that are passed to it in various ways.
For example:
v Using a web service
v Looking up the client ID in a database
v Using an LTPA token

A number of predefined authenticators and login modules are supplied. If these do
not meet your needs, you can write your own in Java.

Mobile device authentication
You can require mobile devices to authenticate themselves. Device identity is used
in several places within IBM MobileFirst Platform Foundation. You can use
provisioning, which is the process of obtaining a security certificate. There are
three modes of the provisioning process.

Unique device ID

The unique device ID is used by IBM MobileFirst Platform Foundation for device
ID-related features, such as security, device SSO, reports, and push notifications.

On iOS

v To calculate the unique device ID, a globally unique ID (GUID) is used
that is generated during device authentication process.

v The unique device ID can be unique either to the application or to all
applications from the same vendor.

v The unique device ID is stored in the device keychain.

On Android

8-494 IBM MobileFirst Platform Foundation V6.3.0

http://en.wikipedia.org/wiki/Cross-site_request_forgery

v To calculate the unique device ID, device properties are used, such as
the WiFi Mac address. This mechanism guarantees the uniqueness of the
device ID, and make the process more secure by generating the device
ID at the start of each application.

v The unique device ID can be unique either to the application or to all
applications from the same vendor.

v The unique device ID is stored in the application keystore, which is a
file in the application sandbox folder.

On BlackBerry

v To calculate the unique device ID, the ID that is provided by the
operating system is used.

v The unique device ID is global to the device.

On Windows Phone

v The publisher host ID is used as a unique device ID. The host ID is
unique per device and per publisher, which means that no two
publishers will receive the same value for the same device.

On Windows 8

v The MAC address is used as a unique device ID.

Note: The availability of the unique device ID depends on the operating system of
the device, and on the application vendor. A vendor who provides multiple
applications that can be installed on the same device might then choose whether to
require provisioning for each individual application or for a group of applications.
If several applications are from the same vendor, they can have the same unique
device ID. If these applications are from different vendors, they have different
unique device IDs.

To access the unique device ID on the device and on the MobileFirst back-end
server, some security controls are performed. The device ID is not a secret data and
can be passed to the server in one of the two following ways:
v As is, for a non-secure device authentication.
v Accompanied with credentials, for a secure device authentication. In that case,

the device ID is digitally signed with a X509 certificate. This certificate results of
the provisioning process that takes place the first time the application runs on
the device.

The unique device ID is stored in the raw data reports that are generated by IBM
MobileFirst Platform Foundation. There are no special access controls available on
these reports, as the unique device ID is not considered sensitive data. For more
information about raw data reports, see “Using raw data reports” on page 13-44.

For more information about mobile device provisioning, see the tutorials on the
Getting Started page.

Scope of mobile device authentication

In addition to requiring users to authenticate before they access certain resources,
you can also require mobile devices to authenticate before apps installed on them
can access the MobileFirst Server.

Device and application authentication is a process that allows making claims of
type "this is application A installed on device D".

Developing MobileFirst applications 8-495

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

Device and application authentication is relevant only for applications that are
installed on mobile devices.

Mobile device provisioning

When a MobileFirst application first runs on a mobile device, it creates a pair of
PKI-based keys. It then uses the keys to sign the public characteristics of the device
and application, and sends them to the MobileFirst Server for authentication
purposes.

A key pair alone is not sufficient to sign these public characteristics because any
app can create a key pair. In order for a key pair to be trusted, it must be signed
by an external trusted authority to create a certificate. The process of obtaining
such a certificate is called provisioning.

When a certificate is obtained, the app can then store the key pair in the device
keystore, access to which is protected by the operating system.

The provisioning process has three modes:

No provisioning
In this mode, the provisioning process does not happen. This mode is
usually suitable during the development cycle, to temporarily disable the
provisioning for the application. Technically, the client application does not
trigger the provisioning process, and the server does not verify the client
certificate.

Auto-provisioning
In this mode, the MobileFirst Server automatically issues a certificate for
the device and application data that is provided by the client application.
Use this option only when the MobileFirst application authenticity features
are enabled.

Custom provisioning
In this mode, the MobileFirst Server is augmented with custom logic that
controls the device and application provisioning process. This logic can
involve integration with an external system, such as a mobile device
manager (MDM). The external system can issue the client certificate based
on an activation code that is obtained from the app, or can instruct the
MobileFirst Server to do so.

Note: Auto-provisioning and custom provisioning are supported only on Android,
iOS, and Windows Phone 8.

Device auto-provisioning

Device auto-provisioning has three aspects:
v Provisioning granularity: the scope of the provisioned entity.
v Pre required login: the realms that a client must be authenticated with before it

can get permission to perform provisioning.
v CA Certificate: the parent certificate, which issues device certificates for the

provisioning process.

The default behavior is as follows:
v Provisioning granularity: a single application.

8-496 IBM MobileFirst Platform Foundation V6.3.0

v Pre required login: a login is required to the authentication realm, if any, defined
for the current security test.

v CA Certificate: a MobileFirst CA Certificate, which is embedded into the
platform.

Whether it is obtained by an auto-provisioning or custom provisioning process, the
certificate is stored by the client app on the device, and used for signing the
payload sent to the MobileFirst Server. The MobileFirst Server validates the client
certificate, regardless of how it is obtained.

The server sends a request for ID, which the client responds to with a
certificate-signed payload. If the client does not have the certificate, then a request
is sent to the MobileFirst Server automatically to get a certificate, and after that is
done, the client automatically sends the signed payload.

After the server sends the ok response, the original request is sent automatically.

Granularity of provisioning

The key pair that is used to sign the device and app properties can represent a
single application, a group of applications, or an entire device. Windows Phone 8
supports only single application level granularity. For example:

Single application
A company’s provisioning process requires separate activation for each
application that is installed on the device. In this case, the application is
the provisionable entity, and each application must generate its own key
pair.

Group of applications
A company develops different groups of applications to employees in
different geographical regions. If the activation is required per region, the
key pair would represent the group of applications that belong to that
region. All applications from the same group use the same key pair for
their signatures.

Entire device
In this case, the key pair represents the whole device. All the applications
from the same vendor that are installed on that device use the same key
pair.

The authentication configuration file
All types of authentication component are configured in the authentication
configuration file.

Authentication components, security tests, realms, login modules, and
authenticators are all configured in the authenticationConfig.xml authentication
configuration file, which is in the /server/conf directory of your MobileFirst
project. A web security test or mobile security test must contain a <testUser>
element that specifies the realm name. The definition of a realm includes the class
name of an authenticator, and a reference to a login module, and refers to a
collection of resource managers that recognizes a common set of user credentials
and authorizations. Authenticators are the entities that authenticate clients.
Authenticators collect client information, and then use login modules to verify this
information.

Developing MobileFirst applications 8-497

Table 8-63. Predefined realms: properties of the test realm element.

Realm reference Login module reference Description

wl_anonymousUserRealm WeakDummy This realm is the default user
realm. As having a user
identity is mandatory for a
user to use IBM MobileFirst
Platform Foundation
properly, use this realm if
you do not require any
special identification of users.
This realm gives the user a
random unique user ID to be
used for various features in
the server, such as reports
and audit, identification of
access to backend systems,
and push notification. This
realm is transparent, that is,
it does not require any user
interaction.

wl_antiXSRFRealm WLAntiXSRFLoginModule This realm is used to avoid
cross-site request forgery
attacks. When a new session
is initiated, the first request
to MobileFirst Server gets an
HTTP 401 response that
contains the WL-Instance-Id
token. The MobileFirst
framework extracts this
token and uses it as a header
on all subsequent requests. If
this header is not present in
these subsequent requests,
HTTP 401 is returned again.
This security mechanism
makes sure that all
subsequent requests are
coming from the same source
as the initial one.

wl_authenticityRealm wl_authenticityLoginModule This realm is used to verify
that application is authentic
and it was not modified by a
third party. The authenticity
check is based on certificates
that are used to sign
applications. This
functionality is only available
on customer and enterprise
versions of IBM MobileFirst
Platform Foundation, and is
supported by iOS, Android,
and Windows Phone 8
environments only.

8-498 IBM MobileFirst Platform Foundation V6.3.0

Table 8-63. Predefined realms: properties of the test realm element. (continued)

Realm reference Login module reference Description

wl_deviceAutoProvisioningRealmWLDeviceAutoProvisioningLoginModuleThe description of this
parameter is the same as for
wl_deviceNoProvisioningRealm,
but the obtained device
identity is automatically
provisioned by the
MobileFirst Server. This
realm must be used with
wl_authenticityRealm.

wl_deviceNoProvisioningRealmWLDeviceNoProvisioningLoginModuleA default device identity
realm. Device identity is
similar to user identity, but it
is provided by the device
itself. Device identity is
relevant for hybrid and
native smartphone
environments only. The
device identity is a must for
functionality such as push
notifications, and reports.
This parameter means that
the obtained device identity
is used as is, without
provisioning.

wl_directUpdateRealm WLDirectUpdateNullLoginModuleThis realm is used to enable
the direct update feature.
The direct update feature
allows for updating of
application web resources
(not native code) on client
devices without the need for
users to explicitly download
and install the new version.
This realm is useful when a
fix or an enhancement is
done to the web resources of
the application and you do
not want to start a full
release cycle for it. It can be
configured to test for
updates once per session, per
each request, or disabled. For
more information about
direct update, see
“Configuring and
customizing direct update”
on page 8-162.

Developing MobileFirst applications 8-499

wl_remote_DisableRealm WLRemoteDisableNullLoginModuleThis realm is used to block
applications with specific
application environments or
versions from accessing
resources on the server, or to
notify clients with some
mandatory message that is
related to the server. This
realm is typically used when
a new application version is
released and you no longer
want the applications with
the older versions to connect
to the server. In this case, for
example, you want to give
directions to the clients on
how to obtain the new
version of the application
with a link to its market
download page. Another
typical use of this realm is
when you find a problem
with an application security
and you want to
immediately block access
from this application to
sensitive data until the
problem is fixed. You can
configure the contents of the
block or notification message
and give a link to more
information or the new
version. For more
information about remote
disable, see “Remotely
disabling application
connectivity” on page 12-3.

MobileFirst static resources (other than Application Center) such as the MobileFirst
Operations Console are also configured in the authentication configuration file, in
the <resource> element.

The configuration file has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfiguration xmlns:tns="http://www.worklight.com/auth/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<staticResources>
<resource>...</resource>
<resource>...</resource>

</staticResources>
<securityTests>
<customSecurityTest>...</customSecurityTest>
<customSecurityTest>...</customSecurityTest>

</securityTests>
<realms>
<realm>...</realm>
<realm>...</realm>

</realms>
<loginModules>
<loginModule>...</loginModule>
<loginModule>...</loginModule>

</loginModules>
</tns:loginConfiguration>

8-500 IBM MobileFirst Platform Foundation V6.3.0

Configuring MobileFirst web application authorization
Configure authentication to the MobileFirst Operations Console, usage reports, and
the Application Center console.

The MobileFirst web applications that require authentication are the MobileFirst
Operations Console, the MobileFirst usage reports, and the Application Center
console. The MobileFirst Operations Console and MobileFirst usage reports are
configured by using <resource> elements in the authenticationConfig.xml file.

The Application Center console is not subject to the authentication model described
here. For information about setting up authentication for the Application Center
console, see “Configuring the Application Center after installation” on page 6-203.

Configuring authenticators and realms
Authenticators are defined within the realm that uses them.

Realms are defined in <realm> elements in the authenticationConfig.xml file. The
<realms> element contains a separate <realm> subelement for each realm.

Modify realms by using the authentication configuration editor.

The <realm> element has the following attributes:

Table 8-64. The <realm> element attributes

Attribute Description

name Mandatory. The unique name by which the realm is referenced by the
protected resources.

loginModule Mandatory. The name of the login module that is used by the realm.

The <realm> element has the following subelements:

Table 8-65. The <realm> element subelements

Element Description

<className> Mandatory. The class name of the authenticator.

For details of the supported authenticators, see the following topics.

<parameter> Optional. Represents the name-value pairs that are passed to the
authenticator upon instantiation.

This element might be displayed multiple times.

<onLoginUrl> Optional. Defines the path to which the client is forwarded upon successful
login.

If this element is not specified, then depending on the authenticator type,
either the current request processing is continued, or a saved request is
restored.

Implementing basic authenticators
You can implement basic authentication in mobile applications.

Developing MobileFirst applications 8-501

About this task

The basic authenticator implements basic HTTP authentication. Basic
authentication is an industry-standard method that is used to collect user name
and password information.

In accordance with standard basic authentication, MobileFirst Server sends an
HTTP Not Authorized (401) response to the client, with the header:
WWW-Authenticate: Basic realm="realmName". When MobileFirst Server receives
the response from the client, it extracts the base64-encoded credentials from the
Authorization header of the request and decodes them. A login module validates
the credentials that have been received.

Note: You can use basic authentication for web applications only, not for mobile
applications.

The fully qualified Java class name for the basic authenticator is:
com.worklight.core.auth.ext.BasicAuthenticator

Parameters

The basic authenticator has the following parameter:

Parameter Description

<basic-realm-
name>

Mandatory. A string that is sent to the client as a realm name, and
presented by the browser in the login dialog.

Flow

The following diagram illustrates the flow in the basic authentication
process:

Procedure
1. Configure the authenticationConfig.xml file. For more information, see “The

authentication configuration file” on page 8-497.
2. Code the server side.

Note: If you want to protect an adapter procedure with basic authentication,
you must declare it in the adapter XML file. See the example in this page.

3. Associate the basic authenticator with a login module. MobileFirst Studio
provides several predefined login modules. For an example, see Non-validating
login module.

4. Code the client side, if necessary.

Example

The following example demonstrates how to implement a simple basic
authentication mechanism. An adapter procedure is protected by a basic
authenticator, and when the user attempts to invoke the procedure from the
application, the browser displays a login dialog and the authentication process
starts.

Figure 8-53. Basic authentication processBasic authentication process

8-502 IBM MobileFirst Platform Foundation V6.3.0

Configuration of the authenticationConfig.xml file
<securityTests>

<customSecurityTest name="DummyAdapter-securityTest">
<test isInternalUserID="true" realm="MyAppRealm"/>

</customSecurityTest>
</securityTests>

<realms>
<realm name="MyAppRealm" loginModule="StrongDummy">

<className>com.worklight.core.auth.ext.BasicAuthenticator</className>
<parameter name="basic-realm-name" value="My App"/>

</realm>
</realms>

<loginModules>
<loginModule name="StrongDummy">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule
</className>

</loginModule>
</loginModules>

Note:

The realm uses the StrongDummy login module, which is implemented by
the class NonValidatingLoginModule (see Non-validating login module).
"Non-validating" means that the user credentials are not checked against
any list of user names and passwords. In other words: any combination of
user name and password is valid.

Coding the server side

1. Create a MobileFirst adapter.
2. Add a procedure and protect it with the custom security test that you

created earlier. This procedure's implementation can return some
hard-coded value, for example:
<procedure name="getSecretData" securityTest="DummyAdapter-securityTest"/>

Coding the client side

1. Create a MobileFirst application.
2. Write a call to the adapter procedure that you added on the server side,

for example:

Figure 8-54. Login dialog for authentication

Developing MobileFirst applications 8-503

var invocationData = {
adapter: <adapterName>,
procedure: "getSecretData",
parameters: []

};

WL.Client.invokeProcedure(invocationData, {
onSuccess : successCallback,
onFailure : failCallback

});

Implementing form-based authenticators
You can authenticate users of mobile applications by using a login form.

About this task

In form-based authentication, if an application tries to access a protected resource,
the server returns the HTML code of a login form. Even though a form of this kind
is most suited to desktop and web environments (where you display the returned
login form), you can also use form-based authentication in mobile applications.

The fully qualified Java class name of the form-based authenticator is:
com.worklight.core.auth.ext.FormBasedAuthenticator.

This authenticator type presents a login form to the user. The login form must
contain j_username and j_password fields, the j_security_check submit action, and
the POST submit method.

A login module validates the credentials that are provided. If the login fails, the
user is redirected to an error page.

Parameters

The form-based authenticator has the following parameters:

Parameter Description

login-page Path to a user-defined login page template, relative to the web
application context under the conf directory. A sample login.html
template file is provided under this directory when you create a
MobileFirst project.

The authenticator renders the login page template with the error
messages. To display the error message, use the
placeholder ${errorMessage} in the login page template.

auth-redirect Path to a user-defined login page (html/jsp) relative to the web
application context. IBM MobileFirst Platform Foundation redirects to
the page when the user credentials are needed.

Both the login-page and auth-redirect parameter are optional, but if you
decide to use them, use either one or the other. You cannot use them
together. You can also use neither. In this case, IBM MobileFirst Platform
Foundation uses its default login page template.

Flow

The following diagram illustrates the flow in the form-based authentication
process:

8-504 IBM MobileFirst Platform Foundation V6.3.0

Procedure
1. Configure the authenticationConfig.xml file. For more information, see “The

authentication configuration file” on page 8-497.
2. Code the server side. To work, the form-based authenticator must be associated

with a login module. MobileFirst Studio provides several predefined login
modules. For an example, see Non-validating login module.

Note: If you want to protect an adapter procedure with form-based
authentication, you must declare it in the adapter XML file. See the example in
this page.

3. Code the client side.
You must declare a challenge handler in the application to handle challenges
from the form-based configured realm. The following sample shows one way to
implement a challenge handler class:
var sampleAppRealmChallengeHandler = WL.Client.createChallengeHandler("SampleAppRealm");

The challenge handler must implement the following functions:

Figure 8-55. Form-based authentication process

Developing MobileFirst applications 8-505

v isCustomResponse: this function is called each time that a response is
received from the server. It is used to detect whether the response contains
data that is related to this challenge handler. It must return either true or
false. Here is a simple example:
sampleAppRealmChallengeHandler.isCustomResponse = function(response) {

return false;
};

v handleChallenge: this function is used to perform required actions, such as
hide application screen and show login screen. handleChallenge is called by
the framework, if isCustomResponse returns true. Here is a simple
implementation, as an example:
sampleAppRealmChallengeHandler.handleChallenge = function(response) {
};

The challenge handler can also optionally implement the following, additional
functions:
v submitLoginForm: this function sends the collected credentials to a specific

URL. You can also specify request parameters, headers, and callback.
v submitSuccess: this function notifies the MobileFirst framework that the

authentication finished successfully. The MobileFirst framework then
automatically issues the original request that triggered the authentication.

v submitFailure: this function notifies the MobileFirst framework that the
authentication process failed to finish. The MobileFirst framework then
disposes of the original request that triggered the authentication.

Example

The following example demonstrates how to implement a simple form-based
authentication mechanism that is based on a user name and a password. In the
example, an adapter procedure is protected by a form-based authenticator, and
when the user attempts to call the procedure from the application, the login form
is displayed and the authentication process starts.

Configuration of the authenticationConfig.xml file
<securityTests>

<customSecurityTest name="DummyAdapter-securityTest">
<test isInternalUserID="true" realm="SampleAppRealm"/>

</customSecurityTest>
</securityTests>

<realms>
<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>
<parameter name="login-page" value="login.html"/>

</realm>
</realms>

<loginModules>
<loginModule name="StrongDummy">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>

</loginModule>
</loginModules>

Coding the server side

Perform the following steps:
1. Create a MobileFirst adapter.
2. Add a procedure and protect it with the custom security test that you

created earlier. The implementation can return some hard-coded value,
for example:

8-506 IBM MobileFirst Platform Foundation V6.3.0

<procedure name="getSecretData" securityTest="DummyAdapter-securityTest"/>

Coding the client side

Perform the following steps:
1. Create a MobileFirst application.
2. Create a challenge handler in the application, to handle challenges from

the SampleAppRealm realm, for example:
var sampleAppRealmChallengeHandler = WL.Client.createChallengeHandler("SampleAppRealm");

3. Implement the mandatory isCustomResponse and handleChallenge
functions (and other, optional functions) of the challenge handler, as
described previously.

What to do next

For a more extensive example of implementing form-based authentication, see the
tutorial on the Getting Started page.

Implementing custom authenticators
You can use default MobileFirst login modules and authenticators, or customize
your own.

About this task

You can write custom login modules and authenticators when those that IBM
MobileFirst Platform Foundation supplies do not match your requirements.

Procedure
1. Configure the authenticationConfig.xml file.

For more information, see “The authentication configuration file” on page
8-497.

2. Code the server side.
You create custom login modules and authenticators as instances of Java™

classes, which you must place in the server/java folder of the project. They are
server-side entities and they are packed inside the WAR file of the project. The
authenticator, login module, and user identity instances are stored in a session
scope, so that they exist while the session is active.

Authenticator interface and methods
Your custom authenticator class must implement the
com.worklight.server.auth.api.WorkLightAuthenticator interface. The
custom authenticator must implement the following methods:
v init: This method is called when the authenticator instance is

created. It receives the options that are specified in the realm
definition in the authenticationConfig.xml file.

v processRequest: This method is called for each request from an
unauthenticated session. The method must return an
AuthenticationResult status. While the request is processed, the
method might retrieve data from the request and write data to the
response.
The AuthenticationResult status can return the following values:
– SUCCESS: The credentials were successfully collected and the login

module can now validate them.

Developing MobileFirst applications 8-507

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

– CLIENT_INTERACTION_REQUIRED: The client must still supply
authentication data.

– REQUEST_NOT_RECOGNIZED: The authenticator is not handled.
v processAuthenticationFailure: This method is called if the login

module returns a failure for the validation of credentials.
v processRequestAlreadyAuthenticated: This method is called for each

request from a session that has already been authenticated. It returns
an AuthenticationResult value for authenticated requests.

v getAuthenticationData: Login modules use this method to retrieve
the credentials that are collected by an authenticator.

v changeResponseOnSuccess: This method is called after the login
module successfully validates credentials. Use this method to notify a
client application of the success of the authentication, for example to
modify the response before it is returned to the client. This method
must return true if the response was modified orfalse otherwise.

v clone: This method creates a deep copy of the object members.

Login module interface and methods
Your custom login module class must implement the
com.worklight.server.auth.api.WorkLightAuthLoginModule interface.
The login module must implement the following methods:
v init: This method is called when the login module instance is

created. This method receives the options that are specified in the
login module definition of the authenticationConfig.xml file.

v login: This method is called after the authenticator returns SUCCESS
status. It receives an authenticationData object from the
authenticator and validates the credentials that are collected by the
authenticator. If the credentials are valid, the method returns true. If
the credential validation fails, the method returns false or raises a
runtime exception. In this case, the exception string that is returned
to the authenticator as an errorMessage parameter.

v createIdentity: This method is called after the credentials are
successfully validated. The method creates and returns a
UserIdentity object, which contains information about the
authenticated user, such as unique user name, display name, Java
security roles, and custom user attributes.

v logout: Use this method to clean up cached data and class members
after the user logs out.

v abort: Use this method to clean up cached data and class members
after the user stops the authentication flow.

v clone: This method creates a deep copy of the object members.
3. Code the client side.

You must declare a challenge handler in the application to handle challenges
from the custom authenticator realm. The following sample shows one way to
implement a challenge handler class:
var myChallengeHandler = WL.Client.createChallengeHandler("CustomAuthenticatorRealm");

The challenge handler must implement the following methods:
v isCustomResponse: This method is called each time that a response is

received from the server. It detects whether the response contains data that is
related to this challenge handler. It must return true or false. Here is a
simple example:

8-508 IBM MobileFirst Platform Foundation V6.3.0

sampleAppRealmChallengeHandler.isCustomResponse = method(response) {
return false;

};

v handleChallenge: Use this method for such actions as hide application screen
and show login screen. If the isCustomResponse method returns true,
thehandleChallenge method is called by the framework. Here is a simple
implementation, as an example:
sampleAppRealmChallengeHandler.handleChallenge = method(response) {
};

Optionally, the challenge handler can also implement the following methods:
v submitLoginForm: This method sends the collected credentials to a specific

URL. You can also specify request parameters, headers, and callback.
v submitSuccess: This method notifies the MobileFirst framework that the

authentication finished successfully. The MobileFirst framework then
automatically issues the original request that triggered the authentication.

v submitFailure: This method notifies the MobileFirst framework that the
authentication process failed. The MobileFirst framework then disposes of
the original request that triggered the authentication.

Example

The following example shows how to implement a custom authenticator and login
module. In the example, an adapter procedure is protected by a custom
authenticator. When the user attempts to call the procedure from the application,
the application requests the user's credentials and the authentication process starts.

Configuration of the authenticationConfig.xml file
<securityTests>

<customSecurityTest name="DummyAdapter-securityTest">
<test isInternalUserID="true" realm="CustomAuthenticatorRealm"/>

</customSecurityTest>
</securityTests>

<realms>
<realm name="CustomAuthenticatorRealm" loginModule="CustomLoginModule">

<className>com.mypackage.MyCustomAuthenticator</className>
</realm>

</realms>

<loginModules>
<loginModule name="CustomLoginModule">

<className>com.mypackage.MyCustomLoginModule</className>
</loginModule>

</loginModules>

Coding the server side
Code the following elements on the server side: adapter, authenticator, and
login module.
v Adapter:

1. Create a MobileFirst adapter.
2. Add a procedure and protect it with the custom security test that

you created earlier. The implementation can return some hardcoded
value. For example:
<procedure name="getSecretData" securityTest="DummyAdapter-securityTest"/>

v Authenticator:

Developing MobileFirst applications 8-509

1. Create a MyCustomAuthenticator.java class in the
server/java/com/mypackage folder. This class must implement the
com.worklight.server.auth.api.WorkLightAuthenticator interface,
as follows:
public class MyCustomAuthenticator implements WorkLightAuthenticator{}

2. Implement the mandatory methods of the class.
– processRequest: This method retrieves the user name and

password credentials that are passed as request parameters. Check
the credentials for basic validity, create an authenticationData
object, and return SUCCESS. If a problem occurs with the received
credentials, add an errorMessage to the response and return the
CLIENT_INTERACTION_REQUIRED status message. If the request does
not contain authentication data, add the authStatus:required
property to the response and again, return a
CLIENT_INTERACTION_REQUIRED status message.
public AuthenticationResult processRequest(HttpServletRequest request, HttpServletResponse response,

boolean isAccessToProtectedResource) throws IOException, ServletException {
if (request.getRequestURI().contains("my_custom_auth_request_url")){
String username = request.getParameter("username");
String password = request.getParameter("password");

if (null != username && null != password && username.length() > 0 && password.length() > 0){
authenticationData = new HashMap<String, Object>();
authenticationData.put("username", username);
authenticationData.put("password", password);
return AuthenticationResult.createFrom(AuthenticationStatus.SUCCESS);

} else {
response.setContentType("application/json; charset=UTF-8");
response.setHeader("Cache-Control", "no-cache, must-revalidate");
response.getWriter().print("{\"authStatus\":\"required\", \"errorMessage\":\"Please enter username and password\"}");
return AuthenticationResult.createFrom(AuthenticationStatus.CLIENT_INTERACTION_REQUIRED);

}
}
if (!isAccessToProtectedResource)

return AuthenticationResult.createFrom(AuthenticationStatus.REQUEST_NOT_RECOGNIZED);
response.setContentType("application/json; charset=UTF-8");
response.setHeader("Cache-Control", "no-cache, must-revalidate");
response.getWriter().print("{\"authStatus\":\"required\"}");
return AuthenticationResult.createFrom(AuthenticationStatus.CLIENT_INTERACTION_REQUIRED);

}

– processAuthenticationFailure: This method writes an error
message to a response body and returns the
CLIENT_INTERACTION_REQUIRED status message.
public AuthenticationResult processAuthenticationFailure(HttpServletRequest

request, HttpServletResponse response, String errorMessage) throws IOException, ServletException {
response.setContentType("application/json; charset=UTF-8");
response.setHeader("Cache-Control", "no-cache, must-revalidate");
response.getWriter().print("{\"authStatus\":\"required\", \"errorMessage\":\"" + errorMessage + "\"}");
return AuthenticationResult.createFrom(AuthenticationStatus.CLIENT_INTERACTION_REQUIRED);

}

v Login module:
1. Create a MyCustomLoginModule.java class in the server/java/com/

mypackage folder. This class must implement the
com.worklight.server.auth.api.WorkLightAuthLoginModule interface.
public class MyCustomLoginModule implements WorkLightAuthLoginModule{}

2. Implement the mandatory methods of the class.
– login: This method retrieves the user name and password

credentials that the authenticator stored previously. In this
example, the login module validates the credentials against

8-510 IBM MobileFirst Platform Foundation V6.3.0

hardcoded values. You can implement your own validation rules.
If the credentials are valid, the login method returns true. For
example:
public boolean login(Map<String> authenticationData) {

USERNAME =(String) authenticationData.get("username");
PASSWORD = (String) authenticationData.get("password");
if (USERNAME.equals("wluser") && PASSWORD.equals("12345"))
return true;
else throw new RuntimeException("Invalid credentials"); }

</String>

– createIdentity: This method is called when the login method
returns true. It is used to create a UserIdentity object. In that
object, you can store your own custom attributes and use them
later in Java or adapter code. The UserIdentity object contains
user information. Its constructor is as follows:
public UserIdentity(String loginModule, String name, String displayName, Set<String> roles, Map<String, Object> attributes, Object credentials)

Here is an example of how to implement this method:
public UserIdentity createIdentity(String loginModule) {

HashMap<String, Object> customAttributes = new HashMap<String, Object>();
customAttributes.put("AuthenticationDate", new Date());

UserIdentity identity = new UserIdentity(loginModule, USERNAME, null, null, customAttributes, PASSWORD);
return identity;

}

Coding the client side

Follow these steps:
1. Create a MobileFirst application.
2. Create a challenge handler in the application to handle challenges from

the custom authenticator realm. For example:
var myAppRealmChallengeHandler =
WL.Client.createChallengeHandler ("CustomAuthenticatorRealm");

3. Implement the mandatory isCustomResponse and isCustomResponse
methods, and optional methods of the challenge handler, as described
in Step 3.

What to do next

For a more extensive example of implementing custom authentication and login,
see module Custom Authenticator and Login Module in hybrid applications in
“Tutorials, samples, and additional resources” on page 5-1.

Header authenticator
Description and syntax of the header authenticator.

Description

The header authenticator is not interactive. The header authenticator must be used
with the Header login module.

Class Name
com.worklight.core.auth.ext.HeaderAuthenticator

Developing MobileFirst applications 8-511

Parameters

None.
<realm name="RealmHeader" loginModule="HeaderLoginModule">
<className> com.worklight.core.auth.ext.HeaderAuthenticator </className>
</realm>

Persistent cookie authenticator
Description and syntax of the persistent cookie authenticator.

Description

The persistent cookie authenticator looks for a specific cookie in any request that is
sent to it. If the request does not contain the cookie, the authenticator creates a
cookie, and sends it in the response. This authenticator is not interactive, that is, it
does not ask the user for credentials, and is mainly used in environment realms.

Class Name
com.worklight.core.auth.ext.PersistentCookieAuthenticator

Parameters

The persistent cookie authenticator class has the following parameter:

Parameter Description

<cookie-name> Optional. The name of the persistent cookie. If this parameter is not
specified, the default name, WL_PERSISTENT_COOKIE, is used.

<realm name="PersistentCookie" loginModule="dummy">
<className> com.worklight.core.auth.ext.PersistentCookieAuthenticator </className>
</realm>

Implementing adapter-based authenticators
You can authenticate users of mobile applications by using an adapter-based
authenticator.

About this task

Adapter-based authentication consists for you to develop custom authentication
logic by using a JavaScript function within a MobileFirst adapter.

Adapter-based authentication is flexible and customizable. The following diagram
illustrates one possible implementation. The process is illustrated and described as
follows.

8-512 IBM MobileFirst Platform Foundation V6.3.0

1. The client makes a request to the resource that is protected by adapter
authentication.

2. MobileFirst Server checks whether the client is already authenticated.
a. If it is, the requested data is returned.
b. Otherwise, authentication continues.

3. The adapter procedure that is defined in authenticationConfig.xml as a
login-function is called.

4. The login-function procedure is used to return a custom JSON payload to the
client.

5. The client processes the custom JSON payload and sends its credentials to the
adapter procedure used for authentication.

6. The adapter procedure that is used for authentication receives credentials and
validates them.
a. If validation fails, the flow returns to step 4.
b. Otherwise, authentication continues.

7. The adapter procedure that is used for authentication creates a user identity
and returns a success status to the client.

8. The client receives the success status and issues the original request.
9. The flow returns to step 2.

For more information, see “The authentication configuration file” on page 8-497.

Figure 8-56. Adapter-based authentication process

Developing MobileFirst applications 8-513

Procedure
1. Configure the authenticationConfig.xml file.
v Add security tests to the <securityTest> section of the file. Because the

security test that you are using is protecting an adapter procedure, you use
the <customSecurityTest> parameter.

v Add authentication realms to the <realms> section. For the className
parameter, use the com.worklight.integration.auth.AdapterAuthenticator
to indicate that the server-side part of the authenticator is defined in the
adapter. Define two parameter-value pairs for login and logout:
– login-function: whenever the MobileFirst authentication framework

detects an attempt to access a protected resource, the login-function is
called automatically.

– logout-function: when logout is detected (explicit or session timeout), the
logout-function is called automatically.

In both cases, the value syntax is adapterName.functionName.
v Add a login module to the <loginModules> section. All of the validation logic

that is done in a login module is performed in the adapter's JavaScript code
and you need no further validation. For that reason, adapter-based
authentication must be used with a NonValidatingLoginModule only. No
additional validation is performed by the IBM MobileFirst Platform, and the
developer takes responsibility for the validation of credentials within the
adapter. For more information, see Non-validating login module.

2. Code the server side.
The fully qualified name of the Java™ class for adapter authenticators is
com.worklight.integration.auth.AdapterAuthenticator. It takes the
mandatory login-function parameter and the optional logout-function
parameters. Both parameters specify adapter function names. The syntax is:
adapter-name.function-name, for example, myAuthAdapter.onAuthRequired. You
need to implement the login-function and logout-function in your
adapter.js source file. In the example, these parameters are implemented as
AuthAdapter.onAuthRequired and AuthAdapter.onLogout.

Note:

v Both login-function and logout-function should only be used internally by
a MobileFirst Server. For this reason, it is important that you do not expose
them as procedures in the adapter XML file.

v In contrast, the function that receives credentials is directly called by a client.
Therefore, you must expose the function in the adapter XML file. When the
challenge handler invokes the submit call, the handler is responsible for
handling all the possible responses. In particular, if the submit call returns a
challenge, the challenge is passed to the invocation callback, and is not
processed by the security framework. To prevent a situation in which the
invocation callback cannot handle the challenge, disable the authentication
requirement for the submit procedure by using the wl_unprotected security
test.

v Alternatively, you can define a more sophisticated security test for this
function. Just make sure that the security context on the client side is
sufficient to answer the challenge. One way to do this is to enrich the client
security context by a call to WL.Client.connect before the adapter is called.

v If your MobileFirst Server runs on WebSphere® Application Server, version 7
(any release) or releases of WebSphere Application Server Liberty 8.5 prior to
Fix Pack 2, the application server's Web container custom flag

8-514 IBM MobileFirst Platform Foundation V6.3.0

com.ibm.ws.webcontainer.suppressLoggingServiceRuntimeExcep

must be set to true. The default is false. If this flag is not changed, then the
adapter will fail to authenticate and an exception will occur. For more
information, see APAR PM74090 or APAR PM79934 for WebSphere
Application Server.

In addition to implementing login-function and logout-function, you also need
to implement an adapter function that receives credentials from the client,
validate them, and create a user identity, for example, function
submitCredentials (user, password).
v The login function

The login-function parameter specifies the name of the JavaScript function to
be invoked once the login process is triggered. The triggering can happen
either when the client application explicitly invokes the WL.Client.login
API, or when an unauthenticated attempt to access a resource protected by
the adapter authentication realm is made. Use this function to return a
payload to the client to notify it about the required authentication. The
login-function receives original request headers that are converted to JSON as
a first function argument so that they can be used to decide on the kind of
authentication that is needed, for example. Then it is the login-function that
returns the response to the client, instead of the original function

v The logout function

The logout-function parameter specifies the name of the JavaScript function
to be invoked once logout from the realm has occurred. The logout can be
triggered by having the client application call the WL.Client.logout API, or
when the MobileFirst Server decides to invalidate the session (for example, a
session timeout). The logout-function receives no arguments.

v The submit credentials function

This is the function that actually performs the authentication. The client
should call this function with arguments containing user credentials or
authentication data. It should then validate the credentials and once
validated, this function should use WL.Server.setActiveUser(realm,
identity) to register the authenticated identity. The function can include a
flag or message in the response to let the application know if the login was
successful or not. If not, it is advised to programatically limit the number of
login trials in your application.

3. Code the client side.
a. Create a MobileFirst application, with an element for displaying the

application content and an element for authentication. For example, when
authentication is required, the application hides the applicative element and
shows the authentication element. When authentication is complete, it does
the opposite.

b. Create a challenge handler, by using the WL.Client.createChallengeHandler
method to create a challenge handler object. You must implement the
following mandatory methods: isCustomResponse, handleChallenge. In
addition, the following mandatory methods are available in every challenge
handler that you must use: submitAdapterAuthentication, submitSuccess,
submitFailure.

Note:
You must attach each of these mandatory challenge handler functions to its
object. For example: myChallengeHandler.submitSuccess.

Developing MobileFirst applications 8-515

http://www-01.ibm.com/support/docview.wss?uid=swg1PM74090
http://www-01.ibm.com/support/docview.wss?uid=swg1PM79934

Example

The following example demonstrates how to implement an adapter-based
authentication mechanism that relies on a user name and a password.

Configuration of the authenticationConfig.xml file
<securityTests>

<customSecurityTest name="SingleStepAuthAdapter-securityTest">
<test isInternalUserID="true" realm="SingleStepAuthRealm"/>

</customSecurityTest>
</securityTests>

<realms>
<realm loginModule="AuthLoginModule" name="SingleStepAuthRealm">
<className>com.worklight.integration.auth.AdapterAuthenticator</className>
<parameter name="login-function"

value="SingleStepAuthAdapter.onAuthRequired"/>
<parameter name="logout-function"

value="SingleStepAuthAdapter.onLogout"/>
</realm>

</realms>

<loginModules>
<loginModule name="AuthLoginModule">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule
</className>

</loginModule>
</loginModules>

Code the server side authentication

Perform the following steps:
1. Create an adapter that takes care of the authentication process. In this

example, it is SingleStepAuthAdapter.
2. SingleStepAuthAdapter could include the following two procedures, for

example:
<procedure name="submitAuthentication" securityTest="wl_unprotected"/>
<procedure name="getSecretData" securityTest="SingleStepAuthAdapter-securityTest"/>

v The submitAuthentication procedure takes care of the authentication
process and authentication is not required to call it.

v The getSecretData procedure is available to authenticated users only.
3. Define the onAuthRequired function:

function onAuthRequired(headers, errorMessage) {
errorMessage = errorMessage ? errorMessage : null;

return {
authRequired: true,
errorMessage: errorMessage

};
}

v This function receives the response headers and an optional
errorMessage parameter. The object that is returned by this function
is sent to the client application. The authRequired:true and
errorMessage:errorMessage pairs define a custom challenge object
that is sent to the application.

v The authRequired:true property is used in a challenge handler to
detect that the server is requesting authentication.

v Whenever the MobileFirst framework detects an unauthenticated
attempt to access a protected resource, the onAuthRequired function is
called, as you defined in the authenticationConfig.xml file.

8-516 IBM MobileFirst Platform Foundation V6.3.0

4. Define the submitAuthentication function. The function is called by the
client app to validate the user name and password.
/* In this sample, the credentials are validated against some
* hardcoded values, but any other validation mode is valid,
* for example by using SQL or web services. */
if (username==="worklight" && password === "worklight"){

/* If the validation passed successfully, the WL.Server.setActiveUser method
* is called to create an authenticated session for the SingleStepAuthRealm,
* with user data stored in a userIdentity object. You can add your own custom
* properties to the user identity attributes. */
var userIdentity = {
userId: username,
displayName: username,
attributes: {

foo: "bar"
}

};

WL.Server.setActiveUser("SingleStepAuthRealm", userIdentity);

/* An object is sent to the application, stating that the authentication
* screen is no longer required. */
return {

authRequired: false
};

}

/* If the credentials validation fails, an object that is built
* by the onAuthRequired function is returned to the application
* with a suitable error message. */
return onAuthRequired(null, "Invalid login credentials");
}

5. Define the getSecretData function. For the purposes of demonstration,
at the conclusion of successful authentication, you could return a
hard-coded value:
function getSecretData() {
return {

secretData: "Very very secret data"
};

}

6. Define the onLogout function, to be called automatically on logout. It
can perform a cleanup, for example.
function onLogout(){
WL.Server.setActiveUser("SingleStepAuthRealm", null);
WL.Logger.debug("Logged out");

}

Code the client side authentication

Perform the following steps:
1. Create a MobileFirst application.
2. You might create some HTML code, for example, to display application

content only after authentication is complete.
3. Create the challenge handler. Use the

WL.Client.createChallengeHandler method to create a challenge
handler object; supply a realm name as a parameter. For example:
var singleStepAuthRealmChallengeHandler =
WL.Client.createChallengeHandler("SingleStepAuthRealm");

/* The isCustomResponse function of the challenge handler
* is called each time a response is received from the server.

Developing MobileFirst applications 8-517

* That function is used to detect whether the response contains
* data that is related to this challenge handler. The function returns true or false.
*/

singleStepAuthRealmChallengeHandler.isCustomResponse = function(response) {
if (!response||!response.responseJSON||response.responseText === null) {

return false;
}
if (typeof(response.responseJSON.authRequired) !== ’undefined’){
return true;
} else {
return false;
}

};

4. Define a handleChallenge function. That function behaves differently
according to the result of the authRequired function in the previous
step.
/* If the isCustomResponse function returns true, the
* framework calls the handleChallenge function. This function
* is used to perform required actions, such as to hide the
* application screen or show the login screen. */
singleStepAuthRealmChallengeHandler.handleChallenge =
function(response){
var authRequired = response.responseJSON.authRequired;

if (authRequired == true){
$("#AppDiv").hide();
$("#AuthDiv").show();
$("#AuthPassword").empty();
$("#AuthInfo").empty();

if (response.responseJSON.errorMessage)
$("#AuthInfo").html(response.responseJSON.errorMessage);

} else if (authRequired == false){
$("#AppDiv").show();
$("#AuthDiv").hide();
singleStepAuthRealmChallengeHandler.submitSuccess();
}

};
$("#authCancelButton").click(function(){
singleStepAuthRealmChallengeHandler.submitFailure();

});

The code in this step demonstrates two of three additional challenge
handler functions that you need to use:
v The submitSuccess function notifies the MobileFirst framework that

the authentication process completed successfully. The MobileFirst
framework then automatically issues the original request that
triggered authentication.

v The submitFailure function notifies the MobileFirst framework that
the authentication process completed with failure. The MobileFirst
framework then disposes of the original request that triggered
authentication.

5. The third challenge handler function you must use is
submitAdapterAuthentication. It sends collected credentials to a
specific adapter procedure. It has the same signature as the
WL.Client.invokeProcedure function. Here is an example:
$("#AuthSubmitButton").bind(’click’, function () {
var username = $("#AuthUsername").val();
var password = $("#AuthPassword").val();

8-518 IBM MobileFirst Platform Foundation V6.3.0

var invocationData = {
adapter : "SingleStepAuthAdapter",
procedure : "submitAuthentication",
parameters : [username, password]

};

singleStepAuthRealmChallengeHandler.submitAdapterAuthentication(invocationData, {});
});

What to do next

For a more extensive example of implementing form-based authentication, see the
tutorials on the Getting Started page.

LTPA authenticator
Description and syntax for the LTPA authenticator.

Description

Use the Lightweight Third-Party Authentication authenticator to integrate with the
WebSphere Application Server LTPA mechanisms.

Note: This authenticator is supported only on WebSphere Application Server. To
avoid unnecessary errors on other application servers, the authenticator is
commented out in the default authenticationConfig.xml file that is created with
an empty MobileFirst project. To use it, remove the comments first.

This authenticator can be used with the WASLTPAModule login module.

Class Name
com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator

Parameters

The adapter authenticator class has the following parameters:

Parameter Description

login-page Mandatory. The login page URL relative to the web application context.

error-page Optional. The error page URL relative to the web application context. If
this parameter is not set, the URL from the login-page is also used for
the error-page.

cookie-domain Optional. A String such as example.com, which specifies the domain in
which the LTPA SSO cookie applies. If this parameter is not set, no
domain attribute is set on the cookie. The single sign-on is then
restricted to the application server host name and does not work with
other hosts in the same domain.
Note: This parameter is deprecated. Define this parameter in the
<loginModule> entry for the WebSphereLoginModule instead. If the
parameter is defined in both places, the value in the <loginModule>
entry takes precedence.

httponly-cookie Optional. A String with a value of either true or false, which specifies
whether the cookie has the HttpOnly attribute set. This attribute helps
to prevent cross-site scripting attacks.
Note: This parameter is deprecated. Define this parameter in the
<loginModule> entry for the WebSphereLoginModule instead. If the
parameter is defined in both places, the value in the <loginModule>
entry takes precedence.

Developing MobileFirst applications 8-519

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

Parameter Description

cookie-name Optional. A String that specifies the name of the LTPA SSO cookie. If
this parameter is not set, the default cookie name is LtpaToken.
Note: This parameter is deprecated. Define this parameter in the
<loginModule> entry for the WebSphereLoginModule instead. If the
parameter is defined in both places, the value in the <loginModule>
entry takes precedence.

Example
<realm name="WASLTPARealm" loginModule="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>
<parameter name="login-page" value="/login.html"/>
<parameter name="error-page" value="/loginError.html"/>

</realm>

Configuring login modules
Login modules are defined in <loginModule> elements in the
authenticationConfig.xml file.

The <loginModules> element contains a separate <loginModule> subelement for
each login module.

The <loginModule> element has the following attributes:

Attribute Description

name Mandatory. The unique name by which
realms reference the login module.

audit Optional. Defines whether login attempts
that use the login module are logged in the
audit log. The log file is Worklight Project
Name/server/log/audit/audit.log.

Valid values are:

true
Login and logout attempts are logged in
the audit log.

false
Default. Login and logout attempts are
not logged in the audit log.

The <loginModule> element has the following subelements:

Element Description

<className> Mandatory. The class name of the login
module.

For details of the supported login modules,
see the following topics.

<parameter> Optional. An initialization property of the
login module. The supported properties and
their semantics depend on the login module
class.

This element can occur multiple times.

8-520 IBM MobileFirst Platform Foundation V6.3.0

Non-validating login module
The non-validating login module accepts any user name and password passed by
the authenticator.

Class Name
com.worklight.core.auth.ext.NonValidatingLoginModule

Parameters

None
<loginModule name="dummy">
<className> com.worklight.core.auth.ext.NonValidatingLoginModule </className>
</loginModule>

Single identity login module
The single identity login module is used to grant access to a protected resource to
a single user, the identity of which is defined in the worklight.properties file. Use
this module only for test purposes.

Class Name
com.worklight.core.auth.ext.SingleIdentityLoginModule

Parameters

None

Configuration

.The worklight.properties file must contain the following properties:

Key Description

console.username Name of the user who can access the
protected resource.

console.password Password of the user who can access the
protected resource. The password can be
encrypted as indicated in “Storing properties
in encrypted format” on page 11-52.

Header login module
The Header login module is always used with the Header authenticator. It
validates the request by looking for specific headers.

Class Name
com.worklight.core.auth.ext.HeaderLoginModule

Developing MobileFirst applications 8-521

Parameters

The Header login module has the following parameters:

Parameter Description

user-name-header Mandatory. The name of the header that
contains the user name. If the request does
not contain this header, the authentication
fails.

display-name-header Optional. The name of the header that
contains the display name. If this parameter
is not specified, the user name is used as the
display name.

<loginModule name="HeaderLoginModule" audit="true">
<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="userid"/>
<parameter name="display-name-header" value="username"/>

</loginModule>

WASLTPAModule login module
The WASLTPAModule login module enables integration with WebSphere
Application Server LTPA mechanisms.

Note: This login module is only supported on WebSphere Application Server. To
avoid unnecessary errors when IBM MobileFirst Platform Foundation is run on
other application servers, the login module is commented out in the default
authenticationConfig.xml file that is created with an empty MobileFirst project. To
use it, remove the comments first.

Class Name

com.worklight.core.auth.ext.WebSphereLoginModule

Parameters

The login module class has the following parameters:

Parameter Description

cookie-domain Optional. A String such as example.com, which specifies the domain in
which the LTPA SSO cookie applies. If this parameter is not set, no
domain attribute is set on the cookie. The single sign-on is then
restricted to the application server host name and does not work with
other hosts in the same domain.

httponly-cookie Optional. A String with a value of either true or false, which specifies
whether the cookie has the HttpOnly attribute set. This attribute helps
to prevent cross-site scripting attacks.

cookie-name Optional. A String that specifies the name of the LTPA SSO cookie. If
this parameter is not set, the default cookie name is LtpaToken.

role Optional. A String that specifies the Java EE role that the authenticated
user must belong to for the login to be successful. If the parameter is
not specified, no role checking is performed.

8-522 IBM MobileFirst Platform Foundation V6.3.0

Note: When you specify a role parameter, the role must be defined in the
MobileFirst web application deployment descriptor (web.xml). A set of users or
groups must be mapped to that role by using the usual WebSphere Application
Server mechanisms.
<loginModule name="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
<parameter name="role" value="wluser"/>
<parameter name="cookie-domain" value="example.com"/>
<parameter name="httponly-cookie" value="true"/>
<parameter name="cookie-name" value="LtpaToken2"/>

</loginModule>

LDAP login module
You can use the LDAP login module to authenticate users against LDAP servers,
for example Active Directory, or OpenLDAP.

LDAP login module implements a UserNamePasswordLoginModule interface, so you
must use it with an authenticator that implements a
UsernamePasswordAuthenticator interface.

Class Name
com.worklight.core.auth.ext.LdapLoginModule

Parameters

You must set the following parameters for the LDAP login module:

Parameter Description Sample values

ldapProviderUrlMandatory. The IP address or the URL of the
LDAP server.

ldap://10.0.1.2

ldaps://10.0.1.3

ldapTimeoutMs Mandatory. The connection timeout to the
LDAP server in milliseconds.

2000

ldapSecurityAuthenticationMandatory. The LDAP security authentication
type. The value is usually simple. Consult
your LDAP administrator to obtain the
relevant authentication type.

none

simple

strong

validationType Mandatory. The type of validation. The value
can be exists, searchPattern, or custom. See
the following table for more details.

exists

searchPattern

custom

ldapSecurityPrincipalPatternMandatory. Depending on the LDAP server
type, this parameter might require security
credentials that you must supply in several
formats. Some LDAP servers require only the
user name, for example john, and others
require the user name and the domain, for
example john@server.com. You use this property
to define the pattern to create your user name
based credentials. You can use the {username}
placeholder.

{username}

{username}@myserver.com

CN={username},DC=myserver,DC=com

Developing MobileFirst applications 8-523

Parameter Description Sample values

ldapSearchFilterPatternOptional. This parameter is required only if
the value of the validationType parameter is
searchPattern. You use this parameter to
define a search filter pattern that is run when
a successful LDAP binding is established. The
user validation is successful if the search
returns one or more entries. You can use the
{username} placeholder. The syntax might
change depending on the LDAP server type.

(sAMAccountName={username})

(&(objectClass=user)(sAMAccountName={username})(memberof=CN=Sales,OU=Groups,
OU=MyCompany,DC=myserver,DC=com))

ldapSearchBase Optional. This parameter is required only if
the validationType parameter is
searchPattern. Use this parameter to define
the base of the LDAP search.

dc=myserver,dc=com

Sample LDAP login module definition:
<loginModule name="LDAPLoginModule">

<className>com.worklight.core.auth.ext.LdapLoginModule</className>
<parameter name="ldapProviderUrl" value="ldap://10.0.1.2"/>
<parameter name="ldapTimeoutMs" value="2000"/>
<parameter name="ldapSecurityAuthentication" value="simple"/>
<parameter name="validationType" value="searchPattern"/>
<parameter name="ldapSecurityPrincipalPattern" value="{username}@myserver.com"/>
<parameter name="ldapSearchFilterPattern" value="(&(objectClass=user)(sAMAccountName={username})(memberof=CN=Sales,OU=Groups,OU=MyCompany,DC=myserver,DC=com))"/>
<parameter name="ldapSearchBase" value="dc=myserver,dc=com"/>

</loginModule>

Values of the validationType parameter

Value Description

exists The login module tries to establish the LDAP binding with
the supplied credentials. The credentials validation is
successful if the binding is successfully established.

searchPattern The login module tries to do the exists validation. When
the validation succeeds, the login module issues a search
query to the LDAP server context, according to the
ldapSearchFilterPattern and ldapSearchBase parameters.
The credentials validation is successful if the search query
returns one or more entries.

custom With this value, you can implement custom validation
logic. The login module tries to do the exists validation.
When the validation succeeds, the login module calls a
public boolean doCustomValidation(LdapContext ldapCtx,
String username) method. To override this method, you
must create a custom Java class in your MobileFirst project
and extend from
com.worklight.core.auth.ext.UserNamePasswordLoginModule.
See the following example.

Sample custom validation implementation:
package mycode;
import javax.naming.ldap.LdapContext;
import com.worklight.core.auth.ext;

public class MyCustomLdapLoginModule extends LdapLoginModule {

@Override

8-524 IBM MobileFirst Platform Foundation V6.3.0

public boolean doCustomValidation(LdapContext ldapCtx, String username, String password) {

boolean success = true;

// Do some custom validations here using ldapCtx, validationProperties and username
// Return true in case of validation success and false otherwise

return success;
}

}

Note:

After you implement your custom extension of LdapLoginModule, use it as a
className value of LoginModule in your AuthenticationConfig.xml file.

Configuring device auto provisioning
You can change the default behavior of device auto provisioning with regards to
granularity of the provisioning, and pre-required realms for provisioning. You can
also change the CA certificate (root certificate) that is used to issue certificates for
provisioned devices.

Procedure
v To change the default behavior of provisioning granularity and pre-required

realms, define a new realm for device provisioning and add the following
<realm> element to the <realms> element in the authenicationConfig.xml file.
Then, use it in your security test of choice:
<realm name="wl_myProvisioningRealm"

loginModule="WLDeviceAutoProvisioningLoginModule">
<className>com.worklight.core.auth.ext.DeviceAutoProvisioningAuthenticator</className>
<parameter name="provisioned-entity" value="application" />
<parameter name="pre-required-realms" value="wl_authenticityRealm" />

<realm>

where provisioned-entity can have one of the following values:
– application
– device
– group:<group-name>, where group-name is the name of the provisioning

application group

and pre-required-realms is a comma-separated list of realm names that are
required to be successfully logged in to before provisioning is allowed to begin.

Note: Applications must be signed by the same signing credentials and (on iOS)
share the same bundleID prefix.

v To use a CA certificate other than the default MobileFirst CA certificate,
configure the following properties.

wl.ca.keystore.path
The path to the keystore, relative to the server folder in the MobileFirst
Project, for example: conf/default.keystore.

wl.ca.keystore.type
The type of the keystore file. Valid values are jks or pkcs12.

wl.ca.keystore.password
The password to the keystore file, for example: worklight.

Developing MobileFirst applications 8-525

wl.ca.key.alias
The alias of the entry where the private key and certificate are stored, in
the keystore, for example: keypair1.

wl.ca.key.alias.password
The password to the alias in the keystore for example: worklight.

For information about how to specify MobileFirst configuration properties, see
“Configuration of MobileFirst applications on the server” on page 11-45

v To enable multiple applications to share the same certificate, define a
sharedUserId attribute (for Android) or a bundleId attribute (for iOS) in the
application descriptor. For further information about defining these attributes,
see “The application descriptor” on page 8-24.

Configuring and implementing custom device provisioning
Custom device provisioning is an extension of auto device provisioning. The main
difference between auto and custom provisioning is that you can perform custom
validation of the certificate signing request (CSR) during the provisioning process
and custom validation of the certificate during each device authentication process.

The custom device provisioning must be implemented in the JavaScript code of an
adapter. Specify the names of the validate-csr and validate-certificate
functions in the authenticationConfig.xml file as realm and login module
parameters:

<securityTests>
<mobileSecurityTest name="CustomDeviceProvisioningSecurityTest">

<testAppAuthenticity/>
<testDeviceId provisioningType="custom" realm="CustomDeviceProvisioningRealm"/>

</mobileSecurityTest>
</securityTests>

<realms>
<realm name="CustomDeviceProvisioningRealm" loginModule="CustomDeviceProvisioningLoginModule">

<className>com.worklight.core.auth.ext.DeviceAutoProvisioningAuthenticator</className>
<parameter name="validate-csr-function" value="ProvisioningAdapter.validateCSR"/>

</realm>
</realms>

<loginModules>
<loginModule name="CustomDeviceProvisioningLoginModule">

<className>com.worklight.core.auth.ext.DeviceAutoProvisioningLoginModule</className>
<parameter name="validate-certificate-function" value="ProvisioningAdapter.validateCertificate"/>

</loginModule>
</loginModules>

The validate-csr-function checks that the certificate signing request (CSR) sent
by the client is complete and contains the correct information that is needed for the
certification of the device. This logic might also validate some properties of CSR
against internal or external services / directories.

The validate-certificate-function verifies that the certificate was issued with
the right certificate authority (CA). The logic might also verify that the certificate
contains all the necessary data about the device for this custom device
authentication realm.

For more information about how to implement these functions, see the tutorials on
the Getting Started page.

8-526 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

It is important to understand the concept of mobile device authentication and auto
provisioning. For more information about mobile device authentication, see
“Mobile device authentication” on page 8-494.

With custom device provisioning, you can also implement custom variations of the
CSR during the initial provisioning flow and of the certificate at each application
start.

You must configure the server and the client for custom device provisioning.

Implementing server-side components for custom device provisioning:

You can implement server-side components for custom device provisioning.

About this task

To implement server-side components for custom device provisioning, complete
the following steps.

Procedure

1. Create an adapter and name it ProvisioningAdapter.
2. Add two functions with the following signatures to the adapter’s JavaScript

file:
v The validateCSR(clientDN, csrContent) function is called only during initial

device provisioning. The function is used to check whether the device is
authorized to be provisioned. After the device is provisioned, this function is
not called again.

v The validateCertificate(certificate, customAttributes) function is called
each time that the mobile application establishes a new session with the
MobileFirst Server. The function is used to validate that the certificate that
the application or device possesses is still valid and that the application or
device is allowed to communicate with the MobileFirst Server.

Note: These functions are called internally by the MobileFirst authentication
framework. Do not declare them in the adapter’s XML file.

3. Configure the authenticationConfig.xml file.
a. Add a realm and name it CustomDeviceProvisioningRealm to the

authenticationConfig.xml file.
v Use CustomDeviceProvisioningLoginModule for the loginModule.
v Use the auto provisioning authenticator className parameter.
v Add a validate-csr-function parameter.
v The value of this parameter points to an adapter function that validates

the certificate signing request (CSR).
<realms>

<realm name="CustomDeviceProvisioningRealm"
loginModule="CustomDeviceProvisioningLoginModule">

<className>com.worklight.core.auth.ext.DeviceAutoProvisioningAuthenticator</className>
<parameter name="validate-csr-function"

value="ProvisioningAdapter.validateCSR" />
</realm>

</realms>

b. Add the loginModule named CustomDeviceProvisioningLoginModule.
v Use the auto provisioning login module className parameter.
v Add a validate-certificate-function parameter.

Developing MobileFirst applications 8-527

v The value of this parameter points to an adapter function that validates
the certificate.

<loginModules>
<loginModule name="CustomDeviceProvisioningModule">

<className>com.worklight.core.auth.ext.DeviceAutoProvisioningLoginModule</classname>
<parameter name="validate-certificate-function"

value="ProvisioningAdapter.validateCertificate" />
</loginModule>

</loginModules>

c. Create a securityTest named mobileSecurityTest.
v Add a mandatory <testAppAuthenticity /> test.
v Add a mandatory <testDeviceId /> test.
v Specify provisioningType="custom".
v Specify realm="CustomDeviceProvisioningRealm".
<securityTests>

<mobileSecurityTest name="CustomDeviceProvisioningSecurityTest">
<testAppAuthenticity />
<testDeviceId provisioningType="custom" realm="CustomDeviceProvisioningRealm" />

</mobileSecurityTest>
</securityTests>

Results

You implemented server-side components for custom device provisioning.

Example

validateCSR function
The following example shows the validateCSR function:
function validateCSR(clientDN, csrContent) {

WL.Logger.log("validateCSR :: clientDN :: " + JSON.stringify(clientDN));
WL.Logger.log("validateCSR :: csrContent :: " + JSON.stringify(csrContent));

var activationCode = csrContent.activationCode;

// This is a place to perform validation of csrContent and update clientDN if required.
// You can do it using adapter backend connectivity
if (activationCode == "worklight") {

response = {
isSuccessful: true,
clientDN: clientDN + ",CN=someCustomData",
attributes: {

customAttribute: "some-custom-attribute"
}

};
} else {

response = {
isSuccessful: false,
errors: ["Invalid activation code"]

};
}

return response;
}

validateCertificate function
The following example shows the validateCertificate function:
function validateCertificate(certificate, customAttributes) {

WL.Logger.log("validateCertificate :: certificate :: + "JSON.stringify(certificate));
WL.Logger.log("validateCertificate :: customAttributes :: + "JSON.stringify(customAttributes));

// Additional custom certificate validations can be performed here.

return {
isSuccessful: true

};
}

8-528 IBM MobileFirst Platform Foundation V6.3.0

What to do next

You can implement client-side components for custom device provisioning. For
more information about implementing client-side components, see “Implementing
client-side components for custom device provisioning.” For more information
about custom device provisioning, see tutorial on the Getting Started page.

Implementing client-side components for custom device provisioning:

You can implement client-side components for custom device provisioning.

The following prerequisites are required for device provisioning:
v MobileFirst Studio and MobileFirst Server, from MobileFirst Enterprise Edition

or IBM MobileFirst Platform Foundation Consumer Edition.
v Android applications must be built for production and signed by a certificate

other than the included debugging certificate.
v In the Application Center console, application authentication must be set to

enabled, blocking.

The included MobileFirst Development Server can be used for device provisioning.

The following sections describe the implementation of the client-side components
in hybrid, native Android, and native iOS applications.

Implementing client-side components for hybrid applications:

You can implement client-side components for custom device provisioning in the
hybrid applications.

Before you begin

For more information about the prerequisites, see “Implementing client-side
components for custom device provisioning.”

About this task

To implement client-side components for custom device provisioning, complete the
following steps.

Procedure

1. Create an application.
2. Add an iPhone, iPad, Android, or Windows Phone 8 environment to the

application.
3. Configure the application for the Application Authenticity test.

Note: The authenticity test works only with IBM MobileFirst Platform
Foundation Consumer Edition and IBM MobileFirst Platform Foundation
Enterprise Edition. For more information about application authenticity, see
“MobileFirst application authenticity overview” on page 8-485.

4. Update the application HTML file.
<body id="content" style="display: none;">

<div id="AppBody">
<div class="header">

<h1>CustomProvisioningApp</h1>

Developing MobileFirst applications 8-529

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

</div>
<div id="wrapper">
Device authentication with custom device provisioning was not complete

</div>
<button id="conectToServerButton">
Connect to MobileFirst Server

</button>
</div>
<div id="ProvBody" style="diplay: none">
<div id="provisioningError></div>
<input id="submitProvCodeButton">Send</button>

</div>
...
</body>

5. Add a listener to connectToServerButton.
6. Optional: Use the WL.Client.connect API to connect to the MobileFirst Server.

function wlCommonInit() {
$("#connectToServerButton").click(function(){

WL.Client.connect();
});

}

7. For the WL.Client.connect function to trigger authentication, specify the
MobileFirst Server instance as the protected resource by adding a custom
security test or mobile security test in the application descriptor.
<iphone securityTest="ADPSecurityTest" version="1.0">

or
<ipad securityTest="ADPSecurityTest" version="1.0">

or
<android securityTest="ADPSecurityTest" version="1.0">

or
<windowsPhone8 securityTest="ADPSecurityTest" version="1.0">

8. Add a CustomDeviceProvisioningRealmChallengeHandler.js file and reference
it from the main HTML file.

9. Implement the following methods that are required by the device provisioning
challenge handler:
v The handler.createCustomCsr(challenge) method is responsible for

returning custom properties that are added to the certificate signing request
(CSR) . Add a custom activationCode property, which is used in the
adapter’s validateCSR function.

Note: This method is asynchronous to allow collecting custom properties
through native code or separate flow.

v The handler.processSuccess(identity) method is called when certificate
validation is successfully completed by the validateCertificate adapter
function.

v The handler.handleFailure() method is called when certificate validation
fails.

10. Implement the device provisioning challenge handler.
var customDevProvChallengeHandler =

WL.Client.createProvisioningChallengeHandler("CustomDeviceProvisioningRealm");

customDevProvChallengeHandler.createCustomCsr = function(challenge) {
WL.Logger.debug("createCustomCsr :: " + JSON.stringify(challenge));

8-530 IBM MobileFirst Platform Foundation V6.3.0

$("#AppBody").hide();
$("#ProvBody").show();
$("#provisioningCode").val("");

if (challenge.error) {
$("#provigioningError").html(new Date() + " " + challenge.error);

} else {
$("#provisioningError").html(new Data() + " Enter activation code.");

}

$("#submitProvCodeButton").click(function() {
var customCsrProperties = {

activationCode: $("#provisioningCode").val()
};
customDevProvChallengeHandler.submitCustomCsr(customCsrProperties, challenge);

});
};

customDevProvChallengeHandler.processSuccess = function(identity) {
WL.Logger.debug("processSuccess :: " + JSON.stringify(identity));
$("#connectToServerButton").hide();
$("#AppBody").show();
$("#ProvBody").hide();
$("#wrapper").text("Device authentication with custom device provisioning " +

"was successfully completed");
};

customDevProvChallengeHandler.handleFailure = function() {
WL.Logger.debug("handleFailure");
$("#AppBody").show();
$("#ProvBody").hide();
$("#wrapper").text.("Server has rejected your device. You must reinstall the

application and perform device provisioning again.");
};

Results

You implemented client-side components for custom device provisioning.

What to do next

You can implement server-side components for custom device provisioning. For
more information about implementing server-side components, see “Implementing
server-side components for custom device provisioning” on page 8-527. For more
information about custom device provisioning, see the tutorials on the Getting
Started page.

Implementing client-side components for native Android:

You can implement client-side components for custom device provisioning in
native Android.

Before you begin

For more information about the prerequisites, see “Implementing client-side
components for custom device provisioning” on page 8-529.

About this task

To implement client-side components for custom device provisioning, complete the
following steps.

Procedure

1. Create a MobileFirst native API application for Android.

Developing MobileFirst applications 8-531

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

2. Configure the application for the Application Authenticity test. The authenticity
test works only with IBM MobileFirst Platform Foundation Consumer Edition,
and MobileFirst Enterprise Edition. For more information about application
authenticity, see “MobileFirst application authenticity overview” on page 8-485.

3. Create an Android native application and use
WLClient.getInstance().connect() to connect to server.

4. For the WLClient.getInstance().connect() function to trigger authentication,
specify the MobileFirst native API application as a protected resource by
adding a custom security test or mobile security test in the application
descriptor.
<nativeAndroidApp securityTest="MySecurityTest" version="1.0">

5. Add a new class CustomDeviceProvisioningRealmChallengeHandler, and
register it in the main activity class by using
WLClient.getInstance().registerChallengeHandler(new
CustomDeviceProvisioningRealmChallengeHandler(’CustomDeviceProvisioningRealm’)).

6. Implement the following methods that are required by the device provisioning
challenge handler:
v The createCustomCsr(challenge) method is responsible for returning custom

properties that are added to the certificate signing request (CSR). Add a
custom activationCode property, which is used in the adapter’s validateCSR
function.

v The handleSuccess(identity) method is called when certificate validation is
successfully completed by the validateCertificate adapter function.

v The handleFailure() method is called when certificate validation fails. You
must call clearDeviceProvisioningCertificate() from this method to delete
the stored certificate on the device.

Results

You implemented client-side components for custom device provisioning in native
Android.

Example

The following sample shows the implementation of the challenge handler for
custom device provisioning.
public class CustomDeviceProvisioningRealmChallengeHandler extends BaseProvisioningChallengeHandler {

public CustomDeviceProvisioningRealmChallengeHandler(String realm) {
super(realm);

}

@Override
protected void createCustomCsr(JSONObject challenge) {
JSONObject customCsrProperties= new JSONObject();
try {

customCsrProperties.put(activationCode, activationCode.getText());
} catch (JSONException e) {

}

submitCustomCsr(customCsrProperties, challenge);
}

@Override
public void handleSuccess(JSONObject identity) {
System.out.println("Device authentication with custom device provisioning was successfully completed");

}

8-532 IBM MobileFirst Platform Foundation V6.3.0

@Override
public void handleFailure(JSONObject identity) {
clearDeviceProvisioningCertificate();
System.out.println("Server has rejected your device. You must reinstall the application and perform device provisioning again.");

}
}

What to do next

You can implement server-side components for custom device provisioning. For
more information about implementing server-side components, see “Implementing
server-side components for custom device provisioning” on page 8-527. For more
information about custom device provisioning, see the tutorials on the Getting
Started page.

Implementing client-side components for native iOS:

You can implement client-side components for custom device provisioning in
native iOS.

Before you begin

For more information about the prerequisites, see “Implementing client-side
components for custom device provisioning” on page 8-529.

About this task

To implement client-side components for custom device provisioning, complete the
following steps.

Procedure

1. Create a MobileFirst native API application for iOS.
2. Configure the application for the Application Authenticity test. The authenticity

test works only with IBM MobileFirst Platform Foundation Consumer Edition
and IBM MobileFirst Platform Foundation Enterprise Edition. For more
information about application authenticity, see “MobileFirst application
authenticity overview” on page 8-485.

3. Create an iOS native application and use the wlConnectWithDelegate function
to connect to the server.

4. For the wlConnectWithDelegate function to trigger authentication, specify the
MobileFirst native API application as a protected resource by adding a custom
security test or mobile security test in the application descriptor.
<nativeIOSApp securityTest="MySecurityTest" version="1.0">

5. Add a new class CustomChallengeHandlerand register it in the main by using
[[WLClient sharedInstance]
registerChallengeHandler:[customChallengeHandler
initWithRealm:@"wl_myCustomProvisioningRealm"]].

6. Implement the following methods, which are required by the challenge handler
for device provisioning.

createCustomCsr(challenge)
This method is responsible for returning custom properties that are
added to the certificate signing request (CSR). Add a custom
activationCode property, which is used in the adapter’s validateCSR
function.

Developing MobileFirst applications 8-533

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

handleSuccess(identity)
This method is called when certificate validation is successfully
completed by the validateCertificate adapter function.

handleFailure()
This method is called when certificate validation fails. You must call
clearDeviceProvisioningCertificate() from this method to delete the
stored certificate on the device.

Here is a sample implementation of a challenge handler for custom device
provisioning:
@interface CustomChallengeHandler : BaseProvisioningChallengeHandler <WLDelegate>{
@private

ViewController *vc;
}
- (id)initWithController: (ViewController *)mainView;
- (void) createCustomCsr : (NSDictionary *) challenge;
@property (nonatomic, strong)NSString *passcode;
@end

@implementation CustomChallengeHandler
- (id)initWithController: (ViewController *) mainView{

if (self = [super init])
{

vc = mainView;
}
return self;

}
-(void) createCustomCsr : (NSDictionary *) challenge {

[vc updateMessage:@"\nCreating custom Csr”];
[vc updateMessage:[NSString stringWithFormat:@"\t Passcode :: %@", self.passcode]

NSMutableDictionary* answer =[[NSMutableDictionary alloc] init];
[answer setValue:self.passcode forKey:@"activationCode"];
[self submitCsr:answer :challenge];

}
-(void)onSuccess:(WLResponse *)response {

[vc updateMessage:@"Device authentication with custom device provisioning was successfully completed"];
[vc updateMessage:response.description];

}
-(void)onFailure:(WLFailResponse *)response{

[vc updateMessage:@"Server has rejected your device. You must reinstall the application and perform device provisioning again."];
[vc updateMessage:response.description];

}
@end

Results

You have implemented client-side components for custom device provisioning in
native iOS.

What to do next

You can implement server-side components for custom device provisioning. For
more information, see “Implementing server-side components for custom device
provisioning” on page 8-527. For more information about custom device
provisioning, see the tutorial on the Getting Started page.

8-534 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

Device single sign-on (SSO)
Single sign-on (SSO) enables users to access multiple resources (that is, applications
and adapter procedures) by authenticating only once.

When a user successfully logs in through an SSO-enabled login module, the user
gains access to all resources that are using the same login module, without having
to authenticate again for each of them. The authenticated state remains alive as
long as requests to resources protected by the login module are being issued
within the timeout period, which is identical to the session timeout period.

Device authentication

The SSO feature requires the use of device authentication. This means that for a
protected resource that needs to be protected with SSO, there must also be a device
authentication realm in the securityTest protecting the resource in the
authenticationConfig.xml file. Device authentication should take place before the
SSO-enabled user authentication.

Supported devices

SSO is supported on Android, iOS, Windows 8, and Windows Phone 8 devices.

Performance

When you use the single sign-on feature, the load on the database might increase,
and you might have to adjust the database configuration.

Implementing a custom authentication to support SSO

To allow SSO to operate on your custom authentication classes (authenticator and
loginModule) you must:
1. Make all fields in your class transient except for those fields that are being used

by the following methods:
v
WorklightAuthenticator.processRequestAlreadyAuthenticated(HttpServletRequest,
HttpServletResponse)

v WorklightAuthLoginModule.logout()

2. Mark the authenticator and loginModule classes (and any class referred to by
those classes that is not transient after you perform step 1) with the class
annotation @DeviceSSO(supported = true) .

Configuring device single sign-on
Single sign-on (SSO) is a property of a login module. You can enable single sign-on
for custom security tests and for mobile security tests.

About this task

You can enable single sign-on from a <mobileSecurityTest> element or from a
<loginModule> element of theauthenticationConfig.xml configuration file. For
custom security tests, you enable single sign-on on the <loginModule> element. For
mobile security tests, you enable single sign-on on the testUser realm of the
<mobileSecurityTest> element.

Basically, you configure SSO in the same way for native IOS applications as for
hybrid applications. However, for native SSO to work on iOS, this additional step

Developing MobileFirst applications 8-535

is mandatory: In Xcode, add a Keychain Access Group with the same name for all
apps that participate in device SSO.

Procedure

Take the following points into consideration, depending on how you choose to
configure device single sign-on:
v When you configure <mobileSecurityTest> elements, enable single sign-on from

the <securityTest> element by setting the value of the sso attribute to true. You
can enable SSO for user realms only. If the sso attribute is not specified, it is
assumed to be set to false. For example:
<mobileSecurityTest name="mst">

<testDeviceId provisioningType="none"/>
<testUser realm="myUserRealm" sso="true"/>

</mobileSecurityTest>

v When you configure <customSecurityTest> elements, enable single sign-on by
configuring an ssoDeviceLoginModule property on the user login module in the
authentication configuration file, where ssoDeviceLoginModule is the name of the
login module that is used for the device authentication realm. For example:
<loginModule name="MySSO" ssoDeviceLoginModule="WLDeviceNoProvisioningLoginModule">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

In this example, "MySSO" is the name of the user login module for which single
sign-on is being enabled so that its login can be shared.
"WLDeviceNoProvisioningLoginModule" is the name of the login module that
handles device authentication; in this case, with no provisioning. To use
auto-provisioning as the device login module, set the ssoDeviceLoginModule
property to the value "WLDeviceAutoProvisioningLoginModule". With custom
provisioning, you define the name when you create the custom provisioning
login module.

v When you configure <customSecurityTest> elements, you must configure the
user realm at least one step later than the device realm. This is necessary to
ensure that the SSO feature operates correctly. When you configure SSO on
<mobileSecurityTest>, the platform takes care of this prioritization
automatically. The following example illustrates a correct <customSecurityTest>
configuration:
<customSecurityTest name="adapter">

<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" step="1"/>
<test realm="MySSO" isInternalUserID="true" step="2"/>

</customSecurityTest>

v For Windows Phone 8, the following items must be implemented:
– The Publisher ID specified in the WMAppManifest.xml file must be the same for

all applications that participate in the single sign-on.
– The following line must be added to the WMAppManifest.xml file:

<Capability Name=’ID_CAP_IDENTITY_DEVICE’ />

v A cleanup task cleans the database of orphaned and expired single-sign-on login
contexts. To configure the cleanup task interval, use the
sso.cleanup.taskFrequencyInSeconds server property and assign the required
task interval value, expressed in seconds. For information about how to specify
MobileFirst configuration properties, see “Configuration of MobileFirst
applications on the server” on page 11-45.

8-536 IBM MobileFirst Platform Foundation V6.3.0

Results

Device single sign-on implementations are successful if they conform to any of the
following valid configurations. Avoid inconsistent states that result from
configurations with built-in conflicts, as described below. Inconsistent states can
result in the MobileFirst project failing to start.

Valid configurations:

v The <loginModule> element does not specify the ssoDeviceLoginModule
attribute, and all mobile security tests that use this login module for
their user realms have sso=”false”. In this case, SSO is disabled for all
applications that are protected by security tests (mobile or custom) with
this login module for a user realm. For example:
<securityTests>

<mobileSecurityTest name="FormTest">
<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="false"/>

</mobileSecurityTest>
<mobileSecurityTest name="AnotherFormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="false"/>

</mobileSecurityTest>
</securityTests>
<realms>

<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>

</realm>
</realms>
<loginModules>

<loginModule name="StrongDummy">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>

</loginModule>
</loginModules>

v The <loginModule> element does not specify the ssoDeviceLoginModule
attribute, and all mobile security tests that use this login module for
their user realms have sso=”true”. In this case, SSO is enabled for all
applications that are protected by security tests (mobile or custom) with
this login module for a user realm. For example:
<securityTests>

<mobileSecurityTest name="FormTest">
<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="true"/>

</mobileSecurityTest>
<mobileSecurityTest name="AnotherFormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="true"/>

</mobileSecurityTest>
</securityTests>
<realms>

<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>

</realm>
</realms>
<loginModules>

<loginModule name="StrongDummy">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>

</loginModule>
</loginModules>

v The <loginModule> element specifies the ssoDeviceLoginModule attribute,
and all mobile security tests that use this login module for their user
realms have sso=”true”. In this case, SSO is enabled for all applications

Developing MobileFirst applications 8-537

that are protected by security tests (mobile or custom) with this login
module for a user realm. For example:
<securityTests>

<mobileSecurityTest name="FormTest">
<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="true"/>

</mobileSecurityTest>
<mobileSecurityTest name="AnotherFormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="true"/>

</mobileSecurityTest>
</securityTests>
<realms>

<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>

</realm>
</realms>
<loginModules>

<loginModule name="StrongDummy" ssoDeviceLoginModule="WLDeviceAutoProvisioningLoginModule">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>

</loginModule>
</loginModules>

Single sign-on inconsistent state

Avoid conflicts in the single sign-on configuration of a login module. Such
conflicts cause inconsistency in the single sign-on state of the login
module, and can lead to unexpected results.

A conflict can exist between the configuration of a <loginModule> element
and the configuration of a <mobileSecurityTest> element. Such conflict can
happen when you enable single sign-on of a login module in the
<loginModule> element and then disable single sign-on for the same login
module, by using it in a <mobileSecurityTest> without specifying
sso=”true” for the realm of this <loginModule>. For example:
<securityTests>

<mobileSecurityTest name="FormTest">
<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm"/>

</mobileSecurityTest>
</securityTests>
<realms>

<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>

</realm>
</realms>
<loginModules>

<loginModule name="StrongDummy" ssoDeviceLoginModule="WLDeviceAutoProvisioningLoginModule">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>

</loginModule>
</loginModules>

Another case of conflict can happen between different
<mobileSecurityTest> elements, when two <mobileSecurityTest> elements
use the same login module, with conflicting values for the sso attribute. In
this example, the same realm contains conflicting sso enablement states in
two <mobileSecurityTest> elements.
<securityTests>

<mobileSecurityTest name="FormTest">
<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm"/>

</mobileSecurityTest>
<mobileSecurityTest name="FormTestWithSso">

8-538 IBM MobileFirst Platform Foundation V6.3.0

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="true"/>

</mobileSecurityTest>
</securityTests>

Here is another example, in which the same login module is used for
different realms with conflicting SSO enablement states in two
<mobileSecurityTest> elements:
<securityTests>

<mobileSecurityTest name="FormTest">
<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm"/>

</mobileSecurityTest>
<mobileSecurityTest name="FormTestWithSso">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealmWithSso" sso="true"/>

</mobileSecurityTest>
</securityTests>
<realms>

<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>

</realm>
<realm name="SampleAppRealmWithSso" loginModule="StrongDummy">

<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>
</realm>

</realms>

What to do next

When you use a reverse proxy, more configuration and settings are necessary.
Either of the following options allow device SSO to work with a reverse proxy.

Device single sign-on with the IBM Security Access Manager Web reverse
proxy:

Additional configuration and settings are required when you use the IBM Security
Access Manager Web reverse proxy.

You can configure the IBM Security Access Manager Web reverse proxy or IBM
Security Access Manager WebSEAL when you enable device SSO to delegate user
authentication to the MobileFirst Device SSO realm. For more information about
the required configurations and samples, see IBM Security Access Manager for IBM
MobileFirst Platform Foundation.

This option is supported on all mobile platforms and you can use the IBM Security
Access Manager features such as Risk-Based Access (RBA), Context-Based Access
(CBA), Strong Authentication (One-time password), and Identity aware
applications (OAuth) to further enhance security.

Configuring device single sign-on with a reverse proxy:

Additional configuration and settings are required when you use a reverse proxy.

Before you begin

Ensure that you configured device single sign-on as explained in “Configuring
device single sign-on” on page 8-535.

Developing MobileFirst applications 8-539

http://www.ibm.com/support/docview.wss?uid=swg24034222
http://www.ibm.com/support/docview.wss?uid=swg24034222

About this task

Device SSO and reverse proxies

Device single sign-on with a reverse proxy can also be achieved with the
“Simple data sharing” on page 8-549 feature. The Simple Data Sharing
feature allows a set of applications to share authentication cookies that
allow access through the reverse proxy and delegate authentication to the
MobileFirst Server Device SSO realm.

The Simple Data Sharing feature is supported only on iOS and Android
devices.

With the Simple Data Sharing feature, you can tell the MobileFirst client
runtime environment to share credentials among applications in the same
MobileFirst application family. Because you are working with security
tokens, you must ensure that access to the applications is protected by
other mechanisms. For example, ensure that the device is not jailbroken,
and that the device is password-protected. For more information, see
“Simple data sharing limitations and special considerations” on page 8-554.

The following steps show how to configure device single sign-on with a reverse
proxy.

Procedure

1. Enable the Simple Data Sharing feature as explained in “Enabling the Simple
Data Sharing feature” on page 8-550.

2. For hybrid applications, follow these steps.
a. Ensure that you select the MobileFirst device SSO option.
b. Specify a comma-separated list of cookie names that you want IBM

MobileFirst Platform Foundation to remember and share among the
applications in your specified family.

3. For native applications, follow these steps.
a. Add the wlShareCookies property in the MobileFirst properties file.
b. Specify a comma-separated list of cookie names that you want IBM

MobileFirst Platform Foundation to remember and share among the
applications in your specified family.

wlShareCookies = PD-S-SESSION-ID

Each application in the MobileFirst family must be enabled for simple data
sharing, and must also specify the cookie, which it agrees to share and reuse.
For example, you can specify any one of the PD-*SESSION-ID cookies for IBM
Security Access Manager or the Ltpatoken or Ltpatoken2 cookies for IBM
WebSphere DataPower.

8-540 IBM MobileFirst Platform Foundation V6.3.0

Results

You have configured device single sign-on with a reverse proxy.

Using SSO between IBM MobileFirst Platform Foundation and
external services

You can use single sign-on (SSO) between IBM MobileFirst Platform Foundation
and external services by using the MobileFirst security framework to protect the
external services.

About this task

MobileFirst Server acts as an authorization server and issues an access token that
can be validated by the external service. The client application requests the access
token from IBM MobileFirst Platform Foundation via the token endpoint and sends
it to the external services.

The scope of the access token is a security test that is defined inside a MobileFirst
project. Each scope has a timeout property that determines the lifetime of the
token. This property defines the time for which an issued token remains valid.
After the timeout expires, the token is rejected and a new one needs to be
requested from the server.

Restriction: If MobileFirst Server and the external service are visible to the client
through different domains, the following restrictions apply:
v The solution is inappropriate for web environment.
v Web preview for mobile environment does not work.

Procedure
1. Configure the MobileFirst project.

a. Configure the scope for the access token.
The scope of an access token must be a predefined security test in a
MobileFirst project. The security test is configured in your_project/server/
conf/authenticationConfig.xml. The default lifetime for each token is 60
seconds, which you can override by adding the AccessTokenExpirationSec
attribute to the security test. For example, if you want to configure a
security test called SampleSecurityTest with a lifetime of 15 seconds, you
edit the authenticationConfig.xml file in either of the following ways:

From Source view:
<securityTests>

<customSecurityTest name="SampleSecurityTest" AccessTokenExpirationSec="15">
<test realm="SampleRealm" isInternalUserID="true"/>

</customSecurityTest>
</securityTests>

From Design view:

b. Use a keystore.

Developing MobileFirst applications 8-541

Create and use your own keystore, and configure the MobileFirst Server to
use it. For information about how to create a keystore in an unrelated
context, see “Configuring device auto provisioning” on page 8-525.
Attention: Using the default keystore is not secure.

2. Configure the external service.
To ensure that your external service accepts the access token, you must add a
validation library to your service, such that that library can validate the token
either online or offline. Two libraries are provided for this purpose:
v Java lib: worklight-access-token-validator.jar
v Node.js module: worklight-access-token-validator.tgz

You can find the libraries in the following directories:

For MobileFirst Server installation
In product_install_dir/WorklightServer/external-server-libraries.

For MobileFirst Studio
When you create a new project, in: your_project_dir/
externalServerLibraries.

You must use one of the following options:
v Option i: Configure the external service by using Java.

The purpose of this module is to allow offline validation of access tokens
generated by MobileFirst Server for Java web applications.
To use the Java library, two files are needed:
– Certificate of MobileFirst Server.

Export the certificate from the keystore of the MobileFirst Server. You can
do this with the Java keytool.

– worklight-access-token-validator.jar.
You can use either a servlet filter, or use the Java-supplied API:

Using a servlet filter

Add this JAR to the class path of your web application, and use the
filter class com.worklight.security.WLAccessTokenValidationFilter
as shown in the following example. Assume the values in the
following table:

Table 8-66. Example servlet filter parameter values

Parameter Value Explanation

Filter name FilterName Choose an arbitrary name for
the filter.

URL /some/protected/url Prefix for all the resources
you want to protect.

Scope securityTestName Optional. Name of the
security test, as defined in
the
authenticationConfig.xml
file, which is needed to
authenticate against in order
to gain access to the
protected resources.

CertificatePath certificateLib/
WorklightServerCertificate.cert

Path to the certificate of the
MobileFirst Server relative to
the WEB-INF folder.

8-542 IBM MobileFirst Platform Foundation V6.3.0

Assuming the parameter values in the previous table, this is the
addition needed for the web.xml of your external server:
<web-app ...>
...
<filter>

<filter-name>FilterName</filter-name>
<filter-class>com.worklight.security.WLAccessTokenValidationFilter</filter-class>
<init-param>

<param-name>worklightCertificateFile</param-name>
<param-value>certificateLib/WorklightServerCertificate.cert</param-value>

</init-param>
<init-param>

<param-name>scope</param-name>
<param-value>securityTestName</param-value>

</init-param>
</filter>
<filter-mapping>

<filter-name>FilterName</filter-name>
<url-pattern>/some/protected/url</url-pattern>

</filter-mapping>
...
</web-app>

After successful validation, the filter updates the ClientContext
object that can be used by the service to access user, application, or
device identities contained in the access token. This is an example of
ClientContext usage:
ClientContext context = ClientContext.getInstance();
String appId = context.getApplcation();
String userId = context.getUser();
String deviceId = context.getDevice();

Using the Java-supplied API

The following interface is exposed:
package com.worklight.common.security.oauth;
public interface IAccessToken {

public String getUserIdentity();
public String getDeviceIdentity();
public String getApplicationIdentity();
public String getVersion();
public String getScope();

}

The class AccessTokenParse provides the following API in order to
get an instance that implements this interface:
public static IAccessToken parseToken(final String tokenStr, final PublicKey serverPublicKey, String scope) throws AccessTokenException;
public static IAccessToken parseToken(final String tokenStr, final PublicKey serverPublicKey) throws AccessTokenException;

Both methods check the validity of the token (correctly formatted
token and issued by MobileFirst Server for the given public key), and
that the token has not expired.

The only difference between the two methods is that the first method
also validates that the token was issued for the given scope. The
public key needs to be taken from the certificate: For example:
CertificateFactory cf = CertificateFactory.getInstance("X.509");
X509Certificate cert = (X509Certificate) cf.generateCertificate(certInputStream);
wlPublicKey = cert.getPublicKey();

The interface can be used in the following way:

Developing MobileFirst applications 8-543

try {
IAccessToken iAccessToken = null;
if (scope != null) {

iAccessToken = AccessTokenParser.parseToken(wlToken, wlPublicKey, scope);
} else {

iAccessToken = AccessTokenParser.parseToken(wlToken, wlPublicKey);
}

String userId = iAccessToken.getUserIdentity();
String deviceId = iAccessToken.getDeviceIdentity();
String appId = iAccessToken.getApplicationIdentity();

...

...

v Option ii: Configure the external service by using Node.js.
The purpose of this node module is to allow offline validation of access
tokens generated by MobileFirst Server for Node.js server.
a. Certificate of MobileFirst Server.

In order to get the certificate, you need to generate a .pem certificate from
the keystore. One possible way to do so is with Java's keytool. For
example, from bash, creating the .pem certificate from jks keystore:
keytool -exportcert -keystore $KEYSTORE_FILE -alias $CERTIFICATE_ALIAS -rfc > $OUTPUT_FILE.pem

You then have to pass the content of the generated (PEM-formatted)
certificate file as input to the node module, which allows you to validate
tokens created with the same certificate.

Note: The expiration of the token is checked against the local computer
time, so ensure your clock is synchronized (preferably using an NTP
server).

b. worklight-access-token-validator.tgz

You will need to install the module with:
npm install tgz file

Using this module gives you a function that requires certificate
(mandatory) and a scope (optional). Once called with these parameters,
you have an object with the following functions:

Table 8-67.

Function Description

validate(token, callback) A function that validates if the token
provided is a valid MobileFirst access token.
If the scope parameter is given upon
initialization, the function also validates that
the token is for the required scope.

v token

v callback - function(errorObject,
authenticationData) ** both objects
described below

validateAuthorizationHeader(authHeader,
callback)

A helper function. Allows developer to use
it without having to parse the
'Authorization' header to retrieve the token

v authHeader

v callback - as described above

For example:

8-544 IBM MobileFirst Platform Foundation V6.3.0

// Load the certificate from a PEM encoded file
var cert = require("fs").readFileSync(’cert.pem’);
// The scope to mandate (can be null, in which case the token is only checked for a suitable signature and token expiration)
var scope = "WorlightSecurityTest";
// Create a reusable validator
var worklightValidator = require("worklight-access-token-validator")(cert, scope);
worklightValidator.validate(token, function(error, payload) {

if (error) {
// Token is invalid, send appropriate response to user
response.writeHead(error.httpStatus,{"WWW-Authenticate":error.wwwAuthenticateHeader});

} else {
// Token is valid, proceed with request

}
});

The following table lists the fields that the error object in the callback
method contains:

Table 8-68. Error object fields

Field Explanation

err Contains the error code, which can be one of
the following:

v 'invalid_token'

v 'missing_token'

v 'insufficient_scope'

errMsg Contains the human-readable description of
the error reason.

httpStatus HTTP status to use when responding to the
access token sender.

wwwAuthenticateHeader Content of the 'WWW-Authenticate' header
that should be responded to the access token
sender.

The authentication data in the callback method contains the following
fields:

Table 8-69. Fields in the authentication data in the callback method

Field Explanation

version Version of the token.

scope Security test that the token authenticated.

expiration Time (in milliseconds) since epoch when the
token expires.

data Object with the following fields.

user_id [optional]
Authenticated user

device_id [optional]
device id as known by MobileFirst
Server

application_id
identity of the app

v Option iii: Configure the external service by using a validation endpoint.
When offline validation is inappropriate, you can use online validation of the
access tokens with the /oauth/validation endpoint. This endpoint provides
the signature validation, expiration check, and optional scope validation.

Developing MobileFirst applications 8-545

For this example (in pseudo-code), the optional scope parameter will not be
passed to the endpoint.
filter(request):

header = getHeader(request, ’Authorization’)
// header should have the format: “Bearer <token>”
token = parseHeader(header)

// Call validation endpoint as described
res = callValidationEndpoint(token)
if (res.code != SUCCESS) {
// Token not validated, reponse can be sent as is to caller
sendResponse(res)
exit

}

// If successful
payload = res.body
scope = payload.scope
userId = payload.data.user_id

// Continue with scope checking | passed filter, return payload/data

What to do next

Consider using the client-side API features that support the use of MobileFirst
access tokens.

Client-side API

The WL.Client API offers built-in support for using MobileFirst access
tokens for the following platforms:
v Hybrid: JavaScript
v Android
v iOS

You can use the methods included in this API in the following ways:

Obtaining and caching a token for a specified scope

WL.Client requests a new token from the MobileFirst Server. To
obtain the token, the client must be authenticated in all realms of
the requested scope (which is represented by a security test in the
MobileFirst Server AuthenticationConfig.xml file). Thus, calling
this method might trigger an authentication sequence for all realms
for which authentication is still required.

This method is asynchronous in all platforms. It does not return a
value, but instead triggers a response handler. Note that there is no
need to parse the response from the server in the response handler.
The token is automatically parsed and cached inside WL.Client and
can be retrieved by using the following method:

Getting the last obtained access token

WL.Client returns the last access token for a certain scope.
Alternatively, if no scope is provided, the last obtained token is
returned. This is useful when an application is only using one
scope.

The scope is represented as a string and should be added to the
“Authorization” header of the request to the protected external
server, preceded by “Bearer”. The following example demonstrates
how you might do this when issuing an ajax request:

8-546 IBM MobileFirst Platform Foundation V6.3.0

var token = WL.Client.getLastAccessToken();
$.ajax({

type : "GET",
url : MY_URL,
headers : {"Authorization" : "Bearer " + token}
})

Getting the required scope from the external service response

When a request to the external service fails, WL.Client is able to
identify whether the failure is related to access token issues (for
example, the token does not match the required scope, the token
has expired), and will return the name of the scope which is
required in order to access the service. In this case, obtaining a
new token for the returned scope is required. If the error is not
related to access token issues, this method returns null.

Suggested use of client-side API

This JavaScript example shows how to use the client-side API when
accessing an external service:
function callProtectedRestAPI(retries) {

// We want to be able to call this method recursively, since in some cases
// we need to obtain a new token, and try a second time.
if (retries == 0) {
return;
}

// Get the last obtained access token.
// On the first call, the token may be null.
var token = WL.Client.getLastAccessToken();
var headersObject = (token != null) ? {"Authorization" : "Bearer " + token} : {};

$.ajax({
type : "GET",
url : MY_EXTERNAL_SERVER_URL,
headers : headersObject

}).done(function(response) {
showResult(response);

}).fail(
function(response) {
// We need to extract this header from
// the response in order to know the scope.
var header = response.getResponseHeader("WWW-Authenticate");
var scope =

WL.Client.getRequiredAccessTokenScope(response.status,header);
if (scope != null) {

// The failure is related to the access token. Get a new one.
WL.Client.obtainAccessToken(

scope, getTokenSuccess,getTokenFailure);
} else {

showErrorResult("request failed");
}

});

function getTokenSuccess(response) {

// We obtained a token. try to access the external server one more time.
callProtectedRestAPI(retries - 1);

};

Developing MobileFirst applications 8-547

function getTokenFailure(response) {
showErrorResult(response);
};

}

WL.Client API reference information
For more information about the WL.Client API, see the following sections:
v WL.Client JavaScript API
v WL.Client iOS API
v WL.Client Android API

Exposed endpoints

This feature exposes two new endpoints of the MobileFirst Server:

/oauth/token

Used from the MobileFirst app in order to authenticate for a
desired scope. This endpoint should be used with one of the
client-side APIs provided. (See section WL.Client API reference
information earlier in this topic for a list of links to WL.Client API
reference information.)

Return:
v If authentication fails, return code and appropriate error message

is returned as defined by Oauth 2.0 RFC.
v If authentication flow is completed successfully, returns a valid

access token.

/oauth/validation
This endpoint can be used to validate an access token which was
created by the same MobileFirst Server. A valid request will have
the following properties:

Table 8-70. Validation request properties

Property Description

URL <context-root>/oauth/validation

Method POST

Parameter: token (mandatory) The token in question.

Parameter: scope (optional) The scope that protects the resource.

Regardless of whether scope is supplied or not, the endpoint
makes sure that the token is valid. If the optional parameter scope
is provided, the endpoint verifies that the token is provided for the
required scope.

Return:
v If validation fails, return code & appropriate header will be

returned as defined by Oauth 2.0 RFC for the Bearer token.
v If successful, the payload of the token is returned to user. The

payload is a JSON object, and as of token version WL1.0, its
format is:
{

version: 1.0 (version of token)
scope: <The security test that the token authenticated against>
expiration: <Time in msec since epoch when token will be expired>
data: {
user_id: <authenticated user>

8-548 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_w_l_client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/wlclient/api/WLClient.html

device_id: <device id as known by MobileFirst Server>
application_id: <identity of the app>

}
}

Simple data sharing
Learn about the Simple Data Sharing feature.

Simple data sharing overview
Learn about the Simple Data Sharing feature.

The Simple Data Sharing feature makes it possible to securely share lightweight
information among a family of applications on a single device. This feature uses
native APIs that are already present in the different mobile SDKs to provide one
unified developer API. This MobileFirst API abstracts the different platform
complexities, making it easier for developers to quickly implement code that
allows for inter-application communication.

This feature is supported on iOS and Android for both hybrid and native
applications.

After you enable the Simple Data Sharing feature, you can use the provided hybrid
and native APIs to exchange simple string tokens among a family of applications
on a device.

When used with other features like the MobileFirst device single sign-on (SSO) or
User Certificate Authentication features, the Simple Data Sharing feature enhances
the ability of these features to share security credentials among applications in the
same family. For example, you can share user authentication cookies among a
family of applications to allow device SSO to work when a reverse proxy is used.
It also enables the User Certificate Authentication feature to provision an X.509
user certificate to a family of applications on a device.

For more information about device SSO with a reverse proxy, see “Configuring
device single sign-on with a reverse proxy” on page 8-539.

For more information about user certificate group support, see “Configuring user
certificate authentication for a group of applications” on page 13-82.

Simple data sharing general terminology
Learn about simple data sharing general terminology.

MobileFirst application family

An application family is a way to associate a group of applications which share the
same level of trust. Applications in the same family can securely and safely share
information with each other.

To be considered part of the same MobileFirst application family, all applications in
the same family must comply with the following requirements:
v Specify the same value for the application family in the application descriptor.

– For iOS applications, this requirement is synonymous to the access group
entitlements value and the wlAppFamily value in the worklight.plist file.

Developing MobileFirst applications 8-549

– For Android applications, this requirement is synonymous to the
sharedUserId value in the Android manifest file.
- For Android, the name must be in the x.y format.
-

Note: Enabling or changing the MobileFirst application family settings
require prior Android applications to be uninstalled. Upgrading an
application that modified its sharedUserId is not allowed by the Android
operating system for security reasons.

v Applications must be signed by the same signing identity. This requirement
means that only applications from the same organization can use this feature.
– For iOS applications, this requirement means the same Application ID prefix,

provisioning profile, and signing identity is used to sign the application.
– For Android applications, this requirement means the same signing certificate

and key.

Aside from the IBM MobileFirst Platform Foundation provided APIs, applications
in the same MobileFirst application family can also use the data sharing APIs that
are available through their respective native mobile SDK APIs.

String tokens

Sharing string tokens across applications of the same MobileFirst application
family can now be accomplished in hybrid or native iOS and Android applications
through the Simple Data Sharing feature.

String tokens are considered simple strings, such as passwords or cookies. Using
large strings results in considerable performance degradation.

Consider encrypting tokens when you use the APIs for added security. For more
information, see “JSONStore security utilities” on page 8-451.

Enabling the Simple Data Sharing feature
Learn how to enable the Simple Data Sharing feature.

Enabling the Simple Data Sharing feature for hybrid applications
Update the application descriptor to enable the Simple Data Sharing feature on
hybrid applications.

About this task

To enable simple data sharing, you must modify the application descriptor.

Procedure
1. Add an Android or iOS environment.
2. Add the Simple Data Sharing option.

8-550 IBM MobileFirst Platform Foundation V6.3.0

3. Enable the Simple Data Sharing option and specify an application family name.

Note: For Android, the application family name must be in the form of
com.xx.yy.

Note: Enabling or changing the MobileFirst application family settings require
prior Android applications to be uninstalled. Upgrading an application that
modified its sharedUserId is not allowed by the Android operating system for
security reasons.

4. Save.
5. Build all environments.
6. Ensure that applications that are part of the same family are signed by the

same signing credentials.
7. For Android environments, follow these steps.

a. Before you install the newly built application on the device, uninstall any
prior applications from the device that were using a different family name
value.

b. Install the newly built application on the device.
8. For iOS environments, follow these steps.

a. Ensure that applications that are part of the same family share the same
Application ID prefix. For more information, see Managing Multiple App ID
Prefixes in the iOS Developer Library.

9. Repeat the steps for all applications that you want to make part of the same
application family.

Results

You can now use the Simple Data Sharing JavaScript APIs to share simple strings
among the group of applications in the same family. For more information, see the
Simple Data Sharing JavaScript APIs in the WL.Client class.

Enabling the Simple Data Sharing feature for iOS native
applications
Update iOS native applications to enable the Simple Data Sharing feature.

Before you begin

For more information about how to develop iOS native applications, see
“Developing native applications for iOS” on page 8-183.

Developing MobileFirst applications 8-551

https://developer.apple.com/library/ios/technotes/tn2311/_index.html
https://developer.apple.com/library/ios/technotes/tn2311/_index.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

Note: Only applications from the same organization can use this feature.

About this task

To enable simple data sharing, you must modify your iOS native application.

Procedure
1. Enable the Simple Data Sharing option by specifying the application family

name in the worklight.plist file with the wlAppFamily property.
2. In Xcode, add a Keychain Access Group with the same name as your

wlAppFamily.
The application-identifier entitlement must be the same for all applications in
your family.

Note: By default, MobileFirst applications are part of the worklight.group
access group that is defined in the entitlement property file. Ensure that this
group continues to be the first group in the list.

3. Ensure that applications that are part of the same family share the same
Application ID prefix. For more information, see Managing Multiple App ID
Prefixes in the iOS Developer Library.

4. Save and sign applications. Ensure that all applications in this group are signed
by the same iOS certificate and provisioning profiles.

5. Repeat the steps for all applications that you want to make part of the same
application family.

Results

You can now use the native Simple Data Sharing APIs to share simple strings
among the group of applications in the same family. For more information, see the
Simple Data Sharing Objective-C APIs in the WLSimpleDataSharing class.

Enabling the Simple Data Sharing feature for Android native
applications
Update Android native applications to enable the Simple Data Sharing feature.

Before you begin

For more information about how to develop Android native applications, see
“Developing native applications for Android” on page 8-189.

About this task

To enable simple data sharing, you must modify your Android native application.

Procedure
1. Enable the Simple Data Sharing option by specifying the application family

name as the android:sharedUserId element in the manifest tag of your Android
manifest file.
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.myApp1"
android:versionCode="1"
android:versionName="1.0"
android:sharedUserId="com.myGroup1">

The sharedUserId is equivalent to your wlAppFamily name.

8-552 IBM MobileFirst Platform Foundation V6.3.0

https://developer.apple.com/library/ios/technotes/tn2311/_index.html
https://developer.apple.com/library/ios/technotes/tn2311/_index.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_w_l_simple_data_sharing.html

Note: Enabling or changing the MobileFirst application family settings require
prior Android applications to be uninstalled. Upgrading an application that
modified its sharedUserId is not allowed by the Android operating system for
security reasons.

2. Ensure that applications that are part of the same family are signed by the
same signing credentials.

3. Uninstall any prior versions of the applications that did not specify a
sharedUserId or that used a different sharedUserId.

4. Install the application on the device.
5. Repeat the steps for all applications that you want to make part of the same

application family.

Results

You can now use the native Simple Data Sharing APIs that are provided to share
simple strings among the group of applications in the same family. For more
information, see the Simple Data Sharing Java APIs in the WLSimpleDataSharing
class.

Simple data sharing API concepts
Learn about simple data sharing API concepts.

Sharing string tokens across applications of the same MobileFirst application
family can be accomplished in iOS and Android for both hybrid and native
applications. This API is meant for sharing simple strings securely.

The Simple Data Sharing APIs allow any application in the same family to set, get,
and clear key-value pairs from a common place. The Simple Data Sharing APIs are
similar for every platform, and provide an abstraction layer, hiding the
complexities that exist with each native SDK's APIs, making it easy to use.

The following examples show how you can set, get, and delete tokens from the
shared credential storage for the different environments.

Hybrid applications
WL.Client.setSharedToken({key: myName, value: myValue})
WL.Client.getSharedToken({key: myName})
WL.Client.clearSharedToken({key: myName})

For more information about the hybrid APIs, see the getSharedToken,
setSharedToken, and clearSharedToken functions in the WL.Client class.

iOS native applications
[WLSimpleDataSharing setSharedToken: myName value: myValue];
NSString* token = [WLSimpleDataSharing getSharedToken: myName]];
[WLSimpleDataSharing clearSharedToken: myName];

For more information about the native iOS APIs, see WLSimpleDataSharing Class
Reference.

Android native applications
WLSimpleSharedData.setSharedToken(myName, myValue);
String token = WLSimpleSharedData.getSharedToken(myName);
WLSimpleSharedData.clearSharedToken(myName);

Developing MobileFirst applications 8-553

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/common/WLSimpleDataSharing.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_w_l_simple_data_sharing.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/interface_w_l_simple_data_sharing.html

For more information about the native Android APIs, see Class
WLSimpleDataSharing.

Simple data sharing troubleshooting
Find information to help resolve issues that you might encounter when you use
the Simple Data Sharing feature.

Table 8-71. Troubleshooting the Simple Data Sharing feature. This table lists possible
problems and actions to take to troubleshoot the Simple Data Sharing feature.

Problem Actions to take

Unable to access shared data when you use
the Simple Data Sharing APIs.

Ensure that all applications in the same
family are all redeployed under the same
MobileFirst application family name. For
more information, see “Enabling the Simple
Data Sharing feature” on page 8-550.

Android: Application fails to install. 1. Ensure that all applications that are part
of the same MobileFirst application
family name, are also signed by the same
signing identity.

2. Uninstall previous versions of
applications that have a different
MobileFirst application family or
wlSharedUserID, or are signed by a
different signing identity.

Unable to get MobileFirst device SSO to
work with a reverse proxy.

1. Ensure that you enabled the Simple Data
Sharing feature. For more information,
see “Enabling the Simple Data Sharing
feature” on page 8-550.

2. Ensure that all applications in the same
family specified the necessary reverse
proxy authentication cookie.

For more information, see “Configuring
device single sign-on with a reverse proxy”
on page 8-539.

Unable to specify cookie or user certificate
sharing.

You must first enable the MobileFirst Simple
Data Sharing feature and specify a
MobileFirst application family before you
can enable device SSO or user certificate
authentication sharing options. For more
information, see “Enabling the Simple Data
Sharing feature” on page 8-550.

Simple data sharing limitations and special considerations
Learn about the limitations and special considerations of the Simple Data Sharing
feature.

Security considerations

Because this feature allows for data access among a group of applications, special
care must be taken to protect access to the device from unauthorized users.
Consider the following security aspects:

8-554 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/common/WLSimpleDataSharing.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/common/WLSimpleDataSharing.html

Device Lock
For added security, ensure that devices are secured by a device password,
passcode, or pin, so that access to the device is secured if the device is lost
or stolen.

Jailbreak Detection
Consider using a mobile device management solution to ensure that
devices in your enterprise are not jailbroken or rooted.

Encryption
Consider encrypting any tokens before you share them for added security.
For more information, see “JSONStore security utilities” on page 8-451.

Size limit

This feature is meant for sharing of small strings, such as passwords or cookies. Be
cognizant not to abuse this feature, as there are performance implications with
such attempts to encrypt and decrypt or read and write any large values of data.

Maintenance challenges

Android developers must be aware that enabling this feature, or changing the
application family value, results in their inability to upgrade existing applications
that were installed under a different family name. For security reasons, Android
requires prior applications to be uninstalled before applications under a new
family name can be installed.

Developing globalized hybrid applications
To develop globalized hybrid applications, learn about globalization in JavaScript
frameworks and IBM MobileFirst Platform Foundation, and about globalizing web
services and push notifications.

Applications that are developed and uploaded to application stores must support
multiple languages if they are to be used globally. IBM MobileFirst Platform
Foundation provides capabilities for you to develop globalized hybrid applications.
This series of topics describes how to globalize your applications when using
JavaScript frameworks and IBM MobileFirst Platform Foundation and how to
globalize web services and push notifications.

Globalization in JavaScript frameworks
You can use several JavaScript frameworks to globalize your applications: Dojo,
jQuery, and Sencha Touch.

You can use the capabilities of different JavaScript frameworks to globalize your
applications. Dojo, jQuery, and Sencha Touch (deprecated. See “Deprecated
features” on page 3-15) each provide globalization functions that are based on
resource bundles and resource files, and they can switch to different resource
bundles based on current locale information. In addition, Dojo also provides string
and date format utilities that are based on user locale information.

Dojo globalization framework
You can use the Dojo globalization framework to globalize your application.

The following example application demonstrates how to use the Dojo Mobile
JavaScript API to construct a globalized application with a native look and feel.

Developing MobileFirst applications 8-555

Dojo Mobile provides globalization functions for detecting locale, loading and
accessing resource bundles, and simple formatting utilities for culture-sensitive
display. Figure 1 and Figure 2 show pages of the application that display the
resource bundles loaded and the string format that is determined by the user
preferences on the device.

Figure 8-57. Dojo globalization application

8-556 IBM MobileFirst Platform Foundation V6.3.0

In the example, the Dojo library is loaded as shown in Listing 1: Including Dojo
Mobile. The required modules must be loaded before you can use the Dojo
globalization API.

Listing 1: Including Dojo Mobile
<script type="text/javascript">

var dojoConfig = {
parseOnLoad: false,
packages: [{

name: "resource",
location: "../../bundles"

}]
};

</script>
<script type="text/javascript" src="libs/dojox/mobile/deviceTheme.js"></script>
<script type="text/javascript" src="libs/dojo/dojo.js"></script>

Figure 3 shows how to load Dojo resource bundles by defining a package that
maps the location of resource files within your hybrid application to a package
name.

Figure 8-58. Dojo cultural formatting

Developing MobileFirst applications 8-557

In the example, the language resource bundles are part of the application package,
and are stored on the client-side instead of being supplied dynamically from the
server or inserted directly into the HTML markup. Storing the language resource
bundles on the client-side enables the application to be used offline. The resource
files are encoded as JSON files.

Listing 2: Globalization application Views

This listing shows the code to generate the pages as simple HTML markup. The
following strings are the strings that you globalize in the application.
<!-- Main page -->
<div id="globalization" data-dojo-type="dojox.mobile.View" selected="true">

<h1 id="globalization_heading" data-dojo-type="dojox.mobile.Heading" label="msg_globalization"></h1>
<ul data-dojo-type="dojox.mobile.RoundRectList">
<li id="months_choice" data-dojo-type="dojox.mobile.ListItem" moveTo="months" callback="getMonths" label="msg_months">
<li id="days_choice" data-dojo-type="dojox.mobile.ListItem" moveTo="days" callback="getDays" label="msg_days">
<li id="formats_choice" data-dojo-type="dojox.mobile.ListItem" moveTo="formats" callback="getFormats" label="msg_formats">
<li id="icon_choice" data-dojo-type="dojox.mobile.ListItem" label="msg_icon">

<h1 id="globalization_footer" data-dojo-type="dojox.mobile.Heading" fixed="bottom" label="msg_footer" ></h1>

</div>

<!-- The "Icon" sub-page -->
<div id="icons" data-dojo-type="dojox.mobile.View">

<h1 id="icon_heading" data-dojo-type="dojox.mobile.Heading" moveTo="globalization" label="msg_icon" back="msg_previous"></h1>
</div>

<!-- The "Months" sub-page -->
<div id="months" data-dojo-type="dojox.mobile.View">

<h1 id="months_heading" data-dojo-type="dojox.mobile.Heading" moveTo="globalization" label="msg_months" back="msg_previous"></h1>
</div>

Figure 8-59. Dojo resource bundle structure

8-558 IBM MobileFirst Platform Foundation V6.3.0

<!-- The "Days" sub-page -->
<div id="days" data-dojo-type="dojox.mobile.View">

<h1 id="days_heading" data-dojo-type="dojox.mobile.Heading" moveTo="globalization" label="msg_days" back="msg_previous"></h1>
</div>

<!-- The "Formats" sub-page -->
<div id="formats" data-dojo-type="dojox.mobile.View">

<h1 id="formats_heading" data-dojo-type="dojox.mobile.Heading" moveTo="globalization" label="msg_formats" back="msg_previous"></h1>
</div>

Listing 3: Loading modules and resource files with the Dojo Mobile
resource bundle API

This listing shows the resources files that are loaded by the dojo/i18n plug-in
using Asynchronous Module Definition (AMD).
require(

[
"dojo/domReady", // Make sure DOM are ready
"dojo/i18n!resource/nls/messages", // Load our resource bundle
"dojox/mobile/parser", // This mobile app uses declarative programming
"dojox/mobile", // This is a mobile app
"dojox/mobile/i18n", // Load resources bundle declaratively
"dojox/mobile/compat", // This mobile app supports running on desktop browsers
],
function(ready, messages, parser, mobile, mi18n) {
ready(function() {

// demonstrates how to load resources declaratively
// dojox.mobile.i18n.load() must be called before dojox.mobile.parser.parse()
mi18n.load("resource", "messages");
parser.parse();

});
}

);

Note: The dojo.18n.getLocalization API is deprecated. Use dojox/mobile/i18n to
load resources declaratively. The dojox/mobile/i18n load() method treats text in
all mobile widgets as resource keys, and automatically replaces those keys with the
actual resources. If you want to explicitly control how these resources are used,
they can be loaded programmatically. The following listings show how to load
these resources.

Listing 4: Explicitly using the loaded resources

This listing shows how to use an argument such as resource to retrieve loaded
resources.
require(

[
"dojo/domReady", // Make sure DOM are ready
"dojo/i18n!resource/nls/messages", // Load our resource bundle
"dijit/registry", // For registry.byId
"dojox/mobile/parser", // This mobile app uses declarative programming
"dojox/mobile", // This is a mobile app
"dojox/mobile/compat", // This mobile app supports running on desktop browsers
],
function(ready, messages, parser, registry) {
ready(function() {

parser.parse();
registry.byId("globalization_heading").set("label", messages["msg_globalization"]);
registry.byId("months_choice").set("label", messages["msg_months"]);
registry.byId("days_choice").set("label", messages["msg_days"]);
registry.byId("formats_choice").set("label", messages["msg_formats"]);
// get locale by dojo

Developing MobileFirst applications 8-559

var footer_msg = bundle["msg_footer"] + dojo.locale;
registry.byId("globalization_footer").set("label", footer_msg);

});
}

);

Listing 5: Dojo cultural formatting

This listing shows the Dojo cultural formatting functions.
function getFormats(){

var formatsView = dojo.byId("formats");
require(
[
"dojox/mobile/RoundRectList",
"dojox/mobile/ListItem",
"dojo/date/locale",
"dojo/number",
"dojo/currency"
],
function(RoundRectList, ListItem, localeDate, localeNumber, localeCurrency){

var formatsList = new RoundRectList({id: "formats_list"}).placeAt(formatsView);
// get locale by dojo
var myLocale = dojo.locale;
// format locale date by dojo/date/locale
var date = localeDate.format(new Date(), {locale: myLocale});
var formattedDate = new ListItem({label: "Date: " + date});
formatsList.addChild(formattedDate);
// format with parameter
date = localeDate.format(new Date(), {selector: ’date’, formatLength: ’full’});
formattedDate = new ListItem({label: "Date: " + date});
formatsList.addChild(formattedDate);
// format number
var number = localeNumber.format(1234567.89);
var formattedNumber = new ListItem({label: "Number: " + number});
formatsList.addChild(formattedNumber);
// format currency
var currency = localeCurrency.format(1234.567, {currency: "USD"});
var formattedCurrency = new ListItem({label: "Currency: " + currency});
formatsList.addChild(formattedCurrency);

}
);

};

For more information about globalization with Dojo Mobile, see
http://dojotoolkit.org/reference-guide/1.9/dojox/mobile/
internationalization.html#dojox-mobile-internationalization.

jQuery Mobile globalization plug-in
You can use jQuery globalization functions with the jQuery Mobile globalization
plug-in.

There are no official jQuery globalization bundles. Here, the
jquery.i18n.properties-1.0.9.js jQuery globalization plug-in is used to
demonstrate jQuery globalization functions. The jquery.i18n.properties-1.0.9.js
jQuery globalization plug-in can be downloaded from http://code.google.com/p/
jquery-i18n-properties/.

The example application does not show the jQuery globalization string format
feature because there is no official globalization string formatting plug-in for
jQuery frameworks.

8-560 IBM MobileFirst Platform Foundation V6.3.0

http://dojotoolkit.org/reference-guide/1.9/dojox/mobile/internationalization.html#dojox-mobile-internationalization
http://dojotoolkit.org/reference-guide/1.9/dojox/mobile/internationalization.html#dojox-mobile-internationalization
http://code.google.com/p/jquery-i18n-properties/
http://code.google.com/p/jquery-i18n-properties/

Listing 1: Load Cordova, jQuery mobile, and jQuery globalization
plug-in

This listing shows the scripts for loading Cordova, jQuery mobile, and the
jquery.i18n.properties-1.0.9.js jQuery globalization plug-in.
<script

type="text/javascript"
src="js/CordovaGlobalization.js">

</script>
<script

type="text/javascript"
src="js/messages.js">

</script>
<script

type="text/javascript"
src="js/jquery.mobile-1.1.1.min.js">

</script>
<script

type="text/javascript"
src="js/jquery.i18n.properties-min-1.0.9.js">

</script>

The resource bundle structures in jQuery and Dojo are different. Dojo resource files
have the same file name but are in separate folders corresponding to the locale
name. jQuery resource files are in one folder but the file names include the locale
information. Figure 2 shows the structure of the jQuery resource files.

Figure 8-60. jQuery globalization application

Developing MobileFirst applications 8-561

Listing 2: Load and use resource by jQuery globalization plug-in

This listing shows the jQuery scripts to initialize the globalization plug-in.
function doGlobalization(){

$.i18n.properties({
name: ’messages’,
path: ’bundles/nls/’,
mode: ’both’,
// language: ’zh’,
callback: function(){

// Main page
$(’#globalization_heading’).empty().
append($.i18n.prop(’msg_globalization’));

$(’#msg_months’).empty().append($.i18n.prop(’msg_months’));
$(’#msg_days’).empty().append($.i18n.prop(’msg_days’));
$(’#msg_formats’).empty().append($.i18n.prop(’msg_formats’));
$(’#msg_icon’).empty().append($.i18n.prop(’msg_icon’));
// Sub page heading
$(’#icon_heading’).empty().append($.i18n.prop(’msg_icon’));
$(’#months_heading’).empty().append($.i18n.prop(’msg_months’));
$(’#days_heading’).empty().append($.i18n.prop(’msg_days’));
$(’#formats_heading’).empty().append($.i18n.prop(’msg_formats’));
$(’#words_heading’).empty().append($.i18n.prop(’msg_words’));
//Back buttons
var items = $(’a[data-rel="back"]’);
$.each(items, function(i){
$(items[i]).empty().append($.i18n.prop(’msg_previous’));

});
//Show locale by jQuery i18n plug-in
$(’#globalization_footer’).empty().
append($.i18n.prop(’msg_footer’) + $.i18n.browserLang());

}
});

};

Figure 8-61. jQuery resource bundle structure

8-562 IBM MobileFirst Platform Foundation V6.3.0

Sencha Touch globalization plug-in
You can use Sencha Touch globalization functions with the Sencha Touch
globalization plug-in.

There are no official Sencha Touch globalization bundles. Here, the
Ext.i18n.bundle-touch Sencha Touch globalization plug-in is being used to
demonstrate globalization functions. The Ext.i18n.bundle-touch globalization
plug-in can be downloaded from GitHub.

The example application does not show the Sencha Touch globalization string
format feature because there is no official globalization string formatting plug-in
for Sencha frameworks.

Listing 1: Load Sencha Touch and globalization plug-in

This listing shows the scripts for loading Sencha Touch and the
Ext.i18n.bundle-touch globalization plug-in.
<script src="js/sencha-touch-all.js"></script>
<script>

Ext.Loader.setConfig({
enabled: true,
paths: {

’Ext.i18n’: ’js/i18n’,

Figure 8-62. Sencha Touch globalization application

Developing MobileFirst applications 8-563

https://github.com/elmasse/Ext.i18n.Bundle-touch

’patch’: ’js/patch’
}

});
</script>
<script src="js/SenchaGlobalization.js"></script>
<script src="js/messages.js"></script>
<script src="js/auth.js"></script>

Figure 2 shows the structure of the Sencha Touch resource files.

Sencha Touch also provides a convenient API to retrieve the message in the
resource bundle and set the value to the UI component.

Listing 2: Load and use resource by Sencha Touch globalization
plug-in
function loadResource(){

Ext.require(’Ext.i18n.Bundle’, function(){
Ext.i18n.appBundle = Ext.create(’Ext.i18n.Bundle’, {

bundle: ’messages’,
path: ’bundles/nls’,
noCache: true

});
});

Figure 8-63. Sencha Touch resource bundle structure

8-564 IBM MobileFirst Platform Foundation V6.3.0

Ext.application({
name: "Sencha Touch Globalization",
launch: function(){

Ext.i18n.appBundle.onReady(function(){doGlobalization();});
}

});
};

function doGlobalization(){
// global header
var globalHeader = Ext.create(’Ext.Toolbar’, {
docked: ’top’,
xtype: ’toolbar’,
title: ’<div width="100px">’ +

Ext.i18n.appBundle.getMsg(’msg_globalization’) + ’</div>’
});
// show locale by Ext.i18n.Bundle
var globalFooter = Ext.create(’Ext.Toolbar’, {
docked: ’bottom’,
xtype: ’toolbar’,
title: ’<div width="100px">’ +

Ext.i18n.appBundle.getMsg("msg_footer") +
Ext.i18n.appBundle.language + ’</div>’

});
// main list data model
Ext.define(’mainListModel’, {
extend: ’Ext.data.Model’,
config: {fields: [’index’, ’type’]}

});
// main list data store
var mainListStore = Ext.create(’Ext.data.Store’, {
model: ’mainListModel’,
sorters: ’index’,
proxy: {

type: ’localstorage’,
id: ’mainListStore’

},
data: [

{
index: ’1’,
type: Ext.i18n.appBundle.getMsg(’msg_months’)

},
{
index: ’2’,
type: Ext.i18n.appBundle.getMsg(’msg_days’)

},
{
index: ’3’,
type: Ext.i18n.appBundle.getMsg(’msg_formats’)

},
{
index: ’4’,
type: Ext.i18n.appBundle.getMsg(’msg_words’)

},
{
index: ’5’,
type: Ext.i18n.appBundle.getMsg(’msg_icon’)

}
]

});
// main list view
var mainList = Ext.create(’Ext.List’, {
itemTpl: ’{type}’,
store: mainListStore,
onItemDisclosure: function(record, btn, index){

Developing MobileFirst applications 8-565

showSecondContainer(record, btn, index);
}

});
}

Globalization mechanisms in IBM MobileFirst Platform
Foundation

IBM MobileFirst Platform Foundation automatically translates application strings
according to a designated file. Multi-language translation is implemented by using
JavaScript.

Cordova globalization API

The Cordova globalization API provides enhanced globalization capabilities that
mirror existing JavaScript globalization functions, where possible, without
duplicating functions already present in JavaScript. The emphasis of the Cordova
globalization API is on parsing and formatting culturally sensitive data. The
Cordova API uses native functions in the underlying operating system, where
possible, rather than re-creating these functions in JavaScript. Table 1 summarizes
the Cordova globalization API functions provided.

Table 8-72. Cordova globalization API summary

Function Name Purpose

getPreferredLanguage The current language of the client.

getLocaleName The client current locale setting on the
device.

dateToString A date that is formatted as a string,
according to the locale and timezone of the
client.

stringToDate A string that is parsed as a date, according
to the client's user preferences.

getDatePattern A pattern string for formatting and parsing
dates.

getDateNames The names of the months, or the days of the
week.

isDayLightSavingsTime Whether daylight saving time is in effect for
a specified date.

getFirstDayOfWeek The first day of the week.

numberToString A number that is formatted as a string,
according to the user preferences.

stringToNumber A string that is parsed as a number,
according to the user preferences.

getNumberPattern A pattern string for formatting and parsing
numbers.

getCurrencyPattern A pattern string for formatting and parsing
currencies.

The Cordova globalization API is an independent globalization framework, which
can be integrated with any JavaScript libraries to provide globalization functions.
The Cordova globalization API is different from other globalization libraries. The

8-566 IBM MobileFirst Platform Foundation V6.3.0

Cordova globalization API does not provide a parameter to indicate a locale. The
set of supported locales is determined by the device and its SDK and not by
Cordova.

The Cordova globalization API uses the client locale setting and any default values
that are overridden. This design greatly simplifies the use of the globalization API
while still providing robust support. It is important to note that, although the set
of interfaces remains constant across the devices that Cordova supports, the results
can vary across the devices.

The Cordova framework does not provide access to graphical widgets that are
present in device SDKs. The Cordova framework is used in concert with other
JavaScript widget libraries, such as Dojo, to build complete mobile applications.
The Cordova globalization API is interoperable with Dojo Mobile, jQuery Mobile,
and Sencha Touch. It is an asynchronous implementation to prevent blocking
JavaScript execution in user interface code. The following listings and figures show
the Cordova globalization API. Dojo is used to demonstrate the user interface.

Table 8-73. Listing 1: Using the Cordova globalization API

function onDeviceReady(){
g11n = window.plugins.globalization;

}

The code to generate the names of the months, days of the week, and format the
current date is shown in Listing 2, Listing 3, and Listing 4.

Table 8-74. Listing 2: Month names

function getMonths(){
g11n.getDateNames(function(data){
var items = data.value;
var monthsView = document.getElementById(’monthsView’);
for (var i = 0; i < items.length; i++) {
monthsView.append(’’ + items[i] + ’’);

}
},
function(code){
alert("Error: " + code);

});
};

Developing MobileFirst applications 8-567

Figure 8-64. Using Cordova to show locale-based months

8-568 IBM MobileFirst Platform Foundation V6.3.0

Table 8-75. Listing 3: Days of the week

function getDays(){
g11n.getDateNames(
function(data){
var items = data.value;
var daysView = document.getElementById(’daysView’);
for (var i = 0; i < items.length; i++) {

daysView.append(’’ + items[i] + ’’);
}

},
function(code){
alert("Error: " + code);

},
{item: "days"}

);
}

Developing MobileFirst applications 8-569

Figure 8-65. Using Cordova to show the days of week

8-570 IBM MobileFirst Platform Foundation V6.3.0

Table 8-76. Listing 4: Formatting current date

function getFormats(){
var formatsView = document.getElementById(’formatsView’);
g11n.dateToString(
new Date(),
function(date){
formatsView.append(’’ + date.value + ’’);

},
function(code){
alert("Error: " + code);

},
{selector: "date", formatLength: "full"}

);
g11n.getDatePattern(
function(date){
formatsView.append(’’ + date.pattern + ’’);
var timeZone = date.timezone;
formatsView.append(’’ + timeZone + ’’);
var offset = date.utc_offset;
formatsView.append(’’ + offset + ’’);
var dstoffset = date.dst_offset;
formatsView.append(’’ + dstoffset + ’’);

},
function(code){
alert("Error: " + code);

},
{selector: "date", formatLength: "full"}

);
g11n.isDayLightSavingsTime(
new Date(),
function(date){
var dst = date.dst;
formatsView.append(’’ + dst + ’’);

},
function(code){
alert("Error: " + code);

}
);
g11n.numberToString(
1234.56,
function(number){
formatsView.append(’’ + number.value + ’’);

},
function(code){
alert("Error: " + code);

},
{type: "decimal"}

);
}

Developing MobileFirst applications 8-571

Enabling translation of application strings

messages.js is the file that is designated for application strings and can be found
in the common/js folder. If you use Dojo, jQuery, or Sencha Touch in your
application, use the translation resource loading mechanisms and file formats from
these JavaScript technologies instead of mechanisms that are provided by IBM
MobileFirst Platform Foundation. Use MobileFirst application messages only when
the JavaScript graphical toolkit used in your application does not provide these
services.
Messages = {

headerText: "Default header",
actionsLabel: "Default action label",
sampleText: "Default sample text",

Figure 8-66. Using Cordova for cultural formatting

8-572 IBM MobileFirst Platform Foundation V6.3.0

englishLanguage: "English",
frenchLanguage: "French",
(...)

}

Application messages that are stored in messages.js can be referenced in two
ways:
v As a JavaScript object property; for example, Messages.header or

Messages.sampleText.
v As the ID of an HTML element with class=“translate”.

<div id="header">
<h1 id="headerText" class="translate"></h1>

</div>

Note: A string that is defined in Messages.headerText is automatically used here.

Enabling translation of system messages

You can enable the translation of the system messages that the application
displays, such as Internet connection is not available, or Invalid user name or
password.

You can find the list of the system messages in the worklight/messages/
messages.json file that is in the environment folder of the projects that you
generated with IBM MobileFirst Platform Foundation.

To enable the translation of a system message, you must override its value in the
WL.ClientMessages object, as indicated in “The WL.ClientMessages object” on page
10-5.

Implementing multi-language translation

You can implement multi-language translation for your applications by using
JavaScript.
1. Define default application strings in messages.js as shown in the following

code example:
Messages = {

headerText: "Default header",
actionsLabel: "Default action label",
sampleText: "Default sample text",
englishLanguage: "English",
frenchLanguage: "French",
russianLanguage : "Russian",
hebrewLanguage : "Hebrew"

};

2. Override some or all of the default application strings with JavaScript. The
following two code examples define JavaScript functions that are used to
override the default strings that are defined in messages.js:
function setFrench(){

Messages.headerText = "Traduction";
Messages.actionsLabel = "Sélectionnez langue:";
Messages.sampleText = "ceci est un exemple de texte en français.";

}
function setRussian(){

Messages.headerText = "⌂⌂⌂⌂⌂⌂⌂";
Messages.actionsLabel = "⌂⌂⌂o⌂ ⌂⌂⌂⌂a:";
Messages.sampleText = "⌂⌂⌂ ⌂⌂⌂⌂⌂⌂ ⌂⌂⌂⌂⌂⌂ ⌂⌂ ⌂⌂⌂⌂⌂⌂⌂ ⌂⌂⌂⌂⌂.";

}

Developing MobileFirst applications 8-573

function languageChanged(lang){
if (typeof(lang)!="string") lang = $("#languages").val();
switch (lang){
case "english":

setEnglish();
break;

case "french":
setFrench();
break;

case "russian":
setRussian();
break;

case "hebrew":
setHebrew();
break;

}
if ($("#languages").val()=="hebrew")

$("#AppBody").css({direction: ’rtl’});
else

$("#AppBody").css({direction: ’ltr’});
$("#sampleText").html(Messages.sampleText);
$("#headerText").html(Messages.headerText);
$("#actionsLabel").html(Messages.actionsLabel);

}

A language parameter is passed to the languageChanged() JavaScript function. The
languageChanged() function calls the corresponding function to override the
default English language string.

Detecting device-specific information

You can detect the locale and language of your device by using
WL.App.getDeviceLocale() and WL.App.getDeviceLanguage().
var locale = WL.App.getDeviceLocale();
var lang = WL.App.getDeviceLanguage();
WL.Logger.debug(">> Detected locale: " + locale);
WL.Logger.debug(">> Detected language: " + lang);

The following screen capture shows the print output:

Globalization of web services
You can use the Cordova globalization method to get the user locale preference,
and check what user locale is used.

In some situations, localized results are obtained by calling web services. The
Cordova globalization method getLocaleName returns the user locale preference,
which can be used in client-driven service calls.

The following listing shows how the user locale is used to collate a list of words.
The locale of the returned word list can be checked to verify that the user locale
was used or a substitute locale was used instead.

8-574 IBM MobileFirst Platform Foundation V6.3.0

Listing: Locale-based service call
function getWords(){

var services;
require(
["dojox/rpc/Service"],
function(Service){

services = new Service({
target: "{Your Web Service URL}",
transport: "POST",
envelope: "JSON-RPC-1.0",
contentType:

"application/json",
services: {

"sorter.getWordList": {
returns: {"type": "object"},
parameters: [{"type": "string"}]

}
}

});
}

);
g11n.getLocaleName(
function(locale){

// invoke the JSON web service to get the list of sorted words
var deferred = services.sorter.getWordList(locale.value);
deferred.addCallback(
function(result){

var wordsView = dojo.byId("words");
require(

[
"dojox/mobile/RoundRectList",
"dojox/mobile/ListItem",
"dojox/mobile/Heading"

],
function(RoundRectList, ListItem, Heading){
var wordsList = new RoundRectList({

id: "words_list"}).placeAt(wordsView);
items = result.words.list;
for (var i = 0; i < items.length; ++i) {

var word = new ListItem({label: items[i]});
wordsList.addChild(word);

}
var wordsFooter = new Heading({

label: result.localeName}).placeAt(wordsView);
});

}
)

},
function(code){

alert("Error: " + code);
}

);
};

Globalization of push notifications
With IBM MobileFirst Platform Foundation, you can globalize push notifications so
that push notifications are displayed in the language of the user. You use different
methods to globalize push notifications, depending on the way the application
runs: in the foreground, in the background, or not at all.

Mobile applications frequently rely on server-side services to provide data to the
mobile application. However, sometimes the application is not running or is not
connected to the server. Push notifications is a mechanism by which short
messages are sent to let the user of a mobile application know data that can be

Developing MobileFirst applications 8-575

downloaded or information that can be viewed from a server when the application
is either not running or not running in the foreground.

Note: iOS uses Apple Push Notification Service (APNS), Android uses Google
Cloud Messaging (GCM), and Windows Phone uses Microsoft Push Notification
Service (MPNS).

Translate push notification messages so that the correct language is displayed to
the user. You choose the architectural pattern depending on whether the
application runs in the foreground, in the background, or not at all.
v When the application is running in the foreground, it uses the language and

cultural settings on the device to determine the appropriate language to display.
To support this pattern, messages must be stored in the resource files of the
mobile application, and not in the resource files of the server application, even
though messages are generated on the server-side.

v When a notification is sent to a mobile application, send the notification resource
key and not the actual text of the message.

v When a mobile application receives the notification, or message, use the key that
was sent in the notification message to look up the text of the message from its
resource file, as shown in Figure 1.

This diagram shows the following data flow:
1. The service that generates the message uses the send resource key and delivers

the message data to the messaging mediator.
2. The messaging mediator uses the receive resource key to send the message

data to the mobile application.
3. The mobile application uses the resource key to extract the message text and

deliver it to the language resource.

Listing 1, Listing 2, and Listing 3 show sample code that can be used when the
mobile application is running in the foreground.

First, create a MobileFirst adapter to send the notification. For more information
about how to create an adapter, see the tutorials on the Getting Started page.

Figure 8-67. Use of resource keys

8-576 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

Listing 1: Send notification using created adapter

This listing shows how to send a notification with the created adapter. The target
message, or resource key, to be translated on the client-side, is specified in the
payload.
function sendNotificationOTA(userId, notificationText) {

var userSubscription = WL.Server.getUserNotificationSubscription(
’mysuranceAdapter.mysuranceEventSource’, userId);

WL.Server.notifyAllDevices(
userSubscription,
{

badge : 1,
sound : "",
alert : notificationText,
payload : { globalizeString : ’notificationText’ }

}
);

}

Listing 2: Client-side subscription code

This listing shows the code that is required on the client-side to subscribe to push
notification.
WL.Client.Push.onReadyToSubscribe = function(){

WL.Client.Push.registerEventSourceCallback(
"mysurancePush",
"mysuranceAdapter",
"mysuranceEventSource",
pushNotificationReceived);

};

After successful subscription, the callback method is implemented. The callback
method is responsible for retrieving the data from the payload, retrieving
application locale preferences, retrieving the message by using the resource key,
and formatting the message.

Listing 3: Callback method

This listing shows how to retrieve the locale information and load the
corresponding translated message with Dojo by using the resource key that is
stored in the payload object.
function pushNotificationReceived(props, payload){

if (payload.globalizeString != "undefined"){
require(

["dojox/mobile/i18n", "dojo/number"],
function(mi18n, number){
bundle = mi18n.load("resource", "messages");
// get globalization text by dojo mobile i18n
var notificationText = bundle[payload.globalizeString];
// format number by device locale
var num = number.format(1234567890, {

places: 2, locale: WL.App.getDeviceLocale()});
num = bundle["amount"] + num;
//display globalization message
alert(notificationText + "\n" +num);

}
);

}
}

Developing MobileFirst applications 8-577

v If a notification provides data in addition to the message, send the data in a
locale-neutral format. When the application retrieves the message, the data can
be formatted based on the user cultural preferences at the time the message is
received.

v An application that is running in the background, or not running at all, can elect
to use a previously registered user profile to access the appropriate language
and cultural settings for push notifications. To support this pattern, the server
sends the translated message and data in a format that is determined by the user
cultural and language preferences that are stored in the profile, as shown in
Figure 2. The push notifications are then processed differently by the mobile
application. Processing is based on the native operating system that the
application is running on.

v On Android, notification messages wake up Android applications, and the
applications directly access the language and cultural preferences so that the
correct translation and formatting can be applied.

v On iOS, notification messages do not wake up iOS applications, therefore the
native operating system automatically selects the appropriate language to use for
notifications. The iOS operating system automatically attempts to locate and
load the correct language resource.

v In hybrid applications that are built using IBM MobileFirst Platform Foundation,
notifications are not directly processed by the application when the application
is not running in the foreground. In this case, the user language and cultural
profile that was previously established is used.

Enforce language preference for MobileFirst messages
IBM MobileFirst Platform Foundation supports several languages, and based on
the language of the device, appropriate translations are used to display system
messages. However, you can enforce restriction to display messages only in a
certain set of languages.

If your application supports only English and French, you can enforce a restriction
so that IBM MobileFirst Platform Foundation displays the messages only in these
languages.

Figure 8-68. Sending push notifications according to the user’s settings

8-578 IBM MobileFirst Platform Foundation V6.3.0

Enforcing languages in hybrid and mobile web applications

You can provide a preferred list of languages to be used by IBM MobileFirst
Platform Foundation for translating system messages in the application-
descriptor.xml file. The order of the languages is important and must be
separated by comma.
<languagePreferences>en, fr, de, es</languagePreferences>

Enforcing languages in native applications

You can provide a preferred list of languages in native environments by adding
languagePreferences property in the appropriate client property file.

Fallback mechanism

The system compares the device locale with the values that are provided in the
preference list. Here are the fallback mechanisms on how the system messages are
displayed:
1. If the device locale is available, the corresponding translation is used to display

system messages.
2. If the device locale (for example, fr-FR) is not in the preference list, or the

locale is not supported by IBM MobileFirst Platform Foundation, the device
language (for example, fr) is used to compare with the values that are
provided in preference list. If the language is available in the preference list, the
corresponding translation is used to display system messages.

3. If the device language (fr) is not in the preference list, or the language is not
supported by IBM MobileFirst Platform Foundation, the first language available
in the list for translation is used.

Note: The order of the languages that are specified in the preference list is
important. You must list the order from generic to specific languages so that when
the translation is not available, the generic language is loaded.

For the following example of the preference list, if the device language is set to
German, IBM MobileFirst Platform Foundation uses English to display the system
messages. The reason is that de is not available in the list.
<languagePreferences>en, fr, es</languagePreferences>

Developing accessible applications
To develop accessible applications, easily used by people with disabilities, this topic
helps you to learn about resources available to improve the accessibility of your
apps.

When you build an application for your business, it is important to consider the
user experience of individuals with a disability or impairment. Taking steps to
consider enablement of tools like screen magnification, audio assistance, or other
assistive technologies can extend the reach of your business.

In general, mobile applications can be made highly accessible. This following
sections provide resources to help you make your mobile application as accessible
as possible. IBM MobileFirst Platform Foundation provides a strong foundation for
building accessible applications because it supports industry standards and allows
you to leverage them. But accessibility features vary among target environments,
depending on the native operating system or the hybrid library vendor.

Developing MobileFirst applications 8-579

Native application accessibility

If your application is native, the ability to make it accessible is determined by the
capabilities of the target platform itself. The links that follow provide resources for
the supported mobile platforms, laying out available options and capabilities.
v iOS

– Accessibility in iOS
– Understanding Accessibility on iOS
– iOS. A wide range of features for a wide range of needs.

v Android

– Accessibility
v BlackBerry

– Accessibility
– Introduction to the Accessibility API
– Accessibility API concepts
– Developing accessible BlackBerry device applications by using the

Accessibility API
– Test an accessible BlackBerry device application

v Windows Phone

– Accessibility on Windows Phone

Hybrid application accessibility

If your application is a hybrid, options are available from a number of JavaScript
libraries. Dojo Mobile and jQuery Mobile are popular examples, but there are
several others. Useful references for writing accessible hybrid applications are
provided in the following links. Note that if you are using Dojo Mobile, version 1.9
or newer is highly suggested because it has better accessibility coverage than
previous versions.
v Dojo Mobile

– Dojo Accessibility Design Requirements
– Dojo Accessibility

v jQuery Mobile

– Accessibility

Location services
Location services in IBM MobileFirst Platform Foundation provide you with the
opportunity to create differentiated services that are based on a user location, by
collecting geolocational and WiFi data, and by feeding the location data and
triggers to business processes, decision management systems, and analytics
systems.

Geolocation is a powerful differentiator of mobile apps. Yet because geolocation
coordinates must be constantly polled to understand where a mobile device is
located, the resulting stream of geographic information can be difficult to manage
without exhausting resources such as battery and network. IBM MobileFirst
Platform Foundation includes location services that handle multiple geo modalities
such as GPS, WiFi sampling, and interpolation. You can set policies for acquiring
geolocation data and transmitting it to the server in order to optimize battery and
network usage.

8-580 IBM MobileFirst Platform Foundation V6.3.0

https://developer.apple.com/technologies/ios/accessibility.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Accessibility_on_iPhone/Accessibility_on_iPhone.html
http://www.apple.com/accessibility/iphone/vision.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://us.blackberry.com/legal/accessibility.html
http://docs.blackberry.com/en/developers/deliverables/11936/Intro_to_Accessibility_API_791538_11.jsp
http://docs.blackberry.com/en/developers/deliverables/20100/Key_concepts_Accessibility_API_791537_11.jsp
http://docs.blackberry.com/en/developers/deliverables/20100/Developing_an_acc_BB_device_app_791536_11.jsp
http://docs.blackberry.com/en/developers/deliverables/20100/Developing_an_acc_BB_device_app_791536_11.jsp
http://docs.blackberry.com/en/developers/deliverables/20100/Test_accessible_BB_device_app_791541_11.jsp
http://www.slideshare.net/rajeshlal/accessibility-on-windows-phone
http://dojotoolkit.org/community/a11yReq
http://www.ibm.com/able/resources/dojo.html
http://jquerymobile.com/demos/1.2.0/docs/about/accessibility.html

With location services in IBM MobileFirst Platform Foundation, you can use data
that is acquired by a mobile device to trigger events that benefit both the owner of
the device and the enterprise that has received the data. For example:
v A fast food outlet could start preparing food for a customer, based on data

collected regarding his geographical location, so that the food is ready just as the
customer arrives to collect.

v A warehouse could improve the efficiency of its processes by using locational
data from its delivery vehicles to ensure that goods are removed from storage
and made ready for collection.

v Shopping outlets could respond more readily to the needs of regular customers
by using geo-locational data.

Location services can also be used to improve internal efficiency within an
organization, for example, by understanding behavior and trends in application
usage, and thus driving ongoing improvement.

Location services are currently supported on hybrid Android, iOS, and Windows
Phone 8.

The following figure shows how the location services feature works:

Application code on the mobile device, in the form of an acquisition policy, controls
the collection of data from device sensors. The collected data is referred to as the
device context. When a change occurs in the device context, such as a change in the
geolocation of the device, or the fact that it has just entered a WiFi zone, triggers
can be activated. The triggers specify that an action should occur: either a callback
function is called, or an event is sent to the server, based on the device context.

Figure 8-69. Location services architecture

Developing MobileFirst applications 8-581

Events are created by triggers and application code, and include a snapshot of the
device context at the time of their creation. Events are buffered on the client, and
are transmitted to the server periodically. The server might process the event much
later. During the event transmission process, the device context is synchronized
transparently to the server.

To handle the events, the server uses adapter application code. This code sets up
event handlers on the server, which filter event data and pass matching events to a
callback function. The code also accesses the client's device context (its location and
WiFi network information) and sets an application context. Server activities and
received events are logged, together with the device and application contexts, for
future reporting and analytics.
Related concepts:
Testing hybrid location service applications
You can use the Mobile Browser Simulator to test applications within a browser,
and preview MobileFirst applications on Android, iOS, and Windows Phone 8.
Location services only support these platforms, other platforms must be removed.
With the Geolocation, Network and Scenario widgets, you can test applications in
Mobile Browser Simulator that use the JavaScript location service APIs.

Platform support for location services
Location services are supported for hybrid applications on iOS, Android, and
Windows Phone 8. However, the level of support for each platform is slightly
different.

The following table lists the features of location services where support differs for
iOS, Android, and Windows Phone 8:

Feature iOS Android Windows Phone 8

Geo acquisition
policy

minChangeTime is
not supported.

highAccuracyOptions:
iOSBestAccuracy is
not supported.

highAccuracyOptions:
iOSBestAccuracy is
not supported.

WiFi visible access
points

Not supported. Only
the Connect and
Disconnect triggers
are supported for iOS
WiFi.

Not supported. Only
the Connect and
Disconnect triggers
are supported for
Windows Phone 8
WiFi.

Connected WiFi
signal strength

Not supported. Not supported.

Connected WiFi
MAC address

Not supported.

KeepAliveInBackgroundNot supported. Use
standard iOS options
for acquiring location
data while in the
background.

Not supported. Use
standard Windows
Phone 8 options for
acquiring location
data while in the
background.

For information about iOS, Android, and Windows Phone 8 permissions, see
“Location services permissions” on page 8-583.

8-582 IBM MobileFirst Platform Foundation V6.3.0

Location services permissions
To use MobileFirst location services, you must define the correct permissions.

Location services are supported for hybrid applications on Android, iOS, and
Windows Phone 8.

Location services permissions in Android

The permissions that you require differ for versions earlier than Android 6.0
Marshmallow and versions starting from Android 6.0 Marshmallow onwards.

Note: Using Android 6.0 Marshmallow requires the latest interim fix of Worklight.

Before Android 6.0 Marshmallow

For Geo acquisition:
v ACCESS_COARSE_LOCATION
v ACCESS_FINE_LOCATION (when enableHighAccuracy=true)

For WiFi acquisition:
v ACCESS_WIFI_STATE
v CHANGE_WIFI_STATE

For Android 6.0 Marshmallow and later

In Android 6.0 Marshmallow and later, geo acquisition (location) permissions
require additional runtime permissions.

Overview of runtime permissions

According to the Android 6.0 Marshmallow permissions model, in addition
to defining permissions at installation, users must also allow or deny
access to different features at runtime. Before an app accesses location
services, it must check whether permission has already been granted and,
if needed, request permission. Developers are responsible to perform the
check before accessing any of the following methods in the WLDevice
interface:
v startAcquisition
v acquireGeoPosition
v stopAcquisition

If permissions have not been requested or not granted, the MobileFirst API
does not get a provider and returns an error,
WLGeoErrorCodes.PERMISSION_DENIED, along with a message about
the requested accuracy level.

Checking and requesting permissions from the Android 6.0 Marshmallow API

Checking if permissions have been granted
Two levels of access permission are available from
android.Manifest.permission:
v android.Manifest.permission.ACCESS_FINE_LOCATION
v android.Manifest.permission.ACCESS_COARSE_LOCATION

In the examples that follow and in the sample that is provided,
these methods are inherited by the MainActivity from the

Developing MobileFirst applications 8-583

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/location/api/WLDevice.html

android.app.Activity class. To check the status of the permissions,
call checkSelfPermission with the appropriate access level, as
follows:
getContext().checkSelfPermission(android.Manifest.permission.ACCESS_FINE_LOCATION)

If permission has already been granted, the method returns the
value PackageManager.PERMISSION_GRANTED.

Requesting permissions
To ask the user for permission for the appropriate level of access,
use the inherited requestPermissions method, as follows:
requestPermissions(new String[]{Manifest.permission.ACCESS_FINE_LOCATION}, 0);

Calling this Android method displays a dialog box that prompts
the app to grant permission and invokes
onRequestPermissionsResult when the choice is made. When this
permission has been granted to the system, startAcquisition,
stopAcquisition, and acquireGeoPosition are granted access to the
location services. If the user denies access, these methods return
the WLGeoErrorCodes.PERMISSION_DENIED error.

Using Android location services in a hybrid Android application environment
Android 6.0 Marshmallow requires user permissions to be granted at
runtime. Because runtime JavaScript code in the web framework of the
hybrid app does not have access to the Android API, these permissions
must be requested and checked by the native code before launching
Apache Cordova. The file <application name>.java in the native folder is
responsible for loading the web resources. The code for requesting and
checking permissions for location services can be called within the
onInitWebFrameworkComplete API or within any other startup API in the
class.
public void onInitWebFrameworkComplete(WLInitWebFrameworkResult result) {

if (result.getStatusCode() == WLInitWebFrameworkResult.SUCCESS) {
super.loadUrl(WL.getInstance().getMainHtmlFilePath());

} else {
handleWebFrameworkInitFailure(result);

}

if (!(WLClient.getInstance().getContext().checkSelfPermission
(android.Manifest.permission.ACCESS_FINE_LOCATION) == PackageManager.PERMISSION_GRANTED)) {

requestPermissions(new String[]{android.Manifest.permission.ACCESS_FINE_LOCATION}, 0);
}

}

This code requests permission if the permission has not already been
granted. If the permission is still not granted, all requests for location
services from the web framework fail.

iOS

For iOS, you must update info.plist with the following information.
Geo:
UIRequiredDeviceCapabilities:

location-services
gps (when enableHighAccuracy=true)

Wifi:
UIRequiredDeviceCapabilities: wifi

When location services are running in the background on iOS:

8-584 IBM MobileFirst Platform Foundation V6.3.0

UIBackgroundModes key: location (when enableHighAccuracy=true)

Windows Phone 8

For Windows Phone 8, you must add the ID_CAP_LOCATION capability in the
WMAppManifest.xml file.

When location services are running in the background on Windows Phone 8,
replace the DefaultTask details in the WMAppManifest.xml file with the following
information:
<DefaultTask Name="_default" NavigationPage="MainPage.xml"> <BackgroundExecution> <ExecutionType Name="LocationTracking" /> <BackgroundExecution> </DefaultTask>

See the Windows Phone Development Center web page http://
msdn.microsoft.com/en-us/library/windowsphone/develop/
jj662935(v=vs.105).aspx for details on running location-tracking apps in the
background.

Triggers
A trigger is a mechanism that detects an occurrence, and can cause additional
processing in response. Triggers are activated when a change occurs in the device
context.

Triggers can be activated for changes in Geo or WiFi data.

Geo triggers

For Geo data, two types of regions, also known as geofences, are considered: circles
and polygons. The following trigger types are available for Geo data.

Trigger type Description

PositionChange The trigger is activated when the position of
the device changes by at least a specified
distance.

Enter The trigger is activated when the device
enters a region.

Exit The trigger is activated when the device
leaves a region.

DwellInside The trigger is activated when the device
remains inside a region for a given time
period.

DwellOutside The trigger is activated when the device
remains outside a region for a given time
period.

For Enter, Exit, DwellInside, and DwellOutside, you can increase or decrease the
size of the region by altering the buffer zone width. Sensor accuracy is measured
by using GPS coordinates and network accuracy.

You can control trigger activation based on confidence levels. For example, if you
choose a confidence level of low, accuracy is not taken into account when you are
determining whether a geo-locational coordinate acquired from a device is inside
or outside a region. If you choose a confidence level of medium, accuracy is taken
into account, and you can be sure that the coordinate lies within, or outside of, the
region at approximately a 70% confidence level. If you choose a confidence level of

Developing MobileFirst applications 8-585

http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662935(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662935(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662935(v=vs.105).aspx

high, accuracy is taken into account, and you can be sure that the coordinate lies
within, or outside of, the region at approximately a 95% confidence level.

WiFi triggers

For WiFi data, triggers are activated based on a change in visible access points.
Access points are defined by using SSIDs (service set identifiers) and MACs (media
access control addresses). The following trigger types are available for WiFi data.

Trigger type Description

VisibleAccessPointsChange The trigger is activated when the visible
access points that define a WiFi area change
by a specified amount.

Enter The trigger is activated when the device
enters a WiFi area.

Exit The trigger is activated when the device
leaves a WiFi area.

DwellInside The trigger is activated when the device
remains inside a WiFi area for a given time
period.

DwellOutside The trigger is activated when the device
remains outside a WiFi area for a given time
period.

Connect The trigger is activated when the device
connects to a WiFi access point.

Disconnect The trigger is activated when the device gets
disconnected from a WiFi access point.

You can control trigger activation based on confidence levels. A low confidence
level is used to indicate that the WiFi acquisition policy signalStrengthThreshold
value is used when determining whether an access point is visible. A medium
confidence level is used to indicate that a signal strength of at least 50% is
necessary for an access point to be visible. A high confidence level is used to
indicate that a signal strength of at least 80% is necessary for an access point to be
visible.

When you use the confidence level to determine whether an access point is visible,
each specified access point in the area must be at least as strong as that indicated
by the confidence level. If the area access point is for an SSID without a MAC
address, then the highest signal strength for that SSID must be at least as strong as
that indicated by the confidence level. In order to exit the area, the signal strength
level for at least one access point must be below the WiFi acquisition policy
signalStrengthThreshold value.

Note: For WiFi triggers, the confidenceLevel parameter is not supported by
DwellOutside.

For detailed information about the parameters for the trigger types, see the
startAcquisition method as defined in the WL.Device class.

8-586 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Device.html

Setting an acquisition policy
You can set up a location services acquisition policy that is based on your
requirements. For example, your policy could be set up to maximize positional
accuracy, but with the capability of reducing accuracy if the device is known to be
low on charge, to conserve battery usage.

About this task

An acquisition policy controls how data is collected from a sensor of a mobile
device, using GPS positions and WiFi access points. To manage battery life
appropriately, you should match the policy used to your needs. For example, while
you might want to have a very accurate position for a geofence trigger, you may
be able to save power by using a different policy when the device is far away from
the area of interest.

You set up an acquisition policy by using the WL.Device.startAcquisition API.

You can specify a preset geo policy to use in the WL.Device.startAcquisition API.
You do this by using the WL.Device.Geo.Profiles API, in which you can specify
one of the following functions, based on your requirements:
v LiveTracking. Use to get the most accurate and timely position information, but

with heavy battery use.
v RoughTracking. Use to track devices, but when you do not need the most

accurate or timely information. Use of power is less than for LiveTracking.
v PowerSaving. Use to get infrequent positional data at low accuracy levels, but

with very good power conservation.

For information about the preset values for each function, see
WL.Device.Geo.Profiles.

In addition to these three functions, you can specify many other configuration
options as part of the WL.Device.startAcquisition API. At the most basic level,
you can decide whether you want to allow for GPS use. This option is controlled
by the enableHighAccuracy parameter. Note that you should set your permissions
appropriately if you want to use GPS. For information about permissions, see
“Location services permissions” on page 8-583. If you decide not to use GPS, then
a lower-power and less accurate position provider is used.

When the device for which you are acquiring data is plugged in, you might want
to use the LiveTracking profile. Then, at different battery levels, switch to other
options that save power. You might want similar behavior when the application
goes to the background, or resumes. To fulfill these requirements, you can use
Apache Cordova, and register for the appropriate event. Apache Cordova events
provide you with the ability to monitor battery status, and respond appropriately
based on the status. For more information, see the Apache Cordova documentation
at http://cordova.apache.org/docs/en/2.6.0/index.html, and search for "events".

Procedure
1. Decide on the requirements for your application policy.
2. Optional: Call the WL.Device.Geo.Profiles API, specifying the required

function.
3. Optional: Use Apache Cordova to monitor your battery status.
4. Call the WL.Device.startAcquisition API.

Developing MobileFirst applications 8-587

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Device.Geo.Profiles.html
http://cordova.apache.org/docs/en/2.6.0/index.html

Example

In the code, triggers is a variable that stores the currently defined triggers, and
failureFunctions is a variable that stores the functions to be called when
acquisition fails.

For hybrid Android, iOS, or Windows Phone 8:
window.addEventListener("batterylow", goToPowerSaveMode, false);

function goToPowerSaveMode() {
WL.Device.startAcquisition(
{ Geo: WL.Device.Geo.Profiles.PowerSaving() },
triggers,
failureFunctions

);
}

For native Android:
WLDevice wlDevice = WLClient.getInstance().getWLDevice();
wlDevice.startAcquisition(

new WLLocationServicesConfiguration()
.setPolicy(new WLAcquisitionPolicy()

.setGeoPolicy(WLGeoAcquisitionPolicy.getPowerSavingProfile()))
.setTriggers(triggers)

.setFailureCallbacks(failureFunctions)
);

For native iOS:
id<WLDevice> wlDevice = [[WLClient sharedInstance] getWLDevice];
[wlDevice startAcquisition:

[
[

[
[[WLLocationServicesConfiguration alloc] init]
setPolicy:
[

[[WLAcquisitionPolicy alloc] init]
setGeoPolicy: [WLGeoAcquisitionPolicy getPowerSavingProfile]

]
]
setTriggers: triggers

]
setFailureCallbacks: failureFunctions

]
];

Working with geofences and triggers
You can use geofences and triggers to identify users who enter, exit, or stay inside
or outside a geographical area. You can initiate actions, such as improving
responsiveness for privileged guests at a hotel chain, based on geofence-related
data.

Before you begin

Acquisition of geolocation data must be started before you can receive triggers
related to geofences. For more information, see “Setting an acquisition policy” on
page 8-587.

8-588 IBM MobileFirst Platform Foundation V6.3.0

About this task

A geofence is a geographical area, which is defined in the form of a circle or
polygon. You can increase or decrease the size of the area by changing the value of
the bufferZoneWidth parameter in the WL.Device.startAcquisition method.

Triggers are used to identify users who enter, exit, or stay inside or outside a
geofence. For the entering and exiting triggers, the user must have been previously
outside or inside the area, including the buffer zone, for the trigger to occur.

Confidence levels are used to help determine whether the trigger condition is met.
You can also use them to trade off sensitivity, correctness, and battery usage. A
confidence level of low, which is the default, uses the acquired position and does
not take into account the accuracy of the measurement. The medium and high
confidence levels do take accuracy into account. The medium confidence level
indicates that the system is approximately 70% confident that the condition is met.
The high confidence level corresponds to a level of approximately 95%.

A low confidence level indicates that the condition is met more often, although
there is a higher likelihood of it being mistaken. A high confidence level indicates
that the condition is met less often, however it is less likely to be mistaken.

Note: After an Enter trigger is activated, it will not activate again until the user
leaves the “activated” area, which includes the buffer zone. For the entering and
dwelling-inside triggers, this means that the user must exit the area. For the exiting
and dwelling outside triggers, this means that the user must enter the area.

Procedure
1. Start acquiring geolocation data, by using the WL.Device.startAcquisition

method.
2. Include trigger definitions for geofence triggers: Enter, Exit, DwellInside, and

DwellOutside.
3. Set confidence levels for the triggers.
4. Set events to be transmitted when triggers are activated.

Example

For hybrid Android, iOS, or Windows Phone 8
function wlCommonInit(){
/*
* Use of WL.Client.connect() API before any connectivity to a MobileFirst Server is required.
* This API should be called only once, before any other WL.Client methods that communicate with the MobileFirst Server.
* Don’t forget to specify and implement onSuccess and onFailure callback functions for WL.Client.connect(), e.g:
*
* WL.Client.connect({
* onSuccess: onConnectSuccess,
* onFailure: onConnectFailure
* });
*
*/

// Common initialization code goes here

WL.App.hideSplashScreen();

}

// Common initialization code goes here

Developing MobileFirst applications 8-589

}

var triggers = {
Geo: {
centralPark: {
type: "DwellInside",
polygon: [

{longitude: -73.95824432373092, latitude: 40.80062106285157},
{longitude: -73.94948959350631, latitude: 40.79691751000037},
{longitude: -73.97309303283704, latitude: 40.764486356929645},
{longitude: -73.98167610168441, latitude: 40.76799670467469}

],
dwellingTime: 600000, // 10 minutes
bufferZoneWidth: -100, // at least 100 meters within the park
callback: after10MinsInCentralPark

},
statueOfLiberty: {
type: "Enter",
circle: {

longitude: -74.044444,
latitude: 40.689167,
radius: 5000 // 5km

},
confidenceLevel: "high", // ~95% confidence that you are in the circle
eventToTransmit: {

event: {
nearAttraction: "statue_of_liberty"

},
transmitImmediately: true

}
}

}
};

For native Android
WLTriggersConfiguration triggers = new WLTriggersConfiguration();
triggers.getGeoTriggers().put("centralPark",

new WLGeoDwellInsideTrigger()
.setArea(new WLPolygon(Arrays.asList(

new WLCoordinate(40.80062106285157, -73.95824432373092),
new WLCoordinate(40.79691751000037, -73.94948959350631),
new WLCoordinate(40.764486356929645, -73.97309303283704),
new WLCoordinate(40.76799670467469, -73.98167610168441))))

.setDwellingTime(600000) // 10 minutes

.setBufferZoneWidth(-100) // at least 100 meters within the park

.setCallback(after10MinsInCentralPark));
triggers.getGeoTriggers().put("statueOfLiberty",

new WLGeoEnterTrigger()
.setArea(new WLCircle(new WLCoordinate(40.689167, -74.044444), 5000)) // 5 km
.setConfidenceLevel(WLConfidenceLevel.HIGH) // ⌂95% confidence that we are in the circle
.setEvent(new JSONObject("{nearAttraction: ’statue_of_liberty’}"))
.setTransmitImmediately(true));

For native iOS
WLTriggersConfiguration* triggers = [[WLTriggersConfiguration alloc] init];

[[triggers getGeoTriggers] setObject:
[[[[

[[WLGeoDwellInsideTrigger alloc] init]
setArea: [[WLPolygon alloc] init: [NSMutableArray arrayWithObjects:

[[WLCoordinate alloc] initWithLatitude:40.80062106285157 longitude:-73.95824432373092],
[[WLCoordinate alloc] initWithLatitude:40.79691751000037 longitude:-73.94948959350631],
[[WLCoordinate alloc] initWithLatitude:40.764486356929645 longitude:-73.97309303283704],
[[WLCoordinate alloc] initWithLatitude:40.76799670467469 longitude:-73.98167610168441],
nil]]]

setDwellingTime: 60000] // 10 minutes

8-590 IBM MobileFirst Platform Foundation V6.3.0

setBufferZoneWidth: -100] // at least 100 meters within the park
setCallback: after10MinsInCentralPark]

forKey:@"centralPark"];

[[triggers getGeoTriggers] setObject:
[[[[

[[WLGeoEnterTrigger alloc] init]
setArea: [[WLCircle alloc] initWithCenter:[[WLCoordinate alloc] initWithLatitude:40.689167 longitude:-74.044444] radius:5000]]
setConfidenceLevel: HIGH] // ⌂95% confidence that we are in the circle
setEvent: [NSDictionary dictionaryWithObject: @"statue_of_liberty" forKey:@"nearAttraction"]]
setTransmitImmediately: true]

forKey:@"statueOfLiberty"];

Differentiating between indoor areas
You can use visible access points to identify areas in an indoor location such as a
shopping mall. After transmitting this data to a server, together with the device
context, you can use it for auditing, reporting, and analysis.

About this task

The process of acquiring data that identifies discrete areas in an indoor location,
where the GPS signal might be poor or non-existent, involves acquiring WiFi data,
and using WiFi triggers to initiate events.

Procedure
1. Scan the area to determine which access points are visible from each area that

you are interested in, and then record the access points.
To scan the area, create a small application that has the following elements:
v A WiFi acquisition policy for appropriate SSIDs. In the policy, specify MAC:

"*" to see each access point.
v A data entry function, for specifying the various indoor areas of interest, and

submitting the data. This data entry function calls WL.Client.transmitEvent
to send the location, together with the device context, to the server for
logging and subsequent analysis.

2. Analyze the data, and use the analysis to determine which access points are
visible in each of the regions.

3. In the application, use the accessPointFilters parameter to define the same
visible access points that were used previously.

4. Define WiFi-fence triggers for each region.

Example

This example shows the use of two small applications.

The first defines which networks are to be scanned, and lets the user define named
regions as the client device moves around the indoor area. For example, when the
user enters the food court, they could specify that the region is called "FoodCourt".
Upon leaving it, they could either clear the current region, or enter the name of the
adjacent region they are entering, such as "MallEntrance5". In order to implement
this process, adapter logic is implemented on the server side. It updates the
application context with the region information and handles all received events. In
this way, all the information is written out to the raw reports database, where each
row includes the region name in the APP_CONTEXT column, and the visible
access points under WIFI_APS.

Developing MobileFirst applications 8-591

The data can then be gathered to define triggers to implement the required
application logic. For example, in the triggers that are defined at the end of the
example, the two specific access points are identified, which should be visible
when the device is in the food court. The example shows the identification of a
global trigger for entering the mall; instead, a trigger could have been defined for
each of the mall entrances based on the access points visible at each location.

Application to set up acquisition policy, including triggers - hybrid Android,
iOS, and Windows Phone 8
function wlCommonInit(){
/*
* Use of WL.Client.connect() API before any connectivity to a MobileFirst Server is required.
* This API should be called once, before any other WL.Client methods that communicate with the MobileFirst Server.
* Do not forget to specify and implement the onSuccess and onFailure callback functions for WL.Client.connect():
*
* WL.Client.connect({
* onSuccess: onConnectSuccess,
* onFailure: onConnectFailure
* });
*
*/

// Common initialization code goes here.

WL.App.hideSplashScreen();

}

var SSIDs = [];

function addNetworkToBeScanned(ssid) {
if (SSIDs.indexOf(ssid) < 0)
SSIDs.push(ssid);

}

function removeNetwork(ssid) {
var idx = SSIDs.indexOf(ssid);
if (idx > 0)
SSIDs.splice(idx, 1);

}

function startScanning() {
var filters = [];
for (var i = 0; i < SSIDs.length; i++) {
var ssid = SSIDs[i];
filters.push({SSID: ssid, MAC: "*"});

}

var policy = {
Wifi: {

interval: 3000,
accessPointFilters: filters

}
};

var triggers = {
Wifi: {

change: {
type: "VisibleAccessPointsChange",
eventToTransmit: {

event: {
name: "moved"

}
}

}

8-592 IBM MobileFirst Platform Foundation V6.3.0

}
};

var onFailure = {
Wifi: onWifiFailure

};

WL.Device.startAcquisition(policy, triggers, onFailure);

}

function stopScanning() {
WL.Device.stopAcquisition();

}

function onWifiFailure(code) {
// Show an error message to the user...

}

// Receives a string, indicating the name of the region
function setCurrentRegion(region) {

WL.Server.invokeProcedure(
{

adapter: "HT_WifiScan",
procedure: "setAppContext",
parameters: [JSON.stringify({regionName: region})]

},
{

onSuccess: function() {
// update UI, indicating success

},
onFailure: function() {
// update UI, indicating error

}
}

);
}

Application to set up acquisition policy, including triggers - native Android
Set<String> ssids = new HashSet<String>();

public void addNetworkToBeScanned(String ssid) {
ssids.add(ssid);

}

public void removeNetwork(String ssid) {
ssids.remove(ssid);

}

public void startScanning() throws JSONException {
List<WLWifiAccessPointFilter> filters = new ArrayList<WLWifiAccessPointFilter>();

for (String ssid : ssids)
filters.add(new WLWifiAccessPointFilter (ssid, WLWifiAccessPointFilter.WILDCARD));

WLAcquisitionPolicy policy = new WLAcquisitionPolicy().setWifiPolicy(
new WLWifiAcquisitionPolicy().setInterval(3000).setAccessPointFilters(filters));

WLTriggersConfiguration triggers = new WLTriggersConfiguration();
triggers.getWifiTriggers().put(

"change",
new WLWifiVisibleAccessPointsChangeTrigger().setEvent(new JSONObject("{name: ’moved’}")));

WLAcquisitionFailureCallbacksConfiguration failures = new WLAcquisitionFailureCallbacksConfiguration();
failures.setWifiFailureCallback(new WLWifiFailureCallback() {

@Override

Developing MobileFirst applications 8-593

public void execute(WLWifiError wifiError) {
onWifiFailure(wifiError);

}
});

WLClient.getInstance().getWLDevice().startAcquisition(new WLLocationServicesConfiguration()
.setPolicy(policy)
.setTriggers(triggers)
.setFailureCallbacks(Collections.singletonList(failures)));

}

void stopScanning() {
WLClient.getInstance().getWLDevice().stopAcquisition();

}

void onWifiFailure(WLWifiError wifiError) {
// Show an error message to the user...

}

// Receives a string, indicating the name of the region
void setCurrentRegion(String region) {
WLProcedureInvocationData invocData = new WLProcedureInvocationData ("HT_WifiScan", "setAppContext");
invocData.setParameters(new Object[] {"{regionName: ’" + region + "’}"});

WLClient.getInstance().invokeProcedure(
invocData,
new WLResponseListener() {

@Override
public void onSuccess(WLResponse response) {
// update UI, indicating success

}
@Override
public void onFailure(WLFailResponse response) {
// update UI, indicating error

}
}

);

}

Application to set up acquisition policy, including triggers - native iOS
// NSMutableSet* ssids -- is defined in the header as a member field and initialized as ssids = [NSMutableSet set];

-(void) addNetworkToBeScanned: (NSString*) ssid {
[ssids addObject:ssid];

}

-(void) removeNetwork: (NSString*) ssid {
[ssids removeObject:ssid];

}

-(void) startScanning {
NSMutableArray* filters = [[NSMutableArray alloc] init];

for (NSString* ssid in ssids) {
[filters addObject: [[WLWifiAccessPointFilter alloc] initWithSSID:ssid MAC:WILDCARD]];

}

WLAcquisitionPolicy* policy = [
[[WLAcquisitionPolicy alloc] init]
setWifiPolicy: [[
[[WLWifiAcquisitionPolicy alloc] init]
setInterval: 3000]
setAccessPointFilters: filters]

];

8-594 IBM MobileFirst Platform Foundation V6.3.0

WLTriggersConfiguration* triggers = [[WLTriggersConfiguration alloc] init];
[[triggers getWifiTriggers]
setObject: [

[[WLWifiVisibleAccessPointsChangeTrigger alloc] init]
setEvent: [NSDictionary dictionaryWithObject: @"moved" forKey:@"name"]]

forKey:@"change"
];

WLAcquisitionFailureCallbacksConfiguration* failures = [[WLAcquisitionFailureCallbacksConfiguration alloc] init];
[failures setWifiFailureCallback: [WLCallbackFactory createWifiFailureCallback:^(WLWifiError* wifiError) {
[self onWifiError: wifiError];

}]];

[[[WLClient sharedInstance] getWLDevice] startAcqusition:
[[[

[[WLLocationServicesConfiguration alloc] init]
setPolicy: policy]

setTriggers: triggers]
setFailureCallbacks: [NSMutableArray arrayWithObject:failures]]];

}

-(void) stopScanning {
[[[WLClient sharedInstance] getWLDevice] stopAcqusition];
}

-(void) onWifiFailure: (WLWifiError*) wifiError {
//show an error message to the user...
}

// receives a string, indicating the name of the region
-(void) setCurrentRegion: (NSString*) region {
WLProcedureInvocationData* invocData = [[WLProcedureInvocationData alloc] initWithAdapter:@"HT_WifiScan" procedure:@"setAppContext"];
[invocData setParameters:[NSArray arrayWithObject:[NSString stringWithFormat:@"{regionName: ’%@’}", region]]];

// Replace this code with a WLDelegate instance that will update the UI indicating success/failure.
id<WLDelegate> delegate = nil;

{[WLClient sharedInstance] invokeProcedure:invocData withDelegate: delegate];
}

Adapter logic to update application context and handle events
// defined as a procedure:
function setAppContext(context) {

WL.Server.setApplicationContext(JSON.parse(context));
}

function handleEvent(event) {
// Nothing specific to do, the event device context will be logged to raw reports database in any case.

}

// log all events
WL.Server.setEventHandlers([WL.Server.createEventHandler({}, handleEvent)]);

Example of Enter trigger - hybrid Android, iOS, and Windows Phone 8
var triggers = {

Wifi: {
welcomeToMall: {

type: "Enter",
areaAccessPoints: [{SSID: "FreeMallWifi"}]
callback: showWelcome

}
foodCourt: {

type: "Enter",
areaAccessPoints: [{SSID: "FreeMallWifi", MAC: "12:34:56:78:9A:BC"}, {SSID: "FreeMallWifi", MAC: "CB:A9:87:65:43:21"}]

Developing MobileFirst applications 8-595

callback: showFoodCoupons
}

}
};

Example of Enter trigger - native Android
WLTriggersConfiguration triggers = new WLTriggersConfiguration();

triggers.getWifiTriggers().put(
"welcomeToMall",
new WLWifiEnterTrigger()
.setAreaAccessPoints(Collections.singletonList(new WLWifiAccessPointFilter("FreeMallWifi")))

.SetCallback(showWelcome));

triggers.getWifiTriggers().put(
"foodCourt",
new WLWifiEnterTrigger().setAreaAccessPoints(Arrays.asList(
new WLWifiAccessPointFilter("FreeMallWifi", "12:34:56:78:9A:BC"),
new WLWifiAccessPointFilter("FreeMallWifi", "CB:A9:87:65:43:21"))).SetCallback(showFoodCoupons));

Example of Enter trigger - native iOS
WLTriggersConfiguration triggers = new WLTriggersConfiguration();

WLTriggersConfiguration* triggers = [[WLTriggersConfiguration alloc] init];
[[triggers getWifiTriggers] setObject:

[[
[[WLWifiEnterTrigger alloc] init]

setAreaAccessPoints: [NSMutableArray arrayWithObject: [[WLWifiAccessPointFilter alloc] init: @"FreeMallWifi"]]]
setCallback: showWelcome]

forKey:@"welcomeToMall"];

[[triggers getWifiTriggers] setObject:
[[
[[WLWifiEnterTrigger alloc] init]

setAreaAccessPoints: [NSMutableArray arrayWithObjects:
[[WLWifiAccessPointFilter alloc] initWithSSID: @"FreeMallWifi" MAC: @"12:34:56:78:9A:BC"],
[[WLWifiAccessPointFilter alloc] initWithSSID: @"FreeMallWifi" MAC: @"CB:A9:87:65:43:21"],
nil]]

setCallback: showFoodCoupons]
forKey:@"foodCourt"];

Securing server resources based on location
Device context data can tell you whether a user's device is connected to a secure
network. If it is not connected, the device context can tell you whether the device
is within a required geofence. This data can be used to restrict access to sensitive
information or to prevent running specific program logic. It can also be used to
require that additional authentication mechanisms, such as one-time pads, be used.

About this task

In many environments it is important to ensure that sensitive resources are secure,
but can be easily accessed by authorized users who are on site. You can use the
WL.Server.getClientDeviceContext API to obtain a device context from an
authorized user. You can then validate the device context by checking whether a
user's device is connected to a secure network, or is within a designated required
geofence.

For example, in a hospital, patient records must be secure and confidential, but
must be accessible by authorized personnel such as doctors and nurses.

8-596 IBM MobileFirst Platform Foundation V6.3.0

Procedure
1. While the acquisition is running, the device context reflects the most up-to-date

information regarding the user's location. The user's device context is
transparently synchronized to the server, so that WL.Device.getContext and
WL.Server.getClientDeviceContext return the same result.

Note: The developer must call WL.Device.startAcquisition to benefit from the
synchronization and validation. Until the developer calls
WL.Device.startAcquisition, the result is null.

2. Based on the information in the device context, the adapter logic can check
whether the user is connected to a specific network. Additionally, by using the
WL.Geo functions, the adapter logic can validate whether the user is in a
specific, required geographical location.

Example

This example performs the following tasks:
1. An attempt is made to verify the location. The device context information is

acquired, by using both Geo and WiFi data. A check is made to ensure that the
data is current (acquired within the last 5 minutes), and that the device is
within the area that is defined by the legalPolygon variable. Time calculations
are done by using UTC time.

2. If the location cannot be verified, the message not in an authorized location
is thrown.

3. If the location is verified, further processing takes place.
var legalPolygon = loadFromDB();
var secureNetworks = [’Secure1’, ’Secure2’];

function loadFromDB() {
// invoke Cast Iron or load from a database, etc.
// for this example: showing a triangle
return [{longitude: 0, latitude: 1}, {longitude: 1, latitude: 0}, {longitude: -1, latitude: 0}];

}

function verifyLocation() {
// get the server’s copy of the client’s device context
var deviceContext = WL.Server.getClientDeviceContext();
if (deviceContext == null)
throw ’acquisition not started’;

// is the device connected to a WiFi access point?
if (deviceContext.Wifi && deviceContext.Wifi.connectedAccessPoint) {
// is the connected access point a secure one?
if (secureNetworks.indexOf(deviceContext.Wifi.connectedAccessPoint.SSID) >= 0)
return;

}

// has a geolocation been acquired?
if (deviceContext.Geo && deviceContext.Geo.coords) {
// verify the information:
var timestamp = deviceContext.Geo.timestamp;
var offset = deviceContext.timezoneOffset;
var utcTime = timestamp + offset;

var now = new Date();
var nowTime = now.getTime() + now.getTimezoneOffset();

if (nowTime - utcTime <= 5*60000) { // time is within last 5 minutes
if (WL.Geo.isInsidePolygon(deviceContext.Geo.coords, legalPolygon))
return;

Developing MobileFirst applications 8-597

}
}

throw ’not in an authorized location’;
}

function aProcedure() {
verifyLocation();

// rest of logic:
// ...

}

Tracking the current location of devices
You can track the location of devices by ensuring that ongoing acquisition of
geo-locational data is taking place. When the position of the device changes, a
trigger is activated.

About this task

You acquire geo-locational data from a device by using the
WL.Device.startAcquisition API. The PositionChange trigger is activated if the
position of the device changes significantly, and events can then be sent to the
server. The server handles these events by setting up an event handler.

For example, a warehouse could improve the efficiency of its processes by using
locational data from its delivery vehicles to guide the vehicles to the correct docks,
and notify warehouse personnel so that they can be prepared for the arrival of the
vehicles.

Procedure
1. The acquisition of geo-locational data is initiated by the

WL.Device.startAcquisition API.
2. The PositionChange trigger in the API is used to emit events that are then

transmitted to the server. For "live" views, either the transmission interval that
is set in the WL.Client.setEventTransmissionPolicy API should be small, or
the transmitImmediately parameter must be set to true.

3. An event handler is set up on the server by using the
WL.Server.createEventHandler(filter,handlerFunction) API. The filter is a
literal object that is used to match only the events that you want the handler
function to handle.

4. The events that are transmitted to the server contain the client's device context
at the time the trigger was activated. The handler can pass this, or other
information, to external systems where, for example, the data could be
displayed on a map.

Example

Adapter code
function handleDeviceLocationChange(event) {

// do something with event
}

function handleDeliveryTruckMoved(event) {
// do something with event

}

function handleRefrigeratedDeliveryTruckMoved(event) {

8-598 IBM MobileFirst Platform Foundation V6.3.0

// do something with event
}

var deviceMoveHandler = WL.Server.createEventHandler(
{},
handleDeviceLocationChange

);

var deliveryTruckMovedHandler = WL.Server.createEventHandler(
{vehicle: "DeliveryTruck"},
handleDeliveryTruckMoved

);

var coolTruckMovedHandler = WL.Server.createEventHandler(
{
vehicle: "DeliveryTruck",
refrigeration: true

},
handleRefrigeratedDeliveryTruckMoved

);

WL.Server.setEventHandlers(
[
deviceMoveHandler,
deliveryTruckMovedHandler,
coolTruckMovedHandler

]
);

Mobile application logic -hybrid Android, iOS, and Windows Phone 8
function wlCommonInit(){

// Common initialization code goes here.
// get truck id (for example from the user) -- for this example, using a hard-coded value.
var truckId = 123;
var driverName = "John Smith";

var policy = {
Geo: {

enableHighAccuracy: true,
timeout: 10000

}
};

var triggers = {
Geo: {

tracking: {
type: "PositionChange",
minChangeDistance: 100, // 100 meters
eventToTransmit: {

event: {
vehicle: "DeliveryTruck",
id: truckId,
driverName: driverName

}
}

}
}

};

WL.Device.startAcquisition(policy, triggers);
}

Mobile application logic - native Android

Developing MobileFirst applications 8-599

// get truck id (for example from the user) -- for this example, using a hard-coded value.
long truckId = 123;
String driverName = "John Smith";

WLAcquisitionPolicy policy = new WLAcquisitionPolicy()
.setGeoPolicy(new WLGeoAcquisitionPolicy()

.setEnableHighAccuracy(true)

.setTimeout(10000));

WLTriggersConfiguration triggers = new WLTriggersConfiguration();
triggers.getGeoTriggers().put(

"tracking",
new WLGeoPositionChangeTrigger()
.setMinChangeDistance(100)
.setEvent(new JSONObject()

.put("vehicle", "DeliveryTruck")

.put("id", truckId)

.put("driverName", driverName)));

WLClient.getInstance().getWLDevice().startAcquisition
new WLLocationServicesConfiguration()
.setPolicy(policy)
.setTriggers(triggers));

Mobile application logic - native iOS
// get truck id (for example from the user) -- for this example, using a hard-coded value.
long long truckId = 123;
NSString* driverName = @"John Smith";

WLAcquisitionPolicy* policy =
[[WLAcquisitionPolicy alloc] init]
[

setGeoPolicy:
[[

[[WLGeoAcquisitionPolicy alloc] init]
setEnableHighAccuracy: true]
setTimeout: 10000]];

WLTriggersConfiguration* triggers = [[WLTriggersConfiguration alloc] init];
[[triggers getGeoTriggers] setObject:

[[
[[WLGeoPositionChangeTrigger alloc] init]

setMinChangeDistance: 100]
setEvent: [NSDictionary dictionaryWithObjectsAndKeys:

@"DeliveryTruck", @"vehicle",
truckId, @"id",
driverName, @"driverName",
nil]]

forKey:@"tracking"];

[[[WLClient sharedInstance] getWLDevice] startAcqusition:
[[
[[WLLocationServicesConfiguration alloc] init]

setPolicy: policy]
setTriggers: triggers]];

Keeping the application running in the background
When you are tracking a device by acquiring geolocation data, it is important to
keep an application running in the background so that data can continue to be
acquired.

8-600 IBM MobileFirst Platform Foundation V6.3.0

About this task

If you are using Android, iOS, or Windows Phone 8, you can keep an application
running in the background, even when the device owner is using another
application, such as checking email.

The process for each platform is described in the following procedure.

Procedure
v For Android devices and hybrid applications, to ensure that the application will

continue to run in the background use WL.App.setKeepAliveInBackground(true,
options). Using this API binds the application to a foreground service. By
default, if no options are specified, the application's name and icon are
displayed. Tapping on the notification takes the user back to the last activity that
made the call to WL.App.setKeepAliveInBackground(true). The notification is
present until the app exits, or WL.App.setKeepAliveInBackground(false) is
called. For details on using the options to change the text, the icon, or which
activity gets called when the user presses on the notification, see the method
setKeepAliveInBackground as defined in the WL.App class.

v For Android devices and native applications, you should access the location
APIs through a service. For more information about Android services, see the
“Services” section on the Android development site at http://
developer.android.com/guide/components/services.html.

v For iOS devices, you must set up your info.plist file to indicate that you want
to use background location services when enableHighAccuracy=true. To do this,
you must set the location string on the UIBackgroundModes key in the
info.plist file.

v For Windows Phone 8 devices, replace the DefaultTask details in the
WMAppManifest.xml file with: <DefaultTask Name="_default"
NavigationPage="MainPage.xml"> <BackgroundExecution> <ExecutionType
Name="LocationTracking" /> <BackgroundExecution> </DefaultTask>. See the
Windows Phone Development Center web page http://msdn.microsoft.com/en-
us/library/windowsphone/develop/jj662935(v=vs.105).aspx for details on
running location-tracking apps in the background.

Client-side log capture
Applications in the field occasionally experience problems that require a
developer's attention to fix. It is often difficult to reproduce problems in the field.
Developers who worked on the code for the problem application often do not have
the environment or exact device with which to test. In these situations, it is helpful
to be able to retrieve debug logs from the client devices as the problems occur in
the environment in which they happen.

Starting in IBM Worklight V6.2.0, developers that use MobileFirst client-side APIs
who want to capture both platform (IBM MobileFirst Platform Foundation) and
application (your code) logs for debug and problem determination should use the
appropriate client-side APIs. By doing so, debug log data is made available for
capture and sending to the server.

Introduction to client-side logging

The APIs that are available with MobileFirst client libraries include a logger in
JavaScript, Android native, and iOS native code base. The logger API is similar to
commonly used logger APIs, such as console.log (JavaScript), java.util.logging

Developing MobileFirst applications 8-601

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.App.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662935(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662935(v=vs.105).aspx

(Java), and nslog (Objective-C). The MobileFirst logger API has the additional
capability of persistently capturing logged data for sending to the server to be
used for analytics gathering and developer inspection. Use the logger APIs to
report log data at appropriate levels so that developers who inspect logs can triage
and fix problems without having to reproduce problems in their labs.

There are seven levels. From least verbose to most verbose, they are FATAL,
ERROR, WARN, INFO, LOG, DEBUG, TRACE.

Example usage of level-appropriate messages:
v Use TRACE for method entry and exit points.
v Use DEBUG for method result output.
v Use LOG for class instantiation.
v Use INFO for initialization reporting.
v Use WARN to log deprecated usage warnings.
v Use ERROR for unexpected exceptions or unexpected network protocol errors.
v Use FATAL for unrecoverable crashes or hangs.

Default log capture feature behavior
v Log capture is ON.
v During development, the default log level is DEBUG.

– On iOS, development mode means that the DEBUG macros is defined.
– On Android, development mode means that the app is signed with the

default Android certificate.
v In production, the default log level is FATAL.

– On iOS, production mode means that the DEBUG macros is not defined.
– On Android, production mode means that the app is signed with the

customer's generated certificate.
– The FATAL level is reserved for applications that experience unrecoverable

errors, which appear to users as an application crash or hang. The MobileFirst
client-side library records unrecoverable errors when log capture is ON and
logger is active.

v Log persistent client-side buffer maximum size is 100k bytes.
– Log entries are treated as a first in, first out (FIFO) queue; oldest log entries

are deleted to make room for more recent log entries.
v Log configuration set at the server by the MobileFirst administrator is

piggybacked on responses to explicit WLClient connect and invokeProcedure API
calls, and is applied automatically.

v All captured log data, if any, is sent to the MobileFirst Server during each
successful client network init sequence and invokeProcedure response, with a
60 second buffer.
– Turn this automatic behavior on or off by using one or more of the following

options:
- Logger.setAutoSendLogs(boolean)

- OCLogger.setAutoSendLogs(boolean)

- WL.Logger.config({autoSendLogs: boolean})

– After automatic behavior is turned off, you must explicitly call the send
method (in both the Logger and Analytics classes) in your application to send
any persistently captured client logs to the MobileFirst Server.

8-602 IBM MobileFirst Platform Foundation V6.3.0

v (Android) Native Logger API is not active, and not capturing logs or data about
unrecoverable errors, unless and until the Logger.setContext(Context) method
is called.
– This API call is made automatically under the WL.init() method call.

During development
v Developers should make liberal and reasonable use of the client-side logger

APIs.
v Client-side logs that are uploaded to the embedded Liberty server in IBM

MobileFirst Platform Foundation are written to files under the clientlogs folder.
This folder is a peer to the logs folder of the embedded server.
– Verifying this behavior is a good way to confirm the expected behavior of

your usage of the API.

In production
v Logger configuration is controllable from the MobileFirst Operations Console.

Configuration that is retrieved from the server is used as an override of the
locally set configuration. Clients revert to the pre-override configuration when
the MobileFirst administrator removes the logger configuration and the client
retrieves the instruction from the server.

Things to consider

During application development, consider the following questions.

Should capture be always on or always off?
The default setting of capture is ON. When capture is on, all logs at the
specified level or filter are captured in a persisted rotating log buffer. You
can change the default of the capture setting by using the logger API.

Consider that turning capture on at a verbose logger level has an impact to
resource consumption:
v CPU
v file system space
v frequency of network usage when captured log data is also being sent to

the server
v size of network payload when captured log data is also being sent to the

server

At what level should you set the logger?
There are seven levels. From least verbose to most verbose, they are
FATAL, ERROR, WARN, INFO, LOG, DEBUG, TRACE.

For example, when capture is ON and the logger level is configured to
FATAL, the logger captures uncaught exceptions. Uncaught exceptions
often appear to users as application crashes or hangs, but does not capture
any logs that lead up to the failure. Alternatively, a more verbose logger
level ensures that logs that lead to a logger FATAL entry are captured.

Consider that verbose logger levels, when capture is ON, can affect:
v frequency of network usage
v size of the payload that is sent to the server
v application performance, and therefore user experience

Developing MobileFirst applications 8-603

How frequently should clients check with the server for logger configuration
changes?

By default, client applications check for updated logger configuration
during the MobileFirst client network init sequence, which is not
necessarily application startup or application foreground events.

The init sequence can be infrequent, depending on the design of your
application. For example, the init sequence might happen only at
check-out in a retail shopping application. In this example, the application
can check for new configuration on every onForeground event to ensure
that it retrieves and applies the configuration soon after the MobileFirst
administrator sets in the Catalog tab of the MobileFirst Operations
Console.

For example, to retrieve and apply configuration overrides from the server
when the client comes to the foreground, you can place the WLClient
updateConfigFromServer function call:
v onResume (Android, in each Activity, if necessary)
v applicationDidBecomeActive (iOS)
v an onForeground event listener (JavaScript)

How can you guarantee that all captured log data on the client gets to the
server?

The short answer is that there is no way to guarantee preservation of all
captured data. Clients might be running the application offline and
simultaneously accumulating captured log data. Because the client is
offline with limited file system space, older log data must be purged in
favor of preserving more recent log data, which is the behavior of the log
capture feature.

You can make a best effort at ensuring that all captured data gets to the
server by applying one or more of the following strategies:
v Call the send function on a time interval.
v Trigger a call to the send function on application lifecycle events, like

pause and resume events.
v Batch the send call with other application network activity, like

invokeProcedure. This approach allows the device radio to sleep and
preserve battery.

v Increase the capacity of the persistent log buffer on the client by calling
the setMaxFileSize function.

How can you capture logs from your application only, and exclude logger entries
from MobileFirst code?

If your application code is making good use of the MobileFirst logger API,
and you want to capture logs from your application only, you can use a
consistent package name or consistent set of package names for your
logger instances. For example:
v // JavaScript

var logger = WL.Logger.create({pkg: ’MyAppPkg’});
v // Android

Logger logger = Logger.getInstance(MyClass.class.getName());

or
// Android
Logger logger = Logger.getLogger(MyClass.class.getName());

8-604 IBM MobileFirst Platform Foundation V6.3.0

v // iOS
OCLoggerDebugWithPackage(@"MyPackage", @"this is a debug message");
// or Info, Log, Warn, and so on

or
// iOS
OCLogger* logger = [OCLogger getInstanceWithPackage:@"MyPkg"];
[logger debug:@"this is a debug message"];
// or Info, Log, Warn, and so on

Then, set the filters on the logger to allow logging only for your package
or packages:
v // JavaScript

WL.Logger.config({pkg : ’MyAppPkg’, filters : {’MyAppPkg’ : ’debug’}});

v
// Android
HashMap filters = new HashMap();
filters.put("MyAppPkg", Logger.LEVEL.DEBUG);
Logger.setFilters(filters);

v // iOS
[OCLogger setFilters:@{@"MyAppPkg": @(OCLogger_DEBUG)}];

How can you never collect or send logs from deployed apps in the field?
Call setCapture(false) as early as possible in your application lifecycle
code to set the default behavior. Avoid the logger tab in the Catalog tab of
the MobileFirst Operations Console.

Server preparation for uploaded log data
You must prepare your server to receive uploaded client log data.

Upon receiving uploaded client logs, the MobileFirst production server passes the
uploaded data to the Operational Analytics component feature and to an adapter
that you create and deploy. Neither of these options are present in a production
MobileFirst Server; you must install and configure them. To receive and persist
uploaded client logs at the MobileFirst Server, you must take at least one of the
following two actions:
1. Install the IBM MobileFirst Platform Operational Analytics as described in

“Installing the IBM MobileFirst Platform Operational Analytics” on page 6-170.
2. Deploy an adapter that is named WLClientLogReceiver or the name that

corresponds to the value of the wl.clientlogs.adapter.name JNDI property.

If you deploy an adapter to receive uploaded client logs, the adapter must be an
HTTP adapter that is named WLClientLogReceiver or the value of the
wl.clientlogs.adapter.name JNDI property. The adapter must have at least one
procedure that must be named log. The log procedure is passed two parameters:
deviceInfo (a JSON object) and logMessages (a JSON array). For more information
about implementing adapter procedures, see “Implementing adapter procedures”
on page 8-365.

The following example shows an implementation of the log procedure in the
WLClientLogReceiver-impl.js file:
function log(deviceInfo, logMessages) {

/* The adapter can choose to process the parameters,
for example to forward them to a backend server for
safekeeping and further analysis.

The deviceInfo object may look like this:
{
"appName": "wlapp",

Developing MobileFirst applications 8-605

"appVersion": "1.0",
"deviceId": "66eed0c9-ecf7-355f-914a-3cedac70ebcc",
"model": "Galaxy Nexus - 4.2.2 - API 17 - 720x1280",
"systemName": "Android",
"systemVersion": "4.2.2",
"os.arch": "i686", // Android only
"os.version": "3.4.0-qemu+" // Android only
}
The logMessages parameter is a JSON array
that contains JSON object elements, and might look like this:

[{
"timestamp" : "17-02-2013 13:54:23:745", // "dd-MM-yyyy hh:mm:ss:S"
"level" : "ERROR", // ERROR || WARN || INFO || LOG || DEBUG
"package" : "your_tag", // typically a class name, app name, or JavaScript object name
"msg" : "the message", // a helpful log message
"threadid" : 42, // (Android only) id of the current thread
"metadata" : { "$src" : "js" } // additional metadata placed on the log call

}]

*/

return true;

}

The procedure element in the WLClientLogReceiver.xml file for log:
<procedure name="log" />

The implementation of the adapter determines the destination of the uploaded log
content.

One convenient way to persistently record uploaded client logs is to place the
audit="true" attribute in the adapter's procedure element. This flag instructs the
MobileFirst Server to report all adapter invocations and parameter arguments
inline to the server log file:
<procedure name="log" audit="true" />

Alternatively, you process the parameters that are passed into the log procedure
explicitly.

Server security

By default, there is no security that protects the loguploader servlet that receives
uploaded client logs and analytics at the MobileFirst Server. You can configure the
security tests that protect the servlet in the authenticationConfig.xml file. But to
avoid unexpectedly prompting the user for authentication credentials when you
send logs, you have two choices:
1. Use a security test that requires no custom challenge handler code and no user

interaction, and freely call the logger send function.
2. Ensure that the security test in front of the servlet remains the same as the

security test of the application, and be careful about placement of extra logger
send function calls.

If you choose to change the security test, and you choose option one, an explicit
call to the logger send function does not result in an unexpected authentication
challenge prompt or other authentication failure. The logger send function is safe
to place throughout your application.

If you choose to change the security test, and you choose option two, a carelessly
placed call to the logger send function might result in an unexpected
authentication challenge prompt or other authentication failure. In this case,
explicit calls to the logger send function in your application must be placed
carefully. If your client applications call the logger send function explicitly, ensure
that they do so after authentication succeeds. For example, call the logger send

8-606 IBM MobileFirst Platform Foundation V6.3.0

function in the invokeProcedure onSuccess callback of an adapter invocation that
is protected by the same security test as the log receiver servlet.

Logging sensitive data

The logger library does not automatically protect against logging sensitive data.
Data is stored in plain text, but is only readable within the context of the
application that is using the logger API. Avoid logging sensitive data

Uploaded client logs

In the embedded Liberty development server, the uploaded client logs are written
to a file that corresponds with that client's unique attributes. The uploaded client
log file is written, or appended, at the following path, which is a peer to the logs
folder:

clientlogs/[os]/[os_version]/[app_id]/[app_version]/[device_id].log

Uploaded logs are not written to the file system in MobileFirst production servers.

Client-side log capture configuration from the MobileFirst
Operations Console

Starting in IBM Worklight V6.2, administrators can use the Log Configuration
subtab in the Catalog tab of the MobileFirst Operations Console to affect client
logger configuration. Administrators can adjust the log level and log package
filters for any combination of operating system, operating system version,
application, application version, and device model.

When the MobileFirst administrator creates a configuration profile, the log
configuration is piggybacked on responses to explicit WLClient connect and
invokeProcedure API calls, and is applied automatically.

When the MobileFirst administrator removes a configuration profile, the client
reverts to its configuration before the server configuration profile override upon
the next client application WLClient connect and invokeProcedure API calls.

What is provided on the client side?

Android
com.worklight.common.Logger

Note: Native Android code that calls the android.util.Log.* API is not
captured in the client-side logs. Developers must use
com.worklight.common.Logger to capture client-side logs. For more
information about the com.worklight.common.Logger API, see the Logger
class.

Alternatively, developers can use standard java.util.logging.Logger in
their code with the understanding that levels, filtering, and capturing are
still controlled in the com.worklight.common.Logger class. No
java.util.logging.Logger method calls are captured until the
com.worklight.common.Logger.setContext(Context) method is called.

iOS
OCLogger

Developing MobileFirst applications 8-607

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android-native/html/com/worklight/common/Logger.html

Note: Native iOS code that calls nslog directly is not captured in the
client-side logs. Developers must use OCLogger to capture client-side logs.
For more information about the OCLogger API, see “Objective-C client-side
API for iOS apps” on page 10-5.

JavaScript
WL.Logger

Note: JavaScript code that calls console.log directly is not captured in the
client-side logs. Developers must use WL.Logger to capture client-side logs.
For more information about the WL.Logger API, see the WL.Logger API.

MobileFirst Filtered Export
You can use the MobileFirst Filtered Export option to export only the required
MobileFirst project resources to an archive file on the local system. Filtered Export
ignores the files that are generated at build time, resulting in a smaller file than the
previous method of exporting.

Before you begin

To complete this export, you must select a valid MobileFirst project. Any other
project is not eligible for Filtered Export.

Procedure
1. Right-click the MobileFirst project, then select Export.
2. In the Export window that appears, expand IBM MobileFirst.
3. Select MobileFirst Filtered Export.
4. Click Next.
5. Click Browse to complete the file path of the To archive file field. The only

valid file extension is .zip.
6. Click Finish.

8-608 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Logger.html

Testing with IBM MobileFirst Platform Foundation

The mobile testing features of IBM MobileFirst Platform Test Workbench automate
the creation, execution, and analysis of functional tests for MobileFirst native,
hybrid, and web applications on Android and iOS devices. A superset of these
features is available in Rational Test Workbench Mobile Test Edition. Testing
BlackBerry applications is not currently supported.

Installation

To use the test workbench, you must install it as an extra component in
MobileFirst Studio. For instructions about installing the test workbench within
MobileFirst Studio, see “Installing and configuring IBM MobileFirst Platform Test
Workbench” on page 6-12.

Note: Testing Android applications with the test workbench requires a JDK. Make
sure to also add the path to the JDK in Window > Preferences > Java > Installed
JREs, and to set it as the default JRE by selecting its corresponding check box.

Tools for testing mobile applications in IBM MobileFirst Platform
Foundation

The tools for preparing and testing mobile applications in IBM MobileFirst
Platform Foundation include:
v MobileFirst Studio for developing your application, preparing it for test, and

uploading it to the mobile test workbench for testing by the developer.
v Application Center for sharing applications when the person who develops the

application is different from the person who tests the application.
v A mobile test client that runs on Android and iOS devices, as well as Android

emulators and iOS simulators. This client is used to record, to run tests, and to
view reports. With the Android client, you can also upload apps to the test
workbench.
The Android client is a native, Android application. The iOS client is a Web app
that runs in a browser on the iOS device. In addition, there is a native iOS client
that can be used to test with the iOS Simulator. For details, see Android testing
overview and iOS testing overview.

v The test workbench, which works together with the mobile test client for testing
the application. See more details below.

The test workbench

The test workbench runs on a Windows, Linux, or Macintosh computer and
includes the following main components:
v The Test Navigator lists test projects, tests, mobile devices, and the mobile

incoming recordings that are used to generate tests.

© Copyright IBM Corp. 2006, 2015 9-1

http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/c_android_test_overview.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/c_android_test_overview.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/c_ios_test_overview.html

v The Mobile Devices editor lists the devices that are connected to the test
workbench. This editor displays detailed specifications of each device, which
allows you to select the hardware platforms on which you can deploy and run
your tests.

v The Mobile and Web UI Applications editor lists the managed apps that are
uploaded and prepared for testing.

v A test editor enables you to edit test scripts in natural language, and add
actions, verification points, data pools, test variables, stubs, and so on.

9-2 IBM MobileFirst Platform Foundation V6.3.0

v A Mobile Data view displays the screen captures that were uploaded from the
mobile device during the recording. Use this view to display and select user
interface elements, and optionally to add verification points to the test script.

Stages in the testing process

The goal of mobile testing is to ensure that your mobile application meets the
requirements that guided its design and development. To help you meet this goal,
IBM MobileFirst Platform Test Workbench implements the following stages in the
testing process:
v Configuration: Set up your test environment with IBM MobileFirst Platform Test

Workbench and the Android SDKs for the mobile operating systems. Install the
mobile test client on one or more Android devices. Ensure that the mobile
devices have connectivity through WiFi, 3G, or 4G, and add those devices to the
test workbench. For details, see Configuring the mobile test client.

v Application preparation: Import the application that you want to test into the
test workbench, or for Android applications, use the device to upload the
application under test to the test workbench. For iOS applications, instrument
and install the applications. For details, see “Managing mobile applications” on
page 9-7.

v Test recording: Run the app from the mobile test client to start a recording. The
recorder records all user interactions, sensor inputs, and application behavior,
and uploads the recorded data to the test workbench, where it can be converted
into a mobile test. For details, see “Creating mobile tests” on page 9-7.

v Test editing: After recording, you can edit the test in the natural language editor.
You can use the mobile data view to display and select UI elements from the

Testing with IBM MobileFirst Platform Foundation 9-3

http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/cmobconfig.html

recorded applications. You can replace recorded test values with variable test
data, or add dynamic data to the test. For details, see “Editing mobile tests” on
page 9-8.

v Test execution: You can run automated tests on multiple devices to ensure that
the app matches the expected behavior that is defined in verification points.
During the run, each verification point is checked and receives a pass, fail, or
inconclusive status. Information about each step is saved in the test results. For
details, see “Running mobile tests” on page 9-9.

v Evaluation of results: After the test, the device uploads the test data to the test
workbench. You evaluate the test results through the performance and
verification point reports that are generated with the uploaded data. You can
also design custom reports by manipulating a wide range of counters.
Functional reports provide a comprehensive view of the behavior of the app
under test. Reports can be exported and archived for validation. For details, see
“Evaluating results” on page 9-9.

When the tester is the same person as the developer, this person can develop and
test the application in the same Eclipse environment.

When the person who develops the application is different than the person who
tests it, the application must be shared between the developer and the tester by
using the Application Center. In this case, the testing process includes the
following additional stages:
v Publication: You can publish Android applications to the Application Center

from MobileFirst Studio by right-clicking an Android project and clicking IBM
Application Center > Publish on IBM Application Center. For iOS, the
application must first be instrumented for testing. You right-click an iOS project,
and click IBM Application Center > Publish Test-Ready Application. The iOS
application is then instrumented and published.

v Import of the application: When the application is published in the Application
Center, the tester imports this app into the list of managed applications into the
test workbench.

Support for testing native, hybrid, and web applications

Use the test workbench to test various types of mobile applications, including
native applications, hybrid applications, and browser-based, web applications that
were created with MobileFirst Studio.

A native Android or iOS application is built using a native SDK, whose services are
defined according to each platform architecture. Android applications are typically
created with Java or C++, whereas iOS applications are created with Objective-C.

A hybrid application is an application that combines native and web technologies.
The web part relies on HTML 5, CSS3, and javascript.

A browser-based web application is developed using pure web technologies, such
as HTML 5, CSS3, and JavaScript libraries, such as Dojo and JQuery. Web
applications are developed to run in multiple browsers and are
platform-independent. This release includes support for Dojo Mobile 1.9 and
jQuery Mobile 1.3.

Note: To test applications that are not created with IBM MobileFirst Platform
Foundation, you must use IBM Rational Test Workbench or IBM Rational Test
Workbench Mobile Test Edition.

9-4 IBM MobileFirst Platform Foundation V6.3.0

Compound tests

If you need to combine various mobile tests into a single workflow or end-to-end
scenario, you can organize the tests into a compound test. Each test may perform a
part of the scenario. For details, see Compound tests.

Note: Rational Test Workbench is required to combine mobile tests with other
types of tests in a compound test.

Extending test execution with custom code

You can extend how you run your tests by writing custom Java code and calling
the code from the test. You can also specify that results from the tests that are
affected by your custom code be included in reports. For details, see Extending test
execution with custom code.

Using IBM Rational Test Workbench with IBM MobileFirst
Platform Foundation

You can enhance the testing capabilities in IBM MobileFirst Platform Test
Workbench by licensing either IBM Rational Test Workbench Mobile Test Edition or
the full IBM Rational Test Workbench product.

Testing with IBM MobileFirst Platform Foundation 9-5

http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.common.doc/topics/c_compound_test.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.common.doc/topics/textndteswcc.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.common.doc/topics/textndteswcc.html

With both products, you can test mobile apps that are developed with tools other
than IBM MobileFirst Platform Foundation.

The full IBM Rational Test Workbench product provides several extra capabilities:
v Integration with IBM Rational Quality Manager (RQM), which provides

advanced test execution and test management capabilities. When you provide
IBM Rational Test Workbench access to the test assets in the project created with
IBM MobileFirst Platform Test Workbench, you can use RQM to drive test
execution. For more information, see the IBM Rational Quality Manager section
in IBM Rational solution for Collaborative Lifecycle Management.

v Ability to test non-mobile applications, such as desktop Web UI applications,
Selenium, HTTP, Citrix, SAP, and other test domains. In addition, you can
combine multiple types of tests in a single compound test and run them as a
single workflow.

v Load testing with IBM Rational Performance Tester
v Test virtualization with IBM Rational Integration Tester

Getting started
For conceptual information about testing mobile applications, as well as flow
diagrams and step-by-step instructions, see the following topics and tutorials.
v Getting started with mobile testing
v Videos about mobile testing
v Tutorial: Test a native Android app
v Tutorial: Test a native iOS app

Creating a Test Workbench project
The tests that you create, and the assets associated with the tests, reside in a Test
Workbench project. You can create a Test Workbench project in the test workbench
itself, or you can create one when you create your MobileFirst project. This topic
describes the steps for creating the Test Workbench project when you create your
MobileFirst project.

About this task

For details about creating a Test Workbench project in the test workbench itself, see
Creating a Test Workbench project.

Note: The IBM MobileFirst Platform Test Workbench allows testing only the
mobile applications that are created with IBM MobileFirst Platform Foundation. To
test applications that are not created with IBM MobileFirst Platform Foundation, or
if you need more tools for extra testing scenarios, you must use the IBM Rational
Test Workbench product.

Procedure
1. In MobileFirst Studio, select File > New > Worklight Project and follow the

steps to create a MobileFirst project (see “Creating MobileFirst projects” on
page 8-7).

2. On the last page of the project creation wizard, click IBM Mobile Test
Workbench, select Create a Test Project and enter the name of the test project.

3. Click Finish.

9-6 IBM MobileFirst Platform Foundation V6.3.0

http://www-01.ibm.com/support/knowledgecenter/SSYMRC/clm_family_welcome.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/t_gsmobile.html
http://www.youtube.com/playlist?list=PLZGO0qYNSD4UCO88sG5_ehofmREoYsO3z
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/and_ovr.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/ios_abstract.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tcreateproj.html

Managing mobile applications
Before you can record a test from an Android or iOS application, the application
must be instrumented, imported into the test workbench, and installed on a mobile
device. Android applications can be instrumented by uploading the application
from a mobile device to the test workbench, or by importing the application into
the test workbench. iOS applications are instrumented by running a script on a
Macintosh computer.

You can view the mobile applications that are available for testing, as well as
information about each application in the Mobile and Web UI Applications editor,
as shown below:

For details about managing mobile applications for testing, see the following topics
and video:
v Importing applications to test in the workbench
v Uploading Android applications from the mobile test client
v Instrumenting iOS applications
v Installing instrumented iOS applications
v Tutorial: Test a native Android app, Preparing app for recording
v Tutorial: Test a native iOS app, Preparing the application under test
v Instrumenting and installing iOS apps in Rational Test Workbench v8.6 (video)

Creating mobile tests
You create a mobile test by recording a session with the app under test. At the end
of the session, the recording is uploaded to the IBM MobileFirst Platform Test
Workbench, where it is used to generate a test.

For details about recording mobile tests, see the following topics, tutorials, and
video:
v Recording tests from the Android mobile test client
v Recording tests from the iOS mobile test client
v Tutorial: Test a native Android app, Recording a test
v Tutorial: Test a native iOS app, Recording a test
v Recording a Mobile App Test with Rational Test Workbench (video)

Testing with IBM MobileFirst Platform Foundation 9-7

http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tmobprepwb.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tmobprepand.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/t_test_ios_native_device.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/c_install_ios_device.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/and_module2.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/ios_lesson2.html
http://www.youtube.com/playlist?list=PLZGO0qYNSD4UCO88sG5_ehofmREoYsO3z
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tmobrecand.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/trecord_ios_app.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/and_lesson23.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/ios_lesson4.html
http://www.youtube.com/playlist?list=PLZGO0qYNSD4UCO88sG5_ehofmREoYsO3z

Editing mobile tests
After you record a test, you can edit the test in the natural language editor, which
allows you to modify the test manually.

The edited test displays the list of actions and UI elements uploaded from a mobile
device during the recording. The upper left view of the test editor, Test Contents,
displays the chronological sequence of events in the test. The view on the right,
User Action Details, displays details about the currently selected action in the test
script.

You can use the Mobile Data view at the bottom to display and select UI elements
from the recorded application. You can replace recorded test values with variable
test data, or add dynamic data to the test.

For details about editing mobile tests, see the following topics, tutorials, and video:
v Editing mobile tests
v Actions from the Mobile and Web UI data view
v Tutorial: Test a native Android app, Editing a test
v Tutorial: Test a native iOS app, Creating a verification point
v Tutorial: Test a native iOS app, Enhancing a test with a loop and a datapool
v Rational Test Workbench - Mobile technical preview overview

9-8 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/cmobtesteditovw.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tintro_dava_view.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/and_module3.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/ios_lesson6_vp.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/ios_lesson7.html
http://www.youtube.com/playlist?list=PLZGO0qYNSD4UCO88sG5_ehofmREoYsO3z

Running mobile tests
You can run tests from mobile devices, Android emulators, and iOS Simulators.
You can also initiate a test run from the test workbench.

You can deploy and run automated tests on multiple devices to ensure that the
app matches the expected behavior that is defined in verification points. During the
run, each verification point is checked and receives a pass, fail, or inconclusive status
and functional data is recorded.

For details about running mobile tests, see the following topics and video:
v Running mobile tests
v Running tests from an Android mobile test client
v Running tests from an iOS mobile test client
v Tutorial: Test a native iOS app, Running a test
v Running Mobile App Tests with Rational Test Workbench (video)

Evaluating results
You evaluate test results by viewing the report that is generated at the end of a test
run. Functional reports provide a comprehensive view of the behavior of the app
under test. Reports can be exported and archived for validation.

For details about viewing test results and test logs, see the following topics and
video:
v Evaluating results
v Managing logs for the Android mobile test client
v Test log overview
v Tutorial: Test a native Android app, Evaluating functional results
v Tutorial: Test a native iOS app, Running the test and evaluating the results
v Running Mobile App Tests with Rational Test Workbench (video)

Using MobileFirst Studio and Application Center
These topics describe how to initiate tests from IBM MobileFirst Platform Studio
and how to work with IBM MobileFirst Platform Application Center.

Initiating mobile testing from Android, iPad, and iPhone
environments in MobileFirst Studio

With MobileFirst Studio, you can easily add iOS or Android applications to IBM
MobileFirst Platform Test Workbench, and make them available for the recording
and playback of test scripts.

Before you begin

You must prepare your application for testing by building the environment, and by
running your app on the MobileFirst Development Server. To do so, complete the
following steps:
1.

v For Android apps:

Testing with IBM MobileFirst Platform Foundation 9-9

http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tintro_run_test.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/t_run_test.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/trun_ios_test.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/ios_lesson5_run.html
http://www.youtube.com/playlist?list=PLZGO0qYNSD4UCO88sG5_ehofmREoYsO3z
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/t_evaluate_results.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/t_manage_logs.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.ditaval.doc/topics/ttestlogoverview.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/and_lesson35.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.moeb.tutorial.doc/topics/ios_lesson5_run.html
http://www.youtube.com/playlist?list=PLZGO0qYNSD4UCO88sG5_ehofmREoYsO3z

a. Create the native Android project in MobileFirst Studio by right-clicking
your application, and clicking Run As > Build Android Environment.

b. Create the application binary file (the APK file) by using the Android
tools.

v For iOS apps: Create the Xcode project in MobileFirst Studio by right-clicking
your application, and clicking Run As > Build IPhone Environment. The
appropriate certificate is specified in the Xcode project, in case you want to
test your app on a real device.

2. Perform a build and deployment action on your project by right-clicking the
project name, and clicking Run As > Run on MobileFirst Development Server
to make the iOS .ipa file or the Android .apk file available, and to update the
Android project.

3. (For Android only) Compile the APK by right-clicking the name of the
automatically generated Android project, and clicking Run As > Android
Studio project.

About this task

If you developed an iOS or an Android hybrid application with MobileFirst Studio,
you can add it to the test workbench in either of these two ways:
v By following the instructions from the section Adding applications in the

workbench.
v Or, more easily, by completing the following steps.

Note: The following procedure applies only to MobileFirst hybrid applications. To
test native applications that you created with a MobileFirst native project, you can
also use the test workbench, but you must follow the steps that are described in
Adding applications in the workbench.

Procedure
1. Right-click the iPad, iPhone, or Android environment of your MobileFirst

application.
2. Click Run As > Test with IBM Mobile Test Workbench.
v For Android applications, this action places the .apk file in the test

workbench. The application is ready for testing.
v iOS applications must be first instrumented for testing. For iOS

environments, the application is first instrumented and the resulting
instrumented application is then added to the test workbench. This operation
is only applicable on Mac OS.

Note: On iOS, this action performs the necessary instrumentation, as an
alternative to manually instrumenting your application, by using the
provided script as described in Instrumenting iOS applications on the iOS
Simulator.

Note: You can also use the Application Center to share applications among
team members. To know how to share applications between developers and
testers, see “Using the Application Center and the MobileFirst Test Workbench
to share applications” on page 9-11.

9-10 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tmobprepwb.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tmobprepwb.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tmobprepwb.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tinstall_iosapp_sim.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tinstall_iosapp_sim.html

Using the Application Center and the MobileFirst Test
Workbench to share applications

Share applications ready for testing with IBM MobileFirst Platform Studio. Simplify
communication between development and test teams by using the Application
Center in conjunction with IBM MobileFirst Platform Test Workbench.

In the mobile application development lifecycle, the development and testing of a
mobile application can be done by the same person or by different teams. When
the person who develops the application is different from the person who tests the
application, the application must be shared between the developer and the tester.
The Application Center and IBM MobileFirst Platform Test Workbench can simplify
the communication between the development team and the test team.

The Application Center is a private application store that can be used to streamline
the distribution of applications among an extended development team. The
Application Center is similar to public application stores such as Google Play or
Apple App Store, but you use it to distribute applications within an enterprise.

With the Application Center, you can create a catalog of mobile applications. Every
authorized user can then install mobile applications on their mobile device through
the Application Center client.

MobileFirst Studio and IBM MobileFirst Platform Test Workbench provide an easy
way to share applications for test purposes. A developer can upload an Android or
iOS application to the Application Center to make this application available to all
the members of the test team.

Sharing Android applications for testing

To share an Android application for mobile testing through the Application Center,
you must first prepare your application by building the APK file from the Android
environment in your application. See “Publishing MobileFirst applications to the
Application Center” on page 12-114 for more information.

To publish the APK file to the Application Center, choose IBM Application Center
> Publish on IBM Application Center.

No specific instrumentation is required for Android applications. You can use any
Android application that is available in the Application Center for testing.

Sharing iOS applications for testing

Testing iOs applications requires that each application is instrumented before you
can record tests on it with IBM MobileFirst Platform Test Workbench. Applications
must be instrumented before they are published in the Application Center catalog.

To instrument and publish an iOS application to the Application Center in a single
operation, choose IBM Application Center > Publish test-ready application. This
operation is only available when you run MobileFirst Studio on MacOS.

The instrumentation of the application uses the Xcode project to do the
instrumentation. See Publishing test-ready iOS applications to the Application
Center for more information.

Testing with IBM MobileFirst Platform Foundation 9-11

Alternatively, you can use a script to instrument an iOS application. See Command
line to launch the rtwBuildXcode.sh script for the command line and parameters to
use to instrument an iOS application manually. This script produces an archive file
that you can manually upload to the Application Center console.

An instrumented iOS application appears with a special test icon in the
Application Center catalog. The icon for IBM MobileFirst Platform Test Workbench
overlays the application icon.

Importing applications into the mobile test workbench

When an application is published for test purposes in the Application Center, a
tester can import the application into the list of managed applications in IBM
MobileFirst Platform Test Workbench.

In the Perspectives toolbar of IBM MobileFirst Platform Test Workbench, click this
icon to open the editor for mobile applications. In this editor, you can browse
the applications available for testing in the Application Center. You can select the
applications that you want to import into IBM MobileFirst Platform Test
Workbench. See Adding applications in the workbench for more information.

Publishing test-ready iOS applications to the Application
Center

Deploy iOS applications that are ready to be tested with the Mobile Test
Workbench to the Application Center directly from the MobileFirst Studio IDE.

About this task

MobileFirst Studio provides an easy way to publish test-ready iOS applications to
the Application Center. In MobileFirst Studio, you can instrument a MobileFirst
application for mobile testing and publish it to the Application Center. When an
application is available in the Application Center, a member of another team can
easily import it into the IBM MobileFirst Platform Test Workbench for testing.

Procedure
1. Specify the publication preferences for the Application Center.

a. In the main menu, click Window > Preferences.
b. In the tree on the left, expand IBM Application Center and select Publish

Preferences.
c. Enter the user credentials and server URL for publishing a MobileFirst

application to the Application Center
See this table for a description of the required publication preferences.

Figure 9-1. Instrumented application in the Application Center console

9-12 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/rinstall_iosapp_sim.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/rinstall_iosapp_sim.html
http://ibm.biz/knowctr#SS2HS7_8.6.0/com.ibm.rational.test.lt.mob.rtwm.ditaval.doc/topics/tmobprepwb.html

Table 9-1. Publication preferences for deploying an application to the Application Center

Preference Description

Credentials Login name and password for accessing the
repository of the Application Center.

Server URL URL of the Application Center server to use
for publishing applications.

2. Publish an iOS application to the Application Center.
a. Right-click the iPad or iPhone environment of the MobileFirst project, or the

Xcode project directory, and select IBM Application Center > Publish
Test-Ready Application. The instrumentation of the project starts.

b. When instrumentation is complete, click Publish to publish the application
with the current preferences or click Preferences to change any of the
preferences before publishing.

If the application already exists, publication will fail.

c. Option for existing published applications: Select Yes to overwrite the
existing version of the application and to publish the new version.

Figure 9-2. User credentials and server URL for deploying applications to the Application Center

Figure 9-3. Options to publish the application or change the publication preferences

Figure 9-4. Failed publication of an existing published application

Testing with IBM MobileFirst Platform Foundation 9-13

9-14 IBM MobileFirst Platform Foundation V6.3.0

API reference

To develop your native or hybrid applications, refer to the MobileFirst API in
JavaScript, Java Platform, Micro Edition (Java ME), Java for Android, and
Objective-C for iOS.

Use the MobileFirst API to develop your applications in JavaScript, Java Platform,
Micro Edition (Java ME), Java for Android, and Objective-C for iOS.

MobileFirst client-side API
This collection of topics contains a description of the application programming
interface (API) for use in writing client applications with IBM MobileFirst Platform
Foundation.

You can use MobileFirst client-side API capabilities to improve application
development, and MobileFirst server-side API to improve client/server integration
and communication between mobile applications and back-end systems.

With the MobileFirst client-side API, your mobile application has access to various
MobileFirst features during run time, by using libraries that are bundled into the
application. The libraries integrate your mobile application with MobileFirst Server
by using predefined communication interfaces. The libraries also provide unified
access to native device functionality, which simplifies application development.

MobileFirst client-side API includes native, hybrid, mixed hybrid, and web-based
APIs. These APIs provide support for all mobile development approaches with
enhanced security and integration features. MobileFirst client-side API components
deliver a uniform bridge between web technologies (HTML5, CSS3, JavaScript) and
the native functions that are available on different mobile platforms.

For hybrid and mixed hybrid applications, the Apache Cordova plug-ins that are
included add native capabilities and cross-platform user interface controls.

The MobileFirst client-side API provide access to MobileFirst functions across
multiple device platforms and development approaches. Applications that are built
by using web technologies can access MobileFirst Server through the APIs by using
JavaScript, and application using native components can access the APIs directly
by using Java and Objective-C. Mobile applications developed with the hybrid and
native development approaches, including the applications that run on Android,
iOS, or Java ME, benefit from simplified application security and integration
features of IBM MobileFirst Platform Foundation.

MobileFirst client-side API components also provide the following features, which
improve application development.

Cross-platform compatibility layer

This cross-platform compatibility layer supports development for all supported
platforms. If you develop hybrid mobile applications, you can access common
control elements such as tab bars and clipboards, and native device capabilities
such as the location service or camera. You can extend these functions for Android
and iOS by using a custom shell.

© Copyright IBM Corp. 2006, 2015 10-1

Client to server integration

Client to server integration ensures transparent communication between a mobile
application that is built with MobileFirst technology, and MobileFirst Server.
MobileFirst mobile applications always use an SSL-enabled connection to the
server, including for authentication. With such an integration, you can manage
your applications and implement security features such as remotely disabling the
ability to connect to MobileFirst Server, or updating the web resources of an
application.

Encrypted data store

This encrypted data store is located on the device and can access private data by
using an API. This helps prevent malicious users to access private data, because all
they can obtain is highly encrypted data. The encryption uses ISO/IEC 18033-3
security standards, such as AES256 or PCKS#5, that complies with the United
States National Security Agency regulations for transmitting confidential or secret
information. The key that is used to encrypt the information is unique to the
current user of the application and the device. MobileFirst Server issues a special
key when a new encrypted data store is created.

JSONStore

A JSONStore store is included in IBM MobileFirst Platform Foundation to
synchronize mobile application data with related data on the back-end. JSONStore
provides an offline-capable, key-value database that can be synchronized.
JSONStore implements the application local read, write, update, and delete
operations and use the MobileFirst adapter technology to synchronize the related
back-end data.

Runtime skinning

Runtime skinning is a feature that helps you incorporate an adaptive design that
you can adapt to each mobile device. The MobileFirst runtime skin is a
user-interface variant that you can apply during application run time, which is
based on device properties such as operating system, screen resolution, and form
factor. This type of user-interface abstraction helps you develop applications for
multiple mobile device models at the same time.

Location services API

IBM MobileFirst Platform Foundation provides a number of functions for location
services. Location services enable you to use Geo and WiFi positions to perform
various actions.

JavaScript client-side API
You can use JavaScript API to develop apps for all environments.

For more information about these APIs, expand the entry for this topic in the
Contents panel, and see the Overview topic and the Classes topic listed there.

You can also find the description of the API in the following file: JavaScript
client-side API.

10-2 IBM MobileFirst Platform Foundation V6.3.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_javascript_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_javascript_client_api.zip

The other topics in this section contain additional information that you need to
fully use the JavaScript client-side API.

The options Object
The options object contains properties that are common to all methods. It is used
in all asynchronous calls to the IBM MobileFirst Platform Server

Pass an options object for all asynchronous calls to MobileFirst Server. The options
object contains properties that are common to all methods. Sometimes it is
augmented by properties that are only applicable to specific methods. These
additional properties are detailed as part of the description of the specific methods.

The common properties of the options object are as follows:
options = {

onSuccess: success-handler-function(response),
onFailure: failure-handler-function(response),
invocationContext: invocation-context

};

The meaning of each property is as follows:

Table 10-1. Options object properties

Property Description

onSuccess Optional. The function to be invoked on
successful completion of the asynchronous
call.

The syntax of the onSuccess function is:

success-handler-function(response)

where response is an object that contains at a
minimum the following property:

invocationContext
The invocationContext object that
was originally passed to the
MobileFirst Server in the options
object, or undefined if no
invocationContext object was
passed.

status The HTTP response status
Note: For methods for which the response
object contains additional properties, these
properties are detailed as part of the
description of the specific method.

API reference 10-3

Table 10-1. Options object properties (continued)

Property Description

onFailure Optional. The function to be invoked when
the asynchronous call fails. Such failures
include both server-side errors, and
client-side errors that occurred during
asynchronous calls, such as server
connection failure or timed out calls.
Note: The function is not called for
client-side errors that stop the execution by
throwing an exception.

The syntax of the onFailure function is:

failure-handler-function(response)

where response is an object that contains the
following properties:

invocationContext
The invocationContext object that
was originally passed to the
MobileFirst Server in the options
object, or undefined if no
invocationContext object was
passed.

errorCode
An error code string. All error
codes that can be returned are
defined as constants in the
WL.ErrorCode object in the
worklight.js file.

errorMsg
An error message that is provided
by the MobileFirst Server. This
message is for the developer's use
only, and should not be displayed
to the user. It will not be translated
to the user's language.

status The HTTP response status
Note: For methods for which the response
object contains additional properties, these
properties are detailed as part of the
description of the specific method.

10-4 IBM MobileFirst Platform Foundation V6.3.0

Table 10-1. Options object properties (continued)

Property Description

invocationContext Optional. An object that is returned to the
success and failure handlers.

The invocationContext object is used to
preserve the context of the calling
asynchronous service upon returning from
the service.

For example, the invokeProcedure method
might be called successively, using the same
success handler. The success handler needs
to be able to identify which call to
invokeProcedure is being handled. One
solution is to implement the
invocationContext object as an integer, and
increment its value by one for each call of
invokeProcedure. When it invokes the
success handler, the MobileFirst framework
passes to it the invocationContext object of
the options object associated with the
invokeProcedure method. The value of the
invocationContext object can be used to
identify the call to invokeProcedure with
which the results that are being handled are
associated.

The WL.ClientMessages object
You can see a list of the system messages that are stored in the WL.ClientMessages
object, and enable the translation of these system messages.

The WL.ClientMessages object is an object that stores the system messages that are
defined in the worklight/messages/messages.json file. This file is in the
environment folder of the projects that you generated with IBM MobileFirst
Platform Foundation. To enable the translation of a system message, you must
override the value of this message in the WL.ClientMessages object, as indicated in
the following code example:
WL.ClientMessages.invalidUsernamePassword="The custom user name and password are not valid";

Note: You must override the system messages on a global JavaScript level because
some parts of the code run only after the application successfully initialized.

Objective-C client-side API for iOS apps
You can use Objective-C API to develop apps for the iOS environment.

Use the Objective-C client-side API for iOS apps if you want to access MobileFirst
services from iOS applications.

You can use this API to develop native applications. If you develop hybrid
applications, you can also use the relevant part of this API, either directly by using
the WL.NativePage API or by using Cordova.

Note: To develop native iOS applications, you can also use Apple Swift. This
language is compatible with Objective-C.

API reference 10-5

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.NativePage.html

For more information, see “Development guidelines for using native API” on page
8-180.

You can also find the description of the API in the following file: Objective-C
client-side API for iOS apps.

Objective-C client-side API for hybrid apps
Use this API to develop hybrid apps for iOS environment.

You can use the WL class to handle the initialization of your MobileFirst hybrid
application and extend WLAppDelegate class to use the MobileFirst framework
API.

For more information, see “Developing hybrid applications for iOS” on page 8-46.

You can also find the description of the API in the following file: Objective-C
client-side API for hybrid apps.

Java client-side API for Android apps
You can use Java API to develop apps for the Android environment.

Use the Java client-side API for Android apps that IBM MobileFirst Platform
Foundation provides if you want to access MobileFirst services from Android
mobile applications.

You can use this API to develop native apps. If you develop hybrid apps, you can
also use the relevant part of this API, either directly by using the WL.NativePage
API or by using Cordova.

For more information about this API, expand the entry for this topic in the
Contents panel and see the Overview topic listed there.

You can also find the description of the API in the following file: Java client-side
API for Android apps.

Java client-side API for Java Platform, Micro Edition (Java ME)
apps

You can use Java API to develop Java Platform, Micro Edition (Java ME) apps.

Use the Java client-side API for Java Platform, Micro Edition (Java ME) that IBM
MobileFirst Platform Foundation provides if you want to access MobileFirst
services from Java ME apps.

For more information about this API, expand the entry for this topic in the
Contents panel and see the Overview topic listed there.

You can also find the description of the API in the following file: Java client-side
API for Java Platform, Micro Edition (Java ME) apps.

C# client-side API for Windows Phone 8 apps
You can use C# API to develop apps for the Windows Phone 8 environment.

10-6 IBM MobileFirst Platform Foundation V6.3.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_objc_ios_native_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_objc_ios_native_client_api.zip
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios-hybrid/html/interface_w_l.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios-hybrid/html/interface_w_l_app_delegate.html
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_objc_ios_hybrid_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_objc_ios_hybrid_client_api.zip
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.NativePage.html
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_java_android_native_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_java_android_native_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_java_java_me_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_java_java_me_client_api.zip

Use the C# client-side API for Windows Phone 8 apps that IBM MobileFirst
Platform Foundation provides if you want to access MobileFirst services from
Windows Phone 8 mobile applications.

You can use this API to develop native apps. If you develop hybrid apps, you can
also use the relevant part of this API, either directly by using the WL.NativePage
API or by using Cordova.

You can find the description of this API in the following document: C# client-side
API for Windows Phone 8 apps

C# client-side API for Windows 8 apps
You can use C# API to develop apps for the Windows 8 environment.

Use the C# client-side API for Windows 8 apps that IBM MobileFirst Platform
Foundation provides if you want to access MobileFirst services from Windows 8
applications.

You can use this API to develop native apps.

You can find the description of this API in the following document: C# client-side
API for Windows 8 apps.

MobileFirst server-side API
Use the server-side API that IBM MobileFirst Platform Foundation defines to
modify the behavior of the servers that your mobile applications rely on.

MobileFirst Server provides a set of mobile capabilities with the use of
client/server integration and communication between mobile applications and
back-end systems.

Server-side application code

You can develop server-side application code and optimize performance, security,
and maintenance. By developing server-side application code, your mobile
application has direct access to back-end transactional capabilities and cloud-based
services. This improves error handling, and enhances security by including more
custom steps for request validation or process authorization.

Built-in JSON translation capability

A built-in JSON translation capability reduces the footprint of data transferred
between the mobile application and MobileFirst Server. JSON is a lightweight and
human-readable data interchange format. Because JSON messages have a smaller
footprint than other comparable data-interchange formats, such as XML, they can
be more quickly parsed and generated by mobile devices. In addition, MobileFirst
Server can automatically convert hierarchical data to the JSON format to optimize
delivery and consumption.

Built-in security framework

You can use encryption and obfuscation techniques with a built-in security
framework to protect both user-specific and application business logic. A built-in
security framework provides easy connectivity or integration into your existing

API reference 10-7

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.NativePage.html
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_csharp_wp8_native_client_api.pdf
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_csharp_wp8_native_client_api.pdf
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_csharp_win8_native_client_api.pdf
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_csharp_win8_native_client_api.pdf

enterprise security mechanisms. This security framework handles connection
credentials for back-end connectivity, so the mobile application can use a back-end
service, without having to know how to authenticate with it. The authentication
credentials stay with MobileFirst Server, and do not stay on the mobile device. If
you are running MobileFirst Server with IBM WebSphere Application Server, you
can use enterprise-class security and enable Single-Sign-On (SSO) by using IBM
Lightweight Third Party Authentication (LTPA).

Adapter library

You can use the adapter library to connect to various back-end systems, such as
web services, databases, and messaging applications. For example, IBM MobileFirst
Platform Foundation provides adapters for SOAP or XML over HTTP, JDBC, and
JMS. Extra adapters simplify integration with IBM WebSphere Cast Iron, which in
turn supplies connectors for various cloud-based or on-premise services and
systems. With the adapter library, you can define complex lookup procedures and
combine data from multiple back-end services. This aggregation helps to reduce
overall traffic between a mobile application and MobileFirst Server.

Unified push notification

You can use unified push notification, which simplifies the notification process
because the application remains platform-neutral. Unified push notification is an
abstraction layer for sending notifications to mobile devices by using either the
device vendor's infrastructure or MobileFirst Server SMS capabilities. The user of a
mobile application can subscribe to notifications through the mobile application.
This request, which contains information about the device and platform, is sent to
the MobileFirst Server. The system administrator can manage subscriptions, push
or poll notifications from back-end systems, and use the Application Center to
send notifications to mobile devices.

JavaScript server-side API
The MobileFirst server-side JavaScript API comprises a series of packages.

For more information about these packages and their content, expand the entry for
this topic in the Contents panel, and see the Overview topic and the Classes topic
listed there.

You can also find the description of the API in the following file: JavaScript
server-side API.

Java server-side API
The MobileFirst server-side Java API comprises a series of packages.

For more information about these packages and their content, expand the entry for
this topic in the Contents panel, and see the Overview topic listed there.

You can also find the description of the API in the following file: Java server-side
API.

REST Services API
The REST API provides several services to administer the runtime environments
concerning adapters, applications, devices, audit, transactions, security, and push
notifications.

10-8 IBM MobileFirst Platform Foundation V6.3.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_javascript_server_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_javascript_server_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_java_server_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v630/mfpf_java_server_api.zip

The REST service API for adapters and applications for each runtime environment
is located in /management-apis/1.0/runtimes/runtime-name/, where runtime-name is
the name of the runtime environment that is administered through the REST
service. Then, the type of object addressed by the service is identified together with
the appropriate method. For example, /management-apis/1.0/runtimes/runtime-
name/Adapters (POST) refers to the service for deploying an adapter.

Adapter Binary (GET, HEAD)
Retrieves the binary of a specific adapter.

Description

It supports range requests to deliver only a range of the bytes of the adapter.
Clients can use this feature to resume a download after interruption.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

GET, HEAD

Path

/otu/1.0/one-time-url-hash/runtimes/runtime-name/downloads/adapters/adapter-
name

Example
https://www.myserver.com/worklightadmin/otu/1.0/ffabc301/runtimes/myruntime/downloads/adapters/myadapter?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

one-time-url-hash
The one-time-url hash code.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/octet-stream

API reference 10-9

Response

The binary data of the specified adapter.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

416
The requested range of bytes is not satisfiable.

500
An internal error occurred.

Adapter (DELETE)
Deletes a specific adapter.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/adapters/adapter-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

10-10 IBM MobileFirst Platform Foundation V6.3.0

adapter-name
The name of the adapter.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The meta data of the deleted adapter.

Example as JSON
{

"ok" : false,
"productVersion" : "6.2.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"filename" : "myadapter.adapter",
"name" : "myadapter",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_ADAPTER",
"userName" : "demouser",

},
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<delete-adapter-result

ok="false"
productVersion="6.2.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_ADAPTER"
userName="demouser">

API reference 10-11

<description
filename="myadapter.adapter"
name="myadapter"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-adapter-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the adapter.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always DELETE_ADAPTER.

userName
The user that initiated the transaction.

The description has the following properties:

filename
The optional file name of the adapter.

name
The name of the adapter.

The error has the following properties:

10-12 IBM MobileFirst Platform Foundation V6.3.0

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

500
An internal error occurred.

Adapter (GET)
Retrieves meta information of a specific adapter.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/adapters/adapter-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

API reference 10-13

Produces

application/json, application/xml, text/xml

Response

The meta data of the specified adapter.

Example as JSON
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"description" : "My first sample adapter",
"link" : "https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter",
"name" : "myadapter",
"platformVersion" : "6.1.0.00.20131126-0630",
"procedures" : ["getSomething", ...],
"productVersion" : "6.2.0",
"projects" : [
{

"name" : "myproject",
},
...

],
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<adapter

deployTime="2014-04-13T00:18:36.979Z"
description="My first sample adapter"
link="https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter"
name="myadapter"
platformVersion="6.1.0.00.20131126-0630"
productVersion="6.2.0">
<procedures>
<procedure>getSomething</procedure>
...

</procedures>
<projects>
<project name="myproject"/>
...

</projects>
</adapter>

Response Properties

The response has the following properties:

deployTime
The date in ISO 8601 format when the adapter was deployed.

description
The description of the adapter.

link
The URL to access detail information about the adapter.

name
The name of the adapter.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the adapter.

10-14 IBM MobileFirst Platform Foundation V6.3.0

procedures
The JavaScript procedures of the adapter.

productVersion
The exact product version.

projects
The projects the adapter belong to.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

500
An internal error occurred.

Adapter (POST)
Deploys an adapter.

Description

It first checks whether the input adapter is valid. Then, it transfers the adapter to
the database and to the runtime.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/adapters

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters?async=false&locale=de_DE

API reference 10-15

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml

Response

The meta data of the deployed adapter.

Example as JSON
{

"ok" : false,
"productVersion" : "6.2.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"alreadyDeployed" : false,
"filename" : "myadapter.adapter",
"name" : "myadapter",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_ADAPTER",
"userName" : "demouser",

},
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<deploy-adapter-result

ok="false"

10-16 IBM MobileFirst Platform Foundation V6.3.0

productVersion="6.2.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_ADAPTER"
userName="demouser">
<description

alreadyDeployed="false"
filename="myadapter.adapter"
name="myadapter"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</deploy-adapter-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the adapter.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_ADAPTER.

userName
The user that initiated the transaction.

API reference 10-17

The description has the following properties:

alreadyDeployed
Whether a version of the adapter was already previously deployed.

filename
The optional file name of the adapter.

name
The name of the adapter.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Adapters (GET)
Retrieves meta information for the list of deployed adapters.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/adapters

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters?locale=de_DE&offset=0&orderBy=name&pageSize=100

10-18 IBM MobileFirst Platform Foundation V6.3.0

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: name, deployTime. The default sort mode is:
name.

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

Produces

application/json, application/xml, text/xml

Response

The meta data of the deployed adapters.

Example as JSON
{

"items" : [
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"description" : "My first sample adapter",
"link" : "https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter",
"name" : "myadapter",
"platformVersion" : "6.1.0.00.20131126-0630",
"procedures" : ["getSomething", ...],
"projects" : [
{

"name" : "myproject",
},
...

],
},
...

],
"pageSize" : 100,
"productVersion" : "6.2.0",
"startIndex" : 0,
"totalListSize" : 33,

}

API reference 10-19

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<adapters

pageSize="100"
productVersion="6.2.0"
startIndex="0"
totalListSize="33">
<items>
<item

deployTime="2014-04-13T00:18:36.979Z"
description="My first sample adapter"
link="https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter"
name="myadapter"
platformVersion="6.1.0.00.20131126-0630">
<procedures>
<procedure>getSomething</procedure>
...

</procedures>
<projects>
<project name="myproject"/>
...

</projects>
</item>
...

</items>
</adapters>

Response Properties

The response has the following properties:

items
The array of adapter meta information

pageSize
The page size if only a page of adapters is returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only a page of adapters is returned.

totalListSize
The total number of adapters.

The adapter has the following properties:

deployTime
The date in ISO 8601 format when the adapter was deployed.

description
The description of the adapter.

link
The URL to access detail information about the adapter.

name
The name of the adapter.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the adapter.

10-20 IBM MobileFirst Platform Foundation V6.3.0

procedures
The JavaScript procedures of the adapter.

projects
The projects the adapter belong to.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Adobe Air Application Binary (GET)
Retrieves the Adobe Air binary of a specific app version.

Description

It supports range requests to deliver only a range of the bytes of the app version.
Clients can use this feature to resume a download after interruption.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/otu/1.0/one-time-url-hash/runtimes/runtime-name/downloads/air/application-
name/application-version

Example
https://www.myserver.com/worklightadmin/otu/1.0/ffabc301/runtimes/myruntime/downloads/air/myapplication/1.0?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

API reference 10-21

application-name
The name of the application.

application-version
The application version number.

one-time-url-hash
The one-time-url hash code.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/octet-stream

Response

The binary data of the specified app version.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the app version is not found.

416
The requested range of bytes is not satisfiable.

500
An internal error occurred.

APNS Credentials (DELETE)
Deletes APNS credentials of the application with the application ID, environment,
and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

10-22 IBM MobileFirst Platform Foundation V6.3.0

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/apnsConf/application-env/application-version/

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/apnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The delete status of APNS credentials.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "DELETE_PUSH_CREDENTIALS",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<deleteAPNSCredentialsStatus

status="Success"

API reference 10-23

type="DELETE_PUSH_CREDENTIALS">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</deleteAPNSCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The APNS credentials are deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

APNS Credentials (GET)
Retrieves APNS credentials of the application with the application ID,
environment, and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

10-24 IBM MobileFirst Platform Foundation V6.3.0

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/apnsConf/application-env/application-version/

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/apnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The APNS credentials of the application such as certificate information, password,
and product version.

Example as JSON
{

"certificateExpirationDate" : 2015-05-05T06:29:10.000Z,
"certificateFileName" : "apns-certificate-sandbox.p12",
"password" : "password",
"productVersion" : "6.3.0",
"sandbox" : true,

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<apnsCredentials

certificateExpirationDate="2015-05-05T06:29:10.000Z"
certificateFileName="apns-certificate-sandbox.p12"
password="password"
productVersion="6.3.0"
sandbox="true"/>

Response Properties

The response has the following properties:

API reference 10-25

certificateExpirationDate
The expiry date of Certificate.

certificateFileName
The name of the certificate.

password
The password of the certificate.

productVersion
The exact product version.

sandbox
The sandbox is true if certificate is of sandbox type.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

APNS Credentials (PUT)
Sets APNS credentials of the application with the application ID, environment,
version, password, certificate file name, and certificate.

Description

The payload is the form data in which password, certificate file name, and
certificate are submitted.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/apnsConf/application-env/application-version/

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/apnsConf/android/1.0/?locale=de_DE

10-26 IBM MobileFirst Platform Foundation V6.3.0

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml

Form-data Parameters

certificateFileName
(string) The certificate file name.

password
(string) The certificate password.

certificate
(File) The certificate file.

Response

The status of set APNS credentials.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_APNS_CREDENTIALS",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<setAPNSCredentialsStatus

status="Success"

API reference 10-27

type="SET_APNS_CREDENTIALS">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</setAPNSCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The APNS credentials are saved successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

App Version Access Rule (PUT)
Sets the access rule of a specific app version.

Description

The access rule specifies the behavior when a user accesses the application on the
device.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

10-28 IBM MobileFirst Platform Foundation V6.3.0

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/accessRule

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication/ios/1.0/accessRule?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

API reference 10-29

Example as JSON
{

"action" : "NOTIFY",
"downloadLink" : "ibmappctr://myapp",
"message" : "Please update!",
"multiLanguageMessage" : [
{

"locale" : "de",
"message" : "Bitte updaten!",

},
...

],
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<accessrule

action="NOTIFY"
downloadLink="ibmappctr://myapp"
message="Please update!">
<multiLanguageMessage>
<localizedMessage

locale="de"
message="Bitte updaten!"/>

...
</multiLanguageMessage>

</accessrule>

Payload Properties

The payload has the following properties:

action
The action to be performed. It can have the following values: NOTIFY (notify the
user of some message), BLOCK (block the execution the application), DELETE
(remove the access rule).

downloadLink
An optional link displayed with the message where to download a new
version of the application.

message
The message to be displayed when the action is NOTIFY or BLOCK.

multiLanguageMessage
Messages in additional languages

The multilanguage message has the following properties:

locale
The locale of the message.

message
The translated message.

Response

The meta data of the app version and its access rule.

10-30 IBM MobileFirst Platform Foundation V6.3.0

Example as JSON
{

"ok" : false,
"productVersion" : "6.2.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"action" : "NOTIFY",
"appVersion" : {
"applicationName" : "myapplication",
"environment" : "ios",
"version" : "1.0",

},
"createdAtDate" : "2014-02-13T00:18:36.979Z",
"message" : "This version is no longer supported.",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "SET_APPLICATION_ENV_VERSION_ACCESS_RULE",
"userName" : "demouser",

},
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<set-appversion-accessrule-result

ok="false"
productVersion="6.2.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="SET_APPLICATION_ENV_VERSION_ACCESS_RULE"
userName="demouser">
<description

action="NOTIFY"
createdAtDate="2014-02-13T00:18:36.979Z"
message="This version is no longer supported.">
<appVersion
applicationName="myapplication"
environment="ios"
version="1.0"/>

</description>
<errors>

<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-appversion-accessrule-result>

API reference 10-31

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always
SET_APPLICATION_ENV_VERSION_ACCESS_RULE.

userName
The user that initiated the transaction.

The description has the following properties:

action
The action to be done when a disabled app version is accessed. Possible values
are: NOTIFY, BLOCK, NA, DELETE.

appVersion
The corresponding app version

createdAtDate
The date in ISO 8601 format when the app version access rule was created.

downloadLink
The download link where to obtain a new version of the application.

message
The message to be displayed when a disabled app version is accessed.

The app version has the following properties:

10-32 IBM MobileFirst Platform Foundation V6.3.0

applicationName
The name of the application.

environment
The environment of the application.

version
The version of the application.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the app version is not found.

500
An internal error occurred.

App Version Authenticity Check (PUT)
Sets the authenticity check rule of a specific app version.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

PUT

API reference 10-33

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/applicationAuthenticity

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication/iphone/1.0/applicationAuthenticity?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

Example as JSON
{

"action" : "DISABLED",
}

Payload Properties

The payload has the following properties:

action
The action to check the authenticity. It can have the following values: DISABLED
(authenticity is not checked - all clients pass authenticity check), ENABLED
(authenticity is always checked - clients need to respond as expected), IGNORED
(authenticity is checked but ignored - all clients pass but warnings are issued
to server log).

10-34 IBM MobileFirst Platform Foundation V6.3.0

Response

The meta data of the app version and its authenticity check rule.

Example as JSON
{

"ok" : false,
"productVersion" : "6.2.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"appVersion" : {
"applicationName" : "myapplication",
"environment" : "iphone",
"version" : "1.0",

},
"newAuthValue" : "DISABLED",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "SET_APPLICATION_ENV_AUTHENTICITY_CHECK_RULE",
"userName" : "demouser",

},
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<set-appversion-authenticitycheckrule-result

ok="false"
productVersion="6.2.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="SET_APPLICATION_ENV_AUTHENTICITY_CHECK_RULE"
userName="demouser">
<description newAuthValue="DISABLED">

<appVersion
applicationName="myapplication"
environment="iphone"
version="1.0"/>

</description>
<errors>

<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-appversion-authenticitycheckrule-result>

API reference 10-35

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always
SET_APPLICATION_ENV_AUTHENTICITY_CHECK_RULE.

userName
The user that initiated the transaction.

The description has the following properties:

appVersion
The corresponding app version

newAuthValue
The new authenication rule (DISABLED, ENABLED, IGNORED).

The app version has the following properties:

applicationName
The name of the application.

environment
The environment of the application.

version
The version of the application.

10-36 IBM MobileFirst Platform Foundation V6.3.0

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the app version is not found.

500
An internal error occurred.

App Version (DELETE)
Deletes a specific app version.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name/
application-env/application-version

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication/android/1.0?async=false&locale=de_DE

API reference 10-37

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The meta data of the deleted app version.

Example as JSON
{

"ok" : false,
"productVersion" : "6.2.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"applicationName" : "myapplication",
"environment" : "iphone",
"version" : "1.0",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_APPLICATION_ENV_VERSION",
"userName" : "demouser",

},
}

10-38 IBM MobileFirst Platform Foundation V6.3.0

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<delete-appversion-result

ok="false"
productVersion="6.2.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_APPLICATION_ENV_VERSION"
userName="demouser">
<description

applicationName="myapplication"
environment="iphone"
version="1.0"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-appversion-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

API reference 10-39

type
The type of the transaction, here always DELETE_APPLICATION_ENV_VERSION.

userName
The user that initiated the transaction.

The description has the following properties:

applicationName
The name of the application.

environment
The environment of the application.

version
The version of the application.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the app version is not found.

500
An internal error occurred.

App Version Lock (PUT)
Locks a specific app version.

Description

A locked app version cannot be updated anymore.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

PUT

10-40 IBM MobileFirst Platform Foundation V6.3.0

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/lock

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication/android/1.0/lock?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

Example as JSON
{

"lock" : true,
"warning" : "true",

}

Payload Properties

The payload has the following properties:

lock
Whether the app version is locked.

warning
When a warning happens, provides the details.

Response

API reference 10-41

Example as JSON
{

"ok" : true,
"warning" : "true",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<set-appversion-lock-result

ok="true"
warning="true"/>

Response Properties

The response has the following properties:

ok Whether the operation was successful.

warning
When a warning happens, provides the details.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the app version is not found.

500
An internal error occurred.

Application Binary (GET, HEAD)
Retrieves the binary of a specific app version.

Description

It supports range requests to deliver only a range of the bytes of the app version.
Clients can use this feature to resume a download after interruption.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

GET, HEAD

10-42 IBM MobileFirst Platform Foundation V6.3.0

Path

/otu/1.0/one-time-url-hash/runtimes/runtime-name/downloads/applications/
application-name/application-env/application-version

Example
https://www.myserver.com/worklightadmin/otu/1.0/ffabc301/runtimes/myruntime/downloads/applications/myapplication/android/1.0?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

one-time-url-hash
The one-time-url hash code.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/octet-stream

Response

The binary data of the specified app version.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the app version is not found.

416
The requested range of bytes is not satisfiable.

500
An internal error occurred.

API reference 10-43

Application (DELETE)
Deletes a specific application and all its app versions.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The meta data of the deleted application.

10-44 IBM MobileFirst Platform Foundation V6.3.0

Example as JSON
{

"ok" : false,
"productVersion" : "6.2.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"applicationName" : "myapplication",
},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_APPLICATION",
"userName" : "demouser",

},
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<delete-application-result

ok="false"
productVersion="6.2.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_APPLICATION"
userName="demouser">
<description applicationName="myapplication"/>
<errors>

<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-application-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

API reference 10-45

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always DELETE_APPLICATION.

userName
The user that initiated the transaction.

The description has the following properties:

applicationName
The name of the application.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the application is not found.

500
An internal error occurred.

Application (GET)
Retrieves meta information of a specific application.

10-46 IBM MobileFirst Platform Foundation V6.3.0

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The meta data of the specified application.

Example as JSON
{

"description" : "My first sample application",
"displayName" : "My Sample Application",
"environments" : [
{

"applicationEnvironmentDataAccess" : {
"action" : "NOTIFY",
"createdTime" : "2014-04-13T00:18:36.979Z",
"message" : "This version is no longer supported.",

},
"authenticityCheckRule" : "DISABLED",
"buildTime" : "2014-03-29T00:18:36.979Z",
"deployTime" : "2014-04-13T00:18:36.979Z",
"deviceProvisioningRealm" : "myProvRealm",

API reference 10-47

"envPlatformVersion" : "6.2.0",
"environment" : "iphone",
"link" : "https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication/android/1.0",
"prevBuildTime" : "2014-03-29T00:18:36.979Z",
"securityTest" : "mobileTest",
"supportRemoteDisable" : true,
"supportsAuthenticity" : true,
"userAuthenticationRealm" : "myAuthRealm",
"version" : "1.0",
"versionLocked" : false,

},
...

],
"link" : "https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication",
"name" : "myapplication",
"platformVersion" : "6.1.0.00.20131126-0630",
"productVersion" : "6.2.0",
"projects" : [
{

"name" : "myproject",
},
...

],
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<application

description="My first sample application"
displayName="My Sample Application"
link="https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication"
name="myapplication"
platformVersion="6.1.0.00.20131126-0630"
productVersion="6.2.0">
<environments>
<environment

authenticityCheckRule="DISABLED"
buildTime="2014-03-29T00:18:36.979Z"
deployTime="2014-04-13T00:18:36.979Z"
deviceProvisioningRealm="myProvRealm"
envPlatformVersion="6.2.0"
environment="iphone"
link="https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication/android/1.0"
prevBuildTime="2014-03-29T00:18:36.979Z"
securityTest="mobileTest"
supportRemoteDisable="true"
supportsAuthenticity="true"
userAuthenticationRealm="myAuthRealm"
version="1.0"
versionLocked="false">
<applicationEnvironmentDataAccess
action="NOTIFY"
createdTime="2014-04-13T00:18:36.979Z"
message="This version is no longer supported."/>

</environment>
...

</environments>
<projects>
<project name="myproject"/>
...

</projects>
</application>

Response Properties

The response has the following properties:

10-48 IBM MobileFirst Platform Foundation V6.3.0

description
The description of the application.

displayName
The display name of the application.

environments
The array of application environments.

link
The URL to access detail information about the application.

name
The name of the application.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the application.

productVersion
The exact product version.

projects
The projects the application belong to.

The environment has the following properties:

applicationEnvironmentDataAccess
The access rule to be executed when the app version is disabled.

authenticityCheckRule
Whether the authenticity is checked. Possible values are: ENABLED, IGNORED,
DISABLED.

buildTime
The time stamp when the app version was built.

deployTime
The date in ISO 8601 format when the adapter was deployed.

deviceProvisioningRealm
The name of the realm used for device provisioning.

envPlatformVersion
The version of the platform of the environment.

environment
The platform environment of the app version: iphone, android, ...

link
The URL to access detail information about the application version.

prevBuildTime
The time stamp when the app that was previosuly deployed was built.

publishUrl
For web applications, this is the URL under which the web application was
published.

securityTest
The name of the security test for a protected resource.

supportRemoteDisable
true if the application version supports remote disabling.

API reference 10-49

supportsAuthenticity
true if the application version supports authenticatuib.

userAuthenticationRealm
The name of the realm used to authenticate users.

version
The version number of the app version.

versionLocked
Whether the version is locked.

The applicationEnvironmentDataAccess has the following properties:

action
The action to be done when a disabled app version is accessed. Possible values
are: NOTIFY, BLOCK, NA.

createdTime
The date in ISO 8601 format when the app version access rule was created.

downloadLink
The download link where to obtain a new version of the application.

message
The message to be displayed when a disabled app version is accessed.

multiLanguageMessage
Internationalized variants of the message to be displayed when a disabled app
version is accessed.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running, or the application is not found.

500
An internal error occurred.

Application (POST)
Deploys an application.

Description

It first checks whether the input application is valid. Then, it transfers the
application to the database and to the runtime.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

10-50 IBM MobileFirst Platform Foundation V6.3.0

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/applications

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml, text/html

Response

The meta data of the deployed application.

Example as JSON
{

"ok" : false,
"productVersion" : "6.2.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"appVersionsAlreadyDeployed" : [
{

"applicationName" : "myapplication",
"environment" : "ios",
"version" : "1.0",

API reference 10-51

},
...

],
"appVersionsDeployed" : [
{

"applicationName" : "myapplication",
"environment" : "ios",
"version" : "1.0",

},
...

],
"filename" : "myapplication.wlapp",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_APPLICATION",
"userName" : "demouser",

},
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<deploy-application-result

ok="false"
productVersion="6.2.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_APPLICATION"
userName="demouser">
<description filename="myapplication.wlapp">

<appVersionsAlreadyDeployedArray>
<appVersionsAlreadyDeployed

applicationName="myapplication"
environment="ios"
version="1.0"/>

...
</appVersionsAlreadyDeployedArray>
<appVersionsDeployedArray>
<appVersionsDeployed

applicationName="myapplication"
environment="ios"
version="1.0"/>

...
</appVersionsDeployedArray>

</description>
<errors>

<error details="An internal error occured."/>
...

10-52 IBM MobileFirst Platform Foundation V6.3.0

</errors>
<project name="myproject"/>

</transaction>
</deploy-application-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_APPLICATION.

userName
The user that initiated the transaction.

The description has the following properties:

appVersionsAlreadyDeployed
The app versions that were already previously deployed and remain
unchanged.

appVersionsDeployed
The app versions deployed.

filename
The optional file name of the application.

The app version has the following properties:

API reference 10-53

applicationName
The name of the application.

environment
The environment of the application.

version
The version of the application.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Applications (GET)
Retrieves meta information for the list of deployed applications.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/applications

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications?locale=de_DE&offset=0&orderBy=name&pageSize=100

10-54 IBM MobileFirst Platform Foundation V6.3.0

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: name, deployTime. The default sort mode is:
name.

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

Produces

application/json, application/xml, text/xml

Response

The meta data of the deployed applications.

Example as JSON
{

"items" : [
{

"description" : "My first sample application",
"displayName" : "My Sample Application",
"environments" : [
{

"applicationEnvironmentDataAccess" : {
"action" : "NOTIFY",
"createdTime" : "2014-04-13T00:18:36.979Z",
"message" : "This version is no longer supported.",

},
"authenticityCheckRule" : "DISABLED",
"buildTime" : "2014-03-29T00:18:36.979Z",
"deployTime" : "2014-04-13T00:18:36.979Z",
"deviceProvisioningRealm" : "myProvRealm",
"envPlatformVersion" : "6.2.0",
"environment" : "iphone",
"link" : "https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication/android/1.0",
"prevBuildTime" : "2014-03-29T00:18:36.979Z",
"securityTest" : "mobileTest",
"supportRemoteDisable" : true,
"supportsAuthenticity" : true,
"userAuthenticationRealm" : "myAuthRealm",
"version" : "1.0",
"versionLocked" : false,

},

API reference 10-55

...
],
"link" : "https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication",
"name" : "myapplication",
"platformVersion" : "6.1.0.00.20131126-0630",
"projects" : [
{

"name" : "myproject",
},
...

],
},
...

],
"pageSize" : 100,
"productVersion" : "6.2.0",
"startIndex" : 0,
"totalListSize" : 33,

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<applications

pageSize="100"
productVersion="6.2.0"
startIndex="0"
totalListSize="33">
<items>
<item

description="My first sample application"
displayName="My Sample Application"
link="https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication"
name="myapplication"
platformVersion="6.1.0.00.20131126-0630">
<environments>
<environment

authenticityCheckRule="DISABLED"
buildTime="2014-03-29T00:18:36.979Z"
deployTime="2014-04-13T00:18:36.979Z"
deviceProvisioningRealm="myProvRealm"
envPlatformVersion="6.2.0"
environment="iphone"
link="https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication/android/1.0"
prevBuildTime="2014-03-29T00:18:36.979Z"
securityTest="mobileTest"
supportRemoteDisable="true"
supportsAuthenticity="true"
userAuthenticationRealm="myAuthRealm"
version="1.0"
versionLocked="false">
<applicationEnvironmentDataAccess
action="NOTIFY"
createdTime="2014-04-13T00:18:36.979Z"
message="This version is no longer supported."/>

</environment>
...

</environments>
<projects>
<project name="myproject"/>
...

</projects>
</item>
...

</items>
</applications>

10-56 IBM MobileFirst Platform Foundation V6.3.0

Response Properties

The response has the following properties:

items
The array of application meta information

pageSize
The page size if only a page of applications is returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only a page of applications is returned.

totalListSize
The total number of applications.

The application has the following properties:

description
The description of the application.

displayName
The display name of the application.

environments
The array of application environments.

link
The URL to access detail information about the application.

name
The name of the application.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the application.

projects
The projects the application belong to.

The environment has the following properties:

applicationEnvironmentDataAccess
The access rule to be executed when the app version is disabled.

authenticityCheckRule
Whether the authenticity is checked. Possible values are: ENABLED, IGNORED,
DISABLED.

buildTime
The time stamp when the app version was built.

deployTime
The date in ISO 8601 format when the adapter was deployed.

deviceProvisioningRealm
The name of the realm used for device provisioning.

envPlatformVersion
The version of the platform of the environment.

API reference 10-57

environment
The platform environment of the app version: iphone, android, ...

link
The URL to access detail information about the application version.

prevBuildTime
The time stamp when the app that was previosuly deployed was built.

publishUrl
For web applications, this is the URL under which the web application was
published.

securityTest
The name of the security test for a protected resource.

supportRemoteDisable
true if the application version supports remote disabling.

supportsAuthenticity
true if the application version supports authenticatuib.

userAuthenticationRealm
The name of the realm used to authenticate users.

version
The version number of the app version.

versionLocked
Whether the version is locked.

The applicationEnvironmentDataAccess has the following properties:

action
The action to be done when a disabled app version is accessed. Possible values
are: NOTIFY, BLOCK, NA.

createdTime
The date in ISO 8601 format when the app version access rule was created.

downloadLink
The download link where to obtain a new version of the application.

message
The message to be displayed when a disabled app version is accessed.

multiLanguageMessage
Internationalized variants of the message to be displayed when a disabled app
version is accessed.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

10-58 IBM MobileFirst Platform Foundation V6.3.0

500
An internal error occurred.

Associate beacons and triggers (DELETE)
Deletes the association of beacons and triggers with the UUID, major number,
minor number and triggerName.

Description

Deleting a beacon or beacon-trigger would delete the corresponding
beacon-to-trigger associations as well.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggerAssociations/
applications/application-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/beaconTriggerAssociations/applications/myapplication?locale=de_DE&major=1&minor=4439&triggerName=DwellInsideLoanSection&uuid=3d402cf0-3691-4bd9-97ff-0b0a93a160ef

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

major
Mandatory. The major number of the beacon whose trigger-association must be
deleted.

minor
Mandatory. The minor number of the beacon whose trigger-association must be
deleted.

API reference 10-59

triggerName
Mandatory. The name of the beacon trigger whose beacon-association must be
deleted.

uuid
Mandatory. The UUID of the beacon whose trigger-association must be deleted.

Produces

application/json, application/xml, text/xml

Response

The status of the delete of the beacon trigger association.

Example as JSON
{

"beaconTriggerAssociations" : {
"major" : 1,
"minor" : 4439,
"triggerName" : "DwellInsideLoanSection",
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
"productVersion" : "6.3.0",
"transaction" : {
"appServerId" : "Tomcat",
"errors" : [

{
},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "DELETE_BEACON_AND_TRIGGER_ASSOCIATION",
"userName" : "demouser",
"warnings" : [

{
},
...

],
},

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<delete-beacon-trigger-association-result productVersion="6.3.0">

<beaconTriggerAssociations
major="1"
minor="4439"
triggerName="DwellInsideLoanSection"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef"/>

<transaction
appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="DELETE_BEACON_AND_TRIGGER_ASSOCIATION"

10-60 IBM MobileFirst Platform Foundation V6.3.0

userName="demouser">
<errors>

<error/>
...

</errors>
<project name="myproject"/>
<warnings>

<warning/>
...

</warnings>
</transaction>

</delete-beacon-trigger-association-result>

Response Properties

The response has the following properties:

beaconTriggerAssociations
The details of the beacon trigger association that is deleted.

productVersion
The exact product version.

transaction
The details of the transaction.

The beaconTriggerAssociations has the following properties:

major
The major number of the beacon whose trigger-associations must be deleted.

minor
The minor number of the beacon whose trigger-associations must be deleted.

triggerName
An unique name for this beacon trigger.

uuid
The UUID of beacon whose trigger-associations must be deleted

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: DELETE_BEACON_AND_TRIGGER_ASSOCIATION.

API reference 10-61

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
Not Found - Either: a) beacon with specified by UUID, major and minor is not found, OR b) trigger with specified triggerName is not found.

500
An internal error occurred.

Associate beacons and triggers (GET)
Retrieves the association of beacons and triggers with the UUID, major number,
minor number, and triggerName.

Description

The beacons and triggers associations are retrieved based on the following query
parameters:
v None are specified: Returns all beacon and trigger associations of this

application.
v Only triggerName is specified: Returns the associations of the specified trigger

with any of the beacons.
v Only UUID is specified with/without triggerName (major and minor number

are not specified): Returns the associations of the specified/any trigger with any
of the beacons that have matching UUID.

v Only UUID and major number are specified with/without triggerName (minor
is not specified): Returns the associations of the specified/any trigger with any
of the beacons that have matching UUID and major number.

v Only UUID and minor number are specified with/without triggerName (major
is not specified): Returns the associations of the specified/any trigger with any
of the beacons that have matching UUID and minor number.

v UUID, major, and minor number are specified with/without triggerName:
Returns the associations of the specified/any trigger with the specified beacon.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

10-62 IBM MobileFirst Platform Foundation V6.3.0

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggerAssociations/
applications/application-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/beaconTriggerAssociations/applications/myapplication?errorIfNotFound=true&locale=de_DE&major=1&minor=4439&triggerName=DwellInsideLoanSection&uuid=3d402cf0-3691-4bd9-97ff-0b0a93a160ef

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

errorIfNotFound
If this flag is set to true (default value) with any of the uuid/major/minor/
triggerName parameters specified, and there are no matching beacon trigger
associations, then 'HTTP 404 Not Found' error is returned instead of an empty
list in the output.

locale
The locale used for error messages.

major
The major number of the beacon whose trigger-associations must be fetched.

minor
The minor number of the beacon whose trigger-associations must be fetched.

triggerName
The name of beacon trigger whose beacon-associations must be fetched.

uuid
The UUID of the beacon whose trigger-associations must be fetched.

Produces

application/json, application/xml, text/xml

Response

The details of all the beacon trigger associations that are retrieved.

Example as JSON
{

"beaconTriggerAssociations" : [
{

"major" : 1,
"minor" : 4439,

API reference 10-63

"triggerName" : "DwellInsideLoanSection",
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
...

],
"productVersion" : "6.3.0",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<list-beacon-trigger-associations-result productVersion="6.3.0">

<beaconTriggerAssociations>
<beaconTriggerAssociation

major="1"
minor="4439"
triggerName="DwellInsideLoanSection"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef"/>

...
</beaconTriggerAssociations>

</list-beacon-trigger-associations-result>

Response Properties

The response has the following properties:

beaconTriggerAssociations
The array of beacon trigger associations.

productVersion
The exact product version.

The beaconTriggerAssociations has the following properties:

major
The major number of the beacon.

minor
The minor number of the beacon.

triggerName
The unique name of the beacon trigger.

uuid
The UUID of the beacon.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The errorIfNotFound flag is set to true (or not specified) and one of the following conditions happened: a) a beacon with the specified UUID, major, and minor number is not found, or b) the trigger with specified triggerName is not found, or c) no association found between the specified beacon and trigger. If the errorIfNotFound flag is set to false and there are no matching beacon-trigger associations, then an empty list is returned instead of 404 error.

406
Unsupported Accept type - The content type specified in Accept header is not application/json, application/xml or text/xml.

500
An internal error occurred.

10-64 IBM MobileFirst Platform Foundation V6.3.0

Associate beacons and triggers (PUT)
Associates the specified beacons with the specified triggers.

Description

Use this API to specify a trigger and the list of beacons to associate with it. Or to
specify a beacon and the list of triggers to associate with it.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggerAssociations/
applications/application-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/beaconTriggerAssociations/applications/myapplication?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

The payload has values for the beacons and the trigger names. It can be in JSON
or XML format.

API reference 10-65

Example as JSON
{

"beacons" : [
{

"major" : 1,
"minor" : 4439,
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
...

],
"triggers" : [
{

"triggerName" : "DwellInsideLoanSection",
},
...

],
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<beaconTriggerAssociations>

<beacons>
<beacon

major="1"
minor="4439"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef"/>

...
</beacons>
<triggers>
<trigger triggerName="DwellInsideLoanSection"/>
...

</triggers>
</beaconTriggerAssociations>

Payload Properties

The payload has the following properties:

beacons
List of beacons to which each of the listed triggers must be associated with.
Each beacon is identified by its UUID, major and minor number.

triggers
List of triggers to which each of the listed beacons must be associated with.
Each beacon-trigger is identified by its triggerName.

The beaconTriggers has the following properties:

triggerName
The name of beacon-trigger.

The beacons has the following properties:

major
The major number of the beacon.

minor
The minor number of the beacon.

uuid
The UUID of the beacon.

10-66 IBM MobileFirst Platform Foundation V6.3.0

Response

The status of the association of beacons and triggers.

Example as JSON
{

"beaconTriggerAssociations" : [
{

"major" : 1,
"minor" : 4439,
"triggerName" : "DwellInsideLoanSection",
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
...

],
"productVersion" : "6.3.0",
"transaction" : {
"appServerId" : "Tomcat",
"errors" : [

{
},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "ASSOCIATE_BEACONS_AND_TRIGGERS",
"userName" : "demouser",
"warnings" : [

{
},
...

],
},

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<add-beacon-trigger-associations-result productVersion="6.3.0">

<beaconTriggerAssociations>
<beaconTriggerAssociation

major="1"
minor="4439"
triggerName="DwellInsideLoanSection"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef"/>

...
</beaconTriggerAssociations>
<transaction
appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="ASSOCIATE_BEACONS_AND_TRIGGERS"
userName="demouser">
<errors>

<error/>
...

</errors>
<project name="myproject"/>
<warnings>

API reference 10-67

<warning/>
...

</warnings>
</transaction>

</add-beacon-trigger-associations-result>

Response Properties

The response has the following properties:

beaconTriggerAssociations
The list of the beacon trigger associations that are created.

productVersion
The exact product version.

transaction
The details of the transaction.

The beaconTriggerAssociations has the following properties:

major
The major number of the beacon that is associated with a specified
beacon-trigger.

minor
The minor number of the beacon that is associated with a specified
beacon-trigger.

triggerName
An unique name for this beacon trigger.

uuid
The UUID of the beacon that is associated with a specified beacon-trigger.

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: ASSOCIATE_BEACONS_AND_TRIGGERS.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

10-68 IBM MobileFirst Platform Foundation V6.3.0

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
Bad Request - The request could not be understood by the server due to malformed syntax.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
Not Found - One/more of the specified beacons or beacon-triggers not found.

406
Unsupported Accept type - The content type specified in Accept header is not application/json, application/xml or text/xml.

415
Unsupported Media Type - The server is refusing to service the request because the request payload is not in application/json or application/xml or text/xml types.

500
An internal error occurred.

Beacon Trigger (DELETE)
Deletes the beacon trigger by using the triggerName.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggers/trigger-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/beaconTriggers/mytrigger?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

trigger-name
The name of the beacon trigger.

API reference 10-69

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The status of the delete of the beacon trigger.

Example as JSON
{

"beaconTrigger" : {
"actionPayload" : {

"alert" : "Avail lowest interest rate of just 7.5% on home loans!",
},
"dwellingTime" : 5000,
"proximityState" : "Far",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

},
"productVersion" : "6.3.0",
"transaction" : {
"appServerId" : "Tomcat",
"errors" : [

{
},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "DELETE_BEACON_TRIGGER",
"userName" : "demouser",
"warnings" : [

{
},
...

],
},

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<delete-beacon-trigger-result productVersion="6.3.0">

<beaconTrigger
dwellingTime="5000"
proximityState="Far"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.5% on home loans!"/>

</beaconTrigger>
<transaction
appServerId="Tomcat"

10-70 IBM MobileFirst Platform Foundation V6.3.0

id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="DELETE_BEACON_TRIGGER"
userName="demouser">
<errors>

<error/>
...

</errors>
<project name="myproject"/>
<warnings>

<warning/>
...

</warnings>
</transaction>

</delete-beacon-trigger-result>

Response Properties

The response has the following properties:

beaconTrigger
The details of the beacon trigger that is deleted.

productVersion
The exact product version.

transaction
The details of the transaction.

The beaconTrigger has the following properties:

actionPayload
The details of an action to be taken when the trigger is activated.

dwellingTime
Optional: Applicable only for triggerTypes: DwellInside and DwellOutside. It
should be specified in milliseconds and defines how long the device must be
inside, or outside a beacon region before the dwellInside or dwellOutside
trigger is activated. Mandatory with triggerType of DwellInside and
DwellOutside.

proximityState
Optional: The proximity state that is specified for a beacon trigger. It can be
either Immediate, Near, or Far. The default value is Far.

triggerName
An unique name for this beacon trigger.

triggerType
The type of beacon trigger. The value of the type can be either Enter, Exit,
DwellInside, or DwellOutside.

The actionPayload has the following properties:

alert
The alert message to be sent when a trigger is activated.

The transaction has the following properties:

appServerId
The id of the web application server.

API reference 10-71

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: DELETE_BEACON_TRIGGER.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
Not Found - A beacon trigger with the specified triggerName is not found.

500
An internal error occurred.

Beacon Trigger (GET)
Retrieves the beacon trigger with the triggerName.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

10-72 IBM MobileFirst Platform Foundation V6.3.0

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggers/trigger-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/beaconTriggers/mytrigger?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

trigger-name
The name of the beacon trigger.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The details of the beacon trigger that is retrieved.

Example as JSON
{

"beaconTrigger" : {
"actionPayload" : {

"alert" : "Avail lowest interest rate of just 7.5% on home loans.",
},
"dwellingTime" : 5000,
"proximityState" : "Near",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

},
"productVersion" : "6.3.0",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<show-beacon-trigger-result productVersion="6.3.0">

<beaconTrigger
dwellingTime="5000"
proximityState="Near"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.5% on home loans."/>

</beaconTrigger>
</show-beacon-trigger-result>

Response Properties

The response has the following properties:

API reference 10-73

beaconTrigger
The beacon trigger that was found.

productVersion
The exact product version.

The beaconTrigger has the following properties:

actionPayload
The details of the action that is taken when the trigger is activated.

dwellingTime
Available only for triggerTypes: DwellInside and DwellOutside. It is the time
in milliseconds that specifies how long the device must be inside, or outside
the associated beacon region before the DwellInside or DwellOutside trigger is
activated.

proximityState
The proximity state that was specified for the beacon trigger. It is either
Immediate, Near, or Far.

triggerName
The unique name of the beacon trigger.

triggerType
The type of beacon trigger. It is either Enter, Exit, DwellInside, or
DwellOutside.

The actionPayload has the following properties:

alert
The alert message that is shown on the mobile device of user when this trigger
is activated.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
Not Found - No beacon-trigger found with matching triggerName.

406
Unsupported Accept type - The content type specified in Accept header is not application/json, application/xml or text/xml.

500
An internal error occurred.

Beacon Triggers (GET)
Retrieves all the beacon triggers.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

10-74 IBM MobileFirst Platform Foundation V6.3.0

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggers

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/beaconTriggers?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The details of all the beacon triggers that are retrieved.

Example as JSON
{

"beaconTriggers" : [
{

"actionPayload" : {
"alert" : "Avail lowest interest rate of just 7.5% on home loans.",

},
"dwellingTime" : 5000,
"proximityState" : "Near",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

},
...

],
"productVersion" : "6.3.0",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<list-beacon-triggers-result productVersion="6.3.0">

<beaconTriggers>
<beaconTrigger

dwellingTime="5000"
proximityState="Near"
triggerName="DwellInsideLoanSection"
triggerType="Enter">

API reference 10-75

<actionPayload alert="Avail lowest interest rate of just 7.5% on home loans."/>
</beaconTrigger>
...

</beaconTriggers>
</list-beacon-triggers-result>

Response Properties

The response has the following properties:

beaconTriggers
The array of the beacon triggers.

productVersion
The exact product version.

The beaconTriggers has the following properties:

actionPayload
The details of the action that is taken when the trigger is activated.

dwellingTime
Available only for triggerTypes: DwellInside and DwellOutside. It is the time
in milliseconds that specifies how long the device must be inside, or outside
the associated beacon region before the DwellInside or DwellOutside trigger is
activated.

proximityState
The proximity state that was specified for the beacon trigger. It is either
Immediate, Near, or Far.

triggerName
The unique name of the beacon trigger.

triggerType
The type of beacon trigger. It is either Enter, Exit, DwellInside, or
DwellOutside.

The actionPayload has the following properties:

alert
The alert message that is shown on the mobile device of user when this trigger
is activated.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

406
Unsupported Accept type - The content type specified in Accept header is not application/json, application/xml or text/xml.

500
An internal error occurred.

Beacon Triggers (POST)
Adds a new beacon trigger by using the triggerName, triggerType, proximityState,
and actionPayload properties.

10-76 IBM MobileFirst Platform Foundation V6.3.0

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggers

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/beaconTriggers?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

The payload has values for the triggerName, triggerType, proximityState,
dwellingTime, and actionPayload properties. It can be in JSON or XML format

Example as JSON
{

"actionPayload" : {
"alert" : "Avail lowest interest rate of just 7.5% on home loans!",

},
"dwellingTime" : 5000,
"proximityState" : "Far",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

}

API reference 10-77

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<beaconTrigger

dwellingTime="5000"
proximityState="Far"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.5% on home loans!"/>

</beaconTrigger>

Payload Properties

The payload has the following properties:

actionPayload
The details of an action to be taken when the trigger is activated.

dwellingTime
Optional: Applicable only for triggerTypes: DwellInside and DwellOutside. It
should be specified in milliseconds and defines how long the device must be
inside, or outside a beacon region before the dwellInside or dwellOutside
trigger is activated. Mandatory with triggerType of DwellInside and
DwellOutside.

proximityState
Optional: The proximity state that is specified for a beacon trigger. It can be
either Immediate, Near, or Far. The default value is Far.

triggerName
An unique name for this beacon trigger (consisting of alphanumeric characters
and beginning with an alphabet).

triggerType
The type of beacon trigger. The value of the type can be either Enter, Exit,
DwellInside, or DwellOutside.

The actionPayload has the following properties:

alert
The alert message to be sent when a trigger is activated.

Response

The status of the adding of the beacon trigger.

Example as JSON
{

"beaconTrigger" : {
"actionPayload" : {

"alert" : "Avail lowest interest rate of just 7.5% on home loans!",
},
"dwellingTime" : 5000,
"proximityState" : "Far",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

},
"productVersion" : "6.3.0",
"transaction" : {
"appServerId" : "Tomcat",
"errors" : [

{
},

10-78 IBM MobileFirst Platform Foundation V6.3.0

...
],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "ADD_BEACON_TRIGGER",
"userName" : "demouser",
"warnings" : [

{
},
...

],
},

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<set-beacon-trigger-result productVersion="6.3.0">

<beaconTrigger
dwellingTime="5000"
proximityState="Far"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.5% on home loans!"/>

</beaconTrigger>
<transaction
appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="ADD_BEACON_TRIGGER"
userName="demouser">
<errors>

<error/>
...

</errors>
<project name="myproject"/>
<warnings>

<warning/>
...

</warnings>
</transaction>

</set-beacon-trigger-result>

Response Properties

The response has the following properties:

beaconTrigger
The details of the beacon trigger that is created.

productVersion
The exact product version.

transaction
The details of the transaction.

The beaconTrigger has the following properties:

API reference 10-79

actionPayload
The details of an action to be taken when the trigger is activated.

dwellingTime
Optional: Applicable only for triggerTypes: DwellInside and DwellOutside. It
should be specified in milliseconds and defines how long the device must be
inside, or outside a beacon region before the dwellInside or dwellOutside
trigger is activated. Mandatory with triggerType of DwellInside and
DwellOutside.

proximityState
Optional: The proximity state that is specified for a beacon trigger. It can be
either Immediate, Near, or Far. The default value is Far.

triggerName
An unique name for this beacon trigger.

triggerType
The type of beacon trigger. The value of the type can be either Enter, Exit,
DwellInside, or DwellOutside.

The actionPayload has the following properties:

alert
The alert message to be sent when a trigger is activated.

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: ADD_BEACON_TRIGGER.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

10-80 IBM MobileFirst Platform Foundation V6.3.0

Errors

400
Bad Request - The request could not be understood by the server due to malformed syntax.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

406
Unsupported Accept type - The content type specified in Accept header is not application/json, application/xml or text/xml.

409
Conflict - There is already an existing trigger with the specified triggerName.

415
Unsupported Media Type - The server is refusing to service the request because the request payload is not in application/json or application/xml or text/xml types.

500
An internal error occurred.

Beacon Triggers (PUT)
Updates the beacon trigger that is specified by using the triggerName property.
Other properties (triggerType, proximityState, dwellingTime, and actionPayload)
are optional. Only those that need to be updated must be specified.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggers

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/beaconTriggers?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

API reference 10-81

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

The payload has values for the triggerName, triggerType, proximityState,
dwellingTime, and actionPayload properties. It can be in JSON or XML format.

Example as JSON
{

"actionPayload" : {
"alert" : "Avail lowest interest rate of just 7.25% on home loans!",

},
"triggerName" : "DwellInsideLoanSection",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<beaconTrigger triggerName="DwellInsideLoanSection">

<actionPayload alert="Avail lowest interest rate of just 7.25% on home loans!"/>
</beaconTrigger>

Payload Properties

The payload has the following properties:

actionPayload
The details of an action to be taken when the trigger is activated.

triggerName
An unique name for this beacon trigger.

The actionPayload has the following properties:

alert
The alert message to be sent when a trigger is activated.

Response

The status of the update of the beacon trigger.

Example as JSON
{

"beaconTrigger" : {
"actionPayload" : {

"alert" : "Avail lowest interest rate of just 7.25% on home loans!",
},
"dwellingTime" : 5000,
"proximityState" : "Far",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

},

10-82 IBM MobileFirst Platform Foundation V6.3.0

"productVersion" : "6.3.0",
"transaction" : {
"appServerId" : "Tomcat",
"errors" : [

{
},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "UPDATE_BEACON_TRIGGER",
"userName" : "demouser",
"warnings" : [

{
},
...

],
},

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<set-beacon-trigger-result productVersion="6.3.0">

<beaconTrigger
dwellingTime="5000"
proximityState="Far"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.25% on home loans!"/>

</beaconTrigger>
<transaction
appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="UPDATE_BEACON_TRIGGER"
userName="demouser">
<errors>

<error/>
...

</errors>
<project name="myproject"/>
<warnings>

<warning/>
...

</warnings>
</transaction>

</set-beacon-trigger-result>

Response Properties

The response has the following properties:

beaconTrigger
The details of the beacon trigger that is updated.

productVersion
The exact product version.

API reference 10-83

transaction
The details of the transaction.

The beaconTrigger has the following properties:

actionPayload
The details of an action to be taken when the trigger is activated.

dwellingTime
Optional: Applicable only for triggerTypes: DwellInside and DwellOutside. It
should be specified in milliseconds and defines how long the device must be
inside, or outside a beacon region before the dwellInside or dwellOutside
trigger is activated. Mandatory with triggerType of DwellInside and
DwellOutside.

proximityState
Optional: The proximity state that is specified for a beacon trigger. It can be
either Immediate, Near, or Far. The default value is Far.

triggerName
An unique name for this beacon trigger.

triggerType
The type of beacon trigger. The value of the type can be either Enter, Exit,
DwellInside, or DwellOutside.

The actionPayload has the following properties:

alert
The alert message to be sent when a trigger is activated.

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: UPDATE_BEACON_TRIGGER.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

10-84 IBM MobileFirst Platform Foundation V6.3.0

name
The name of the project, which is the context root of the runtime.

Errors

400
Bad Request - The request could not be understood by the server due to malformed syntax.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
Not Found - A beacon-trigger with specified triggerName does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json, application/xml or text/xml.

415
Unsupported Media Type - The server is refusing to service the request because the request payload is not in application/json or application/xml or text/xml types.

500
An internal error occurred.

Beacons (DELETE)
Deletes the beacon by using the UUID, the major number, and minor number.

Description

Each of these query parameters (uuid, major and minor) are mandatory. If any of
them are missing, the request fails with 400 Bad Request.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/beacons

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/beacons?locale=de_DE&major=1&minor=4439&uuid=3d402cf0-3691-4bd9-97ff-0b0a93a160ef

Query Parameters

Query parameters are optional.

API reference 10-85

locale
The locale used for error messages.

major
Mandatory. The major number of the beacon.

minor
Mandatory. The minor number of the beacon.

uuid
Mandatory. The UUID of the beacon.

Produces

application/json, application/xml, text/xml

Response

The status of the delete of the beacon. The transaction details might be empty if
there are no runtimes deployed.

Example as JSON
{

"beacon" : {
"major" : 1,
"minor" : 4439,
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
"ok" : false,
"productVersion" : "6.3.0",
"transactions" : [
{

"appServerId" : "Tomcat",
"errors" : [
{
},
...

],
"id" : 1,
"project" : {
"name" : "myproject",

},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "DELETE_BEACON",
"userName" : "demouser",
"warnings" : [
{
},
...

],
},
...

],
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<remove-beacon-result

ok="false"
productVersion="6.3.0">
<beacon

10-86 IBM MobileFirst Platform Foundation V6.3.0

major="1"
minor="4439"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef"/>

<transactions>
<transaction

appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="DELETE_BEACON"
userName="demouser">
<errors>
<error/>
...

</errors>
<project name="myproject"/>
<warnings>
<warning/>
...

</warnings>
</transaction>
...

</transactions>
</remove-beacon-result>

Response Properties

The response has the following properties:

beacon
The details of the beacon that is deleted.

ok Whether all transactions were successful.

productVersion
The exact product version.

transactions
The details of the transactions, one for each runtime.

The beacon has the following properties:

major
The major number of the beacon.

minor
The minor number of the beacon.

uuid
The UUID of the beacon.

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

API reference 10-87

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: DELETE_BEACON.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
Bad Request - The request could not be understood by the server due to missing mandatory parameters uuid, major, minor.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
A beacon with the specified uuid+major+minor numbers is not found.

500
An internal error occurred.

Beacons (GET)
Retrieves the beacon with the UUID, major number, and minor number.

Description

The beacons are retrieved based on which of the query parameters are mentioned:
v UUID, major number, and minor number are all specified: returns the details of

a specific beacon.
v Only UUID and major number are specified: returns the details of all beacons

with matching UUID and major number.
v Only UUID and minor number are specified: returns the details of all beacons

with matching UUID and minor number.
v Only UUID is specified: returns the details of all beacons with matching UUID.
v None are specified: returns the details of all beacons.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

10-88 IBM MobileFirst Platform Foundation V6.3.0

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/beacons

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/beacons?errorIfNotFound=true&locale=de_DE&major=1&minor=4439&uuid=3d402cf0-3691-4bd9-97ff-0b0a93a160ef

Query Parameters

Query parameters are optional.

errorIfNotFound
If this flag is set to true (default value), and uuid and/or major/minor
parameters are specified for which there are no matching beacons, then 'HTTP
404 Not Found' error is returned instead of an empty list in the output.

locale
The locale used for error messages.

major
The major number of the beacon.

minor
The minor number of the beacon.

uuid
The UUID of the beacon.

Produces

application/json, application/xml, text/xml

Response

The details of all the beacons that are retrieved.

Example as JSON
{

"beacons" : [
{

"customData" : {
"beaconLocation" : "loanSection",
"branchName" : "Indiranagar, Bangalore",

},
"latitude" : 12.952,
"longitude" : 77.644,
"major" : 1,
"minor" : 4439,
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},

API reference 10-89

...
],
"productVersion" : 6.3.0,

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<list-beacons-result productVersion="6.3.0">

<beacons>
<beacon

latitude="12.952"
longitude="77.644"
major="1"
minor="4439"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef">
<customData
beaconLocation="loanSection"
branchName="Indiranagar, Bangalore"/>

</beacon>
...

</beacons>
</list-beacons-result>

Response Properties

The response has the following properties:

beacons
The array of beacons

productVersion
The exact product version.

The beacons has the following properties:

customData
Optional: Any other customer-specific data that is associated with this beacon
like branch/store where this beacon is deployed.

latitude
Optional latitude where the beacon is deployed.

longitude
Optional longitude where the beacon is deployed.

major
The major number of the beacon.

minor
The minor number of the beacon.

uuid
The UUID of the beacon.

The customData has the following properties:

beaconLocation
The physical location of the beacon.

branchName
The branch where the beacon is installed.

10-90 IBM MobileFirst Platform Foundation V6.3.0

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
A beacon with the specified uuid and/or major/minor is not found and errorIfNotFound flag was either not specified or was set to true.

406
Unsupported Accept type - The content type specified in Accept header is not application/json, application/xml or text/xml.

500
An internal error occurred.

Beacons (PUT)
Registers (Adds/Updates) the beacon that is identified by UUID, major number,
and minor number in the payload.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/beacons

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/beacons?locale=de_DE

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

API reference 10-91

Payload

The payload can be in JSON or XML format and has values for UUID, major
number, minor number, latitude, longitude, and customData properties.

Example as JSON
{

"customData" : {
"beaconLocation" : "loanSection",
"branchName" : "Indiranagar, Bangalore",

},
"latitude" : "12.95213",
"longitude" : 77.64482,
"major" : 1,
"minor" : 4439,
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<beacon

latitude="12.95213"
longitude="77.64482"
major="1"
minor="4439"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef">
<customData
beaconLocation="loanSection"
branchName="Indiranagar, Bangalore"/>

</beacon>

Payload Properties

The payload has the following properties:

customData
Optional: Any other customer-specific data that is associated with this beacon
like branch/store where this beacon is deployed.

latitude
Optional latitude where the beacon is deployed.

longitude
Optional longitude where the beacon is deployed.

major
The major number of the beacon (positive number in the range 0-65535
inclusive).

minor
The minor number of the beacon (positive number in the range 0-65535
inclusive).

uuid
UUID of beacon. UUID must be specified in canonical form and has 32
hexadecimal digits. The digits are specified in five groups and separated by
hyphens, in the form 8-4-4-4-12 for a total of 36 characters (32 alphanumeric
characters and 4 hyphens).

The customData has the following properties:

10-92 IBM MobileFirst Platform Foundation V6.3.0

beaconLocation
The physical location of the beacon.

branchName
The branch where the beacon is installed.

Response

The status of the add/update of the beacon. The transaction details might by
empty if there are no runtimes deployed.

Example as JSON
{

"beacon" : {
"customData" : {

"beaconLocation" : "loanSection",
"branchName" : "Indiranagar, Bangalore",

},
"latitude" : "12.952",
"longitude" : 77.644,
"major" : 1,
"minor" : 4439,
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
"ok" : true,
"productVersion" : "6.3.0",
"transactions" : [
{

"appServerId" : "Tomcat",
"errors" : [
{
},
...

],
"id" : 1,
"project" : {
"name" : "myproject",

},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "REGISTER_BEACON",
"userName" : "demouser",
"warnings" : [
{
},
...

],
},
...

],
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<set-beacon-result

ok="true"
productVersion="6.3.0">
<beacon
latitude="12.952"
longitude="77.644"
major="1"
minor="4439"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef">

API reference 10-93

<customData
beaconLocation="loanSection"
branchName="Indiranagar, Bangalore"/>

</beacon>
<transactions>
<transaction

appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="REGISTER_BEACON"
userName="demouser">
<errors>
<error/>
...

</errors>
<project name="myproject"/>
<warnings>
<warning/>
...

</warnings>
</transaction>
...

</transactions>
</set-beacon-result>

Response Properties

The response has the following properties:

beacon
The details of the beacon that is added/updated.

ok Whether all transactions were successful.

productVersion
The exact product version.

transactions
The details of the transactions, one for each runtime.

The beacon has the following properties:

customData
Optional: Any other customer-specific data that is associated with this beacon
like branch/store where this beacon is deployed.

latitude
Optional latitude where the beacon is deployed.

longitude
Optional longitude where the beacon is deployed.

major
The major number of the beacon.

minor
The minor number of the beacon.

uuid
The UUID of the beacon.

The customData has the following properties:

10-94 IBM MobileFirst Platform Foundation V6.3.0

beaconLocation
The physical location of the beacon.

branchName
The branch where the beacon is installed.

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: REGISTER_BEACON.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
Bad Request - The request could not be understood by the server due to malformed syntax or missing mandatory UUID, major and minor values.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

406
Unsupported Accept type - The content type specified in Accept header is not application/json, application/xml or text/xml.

415
Unsupported Media Type - The server is refusing to service the request because the request payload is not in application/json or application/xml or text/xml types.

500
An internal error occurred.

Device Application Status (PUT)
Changes the status of a specific application on a specific device.

API reference 10-95

Description

A device can be marked as enabled or disabled for a specific device. Disabled
applications cannot access the server.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/devices/device-id/applications/
application-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/devices/12345-6789/applications/myapplication?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

device-id
The device id.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

application/json

10-96 IBM MobileFirst Platform Foundation V6.3.0

Produces

application/json, application/xml, text/xml

Payload

Example as JSON
{

"status" : "ENABLED",
}

Payload Properties

The payload has the following properties:

status
The status of the application: ENABLED or DISABLED.

Response

The meta data of the transaction.

Example as JSON
{

"ok" : false,
"productVersion" : "6.2.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"appName" : "myapplication",
"deviceId" : "12345-6789",
"status" : "ENABLED",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "CHANGE_DEVICE_APPLICATION_STATUS",
"userName" : "demouser",

},
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<set-applicationdevice-status-result

ok="false"
productVersion="6.2.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"

API reference 10-97

type="CHANGE_DEVICE_APPLICATION_STATUS"
userName="demouser">
<description

appName="myapplication"
deviceId="12345-6789"
status="ENABLED"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-applicationdevice-status-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the status change.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always CHANGE_DEVICE_APPLICATION_STATUS.

userName
The user that initiated the transaction.

The description has the following properties:

appName
The application name.

deviceId
The device id.

10-98 IBM MobileFirst Platform Foundation V6.3.0

status
The status of the application: ENABLED or DISABLED.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the device is not found.

500
An internal error occurred.

Device (DELETE)
Deletes all meta information of a specific device.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/devices/device-id

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/devices/12345-6789?async=false&locale=de_DE

API reference 10-99

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

device-id
The device id.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The meta data of the deleted device.

Example as JSON
{

"ok" : false,
"productVersion" : "6.2.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"deviceId" : "12345-6789",
"status" : "LOST",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "REMOVE_DEVICE",
"userName" : "demouser",

},
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<remove-device-result

ok="false"
productVersion="6.2.0">
<transaction
appServerId="Tomcat"

10-100 IBM MobileFirst Platform Foundation V6.3.0

id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="REMOVE_DEVICE"
userName="demouser">
<description

deviceId="12345-6789"
status="LOST"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</remove-device-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the device.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always REMOVE_DEVICE.

userName
The user that initiated the transaction.

The description has the following properties:

deviceId
The device id.

API reference 10-101

status
The status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the device is not found.

500
An internal error occurred.

Device Status (PUT)
Changes the status of a specific device.

Description

A device can be marked as active, lost, stolen, disabled, or expired. Lost, stolen or
disabled devices cannot access the server. A device is marked expired if it has not
connected to the MobileFirst server for 90 days.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/devices/device-id

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/devices/12345-6789?async=false&locale=de_DE

10-102 IBM MobileFirst Platform Foundation V6.3.0

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

device-id
The device id.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

Example as JSON
{

"status" : "LOST",
}

Payload Properties

The payload has the following properties:

status
The new status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

Response

The meta data of the transaction.

Example as JSON
{

"ok" : false,
"productVersion" : "6.2.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"deviceId" : "12345-6789",
"status" : "LOST",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

API reference 10-103

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "CHANGE_DEVICE_STATUS",
"userName" : "demouser",

},
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<set-device-status-result

ok="false"
productVersion="6.2.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="CHANGE_DEVICE_STATUS"
userName="demouser">
<description

deviceId="12345-6789"
status="LOST"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-device-status-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the status change.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

10-104 IBM MobileFirst Platform Foundation V6.3.0

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always CHANGE_DEVICE_STATUS.

userName
The user that initiated the transaction.

The description has the following properties:

deviceId
The device id.

status
The status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the device is not found.

500
An internal error occurred.

Devices (GET)
Retrieves meta information for the list of devices that accessed this project.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

API reference 10-105

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/devices

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/devices?locale=de_DE&offset=0&orderBy=uid&pageSize=100&query=Jeremy

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: uid, friendlyName, deviceModel,
deviceEnvironment, status, lastAccessed. The default sort mode is: uid.

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

query
A device friendly name or a user to search for.

Produces

application/json, application/xml, text/xml

Response

The meta data of the devices that accessed this project.

Example as JSON
{

"items" : [
{

"applicationDeviceAssociations" : [
{

"appName" : "myapplication",
"deviceId" : "12345-6789",
"deviceStatus" : "LOST",

10-106 IBM MobileFirst Platform Foundation V6.3.0

"status" : "ENABLED",
},
...

],
"deviceEnvironment" : "iphone",
"deviceModel" : "Nexus 7",
"deviceOs" : "4.4",
"friendlyName" : "Jeremy’s Personal Phone",
"id" : "12345-6789",
"lastAccessed" : "2014-05-13T00:18:36.979Z",
"status" : "LOST",
"uid" : "Jeremy",

},
...

],
"pageSize" : 100,
"productVersion" : "6.2.0",
"startIndex" : 0,
"totalListSize" : 33,

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<devices

pageSize="100"
productVersion="6.2.0"
startIndex="0"
totalListSize="33">
<items>
<item

deviceEnvironment="iphone"
deviceModel="Nexus 7"
deviceOs="4.4"
friendlyName="Jeremy’s Personal Phone"
id="12345-6789"
lastAccessed="2014-05-13T00:18:36.979Z"
status="LOST"
uid="Jeremy">
<applicationDeviceAssociations>
<applicationDeviceAssociation

appName="myapplication"
deviceId="12345-6789"
deviceStatus="LOST"
status="ENABLED"/>

...
</applicationDeviceAssociations>

</item>
...

</items>
</devices>

Response Properties

The response has the following properties:

items
The array of device meta information

pageSize
The page size if only a page of devices is returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only a page of devices is returned.

API reference 10-107

totalListSize
The total number of devices.

The device has the following properties:

applicationDeviceAssociations
The applications on the device.

deviceEnvironment
The platform environment of the app version: iphone, android, ...

deviceModel
The device model.

deviceOs
The device operating system.

friendlyName
The friendly name of the device.

id The device id.

lastAccessed
The date in ISO 8601 format when the device was last accessed.

status
The status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

uid
The user name of the device.

The device application has the following properties:

appName
The name of the application.

deviceId
The device id.

deviceStatus
The status of the device:ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

status
The status of the application: ENABLED or DISABLED.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Event Source (GET)
Retrieves meta information for the event source.

10-108 IBM MobileFirst Platform Foundation V6.3.0

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/eventsources/adapter-
name/eventsource-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/eventsources/myadapter/myeventsource?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

eventsource-name
The name of the event source.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The meta data of the event source.

Example as JSON
{

"numberOfMessagesSent" : 1,
"numberOfSubscribedUsers" : 1,
"productVersion" : "6.2.0",
"qname" : "SampleAdapter.SampleEventSource",

}

API reference 10-109

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<eventsources

numberOfMessagesSent="1"
numberOfSubscribedUsers="1"
productVersion="6.2.0"
qname="SampleAdapter.SampleEventSource"/>

Response Properties

The response has the following properties:

numberOfMessagesSent
Number of messages sent to this event source.

numberOfSubscribedUsers
Number of subscribed users of this event source.

productVersion
The exact product version.

qname
The name of the event source.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Event Sources (GET)
Retrieves meta information for the list of event sources.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/eventsources

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/eventsources?locale=de_DE

10-110 IBM MobileFirst Platform Foundation V6.3.0

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The meta data of the event sources.

Example as JSON
{

"eventsources" : [
{

"numberOfMessagesSent" : 1,
"numberOfSubscribedUsers" : 1,
"qname" : "myadapter.myeventsource",

},
...

],
"productVersion" : "6.2.0",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<eventsources productVersion="6.2.0">

<eventsources>
<eventsource

numberOfMessagesSent="1"
numberOfSubscribedUsers="1"
qname="myadapter.myeventsource"/>

...
</eventsources>

</eventsources>

Response Properties

The response has the following properties:

eventsources
The array of event source meta information

productVersion
The exact product version.

The eventsource has the following properties:

numberOfMessagesSent
Number of messages sent to this event source.

API reference 10-111

numberOfSubscribedUsers
Number of subscribed users of this event source.

qname
The name of the event source.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

GCM Credentials (DELETE)
Deletes GCM credentials of the application with the application ID, environment,
and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/gcmConf/application-env/application-version/

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/gcmConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

10-112 IBM MobileFirst Platform Foundation V6.3.0

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The delete status of GCM credentials.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "DELETE_PUSH_CREDENTIALS",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<deleteGCMCredentialsStatus

status="Success"
type="DELETE_PUSH_CREDENTIALS">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</deleteGCMCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The GCM credentials are deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

API reference 10-113

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

GCM Credentials (GET)
Retrieves GCM credentials of the application with the application ID, environment,
and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/gcmConf/application-env/application-version/

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/gcmConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

10-114 IBM MobileFirst Platform Foundation V6.3.0

Produces

application/json, application/xml, text/xml

Response

The GCM Credentials of the application with the application ID, environment, and
version.

Example as JSON
{

"apiKey" : "AIzaSyDSJrULbNZZzzZZzzxyX7ZTmnoRLkwiU",
"productVersion" : "6.3.0",
"senderId" : "9999999999999",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<gcmCredentials

apiKey="AIzaSyDSJrULbNZZzzZZzzxyX7ZTmnoRLkwiU"
productVersion="6.3.0"
senderId="9999999999999"/>

Response Properties

The response has the following properties:

apiKey
The key value received from GCM.

productVersion
The exact product version.

senderId
The project ID received from GCM.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

GCM Credentials (PUT)
Set GCM credentials of the application with the application ID, environment, and
version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

API reference 10-115

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/gcmConf/application-env/application-version/

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/gcmConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload in JSON format has values for apiKey and senderId.

Example as JSON
{

"apiKey" : "AIzaSyDSJrrrrrrrrrrZZZZZZZX7ZTmnoRLkwiU",
"senderId" : "1099999999999",

}

Payload Properties

The payload has the following properties:

10-116 IBM MobileFirst Platform Foundation V6.3.0

apiKey
The key value received from GCM.

senderId
The project ID received from GCM.

Response

The status of set GCM credentials.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_GCM_CREDENTIALS",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<setGCMCredentialsStatus

status="Success"
type="SET_GCM_CREDENTIALS">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</setGCMCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The GCM credentials are saved successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

API reference 10-117

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Mediator (GET)
Retrieves meta information of the mediator.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/mediators/mediator-
name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/mediators/Google?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

mediator-name
The name of the mediator.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The meta data of the mediator.

10-118 IBM MobileFirst Platform Foundation V6.3.0

Example as JSON
{

"productVersion" : "6.2.0",
"type" : "Google",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<mediators

productVersion="6.2.0"
type="Google"/>

Response Properties

The response has the following properties:

productVersion
The exact product version.

type
The type of the mediator.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Mediators (GET)
Retrieves the list of all supported mediators for sending notifications.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/mediators

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/mediators?locale=de_DE

API reference 10-119

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The list of all supported mediators for sending notifications.

Example as JSON
{

"mediators" : [
{

"type" : "Google",
},
...

],
"productVersion" : "6.2.0",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<mediators productVersion="6.2.0">

<mediators>
<mediator type="Google"/>
...

</mediators>
</mediators>

Response Properties

The response has the following properties:

mediators
The array of mediator meta information

productVersion
The exact product version.

The mediator has the following properties:

type
The type of the mediator.

Errors

403
The user is not authorized to call this service.

10-120 IBM MobileFirst Platform Foundation V6.3.0

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

MPNS Credentials (DELETE)
Deletes MPNS credentials of the application with the application ID, environment,
and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/mpnsConf/application-env/application-version/

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/mpnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

API reference 10-121

Response

The delete status of MPNS credentials.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "DELETE_PUSH_CREDENTIALS",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<deleteMPNSCredentials

status="Success"
type="DELETE_PUSH_CREDENTIALS">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</deleteMPNSCredentials>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The MPNS credentials are deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

10-122 IBM MobileFirst Platform Foundation V6.3.0

MPNS Credentials (GET)
Retrieves MPNS credentials of the application with the application ID,
environment, and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/mpnsConf/application-env/application-version/

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/mpnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The MPNS Credentials of the application with the application ID, environment,
and version.

API reference 10-123

Example as JSON
{

"authenticated" : true,
"keyAlias" : "aliasName",
"keyAliasPassword" : "password",
"productVersion" : "6.3.0",
"serviceName" : "wl.ibm.push",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<mpnsCredentials

authenticated="true"
keyAlias="aliasName"
keyAliasPassword="password"
productVersion="6.3.0"
serviceName="wl.ibm.push"/>

Response Properties

The response has the following properties:

authenticated
Returns whether the push configuration is authenticated.

keyAlias
The alias used to access the keystore specified in the worklight.properties.

keyAliasPassword
The password for the key alias.

productVersion
The exact product version.

serviceName
The common name (CN) found in the MPNS certificate's Subject value.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

MPNS Credentials (PUT)
Set MPNS credentials of the application with the application ID, environment,
version, keyAlias, keyAliasPassword, and serviceName.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

10-124 IBM MobileFirst Platform Foundation V6.3.0

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/mpnsConf/application-env/application-version/

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/mpnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload in JSON format has values for keyAlias, keyAliasPassword, and
serviceName.

Example as JSON
{

"authenticated" : true,
"keyAlias" : "aliasName",
"keyAliasPassword" : "password",
"serviceName" : "wl.ibm.push",

}

API reference 10-125

Payload Properties

The payload has the following properties:

authenticated
Returns whether the push configuration is authenticated.

keyAlias
The alias is used to access the keystore that is specified in the
worklight.properties file.

keyAliasPassword
The password for your key alias.

serviceName
The common name (CN) found in the MPNS certificate's Subject value.

Response

The status of set MPNS credentials.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_MPNS_CREDENTIALS",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<setMPNSCredentialsStatus

status="Success"
type="SET_MPNS_CREDENTIALS">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</setMPNSCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The MPNS credentials are saved successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

10-126 IBM MobileFirst Platform Foundation V6.3.0

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Device Registration (DELETE)
Deletes the device with the device ID and application ID.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/devices/device-id

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/devices/12345-6789?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

device-id
The device id.

Query Parameters

Query parameters are optional.

API reference 10-127

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

Deletes the device with the device ID and application ID.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "REMOVE_DEVICE",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<deleteDevice

status="Success"
type="REMOVE_DEVICE">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</deleteDevice>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The device is deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

10-128 IBM MobileFirst Platform Foundation V6.3.0

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Device Registration (GET)
Retrieves meta information of the device with the given device ID.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/devices/device-id

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/devices/12345-6789?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

device-id
The device id.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

API reference 10-129

Response

The meta data of the device with the given device ID.

Example as JSON
{

"deviceId" : "testdevice",
"platform" : "G",
"productVersion" : "6.2.0",
"token" : "testtoken",
"userId" : "worklight",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<devices

deviceId="testdevice"
platform="G"
productVersion="6.2.0"
token="testtoken"
userId="worklight"/>

Response Properties

The response has the following properties:

deviceId
The unique id of the device.

platform
The device platform.

productVersion
The exact product version.

token
The unique push token of the device.

userId
The userId of the device.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Device Subscription (DELETE)
Delete subscriptions of a combination of application, tag name, and device ID.

Description

The subscriptions that are deleted are for a combination of application, tag name,
and device ID.

10-130 IBM MobileFirst Platform Foundation V6.3.0

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/subscriptions

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/subscriptions?deviceId=45ccfd8e-ca97-3e9a-ad47-16f87c9e395b&locale=de_DE&tag-Name=Gold

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

deviceId
The unique deviceId of the device.

locale
The locale used for error messages.

tag-Name
The tag name.

Produces

application/json, application/xml, text/xml

Response

The status of delete subscriptions.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

API reference 10-131

},
"status" : "Success",
"type" : "DELETE_SUBSCRIPTIONS",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<deleteSubscriptionsStatus

status="Success"
type="DELETE_SUBSCRIPTIONS">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</deleteSubscriptionsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The subscription is deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Device Subscription (GET)
Retrieves meta information of the subscriptions.

Description

The subscriptions can be obtained for application, for a particular tag, for a
particular devieId and a combination of application, tag name and deviceId

10-132 IBM MobileFirst Platform Foundation V6.3.0

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/subscriptions

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/subscriptions?deviceId=testdevice&locale=de_DE&offset=1&size=6&tag-Name=testtag

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

deviceId
The unique id of the device.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

size
The number of elements to be returned.

tag-Name
The name of the tag.

Produces

application/json, application/xml, text/xml

Response

The meta data of the subscriptions.

API reference 10-133

Example as JSON
{

"offset" : 1,
"productVersion" : "6.2.0",
"size" : 6,
"subscriptions" : [
{

"deviceId" : "testdevice",
"tag-Name" : "testtag",

},
...

],
"totalListSize" : 6,

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<pushDevicesubscription

offset="1"
productVersion="6.2.0"
size="6"
totalListSize="6">
<subscriptions>
<subscription

deviceId="testdevice"
tag-Name="testtag"/>

...
</subscriptions>

</pushDevicesubscription>

Response Properties

The response has the following properties:

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

productVersion
The exact product version.

size
The number of elements to be returned.

subscriptions
The array of subscription meta information

totalListSize
The total number of subscriptions.

The pushDevicesubscription has the following properties:

deviceId
The unique id of the device.

tag-Name
The name of the tag.

Errors

403
The user is not authorized to call this service.

10-134 IBM MobileFirst Platform Foundation V6.3.0

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Devices Registration (GET)
Retrieves meta information for the list of devices of an application.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/devices

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/devices?locale=de_DE&offset=1&size=6

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

size
The number of elements to be returned.

Produces

application/json, application/xml, text/xml

API reference 10-135

Response

The meta data of the devices of an application.

Example as JSON
{

"devices" : [
{

"deviceId" : "testdevice",
"platform" : "G",
"token" : "testtoken",
"userId" : "worklight",

},
...

],
"offset" : 1,
"productVersion" : "6.2.0",
"size" : 6,
"totalListSize" : 6,

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<devices

offset="1"
productVersion="6.2.0"
size="6"
totalListSize="6">
<devices>
<device

deviceId="testdevice"
platform="G"
token="testtoken"
userId="worklight"/>

...
</devices>

</devices>

Response Properties

The response has the following properties:

devices
The array of device meta information

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

productVersion
The exact product version.

size
The number of elements to be returned.

totalListSize
The total number of deivces.

The pushDeviceRegistration has the following properties:

deviceId
The unique id of the device.

10-136 IBM MobileFirst Platform Foundation V6.3.0

platform
The device platform.

token
The unique push token of the device.

userId
The userId of the device.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Enabled Applications (GET)
Retrieves meta information for the list of deployed push enabled applications.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

API reference 10-137

Produces

application/json, application/xml, text/xml

Response

The meta data of the deployed push enabled applications.

Example as JSON
{

"applications" : [
{

"applicationEnvironments" : [
{

"deviceCount" : 1,
"mediatorType" : "Google",
"numberOfMessagesSent" : 1,
"userCount" : 1,

},
...

],
"deviceCount" : 1,
"displayName" : "SampleApplication",
"userCount" : 1,

},
...

],
"productVersion" : "6.2.0",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<pushnotification productVersion="6.2.0">

<applications>
<application

deviceCount="1"
displayName="SampleApplication"
userCount="1">
<applicationEnvironments>
<applicationEnvironment

deviceCount="1"
mediatorType="Google"
numberOfMessagesSent="1"
userCount="1"/>

...
</applicationEnvironments>

</application>
...

</applications>
</pushnotification>

Response Properties

The response has the following properties:

applications
The array of push enabled application meta information

productVersion
The exact product version.

The application has the following properties:

10-138 IBM MobileFirst Platform Foundation V6.3.0

applicationEnvironments
The array of application environments.

deviceCount
Number of subscribed devices of this application.

displayName
The name of the application.

userCount
Number of subscribed users of this application.

The applicationEnvironment has the following properties:

deviceCount
Number of subscribed devices of this application environment.

mediatorType
The name of the application environment.

numberOfMessagesSent
Number of messages sent for this application environment.

userCount
Number of subscribed users of this application environment.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Tags (DELETE)
Deletes tag of the application with the application ID and tag.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/tags/tag-name

API reference 10-139

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/tags/tag-name?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

tag-name
The name of the tag.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The delete status of delete tag.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "DELETE_TAGS",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<deleteTagStatus

status="Success"
type="DELETE_TAGS">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</deleteTagStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

10-140 IBM MobileFirst Platform Foundation V6.3.0

status
The tags are deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Tags (GET)
Retrieves tags of the application with the application ID.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/tags

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/tags?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

API reference 10-141

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The Tags of the application with details such as description, name, and product
version.

Example as JSON
{

"description" : "This is a Gold tag.",
"name" : "Gold",
"productVersion" : "6.3.0",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<tags

description="This is a Gold tag."
name="Gold"
productVersion="6.3.0"/>

Response Properties

The response has the following properties:

description
The description of the Tag.

name
The name of the Tag.

productVersion
The exact product version.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

10-142 IBM MobileFirst Platform Foundation V6.3.0

Push Tags (POST)
Create Tags of the application with the application ID.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/tags

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/tags?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload in JSON format has values for name and description.

Example as JSON
{

"description" : "This is a Gold tag.",
"name" : "Gold",

}

API reference 10-143

Payload Properties

The payload has the following properties:

description
The description of the tag.

name
The name of the tag.

Response

The status of create tags.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "CREATE_TAGS",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<createTagsStatus

status="Success"
type="CREATE_TAGS">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</createTagsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The tags are created successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

10-144 IBM MobileFirst Platform Foundation V6.3.0

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Tags (PUT)
Update Tags of the application with the application ID and tag.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/tags/tag-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/tags/tag-name?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

tag-name
The name of the tag.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

API reference 10-145

Produces

application/json, application/xml, text/xml

Response

The status of update tags.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "UPDATE_TAGS",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<updateTagsStatus

status="Success"
type="UPDATE_TAGS">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</updateTagsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The tags are updated successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404

10-146 IBM MobileFirst Platform Foundation V6.3.0

The corresponding runtime is not found or not running.

500
An internal error occurred.

Runtime (DELETE)
Deletes a specific runtime.

Description

The purpose of this API is to allow to cleanup the database. It is only possible to
delete a runtime when it is stopped. A runtime that is currently active cannot be
deleted.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime?locale=de_DE&mode=empty

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

mode
Whether to delete the runtime only if it has no applications or adapters.
Possible values are empty (delete only when empty) and always (delete even
when not empty, the default).

Produces

application/json, application/xml, text/xml

Errors

403
The user is not authorized to call this service.

API reference 10-147

409
The corresponding runtime cannot be deleted. Possible reasons: It is still running, hence you must stop the runtime first.
It is not empty but you passed the mode empty to delete only an empty runtime.

500
An internal error occurred.

Runtime (GET)
Retrieves meta information for a specific runtime.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime?expand=true&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

expand
Set to true to show details of the applications and adapters. The default is
false

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The meta information for the runtime.

10-148 IBM MobileFirst Platform Foundation V6.3.0

Example as JSON
{

"adapters" : [
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"description" : "My first sample adapter",
"link" : "https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter",
"name" : "myadapter",
"platformVersion" : "6.1.0.00.20131126-0630",
"procedures" : ["getSomething", ...],
"projects" : [
{

"name" : "myproject",
},
...

],
},
...

],
"applications" : [
{

"description" : "My first sample application",
"displayName" : "My Sample Application",
"environments" : [
{

"applicationEnvironmentDataAccess" : {
"action" : "NOTIFY",
"createdTime" : "2014-04-13T00:18:36.979Z",
"message" : "This version is no longer supported.",

},
"authenticityCheckRule" : "DISABLED",
"buildTime" : "2014-03-29T00:18:36.979Z",
"deployTime" : "2014-04-13T00:18:36.979Z",
"deviceProvisioningRealm" : "myProvRealm",
"envPlatformVersion" : "6.2.0",
"environment" : "iphone",
"link" : "https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication/iphone/1.0",
"prevBuildTime" : "2014-03-29T00:18:36.979Z",
"securityTest" : "mobileTest",
"supportRemoteDisable" : true,
"supportsAuthenticity" : true,
"userAuthenticationRealm" : "myAuthRealm",
"version" : "1.0",
"versionLocked" : false,

},
...

],
"link" : "https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication",
"name" : "myapplication",
"platformVersion" : "6.1.0.00.20131126-0630",
"projects" : [
{

"name" : "myproject",
},
...

],
},
...

],
"auditEnabled" : true,
"bitlyApiKey" : "",
"bitlyUsername" : "",
"name" : "myruntime",
"numberOfActiveDevices" : 100,
"numberOfDecommisionedDevices" : 5,
"platformVersion" : "6.1.0.00.20131126-0630",
"productVersion" : "6.2.0",

API reference 10-149

"running" : true,
"serverVersion" : "6.2.0",
"synchronizationStatus" : "ok",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<runtime

auditEnabled="true"
bitlyApiKey=""
bitlyUsername=""
name="myruntime"
numberOfActiveDevices="100"
numberOfDecommisionedDevices="5"
platformVersion="6.1.0.00.20131126-0630"
productVersion="6.2.0"
running="true"
serverVersion="6.2.0"
synchronizationStatus="ok">
<adapters>
<adapter

deployTime="2014-04-13T00:18:36.979Z"
description="My first sample adapter"
link="https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter"
name="myadapter"
platformVersion="6.1.0.00.20131126-0630">
<procedures>
<procedure>getSomething</procedure>
...

</procedures>
<projects>
<project name="myproject"/>
...

</projects>
</adapter>
...

</adapters>
<applications>
<application

description="My first sample application"
displayName="My Sample Application"
link="https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication"
name="myapplication"
platformVersion="6.1.0.00.20131126-0630">
<environments>
<environment

authenticityCheckRule="DISABLED"
buildTime="2014-03-29T00:18:36.979Z"
deployTime="2014-04-13T00:18:36.979Z"
deviceProvisioningRealm="myProvRealm"
envPlatformVersion="6.2.0"
environment="iphone"
link="https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/applications/myapplication/iphone/1.0"
prevBuildTime="2014-03-29T00:18:36.979Z"
securityTest="mobileTest"
supportRemoteDisable="true"
supportsAuthenticity="true"
userAuthenticationRealm="myAuthRealm"
version="1.0"
versionLocked="false">
<applicationEnvironmentDataAccess
action="NOTIFY"
createdTime="2014-04-13T00:18:36.979Z"
message="This version is no longer supported."/>

</environment>
...

10-150 IBM MobileFirst Platform Foundation V6.3.0

</environments>
<projects>
<project name="myproject"/>
...

</projects>
</application>
...

</applications>
</runtime>

Response Properties

The response has the following properties:

adapters
The array of adapters (shown only with expand=true).

applications
The array of applications (shown only with expand=true).

auditEnabled
Whether audit is enabled.

bitlyApiKey
The key for the Bitly service.

bitlyUsername
The user name for the Bitly service.

name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

numberOfActiveDevices
The number of active devices using this runtime.

numberOfAdapters
The number of adapters deployed in this runtime (shown only with
expand=false).

numberOfApplications
The number of applications deployed in this runtime (shown only with
expand=false).

numberOfDecommisionedDevices
The number of devices decommissioned for this runtime.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the project WAR file.

productVersion
The exact product version.

running
Whether the runtime is currently active or has stopped.

serverVersion
The exact IBM MobileFirst Platform Server version number from which
worklight-jee-library.jar is taken.

synchronizationStatus
The status of the nodes of the runtime. Can contain the values "ok" if all nodes

API reference 10-151

of the runtime are running without error, "synchronizing" if some node is in
progress of synchronizing, or an error message if some nodes failed to
synchronize.

The adapter has the following properties:

deployTime
The date in ISO 8601 format when the adapter was deployed.

description
The description of the adapter.

link
The URL to access detail information about the adapter.

name
The name of the adapter.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the adapter.

procedures
The JavaScript procedures of the adapter.

projects
The projects the adapter belong to.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

The application has the following properties:

description
The description of the application.

displayName
The display name of the application.

environments
The array of application environments.

link
The URL to access detail information about the application.

name
The name of the application.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the application.

projects
The projects the application belong to.

The environment has the following properties:

applicationEnvironmentDataAccess
The access rule to be executed when the app version is disabled.

10-152 IBM MobileFirst Platform Foundation V6.3.0

authenticityCheckRule
Whether the authenticity is checked. Possible values are: ENABLED, IGNORED,
DISABLED.

buildTime
The time stamp when the app version was built.

deployTime
The date in ISO 8601 format when the adapter was deployed.

deviceProvisioningRealm
The name of the realm used for device provisioning.

envPlatformVersion
The version of the platform of the environment.

environment
The platform environment of the app version: iphone, android, ...

link
The URL to access detail information about the application version.

prevBuildTime
The time stamp when the app that was previously deployed was built.

publishUrl
For web applications, this is the URL under which the web application was
published.

securityTest
The name of the security test for a protected resource.

supportRemoteDisable
true if the application version supports remote disabling.

supportsAuthenticity
true if the application version supports authenticatuib.

userAuthenticationRealm
The name of the realm used to authenticate users.

version
The version number of the app version.

versionLocked
Whether the version is locked.

The applicationEnvironmentDataAccess has the following properties:

action
The action to be done when a disabled app version is accessed. Possible values
are: NOTIFY, BLOCK, NA.

createdTime
The date in ISO 8601 format when the app version access rule was created.

downloadLink
The download link where to obtain a new version of the application.

message
The message to be displayed when a disabled app version is accessed.

multiLanguageMessage
Internationalized variants of the message to be displayed when a disabled app
version is accessed.

API reference 10-153

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Runtime Lock (DELETE)
Forces the release of the transaction lock of a runtime.

Description

This API should not be used in normal operations.

Transactions are performed sequentually. Hence each transaction such as deploying
an application or adapter takes the runtime lock. The next transaction waits until
the lock is released. After a serious crash, it may happen that the lock is still taken
even though the corresponding transaction crashed. The lock will get automatically
released after 30 minutes. However, with this API, you can force the release of the
lock earlier.

Forcing the release of the lock when a transaction is currently active may corrupt
the system. You should use this API only when you are sure that no transaction is
currently active.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/lock

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/lock?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

10-154 IBM MobileFirst Platform Foundation V6.3.0

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

Example as JSON
{

"busy" : false,
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<lock busy="false"/>

Response Properties

The response has the following properties:

busy
Whether the runtime is still busy with a transaction after forcing the release of
the lock.

Errors

403
The user is not authorized to call this service.

500
An internal error occurred.

Runtime Lock (GET)
Retrieves information about the transaction lock of a runtime.

Description

Transactions are performed sequentually. Hence each transaction such as deploying
an application or adapter takes the runtime lock. The next transaction waits until
the lock is released. This API allowed to retrieve whether a runtime is currently
busy with a transaction.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

API reference 10-155

Path

/management-apis/1.0/runtimes/runtime-name/lock

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/lock?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

Example as JSON
{

"busy" : true,
}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<lock busy="true"/>

Response Properties

The response has the following properties:

busy
Whether the runtime is currently busy with a transaction.

Errors

403
The user is not authorized to call this service.

500
An internal error occurred.

Runtimes (GET)
Retrieves meta information for the list of runtimes.

10-156 IBM MobileFirst Platform Foundation V6.3.0

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes?locale=de_DE&mode=db

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

mode
The default mode running retrieves only the running runtimes, while the mode
db retrieves also the runtimes stored in the database that might not be running.

Produces

application/json, application/xml, text/xml

Response

The meta information for the list of runtimes.

Example as JSON
{

"productVersion" : "6.2.0",
"projects" : [
{

"link" : "https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime",
"name" : "myruntime",
"numberOfActiveDevices" : 100,
"numberOfAdapters" : 1,
"numberOfApplications" : 1,
"numberOfDecommisionedDevices" : 5,
"running" : true,
"synchronizationStatus" : "ok",

},
...

],
}

API reference 10-157

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<projectconfiguration productVersion="6.2.0">

<projects>
<project

link="https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime"
name="myruntime"
numberOfActiveDevices="100"
numberOfAdapters="1"
numberOfApplications="1"
numberOfDecommisionedDevices="5"
running="true"
synchronizationStatus="ok"/>

...
</projects>

</projectconfiguration>

Response Properties

The response has the following properties:

productVersion
The exact product version.

projects
The array of runtimes.

The runtime has the following properties:

link
The URL to access detail information about the runtime.

name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

numberOfActiveDevices
The number of active devices using this runtime.

numberOfAdapters
The number of adapters deployed in this runtime.

numberOfApplications
The number of applications deployed in this runtime.

numberOfDecommisionedDevices
The number of devices decommissioned for this runtime.

running
Whether the runtime is currently active or has stopped.

synchronizationStatus
The status of the nodes of the runtime. Can contain the values "ok" if all nodes
of the runtime are running without error, "synchronizing" if some node is in
progress of synchronizing, or an error message if some nodes failed to
synchronize.

Errors

403
The user is not authorized to call this service.

500

10-158 IBM MobileFirst Platform Foundation V6.3.0

An internal error occurred.

Send Bulk Messages (POST)
Send bulk messages with different options to be specified.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/messages/bulk

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/messages/bulk?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload in JSON format has values for array of messages, target, and settings.

API reference 10-159

Example as JSON
{

"//ArrayOfMessageBody" : [
{

"messages" : {
"alert" : "Test message",

},
"settings" : {
"apns" : {

"badge" : 1,
"iosActionKey" : "Ok",
"payload" : "",
"sound" : "song.mp3",

},
"gcm" : {

"delayWhileIdle" : ,
"payload" : "",
"sound" : "song.mp3",
"timeToLive" : ,

},
"mpns" : {

"raw" : {
"payload" : {
},

},
"title" : {
"backBackgroundImage" : "Blue.jpg",
"backContent" : "Back Title Content",
"backTitle" : "Back Title",
"backgroundImage" : "Red.jpg",
"count" : 1,
"title" : "Push Notification",

},
"toast" : {
"param" : "/Page2.xaml?NavigatedFrom=Toast Notification",
"title" : "Hello",

},
},

},
"target" : {
"consumerIds" : ["MyConsumerId1", ...],
"deviceIds" : ["MyDeviceId1", ...],
"platforms" : ["A,G", ...],
"tagNames" : ["Gold", ...],

},
},
...

],
}

Payload Properties

The payload has the following properties:

//ArrayOfMessageBody
The array of message

The bulk-messages has the following properties:

messages
The array of message

settings
The settings are the different attributes of the notification.

10-160 IBM MobileFirst Platform Foundation V6.3.0

target
Set of targets can be consumer Ids, devices, platforms, or tags.

The message has the following properties:

alert
A string to be displayed in the alert.

The settings has the following properties:

apns
Attributes for sending message to an iOS device.

gcm
Attributes for sending message to an Android device.

mpns
Attributes for sending message to an MPNS device.

The apns has the following properties:

badge
An integer value to be displayed in a badge on the application icon.

iosActionKey
The label of the dialog box button that allows the user to open the app upon
receiving the notification.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

The gcm has the following properties:

delayWhileIdle
A Boolean value that indicates that the message must not be sent if the device
is idle. The server waits for the device to become active before the message is
sent.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

timeToLive
The duration (in seconds) that the message is kept on GCM storage if the
device is offline. Default value is 4 weeks, and must be set as a JSON number.

The mpns has the following properties:

raw
Raw.

title
Title.

API reference 10-161

toast
Toast.

The raw has the following properties:

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

The title has the following properties:

backBackgroundImage
URL of the back image on a medium flip Tile.

backContent
Content that displays on the back of a medium flip Tile.

backTitle
Title that displays on the back of a flip Tile.

backgroundImage
URL of the front image on a medium flip Tile.

count
An integer value from 1 to 99. If the value of count is not set or it is set to 0,
the circle image and value do not display in the Tile. This property is also
known as badge.

title
A string that indicates the title of the application. The title fits on a single line
of text and must not be wider than the Tile. Approximately 15 characters can
fit in the title before it is truncated.

The toast has the following properties:

param
Toast notification content.

title
Toast notification title.

The target has the following properties:

consumerIds
The array of consumer Ids.

deviceIds
JSON array of the device ids. Devices with these ids receive the notification.

platforms
JSON array of platforms. Devices running on these platforms receive the
notification. Supported values are A, G, and M.

tagNames
JSON array of tags. Devices that are subscribed to these tags receive the
notification.

Response

The status of send messages.

10-162 IBM MobileFirst Platform Foundation V6.3.0

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_PUSH_NOTIFICATION_ENABLED",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<sendMessagesStatus

status="Success"
type="SET_PUSH_NOTIFICATION_ENABLED">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</sendMessagesStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
Message submitted for delivery.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Send Message (POST)
Send message with different options to be specified.

API reference 10-163

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/messages

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/applications/myapplication/messages?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload in JSON format has values for message, target, and settings.

Example as JSON
{

"message" : {
"alert" : "Test message",

},
"settings" : {
"apns" : {

"badge" : 1,
"iosActionKey" : "Ok",

10-164 IBM MobileFirst Platform Foundation V6.3.0

"payload" : "",
"sound" : "song.mp3",

},
"gcm" : {

"delayWhileIdle" : ,
"payload" : "",
"sound" : "song.mp3",
"timeToLive" : ,

},
"mpns" : {

"raw" : {
"payload" : {
},

},
"title" : {
"backBackgroundImage" : "Blue.jpg",
"backContent" : "Back Title Content",
"backTitle" : "Back Title",
"backgroundImage" : "Red.jpg",
"count" : 1,
"title" : "Push Notification",

},
"toast" : {
"param" : "/Page2.xaml?NavigatedFrom=Toast Notification",
"title" : "Hello",

},
},

},
"target" : {
"consumerIds" : ["MyConsumerId1", ...],
"deviceIds" : ["MyDeviceId1", ...],
"platforms" : ["A,G", ...],
"tagNames" : ["Gold", ...],

},
}

Payload Properties

The payload has the following properties:

message
The alert message to be sent

settings
The settings are the different attributes of the notification.

target
Set of targets can be consumer Ids, devices, platforms, or tags.

The message has the following properties:

alert
A string to be displayed in the alert.

The settings has the following properties:

apns
Attributes for sending message to an iOS device.

gcm
Attributes for sending message to an Android device.

mpns
Attributes for sending message to an MPNS device.

API reference 10-165

The apns has the following properties:

badge
An integer value to be displayed in a badge on the application icon.

iosActionKey
The label of the dialog box button that allows the user to open the app upon
receiving the notification.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

The gcm has the following properties:

delayWhileIdle
A Boolean value that indicates that the message must not be sent if the device
is idle. The server waits for the device to become active before the message is
sent.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

timeToLive
The duration (in seconds) that the message is kept on GCM storage if the
device is offline. Default value is 4 weeks, and must be set as a JSON number.

The mpns has the following properties:

raw
Raw.

title
Title.

toast
Toast.

The raw has the following properties:

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

The title has the following properties:

backBackgroundImage
URL of the back image on a medium flip Tile.

backContent
Content that displays on the back of a medium flip Tile.

10-166 IBM MobileFirst Platform Foundation V6.3.0

backTitle
Title that displays on the back of a flip Tile.

backgroundImage
URL of the front image on a medium flip Tile.

count
An integer value from 1 to 99. If the value of count is not set or it is set to 0,
the circle image and value do not display in the Tile. This property is also
known as badge.

title
A string that indicates the title of the application. The title fits on a single line
of text and must not be wider than the Tile. Approximately 15 characters can
fit in the title before it is truncated.

The toast has the following properties:

param
Toast notification content.

title
Toast notification title.

The target has the following properties:

consumerIds
The array of consumer Ids.

deviceIds
JSON array of the device ids. Devices with these ids receive the notification.

platforms
JSON array of platforms. Devices running on these platforms receive the
notification. Supported values are A, G, and M.

tagNames
JSON array of tags. Devices that are subscribed to these tags receive the
notification.

Response

The status of send message.

Example as JSON
{

"productVersion" : {
"productVersion" : "6.3.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_PUSH_NOTIFICATION_ENABLED",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<sendMessageStatus

status="Success"

API reference 10-167

type="SET_PUSH_NOTIFICATION_ENABLED">
<productVersion productVersion="6.3.0"/>
<project name="PushNotifications"/>

</sendMessageStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
Message submitted for delivery.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Transaction (GET)
Retrieves information of a specific transaction.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

10-168 IBM MobileFirst Platform Foundation V6.3.0

Path

/management-apis/1.0/runtimes/runtime-name/transactions/transaction-id

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/transactions/1?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

transaction-id
The transaction id.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The information of the specified transaction.

Example as JSON
{

"appServerId" : "Tomcat",
"description" : {
},
"errors" : [
{

"details" : "An internal error occured.",
},
...

],
"id" : 1,
"productVersion" : "6.2.0",
"project" : {
"name" : "myproject",

},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_ADAPTER",
"userName" : "demouser",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<transaction

appServerId="Tomcat"
id="1"
productVersion="6.2.0"
status="FAILURE"

API reference 10-169

timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_ADAPTER"
userName="demouser">
<description/>
<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>

Response Properties

The response has the following properties:

appServerId
The id of the web application server.

description
The details of the transaction, depending on the transaction type.

errors
The errors occured during the transacton.

id The id of the transaction.

productVersion
The exact product version.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction.

userName
The user that initiated the transaction.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

10-170 IBM MobileFirst Platform Foundation V6.3.0

404
The corresponding runtime or the transaction is not found.

500
An internal error occurred.

Transactions (GET)
Retrieves information of failed transactions.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/transactions/errors

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/transactions/errors?locale=de_DE&offset=0&orderBy=created&pageSize=100

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: created, updated, type, status, user, server. The
default sort mode is: created.

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

API reference 10-171

Produces

application/json, application/xml, text/xml, application/zip

Response

The information of the transactions.

Example as JSON
{

"items" : [
{

"appServerId" : "Tomcat",
"description" : {
},
"errors" : [
{

"details" : "An internal error occured.",
},
...

],
"id" : 1,
"project" : {
"name" : "myproject",

},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_ADAPTER",
"userName" : "demouser",

},
...

],
"pageSize" : 100,
"productVersion" : "6.2.0",
"startIndex" : 0,
"totalListSize" : 33,

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<transactions

pageSize="100"
productVersion="6.2.0"
startIndex="0"
totalListSize="33">
<items>
<item

appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_ADAPTER"
userName="demouser">
<description/>
<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

10-172 IBM MobileFirst Platform Foundation V6.3.0

</item>
...

</items>
</transactions>

Response Properties

The response has the following properties:

items
The array of transations

pageSize
The page size if only a page of transactions is returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only a page of transactions is returned.

totalListSize
The total number of transactions.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the transaction, depending on the transaction type.

errors
The errors occured during the transacton.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction.

userName
The user that initiated the transaction.

The error has the following properties:

details
The main error message.

The project has the following properties:

API reference 10-173

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Unsubscribe SMS (POST)
Unsubscribes the list of given phone numbers for SMS.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/notifications/unsubscribeSMS

Example
https://www.myserver.com/worklightadmin/management-apis/1.0/runtimes/myruntime/notifications/unsubscribeSMS?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

10-174 IBM MobileFirst Platform Foundation V6.3.0

Payload

The payload with comma separated list of phone numbers.

Example as JSON
{

"numbers" : "1234,5678",
}

Payload Properties

The payload has the following properties:

numbers
Comma separated list of phone numbers.

Response

The response status of SMS unsubscription.

Example as JSON
{

"failure" : "5678",
"success" : "1234",

}

Example as XML
<?xml version="1.0" encoding="UTF-8"?>
<unsubscribeSMS

failure="5678"
success="1234"/>

Response Properties

The response has the following properties:

failure
Comma separated list of phone numbers which are not deleted.

success
Comma separated list of phone numbers which are successfully deleted.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

API reference 10-175

10-176 IBM MobileFirst Platform Foundation V6.3.0

Deploying MobileFirst projects

After you have created projects and apps with MobileFirst Studio, you must
deploy them to the production environment.

Note: Before you can deploy the project to the production environment, you must
install the MobileFirst Administration Components as described in “Installing the
MobileFirst Server administration” on page 6-46.

You can deploy several MobileFirst runtime environments (that is, several project
WAR files) to an application server just as you would deploy any JEE application.
Each deployed project must have a unique name and a unique context path.

Note: An Administration Service must be installed on the application server where
you install a runtime environment. Otherwise, the runtime environment cannot
download its applications and adapters and cannot start.

You can choose between having several projects use the same database server, or
making each project use a different database server. If you configure several
projects to use the same database, you must configure each data source to connect
to an independent data storage structure (for example, different schemas on DB2,
or different user names on Oracle). Database sharing is not relevant for MySQL
and Apache Derby.

Several instances of MobileFirst Server with different versions of IBM MobileFirst
Platform Foundation installed can share the same application server and the same
MobileFirst Administration Service. However, they must be migrated to be
compatible with the current version of the Administration Service. For more
information about migration, see “Migrating a project WAR file for use with a new
MobileFirst Server” on page 11-37.

For more information, see “Separation of lifecycle between MobileFirst Server and
MobileFirst Studio” on page 7-3.

Read this series of topics to learn how to deploy your MobileFirst projects and
apps to the production environment.

Deploying MobileFirst applications to test and production
environments

When you have developed an application, deploy it to a separate test and
production environment.

About this task

When you finish a development cycle of your application, you usually deploy it to
a testing environment, and then to a production environment.

The tools that you can use to deploy apps and adapters across development, QA,
and production environments are described in the following topics.

© Copyright IBM Corp. 2006, 2015 11-1

Deploying an application from development to a test or
production environment

After you have developed an application, you want to move from your
development environment and deploy a MobileFirst project to a test or production
environment.

Before you begin

You have built a MobileFirst project that contains one or more applications in
MobileFirst tools. A WAR file and a set of .wlapp files are created in the bin folder
of your MobileFirst project. You now want to deploy the project and the
applications to a test or production environment.
v A WAR file is created by MobileFirst tools for every MobileFirst project,

regardless of the number of apps it contains.
v If you build an entire app, a file that is called app-name.wlapp is created,

containing the code and resources of all environments that are supported by
your app. For example: myApp-all.wlapp.

v If you build an app only for specific environments, a file that is called
app-name-env-version.wlapp is created per environment. For example:
myApp-iphone-1.0.wlapp.

About this task

First, you prepare the application or applications for deployment, and then you
deploy them. You can deploy many apps within the same project. The following
instructions lead you through this process.

Procedure
1. Install the MobileFirst Server administration components as described in

“Installing the MobileFirst Server administration” on page 6-46.
You can have several MobileFirst runtime environments that are managed by
the same MobileFirst Operations Console. Verify that you have deployment
rights for IBM MobileFirst Platform Foundation, such as the role of
worklightdeployer or worklightadmin. For more information, see “Configuring
user authentication for MobileFirst Server administration” on page 6-88.

2. For each application in the project, change the settings in the
application-descriptor.xml file to match your production environment.
If necessary depending on the functions of the app, change the following
settings.
v Settings screen
v Device provisioning
v Application authenticity
v User authentication
v The Android shared user ID

For more information, see “The application descriptor” on page 8-24.
3. You might want to look at the settings in the worklight.properties file, which

is in server/conf. Those settings define the default values for the configuration
properties on the server. When you deploy your MobileFirst project on the
server, you can replace the default settings that are in the
worklight.properties file with values that are relevant for the production

11-2 IBM MobileFirst Platform Foundation V6.3.0

environment. For more information, see “Configuring a MobileFirst project in
production by using JNDI environment entries” on page 11-56.

4. Build each application in either of two ways:
v Right-click the application and click Run As > Build All Environments.
v Use the Ant script tool that is described in “Ant tasks for building and

deploying applications and adapters” on page 11-67

If you use MobileFirst tools, the project WAR file is named projectName.war
and is in the \bin folder. This file contains the project configuration that was
done in steps 1 and 2 and any classes that are built from Java code in the
server/java folder.

5. Configure a database and deploy the project WAR to the application server
with one of these two methods:
v With the MobileFirst Server Configuration Tool. For more information, see

“Deploying, updating, or undeploying MobileFirst Server by using the Server
Configuration Tool” on page 11-9.

v With Ant tasks for configuring a database for a MobileFirst project and
deploying a MobileFirst project WAR file to an application server. With this
method, you can also configure the project on the server by using JNDI
environment entries.
– The documentation of the Ant tasks for configuring a database is at

“Creating and configuring the databases with Ant tasks” on page 11-13.
– The documentation of the Ant tasks for deploying a project WAR file is at

“Deploying a project WAR file and configuring the application server with
Ant tasks” on page 11-14.

– The list of JNDI environment entries that can be configured is at
“Configuring a MobileFirst project in production by using JNDI
environment entries” on page 11-56.

– You can find sample Ant files that use these Ant tasks in the MobileFirst
distribution in product_install_dir/WorklightServer/configuration-
samples. Their file names use the naming convention configure-
appServer-database.xml. For more information, see “Sample configuration
files” on page 15-30.
a. First call configuredatabase, the databases target in the sample Ant

files.
b. Then call configureapplicationserver, the install target in the sample

Ant files.
6. Open the MobileFirst Operations Console of the target environment.

If the MobileFirst Operations Console is installed with the default context root,
its URL is of the form https://your-remote-server:server-port/
worklightconsole. If HTTPS is not supported in your application server, it is
the unsecured URL http://your-remote-server:server-port/
worklightconsole.

Important: If you access the MobileFirst Operations Console through HTTP
instead of HTTPS, your MobileFirst administration user password is
compromised.

7. From the MobileFirst Operations Console, deploy the relevant .wlapp files from
the bin folder of your MobileFirst project.
v For more information about how to deploy an application by using

MobileFirst Operations Console, see “Deploying apps” on page 11-74.

Deploying MobileFirst projects 11-3

v You can also deploy the app to the target environment by using the
MobileFirst Server administration command-line tools. For more information
about how to deploy an app by using the provided command-line tools, see
“Administering MobileFirst applications through Ant” on page 12-12 and
“Administering MobileFirst applications through the command line” on page
12-36.

8. Deploy the adapters from the development environment.
a. Navigate to the bin folder in your project.
b. Copy the .adapter file or files.
c. From the MobileFirst Operations Console, deploy the .adapter files from

the bin folder of your project.
v For more information about how to deploy an adapter by using

MobileFirst Operations Console, see “Deploying adapters” on page 11-75.
v You can also deploy the adapter to the target environment by using the

MobileFirst Server administration command-line tools. For more
information about how to deploy an app by using the provided
command-line tools, see “Administering MobileFirst applications through
Ant” on page 12-12 and “Administering MobileFirst applications through
the command line” on page 12-36.

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Building a project WAR file with Ant
You can build the project WAR file by using Ant tasks.

Before you can run Ant tasks, make sure that Apache Ant is installed. The
minimum supported version of Ant is listed in “System requirements for using
IBM MobileFirst Platform Foundation” on page 2-12.

Apache Ant 1.8.4 is included in MobileFirst Server. In the product_install_dir/
shortcuts/ directory, the following scripts are provided:
v For UNIX / Linux: ant
v For Windows: ant.bat

These scripts are ready to run, which means that they do not require specific
environment variables. If the JAVA_HOME environment variable is set, the scripts
accept it.

Note: Since IBM Worklight Foundation V6.2.0, the worklight-ant-builder.jar file
is included in the IBM MobileFirst Platform Command Line Interface, whereas in
earlier versions, it was included in MobileFirst Server. By default,
worklight-ant-builder.jar is installed in the following location: <CLI Install
Path>/public/worklight-ant-builder.jar. For example, on OSX, the default CLI
Install Path is /Applications/IBM/Worklight-CLI. If you use the default installation
path, the Ant task is installed here: /Applications/IBM/Worklight-CLI/public/
worklight-ant-builder.jar.

The Ant task for building a MobileFirst project WAR file has the following
structure:

11-4 IBM MobileFirst Platform Foundation V6.3.0

<?xml version="1.0" encoding="UTF-8"?>
<project name="myProject" default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="cli_install_dir/public/worklight-ant-builder.jar"/>
</classpath>

</taskdef>
<target name="all">
<war-builder projectfolder="."

destinationfolder="bin/war"
warfile="bin/project.war"
classesFolder="classes-folder"/>

</target>
</project>

The <war-builder> element has the following attributes:
v The projectfolder attribute specifies the path to your project.
v The destinationfolder attribute specifies a folder for holding temporary files.
v The warfile attribute specifies the destination and file name of the generated

.war file
v The classesFolder attribute specifies a folder with compiled Java classes to add

to the .war file. .jar files in the projectfolder\server\lib directory are added
automatically

Deploying the project WAR file
For the MobileFirst runtime environment to start, you must deploy it to the server
where the Administration Services application is installed. If you use WebSphere
Application Server Network Deployment, you can alternatively install the
MobileFirst runtime environment in a server or cluster of the cell other than the
one where the Administration Services application that manages this runtime is
installed. If you do so, you must start the server or cluster where the
Administration Services application is installed before the one where the
MobileFirst runtime environment is installed.

Before you start

Install the MobileFirst Server by following the procedure in “Installing
MobileFirst Server” on page 6-14.

If you have a farm topology, configure the server farm by following the
procedure in “Installing a server farm” on page 6-99.

The database and application server prerequisites for this task are
described in “Installation prerequisites” on page 6-15.

You must build a MobileFirst project WAR file by using MobileFirst Studio, or by
following the instructions in “Building a project WAR file with Ant” on page 11-4.
The WAR file contains the default configuration values for the server, and some
resources for the MobileFirst applications and adapters.
v For project WAR files built with earlier versions than V6.2.0.x: The project WAR

file must be built with the same version of Worklight Studio as the version used
to build the apps that are deployed on the Worklight Server.

v For project WAR files that were built with V6.2.0 and later, and deployed to
Worklight Server V6.2.0.1 and later, apps and adapters that were built with any
version, 5.0.6.x and above (but not later than the project WAR version itself), can
be deployed.

You can deploy a MobileFirst project in one the following ways:

Deploying MobileFirst projects 11-5

v By using the Server Configuration Tool.
v By using a set of Ant tasks that are supplied with MobileFirst Server to deploy a

project WAR file and configure your databases and application servers.
v By creating and configuring the databases manually, and deploying the project

WAR file manually.

Optional creation of databases
If you want to activate the option to install the project runtime databases when
you run the Ant tasks or the Server Configuration Tool, you must have certain
database access rights that entitle you to create the databases, or the users, or both,
that are required by the project runtime component.

If you have sufficient database administration credentials, and if you enter the
administrator user name and password in the installer when prompted, the
installation tools can create the databases for you. Otherwise, you must ask your
database administrator to create the required database for you. In this case, the
database must be created before you start the installation tools.

The following topics describe the procedure for the supported database
management systems.

Important: The manual creation of databases is optional if you install MobileFirst
Server with the Server Configuration Tool or the Ant tasks because the Server
Configuration Tool and the Ant tasks can create the databases automatically.

Creating the DB2 databases:

This section explains the procedures used to create the DB2 databases.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the DB2 databases manually” on page 11-17 instead.

About this task

The <configureDatabase> Ant task can create the databases for you if you enter the
name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the databases for you. For more
information, see the DB2 Solution user documentation.

You can replace the database names (here WRKLGHT and WLREPORT) and passwords
with database names and passwords of your choosing.

Important: You can name your databases and user differently, or set a different
password, but ensure that you enter the appropriate database names, user name,
and password correctly across the DB2 database setup. DB2 has a database name
limit of 8 characters on all platforms, and has a user name and password length
limit of 8 characters for Unix and Linux systems, and 30 characters for Windows.

You can also choose to have the data for WRKLGHT database and the data for
WLREPORT database be stored in a single database, as different schemas. To this
effect, in the following procedure, use a single database name of your choosing
instead of WRKLGHT and WLREPORT.

11-6 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html

Procedure

1. Create a system user, for example, named wluser in a DB2 admin group such
as DB2USERS, using the appropriate commands for your operating system. Give
it a password, for example, wluser. If you want multiple MobileFirst projects to
connect to the same database, use a different user name for each connection.
Each database user has a separate default schema. For more information about
database users, see the DB2 documentation and the documentation for your
operating system.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor

v On Linux or UNIX systems, navigate to ~/sqllib/bin and enter ./db2.
v Enter database manager and SQL statements similar to the following

example to create the two databases:
CREATE DATABASE WRKLGHT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WRKLGHT
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT WRKLGHT
CREATE DATABASE WLREPORT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLREPORT
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT WLREPORT
QUIT

Where wluser is the name of the system user that you previously created. If
you defined a different user name, replace wluser accordingly.

3. It is also possible to use only one database (with pagesize settings compatible
with what is previously listed), and to create the databases for IBM MobileFirst
Platform Foundation in different schemas. In that case, only one database is
required. If the IMPLICIT_SCHEMA authority is granted to the user created in
step 1 (the default in the database creation script in step 2), no further action is
required. If the user does not have the IMPLICIT_SCHEMA authority, you need
to create a SCHEMA for the runtime database tables and objects and a
SCHEMA for the reports database tables and objects.

Creating the MySQL databases:

This section explains the procedures used to create the MySQL databases.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the MySQL databases manually” on page 11-27
instead.

About this task

The <configureDatabase> Ant task can create the databases for you if you enter the
name and password of the superuser account. For more information, see Securing
the Initial MySQL Accounts on your MySQL database server. Your database
administrator can also create the databases for you. When you manually create the
databases, you can replace the database names (here WRKLGHT and WLREPORT)
and the password with database names and a password of your choosing. Note
that MySQL database names are case-sensitive on UNIX.

Deploying MobileFirst projects 11-7

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

Procedure

1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE WRKLGHT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;
CREATE DATABASE WLREPORT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;

Where worklight before the @ sign is the user name, password after IDENTIFIED
BY is the user password, and Worklight-host is the name of the host on which
IBM MobileFirst Platform Foundation runs.

Creating the Oracle databases:

This section explains the procedures used to create the Oracle databases.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the Oracle databases manually” on page 11-32
instead.

About this task

The <configureDatabase> Ant task can create the databases or users and schemas
inside an existing database for you if you enter the name and password of the
Oracle administrator on the database server, and the account can be accessed
through SSH. Otherwise, the database administrator can create the databases or
users and schemas for you. When you manually create the databases or users, you
can use database names, user names, and a password of your choosing. Note that
lowercase characters in Oracle user names can lead to trouble.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new database named ORCL:
a. Use global database name ORCL_your_domain, and system identifier (SID)

ORCL.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts, because you must first create a user account.
c. On the Character Sets tab of the step Initialization Parameters, select Use

Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.

If the Oracle installation is on a UNIX or Linux machine, make sure that the
database will be started the next time the Oracle installation is restarted. To this
effect, make sure the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create database users either by using Oracle Database Control, or by using the
Oracle SQLPlus command-line interpreter.

11-8 IBM MobileFirst Platform Foundation V6.3.0

v Using Oracle Database Control.
a. Create the user for the runtime database:

1) Connect as SYSDBA.
2) Go to the Users page: click Server, then Users in the Security section.
3) Create a user, for example, named WORKLIGHT. If you want multiple

MobileFirst projects to connect to the same general-purpose database
you created in step 1, use a different user name for each connection.
Each database user has a separate default schema.

4) Assign the following attributes:
– Profile: DEFAULT
– Authentication: password
– Default table space: USERS
– Temporary table space: TEMP
– Status: Unlocked
– Add system privilege: CREATE SESSION
– Add system privilege: CREATE SEQUENCE
– Add system privilege: CREATE TABLE
– Add quota: Unlimited for tablespace USERS

b. Repeat step "a" to create a user, for example, named
WORKLIGHTREPORTS for the MobileFirst report database.

v Using the Oracle SQLPlus command-line interpreter.
The commands in the following example create a user named WORKLIGHT
and a user named WORKLIGHTREPORTS:
CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER WORKLIGHT IDENTIFIED BY ’WORKLIGHT_password’ DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WORKLIGHT;
DISCONNECT;

CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER WORKLIGHTREPORTS IDENTIFIED BY ’WORKLIGHTREPORTS_password’ DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WORKLIGHTREPORTS;
DISCONNECT;

Deploying, updating, or undeploying MobileFirst Server by using
the Server Configuration Tool
The Server Configuration Tool is a graphical tool that you can use to deploy,
update, or undeploy a MobileFirst Server instance to or from an application server
and database.

If you use this tool in production to upgrade a MobileFirst Server, you must
complete more actions to upgrade the server, as described in “Upgrading to
MobileFirst Server V6.3.0 in a production environment” on page 7-13.

Before you use this tool, verify that the user who runs the Server Configuration
Tool has the privileges that are described in “File system prerequisites” on page
6-16.

The Server Configuration Tool provides the same capabilities as the Ant tasks that
are described in “Ant tasks for installation of MobileFirst Operations Console and
Administration Services” on page 15-8 and “Ant tasks for installation of
MobileFirst runtime environments” on page 15-16. Compared to Ant tasks, the
Server Configuration Tool is limited to a set of operations that are described in the
following list:

Deploying MobileFirst projects 11-9

v The supported databases are IBM DB2, Oracle, and MySQL.

Restriction: The Derby database is not supported.
v It is not possible to define JNDI deployment properties, such as

publicWorkLightHostname or other properties that are listed in “Configuring a
MobileFirst project in production by using JNDI environment entries” on page
11-56. To define those properties, use Ant files. You can use the Server
Configuration Tool to export an Ant file from a server configuration and then
add JNDI deployment properties to it manually. (See “Other operations available
in the Server Configuration Tool” on page 11-12.)

v The Server Configuration Tool must be started on the computer where your
application server is installed.

v The Server Configuration Tool maintains a deployment status of configuration
server components, whether they are deployed or not. This status is not accurate
if the MobileFirst Server components are modified outside the Server
Configuration Tool.

v The Server Configuration Tool is available only on Windows and Linux (x86). It
is also available on Mac OS for test or demonstration purposes, but the
MobileFirst Server is not supported for production in this environment.

v You can use the Server Configuration Tool to install MobileFirst Server to
WebSphere Application Server Network Deployment (clusters, servers), to a
stand-alone WebSphere Application Server instance, or to a Liberty or Tomcat
server. However, you cannot use the Server Configuration Tool to install
MobileFirst Server to a server farm.

v You cannot use the Server Configuration Tool to add a runtime to an
Administration Service that was installed or upgraded with Ant tasks and not
with the Server Configuration Tool.

Running the Server Configuration Tool

You can start the Server Configuration Tool in the following ways:

On Linux

v By using the desktop menu shortcut Server Configuration Tool.
v In a File Manager, click the file mf_server_install_dir/shortcuts/

configuration-tool.sh.

Figure 11-1. Server Configuration Tool main window

11-10 IBM MobileFirst Platform Foundation V6.3.0

Note: mf_server_install_dir is the directory where you install MobileFirst
Server. mf_server is the shortcut for MobileFirst Server.

v From a shell command line, run the command mf_server_install_dir/
shortcuts/configuration-tool.sh.

On Windows

v By using the Start > IBM MobileFirst Platform Server > Server
Configuration Tool menu command.

v In Windows Explorer, double-click the file mf_server_install_dir/
shortcuts/configuration-tool.bat.

v In a console window, run mf_server_install_dir/shortcuts/
configuration-tool.bat.

On Mac OS X

Restriction: MobileFirst Server is not supported for production in this
environment.
v In the Finder, double-click the file mf_server_install_dir/shortcuts/

configuration-tool.sh.
v In a Terminal window, run mf_server_install_dir/shortcuts/

configuration-tool.sh.

Main tasks

Create a MobileFirst Server configuration

For more information, see “Installing MobileFirst Server administration
with the Server Configuration Tool” on page 6-59.

After a MobileFirst Server configuration is created, you can do the following tasks:

Edit an existing MobileFirst Server configuration and redeploy
Use this task to edit and modify an existing MobileFirst Server
configuration. If you select this action, the work flow is as follows:
1. You are prompted to select one of the configurations visible in the

Navigation view.
2. If passwords are required to redeploy the configuration, you are

prompted to enter them.
3. After you enter the passwords, the configuration is checked for errors.
4. If errors are found, a report is displayed.
5. You can then edit the configuration.
6. If the configuration contains no errors, the Redeploy button is enabled.
7. When you click Redeploy, the MobileFirst administration components

are uninstalled from the application server, and reinstalled with the
new parameters.

Add a MobileFirst runtime environment to a configuration
Use this task to add a MobileFirst runtime environment to a MobileFirst
Server configuration.

To create a new MobileFirst runtime environment, complete the following
steps:
1. Select a MobileFirst Server configuration.
2. Select File > Add MobileFirst runtime environment.
3. Enter a descriptive name for the MobileFirst runtime environment.

Deploying MobileFirst projects 11-11

4. Select the path for the MobileFirst project WAR file to be deployed.
5. Step through the wizard to describe the target database management

system.
If you need to create a database for your MobileFirst runtime
environment, the Server Configuration Tool can create it for you. If you
provide the requested administrator password when you are prompted
in the Database Creation Request panel, the database for MobileFirst
runtime environment is created. Alternatively, you can ask your
database administrator to create the database manually by following
the instructions in “Optional creation of databases” on page 11-6.

6. After you provide all the necessary information, the Deploy button is
enabled. When you click Deploy, the following effects take place:
a. The configuration file is saved.
b. If the database contains no MobileFirst tables, these tables are

created.
c. If the database contains MobileFirst tables for an older version of

the product, the tables are upgraded to the current version.
d. If the database operations succeed, the MobileFirst Server is

deployed to the application server.
e. If the WAR file needs to be migrated to the current version, it is

migrated.

Replace the project WAR file of a deployed runtime
Use this task to update the WAR files and libraries of the MobileFirst
administration components. For example, apply a fix pack to the
installation directory of MobileFirst Server.

Replace the WAR file of a deployed MobileFirst Server configuration
If you applied a fix pack to your installation of MobileFirst Server, use this
task to update the console and administration WAR files of a deployed
configuration.

Other operations available in the Server Configuration Tool

Export a Configuration
When you click File > Export Configuration as Ant files, Ant files are
exported. These Ant files contain tasks that take the following actions for
the MobileFirst Operations Console and Administration Services, and for
each MobileFirst runtime environment of the configuration:
v Create or update the databases
v Deploy the WAR file
v Update the WAR file
v Undeploy the WAR file

A help target, the default target of the Ant project, describes the different
targets available. You might want to export a configuration for the
following reasons:
v To add deployment JNDI properties, then run the Ant file in

command-line mode with Apache Ant.
v To run the Ant file on a computer without a graphical user interface.
v To perform the MobileFirst Server operations in batch mode (from the

command line and without using a graphical user interface).

If you modify the MobileFirst Server status outside the Server
Configuration Tool, the status for this configuration is no longer accurate.

11-12 IBM MobileFirst Platform Foundation V6.3.0

Migrate a V6.1.0 Configuration
Configurations that were created with IBM Worklight V6.1.0 are displayed
in a folder called Worklight 6.1 Configurations. To migrate such
configurations to IBM MobileFirst Platform Foundation V6.3.0, complete
the following steps:
1. Select the configuration.
2. Right-click to open a contextual menu.
3. Select Migrate a V6.1 configuration. An IBM MobileFirst Platform

Foundation V6.3.0 configuration is created.
4. Review all the pages of the wizard. In Database Additional Settings,

you must enter information for the new administration database.
5. When all the pages are reviewed, click Migrate.

The IBM Worklight runtime environment V6.1.0 is removed from the
application server. The databases are migrated, the MobileFirst Operations
Console and Administration Services are deployed, and the MobileFirst
runtime environment is deployed.

Change the working directory where the configurations are stored
Click File > Preferences and select a different working directory.

Using Ant tasks to deploy the project WAR file

Creating and configuring the databases with Ant tasks:

If you did not manually create databases, you can use Ant tasks to create and
configure your databases.

About this task

If you did not use the procedure in “Optional creation of databases” on page 11-6
to create the databases manually, complete the following steps.

Procedure

1. Review the sample configuration files in “Sample configuration files” on page
15-30, and copy the Ant file that corresponds to your database. The files for
creating a database are named after the following pattern:
create-database-database.xml

For more information, see table 1, Table 15-58 on page 15-30, in “Sample
configuration files” on page 15-30.

2. Follow step 4 of the page “Sample configuration files” on page 15-30 to edit the
Ant file and replace the placeholder values for the properties at the top of the
file.

3. Run the following commands to create the databases.
ant -f create-database-database.xml databases

You can find the Ant command in product_install_dir/shortcuts.
If the databases are created, and you must create only the databaseTABLES.
4. Edit the Ant script that you use later to create and configure the databases.
5. Review the sample configuration files in “Sample configuration files” on page

15-30, and copy the Ant file that corresponds to your database. The files for
configuring an existing database are named after this pattern:
configure-appServer-database.xml

Deploying MobileFirst projects 11-13

For more information, see table 1, Table 15-58 on page 15-30, in “Sample
configuration files” on page 15-30.

6. See step 4 of the page “Sample configuration files” on page 15-30 to edit the
Ant file and replace the placeholder values for the properties at the top of the
file.

7. Run the following commands to create the databases.
ant -f configure-appServer-database.xml databases

You can find the Ant command in product_install_dir/shortcuts.

What to do next

See also:
v “Ant configuredatabase task reference” on page 15-1
v “Sample configuration files” on page 15-30

Deploying a project WAR file and configuring the application server with Ant
tasks:

Use Ant tasks to deploy the project WAR file to an application server, and
configure data sources, properties, and database drivers that are used by IBM
MobileFirst Platform Foundation. A set of Ant tasks is supplied with IBM
MobileFirst Platform Server.

Before you begin

Before you deploy your project WAR file and configure the application server, you
must complete the following procedures:
v “Installing MobileFirst Server” on page 6-14.
v “Installing a server farm” on page 6-99, to configure the server farm if you have

a farm topology.
v “Creating and configuring the databases with Ant tasks” on page 11-13

If you deploy different project WAR files, each WAR file must have its own set of
tables. Either the database, or the schema where the tables are stored, must be
different. For Oracle, the database user must be different.

You must run the Ant task on the computer where the application serve is
installed, or the Network Deployment Manager for WebSphere Application Server
Network Deployment. If you want to start the Ant task from a computer on which
Worklight Server is not installed, you must copy the file mf_server_install_dir/
WorklightServer/worklight-ant-deployer.jar to that computer.

Note: The mf_server_install_dir placeholder is the directory where you installed
IBM MobileFirst Platform Server.

Procedure

1. Review the environment ID that you used to install the MobileFirst Server
administration. This environment ID is installed as a JNDI property. For more
information about the list of JNDI properties, see “List of JNDI properties for
MobileFirst Server administration” on page 6-92.

11-14 IBM MobileFirst Platform Foundation V6.3.0

Important: If the MobileFirst Server administration used an environment ID,
install the project WAR file with the same environment ID. Otherwise, that
project WAR file cannot be managed by the MobileFirst Server administration.

2. Edit the Ant script that you use later to deploy the Project WAR File.
a. Review the sample configuration files in “Sample configuration files” on

page 15-30, and copy the Ant file that corresponds to your database. The
files for deploying a project WAR file are named after the following pattern:
configure-appServer-database.xml

For more information, see table 1, Table 15-58 on page 15-30, in “Sample
configuration files” on page 15-30.

Note: If your file name follows the pattern configure-appServer-
database.xml, you can reuse it for “Creating and configuring the databases
with Ant tasks” on page 11-13,

b. Follow step 4 of the page “Sample configuration files” on page 15-30 to edit
the Ant file and replace the placeholder values for the properties at the top
of the file.

3. If the MobileFirst Server administration uses an environment ID, and you run
an Ant task for the installation, add an environmentID attribute to the following
Ant tasks, which are used for the administration installation:
v installworklightadmin

v updateworklightadmin

v uninstallworklightadmin

v configureapplicationserver

v updateapplicationserver

v unconfigureapplicationserver

For more information, see “Ant tasks for installation of MobileFirst runtime
environments” on page 15-16 and “Ant tasks for installation of MobileFirst
Operations Console and Administration Services” on page 15-8.

Important: The value of the attribute must be the same as the one used for the
MobileFirst Server administration.

4. To deploy the project WAR file, run the following command:
ant -f configure-appServer-database.xml install

You can find the Ant command in mf_server_install_dir/shortcuts

What to do next

See also:
v “Ant tasks for installation of MobileFirst runtime environments” on page 15-16
v “Sample configuration files” on page 15-30
v “Using Ant tasks to install MobileFirst Server administration” on page 6-62

Configuring WebSphere Application Server Network Deployment servers:

Specific considerations when you configure WebSphere Application Server
Network Deployment servers through Ant tasks are documented in this section.

Deploying MobileFirst projects 11-15

To install a MobileFirst project into a set of WebSphere Application Server Network
Deployment servers, run the <configureapplicationserver> Ant task on the
computer where the deployment manager is running.

Procedure

1. Specify a database type other than Apache Derby. IBM MobileFirst Platform
Foundation supports Apache Derby only in embedded mode, and this choice is
incompatible with deployment through WebSphere Application Server Network
Deployment.

2. As value of the profile attribute, specify the deployment manager profile.
Attention: Do not specify an application server profile and then a single
managed server. Doing so causes the deployment manager to overwrite the
configuration of the server. This is true whether you install on the computer on
which the deployment manager is running or on a different computer.

3. Specify an inner element, depending on where you want the MobileFirst
Runtime Component to be installed. The following table lists the available
elements:

Note: You must choose the same inner element to install the MobileFirst
Administration Services. You must install an instance of the MobileFirst
Administration Service on each server where the MobileFirst Runtime
Component is installed.

Table 11-1. Inner elements of <was> for network deployment

Element Explanation

cell Install the MobileFirst project into all application servers of the
cell.

cluster Install the MobileFirst project into all application servers of the
specified cluster.

node Install the MobileFirst project into all application servers of the
specified node that are not in a cluster.

server Install the MobileFirst project into the specified server, which is
not in a cluster.

4. After starting the <configureapplicationserver> Ant task, restart the affected
servers:
v You must restart the servers that were running and on which the MobileFirst

project application was installed. To restart these servers with the
deployment manager console, select Applications > Application Types >
WebSphere enterprise applications > IBM_Worklight_Console > Target
specific application status.

v You do not have to restart the deployment manager or the node agents.

Results

The configuration has no effect outside the set of servers in the specified scope.
The JDBC providers, JDBC data sources, and shared libraries are defined with the
specified scope. The entities that have a cell-wide scope (the applications and, for
DB2, the authentication alias) use the specified id attribute as a suffix in their
name; it makes their name unique. So, you can install MobileFirst Server in
different configurations or even different versions of MobileFirst Server, in different
clusters of the same cell.

11-16 IBM MobileFirst Platform Foundation V6.3.0

Note: Because the JDBC driver is installed only in the specified set of application
servers, the Test connection button for the JDBC data sources in the WebSphere
Application Server administrative console of the deployment manager might not
work.

Adding a server to a cluster

When you add a server to a cluster that has a MobileFirst project installed on it,
you must repeat some configuration manually. For each affected server, add a
specific web container custom property:
1. Click Servers > Server Types > Application Servers, and select the server.
2. Click Web Container Settings > Web container.
3. Click Custom properties.
4. Click New.
5. Enter the property values listed in the following table:

Table 11-2. Web container custom property values

Property Value

Name com.ibm.ws.webcontainer.invokeFlushAfterService

Value false

Description See http://www.ibm.com/support/
docview.wss?uid=swg1PM50111.

6. Click OK.
7. Click Save.

Deploying the project WAR file manually

Creating and configuring the databases manually:

You can manually create and configure the IBM MobileFirst Platform Foundation
databases.

Configuring the DB2 databases manually:

You configure the DB2 databases manually by creating the databases, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the databases. This step is described in “Creating the DB2 databases” on
page 11-6

2. Create the tables in the databases. This step is described in “Setting up your
DB2 databases manually” on page 11-18

3. Perform the application server-specific setup as the following list shows.

Note: At this stage, you can choose to provide a database user with limited
privileges to better secure access to the Application Server database during
runtime operations. To create a database user with restricted privileges, see
“Restricting database user permissions for IBM MobileFirst Platform Server
runtime operations” on page 6-18.

Deploying MobileFirst projects 11-17

Setting up your DB2 databases manually:

You can set up the database manually instead of using Ant tasks.

About this task

Set up your DB2 database by creating the database schema. The following
procedure creates the schemas for WRKLGHT and WLREPORT in different databases, but
it is possible to group them in the same database. In this case, skip step 5.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password password. For more information, see the DB2 documentation and the
documentation for your operating system.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across
the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

Note: If you want multiple instances of IBM MobileFirst Platform Server to
connect to the same database, use a different user name for each connection.
Each database user has a separate default schema.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called WRKLGHT:
CREATE DATABASE WRKLGHT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WRKLGHT
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

Where worklight is the name of the system user that you previously created. If
you defined a different user name, replace worklight with the user name.

4. Run DB2 with the following commands to create the WRKLGHT tables:
db2 CONNECT TO WRKLGHT USER worklight USING password
db2 SET CURRENT SCHEMA = ’WRKSCHM’
db2 -vf product_install_dir/WorklightServer/databases/create-worklight-db2.sql -t

Where worklight after USER is the name of the system user with "CONNECT"
access to the WRKLGHT database that you previously created, and password after
USING is this user's password. If you defined either a different user name, or a
different password, or both, replace worklight, or password, or both.
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

Important: If you do not specify the user name and password, DB2 assumes
that the user is the current user, and creates the tables by using this current
user's schema. If the current user differs from the settings in Worklight, then
the current user is denied access to the tables in the database.

5. Enter the following database manager and SQL statements to create a database
that is called WLREPORT:

11-18 IBM MobileFirst Platform Foundation V6.3.0

CREATE DATABASE WLREPORT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLREPORT
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

6. Run DB2 with the following commands to create the WLREPORT tables:
db2 CONNECT TO WLREPORT USER worklight USING password
db2 SET CURRENT SCHEMA = ’WLRESCHM’
db2 -vf product_install_dir/WorklightServer/databases/create-worklightreports-db2.sql -t

Configuring Liberty profile for DB2 manually:

If you want to manually set up and configure your DB2 database with WebSphere
Application Server Liberty profile, use the following procedure.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver
Versions, or fetch it from the directory DB2_INSTALL_DIR/java on the DB2
server) to $LIBERTY_HOME/wlp/usr/shared/resources/db2. If that directory does
not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file (worklightServer can be replaced in this path
by the name of your server) as follows:
<!-- Declare the jar files for DB2 access through JDBC. -->
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the runtime database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WRKLGHT" currentSchema="WRKSCHM"

serverName="db2server" portNumber="50000"
user="worklight" password="password"/>

</dataSource>

<!-- Declare the reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLREPORT" currentSchema="WLRESCHM"

serverName="db2server" portNumber="50000"
user="worklight" password="password"/>

</dataSource>

Where worklight after user= is the name of the system user with "CONNECT"
access to the WRKLGHT and WLREPORT databases that you previously created, and
password after password= is this user's password. If you defined either a
different user name, or a different password, or both, replace these entries
accordingly. Also, replace db2server with the host name of your DB2 server (for
example, localhost, if it is on the same machine).

Note: The database user that is provided in step 2 does not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are

Deploying MobileFirst projects 11-19

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-18.
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.
The jndiName attributes must depend on the context root that you select for the
MobileFirst Server application, following the instructions in “Configuring the
Liberty profile manually” on page 11-38. If the context root is /app_context, use
jndiName="app_context/jdbc/WorklightDS" and jndiName="app_context/jdbc/
WorklightReportsDS" respectively.

Configuring WebSphere Application Server for DB2 manually:

If you want to manually set up and configure your DB2 database with WebSphere
Application Server, use the following procedure.

About this task

Complete the DB2 database Setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/project-name/db2.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
project-name/db2.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/project-name/db2.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/project-name/db2.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/project-name/db2.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the DB2 JDBC driver JAR file to the directory that you determined in step

1.
You can retrieve the file in one of two ways:
v Download it from DB2 JDBC Driver Versions.
v Fetch it from the db2_install_dir/java on the DB2 server directory.

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database type to DB2.
e. Set Provider type to DB2 Using IBM JCC Driver.
f. Set Implementation Type to Connection pool data source.
g. Set Name to DB2 Using IBM JCC Driver.

11-20 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

h. Click Next.
i. Set the Class path to the set of JAR files in the directory that you

determined in step 1, one per line, replacing WAS_INSTALL_DIR/profiles/
profile-name with the WebSphere Application Server variable reference
${USER_INSTALL_ROOT}.

j. Do not set Native library path.
k. Click Next.
l. Click Finish.
m. The JDBC provider is created.
n. Click Save.

4. Create a data source for the runtime database:
a. Select Resources > JDBC > Data Sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Set the Data source name to Worklight Database.
e. Set JNDI Name to jdbc/WorklightDS.
f. Click Next.
g. Enter properties for the data source, for example:
v Driver type: 4
v Database Name: WRKLGHT
v Server name: localhost
v Port number: 50000 (default)
Leave Use this data source in (CMP) selected.

h. Click Next.
i. Create JAAS-J2C authentication data, specifying the DB2 user name and

password as its properties. If necessary, go back to the data source creation
wizard, by repeating steps 4a to 4h.

j. Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

k. Click Next and Finish.
l. Click Save.
m. In Resources > JDBC > Data sources, select the new data source.
n. Click WebSphere Application Server data source properties.
o. Select the Non-transactional data source check box.
p. Click OK.
q. Click Save.
r. Click Custom properties for the data source, select property currentSchema,

and set the value to the schema used to create the data source tables
(WRKSCHM and WLRESCHM in this example).

5. Create a data source for the reports database:
a. Select Resources > JDBC > Data Sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Set the Data source name to Worklight Reports Database.
e. Set JNDI Name to jdbc/WorklightReportsDS.
f. Click Next.

Deploying MobileFirst projects 11-21

g. Enter properties for the data source, for example:
v Driver type: 4
v Database Name: WLREPORT
v Server name: localhost
v Port number: 50000 (default)
Leave Use this data source in (CMP) selected.

h. Click Next.
i. If you need a different DB2 user name and password for the reports

database than for the runtime database, create JAAS-J2C authentication data,
specifying the DB2 user name and password as its properties. If necessary,
go back to the data source creation wizard, by repeating steps 5a on page
11-21 to 5h.

j. Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

k. Click Next and Finish.
l. Click Save.
m. In Resources > JDBC > Data sources, select the new data source.
n. Click WebSphere Application Server data source properties.
o. Select the Non-transactional data source check box.
p. Click OK.
q. Click Save.
r. Click Custom properties for the data source, select property currentSchema,

and set the value to the schema used to create the data source tables
(WRKSCHM and WLRESCHM in this example).

6. Test the data source connection by selecting each Data Source and clicking Test
Connection.

7. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for DB2 manually:

If you want to manually set up and configure your DB2 database with Apache
Tomcat server, use the following procedure.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file to $TOMCAT_HOME/lib.
You can retrieve the file in one of two ways:
v Download it from DB2 JDBC Driver Versions
v Fetch it from the db2_install_dir/java directory on the DB2 server.

2. Prepare an XML statement that defines the data source, as shown in the
following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat manually” on page 11-43.

<Resource auth="Container"
driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/WorklightDS"
username="worklight"

11-22 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

password="password"
type="javax.sql.DataSource"
url="jdbc:db2://db2server:50000/WRKLGHT:currentSchema=WRKSCHM;"/>

<Resource auth="Container"
driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/WorklightReportsDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://db2server:50000/WLREPORT:currentSchema=WLRESCHM;"/>

Where worklight after username= is the name of the system user with
"CONNECT" access to the WRKLGHT and WLREPORT databases that you previously
created, and password after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
worklight accordingly. Also, replace db2server with the host name of your DB2
server (for example, localhost, if it is on the same machine).

Note: The database user that is provided in this step does not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-18.
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

Configuring the Apache Derby databases manually:

You configure the Apache Derby databases manually by creating the databases and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the databases and the tables within them. This step is described in
“Setting up your Apache Derby databases manually”

2. Configure the application server to use this database setup. Go to one of the
following topics:
v “Configuring Liberty Profile for Derby manually” on page 11-24
v “Configuring WebSphere Application Server for Derby manually” on page

11-25
v “Configuring Apache Tomcat for Derby manually” on page 11-27

Setting up your Apache Derby databases manually:

You can set up your Apache Derby database manually instead of by running Ant
tasks.

About this task

Set up your Apache Derby database by creating the database schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from Apache Derby: Downloads.

Deploying MobileFirst projects 11-23

http://db.apache.org/derby/derby_downloads

For supported versions of Apache Derby, see “System requirements for using
IBM MobileFirst Platform Foundation” on page 2-12.
The script displays ij version number.

2. At the command prompt, enter the following commands:
connect ’jdbc:derby:WRKLGHT;user=WORKLIGHT;create=true’;
run ’product_install_dir/WorklightServer/databases/create-worklight-derby.sql’;
connect ’jdbc:derby:WLREPORT;user=WORKLIGHT;create=true’;
run ’product_install_dir/WorklightServer/databases/create-worklightreports-derby.sql’;
quit;

Configuring Liberty Profile for Derby manually:

If you want to manually set up and configure your Apache Derby database with
WebSphere Application Server Liberty Profile, use the following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:
<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the runtime database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/WRKLGHT" user="WORKLIGHT"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool" />

</dataSource>

<!-- Declare the reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/WLREPORT" user="WORKLIGHT"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool" />

</dataSource>

The jndiName attributes must depend on the context root that you select for the
MobileFirst Server application, following the instructions in “Configuring the
Liberty profile manually” on page 11-38. If the context root is /app_context, use
jndiName="app_context/jdbc/WorklightDS" and jndiName="app_context/jdbc/
WorklightReportsDS" respectively.

11-24 IBM MobileFirst Platform Foundation V6.3.0

Configuring WebSphere Application Server for Derby manually:

You can set up and configure your Apache Derby database manually with
WebSphere Application Server.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/project-name/derby.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
project-name/derby.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/project-name/derby.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/project-name/derby.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/project-name/derby.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/

lib/derby.jar to the directory that you determined in step 1.
3. Set up the JDBC provider.

a. In theWebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database type to User-defined.
e. Set Class Implementation name to

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40.
f. Set Name to Worklight - Derby JDBC Provider.
g. Set Description to Derby JDBC provider for Worklight.
h. Click Next.
i. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

j. Click Finish.
4. Create the data source for the runtime database.

a. In the WebSphere Application Server console, click Resources > JDBC >
Data sources.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source Name to Worklight Database.

Deploying MobileFirst projects 11-25

e. Set JNDI name to jdbc/WorklightDS.
f. Click Next.
g. Select the existing JDBC provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the Worklight Database datasource that you created.
m. Under Additional Properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the WRKLGHT database that is created by the

configuredatabase ant task.
p. Click OK.
q. Click Save.

r. At the top of the page, click Worklight Database.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.
u. Click OK.
v. Click Save.
w. In the table, select the Worklight Database datasource that you created.
x. Click test connection (only if you are not on the console of a WAS

Deployment Manager).
5. Set up the data source for the reports database.

a. In the WebSphere Application Server console, click Resources > JDBC >
Data sources.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source name to Worklight Reports Database.
e. Set JNDI name to jdbc/WorklightReportsDS.
f. Click Next.
g. Select the existing JDBC provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the Worklight Reports Database datasource that you

created.
m. Under Additional properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the WLREPORT database that is created by the

configuredatabase ant task.
p. Click OK.
q. Click Save.

11-26 IBM MobileFirst Platform Foundation V6.3.0

r. At the top of the page, click Worklight Reports Database.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.
u. Click OK.
v. Click Save.
w. In the table, select the Worklight Reports Database datasource that you

created.
x. Optional: Only if you are not on the console of a WebSphere Application

Server Deployment Manager, click test connection.
6. For WebSphere Application Server Network Deployment, click System

administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for Derby manually:

If you want to manually set up and configure your Apache Derby database with
the Apache Tomcat server, use the following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/
lib/derby.jar to the directory $TOMCAT_HOME/lib.

2. Prepare an XML statement that defines the data source, as shown in the
following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat manually” on page 11-43.

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/WorklightDS"
username="WORKLIGHT"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WRKLGHT"/>

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/WorklightReportsDS"
username="WORKLIGHT"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WLREPORT"/>

Configuring the MySQL databases manually:

You configure the MySQL databases manually by creating the databases, creating
the database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the databases. This step is described in “Creating the MySQL databases”
on page 11-7

2. Create the tables in the databases. This step is described in “Setting up your
MySQL databases manually” on page 11-28

3. Perform the application server-specific setup as the following list shows.

Deploying MobileFirst projects 11-27

Setting up your MySQL databases manually:

You can set up the database manually instead of using the Ant tasks.

About this task

Complete the following procedure to set up your MySQL databases.

Procedure

1. Create the database schema.
a. Run a MySQL command line client with the option -u root.
b. Enter the following commands:

CREATE DATABASE WRKLGHT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’worklight’;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
FLUSH PRIVILEGES;
CREATE DATABASE WLREPORT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’worklight’;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
FLUSH PRIVILEGES;

USE WRKLGHT;
SOURCE product_install_dir/WorklightServer/databases/create-worklight-mysql.sql;

USE WLREPORT;
SOURCE product_install_dir/WorklightServer/databases/create-worklightreports-mysql.sql;

Where worklight before the "at" sign (@) is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM MobileFirst Platform Foundation runs.

2. Add the following property to your MySQL option file:
max_allowed_packet=256M

For more information about max_allowed_packet, see the MySQL
documentation, section Packet Too Large.
For more information about option files, see the MySQL documentation at
MySQL.

Configuring Liberty profile for MySQL manually:

If you want to manually set up and configure your MySQL database with
WebSphere Application Server Liberty profile, use the following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:
<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

11-28 IBM MobileFirst Platform Foundation V6.3.0

http://dev.mysql.com/doc/refman/5.5/en/packet-too-large.html
http://dev.mysql.com

<!-- Declare the runtime database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="WRKLGHT"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="password"/>

</dataSource>

<!-- Declare the reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="WLREPORT"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="password"/>

</dataSource>

Where worklight after user= is the user name, password after password= is this
user's password, and mysqlserver is the host name of your MySQL server. If
you have defined either a different user name, or a different password, or both,
replace these entries accordingly. Also, replace mysqlserver with the host name
of your MySQL server (for example, localhost, if it is on the same machine).

Note: The database user that is provided in this step does not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-18.
The jndiName attributes must depend on the context root that you select for the
MobileFirst Server application, following the instructions in “Configuring the
Liberty profile manually” on page 11-38. If the context root is /app_context, use
jndiName="app_context/jdbc/WorklightDS" and jndiName="app_context/jdbc/
WorklightReportsDS" respectively.

Configuring WebSphere Application Server for MySQL manually:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server, use the following
procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/project-name/mysql.

Deploying MobileFirst projects 11-29

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

v For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
project-name/mysql.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/project-name/mysql.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/project-name/mysql.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/project-name/mysql.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the MySQL JDBC driver JAR file that you downloaded from Download

Connector/J to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Create a JDBC provider named MySQL.
e. Set Database type to User defined.
f. Set Scope to Cell.
g. Set Implementation class to

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.
h. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

i. Save your changes.
4. Create a data source for the runtime database:

a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Type any name (for example, Worklight Database).
e. Set JNDI Name to jdbc/WorklightDS.
f. Use the existing JDBC Provider MySQL, defined in the previous step.
g. Set Scope to New.
h. On the Configuration tab, select Non-transactional data source.
i. Click Next a number of times, leaving all other settings as defaults.
j. Save your changes.

5. Create a data source for the reports database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Type any name (for example, Worklight Report Database).
e. Set JNDI Name to jdbc/WorklightReportsDS.
f. Use the existing JDBC Provider MySQL, defined in the previous step.

11-30 IBM MobileFirst Platform Foundation V6.3.0

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

g. Set Scope to New.
h. On the Configuration tab, select Non-transactional data source. New.
i. Click Next a number of times, leaving all other settings as defaults.
j. Save your changes.

6. Set the custom properties of each new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

portNumber = 3306
relaxAutoCommit=true
databaseName = WRKLGHT or WLREPORT respectively
serverName = the host name of the MySQL server
user = the user name of the MySQL server
password = the password associated with the user name

Note: The database user that is listed in this step does not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst
Platform Server runtime operations” on page 6-18.

7. Set the WAS custom properties of each new data source.
a. In Resources > JDBC > Data sources, select the new data source.
b. Click WebSphere Application Server data source properties.
c. Select the Non-transactional data source check box.
d. Click OK.
e. Click Save.

8. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for MySQL manually:

If you want to manually set up and configure your MySQL database with the
Apache Tomcat server, use the following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/lib directory.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat manually” on page 11-43.

<Resource name="jdbc/WorklightDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://mysqlserver:3306/WRKLGHT"/>

<Resource name="jdbc/WorklightReportsDS"

Deploying MobileFirst projects 11-31

auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://mysqlserver:3306/WLREPORT"/>

Where worklight after username= is the user name of the MySQL server,
worklight after password= is this user's password, and mysqlserver is the host
name of your MySQL server (for example, localhost, if it is on the same
machine).

Note: The database user that is listed in this step does not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-18.

Configuring the Oracle databases manually:

You configure the Oracle databases manually by creating the databases, creating
the database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the databases. This step is described in “Creating the Oracle databases”
on page 11-8

2. Create the tables in the databases. This step is described in “Setting up your
Oracle databases manually”

3. Perform the application server-specific setup as the following list shows.

Setting up your Oracle databases manually:

You can set up the database manually instead of using Ant tasks.

About this task

Complete the following procedure to set up your Oracle databases.

Procedure

1. Ensure that you have at least one Oracle database.
In many Oracle installations, the default database has the SID (name) ORCL. For
best results, set the character set of the database to Unicode (AL32UTF8).
If the Oracle installation is on a UNIX or Linux computer, make sure that the
database is started the next time the Oracle installation is restarted. To this
effect, make sure that the line in /etc/oratab that corresponds to the database
ends with a Y, not with an N.

2. Create the user WORKLIGHT, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.
v To create the user for the runtime database/schema (by default Worklight),

by using Oracle Database Control, proceed as follows:
a. Connect as SYSDBA.
b. Go to the Users page.

11-32 IBM MobileFirst Platform Foundation V6.3.0

c. Click Server, then Users in the Security section.
d. Create a user, named WORKLIGHT with the following attributes:

Profile: DEFAULT
Authentication: password
Default tablespace: USERS
Temporary tablespace: TEMP
Status: Unlocked
Add system privilege: CREATE SESSION
Add system privilege: CREATE SEQUENCE
Add system privilege: CREATE TABLE
Add quota: Unlimited for tablespace USERS

e. Repeat the previous step to create the user WORKLIGHTREPORTS for the
reports database/schema and a user WORKLIGHT for the runtime
database/schema.

v To create the two users by using Oracle SQLPlus, enter the following
commands:
CONNECT SYSTEM/SYSTEM_password@ORCL
CREATE USER WORKLIGHT IDENTIFIED BY WORKLIGHT_password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WORKLIGHT;
DISCONNECT;
CONNECT SYSTEM/SYSTEM_password@ORCL
CREATE USER WORKLIGHTREPORTS IDENTIFIED BY WORKLIGHTREPORTS_password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WORKLIGHTREPORTS;
DISCONNECT;

3. Create the database tables for the runtime database and reports database:
a. Using the Oracle SQLPlus command-line interpreter, create the tables for

the runtime database by running the create-worklight-oracle.sql file:
CONNECT WORKLIGHT/product_password@ORCL
@product_install_dir/WorklightServer/databases/create-worklight-oracle.sql
DISCONNECT;

b. Using the Oracle SQLPlus command-line interpreter, create the tables for
the reports database by running the create-worklightreports-oracle.sql
file:
CONNECT WORKLIGHTREPORTS/<WORKLIGHTREPORTS_password>@ORCL
@product_install_dir/WorklightServer/databases/create-worklightreports-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:
a. Download the JDBC driver from the Oracle website at Oracle: JDBC, SQLJ,

Oracle JPublisher and Universal Connection Pool (UCP):
b. Ensure that the Oracle JDBC driver is in the system path. The driver file is

ojdbc6.jar.

Configuring Liberty Profile for Oracle manually:

If you want to manually set up and configure your Oracle database with
WebSphere Application Server Liberty Profile, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC Driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/oracle. If that directory does not exist, create it.

Deploying MobileFirst projects 11-33

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/wlp/usr/
servers/worklightServer/server.xml file (worklightServer may be replaced in
this path by the name of your server) as shown in the following JNDI code
example:
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

<!-- Declare the runtime database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin" databaseName="ORCL"

serverName="oserver" portNumber="1521"
user="WORKLIGHT" password="WORKLIGHT_password"/>

</dataSource>

<!-- Declare the reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin" databaseName="ORCL"

serverName="oserver" portNumber="1521"
user="WORKLIGHTREPORTS" password="WORKLIGHTREPORTS_password"/>

</dataSource>

Where WORKLIGHT and WORKLIGHTREPORTS after user= are the names of the users
with "CONNECT" access to the WRKLGHT and WLREPORT databases that you
previously created, and password after password= are this users' passwords. If
you defined either different user names, or different passwords, or both, replace
these entries accordingly. Also, replace oserver with the host name of your
Oracle server (for example, localhost, if it is on the same machine).

Note: The database users that are provided in this step do not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-18.
The jndiName attributes must depend on the context root that you select for the
MobileFirst Server application, following the instructions in “Configuring the
Liberty profile manually” on page 11-38. If the context root is /app_context, use
jndiName="app_context/jdbc/WorklightDS" and jndiName="app_context/jdbc/
WorklightReportsDS".

Configuring WebSphere Application Server for Oracle manually:

If you want to manually set up and configure your Oracle database with
WebSphere Application Server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/project-name/oracle.

11-34 IBM MobileFirst Platform Foundation V6.3.0

v For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
project-name/oracle.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/project-name/oracle.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/project-name/oracle.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/project-name/oracle.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the Oracle ⌂ojdbc6.jar file downloaded from JDBC and Universal

Connection Pool (UCP) to the directory that you determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Complete the JDBC Provider fields as indicated in the following table:

Table 11-3. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver

Implementation type Connection pool data source

Name Oracle JDBC Driver

e. Click Next.
f. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

g. Click Next.
The JDBC provider is created.

4. Create a data source for the runtime database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source name to Oracle JDBC Driver DataSource.
e. Set JNDI name to jdbc/WorklightDS.
f. Click Next.
g. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.
h. Click Next.
i. Set the URL value to jdbc:oracle:thin:@oserver:1521:ORCL, where oserver is

the host name of your Oracle server (for example, localhost, if it is on the
same machine).

j. Click Next twice.

Deploying MobileFirst projects 11-35

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

k. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource
> Custom properties.

l. Set oracleLogPackageName to oracle.jdbc.driver.
m. Set user = WORKLIGHT.
n. Set password = WORKLIGHT_password.
o. Click OK and save the changes.
p. In Resources > JDBC > Data sources, select the new data source.
q. Click WebSphere Application Server data source properties.
r. Select Non-transactional data source.
s. Click OK.
t. Click Save.

5. Create a data source for the reports database, following the instructions in step
2, but using the JNDI name jdbc/WorklightReportsDS and the user name
WORKLIGHTREPORTS and its corresponding password.

Note: The database users WORKLIGHT and WORKLIGHTREPORTS that are provided in
this step do not need extended privileges on the databases. If you need to
implement restrictions on the database, you can set here a user that has the
restricted privileges that are listed in “Restricting database user permissions for
IBM MobileFirst Platform Server runtime operations” on page 6-18.

6. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for Oracle manually:

If you want to manually set up and configure your Oracle database with the
Apache Tomcat server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat manually” on page 11-43.

<Resource name="jdbc/WorklightDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521:ORCL"
username="WORKLIGHT"
password="WORKLIGHT_password"/>

<Resource name="jdbc/WorklightReportsDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521:ORCL"
username="WORKLIGHTREPORTS"
password="WORKLIGHTREPORTS_password"/>

Where WORKLIGHT and WORKLIGHTREPORTS after username= are the names of the
users with "CONNECT" access to the WRKLGHT and WLREPORT databases that you
previously created, and password after password= are this users' passwords. If
you defined either different user names, or different passwords, or both, replace

11-36 IBM MobileFirst Platform Foundation V6.3.0

these entries accordingly. Also, replace oserver with the host name of your
Oracle server (for example, localhost, if it is on the same machine).

Note: The database users that are provided in this step do not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-18.

Deploying a project WAR file and configuring the application server manually:

The procedure to manually deploy your app to an application server depends on
the type of application server being configured, as detailed here. Depending on the
version of the product that was used to build the project WAR file and the version
of MobileFirst Server, you might need to migrate the WAR file first.

When the version of IBM MobileFirst Platform Foundation produces a WAR file
that is not compatible with the version of MobileFirst Server, you must migrate the
project WAR file to the current MobileFirst Server version to ensure a successful
manual deployment. All fix packs of a product version are compatible in that
sense, and so you do not need to migrate associated project WAR files. For
example, if you build a project WAR file by using MobileFirst Studio V6.0.0 and
want to deploy it manually to MobileFirst Server V6.0.0.1, you do not need to
migrate the WAR file. WAR file migration is necessary if MobileFirst Studio and
MobileFirst Server are of different versions. For example, if you build a project
WAR file by using MobileFirst Studio V6.0.0 and want to deploy it to MobileFirst
Server V6.1.0, you must migrate the WAR file before you deploy it manually.
Project WAR files need to be migrated because they contain information that is
specific to the MobileFirst Server version. The migration updates the
version-specific information in the WAR file, thus making it suitable to run on the
new version of MobileFirst Server.

Only WAR files produced by MobileFirst Studio from V5.0.6 and later can be
migrated: earlier versions are not supported.

These manual configuration instructions assume that you are familiar with your
application server.

Note: Using the Ant task to deploy the project WAR file and configure the
application server is more reliable than installing and configuring manually, and
should be used whenever possible.

Migrating a project WAR file for use with a new MobileFirst Server:

Use Ant tasks to migrate a project WAR file so that you can deploy it manually to
a new version of MobileFirst Server.

You migrate a project WAR file by running a <migrate> Ant task, which is
included in the worklight-ant-deployer.jar library. You can migrate .war files
that are developed in V5.0.6 of this product and later. To run the Ant task, you
invoke it from an Ant XML file similar to the following example:
<?xml version="1.0" encoding="UTF-8"?>
<project name="MigrateWarFile" default="migrate" basedir=".">

<target name="migrate">
<echo message="Loading Ant Tool" />
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>

Deploying MobileFirst projects 11-37

<pathelement location="worklight-ant-deployer.jar" />
</classpath>

</taskdef>
<migrate sourceWarFile="d:/myOldWarFolder/myProject.war" destWarFile="d:/myNewWarFolder/myMigratedProject.war"/>

</target>
</project>

The <migrate> task accepts the following input parameters:

sourceWarFile
(mandatory) The path to the source project WAR file. The path must not
contain spaces.

destWarFile
(optional) The destination file for the migrated WAR file. Default value:
<source-war-folder>/migrated-to-<new version number>/<source-war-
filename>.

Configuring the Liberty profile manually:

To configure the WebSphere Application Server Liberty profile manually, you must
modify the server.xml file and declarations for the runtime and the IBM
MobileFirst Platform Operations Console.

Before you begin

Review the environment IDs. Environment IDs are optional, but if you do specify
one, the identifier must meet the following two conditions:
v Its value must be the same for each MobileFirst runtime environment that is

managed by the same MobileFirst Server administration component.
v Its value must match the environment ID that is used when the MobileFirst

Server administration component is installed.

The environment ID is defined as an application JNDI variable, prefixed by the
context root of the application. See Step 5.

About this task

In addition to modifications for the databases that are described in “Creating and
configuring the databases manually” on page 11-17, you must make the following
modifications to the server.xml file.

Note: In the following procedure, when the example uses the worklight.war
project file, use the name of your MobileFirst project, for example, myProject.war.

Procedure

1. In the installation directory of Liberty, open the user data directory.
v If the installation directory of Liberty contains a etc/server.env file and if

this file defines a WLP_USER_DIR variable, the user data directory is the
value of this variable.

v Otherwise, it is the usr directory in the installation directory of Liberty.
2. Copy the MobileFirst JAR file into the shared/resources/lib/ directory that is

in the user data directory.
If there is no etc/server.env file in the installation directory of Liberty, enter
the following commands, according to your operating system:
v On UNIX and Linux:

11-38 IBM MobileFirst Platform Foundation V6.3.0

mkdir -p WLP_DIR/usr/shared/resources/lib
cp product_install_dir/WorklightServer/worklight-jee-library.jar WLP_DIR/usr/shared/resources/lib

v On Windows:
mkdir WLP_DIR\usr\shared\resources\lib
copy /B product_install_dir\WorklightServer\worklight-jee-library.jar WLP_DIR\usr\shared\resources\lib\worklight-jee-library.jar

3. Ensure that the <featureManager> element contains at least the following
<feature> elements:
<feature>ssl-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>appSecurity-1.0</feature>

4. Copy the worklight.war file to the apps directory of the Liberty server.

Note: The apps directory is in the same directory as the server.xml file.
5. Add the following declarations in the <server> element for the MobileFirst

runtime and the MobileFirst Operations Console.

Important: The id attribute of the privateLibrary tag must identify a unique
MobileFirst runtime. By convention, it takes this form: <privateLibrary
id="worklightlib_<context root>">

<!-- Declare the MobileFirst Server application. -->
<application id="worklight" name="worklight" location="worklight.war" type="war">

<classloader delegation="parentLast">
<privateLibrary id="worklightlib_worklight">

<fileset dir="${shared.resource.dir}/lib" includes="worklight-jee-library.jar"/>
<fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_*.jar"/>

</privateLibrary>
</classloader>

</application>

<!-- Declare web container custom properties for the MobileFirst Server application. -->
<webContainer invokeFlushAfterService="false"/>

This declaration installs the MobileFirst Server application with the context root
/worklight. If you want to assign a different context root /app_context, start
the declaration with one of the following code snippets:
<application id="app_context" name="app_context" location="worklight.war" type="war">

Or:
<application id="worklight" name="worklight" location="worklight.war" context-root="/app_context" type="war">

In either case, also change the privateLibrary tag accordingly: <privateLibrary
id="worklightlib_app_context">

6. If the MobileFirst Server administration component uses an environment ID,
declare that environment ID for MobileFirst Server application:
<jndiEntry jndiName="worklight/ibm.worklight.admin.environmentid" value=’"ValueOfEnvironmentID"’/>

v worklight is the context root of the MobileFirst Server application. If you
choose another value in previous step, replace worklight with that value.

v Replace ValueOfEnvironmentID with the value that is used for the MobileFirst
Server administration component

Related tasks:
“Configuring a MobileFirst project in production by using JNDI environment
entries” on page 11-56
When you deploy a MobileFirst project to a MobileFirst Server, you can configure
the project’s WAR file with JNDI environment entries to set product environment
properties.

Deploying MobileFirst projects 11-39

Related information:

WebSphere Application Server documentation about Deploying application to
the Liberty Profile

Configuring WebSphere Application Server manually:

To configure WebSphere Application Server manually, you must configure
variables, custom properties, and class loader policies.

Before you begin

Find the SOAP port of the deployment manager (WebSphere Application Server
Network Deployment only)

These instructions assume that a stand-alone profile exists with an
application server named “Worklight” and that the server is using the
default ports.

For WebSphere Application Server Network Deployment, find the SOAP
port of the deployment manager:
1. Open the System Administration/Deployment manager.
2. In Additional properties, open Ports.
3. Note the value of SOAP_CONNECTOR_ADDRESS. This value is needed to set

the value of the ibm.worklight.admin.jmx.dmgr.port environment entry
for the MobileFirst Administration Services.

Review the environment IDs
Specifying an environment ID is optional. However, if you specify an ID,
use the same value for each MobileFirst runtime environment that is
managed by the same MobileFirst Server administration component.
Moreover, this value must match the environment ID that is used when the
MobileFirst Server administration component is installed. For more
information about the ibm.worklight.admin.environmentid JNDI property,
see “Configuring a MobileFirst project in production by using JNDI
environment entries” on page 11-56.

Procedure

1. Determine a suitable file name for the MobileFirst shared library in the
WebSphere Application Server installation directory.
v For a standalone server, you can use a file name such as

WAS_INSTALL_DIR/optionalLibraries/IBM/project-name/worklight-jee-
library.jar.

v For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
project-name/worklight-jee-library.jar.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/project-name/worklight-jee-library.jar.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/project-name/worklight-jee-library.jar.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/project-name/worklight-jee-
library.jar.

11-40 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_dep.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_dep.html

If the directory does not exist, you must create it.
2. Copy the file product_install_dir/WorklightServer/worklight-jee-

library.jar to the location that you determined in step 1.
3. Log on to theWebSphere Application Server administration console for your

MobileFirst Server.
The address is of the form http://server.com:9060/ibm/console, where server
is the name of the server.

4. Create the MobileFirst shared library definition:
a. Click Environment > Shared libraries.
b. From the Scope list, select Worklight server.
c. Click New. The Configuration pane is displayed.
d. In the Name field, type WL_PLATFORM_LIB.
e. Optional: In the Description field, type a description of the library.
f. In the Classpath field, enter the file name that you determined in step 1,

replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

g. In Class Loading, select the check box Use an isolated class loader for
this shared library.

5. Create the MobileFirst JDBC data source and provider.
See the instructions for the appropriate DBMS in “Creating and configuring
the databases manually” on page 11-17.

6. Add a specific web container custom property.
a. Click Servers > Server Types > Application Servers, and select the server

for IBM MobileFirst Platform Foundation.
b. Click Web Container Settings > Web container.
c. Click Custom properties.
d. Click New.
e. Enter the property values listed in the following table.

Table 11-4. Values for the web container custom property

Property Value

Name com.ibm.ws.webcontainer.invokeFlushAfterService

Value false

Description See http://www.ibm.com/support/
docview.wss?uid=swg1PM50111

f. Click OK.
g. Click Save.

7. Install a MobileFirst project WAR file.

Note: In the following procedure, when the example uses worklight.war, use
the name of your MobileFirst project, for example, myProject.war.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Navigate to the MobileFirst Server installation directory
product_install_dir/WorklightServer.

Deploying MobileFirst projects 11-41

c. Select worklight.war, and then click Next.
d. On the "How do you want to install the application?" page, select

Detailed, and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Continue repeatedly until you reach Step 4 of the wizard: Map

Shared Libraries.
g. Select Select for worklight_war and click Reference shared libraries.
h. From the Available list, select WL_PLATFORM_LIB and click >.
i. Click OK.
j. Click Next until you reach the “Map context roots for web modules” page.
k. In the Context Root field, type /worklight.
l. Click Next.
m. In Map environment Entries for Web Module, you can assign the JNDI

variables according to your configuration.
v Set the variable ibm.worklight.topology.platform to WAS
v Set the variable ibm.worklight.admin.jmx.connector to SOAP
v If the environment ID is set for the Administration Services, set the

variable ibm.worklight.admin.environmentid to the same value.
v On a stand-alone WebSphere Application Server, set the value of

ibm.worklight.topology.clustermode to Standalone
v On WebSphere Application Server Network Deployment, set the

variables as follows:
– ibm.worklight.topology.clustermode: Cluster
– ibm.worklight.admin.jmx.dmgr.host: the host name of the

deployment manager
– ibm.worklight.admin.jmx.dmgr.port: the SOAP port of the

deployment manager
n. Click Finish.

8. Optional: As an alternative to step 6, you can map the shared libraries as
follows:
a. Click Applications > Application Types > WebSphere enterprise

applications > worklight_war.
b. In the References section, click Shared library references.
c. Select Select for worklight_war and click Reference shared libraries.
d. From the Available list, select WL_PLATFORM_LIB and click >.
e. Click OK twice to return to the worklight_war configuration page.
f. Click the Save link.

9. Define the startup behavior.
a. Click Applications > Application Types > WebSphere enterprise

applications > worklight_war.
b. Click Startup behavior.
c. In Startup Order, enter 2.

Note: The MobileFirst Administration service must already be available
when the MobileFirst runtime starts.

10. Configure the class loader policies and then start the application:
a. Click the Manage Applications link, or click Applications > WebSphere

Enterprise Applications.

11-42 IBM MobileFirst Platform Foundation V6.3.0

b. From the list of applications, click worklight_war.
c. In the “Detail Properties” section, click the Class loading and update

detection link.
d. In the “Class loader order” pane, click Classes loaded with local class

loader first (parent last).
e. Click OK.
f. In the Modules section, click Manage Modules.
g. From the list of modules, click the MobileFirst module.
h. In the “Class loader order” pane, click Classes loaded with local class

loader first (parent last).
i. Click OK twice.
j. Click Save.
k. Select Select for worklight_war and click Start.

11. Review the server class loader policy: Click Servers > Server Types >
Application Servers > Worklight

v If the class loader policy is set to Multiple, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-last, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-first, change the class loader policy to Multiple, and set the class
loader order of all applications other than MobileFirst applications to
parent-first.

12. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Results

You can now view the runtime component from the MobileFirst Administration
Console that is installed in “Installing the MobileFirst Server administration” on
page 6-46. The default URL of the MobileFirst Administration Console is
http://<server>:<port>/worklightconsole, where server is the host name of your
server and port is the port number (default value 9080).

Configuring Apache Tomcat manually:

To configure Apache Tomcat manually, you must copy JAR and WAR files to
Tomcat, add database drivers, edit the server.xml file, and then start Tomcat.

Before you begin

Review the environment IDs. Specifying an environment ID is optional. However,
if you speciy an ID, use the same value for each MobileFirst runtime environment
that is managed by the same MobileFirst Server administration component.
Moreover, this value must match the environment ID that is used when the
MobileFirst Server administration component is installed. For more information
about the ibm.worklight.admin.environmentid JNDI property, see “Configuring a
MobileFirst project in production by using JNDI environment entries” on page
11-56.

Procedure

1. Copy the MobileFirst JAR file to the Tomcat lib directory:

Deploying MobileFirst projects 11-43

v On UNIX and Linux systems: cp product_install_dir/WorklightServer/
worklight-jee-library.jar tomcat_install_dir/lib

v On Windows systems: copy /B product_install_dir\WorklightServer\
worklight-jee-library.jar tomcat_install_dir\lib\worklight-jee-
library.jar

2. Add the database drivers to the Tomcat lib directory. See the instructions for
the appropriate DBMS in “Creating and configuring the databases manually”
on page 11-17.

3. Copy the MobileFirst project WAR file to the Tomcat web application directory,
tomcat_install_dir/webapps, and rename it according to the context root. For
example:
v If the context root is /worklight, rename it to worklight.war.
v If the context root is /, rename it to ROOT.war.

4. Edit tomcat_install_dir/conf/server.xml to declare the context and properties
of the MobileFirst application:
<!-- Declare the MobileFirst runtime environment. -->
<Context path="/worklight" docBase="worklight">

<Environment name="ibm.worklight.topology.platform" value="Tomcat" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.topology.clusterMode" value="Standalone" type="java.lang.String" override="false"/>
<!-- Declare the worklight and worklight reports databases. -->
<!-- <Resource name="jdbc/WorklightDS" type="javax.sql.DataSource" ... /> -->
<!-- <Resource name="jdbc/WorklightReportsDS" type="javax.sql.DataSource" ... /> -->

</Context>

Where you must uncomment and complete the <Resource> element to declare
the administration database as described in the following sections:
v “Configuring Apache Tomcat for DB2 manually” on page 11-22
v “Configuring Apache Tomcat for Derby manually” on page 11-27
v “Configuring Apache Tomcat for MySQL manually” on page 11-31
v “Configuring Apache Tomcat for Oracle manually” on page 11-36
Make sure that the path and docBase attributes are both consistent with the
WAR file name. That is, if the WAR file name is worklight.war, set the path to
"/worklight" and the docBase to "worklight". Whereas if the WAR file name is
ROOT.war, set the path to "" and the docBase to "ROOT".
If the environment ID is set for the Administration Services, set the variable
ibm.worklight.admin.environmentid to the same value.

5. Start Tomcat.

Completing the deployment of a project WAR file:

To complete the deployment, you may need to restart the application server.

When the project WAR file is deployed on the application server, you must restart
the application server in the following circumstances:
v When you used the <configureApplicationServer> Ant task or the manual

instructions for deploying the project WAR file:
– If you are using WebSphere Application Server with DB2 as database type for

one or both of the databases.
– If you are using WebSphere Application Server Liberty profile or Apache

Tomcat.
v When you used the <updateApplicationServer> Ant task:

– If you are using WebSphere Application Server (full profile or Liberty profile)
and the MobileFirst runtime library (worklight-jee-library.jar) is changed.

11-44 IBM MobileFirst Platform Foundation V6.3.0

– If you are using Apache Tomcat.

If you are using WebSphere Application Server Network Deployment and you
deployed to managed servers through the deployment manager:
v You must restart the servers that were running during the deployment and on

which the MobileFirst project web application has been installed.
To restart these servers with the deployment manager console, select
Applications > Application Types > WebSphere enterprise applications >
IBM_Worklight_Console > Target specific application status.

v You do not have to restart the deployment manager or the node agents.

Configuration of MobileFirst applications on the server
You can configure each MobileFirst application by specifying a set of configuration
parameters on the server side.

MobileFirst application configuration parameters configure the database, push
notifications, the use of SSL to secure communications between the server and the
client application, and other settings.

When you develop a MobileFirst application, you use the worklight.properties
file to specify most of the configuration parameters. This file is in the server/conf
folder in the project. You use the worklight.properties file during development to
test a particular configuration. For example, if you want to use the analytics
features during development, you might set the wl.analytics.url property to a valid
URL in the worklight.properties file.

When your MobileFirst project is built by MobileFirst Studio, the project WAR file
that is created in the project bin folder contains the configuration that is specified
in the worklight.properties file. The values for the parameters that are specified
in the worklight.properties file then define the default configuration of your
application.

When you deploy your project (your WAR file) to the production or test
environment, your configuration is certain to be different from the development
environment. It is easy to modify the configuration to fit the new environment
because the project WAR file defines JNDI environment entries for each parameter
that can be configured in a production environment. You leave the values in the
worklight.properties file unchanged; instead, you specify the configuration
during the deployment to the application server.

See “Configuring a MobileFirst project in production by using JNDI environment
entries” on page 11-56 to learn about the JNDI environment entries that you can
specify in a production environment. Properties that are relevant only in
development environments are not available as JNDI entries.

Within the worklight.properties file, you can define some application-specific
configuration properties; for example, to configure the URL of a service that is
called from the mobile application and the URL is different in production,
development, and test environments. See “Declaring and using application-specific
configuration properties” on page 11-54 to learn how to create such configuration
properties.

Configuring the IBM MobileFirst Platform Server location
You can configure the MobileFirst Server location by specifying configuration
properties.

Deploying MobileFirst projects 11-45

In production, you must configure your server location in the following
circumstances:
v You are using relative path for the onLoginUrl parameter in the

authenticationConfig.xml file.
v You are generating the URL for mobile web and desktop browser apps from the

console.

In most cases, production servers sit behind a reverse proxy; therefore, their
machine IP address (which is the default value of publicWorkLightHostname) is not
used for accessing them from the outside world.

To configure the MobileFirst Server location, set the values of the following
properties:

Table 11-5. MobileFirst Server location properties

Property name Description

publicWorkLightHostname The IP address or host name of the
computer running IBM MobileFirst Platform
Foundation.

If the MobileFirst Server is behind a reverse
proxy, the value is the IP address or host
name of the reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: IP address of current server.

publicWorkLightPort The port for accessing the MobileFirst
Server.

If the MobileFirst Server is behind a reverse
proxy, the value is the port for accessing the
reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: 10080.

The <configureApplicationServer> Ant task
sets a default value that depends on the
application server.

publicWorkLightProtocol The protocol for accessing the MobileFirst
Server.

The valid values are HTTP and HTTPS. If the
MobileFirst Server is behind a reverse proxy,
the value is the protocol for accessing the
reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: HTTP.

The <configureApplicationServer> Ant task
sets a default value that depends on the
application server.

11-46 IBM MobileFirst Platform Foundation V6.3.0

For descriptions of other configuration properties, see “Configuring a MobileFirst
project in production by using JNDI environment entries” on page 11-56

For information about how to specify configuration properties, see “Configuration
of MobileFirst applications on the server” on page 11-45.

Runtime database setup for development mode
IBM MobileFirst Platform Foundation uses defaults to access the runtime database,
which kind is WRKLGHT by default. When you work in a development environment
and use JDBC to connect to a database, you can use a set of property keys to
change the settings.

Attention:

This method of declaring data sources is deprecated in a production environment
and is only suitable when working in a development environment and using JDBC
for database connections. To configure data sources when working in a production
environment, see “Creating and configuring the databases manually” on page
11-17.

Property keys and values for JDBC-based properties

Property Key Property Value

wl.db.url JDBC path to the runtime database.

wl.db.username Runtime database user name.

Default: Worklight

wl.db.password Runtime database password.

Default: Worklight

wl.db.driver The class that implements a JDBC driver for
each vendor. For example:

MySQL: com.mysql.jdbc.Driver

Oracle: oracle.jdbc.OracleDriver

DB2: com.ibm.db2.jcc.DB2Driver

Derby:
org.apache.derby.jdbc.EmbeddedDriver

wl.reports.db.url(*) JDBC path to the reports database

Default: refers to runtime database

wl.reports.db.username(*) Reports database user name.

Default: refers to Worklight database

wl.reports.db.password(*) Reports database password

Default: refers to runtime database

Note: (*) By default all report mechanisms in MobileFirst Server use a single
reports database. The reports database is set to be the same as the runtime
database. For more information about how this default setting can be changed, see
“Using raw data reports” on page 13-44.

Deploying MobileFirst projects 11-47

Push notification settings
When working with push notifications, you must use the correct proxy settings.
For Android, you use GCM proxy settings, and for iOS, you use APNS proxy
settings. SMS has its own set of proxy settings.

The following properties are required only when a proxy is used to route requests
to APNS, GCM, or SMS push servers. When no proxy is used, it is not necessary to
set the properties (the *.enabled property value should be set to false).

GCM proxy settings Value

push.gcm.proxy.enabled Shows whether Google GCM must be
accessed through a proxy. Can be either true
or false. The default is false.

push.gcm.proxy.protocol GCM proxy protocol. Can be either http or
https.

push.gcm.proxy.host GCM proxy host.

push.gcm.proxy.port GCM proxy port. Use -1 for the default
port.

push.gcm.proxy.user Proxy user name, if the proxy requires
authentication. An empty user name means
no authentication.

push.gcm.proxy.password Proxy password, if the proxy requires
authentication.

Note:

v For push notifications to work, you must ensure that your firewall accepts
outgoing connections to android.googleapis.com on port 443.

APNS proxy settings Value

push.apns.proxy.enabled Shows whether APNS must be accessed
through a proxy. Can be either true or
false. The default is false.

push.apns.proxy.type APNS proxy type. Must be SOCKS.

push.apns.proxy.host APNS proxy host.

push.apns.proxy.port APNS proxy port.

push.apns.proxy.user Proxy user name, if the proxy requires
authentication. Empty user name means no
authentication.

push.apns.proxy.password Proxy password, if the proxy requires
authentication.

SMS proxy settings Value

push.sms.proxy.enabled Can be either true or false. Use true to
send SMS notifications through proxy.

push.sms.proxy.protocol SMS proxy protocol. Can be either http or
https.

push.sms.proxy.host SMS proxy host name.

push.sms.proxy.port SMS proxy port. Use -1 for the default port.

push.sms.proxy.user Proxy user name, for authentication. An
empty user name means no authentication.

11-48 IBM MobileFirst Platform Foundation V6.3.0

SMS proxy settings Value

push.sms.proxy.password Proxy password, if the proxy requires
authentication.

Analytics
Analytics properties files contain the parameters for how IBM MobileFirst Platform
Foundation creates activity logs and sends them to a server for analysis.

You can modify how the MobileFirst Server forwards analytics data to the IBM
MobileFirst Platform Operational Analytics by editing the following properties
files.

Table 11-6. IBM MobileFirst Platform Operational Analytics properties.

Property Name Default Value Description

wl.analytics.console.url None. Optional. The URL that is
exposed by the IBM
MobileFirst Platform
Operational Analytics that
links to the Analytics
console. Set this property if
you want to access the
Analytics console from the
MobileFirst Operations
Console. Example:

http://<hostname>:<port>/worklight-analytics/console

wl.analytics.logs.forward true When the property is set to
true, server logs that are
recorded on the MobileFirst
Server are captured and
forwarded to the IBM
MobileFirst Platform
Operational Analytics.

wl.analytics.password None. Required. The password that
is used if the data entry
point for the IBM MobileFirst
Platform Operational
Analytics is protected with
basic authentication.

wl.analytics.queues 20 Maximum number of
concurrent queues that are
used to buffer data before it
is forwarded to the IBM
MobileFirst Platform
Operational Analytics. For
more information, see
“MobileFirst
throughput-tuning” on page
13-35.

Deploying MobileFirst projects 11-49

Table 11-6. IBM MobileFirst Platform Operational Analytics properties. (continued)

Property Name Default Value Description

wl.analytics.queue.size 10 Size of each queue that is
used to buffer data before it
is forwarded to the IBM
MobileFirst Platform
Operational Analytics. For
more information, see
“MobileFirst
throughput-tuning” on page
13-35.

wl.analytics.url None. Required. The URL that is
exposed by the IBM
MobileFirst Platform
Operational Analytics that
receives incoming analytics
data. Example:

http://<hostname>:<port>/worklight-analytics-service/data

wl.analytics.username None. Required. The user name
that is used if the data entry
point for the IBM MobileFirst
Platform Operational
Analytics is protected with
basic authentication.

WebSphere Application Server SSL configuration and HTTP
adapters
By setting a property, you can make HTTP adapters take benefit of the WebSphere
SSL configuration.

By default, HTTP adapters do not take benefit of the WebSphere SSL configuration
by concatenating the Java Runtime Environment (JRE) truststore with the
Worklight truststore as referenced by the ssl.keystore.path,
ssl.keystore.password, and ssl.keystore.type properties. See “Configuring SSL
between MobileFirst adapters and back-end servers by using self-signed
certificates” on page 6-148. To have HTTP adapters use the WebSphere SSL
configuration, set the ssl.websphere.config property to true. This value has the
following effects, in order of precedence:
1. If the ssl.keystore.path, ssl.keystore.password, ssl.keystore.type

properties are set, the adapter uses the truststore that is referenced in these
properties without concatenating it with the JRE truststore.

2. If the ssl.websphere.alias property is set, the adapter uses the SSL
configuration that is associated with the alias as set in this property.

3. If the ssl.keystore.path, ssl.keystore.password, ssl.keystore.type, and
ssl.websphere.alias properties are not set, the WebSphere outbound dynamic
configuration is used.

SSL certificate keystore setup
Mobile applications often connect to multiple back-end systems. Some back-end
systems require access through an HTTP adapter, and each back-end system can
require a different SSL certificate for secure communication using HTTPS. These
SSL certificates are stored in a keystore that is configured to the IBM MobileFirst
Platform Server by using property keys.

11-50 IBM MobileFirst Platform Foundation V6.3.0

IBM MobileFirst Platform Foundation provides a default keystore. You can choose
to use this default keystore or replace it with your own keystore.

To configure an SSL certificate keystore, you must set the values of the property
keys listed in the following table:

Table 11-7. JNDI environment entries for SSL certificate keystore

Property name Description

ssl.keystore.path Path to the keystore relative to the server
folder in the MobileFirst project; for
example: conf/my-cert.jks.

ssl.keystore.type Type of keystore file. Valid values are jks or
pkcs12.

ssl.keystore.password Password to the keystore file.

ssl.websphere.alias WebSphere SSL configuration alias used by
the HTTP adapters

ssl.websphere.config Set this property to true to have HTTP
adapters use WebSphere SSL configuration.
Default: false.

For descriptions of other MobileFirst configuration properties, see “Configuring a
MobileFirst project in production by using JNDI environment entries” on page
11-56

For information about how to specify MobileFirst configuration properties, see
“Configuration of MobileFirst applications on the server” on page 11-45.

In addition to defining these three properties, configure the HTTP adapter XML
file, which is located under <Worklight Root Directory>\adapters\<HTTP adapter
name>. This file is described in “The adapter XML File” on page 8-337.

If you use SSL with mutual authentication between the MobileFirst Server and a
back-end system, be aware of the following requirement:
v Define an alias and password for the private key of the keystore where the SSL

certificate is stored. The alias and password are defined in the
<connectionPolicy> element of the HTTP adapter XML file, adaptername.xml.
The <sslCertificateAlias> and <sslCertificatePassword> subelements are
described in “The connectionPolicy element of the HTTP adapter” on page
8-341.

Note: The password that is specified in ssl.keystore.password is not the same
password that is specified in <sslCertificatePassword>. ssl.keystore.password
is used to access the keystore itself. <sslCertificatePassword> is used to access
the correct SSL certificate within the keystore.

Miscellaneous Settings
Configure the serverSessionTimeout, bitly.username, bitly.apikey,
compress.response.threshold, and adapters.saxparser.doctype.validation
parameters.

Deploying MobileFirst projects 11-51

Property keys and values for the serverSessionTimeout, bitly.username, bitly.apikey,
compress.response.threshold, and adapters.saxparser.doctype.validation parameters.

Property Key Property Value

serverSessionTimeout Client inactivity timeout, after which the
MobileFirst session is invalidated.

Default is 10 minutes.

bitly.username User name for accessing the bit.ly API for
creating a shortened URL for mobile web
apps through MobileFirst Operations
Console.

bitly.apikey The bit.ly API Key.

compress.response.threshold The threshold size of the payload that is
returned in response to an invokeProcedure
call beyond which the response is
compressed. The default value is 20480
bytes. Responses with payload larger than
the compress.response.threshold are
compressed by the server. To disable
compression, set this value to a large value.
Similarly, to compress every response, set
this value to 0 (zero). If the payload is larger
than the compress.response.threshold, the
payload is compressed irrespective of
whether or not compression was requested
by the client through the compressResponse
option.

adapters.saxparser.doctype.validation True or False. If set to False, the adapter
does not validate the XML response received
from the back-end server. This might be
useful in cases where the time required to
validate could be expected to exceed the
allowed timeout value. The default setting is
True, meaning that the server validates the
response.

Storing properties in encrypted format
When you configure MobileFirst applications on the server, you must encrypt the
properties that are too sensitive to be written in clear text.

There are two ways to encrypt properties:
v Within the properties file: See “Encryption within the properties file.” This

option is the only one for Tomcat.
v By using the application server encoding tools: PropFilePasswordEncoder for

WebSphere Application Server and SecurityUtility for Liberty profile. For
WebSphere Application Server and Liberty profile. See “Encoding the JNDI
properties” on page 11-53

Encryption within the properties file

The encryption facility that comes with IBM MobileFirst Platform Foundation uses
the 128-bit symmetric-key algorithm that is defined by the AES specification.

Storing properties in open or encrypted format

11-52 IBM MobileFirst Platform Foundation V6.3.0

You can keep the properties that are contained in the
worklight.properties file either in open or in encrypted form.

An encrypted property is determined by a suffix .enc appended to its
name. For example:
console.password.enc=TYakEHRba3rIU7pNjxtDxoAdqijKIEt7cy4mCr0iaEj0rY08ODK00yqR

The MobileFirst configuration is accessed for a property. If the property is
not found, but the same encrypted property (with the .enc suffix) is
defined, MobileFirst automatically decrypts the value, and returns it to the
caller.

Storing the master key

All encrypted values use the same secret key, which is stored in the special
variable called worklight_enc_password. This variable is defined as an
operating-system environment variable:
v On Windows systems: Set an environment variable under the user that

runsMobileFirst Server. Under a Windows NT service, define the
password as a service property by using the registry editor. For more
information, see the Microsoft support website.

v On Linux systems: Set the environment variable.

Encryption

You can encrypt MobileFirst properties by using the 128-bit symmetric-key
algorithm that is defined by the AES specification.
v On Windows systems, use the encrypt.bat utility under

product_install_dir/WorklightServer. This utility accepts a file that
contains the properties to be encrypted and the encryption password.
The utility outputs the encrypted values to the same file, so that
sensitive data is deleted.

v On Linux systems, use the encrypt.sh utility.

The input file for the encryption is called secret.properties and contains
the following data:
worklight_enc_password=abc123
certificate.password=certificatepwd123
wl.db.password=edf545

After you run the encrypt.sh tool, the secret.properties file contains the
following data:
#Copy the contents of this file to the worklight.properties file.
#Keep the password value in the secure system property worklight_enc_password.
#Wed Nov 28 10:10:44 CST 2012
certificate.password.enc=dR4lnMQDaNEQyLQl7b2RmpdE99HKpqaSJ6mce0uJgaY\=
wl.db.password.enc=6boxojGZsUNTXwOOGgI6dg\=\=

Encoding the JNDI properties

The preferred way to encrypt JNDI properties in WebSphere Application Server is
to use the password encoding tools that are available with both application servers.
v For WebSphere Application Server: the PropFilePasswordEncoder tool
v For the Liberty profile: the SecurityUtility command

You can use the encoded value as the value of the JNDI properties.

For more information about how to encode properties with the application server
tools, see the WebSphere Application Server documentation.

Deploying MobileFirst projects 11-53

Obsolete properties
Some properties are no longer required.

Table 11-8. Categories and list of obsolete properties

Category Properties

Proxy settings proxy.enabled, proxy.nonProxyHosts, proxy.host,
proxy.port, proxy.username, proxy.password,
https.proxy.host, https.proxy.port

Public resource server
settings

publicResourceServer.deployDestination,
publicResourceServer.host, publicResourceServer.port,
publicResourceServer.filesRootDir

Environments environment.iphone, environment.netvibes,
environment.embedded, environment.air,
environment.android, environment.blackberry

Certificate settings certificate.certificatesDirPath,
certificate.keyStoreFilePath, certificate.keyAlias,
certificate.keyStorePassword,
certificate.keyAliasPassword, certificate.PFXFilePath,
certificate.password, certificate.DERFilePath,
certificate.P7BFilePath,
vista.linux.osslsigncodeFilepath

Push notification settings push.apns.certificatePassword, push.gcm.senderID,
push.gcm.senderPassword

Miscellaneous settings devmode, guid, wlclientTimeout, backend.request.timeout,
reports.produceReports, wl.db.initialSize,
wl.db.maxActive, wl.db.maxIdle, wl.db.testOnBorrow,
wl.db.autoddl

Tomcat settings local.bindAddress, local.httpPort

Single identity login module
security settings

console.username, console.password

Declaring and using application-specific configuration properties
Use the ${propertyName} notation to reuse application-specific properties that are
declared in the worklight.properties file.

As a developer, you might want to parameterize some elements in the
configuration of the server side of your MobileFirst application so that an IT
administrator can change the value in production. For example, a MobileFirst
adapter might need to call a back-end service, and the URL of this service might
be different in a production environment from its value in a development
environment. In this scenario, you can create a new MobileFirst configuration
property to store the URL, and the IT administrator can then set the final
production value as a JNDI environment entry.

You can declare application-specific properties in the worklight.properties file.
You can then reuse the value of those properties within the authentication
configuration file (authenticationConfig.xml) and the adapter descriptor file
(adapter.xml) by using the ${propertyName} notation.

Here is an example for declaring a data source and reusing it in an adapter:
1. In the worklight.properties file, define a new (custom) property:

my.adapter.db.jndi.name=jdbc/MyAdapterDS

2. You can then include a property declaration in the adapter.xml file:

11-54 IBM MobileFirst Platform Foundation V6.3.0

<wl:adapter>
...
<connectivity>
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceJNDIName>
${my.adapter.db.jndi.name}

</dataSourceJNDIName>
</connectionPolicy>
...

Such properties are exposed as JNDI entries (see “Configuring a MobileFirst
project in production by using JNDI environment entries” on page 11-56) for
the project WAR file. In this example, the JNDI name of the adapter data source
becomes parametric and can be changed from the server configuration files.

In authenticationConfig.xml, you can use ${propertyName} notation for all realm
and loginModule parameters. Here are examples (in bold typeface) for such
properties:
<securityTests>

<customSecurityTest name="MySecurityTest">
<test realm="MySecurityRealm" isInternalUserID="true"/>

</customSecurityTest>

</securityTests>

<realms>

<realm name="MySecurityRealm" loginModule="MySecurityLoginModule">
<className>com.test.auth.MyAuthenticator</className>
<parameter name="login-mode" value="${my.security.realm.mode}"/>
<parameter name="my-other-realm-param" value="${my.security.realm.param}"/>

</realm>

</realms>

<loginModules>

<loginModule name="MySecurityLoginModule">
<className>com.test.auth.MyLoginModule</className>
<parameter name="roles-allowed" value="${my.security.allowed.roles}"/>
<parameter name="my-other-login-param" value="${my.security.login.param}"/>

</loginModule>

</loginModules>

For more information about configuring realm parameters, see “Configuring
authenticators and realms” on page 8-501. For loginModule parameters, see
“Configuring login modules” on page 8-520.

In adapter.xml, you can use the ${propertyName} notation in the following
elements:

For HTTP adapters:
<connectivity>

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>${my.protocol}</protocol>
<domain>${my.domain}</domain>
<port>${my.port}</port>

<authentication>
<ntlm workstation="${local.hostname}" />
<serverIdentity>

<username>${my.server.identity.username}</username>
<password>${my.server.identity.password}</password>

Deploying MobileFirst projects 11-55

</serverIdentity>
</authentication>

<!-- Following properties used by adapter’s key manager for choosing specific certificate from key store -->

<sslCertificateAlias>${my.ssl.certificate.alias}</sslCertificateAlias>
<sslCertificatePassword>${my.ssl.certificate.password}</sslCertificatePassword>

</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="${max.connections.per.node}"/>
</connectivity>

For SQL adapters:
<connectivity>

<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<!-- Example for using a JNDI data source, replace with actual data source name -->
<!-- <dataSourceJNDIName>${my.data.source.jndi.name}</dataSourceJNDIName> -->

<!-- Example for using MySQL connector, do not forget to put the MySQL connector library in the project’s lib folder -->
<dataSourceDefinition>
<driverClass>${my.driver.class.name}</driverClass>
<url>${my.data.source.url}</url>
<user>${my.data.source.username}</user>
<password>${my.data.source.password}</password>

</dataSourceDefinition>
</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="${max.connections.per.node}" />
</connectivity>

For JMS adapters:
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- uncomment this if you want to use an external JNDI repository -->
<!-- <namingConnection url="${my.naming.connection.url}"
initialContextFactory="${my.initial.context.factory}"
user="${my.naming.connection.username}"
password="${my.naming.connection.password}"/>
-->

<jmsConnection connectionFactory="${my.jms.connection.factory}"
user="${my.jms.connection.username}"
password="${my.jms.connection.password}"

/>
</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="${max.connections.per.node}"/>
</connectivity>

For more information about configuring adapters, see “The authentication
element of the HTTP adapter” on page 8-344.

Configuring a MobileFirst project in production by using JNDI
environment entries
When you deploy a MobileFirst project to a MobileFirst Server, you can configure
the project’s WAR file with JNDI environment entries to set product environment
properties.

About this task

JNDI environment entries cover all the properties that you can set in a production
environment. You set the JNDI environment entries in one of two ways:

11-56 IBM MobileFirst Platform Foundation V6.3.0

v Either by editing the configuration XML file for the deployer Ant tasks
v Or by configuring the server's environment entries. On WebSphere Application

Server full profile, you use the administration console. On WebSphere
Application Server Liberty profile or Apache Tomcat, you edit the server.xml
file.

Many of the MobileFirst configuration properties must have different values when
the project is deployed to different environments. For example, the configuration
properties that are used to specify the MobileFirst Server public URL (that is,
publicWorkLightHostname, publicWorkLightPort, and publicWorkLightProtocol)
might be different when the MobileFirst project is deployed to a staging server or
to a production server. You can configure the project WAR file through JNDI
environment entries.

Note: Some of the properties are relevant only in a development environment and
are not available as JNDI entries.

Note: There are two ways to encrypt the JNDI properties that are listed in the
following table, as described in “Storing properties in encrypted format” on page
11-52:
v You can define the property with the .enc suffix in the worklight.properties

file that is packaged in the WAR file of the MobileFirst project. You can then
override the encrypted value by using a JNDI property. With Apache Tomcat,
this option is the only one available.

v On WebSphere Application Server full profile and Liberty profile, you can use
the password encoding tools: PropFilePasswordEncoder for WebSphere
Application Server and SecurityUtility for Liberty profile.

The following table lists the MobileFirst properties that are always available as
JNDI entries:

Table 11-9. MobileFirst properties available as JNDI entries

Property name Description

adapters.saxparser.doctype.validation Specifies whether the adapter should
validate the XML response received from the
back-end server. If set to False, the adapter
does not validate the response. This might
be useful in cases where the time required to
validate could be expected to exceed the
allowed timeout value. Default: True

cluster.data.synchronization.taskFrequencyInSeconds
Applications and adapters cluster data
synchronization interval. Default: 2.

deployables.cleanup.taskFrequencyInSeconds
Deployable folder cleanup task interval (in
seconds). Default: 86400.

Deploying MobileFirst projects 11-57

Table 11-9. MobileFirst properties available as JNDI entries (continued)

Property name Description

ibm.worklight.admin.environmentid
Optional. Environment identifier for the
registration of the MBeans. Use this
identifier when different instances of the
MobileFirst Server are installed on the same
application server. The identifier determines
which Administration Services, which
console, and which runtimes belong to the
same installation. The Administration
Services manage only the runtimes that have
the same environment identifier.

ibm.worklight.admin.jmx.connector
Mandatory. JMX connector type, by default
RMI/SOAP. WebSphere Application Server
profile only.

ibm.worklight.admin.jmx.dmgr.host
Mandatory. Deployment Manager host
name. WebSphere Application Server
Network Deployment only.

ibm.worklight.admin.jmx.dmgr.port
Mandatory. Deployment Manager RMI or
SOAP port. WebSphere Application Server
Network Deployment only.

ibm.worklight.admin.rmi.registryPort
Optional. RMI registry port for the JMX
connection through a firewall. Tomcat only.

ibm.worklight.admin.rmi.serverPort
Optional. RMI server port for the JMX
connection through a firewall. Tomcat only.

ibm.worklight.admin.serverid
Optional. Server identifier. Must be different
for each server in the farm. Server farms
only.

ibm.worklight.jndi.configuration
Optional. If the JNDI configuration is
injected into the WAR files or provided as a
shared library, the value of this property is
the name of the JNDI configuration. This
value can also be specified as a system
property. See “Predefining MobileFirst
Server configuration for several deployment
environments” on page 6-244.

ibm.worklight.jndi.file
Optional. If the JNDI configuration is stored
as an external file, the value of this property
is the path of a file that describes the JNDI
configuration. This value can also be
specified as a system property. See
“Predefining MobileFirst Server
configuration for several deployment
environments” on page 6-244.

11-58 IBM MobileFirst Platform Foundation V6.3.0

Table 11-9. MobileFirst properties available as JNDI entries (continued)

Property name Description

ibm.worklight.topology.clustermode
In addition to the server type, you must
specify the server topology. The values that
are allowed:

v Standalone

v Cluster

v Farm

The default value is Standalone.

ibm.worklight.topology.platform
Server type. The values can be:

v Liberty

v WAS

v Tomcat

If the default value is not set, the application
tries to guess the server type.

publicWorkLightHostname The IP address or host name of the
computer that is running IBM MobileFirst
Platform Foundation.

If the MobileFirst Server is behind a reverse
proxy, the value is the IP address or host
name of the reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: IP address of current server.

publicWorkLightPort The port for accessing the MobileFirst
Server.

If the MobileFirst Server is behind a reverse
proxy, the value is the port for accessing the
reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: 10080.

The configureApplicationServer Ant task
sets a default value that depends on the
application server.

Deploying MobileFirst projects 11-59

Table 11-9. MobileFirst properties available as JNDI entries (continued)

Property name Description

publicWorkLightProtocol The protocol for accessing the MobileFirst
Server.

The valid values are HTTP and HTTPS. If the
MobileFirst Server is behind a reverse proxy,
the value is the protocol for accessing the
reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: HTTP.

The configureApplicationServer Ant task
sets a default value that depends on the
application server.

push.gcm.proxy.enabled
Shows whether GCM must be accessed
through a proxy. Default: false.

push.apns.proxy.enabled
Indicates whether APNS must be accessed
through a proxy. Default: false.

push.apns.proxy.host
APNS proxy host.

push.apns.proxy.port
APNS proxy port.

push.apns.proxy.user Proxy user name, if the proxy requires
authentication. Empty user name means no
authentication.

push.apns.proxy.password Proxy password, if the proxy requires
authentication.

push.gcm.proxy.host
GCM proxy host. A negative value means
default port.

push.gcm.proxy.password
Proxy password, if the proxy requires
authentication.

push.gcm.proxy.port
GCM proxy port. Use -1 for the default
port. Default: -1.

push.gcm.proxy.protocol
Either http or https.

push.gcm.proxy.user
Proxy user name, if the proxy requires
authentication. Empty user name means no
authentication.

push.sms.proxy.enabled
Indicates whether push SMS proxy is
enabled. Default: false.

push.sms.proxy.host
Push SMS proxy host.

push.sms.proxy.password
Push SMS proxy password.

11-60 IBM MobileFirst Platform Foundation V6.3.0

Table 11-9. MobileFirst properties available as JNDI entries (continued)

Property name Description

push.sms.proxy.port
Push SMS proxy port.

push.sms.proxy.protocol
Push SMS proxy protocol.

push.sms.proxy.user
Push SMS proxy user.

reports.exportRawData
Whether reporting is activated (true or
false). Default: false.

serverSessionTimeout
Idle session timeout in minutes. Default: 10.

ssl.keystore.password
SSL certificate keystore password. Default:
worklight.

ssl.keystore.path
SSL certificate keystore location. Default:
conf/default.keystore.

ssl.keystore.type
SSL certificate keystore type. Valid keystore
types: jks or PKCS12. Default: jks.

ssl.websphere.config Set this property to true to have HTTP
adapters use WebSphere SSL configuration.
Default: false.

ssl.websphere.alias WebSphere SSL configuration alias used by
the HTTP adapters

sso.cleanup.taskFrequencyInSeconds
Interval (seconds) for a cleanup task that
cleans the database of orphaned and expired
single-sign-on login contexts. Default: 5

wl.analytics.console.url
The URL that is exposed by the IBM
MobileFirst Platform Operational Analytics
that links to the Analytics console. Set this
property if you want to access the Analytics
console from the MobileFirst Operations
Console. Example:

http://<hostname>:<port>/worklight-analytics/console

wl.analytics.logs.forward
Boolean value (true or false) that indicates
whether to send all com.worklight.* logs to
the operational analytics server. If this value
is true, all logs that are specified in
com.worklight settings are forwarded to the
operational analytics server. The default
value is true. This setting is only supported
on MobileFirst production servers. It is not
supported on the MobileFirst Studio
development environment.

wl.analytics.password
The password that is used if the data entry
point for the IBM MobileFirst Platform
Operational Analytics is protected with basic
authentication.

Deploying MobileFirst projects 11-61

Table 11-9. MobileFirst properties available as JNDI entries (continued)

Property name Description

wl.analytics.url
The URL that is exposed by the IBM
MobileFirst Platform Operational Analytics
that receives incoming analytics data.
Example: http://<hostname>:<port>/
worklight-analytics-service/data.

wl.analytics.username
The user name that is used if the data entry
point for the IBM MobileFirst Platform
Operational Analytics is protected with basic
authentication.

wl.analytics.queue.size
The number of individual analytics events
that each queue can hold. The total number
of analytics events that the server can hold
at one time before it begins to drop data is
(wl.analytics.queues *
wl.analytics.queue.size). In a production
environment, the default value is 10. In the
MobileFirst Studio development
environment, when you use the MobileFirst
Development Server, the default value is 1.
This value can be changed by setting a
different value through JNDI. (Optional.)

wl.analytics.queues
Sets the maximum number of queues that
MobileFirst Server can create to hold
analytics data before it sends the data to the
server. When all the queues are full,
MobileFirst Server quietly discards any new
analytics data until the current data finishes
processing. Default: 20.

wl.ca.key.alias
Alias of the entry where the private key and
certificate are stored in the keystore.

wl.ca.key.alias.password
Password to the alias in the keystore.

wl.ca.keystore.password
Password to the keystore file.

wl.ca.keystore.path
Path to the keystore relative to the server
folder in the MobileFirst project; for
example: conf/my-cert.jks.

wl.ca.keystore.type
Type of keystore file. Valid values are jks or
pkcs12.

wl.clientlogs.adapter.name
The name of the HTTP adapter that you
want to use to receive client-side logs. If you
do not specify this property, the default
WLClientLogReceiver name is used.

11-62 IBM MobileFirst Platform Foundation V6.3.0

Table 11-9. MobileFirst properties available as JNDI entries (continued)

Property name Description

wl.device.archiveDecommissioned.when
A value, in days, that defines when client
devices that were decommissioned will be
placed in an archive file when the
decommissioning task is run. The archived
client devices are written to a file in the
MobileFirst Server home\
devices_archive directory. The name of the
file contains the time stamp when the
archive file is created. Default: 90 days.

wl.device.decommission.when
The number of days of inactivity after which
a client device is decommissioned by the
device decommissioning task. Default: 90
days.

wl.device.enableAccessManagement
A Boolean value (true or false) that enables
the Access Management features on the
MobileFirst Server. If the Access
Management features are enabled, each time
a device attempts to connect to the server, it
is checked against the backend for its access
rights.

wl.device.tracking.enabled
A value that is used to enable or disable
device tracking in IBM MobileFirst Platform
Foundation. For performance reasons, you
can disable this flag when IBM MobileFirst
Platform Foundation is running only
Business-to-Consumer (B2C) apps. When
device tracking is disabled, the license
reports are also disabled and no license
metrics are generated.

Custom user properties that are defined in the worklight.properties file are
exposed, too.

The wl.db.* and wl.reports.db.* properties are not available as JNDI
environment entries because they are intended for use only during the
development phase.

Configuring with the Ant task

When you deploy and configure the project with the Ant task (as described in
“Deploying a project WAR file and configuring the application server with Ant
tasks” on page 11-14), it is possible to set values for MobileFirst configuration
properties inside the <configureapplicationserver> tag. For example:
<configureapplicationserver shortcutsDir="${shortcuts.dir}">

<property name="serverSessionTimeout" value="30"/>
<property name="publicWorkLightHostname" value="www.example.com"/>
<property name="publicWorkLightPort" value="80"/>
<property name="publicWorkLightProtocol" value="http"/>

Manually configuring on the server

Deploying MobileFirst projects 11-63

In some cases, when you do not want to or cannot redeploy the application, it is
also possible to set values for MobileFirst configuration properties manually on the
server configuration files (or console). This procedure is what the Ant task does
behind the scenes. The manual configuration method is less recommended because
in some cases (for example, when upgrading or redeploying), the application
server might forget the configuration and the administrator must reconfigure it.

Procedure

Complete the following tasks, depending on which application server is used:
v WebSphere Liberty profile:

Insert the following declarations in the server.xml file:
<application id="worklight" name="worklight" location="worklight.war"

type="war" context-root="/app_context_path">
</application>
<jndiEntry value="9080" jndiName="app_context_path/publicWorkLightPort"/>
<jndiEntry value="www.example.com" jndiName="app_context_path/publicWorkLightHostname"/>

The context path (in the previous example: app_context_path) connects between
the JNDI entry and a specific MobileFirst application. If multiple MobileFirst
applications exist on the same server, you can define specific JNDI entries for
each application by using the context path prefix. Typically, app_context_path is
"worklight".

v Apache Tomcat:
Insert the following declarations in the server.xml file:
<Context docBase="app_context_path" path="/app_context_path">

<Environment name="publicWorkLightPort" override="false"
type="java.lang.String" value="9080"/>

<Environment name="publicWorkLightHostname" override="false"
type="java.lang.String" value="www.example.com"/>

</Context>

Note: On Apache Tomcat, override="false" is mandatory.
With Apache Tomcat, the context path prefix is not needed because the JNDI
entries are defined inside the <Context> element of an application.

v WebSphere Application Server:
1. In the administration console, go to Applications > Application Types >

WebSphere enterprise applications > Worklight > Environment entries for
Web modules

2. In the Value fields, enter values that are appropriate to your circumstances.
See Figure 11-2 on page 11-65

11-64 IBM MobileFirst Platform Foundation V6.3.0

Note: Preconfiguring JNDI properties

As an alternative to setting JNDI environment entries by editing the deployer Ant
task configuration XML file or by configuring the server environment entries
through the WebSphere Application Server administration console or the
server.xml file on WebSphere Application Server Liberty profile or Apache Tomcat,
you can configure all JNDI properties in advance by using a property file. Holding
JNDI properties in a property file makes it easier to transfer the entire
configuration from one web application server to another. For example, you can
configure a test web server; when the configuration is stable, you can easily
transfer the configuration to the production web server by copying the property
file to the production server.

For details of this mechanism, see “Predefining MobileFirst Server configuration
for several deployment environments” on page 6-244.
Related reference:
“Configuration of MobileFirst applications on the server” on page 11-45
You can configure each MobileFirst application by specifying a set of configuration
parameters on the server side.

SMS gateway configuration
An SMS gateway, or SMS aggregator, is a third-party entity which is used to
forward SMS notification messages to a destination mobile phone number. IBM
MobileFirst Platform Foundation routes the SMS notification messages through the
SMS gateway.

To send SMS notifications from IBM MobileFirst Platform Foundation, one or more
SMS gateways must be configured in the SMSConfig.xml file, which is in the
/server/conf folder of your project. To configure an SMS gateway, you must set

Figure 11-2. Setting JNDI environment entries on WebSphere Application Server

Deploying MobileFirst projects 11-65

the values of the following elements, subelements, and attributes in the
SMSConfig.xml file. The MobileFirst Server must be restarted when any changes are
made in the SMSConfig.xml file.

Table 11-10. SMSConfig.xml elements and subelements

Element Element Value

gateway Mandatory. The <gateway> element is the
root element of the SMS gateway definition.
It includes 6 attributes:

v hostname

v id

v port

v programName

v toParamName

v textParamName

These attributes are described in Table 11-11

parameter Optional. The <parameter> subelement is
dependent on the SMS gateway. Each SMS
gateway may have its own set of
parameters. The number of <parameter>
subelements is dependent on SMS
gateway-specific parameters. If an SMS
gateway requires the user name and
password to be set, then these parameters
can be defined as <parameter> subelements.

Each <parameter> subelement has the
following attributes:

v name

v value

Table 11-11. <gateway> element attributes

Attribute Attribute Value

hostname Mandatory. The host name of the configured
SMS gateway.

id Mandatory. A unique ID that identifies the
SMS gateway. Application developers
specify the ID in the application descriptor
file, application-descriptor.xml, when they
develop an application.

port Optional. The port number of the SMS
gateway. The default value is 80.

programName Optional. The name of the program that the
SMS gateway expects. For example, if the
SMS gateway expects the following URI:

http://<hostname>:port/sendsms

then programName="sendsms"

11-66 IBM MobileFirst Platform Foundation V6.3.0

Table 11-11. <gateway> element attributes (continued)

Attribute Attribute Value

toParamName Optional. The name that is used by the SMS
gateway to specify the destination mobile
phone number. The default value is to. The
destination mobile phone number is sent as
a name-value pair when SMS notifications
are sent; that is, toParamName=destination
mobile phone number.

textParamName Optional. The name that is used by the SMS
gateway to specify the SMS message text.
The default value is text.

If the SMS gateway expects an HTTP post in the following format to forward SMS
messages to a mobile device:

http://myhost:13011/cgi-bin/sendsms?to=destination mobile phone
number&text=message text&username=fcsuser&password=fcspass

The SMSConfig.xml file is configured as follows:
<?xml version="1.0" encoding="UTF-8"?>
<sms:config xmlns:sms="http://www.worklight.com/sms/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<gateway hostname="myhost" id="kannelgw" port="13011" programName="cgi-bin/sendsms" toParamName="to" textParamName="text">
<parameter name = "username" value = "fcsuser" />
<parameter name = "password" value = "fcspass" />

</gateway>

</sms:config>

Ant tasks for building and deploying applications and
adapters

A set of Ant tasks is supplied with MobileFirst Server and the IBM MobileFirst
Platform Command Line Interface. You can use them to build and deploy your
applications, adapters, and projects.

IBM MobileFirst Platform Foundation provides a set of Ant tasks that help you
build and deploy adapters and applications to your MobileFirst Server. A typical
use of these Ant tasks is to integrate them with a central build service that is called
manually or periodically on a central build server.

Prerequisites

Before you can run Ant tasks, make sure that Apache Ant is installed. The
minimum supported version of Ant is listed in “System requirements for using
IBM MobileFirst Platform Foundation” on page 2-12.

Apache Ant 1.8.4 is included in MobileFirst Server. In the product_install_dir/
shortcuts/ directory, the following scripts are provided.
v For UNIX / Linux: ant
v For Windows: ant.bat

These scripts are ready to run, which means that they do not require specific
environment variables. If the JAVA_HOME environment variable is set, the scripts
accept it.

Deploying MobileFirst projects 11-67

Building from a IBM Worklight V6.0.0 project and deploying to a
V6.3.0 MobileFirst Server

If you want to build apps and adapters from a IBM Worklight V6.0.0 project and
deploy them to a V6.3.0 MobileFirst Server, you might think that all you need to
do is add a <taskdef> definition as shown in the following Ant task.

Note:

v WL600_DIR is the directory where you installed IBM Worklight V6.0.0.
v product_install_dir is the directory where you installed IBM MobileFirst

Platform Server V6.3.0.
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<pathelement location="WL600_DIR/WorklightServer/worklight-ant.jar" />

</classpath>
</taskdef>

<taskdef resource="com/worklight/ant/deployers/antlib.xml">
<classpath>
<pathelement location="product_install_dir/WorklightServer/worklight-ant-deployer.jar" />

</classpath>
</taskdef>

However, the JAR files worklight-ant.jar and worklight-ant-deployer.jar
conflict, because they contain classes with the same name in different versions. To
solve this conflict, you must split the script into two different Ant files: one to
build V6.0.0 artifacts and the other to deploy them to the V6.3.0 server, as shown
in the following examples.

Ant script to build V6.0.0 artifacts
<project basedir="." default="build-and-deploy">

<property name="project.name" value="MyProject" />
<property name="wl.server" value="http://localhost:9080/${project.name}/" />
<property name="wl.project.location" location="${basedir}/${project.name}" />
<property name="output.location" location="${wl.project.location}/bin" />

<property name="wl.adapter.name" location="MyAdapter" />
<property name="wl.application.name" location="MyApplication" />

<property name="worklight-ant" location="worklight-ant.jar" />

<target name="init">
<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="${worklight-ant}" />
</classpath>

</taskdef>
</target>

<target name="build">
<adapter-builder folder="${wl.project.location}/adapters/${wl.adapter.name}" destinationFolder="${output.location}"/>
<app-builder applicationFolder="${wl.project.location}/apps/${wl.application.name}" outputfolder="${output.location}" worklightserverhost="${wl.server}" nativeprojectprefix="${project.name}"/>

</target>

<target name="deploy">
<ant antfile="deploy.xml" inheritall="true" />

</target>

<target name="build-and-deploy" depends="init,build,deploy" />
</project>

11-68 IBM MobileFirst Platform Foundation V6.3.0

Ant script to deploy V6.0.0. artifacts to a V6.3.0 server
<project basedir="." default="deploy">

<property name="worklight-ant-deployer" location="worklight-ant-deployer.jar" />

<target name="init">
<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="${worklight-ant-deployer}" />
</classpath>

</taskdef>
</target>

<target name="deploy" depends="init">
<wladm url="https://server-address:secure-port/worklightadmin" user="username" password="password">
<deploy-app runtime="project-name" file="${output.location}/${wl.application.name}-all.wlapp"/>
<deploy-adapter runtime="project-name" file="${output.location}/${wl.adapter.name}.adapter"/>

</wladm>
</target>

</project>

Building applications and adapters
The Ant tasks that are used for building MobileFirst applications and adapters are
documented in this section.

You can use the following examples of Ant XML files to build applications and
adapters.

Note: Since IBM Worklight Foundation V6.2.0, the worklight-ant-builder.jar file
is included in the IBM MobileFirst Platform Command Line Interface, whereas in
earlier versions, it was included in MobileFirst Server. By default,
worklight-ant-builder.jar is installed in the following location:
cli_install_dir/public/worklight-ant-builder.jar. For example, on OSX, the
default CLI Install Path is /Applications/IBM/Worklight-CLI. If you use the default
installation path, the Ant task is installed here: /Applications/IBM/Worklight-CLI/
public/worklight-ant-builder.jar.

Building a hybrid application

The Ant task for building a hybrid application has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="cli_install_dir/public/worklight-ant-builder.jar"/>
</classpath>

</taskdef>
<target name="target-name">
<app-builder

worklightserverhost="http://server-address:port"
applicationFolder="application-source-files-folder"
environments="list-of-environments"
nativeProjectPrefix="project-name"
outputFolder="output-folder"/>

</target>
</project>

The <app-builder> element has the following attributes:
v The worklightserverhost attribute is mandatory and specifies the full URL of

your MobileFirst Server.

Deploying MobileFirst projects 11-69

v The applicationFolder attribute specifies the root folder for the application,
which contains the application-descriptor.xml file and other source files for
the application.

v The environments attribute is a comma-separated list of environments to build.
This attribute is optional. The default action is to build all environments.

v The nativeProjectPrefix attribute is mandatory when you build iOS
applications

v The ouptputFolder attribute specifies the folder to which the resulting .wlapp
file is written.

By default, running the Ant task to build an application does not handle the Dojo
Toolkit because Ant is not run with build-dojo.xml. You must explicitly configure
the task to do so, by using the following app-builder setting in the Ant build file:
skinBuildExtensions=build-dojo.xml

If you use this setting, the Dojo Toolkit files are deployed with your application.

Building a native API application

The Ant task for building a native API application has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="cli_install_dir/public/worklight-ant-builder.jar"/>
</classpath>

</taskdef>
<target name="target-name">
<native-app-builder

sourcefolder="application-source-files-folder"
outputFolder="output-folder"/>

</target>
</project>

The <native-app-builder> element has the following attributes:
v The sourceFolder attribute specifies the root folder for the application, which

contains the application-descriptor.xml file and other source files for the
application.

v The ouptputFolder attribute specifies the folder to which the resulting .wlapp
file is written.

Building an adapter

The Ant task for building an adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="cli_install_dir/public/worklight-ant-builder.jar"/>
</classpath>

</taskdef>
<target name="target-name">
<adapter-builder

folder="adapter-source-files-folder"
destinationfolder="destination-folder"/>

</target>
</project>

11-70 IBM MobileFirst Platform Foundation V6.3.0

The <adapter-builder> element has the following attributes:
v The folder attribute specifies the folder that contains the source files of the

adapter (its .xml and .js files).
v The destinationfolder attribute specifies the folder to which the resulting

.adapter file is written.

If you must build more than one adapter file, add an <adapter-builder> element
for each adapter.

Deploying applications and adapters
You can use Ant tasks to deploy MobileFirst applications and adapters.

The following sections show examples of Ant XML files that use the wladm Ant
task to deploy applications and adapters. You can run these Ant files locally on the
MobileFirst Server host computer or remotely on a different computer. To run them
remotely on a different computer, you must first copy the file
product_install_dir/WorklightServer/worklight-ant-deployer.jar to that
computer.

Deploying an application

Note: Before you use this Ant task, as a prerequisite step, you must deploy the
corresponding MobileFirst project of the application. For more information, see
“Deploying the project WAR file” on page 11-5.

A typical Ant script for deploying an application has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/deployers/antlib.xml">
<classpath>

<pathelement location="product_install_dir/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>
<target name="target-name">
<wladm url="https://server-address:secure-port/worklightadmin" user="username" password="password">

<deploy-app runtime="project-name" file="myApp.wlapp"/>
</wladm>

</target>
</project>

The <wladm> element has the following attributes:

Table 11-12. Attributes of the <wladm> element.

Attribute
Mandatory/
Optional Description

url Mandatory The full URL of your MobileFirst Server web
application for administration services

user and password Mandatory The credentials of a user in a worklightadmin or
worklightdeployer role

The <deploy-app> element has the following attributes:

Table 11-13. Attributes of the <deploy-app> element.

Attribute
Mandatory/
Optional Description

runtime Mandatory The name of the MobileFirst runtime / project.

Deploying MobileFirst projects 11-71

Table 11-13. Attributes of the <deploy-app> element (continued).

Attribute
Mandatory/
Optional Description

file Mandatory Contains the .wlapp file to deploy.

For more information about <wladm>, see “Administering MobileFirst applications
through Ant” on page 12-12.

If you must deploy more than one .wlapp file, either add a <deploy-app> element
for each file in a single <wladm> element, or add a <wladm> element for each file.

Deploying an adapter

Note: Before you use this Ant task, as a prerequisite step, you must deploy the
corresponding MobileFirst project of the adapter. For more information, see
“Deploying the project WAR file” on page 11-5.

A typical Ant script for deploying an adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/deployers/antlib.xml">
<classpath>

<pathelement location="product_install_dir/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>
<target name="target-name">
<wladm url="https://server-address:secure-port/worklightadmin" user="username" password="password">

<deploy-adapter runtime="project-name" file="myAdapter.adapter"/>
</wladm>

</target>
</project>

The <wladm> element has the following attributes:

Table 11-14. Attributes of the <wladm> element.

Attribute
Mandatory/
Optional Description

url Mandatory The full URL of your MobileFirst Server web
application for administration services

user and password Mandatory The credentials of a user in a worklightadmin or
worklightdeployer role

The <deploy-adapter> element has the following attributes:

Table 11-15. Attributes of the <deploy-adapter> element.

Attribute
Mandatory/
Optional Description

runtime Mandatory The name of the MobileFirst runtime / project.

file Mandatory Contains the .adapter file to deploy.

For more information about <wladm>, see “Administering MobileFirst applications
through Ant” on page 12-12.

11-72 IBM MobileFirst Platform Foundation V6.3.0

If you must deploy more than one .adapter file, either add a <deploy-adapter>
element for each file in a single <wladm> element, or add a <wladm> element for
each file.

Deploying applications and adapters to MobileFirst Server
You can deploy customer-specific content (apps and adapters) only after the project
WAR file is deployed and the server is started.

About this task

Customer-specific content includes applications that must be served by IBM
MobileFirst Platform Server and their underlying integration adapters. You can
create apps and adapters by building them in IBM MobileFirst Platform Studio, or
with the Ant tasks provided with IBM MobileFirst Platform Foundation to build
them. The result of the build action is files with extension .wlapp and .adapter
respectively.

There are two ways to deploy applications and adapters to IBM MobileFirst
Platform Operations Console:
v Use Ant tasks that are provided with IBM MobileFirst Platform Foundation, and

described in “Ant tasks for building and deploying applications and adapters”
on page 11-67 and “Deploying a project WAR file and configuring the
application server with Ant tasks” on page 11-14.

v Use MobileFirst Operations Console to manually deploy apps and adapters.

You can deploy customer-specific content (apps and adapters) only after the project
and MobileFirst administration WAR files are deployed and the server is started.

If only one project is deployed on the server, you see the Catalog page of
MobileFirst Operations Console and you can start performing administration tasks.
If several projects are deployed on the server, you see a list of projects in
MobileFirst Operations Console. Select a project to navigate to the Catalog page of
the project.

Note: Only the most recently accessed application is displayed on the MobileFirst
Development Server at run time.

Procedure
1. To deploy an adapter, click Choose File. Then, navigate to the .adapter file

and select it.
2. Click Submit. A message is displayed indicating whether the deployment

action succeeded or failed. The details of the deployed adapter are added to the
catalog.

3. Click Show details to view connectivity details for the adapter and the list of
procedures.

Figure 11-3. Catalog page of MobileFirst Operations Console

Deploying MobileFirst projects 11-73

4. Repeat steps 1 to 3 for each adapter that you want to deploy.
5. To deploy an application, in the catalog page, click Choose File. Then, navigate

to the .wlapp file and select it.
6. Click Submit. A message is displayed indicating whether the deployment

action succeeded or failed. The details of the deployed application are added to
the catalog.

7. Repeat steps 5 and 6 for each app that you want to deploy.

Administering adapters and apps in MobileFirst Operations
Console

You administer adapters and apps through MobileFirst Operations Console.

About this task

Before performing any of the other tasks in this collection of topics, open
MobileFirst Operations Console:

Procedure
1. Open a browser and enter a URL of the following form: https://

hostname:secure-port/worklightconsole where secure-port depends on your server
configuration. The defaults are 9443 for WebSphere Application Server and 8443
for Apache Tomcat.

Note: Security warning. If you access MobileFirst Operations Console through
http instead of https, your MobileFirst administration user password will be
compromised.

This usage is different from the MobileFirst Development Server, where no
security is used. In the development environment, you use the port for the
Liberty profile server in the URL: http://localhost:10080/worklightconsole.

2. If your MobileFirst Server is configured to require login, and you are not
currently logged in, log in when prompted to do so.

Results

If only one project is deployed on the server, you see the Catalog page of
MobileFirst Operations Console and you can start performing administration tasks.

If several projects are deployed on the server, you see a list of projects in
MobileFirst Operations Console. Select the project to administer to navigate to the
Catalog page of this project.

Deploying apps
Deploy an app by submitting it.

Procedure

To deploy an app:
1. Click Browse, then navigate to your .wlapp file and select it.
2. Click Submit.

11-74 IBM MobileFirst Platform Foundation V6.3.0

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Deleting apps
To delete an app, click Delete.

Procedure

To delete an app:

Click Delete to the right of the app name.

Exporting adapter configuration files
Export the configuration files for the adapter by copying them from the source
folder.

Procedure

To export a deployed adapter:

Obtain the adapter from the development environment.
1. Navigate to the /bin folder in your project
2. Copy the .adapter file or files.

Deploying adapters
Deploy an adapter from the console.

Procedure

To deploy an adapter:
1. Click Browse, then navigate to your .adapter file and select it.
2. Click Submit. A message is displayed indicating whether the deployment

action succeeded or failed. If it succeeded, the details of the deployed adapter
are added to the catalog.

3. Click Show details to view the connectivity details for the adapter and the list
of procedures it exposes.

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Modifying adapters
To modify an adapter, replace it with a new one.

Procedure

To modify an adapter:

Deploy the modified adapter file, as described in “Deploying adapters.”

Deploying MobileFirst projects 11-75

Results

The new adapter replaces the original one.

Deleting adapters
Delete an adapter by clicking Delete.

Procedure

To delete an adapter:

Click Delete to the right of the adapter name.

MobileFirst security overview
IBM MobileFirst Platform Foundation has comprehensive support for various
authentication and authorization methods.

MobileFirst security basics

The following image shows the authentication elements hierarchy:

Security test
A security test is a set of tests that are used to protect a resource, such as
an adapter procedure or application environment. A test includes
information about which realm is required to authenticate and other
parameters, such as authentication order. A protected resource is accessible
only after the client authenticates to all of the tests that are specified in the
security test. If the client is unable to log in to all tests, the request to
access the protected resource is denied. Individual adapter procedures or
an entire application environment can be protected by a security test. For
more information about security tests and the different types of security
tests, see “Security tests” on page 8-490.

Realm A realm creates a relationship between a MobileFirst login module and a
MobileFirst authenticator to provide a means of authentication. For more
information about realms, see “Authentication realms” on page 8-492.

Authenticator
An authenticator parses incoming requests from a MobileFirst client to
search for required credentials when a protected resource is requested. If

11-76 IBM MobileFirst Platform Foundation V6.3.0

credentials are not available in the request, the authenticator is responsible
for challenging the client to authenticate. The credentials, after received
correctly from the client, are formatted to the login module's predefined
requirements and sent to the login module. For more information about
authenticators, see “Authenticators and login modules” on page 8-494.

Login module
After an authenticator is able to parse credentials from a request, they are
sent to a login module that is responsible for validating those credentials.
After the credentials are considered valid and the user can be authorized,
the login module creates a user identity for the realm. For more
information about login modules, see “Authenticators and login modules”
on page 8-494.

User identity
After a login module successfully validates a set of user credentials, it
creates a user identity. A user identity contains at least a user name and a
display name. It can also contain attributes that provide more details the
protected resource might need.

Challenge handlers
A challenge handler is the client-side JavaScript that is included into a
MobileFirst application that is created by the developer. A challenge
handler handles an authentication challenge from the server. A challenge
handler can be defined for each realm, and is responsible for the following
tasks:
v Determine whether a request is an authentication challenge that is

specific to the realm.
v Perform necessary user interaction if it receives a challenge.
v Send the credentials to the server to complete the authentication.
v Validate that the authentication was successful.

MobileFirst security configuration
For MobileFirst Server to protect a resource, such as an adapter procedure or an
application environment, the administrator must first configure the MobileFirst
Server instance.

Defining a login module

A login module is the most basic security element in the MobileFirst authentication
configuration. You can define a login module in the <loginModules> element in the
authenticationConfig.xml file. The following example shows a login module
definition:
<loginModules>
...

<loginModule name="HeaderLogin"
canBeResourceLogin="true"
isIdentityAssociationKey="true"
audit="true>

<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="userid" />
<parameter name="display-name-header" value="username" />

</loginModule>
...
</loginModules>

In this example, the login module is called HeaderLogin and is referred to from a
realm element. The <className> element must contain the full Java namespace to a

Deploying MobileFirst projects 11-77

login module implementation. The HeaderLoginModule is a login module that is
included by default. It checks that the user entered any, non-empty user name and
password.

Defining a realm

After a login module is defined, you must specify a realm. You can add a realm to
the <realms> element in the authenticationConfig.xml file. The following example
shows a realm definition:
<realms>
...

<realm name="RequiresUserHeaders" loginModule="HeaderLogin">
<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>

</realm>
...
</realms>

Defining a security test

You can define a security test in the <securityTests> element in the
authenticationConfig.xml file. The following example shows a security test
definition:
<securityTests>
...

<customSecurityTest name="BasicRequirements">
<test realm="wl_antiXSRFRealm" />
<test realm="wl_authenticityRealm" />
<test realm="wl_remoteDisableRealm" />
<test realm="RequiresUserHeaders" isInternalUserID="true" />
<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" />

</customSecurityTest>
...
</securityTests>

This custom security test is called BasicRequirements, and contains a list of tests.
The tests define which realms are required for authorization into the protected
resource. The tests in this example are built-in realms. Built-in realms are prefixed
with wl_.

Note: If one test fails, then the entire security test fails.

The isInternalUserID attributes can be set to true only on a single realm. This
attribute is used as the default identity for a user in the security test. The
isInternalDeviceID attribute is similar, but sets a default device identity.

This example uses the RequiresUserHeaders realm in the previous example.

Creating a challenge handler

You must create a challenge handler for your MobileFirst app to handle any
custom challenges.For more information about challenge handlers, see the tutorials
on the Getting Started page.

MobileFirst application environment protection

After a security test is configured with the appropriate realms, you can protect any
resource. One option is to completely protect an application’s environment with
that security test.

11-78 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3

To set up this protection, you must add the securityTest attribute to the
environment’s element in the applicationDescriptor.xml file. The following
example shows the environment protection definition:
<iPhone version="1.0" securityTest="BasicRequirements">
...
</iPhone>

This definition requires every iPhone device that connects to the server through
your application to log in to the BasicRequirements security test.

MobileFirst adapter procedure protection

Another option is to protect a MobileFirst adapter procedure. Using the same
security test, you can protect an adapter procedure. When the procedure is called
and the user is not already authenticated into the security test, the client is
required to authenticate. If you have an adapter procedure named GetSecretData,
you can protect it in the adapter’s XML configuration file by adding the
securityTest attribute to the <procedure> element:
<procedure name="GetSecretData" securityTest="BasicRequirements" />

MobileFirst Security and LTPA
Lightweight Third-Party Authentication (LTPA) is a security token type that is used
by IBM WebSphere Application Server and other IBM products. LTPA can be used
to send the credentials of an authenticated user to backend services. It can also be
used as a single sign-on (SSO) token between the user and multiple servers.

The following image shows a simple client/server flow with LTPA:

Deploying MobileFirst projects 11-79

After a user logs in, the server generates an LTPA token, which is an encrypted
hash that contains authenticated user information. The token is signed by a private
key that is shared among all the servers that want to decode it. The token is
usually in cookie form for HTTP services. By sending the token as a cookie, there
is no need for subsequent user interaction.

LTPA tokens have a configurable expiration time to reduce the possibility for
session hijacking.

The following image shows a client-server-backend flow with LTPA:

11-80 IBM MobileFirst Platform Foundation V6.3.0

Your infrastructure can also use the LTPA token to communicate with a backend
server to act on behalf of the user. The user cannot directly access the backend
server. Enterprise environments should use a reverse proxy, such as DataPower or
IBM Security Access Manager, in the DMZ, and place the MobileFirst Server in the
intranet. This configuration ensures that access to the MobileFirst Server cannot be
obtained until a user authenticates. For more information, see “Reverse proxy with
LTPA” on page 11-90.

Configuring the MobileFirst LTPA realm:

The IBM MobileFirst Platform Server contains the authenticator and login module
that are designed to handle authentication by using LTPA through form-base
authentication.

About this task

You must update the authenticationConfig.xml file to configure your server to
use the MobileFirst LTPA realm.

Procedure

1. Add the login module definition to the <loginModules> element in your
server’s authenticationConfig.xml file. The following example uses a login
module that is called WASLTPAModule:
<loginModules>
...

<loginModule name="WASLTPAModule">
<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>

</loginModule>
...
</loginModules>

2. Add the realm definition to the <realms> element in your server’s
authenticationConfig.xml file. The following example uses a realm that is
called WASLTPARealm:
<realms>
...

<realm name="WASLTPARealm" loginModule="WASLTPAModule">
<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>

Deploying MobileFirst projects 11-81

<parameter name="login-page" value="/login.html" />
<parameter name="error-page" value="/loginError.html" />

</realm>
...
</realms>

3. Add a user test to an existing test in the authenticationConfig.xml file.
<customSecurityTest name="LTPASecurityTest">

<test realm="wl_authenticityRealm" />
<test realm="WASLTPARealm" isInternalUserID="true" />
<test realm="wl_deviceNoProvisiongRealm" isInternalDeviceID="true" />

</customSecurityTest>

4. Create a login page and a login error page. The WASLTPARealm must know
which HTML file to present to the client when the client must authenticate.
This HTML file must be named login.html. When the client enters invalid
credentials, the WASLTPARealm presents an error HTML file. This HTML file must
be named loginError.html. These HTML files must be added to the root
directory in the MobileFirst Server WAR file. The following example shows a
sample login.html file:
<html>

<head>
<title>Login</title>

</head>
<body>
<form method="post" action="j_security_check">

<input type="text"
id="j_username"
name="j_username"
placeholder="User name" />

<input type="password"
id="j_password"
name="j_password"
placeholder="Password" />

<input type="submit" id="login" name="login" value="Log In" />
</form>

</body>
</html>

The following example shows a sample loginError.html file:
<html>

<head>
<title>Login Error</title>

</head>
<body>
An error occurred while trying to log in.

</body>
</html>

Configuring the MobileFirst Server for Trusteer
Configure the IBM MobileFirst Platform Server to use Trusteer®-generated data to
protect resources.

About this task

You must update the authenticationConfig.xml file to configure your server to
use the MobileFirst Trusteer realm.

Procedure
1. Add the login module definition to the <loginModules> element in your

server’s authenticationConfig.xml file. The following example uses a login
module that is called trusteerFraudDetectionLogin:

11-82 IBM MobileFirst Platform Foundation V6.3.0

<loginModules>
...

<loginModule name="trusteerFraudDetectionLogin">
<className>com.worklight.core.auth.ext.TrusteerLoginModule</className>

</loginModule>
...
</loginModules>

2. Add the realm definition to the <realms> element in your server’s
authenticationConfig.xml file. The following example uses a realm that is
called wl_basicTrusteerFraudDetectionRealm:
<realms>
...

<realm name="basicTrusteerFraudDetectionRealm" loginModule="trusteerFraudDetectionLogin">
<className>com.worklight.core.auth.ext.TrusteerAuthenticator</className>

<parameter name="rooted-device" value="block"/>
<parameter name="device-with-malware" value="block"/>
<parameter name="rooted-hiders" value="block"/>
<parameter name="unsecured-wifi" value="alert"/>
<parameter name="outdated-configuration" value="alert"/>

</realm>
...
</realms>

The possible values for Trusteer realm parameters are described in Table 11-16.

Table 11-16. Possible values for Trusteer realm parameters

Value Description

block Access fails.

alert Access is permitted and it is recommended
to issue a warning.

accept Access is permitted.

The error codes that have been defined for Trusteer correspond to the
parameters in the realm. See Table 11-17.

Table 11-17. Trusteer error codes

Code Description Corresponding parameter

TAS_ROOT Indicates that the device is
rooted (Android) or
jailbroken (iOS).

rooted-device

TAS_MALWARE Indicates that the device
contains malware. Currently
financial malware is
detected, but will be
expanded to all malware.

device-with-malware

TAS_ROOT_EVIDENCE Indicate that the device
contains root hider
applications that hide the
fact that the device is
rooted/jailbroken.

rooted-hiders

TAS_WIFI Indicates that the device is
currently connected to an
unsecured Wi-Fi.

unsecured-wifi

Deploying MobileFirst projects 11-83

Table 11-17. Trusteer error codes (continued)

Code Description Corresponding parameter

TAS_OUTDATED Indicates that Trusteer SDK
configuration has not
updated for some time,
meaning that it did not
connect to the Trusteer
server.

outdated-configuration

TAS_INVALID_HEADER Indicates that the format of
the Trusteer header is
invalid.

-

TAS_NO_HEADER Indicates that the Trusteer
SDK is not installed, or has
failed to initialize.

-

3. Define a security test in the <securityTest> element in the
authenticationConfig.xml file. For Trusteer, it could be:
<customSecurityTest name="TrusteerTest">

<test realm="wl_basicTrusteerFraudDetectionRealm" isInternalUserID="true" step="1"/>
...

</customSecurityTest>

4. Use the security test to protect a resource. For example, you can protect an
application’s environment completely with that security test by adding the
securityTest attribute to the environment’s element in the
authenticationConfig.xml file:
<iPhone version="1.0" securityTest="TrusteerTest">

...
</iPhone>

This definition requires every iPhone device that connects to the server through
your application to log in to the TrusteerTest security test.

5. Using the same security test, another option is to protect a MobileFirst adapter
procedure. . If you have an adapter procedure named GetSecretData, you can
protect it in the XML configuration file of the adapter by adding the <realms>
attribute to the <procedure>:
<procedure name="GetSecretData" securityTest="TrusteerTest" />

6. Create a challenge handler for your MobileFirst app to handle Trusteer
challenges. The following samples are samples of simple challenge handlers:

JavaScript
var trusteerChallengeHandler = WL.Client.createWLChallengeHandler("wl_basicTrusteerFraudDetectionRealm");

trusteerChallengeHandler.handleFailure = function(error) {
//Note: error object includes array of alerts (same values as error.reason) from the
//Trusteer authenticator and can be accessed via error.alerts
WL.SimpleDialog.show("Error", "Operation failed. Please contact customer support (reason code: " + error.reason + ")",
[{text:"OK"}]);

};

//In case authenticator succeeds, there may still be alerts that developer should notify the user about:

trusteerChallengeHandler.processSuccess = function(identity){
var alerts = identity.attributes.alerts; //Array of alerts codes
if(alerts.length > 0) {

WL.SimpleDialog.show("Warning", "Please note that your device is : " + alerts, [{text:"OK"}]);
}

}

11-84 IBM MobileFirst Platform Foundation V6.3.0

Java
public class TrusteerChallengeHandler extends WLChallengeHandler {

private static Logger logger = Logger.getInstance(TrusteerChallengeHandler.class.getSimpleName());
public TrusteerChallengeHandler(String realmName) { super(realmName); }

@Override
public void handleSuccess(JSONObject identity) {

try {
JSONArray alerts = identity.getJSONObject("attributes").getJSONArray("alerts");
if(alerts.length() > 0) {

logger.warn ("TrusteerChallengeHandler.handleSuccess with alerts: " + alerts);
//todo: display message to the user

}
} catch (Exception e) {

logger.error("Unexpected error: " + e);
}

}

@Override
public void handleFailure(JSONObject error) {

try {
String errorReason = error.getString("reason");
logger.error("TrusteerChallengeHandler.handleFailure: " + errorReason + "(" + error + ")");
String msg = "Trusteer fraud detection failed due to " + errorReason;
JSONArray alerts = error.getJSONArray("alerts");
if(alerts.length() > 0) {

logger.warn ("TrusteerChallengeHandler.handleSuccess with alerts: " + alerts);
//todo: We also have alerts...

}
//todo: display error message to user

} catch (Exception e) {
logger.warn ("Unexpected error: " + e);
}

}

@Override
public void handleChallenge(JSONObject challenge) {

//Nothing to do...
}

}

// Register your newly created challenge handler for your Trusteer realm:
WLClient.getInstance().registerChallengeHandler(
new TrusteerChallengeHandler("wl_basicTrusteerFraudDetectionRealm”)

);

Objective-C
// Assuming you have added a Trusteer realm to the authentication configuration file of
// your server, you can register a challenge handler to receive the responses from
// the authenticator.

// Create a class that extends WLChallengeHandler:
#import "WLChallengeHandler.h"
@interface TrusteerChallengeHandler : WLChallengeHandler
@end

// Register your newly created challenge handler for your Trusteer realm:
[[WLClient sharedInstance] registerChallengeHandler:
[[TrusteerChallengeHandler alloc] initWithRealm:@"
wl_basicTrusteerFraudDetectionRealm"]];

// If you have set one of your realm options to block, a blocking event will trigger handleFailure.
@implementation TrusteerChallengeHandler
//...

Deploying MobileFirst projects 11-85

-(void) handleFailure: (NSDictionary *)failure{
NSLog(@"Your request could not be completed. Reason code: %@",
failure[@"reason"]);

}
//...
@end

// If your have set one of your realm options to alert, you can catch the alert event
// by implementing the handleSuccess method.
@implementation TrusteerChallengeHandler
//...
-(void) handleSuccess:(NSDictionary *)success{

NSArray* alerts = success[@"attributes"][@"alerts"];
if(alerts && alerts.count){

for(NSString* alert in alerts){
NSLog(@"This device is %@", alert);

}
}

}
//...
@end

Accessing Trusteer risk assessment
Access Trusteer risk assessment to add Trusteer protection on the client side.

For an application that is running on a rooted device, you might want to disable
the "Transfer Funds" button entirely, in addition to the server-side security tests
described in “Configuring the MobileFirst Server for Trusteer” on page 11-82.

The following code samples are for JavaScript, Java, and Objective-C:

JavaScript
WL.Trusteer.getRiskAssessment(onSuccess);

Where onSuccess is a function that receives a JSON object that contains all
the data processed by Trusteer. See Trusteer documentation for information
on each risk item.
function onSuccess(result){

//See the logs for full result
WL.Logger.debug(JSON.stringify(result));
//Check for a specific flag
if(result["os.rooted"]["value"] != 0){
alert("This device is rooted!");

}
}

Objective-C
#import “WLTrusteer.h”
NSDictionary* risks =[[WLTrusteer sharedInstance] riskAssessment];

This returns an NSDictionary of all the data that is processed by Truster.
See Trusteer documentation for information on each risk item.
//See logs for full result
NSLog(@"%@",risks);
//Check for a specific flag
NSNumber* rooted = [[risks objectForKey:@"os.rooted"] objectForKey:@"value"];
if([rooted intValue]!= 0){
NSLog(@"Device is jailbroken!");
}

Java
WLTrusteer trusteer = WLTrusteer.getInstance();
JSONObject risks = trusteer.getRiskAssessment();

11-86 IBM MobileFirst Platform Foundation V6.3.0

This returns an JSONObject of all the data that is processed by Truster. See
Trusteer documentation for information on each risk item.
JSONObject rooted = (JSONObject) risks.get("os.rooted");
if(rooted.getInt("value") > 0){
//device is rooted
}

Supported configurations for LTPA
IBM MobileFirst Platform Foundation supports different configuration options to
take advantage of LTPA, based on the server configuration and administrative
requirements.

Protective application server (Option 1)

This configuration is formally known as Option 1 in tutorial WebSphere LTPA-based
authentication, which you can find on the Getting Started page. The application
server is configured to protect all resources in the MobileFirst Server application,
which is given specified roles. The application server sends the login page if the
user does not send a valid LTPA token with the request. After the user sends valid
credentials, the original request is sent to the MobileFirst Server application with
an LTPA token. The LTPA realm consumes the LTPA token and automatically logs
in the user.

The following image shows a protective application server flow:

This option is not preferred for new configurations. The application server such as
the WebSphere Application Server Liberty (Liberty) protects all resources and
forces users to log in before any other authentication mechanism. The behavior
occurs regardless of the expected authentication order for a security test.

To use this option with Liberty, you must edit the web.xml from the MobileFirst
Server WAR file and Liberty’s server.xml file. The following example shows the
required modifications to the web.xml file:

Deploying MobileFirst projects 11-87

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3

<!-- Existing web.xml configuration here -->

<security-constraint id="worklightSecurityConstraint">
<web-resource-collection id="worklightWebResourceCollection">
<web-resource-name>Worklight Server</web-resource-name>
<description>Protection area for Worklight Server.</description>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint id="worklightAuthConstraint">
<description></description>
<role-name>allAuthenticationUsers</role-name>

</auth-constraint>
<user-data-constraint id="worklightUserDataConstraint">
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>

<security-role id="securityRoleAllAuthenticatedUsers">
<description>All Authenticated Users Role.</description>
<role-name>allAuthenticationUsers</role-name>

</security-role>

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.html</form-login-page>
<form-error-page>/loginError.html</form-error-page>

</form-login-config>
</login-config>

The following example shows the required modifications to the server.xml file:
<featureManager>

<feature>appSecurity-1.0</feature>
<!-- Any additional features you need go here -->

</featureManager>

<!-- Use an existing user registry instead if you have one.
This registry is just an example. -->

<basicRegistry>
<user name="sampleuser" password="demo" />

</basicRegistry>

<!-- Any additional settings go here -->
<application context-root="/worklight"

location="worklight.war"
name="worklight"
type="war">

<classloader commonLibraryRef="worklight-6.1.0,apps-common" />

<!-- This is our addition: application-bnd.
The security-role defines who is authorized into a role from web.xml -->

<application-bnd>
<security-role name="allAuthenticationUsers">
<special-subject type="ALL_AUTHENTICATED_USERS" />

</security-role>
</application-bnd>

</classloader>
</application>

Note: Remember to add the login.html and loginError.html files to the root
directory in the MobileFirst Server WAR file to provide a way for the user to log
in. For more information, see step 4 of “Configuring the MobileFirst LTPA realm”
on page 11-81.

11-88 IBM MobileFirst Platform Foundation V6.3.0

Protective MobileFirst security test (Option 2)

An alternative configuration allows the server to use all of the MobileFirst security
test configuration features. This option is preferred for new configurations. For
example, Option 1 always asks the user to log in on the first request. Option 2 asks
for the user to authenticate only when the MobileFirst Server deems that it is
necessary.

The following image shows a protective security test flow:

You need to modify only Liberty’s server.xml file to configure this option. The
WASLTPARealm handles the actual authentication against the user registry that is
defined in the server.xml file. The example configuration allows the user with the
user name sample user and the password demo to authorize correctly.

The following example shows the required modifications to the server.xml file:
<featureManager>

<feature>appSecurity-1.0</feature>
<!-- Any additional features you need go here -->

</featureManager>

<!-- Use an existing user registry instead if you have one.
This registry is just an example. -->

<basicRegistry>
<user name="sampleuser" password="demo"/>

</basicRegistry>

<!-- Any additional settings go here -->
<application context-root="/worklight"

location="worklight.war"
name="worklight"
type="war">

<classloader commonLibraryRef="worklight-6.1.0,apps-common"/>
<!-- This is our addition: application-bnd.

The security-role defines who is authorized into a role from web.xml -->
<application-bnd>

<security-role name="allAuthenticationUsers">

Deploying MobileFirst projects 11-89

<special-subject type="ALL_AUTHENTICATED_USERS" />
</security-role>

</application-bnd>
</classloader>

</application>

Note: Remember to add the login.html and loginError.html files to the root
directory in the MobileFirst Server WAR file to provide a way for the user to log
in. For more information, see step 4 of “Configuring the MobileFirst LTPA realm”
on page 11-81.

Advanced security features
IBM MobileFirst Platform Foundation supports more features that can use LTPA in
advanced scenarios, such as user certificate authentication and role-based
authentication.

Role-based authentication

In IBM Worklight V6.1 and later, role-based authentication is supported. This
feature allows the MobileFirst LTPA realm to be configured to restrict access to a
specific Java Platform, Enterprise Edition role. The realm denies the user if the user
is not authorized to the role that is specified. This feature is optional. By not
defining a required role in the realm's configuration, all users get an LTPA token
and are authorized if credentials are correct.

For more information, see “WASLTPAModule login module” on page 8-522.

User certificate authentication

In IBM Worklight V6.1 and later, the User Certificate Authentication feature is
supported. This form of authentication allows users to authenticate through an
X.509 client certificate over SSL. The realm definition includes parameters to
configure the authenticator, which includes the concept of a dependent realm. The
dependent realm is a realm that is required to be authenticated before the user
certificate can be generated. After the user logs in to the dependent realm, the user
certificate authenticator uses the user identity to build the certificate signing
request (CSR) and certificate.

For more information, see “User certificate authentication” on page 13-67.

Topologies and use cases
IBM MobileFirst Platform Foundation supports various infrastructure topologies
for a set of requirements that can take advantage of LTPA or MobileFirst security.

Reverse proxy with LTPA

A reverse proxy can be used to authenticate, and then send the user's LTPA token
after the user is authenticated. This configuration can be useful when you want to
offload IBM MobileFirst Platform Foundation from handling vital user credentials
or to use an existing authentication setup. The MobileFirst Server must be
configured for LTPA authentication to get the user identity. Both supported LTPA
configurations log the user in automatically if the LTPA token is valid and the user
is authorized. For more information about integrating IBM MobileFirst Platform
Foundation with a reverse proxy, see “Integration and authentication with a
reverse proxy” on page 14-3.

11-90 IBM MobileFirst Platform Foundation V6.3.0

The following image shows a reverse proxy flow:

High availability
High availability is provided through clustering, the ability to provide multiple
MobileFirst Server instances acting together.

Multiple MobileFirst Server instances enable horizontal scaling of the software as
well as the prevention of a single point of failure.

Clustering
The MobileFirst Server creates a cluster by deploying multiple servers that share
the database instance.

The basic setup consists of the load balancer, the cluster nodes, and a database that
is shared by the cluster nodes.

All cluster nodes are identical; that is, the content of the installation folder is the
same in all nodes. Cluster nodes do not synchronize with each other at run time.
All management data is in the MobileFirst administration services, which verify
that all cluster nodes have the same data. With WebSphere Application Server
Network Deployment, you can use built in clustering support for distributing the
MobileFirst project WAR (and the MobileFirst Shared library). For more information,
see the IBM WebSphere Application Server V8 user documentation.

MobileFirst Server can run on a VMware virtual machine. In such cases, one
machine image is created and then deployed again and again.

IBM MobileFirst Platform Foundation is stateful. It caches session state within the
server memory. The result is that if one MobileFirst Server is taken offline, active
user sessions are lost and the client is asked to log on again.

Configuring the load balancer
You can use hardware-based or software-based load balancers.

Deploying MobileFirst projects 11-91

http://ibm.biz/knowctr#SSEQTP_8.0.0/as_ditamaps/welcome_base.html

If you do not want to use a hardware-based load balancer, you can use a simpler,
software-based load balancer or reverse proxy such as the Apache Tomcat web
server. Any load balancer that can support the following features is adequate:
v Mandatory: Sticky session
v Mandatory: Reverse proxy capabilities
v Optional: SSL Acceleration

Configuration of the load balancer depends on the vendor and is not covered in
this document. It is common to define the range of the node addresses so that they
can be added or deleted dynamically.

Adding a node to the cluster
Follow the instructions for creating a IBM MobileFirst Platform Server to add a
node to the cluster.

About this task

You can add a node to the cluster, by following the instructions for creating a
MobileFirst Server:

Procedure
1. Add the IP address of the node to the load balancer or use an existing address

from a range that was pre-allocated to instances of MobileFirst Server.
2. Install the MobileFirst Server.
3. Apply the project WAR.

Firewalls
Firewalls can be configured at various layers of the IBM MobileFirst Platform
Foundation architecture.

Firewalls in front of a MobileFirst Server use the typical configuration.

Special attention must be given to a firewall layer between the IBM MobileFirst
Platform Foundation servers and the IBM MobileFirst Platform Foundation
database.
v MobileFirst Server employs database connection pooling. Firewalls may detect

idle database connections and terminate them resulting in unexpected behavior.
v Firewalls limit the number of connections allowed. This is done to prevent

Denial of Service (DoS) attacks. However, with multiple clustered MobileFirst
Server instances, the number of connections might be higher than usual.

Disaster Recovery Site
IBM MobileFirst Platform Foundation supports the creation of a separate disaster
recovery site that becomes operational if the original site goes down.

A disaster recovery site is a second, physically separate IT center on which a copy
of the IT systems exists, and springs into operation if the original site is down.
IBM MobileFirst Platform Foundation has such a site for some of its customers.

Within the site, IBM MobileFirst Platform Foundation provides redundancy at
every level: compensating load balancers, multiple IBM MobileFirst Platform
Foundation servers that scale linearly, and database redundancy through Oracle
RAC. Some customers prefer to provide another level of redundancy by using a
disaster recovery site.

11-92 IBM MobileFirst Platform Foundation V6.3.0

The key administrative factors for such a site are:
v Architecture
v Data mirroring from master to backup site
v Switching to back up site on disaster

Architecture
The architecture of the backup site is a copy of the original site. Special
care must be taken to:
v Provide access to all corporate back-end systems.
v Create a switch that transfers incoming requests from master to backup

site.

Data mirroring
For the backup site to work, data on the master site must be mirrored to
the backup regularly:

Table 11-18. Data mirroring

Component Description Mirror frequency

IBM MobileFirst Platform
Foundation Database

All tables must be mirrored.
The exceptions to this rule
are cache tables
(SSO_LOGIN_CONTEXTS) and
report tables (which are large
in size).

Highly dependent on
implementation and can
range from a few minutes to
24 hours. For more
information, contact software
support.

IBM MobileFirst Platform
Foundation Software,
customization, and content

Any change in IBM
MobileFirst Platform
Foundation software,
customization, or content
must also be installed on the
mirror servers.

As it occurs.

Switching to back up site
When you switch to the backup site, some information might be lost:
v All clients lose context and disconnect. In the case of an authenticated

app, the user is prompted to log in again.
v Report information is lost (unless previously mirrored).
v Cache is lost. If Cache was implemented for various queries, an

additional server fetch is required to fill cache.

Switching back to Master Site
Before you switch back to the master site, you must mirror the database
back to the master site.

Important: The success of a recovery site is in the details. To ensure the
successful functioning of such a site, you must develop and follow a strict
written procedure, which you test regularly.

Updating MobileFirst apps in production
There are general guidelines for upgrading your MobileFirst apps when they are
already in production, on the Application Center or in app stores.

Deploying your MobileFirst apps for the first time to MobileFirst Server and the
Application Center is covered in other sections of the information center, such as
“Deploying an application from development to a test or production environment”
on page 11-2. To recap, the general procedure is as follows:

Deploying MobileFirst projects 11-93

v Build and test your app using IBM MobileFirst Platform Foundation, and use
either the MobileFirst Operations Console or the supplied Ant tasks to deploy its
.wlapp file to MobileFirst Server and the Application Center.

v Submit the generated device app files (such as .apk for Android apps and .ipa
for iOS apps) to their respective app stores (in this example, Google Play and
Apple Store).

v Wait for the completion of the review and approval process. Try to avoid
updating your app before the review process is completed because doing so can
trigger a Direct Update and can confuse the reviewers.

Procedures for upgrading your app when it is already in production are contained
in this section. There are several ways to perform such upgrades, depending on
their nature:
v Is the upgrade a new version of the app that contains new features or native

code, or is it a bug fix or security upgrade?
v Is the upgrade mandatory or optional?
v If it is optional, do you want to leave the old version of the app in place and

available to users, or not?
v How and when do you want to notify users of the upgrade?

These subjects are covered in the following topics.

Deploying a new app version and leaving the old version
working

The most common upgrade path, used when you introduce new features or
modify native code, is to release a new version of your app. Consider following
these steps:
1. Increment the app version number.
2. Build and test your project and generate new .wlapp, .apk, and .ipa files for it.
3. Deploy the new .wlapp file to MobileFirst Server.
4. Submit the new .apk or .ipa files to their respective app stores.
5. Wait for review and approval, and for the apps to become available.
6. Optional - send notification message to users of the old version, announcing

the new version. See “Displaying a notification message on application startup”
on page 12-5 and “Defining administrator messages from MobileFirst
Operations Console in multiple languages” on page 12-5.

Deploying a new app version and blocking the old version

This upgrade path is used when you want to force users to upgrade to the new
version, and block their access to the old version. Consider following these steps:
1. Optional - send notification message to users of the old version, announcing a

mandatory update in a few days. See “Displaying a notification message on
application startup” on page 12-5 and “Defining administrator messages from
MobileFirst Operations Console in multiple languages” on page 12-5.

2. Increment the app version number.
3. Build and test your project and generate new .wlapp, .apk, and .ipa files for it.
4. Deploy the new .wlapp file to MobileFirst Server.
5. Submit the new .apk or .ipa files to their respective app stores.
6. Wait for review and approval, and for the apps to become available.
7. Copy links to the new app version.

11-94 IBM MobileFirst Platform Foundation V6.3.0

8. Block the old version of the app in MobileFirst Operations Console, supplying
a message and link to the new version. See “Locking an application” on page
12-3 and “Remotely disabling application connectivity” on page 12-3.

Note: If you disable the old app, it is no longer able to communicate with
MobileFirst Server. Users can still start the app and work with it offline unless you
force a server connection on app startup.

Direct Update (no native code changes)

Direct Update is a mandatory upgrade mechanism that is used to deploy fast fixes
to a production app. When you redeploy an app to MobileFirst Server without
changing its version, MobileFirst Server directly pushes the updated web resources
to the device when the user connects to the server. It does not push updated native
code. Things to keep in mind when you consider a Direct Update include:
v Direct update does not update the app version. The app remains at the same

version, but with a different set of web resources. The unchanged version
number can introduce confusion if used for the wrong purpose

v Direct update also does not go through the app store review process because it
is technically not a new release. This should not be abused because vendors can
become displeased if you deploy a whole new version of your app that bypasses
their review. It is your responsibility to read each store's usage agreements and
abide by them. Direct update is best used to fix urgent issues that cannot wait
for several days.

v Direct Update is considered a security mechanism, and therefore it is mandatory,
not optional. When you initiate the Direct Update, all users must update their
app to be able to use it.

v Direct Update does not work if an application is compiled (built) with a
different version of IBM MobileFirst Platform Foundation than the one that was
used for the initial deployment.

The steps for initiating a Direct Update are as follows:
1. Optional - send notification message to users of the old version, announcing a

mandatory update in the next few hours or days. See “Displaying a notification
message on application startup” on page 12-5 or “Defining administrator
messages from MobileFirst Operations Console in multiple languages” on page
12-5.

Note: Do not increment the app version number.
2. Build and test your project and generate a new .wlapp file for it.
3. Deploy the new .wlapp file to MobileFirst Server. This initiates the Direct

Update.

For more information about Direct Update, see “Direct updates of app versions to
mobile devices” on page 8-163.

Application authenticity

This feature will not work properly for clients that were built with an older version
of IBM MobileFirst Platform Foundation when the application deployed is of a
new product version but has the same application version. Those client requests to
access the authenticity-protected resources will be denied.

To keep support of old applications using app authenticity, or block them, follow
these steps:

Deploying MobileFirst projects 11-95

1. Upgrade the project using the newer version of IBM MobileFirst Platform
Foundation, as described above.

2. Increment the versions of the upgraded applications.
3. Deploy the new WAR file that was built.
4. Deploy the new applications to the server alongside the applications that were

built with the old IBM MobileFirst Platform Foundation.
5. Normally, both applications work as expected. If you want to use the new ones

only, block the old ones and refer to the new ones for upgrade.

Deploying to the cloud
IBM MobileFirst Platform Foundation provides the capability to deploy and
manage MobileFirst Server and MobileFirst applications on IBM PureApplication
System, IBM SmartCloud Orchestrator, and IBM PureApplication Service on
SoftLayer.

Using IBM MobileFirst Platform Foundation in combination with IBM
PureApplication System, IBM SmartCloud Orchestrator, and IBM PureApplication
Service on SoftLayer provides a simple and intuitive environment for developers
and administrators to develop mobile applications, test them, and deploy them to
the cloud. The following components are available:

IBM MobileFirst Platform Application Pattern Type
Provides MobileFirst runtime and artifacts support for IBM
PureApplication System, IBM SmartCloud Orchestrator, and IBM
PureApplication Service on SoftLayer.

IBM MobileFirst Platform Application Pattern Extension for MobileFirst Studio
Provides MobileFirst Application Pattern tooling support for MobileFirst
Studio.

Ant command line interface
Provides an alternative method to build and deploy MobileFirst Studio
Virtual Application.

Compatibility between pattern types and artifacts created with
different product versions

If you use MobileFirst Studio V6.3.0 or earlier to develop your applications, you
can upload the associated runtime, application, and adapter artifacts into patterns
associated with IBM MobileFirst Platform Foundation V7.0.0 and later.

Pattern types that are associated with IBM MobileFirst Platform Foundation V6.3.0
or earlier are not compatible with runtime, application, and adapter artifacts
created by using MobileFirst Studio V7.0.0 and later.

For versions V6.0.0 and earlier, only the same versions of server, .war file,
application (.wlapp file) and adapters are compatible.

For more information about version compatibility, see “Version compatibility” on
page 7-1.

Installing MobileFirst support for cloud deployment
You must install the IBM MobileFirst Platform Application Pattern Type and IBM
MobileFirst Platform Application Pattern Extension for MobileFirst Studio.

11-96 IBM MobileFirst Platform Foundation V6.3.0

Installing the IBM MobileFirst Platform Application Pattern Type
You use the PureApplication System Workload Console to install the IBM
MobileFirst Platform Application Pattern Type.

Before you begin

You can find the mobilefirst.ptype-6.3.0.0.tgz file in the mobilefirst_server_
pattern_6.3.0.zip file. Make sure you extract it before you start this procedure.

Procedure
1. Log in to IBM PureApplication System with an account that has permission to

create new pattern types.
2. Go to Workload Console > Cloud > Pattern Types.
3. Upload the IBM MobileFirst Platform Application Pattern Type .tgz file.
4. On the toolbar, click +. The “Install a pattern type” window opens.
5. On the Local tab, click Browse, select the IBM MobileFirst Platform Application

Pattern Type .tgz file, and then wait for the upload process to complete. The
pattern type is displayed in the list and is marked as not enabled.

6. In the list of pattern types, click the uploaded pattern type. Details of the
pattern type are displayed.

7. In the License Agreement row, click License. The License window is displayed
stating the terms of the license agreement.

8. To accept the license, click Accept. Details of the pattern type now show that
the license is accepted.

9. In the Status row, click Enable. The pattern type is now listed as being enabled.

Installing custom runtime database workload standards
You need to install custom workload standards for the runtime database,
administration database, and reports database.

Before you begin

Extract the WLRTDB.zip, WLRPTDB.zip, and WLADMDB.zip files from the
mobilefirst_server_ pattern_6.3.0.zip file.

Procedure
1. Log in to IBM PureApplication System with an account that has permission to

create database workload standards.
2. In the Workload Console, navigate to Catalog > Database Workload Standards.
3. From the toolbar, click +. The Database Workload Standards window opens.
4. In the Name field, enter a name; for example, WL_DB.
5. From the Workload type list, select Departmental Transactional.
6. In the Upload file (.zip) field, select the WLRTDB.zip file you extracted from the

mobilefirst_server_ pattern_6.3.0.zip file.
a. Click Browse, navigate to the folder into which you extracted the

WLRTDB.zip file, and then select the WLRTDB.zip file.
7. Click Save to save your custom runtime database workload standard.
8. Repeat the previous steps to do the following:

a. Upload the WLRPTDB.zip file to create the custom reports database workload
standard.

Deploying MobileFirst projects 11-97

b. Upload the WLADMDB.zip file to create the administration database workload
standard.

What to do next

You use the installed database workload standards in the process of creating an
IBM MobileFirst Platform Application Pattern (see “Creating an IBM MobileFirst
Platform Application Pattern” on page 11-100).

Installing new MobileFirst database workload standard that
combines all MobileFirst tables
In addition to the traditional pattern topology for production environment where
you deploy MobileFirst databases into separate DB2 VMs, IBM MobileFirst
Platform Foundation also supports creating a pattern that uses a single DB2 VM.
This pattern leverages the new DB Workload that combines all MobileFirst tables
for IBM PureApplication Service on SoftLayer.

Before you begin

Extract the WLALLDB.zip from the mobilefirst_server_ pattern_6.3.0.zip file.

Procedure
1. Log in to IBM PureApplication System or IBM PureApplication Service with an

account that has permission to create database workload standards.
2. In the Workload Console of PureApplication System or in the home page of

PureApplication Service, navigate to Catalog > Database Workload Standards.
3. From the toolbar, click +. The Database Workload Standards window opens.
4. In the Name field, enter a name. For example, WL_ALL_DB.
5. From the Workload type list, select Departmental Transactional.
6. In the Upload file (.zip) field, select the WLALLDB.zip file that you retrieved

from the mobilefirst_server_ pattern_6.3.0.zip file.
a. Click Browse, navigate to the folder into which you extracted the

WLALLDB.zip file, and then select the WLALLDB.zip file.
7. Click Save to save your MobileFirst combined database workload standard.

Installing MobileFirst support for cloud deployment from the
command line
If you download the IBM PureApplication System command-line interface, you can
install MobileFirst support for cloud deployment by running a Python script from
the command line.

Before you begin

You need to download the command-line interface before you run the Python
script. For further information about the command-line interface, see Using the
command-line interface in the IBM PureApplication System documentation.

Procedure

Open a command prompt and run the following Python script:
./pure -h pure_host_name -u user_name -p password -a -f install.py worklight_artifacts_path

install.py:
import sys
mobileloc=sys.argv[1]

11-98 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSNLXH_1.0.0/com.ibm.ipas.doc/iwd/cct_usingcli.html
http://ibm.biz/knowctr#SSNLXH_1.0.0/com.ibm.ipas.doc/iwd/cct_usingcli.html

print "Loading Mobile"
deployer.patterntypes.create(mobileloc+’/mobilefirst.ptype-6.3.0.0.tgz’)
print "Accept/enable"
deployer.patterntypes.get("worklight.ptype","6.3.0.0").acceptLicense()
deployer.patterntypes.get("worklight.ptype","6.3.0.0").enable()

print "creating db workload standards"
temp=deployer.dbworkloads.create({"rate":"3","workload_type":"Departmental OLTP","initial_disk_size":"1","name":"WL_DB","description":"","is_system":"false","version":"6.3.0.0","workload_file":"WLRTDB.zip"})
deployer.dbworkloads.get(temp[’id’]).workloadfiles.upload(mobileloc+"/WLRTDB.zip")
temp=deployer.dbworkloads.create({"rate":"3","workload_type":"Departmental OLTP","initial_disk_size":"1","name":"WL_Report_DB","description":"","is_system":"false","workload_file":"WLRPTDB.zip"})
deployer.dbworkloads.get(temp[’id’]).workloadfiles.upload(mobileloc+"/WLRPTDB.zip")
temp=deployer.dbworkloads.create({"rate":"3","workload_type":"Departmental OLTP","initial_disk_size":"1","name":"WL_Admin_DB","description":"","is_system":"false","workload_file":"WLADMDB.zip"})
deployer.dbworkloads.get(temp[’id’]).workloadfiles.upload(mobileloc+"/WLADMDB.zip")
temp=deployer.dbworkloads.create({“rate”:”3”,”workload_type”:”Departmental OLTP”,”initial_disk_size”:”1”,”name”:”WL_Single_DB”,”description”:””,”is_system”:”false”,”version”:”6.3.0.0”,”workload_file”:”WLALLDB.zip”})
deployer.dbworkloads.get(temp[’id’]).workloadfiles.upload(mobileloc+"/WLALLDB.zip")

Installation of IBM MobileFirst Platform Application Pattern
Extension for MobileFirst Studio
IBM MobileFirst Platform Application Pattern Extension is included with
MobileFirst Studio in both the MobileFirst Enterprise Edition and IBM MobileFirst
Platform Foundation Consumer Edition. When MobileFirst Studio is installed in
the Eclipse development environment, the IBM MobileFirst Platform Application
Pattern Extension is also installed.

For more information about installation and configuration of MobileFirst Studio,
see “Installing and configuring” on page 6-1.

Working with the IBM MobileFirst Platform Application Pattern
Type

Working with the IBM MobileFirst Platform Application Pattern Type involves
creating an IBM MobileFirst Platform Application Pattern, integrating with Tivoli®

Directory Server, connecting to a Tivoli Directory Server, and managing MobileFirst
VAP instances.

Composition and components
The IBM MobileFirst Platform Application Pattern Type is composed of the IBM
Web Application Pattern and the IBM MobileFirst Platform Application Pattern.
The IBM MobileFirst Platform Application Pattern provides a number of
components.

Composition

IBM MobileFirst Platform Application Pattern Type is composed of the following
patterns:
v IBM Web Application Pattern
v IBM MobileFirst Platform Application Pattern

Components

In addition to all components provided by IBM Web Application Pattern, IBM
MobileFirst Platform Application Pattern provides the following components:
v MobileFirst application component
v MobileFirst adapter component
v MobileFirst configuration component

Deploying MobileFirst projects 11-99

v MobileFirst application component link to enterprise application (WebSphere
Application Server) component

v MobileFirst adapter component link to enterprise application (WebSphere
Application Server) component

v Enterprise application (WebSphere Application Server) component link to
MobileFirst configuration component

Creating an IBM MobileFirst Platform Application Pattern
You create an IBM MobileFirst Platform Application Pattern by creating and
configuring a MobileFirst Server, a runtime database, an administration database,
and an optional reports database, and by uploading applications and adapters.

Before you begin

This procedure involves uploading certain artifacts to IBM PureApplication System
such as the MobileFirst Server. Before you begin, ensure that the artifacts are
available for upload.

About this task

Important: All actions associated with creating and configuring the reports
database are optional. The reports database is required only for viewing reports.

Procedure
1. Create a MobileFirst Server.

a. If necessary, use the IBM MobileFirst Platform Application Pattern Extension
or the command line interface to package up the MobileFirst Server into an
EAR file. For more information, see the following topics:
v “Deploying a MobileFirst project to IBM PureApplication System, IBM

SmartCloud Orchestrator, or IBM PureApplication Service on SoftLayer”
on page 11-110

v “Building a MobileFirst virtual application” on page 11-111
b. In IBM PureApplication System, click Patterns > Virtual Applications in the

dashboard to open the Virtual Application Patterns page.
c. Select IBM MobileFirst Platform Application Pattern Type 6.3, and then

click the plus sign (+).
d. In the pop-up window, select Blank application, and click Start Building.
e. In the Virtual Application Builder, click the Diagram tab.
f. From the Assets list, expand Application Components, and then drag and

drop an Enterprise Application WebSphere Application Server component
onto the canvas.

g. Supply the following information in the fields provided:

Table 11-19. MobileFirst Server component properties

Property Description

Name Name for the MobileFirst Server.

EAR file MobileFirst EAR file that contains the
MobileFirst Server package to be uploaded.

2. Create runtime and administration databases, and an optional reports database.
a. From the Assets list, expand Database Components, and then drag and

drop a Database DB2 component onto the canvas.

11-100 IBM MobileFirst Platform Foundation V6.3.0

b. Supply the following information in the fields provided to define the
runtime database:

Table 11-20. Runtime database component properties

Property Description

Name Name for the runtime database component;
for example, WL Runtime DB.

Database name Name for the runtime database; for example,
WLRTIME.

Source From the Source list, select Apply a
database workload standard, and then click
the database workload standard created for
the runtime database (see “Installing custom
runtime database workload standards” on
page 11-97).

c. Optional: Repeat step 2a to create a reports database.
d. Optional: Supply the following information in the fields provided to define

the reports database:

Table 11-21. Reports database component properties

Property Description

Name Name for the reports database component;
for example, WL Reports DB.

Database name Name for the reports database; for example,
WLRPT.

Source From the Source list, select Apply a
database workload standard, and then click
the database workload standard created for
the reports database (see “Installing custom
runtime database workload standards” on
page 11-97).

e. Repeat step 2a to create an administration database.
f. Supply the following information in the fields provided to define the

administration database:

Table 11-22. Administration database component properties

Property Description

Name Name for the administration database
component; for example, WL Admin DB.

Database name Name for the runtime database; for example,
WLADMIN.

Source From the Source list, select Apply a
database workload standard, and then click
the database workload standard created for
the administration database (see “Installing
custom runtime database workload
standards” on page 11-97).

3. Configure connectivity for the runtime and reports databases.
a. Drag a connection from the MobileFirst Server component to the runtime

database component.

Deploying MobileFirst projects 11-101

b. In the Resource References of Data Source field, select jdbc/WorklightDS
for the runtime database.

c. Optional: Drag a connection from the MobileFirst Server component to the
reports database component.

Note: A warning message is displayed in the MobileFirst Server component,
indicating “Connection to 'xxx database' is required for res-ref-name
'jdbc/WorklightReportsDS' in module 'xxx.war'”. This warning message can
be disregarded.

d. Optional: In the Resource References of Data Source field, select
jdbc/WorklightReportsDS for the reports database.

e. Drag a connection from the MobileFirst Server component to the
administration database component.

f. In the Resource References of Data Source field, select
jdbc/WorklightAdminDS for the administration database.

4. Configure the MobileFirst Server.
a. From the Assets list, expand MobileFirst Components, and then drag and

drop a MobileFirst Configuration component onto the canvas.
b. Create a link from the MobileFirst Server component to the MobileFirst

configuration component.
c. Supply the following information in the fields provided:

Table 11-23. MobileFirst configuration component properties

Property Description

Name Name for the MobileFirst configuration
component.

Worklight Deployment Username User name for MobileFirst application and
adapter deployment (the user must have
authorization for the deployment).

Worklight Deployment Password Password for MobileFirst application and
adapter deployment.

5. Create MobileFirst applications and adapters.
a. From the Assets list, expand MobileFirst Components, and then drag and

drop a MobileFirst adapter component and a MobileFirst application
component onto the canvas.

b. For the MobileFirst application component, supply the following
information in the fields provided:

Table 11-24. MobileFirst application component properties

Property Description

Name Name for the MobileFirst application.

MobileFirst Application Files MobileFirst application files to upload.
Supported formats are *.wlapp and *.zip.

c. For the MobileFirst adapter component, supply the following information in
the fields provided:

Table 11-25. MobileFirst adapter component properties

Property Description

Name Name for the MobileFirst adapter.

11-102 IBM MobileFirst Platform Foundation V6.3.0

Table 11-25. MobileFirst adapter component properties (continued)

Property Description

MobileFirst Adapter Files MobileFirst adapter files to upload.
Supported formats are *.wlapp and *.zip.

d. Create links from the MobileFirst application component to the MobileFirst
Server component, and from the MobileFirst adapter component to the
MobileFirst Server component.

6. Integrate with Tivoli Directory Server or Microsoft Active Directory. For more
information, see “Integrating with Tivoli Directory Server” on page 11-105.

Creating an IBM MobileFirst Platform Application Pattern that
uses a single DB2 VM
You create an IBM MobileFirst Platform Application Pattern that uses a single DB2
VM by following the similar procedure of creating a default IBM MobileFirst
Platform Application Pattern. The only difference is that you need to create a
combined database rather than creating a runtime database, an administration
database, and a reports database.

Before you begin

The following procedure involves creating of a combined database. Ensure that the
new runtime database workload standard is already installed. For more
information, see “Installing new MobileFirst database workload standard that
combines all MobileFirst tables” on page 11-98

Procedure
1. Create a MobileFirst Server. For more information, see "Create a MobileFirst

Server" in “Creating an IBM MobileFirst Platform Application Pattern” on page
11-100.

2. Create combined database.
a. From the Assets list, expand Database Components. Drag a Database DB2

component onto the canvas.
b. Supply the following information in the fields that are provided to define

the combined database:

Table 11-26. combined database component properties

Property Description

Name Name for the combined database
component. For example, WL Single DB.

Database name Name for the combined database. For
example, WLALL.

Source From the Source list, select Apply a
database workload standard, and then click
the database workload standard that is
created for the combined database. For more
information, see “Installing new MobileFirst
database workload standard that combines
all MobileFirst tables” on page 11-98.

3. Configure connectivity for the combined database.
a. Drag a connection from the MobileFirst Server component to the combined

database component.

Deploying MobileFirst projects 11-103

b. In the Resource References of Data Source field, select jdbc/WorklightDS
for the combined database.

c. Repeat Step 3(a) to drag another two connections from the MobileFirst
Server component to the combined database.

d. For the second connection, in the Resource References of Data Source field,
select jdbc/WorklightReportsDS for the combined database.

e. For the third connection, in the Resource References of Data Source field,
select jdbc/WorklightAdminDS for the combined database.

4. Configure the MobileFirst Server. Create the MobileFirst applications and the
adapters. For more information, see "Configure the MobileFirst Server" and
"Create MobileFirst applications and adapters" in “Creating an IBM MobileFirst
Platform Application Pattern” on page 11-100.

5. Integrate with Tivoli Directory Server or Microsoft Active Directory. For more
information, see “Integrating with Tivoli Directory Server” on page 11-105.

Creating an IBM MobileFirst Platform Application Pattern from
predefined templates
IBM MobileFirst Platform Application Pattern provides two predefined templates
that you can use as a basis for building your own patterns. You can use the
templates to start building your own pattern, and then make minor changes such
as replacing the EAR file and MobileFirst applications and adapters.

About this task

The predefined pattern templates are installed automatically with the pattern type
file included in mobilefirst_server_ pattern_6.3.0.zip.

Note: Before you deploy your own pattern to IBM PureApplication System, you
need to set the correct database workload standard.

Procedure
1. Create the Virtual Application Pattern from a template.

a. Log in to IBM PureApplication System.
b. Select Workload Console > Patterns > Virtual Application Patterns.
c. In the filter, select IBM MobileFirst Platform Application Pattern Type 6.3.
d. Click the plus sign (+).
e. Select either MobileFirstSample-combinedDB if you want to use a single

database or MobileFirstSample, which has three separate databases that are
intended for production use, and then click Start Building to build the
pattern with your selected template.

2. Set the correct database workload standard.
a. In IBM PureApplication System, in the Virtual Application Builder, click the

Diagram tab to edit the application pattern that you created from the
template.

b. Click MobileFirst Runtime DB, then from the Source properties list in the
right panel, select Apply a database workload standard, and then choose
the MobileFirst runtime database workload standard.

c. Repeat the previous step to set the MobileFirst reports database workload
standard for MobileFirst Reports DB and to set the MobileFirst
administration database workload standard for MobileFirst Admin DB.

d. If your pattern is built with the combined DB, it is only necessary to set the
MobileFirst Combined database workload standard for Combined DB here.

11-104 IBM MobileFirst Platform Foundation V6.3.0

3. Customize the pattern with your own artifacts.
a. In IBM PureApplication System, in the Virtual Application Console, choose

Operation > WAS > Update configuration > WAR/EAR/EBA File. Here
you can upload your own EAR file to replace the default EAR file that is
provided by the pattern template.

b. In the Virtual Application Console, choose Operation > WORKLIGHT >
MobileFirst Application/Adapter. Here you can upload your own
application and adapter files to replace the default application and adapter
files that are provided by the pattern template.

What to do next

This procedure lists only the basic operations to modify some of the pattern
properties. For more information about how to apply additional customizations,
see “Creating an IBM MobileFirst Platform Application Pattern” on page 11-100.

Integrating with Tivoli Directory Server
Tivoli Directory Server and Microsoft Active Directory (connect out only) are
supported as directory servers in IBM MobileFirst Platform Application Pattern
and can be used to protect the MobileFirst Operations Console in conjunction with
LdapLoginModule provided by IBM MobileFirst Platform Foundation.

Since IBM Worklight Foundation V6.2.0, Tivoli Directory Server or Microsoft Active
Directory are needed by default to secure the MobileFirst Operations Console. To
use Tivoli Directory Server or Microsoft Active Directory for securing MobileFirst
applications, LDAPLoginModuleIPAS must be defined in your MobileFirst application.
For more information, see “Integration with Tivoli Directory Server” on page 11-111

Connecting to a new Tivoli Directory Server:

You connect to a new Tivoli Directory Server by dragging and dropping a new
User Registry TDS component onto the PureApplication System canvas, creating
four connections from the MobileFirst Server component to it, and then uploading
an LDIF file and setting the Base DN for Tivoli Directory Server.

Procedure

1. In IBM PureApplication System, in the Virtual Application Builder, click the
Diagram tab.

2. From the Assets list, expand User Registry Components, and then drag and
drop a User Registry Tivoli Directory Server component onto the canvas.

3. Supply the following information in the fields provided:

Table 11-27. Tivoli Directory Server component properties

Property Description

Name Name for the directory server.

LDIF file LDIF file to be uploaded for the Tivoli
Directory Server.

Base DN Base DN for Tivoli Directory Server to start
searching. This value will override the
ldapSearchBase value in
LDAPLoginModuleIPAS.

Deploying MobileFirst projects 11-105

Table 11-27. Tivoli Directory Server component properties (continued)

Property Description

User filter Specifies the LDAP user filter that searches
the existing user registry for users. This
value will override the
ldapSearchFilterPattern value in
LDAPLoginModuleIPAS.

Group filter Specifies the LDAP group filter that searches
the existing user registry for groups.

4. Create four links from MobileFirst Server to Tivoli Directory Server for the four
MobileFirst roles (worklightadmin, worklightdeployer, worklightmonitor and
worklightoperator). For each link, in Mapping special subjects, you can select
AllAuthenticatedUsers.

Connecting to an existing Tivoli Directory Server:

You connect to an existing Tivoli Directory Server by dragging and dropping an
Existing User Registry(IBM Tivoli Directory Server) component onto the
PureApplication System canvas, specifying the IP address and port number of your
existing Tivoli Directory Server as well as the login DN and password, and
creating four connections from the MobileFirst Server component to the Existing
User Registry(IBM Tivoli Directory Server) component.

Procedure

1. In IBM PureApplication System, in the Virtual Application Builder, click the
Diagram tab.

2. From the Assets list, drag and drop an Existing User Registry(IBM Tivoli
Directory Server) component onto the canvas.

3. Specify the IP address and port number of your existing Tivoli Directory Server,
as well as the login DN, Password and Base DN information provided by your
server administrator.

4. To build an SSL connection with the external Tivoli Directory Server, select use
SSL and upload the Server SSL certificate that supports .cer, .crt, or .txt
extensions.

5. Create four links from MobileFirst Server to the Existing User Registry(IBM
Tivoli Directory Server) component for the four MobileFirst roles
(worklightadmin, worklightdeployer, worklightmonitor and worklightoperator).
For each link, in Mapping special subjects, you can select
AllAuthenticatedUsers.

Connecting to an existing Microsoft Active Directory:

You connect to an existing Microsoft Active Directory by dragging and dropping
an Existing User Registry(Microsoft Active Directory) component onto the
PureApplication System canvas, specifying the IP address and port number of your
existing Microsoft Active Directory, as well as the login DN and password, and
creating four connections from the MobileFirst Server component to the Existing
User Registry(Microsoft Active Directory) component.

Procedure

1. In IBM PureApplication System, in the Virtual Application Builder, click the
Diagram tab.

11-106 IBM MobileFirst Platform Foundation V6.3.0

2. From the Assets list, drag and drop an Existing User Registry(Microsoft Active
Directory) component onto the canvas.

3. Specify the IP address and port number of your existing Microsoft Active
Directory, as well as the login DN, Password and Domain suffix of your LDAP
information provided by your server administrator.

4. To build an SSL connection with the external Microsoft Active Directory, select
use SSL and upload the Server SSL certificate that supports .cer, .crt, or .txt
extensions.

5. Create four links from MobileFirst Server to the Existing User
Registry(Microsoft Active Directory) component for the four MobileFirst roles
(worklightadmin, worklightdeployer, worklightmonitor and worklightoperator).
For each link, in Mapping special subjects, you can select
AllAuthenticatedUsers.

Performing operations on running MobileFirst Virtual Application
Pattern instances
Use the PureApplication System Workload Console to perform management tasks
on a running MobileFirst Virtual Application Pattern instance.

Procedure
1. In IBM PureApplication System, in the Workload Console, click the Instances

tab.
2. From the Virtual Application Instances list, click the required instance, and then

click Manage.
3. Click the Operations tab, and then from the Operations list, click

WORKLIGHT.
4. In the details panel, you can perform the following operations:

Table 11-28. Operations on Virtual Application Pattern instances

Operation Description

MobileFirst Deployment Username Username for MobileFirst application and
adapter deployment.

MobileFirst Deployment Password Password for MobileFirst application and
adapter deployment.

5. To submit the changes you have made, click Submit.
6. Navigate back to the Instances tab and verify that the status of the instance is

displayed as "Running".

Integrating by using inbound and outbound connection
components
Inbound and outbound connections are supported as optional components in IBM
MobileFirst Platform Application Pattern. You can use inbound and outbound
connections, for example, to connect to backend services by opening the firewall
ports of the MobileFirst Server for connection.

A typical scenario is when you develop an HTTP adapter to connect to your
backend system to call a REST API. Assuming that the URL to call such a service
looks like http://192.168.0.1:9099/retrieveUserInfo, you must open port 9099 in
the firewall to permit such connections. In scenarios such as this, you must add
inbound and outbound connection components in the MobileFirst Application
Pattern.

Deploying MobileFirst projects 11-107

Adding inbound and outbound connection components in the IBM MobileFirst
Platform Application Pattern:

For security reasons, a firewall is enabled on the MobileFirst Server and only some
ports are opened by default for connections with the LDAP server and DB servers.
To open additional ports for connection with backend services, you must add
inbound and outbound connection components in the IBM MobileFirst Platform
Application Pattern.

Procedure

1. In IBM PureApplication System, in the Virtual Application Builder, click the
Diagram tab.

2. From the Assets list in the Other Components category, drag and drop a
Connect Out (for outbound connection) or a Connect In (for inbound
connection) component onto the canvas.

3. In the Outbound/Inbound Server(s) & Port(s) field, specify the IP addresses
and port numbers for MobileFirst Server to open its firewall ports for outbound
and inbound connections to enterprise backend services. The input must be a
comma-separated list of servers and ports; for example, 32543, 1.2.3.4:23410.

4. Create a link from the MobileFirst Server component to the Connect Out or
Connect In component.

Performing operations on inbound and outbound connection components of
MobileFirst Virtual Application Pattern instances:

Use the PureApplication System Virtual Application Console to add or remove
outbound or inbound servers and ports for a running MobileFirst Virtual
Application Pattern instance.

Procedure

1. In IBM PureApplication System, in the Workload Console, click the Instances
tab.

2. From the Virtual Application Instances list, click the required instance, and then
click Manage on the right side. The Virtual Application Console window opens.

3. In the Virtual Application Console window, click the Operations tab, and then
from the Operations list, click FIREWALL. If there are no outbound or inbound
connection component in your IBM MobileFirst Platform Application Pattern,
the FIREWALL role is not visible.

4. In the details panel, you can perform the following operations:

Table 11-29. Operations available from the details panel. Table describing operations
available from the details panel.

Operation Description

Connect In – Inbound Server(s) & Port(s) Add or remove servers and ports to be
opened for inbound connection in the
firewall.

Connect Out – Outbound Server(s) & Port(s) Add or remove servers and ports to be
opened for outbound connection in the
firewall.

5. To submit the changes you have made, click Submit.
6. In the Operation Execution Results window, verify that the status of your task

is displayed as “success”. The status is displayed after a few seconds.

11-108 IBM MobileFirst Platform Foundation V6.3.0

Upgrading IBM MobileFirst Platform Application Pattern
To upgrade IBM MobileFirst Platform Application Pattern, upload the .tgz file that
contains the latest updates.

Procedure
1. Log into IBM PureApplication System with an account that is allowed to

upload new system plugins.
2. Navigate to Workload Console > Cloud > System Plug-ins.
3. Upload the IBM MobileFirst Platform Application Pattern .tgz file that contains

the updates.
4. Enable the plugins you have uploaded.
5. Redeploy the pattern.

Working with IBM MobileFirst Platform Application Pattern
Extension for MobileFirst Studio

Working with IBM Mobile Application Platform Pattern Extension for MobileFirst
Studio involves setting up cloud environment preferences, deploying your
MobileFirst project to the cloud, and integrating with Tivoli Directory Server.

Note: IBM MobileFirst Platform Application Pattern Extension for MobileFirst
Studio copies the PureApplication configuration into the MobileFirstServerConfig
folder under your eclipse workspace.

Note: Deployment to the cloud from MobileFirst Studio is for the development
environment only. For information about deploying to the cloud in a production
environment, see “Working with the IBM MobileFirst Platform Application Pattern
Type” on page 11-99.

Note: IBM Mobile Application Platform Pattern Extension for MobileFirst Studio
uses several REST APIs to interact with IBM PureApplication System and IBM
SmartCloud Orchestrator. Ensure your account has permission to access the
following locations:
v <system host>/resources/environmentProfiles

v <system host>/resources/clouds

v <system host>/resources/hypervisors

v <system host>/resources/databaseWorkloads

Specifying cloud environment preferences in MobileFirst Studio
Specify cloud environment preferences in MobileFirst Studio before you deploy
MobileFirst projects to the cloud.

Procedure
1. In Eclipse, click Windows > Preferences > MobileFirst > Application Pattern.
2. Supply the following information in the fields provided:

Table 11-30. Cloud environment preferences

Property Description

System Host IP address of the system host.

User name Account user name for accessing the system
host.

Password Password for accessing the system host.

Deploying MobileFirst projects 11-109

3. Click Fetch Deployment Information. Details of retrieved environment profiles
are displayed in the Preferences panel.

4. From the Profiles list, select the correct profile for cloud deployment.
5. Click Apply to save the settings, and then click OK to close the Preferences

panel.

Deploying a MobileFirst project to IBM PureApplication System,
IBM SmartCloud Orchestrator, or IBM PureApplication Service on
SoftLayer
You deploy a MobileFirst project to PureApplication System, IBM SmartCloud
Orchestrator, or PureApplication Service on SoftLayer by running the project in
Eclipse.

Before you begin

Before deploying, write your MobileFirst application and test it in the local
development environment. Since you are deploying to an environment outside
Eclipse, make sure you have applied the correct settings for the MobileFirst Server
location in the worklight.properties file. For more information, see “Configuring
the IBM MobileFirst Platform Server location” on page 11-45.

Procedure
1. In Eclipse, navigate to the Project Explorer view.
2. Right-click your MobileFirst project, and then click Run As > Deploy project as

Application Pattern.
3. In the Edit Configuration window, select the MobileFirst applications and

adapters to be deployed in the MobileFirst Project Configuration area.
4. In the Database Option area, complete the following steps:

a. Click Combined DB to combine all the MobileFirst tables into one DB2 VM,
or click Multiple DB and then decide further whether to include Report
DB or not. (You can not generate a report afterwards if you decided not to
include Report DB here).

b. If the pattern is to be deployed to IBM PureApplication Service on
SoftLayer where the administrator has configured the DB2 pattern for a
non-production purpose, clear the Production Purpose check box.

c. Click Run.
5. In the MobileFirst Operations Console, check the status and wait for the project

to be deployed. When the project has been deployed, a window opens
displaying the MobileFirst Operations Console URL.

Displaying the MobileFirst Operations Console URL for a
deployed MobileFirst project
You can display the MobileFirst Operations Console URL for a deployed
MobileFirst project by using a command available in MobileFirst Studio.

Procedure

In the Project Explorer view in MobileFirst Studio, right-click the MobileFirst
project, and then click IBM MobileFirst Platform Application Pattern > Display
MobileFirst Console URL. A window opens displaying the MobileFirst Operations
Console URL.

11-110 IBM MobileFirst Platform Foundation V6.3.0

Integration with Tivoli Directory Server
Since IBM Worklight Foundation V6.2.0, an LDAP server is needed to protect the
MobileFirst Operations Console. To protect also your MobileFirst applications on
PureApplication System, IBM SmartCloud Orchestrator, or IBM PureApplication
Service on SoftLayer, you can either leverage a new User Registry TDS component
as a user registry or connect to an existing user registry server.

To integrate with LDAP, you need to implement the LDAP login module in the
authenticationConfig.xml file located in WEB-INF\classes\conf of MobileFirst
runtime WAR as follows:
v The name attribute of LoginModule must be set to LDAPLoginModuleIPAS.
v The module must include a parameter with a name attribute set to

ldapProviderURL. If you connect to a new TDS, its value will be automatically
overridden by the built-in TDS server. URL.
This is an example of a suitable LDAP login module:
<loginModule name="LDAPLoginModuleIPAS">
<className>com.worklight.core.auth.ext.LdapLoginModule</className>
<parameter name="ldapProviderURL" value="ldaps://192.0.2.123:636"/>
...
...

</loginModule>

v If Connect to a new TDS is enabled in your MobileFirst project configuration,
you need to specify a .ldif file or use the default .ldif file that is used to
protect the MobileFirst Operations Console.

v If Connect to existing TDS is enabled, the value of the ldapProviderURL
parameter is taken as the remote LDAP server address.

Building and deploying MobileFirst virtual applications by
using the command line interface

IBM MobileFirst Platform Application Pattern includes a set of Ant tasks to help
you build MobileFirst virtual applications and artifacts and deploy to IBM
PureApplication System, IBM SmartCloud Orchestrator, or IBM PureApplication
Service on SoftLayer.

Building a MobileFirst virtual application
You can use an Ant task to build a MobileFirst virtual application.

Before you begin

The Ant tasks are contained in the worklight-ant.jar file, which you can find in
the mobilefirst_server_ pattern_6.3.0.zip file. Make sure you extract it before
you build and deploy MobileFirst virtual applications with the command line
interface.

About this task

The Ant task for building a MobileFirst virtual application has the following
structure:
<taskdef resource="com/worklight/ant/defaults.properties"

classpath="${taskdefClasspath}"/>
<target name="buildIPAS_VAP"

depends="buildAll" >
<vap-builder

worklightWar="${worklightWar}"

Deploying MobileFirst projects 11-111

destinationFolder="${wlProjectDestDir}"
artifactsFolder="${artifactsFolder}"
elbHost="${elbHost}"/>

</target>

The following table describes the attributes.

Table 11-31. Ant task build attributes

Attributes Description

worklightWar Required. The MobileFirst Operations
Console WAR file including the full file
path. Note that worklight-management-
ui.war and worklight-management-
service.war must be retrieved from
MobileFirst Studio (under
{$workspace}/MobileFirstServerConfig/
servers/worklight/apps) and put in the
same folder as the MobileFirst runtime WAR
file.

destinationFolder Optional. Default value:
${projectfolder}/bin.

artifactsFolder Optional. Folder for adapters and
applications.

elbHost Optional. Host name for elastic load
balancer.

createVAPFlag Optional. Whether to generate a VAP .zip
file. Default value: true.

isConnectNewTDS Optional. Whether to connect a new Tivoli
Directory Service.

ldifFile Optional. If not set, the default ldifFile is
used to connect to Tivoli Directory Service.

ipasModel Optional. Default value is W1500; in this case,
it works on Intel. You can set its value to
W1700; in this case, IBM PureApplication
System or IBM SmartCloud Orchestrator
runs on Power® system.

ipasHost Optional. The URL of IBM PureApplication
System or IBM SmartCloud Orchestrator.
Required when createVAPFlag is true.

username Optional. The user name that is required to
access the IBM PureApplication System or
IBM SmartCloud Orchestrator console.
Required when createVAPFlag is true.

password Optional. The password that is required to
access the IBM PureApplication System or
IBM SmartCloud Orchestrator console.
Required when createVAPFlag is true.

databaseOption Optional. Default value is Multiple. In this
case, each database runs on a separate DB2
VM. You can set its value to Combined, in
which case all the databases run in a single
DB with all MobileFirst tables.

11-112 IBM MobileFirst Platform Foundation V6.3.0

Table 11-31. Ant task build attributes (continued)

Attributes Description

reportDBFlag Optional. Whether to include a Report DB if
databaseOption is set to Multiple. For
combined DB, it must be true. Default
value: true.

productionPurposeFlag Optional. Default value: true. Used to
indicate the purpose of the DB2 component
as either production or non-production. A
non-production purpose is only applicable
in an IBM PureApplication Service on
SoftLayer environment.

Deploying a MobileFirst virtual application
You can use an Ant task to deploy a MobileFirst virtual application.

Before you begin

The Ant tasks are contained in the worklight-ant.jar file, which you can find in
the mobilefirst_server_ pattern_6.3.0.zip file. Make sure you extract it before
you build and deploy MobileFirst virtual applications with the command line
interface.

About this task

The Ant task for deploying a MobileFirst virtual application has the following
structure:
<taskdef resource="com/worklight/ant/defaults.properties" classpath="${taskdefClasspath}"/>
<target name="deployVAP" depends="buildVap4IPAS">

<ipas-deployer
vapZipFile="${vapFile}"
ipasHost="${ipasHost}"
username="${username}"
password="${password}"
profileName="${profileName}"
cloudGroupName="${cloudGroupName}"
ipGroupName="${ipGroupName}"
priority="${ipasPriority}"/>

</target>

The following table describes the attributes.

Table 11-32. Ant task deployment attributes

Attributes Description

vapZipFile Required. Path to the zip file built by
vap-builder.

ipasHost Required. URL of IBM PureApplication
System.

username Required. Username to access
PureApplication System console.

password Required. Password to access
PureApplication System console.

Deploying MobileFirst projects 11-113

Table 11-32. Ant task deployment attributes (continued)

Attributes Description

deploymentTarget Optional. Deployment target type that is
used to deploy VAP. The value can be either
environment profile (default value) or
cloud group.

profileName Required when deploymentTarget is equal to
environment profile. Profile name for
deploying VAP.

cloudGroupName Required. Cloud group name for deploying
VAP.

ipGroupName Required when deploymentTarget is equal to
environment profile. IP group name for
deploying VAP.

priority Required when deploymentTarget is equal to
environment profile. Priority for deploying
VAP.

IPVersion Required when deploymentTarget is equal to
cloud group. IP version that is used to
deploy VAP. The value can be either IPv4 or
IPv6.

Deployment of the Application Center to the cloud
You must configure and connect the operational components of the Application
Center to deploy the enterprise application on PureApplication System, IBM
SmartCloud Orchestrator, or IBM PureApplication Service on SoftLayer.

The operational model of the Application Center is composed of:
v An application server that hosts the administration console and services.
v A user authentication system; here, an LDAP server that handles user and group

authentication and user management, but the basic authentication mechanism of
the application server can be used.

v The database, a repository for tracking users, applications, and feedback.

11-114 IBM MobileFirst Platform Foundation V6.3.0

Related concepts:
Application Center
Learn about the Application Center: what it is for, the different components and
features, and how to use the console and the client.
Configuring the Application Center after installation
You configure user authentication and choose an authentication method;
configuration procedure depends on the web application server that you use.
Managing users with LDAP
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.

Deploying the Application Center on IBM PureApplication
System
Configure the enterprise application, the database, the user registry, and map the
security roles before you deploy the Application Center on PureApplication
System.

Figure 11-4. Typical operational model of the Application Center

Deploying MobileFirst projects 11-115

Before you begin

This procedure involves working with the ApplicationCenterEAR.ear file and the
create-appcenter-db2.sql file. You can find both files in the mobilefirst_server_
pattern_6.3.0.zip file.

You must have an IBM PureApplication System environment and the privilege to
create Virtual Application Pattern (VAP) and to run Virtual Application instances.

About this task

By following this procedure, you prepare the operational components of the
Application Center for deployment of the enterprise application on
PureApplication System. You connect the operational components to each other
and then you can save the configuration and deploy the Application Center on
PureApplication System as a web application.

Procedure
1. Get the enterprise archive (EAR) file, ApplicationCenterEAR.ear, for the

Application Center. This file is in the mobilefirst_server_ pattern_6.3.0.zip
file. As of V5.0.6, the Application Center has two web archive (WAR) files, one
for the console and one for the services. An EAR file containing them is
supplied to simplify deployment on PureApplication System. The context
roots of the WAR files within the EAR file are:
v /appcenterconsole for the console
v /applicationcenter for the services
If you choose to build the EAR file manually, you must remember the context
roots of the WAR files.

2. Create the Virtual Application Pattern.
a. Log in to IBM PureApplication System
b. Select Workload Console > Patterns > Virtual Application Patterns.
c. Select Web Application Pattern Type 2.0.
d. Click +.
e. Select a template to start from and then click Start Building. You can select

any template that conforms with the operational model used in this
documentation. You must create one web application component, one
database component, and one user registry component. The example is
based on selection of “Blank application”.

3. Add an Enterprise Application component.
a. Expand Application Components.
b. Drag the Enterprise Application component into the pane on the right.
c. Select the component in this property pane and specify the path of the

Application Center EAR file.
4. Add routing policy.

a. Move the mouse over the Enterprise Application component and click the
plus sign (+).

b. Select Routing Policy.
c. In the property pane, click Routing Policy and specify Virtual Host name.

Take a note of the host name because you use it later.

11-116 IBM MobileFirst Platform Foundation V6.3.0

5. Optional: Add JVM policy. If you use the supplied EAR file or have defined
the context root of the services WAR file as /applicationcenter, this step is
optional.
a. Select JVM Policy in the same way as you selected Routing Policy.
b. In the property pane, specify Generic JVM arguments:

-Dibm.appcenter.services.endpoint=http://{virtual_host}/
{services_context_root} where:
v virtual_host is the virtual host name that you specified in Routing Policy.
v services_context_root is the context root of the services WAR file.

6. Add a database component.
a. In the left pane, expand Database Components.
b. Drag a database into the property pane on the right. The database used in

the example is DB2.
c. In the property panel, click the Database component and specify the

schema file. You can find create-appcenter-{db}.sql, used in the example,
in the worklight_pattern_6.3.0.offering.zip file.

7. Connect enterprise application and database.
a. On the Enterprise Application component, click and drag the connection

point on the right edge to the Database component. This gesture creates
the connection between the web application and the database.

b. Click the connector and specify the data source as jdbc/AppCenterDS.
8. Add a user registry component.

a. In the left pane, expand User Registry Components.
b. Drag the user registry component into the property pane.
c. In the property pane, select the User Registry component and specify the

“Base DN” and the “LDIF file”.
9. Connect web application and user registry.

a. Drag two connectors between the Enterprise Application component and
the User Registry component.

b. Specify the “Role name” appcenteradmin.
c. Set “Mapping special subjects” to AllAuthenticatedUsers.
d. Specify the next “Role name” appcenteruser.
e. Set “Mapping special subjects” to AllAuthenticatedUsers.

10. Save the configuration and deploy the Application Center on PureApplication
System.
a. Save the virtual application; give it a name, for example, “MobileFirst

Application Center”.
b. Return to Virtual Application Patterns. You should see the pattern that

you created in this procedure.
c. Click Deploy to deploy the Application Center on PureApplication System.

Deployment of analytics to the cloud
The IBM MobileFirst Platform Operational Analytics is delivered as an EAR file. By
using the Web Application Pattern Type, you can deploy it to the cloud. The
following sections describe the required steps for successfully deploying the EAR
file to IBM PureApplication System, IBM SmartCloud Orchestrator, or IBM
PureApplication Service on SoftLayer, and configuring the MobileFirst Server to
add its connection to the Analytics server.

Deploying MobileFirst projects 11-117

The procedures in the following topics describe the installation of a single
Analytics node on PureApplication System, IBM SmartCloud Orchestrator, or IBM
PureApplication Service on SoftLayer.

Deploying analytics on IBM PureApplication System
Configure the Web Application Pattern and deploy the analytics server on IBM
PureApplication System or IBM PureApplication Service on SoftLayer.

Before you begin

This procedure involves working with the analytics.ear file. You can find it in the
mobilefirst_server_ pattern_6.3.0.zip file in the Analytics folder.

You must have an IBM PureApplication System or IBM PureApplication Service on
SoftLayer environment, and the privilege to create Virtual Application Pattern
(VAP) and deploy Virtual Application instances.

About this task

By following this procedure, you prepare the Web Application component for
analytics deployment as a Web Application Pattern on PureApplication System.
You configure it, and then you save the configuration and deploy analytics on
PureApplication System as a web application.

Procedure
1. Get the enterprise archive (EAR) file, analytics.ear, for analytics. This file is in

the mobilefirst_server_ pattern_6.3.0.zip file in the Analytics folder.
2. Create the Virtual Application Pattern.

a. Log in to IBM PureApplication System
b. Select Workload Console > Patterns > Virtual Application Patterns.
c. Select Web Application Pattern Type 2.0.
d. Click the plus sign (+).
e. Select the Blank application template to start from, and then click Start

Building.
3. Add an Enterprise Application component.

a. Expand Application Components.
b. Drag the Enterprise Application component onto the canvas on the right.
c. Select the Enterprise Application component in the canvas and specify the

path of the analytics EAR file by clicking the Edit button.
4. Add a routing policy. (Recommended for simplifying the later MobileFirst

Server configuration)
a. Move the mouse over the Enterprise Application component and click the

plus sign (+).
b. Select Routing Policy.
c. In the property pane, click Routing Policy and specify the Virtual Host

name. Make a note of the host name because you will use it later.
5. Optional: Add the JVM policy. If you want to set a larger Java heap size, which

can improve performance when the analytics server holds a large number of
documents, this can be done by setting the JVM policy.
a. Select JVM Policy in the same way that you selected Routing Policy.
b. In the property pane, specify JVM heap size: 2048MB - 2048MB.

11-118 IBM MobileFirst Platform Foundation V6.3.0

c. In the Class Loader Order field, make sure PARENT LAST is selected.
6. Specify a user repository to configure the security of the analytics server. You

can integrate with Tivoli Directory Server or Microsoft Active Directory. For
more information, see “Integrating with Tivoli Directory Server” on page
11-105.

Note: The only difference here is the four links will be from Analytics Server to
LDAP Server and the four Analytics roles need to be specified in a similar way.

7. Save the configuration and deploy analytics on PureApplication System.
a. Save the virtual application. Give it a name; for example, Analytics Server.
b. Return to Virtual Application Patterns. You should see the pattern that you

created in this procedure.
c. Click Deploy to deploy Analytics on PureApplication System.
d. When the deployment is completed, go to Virtual Application Instances.

Your pattern deployment is now displayed as being in the "Running" state.
You can get the analytics server endpoint link by selecting your deployment
instance and on the right side, clicking the Endpoint button besides the
WAS middleware in the Virtual machine perspective section. The analytics
console is displayed in your browser.

Results

When you deploy the pattern, the analytics console is available at:
http://hostname:port/worklight-analytics/console

For example, if you set the routing policy in step 4, the following URL applies:
http://virtual_host_name/worklight-analytics/console

If you do not set the routing policy in step 4, the following URL applies:
http://WAS_IP:9080/worklight-analytics/console

Note:

With the routing policy set, if DNS is not configured with the IP addresses of
ELBInstances, the endpoint link does not work properly. You can set up the hosts
file on the computer that you are using to access the deployment dashboard to
correct the link. The hosts file is typically found in one of the following locations:

UNIX /etc/hosts

Windows
%SystemRoot%\system32\drivers\etc\hosts

Obtain the IP address of any ELBInstance and in the same cloud group as the
virtual application instance, add an entry to the hosts file. See the following
example, where elbinst_ip is the ELBInstance IP address.
virtual_host_name: <varname>elbinst_ip</varname>

elbinst_ip: virtual_host_name

If you deploy any virtual application without a manual routing policy before ELB
is deployed and running, the application does not require and use the ELB proxy
shared service. You can access the application from the WAS ENDPOINT; for
example http://WAS_IP:9080/contextRoot. The WAS ENDPOINT is still accessible

Deploying MobileFirst projects 11-119

even if a proxy is in use. For more information about ELB, see Elastic load
balancing proxy shared service.

Configuring MobileFirst Server and deploying IBM MobileFirst
Platform Application Pattern with an analytics connection
Configure the MobileFirst Server to add its connection to the Analytics server and
deploy it on PureApplication System or IBM PureApplication Service on SoftLayer.

Before you begin

This procedure involves working with the MobileFirst Server configuration. For
production, you can use the IBM MobileFirst Platform Application Pattern
Extension or the command line interface to package up the MobileFirst Server into
an EAR file and deploy it to the cloud.

You must have an IBM PureApplication System or IBM PureApplication Service on
SoftLayer environment, and the privilege to create Virtual Application Pattern
(VAP) and deploy Virtual Application instances.

About this task

By following this procedure, you configure the MobileFirst Server and then deploy
it as IBM MobileFirst Platform Application Pattern with an analytics connection.

Procedure
1. Build your MobileFirst project in MobileFirst Studio. Configure the

worklight.properties file under the server/conf path. Set the
wl.analytics.url and wl.analytics.console.url properties to point to the
deployed analytics EAR file as follows. Also, specify your operational analytics
credential by setting the wl.analytics.username and wl.analytics.password
properties:
wl.analytics.url=http://<hostname>:<port>/<context-root>/data
wl.analytics.console.url=http://<hostname>:<port>/<context-root>/console

a. (Recommended) If a manual routing policy for analytics deployment (see
“Deploying analytics on IBM PureApplication System” on page 11-118) will
set the virtual host name to ibm.com, the wl.analytics.url and
wl.analytics.console.url properties are as follows:
wl.analytics.url=http://ibm.com/worklight-analytics/data
wl.analytics.console.url=http://ibm.com/worklight-analytics/console

In case "a", you can define the Analytics URL in advance and do not need
to wait for Analytics deployment completes first.

b. If you deploy analytics without a manual routing policy before ELB is
deployed and running, the application does not require or use the ELB
proxy shared service. The wl.analytics.url and wl.analytics.console.url
properties are as follows:
wl.analytics.url=http://<WAS_ip>:9080/worklight-analytics/data
wl.analytics.console.url=http://<WAS_ip>:9080/worklight-analytics/console

c. If you deploy analytics without a manual routing policy after ELB is
deployed and running, the wl.analytics.url and
wl.analytics.console.url properties are as follows:
wl.analytics.url=http://defaultHost/<random_prefix_context_root>/worklight-analytics/data
wl.analytics.console.url=http://defaultHost/<random_prefix_context_root>/worklight-analytics/console

In cases "b" and "c", since WAS_ip and random_prefix_context_root can only
be retrieved after analytics deployment is completed, the MobileFirst Server
must be configured after analytics deployment.

11-120 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSGRP3_1.1.0/com.ibm.puresystems.appsys.1700.doc/iwd/apc_load_balancing.html?lang=en
http://ibm.biz/knowctr#SSGRP3_1.1.0/com.ibm.puresystems.appsys.1700.doc/iwd/apc_load_balancing.html?lang=en

2. Create your IBM MobileFirst Platform Application Pattern by following the
procedure in “Creating an IBM MobileFirst Platform Application Pattern” on
page 11-100.

3. Open the required firewall port on the MobileFirst Server. The following steps
add a Connect Out component that opens port 9080 of the MobileFirst Server
to permit the transfer of analytics data to the IBM MobileFirst Analytics Server:
a. Log into IBM PureApplication System with an account that has permission

to create and update virtual application patterns.
b. In the Workload Console, navigate to Pattern > Virtual Applications.
c. From the Virtual Application Patterns list on the left side, select the target

pattern that needs to be configured for enabling the Analytics feature. Click
Open to open the Virtual Application Builder.

d. Drag a Connect Out component from the Assets list under the Other
Component category.

e. In the Name field, enter a name or use the default name.
f. In the Outbound Server(s) & Port(s) field, specify port number 9080.
g. Add a link between the newly added Connect Out component and the

MobileFirst Server.
h. Click Save to save the Virtual Application Pattern.

4. Deploy your IBM MobileFirst Platform Application Pattern to IBM
PureApplication System or IBM PureApplication Service on SoftLayer
environment. You can also deploy the MobileFirst project via IBM MobileFirst
Platform Application Pattern Extension or the command line interface. For
more information, see the following topics:
v “Deploying a MobileFirst project to IBM PureApplication System, IBM

SmartCloud Orchestrator, or IBM PureApplication Service on SoftLayer” on
page 11-110

v “Building a MobileFirst virtual application” on page 11-111
5. When the deployment is done, go to Virtual Application Instances and select

your MobileFirst deployment instance. On the right side, click the endpoint
button of WAS middleware and open the MobileFirst Operations Console by
clicking the endpoint link with context root worklightconsole. You can see the
Analytics Dashboard link in the right side of MobileFirst Operations Console.

6. Click the Analytics Dashboard link. The analytics console is displayed in your
browser. Perform some operations, such as calling an adapter to generate some
analytics data on the MobileFirst Server. For more information about analytics,
see “Analytics” on page 13-9. In the Analytics console, the number of occurring
events (such as calling an adapter) will be displayed after some time. The
amount of time before the information is displayed depends on the analytics
queue configuration. Generate more events to force the data to be displayed
more rapidly.

Deploying MobileFirst projects 11-121

11-122 IBM MobileFirst Platform Foundation V6.3.0

Administering MobileFirst applications

Run and maintain MobileFirst applications in production.

IBM MobileFirst Platform Foundation provides several ways to administer
MobileFirst applications in development or in production. MobileFirst Operations
Console is the main tool with which you can monitor all deployed MobileFirst
applications from a centralized web-based console.

The main operations that you can perform through MobileFirst Operations Console
are:
v Deploy mobile applications and adapters to MobileFirst Server.
v Manage application versions to deploy new versions or remotely disable old

versions.
v Manage mobile devices and users to manage access to a specific device or access

for a specific user to an application.
v Display notification messages on application startup.
v Monitor push notification services.
v Collect client-side logs for specific applications installed on a specific device.

Not every kind of administration user can perform every administration operation.
MobileFirst Operations Console, and all administration tools, have four different
roles defined for administration of MobileFirst applications. The following
MobileFirst administration roles are defined:

Monitor
In this role, a user can monitor deployed MobileFirst projects and
deployed artifacts. This role is read-only.

Operator
An Operator can perform all mobile application management operations,
but cannot add or remove application versions or adapters.

Deployer
In this role, a user can perform the same operations as the Operator, but
can also deploy applications and adapters.

Administrator
In this role, a user can perform all application administration operations.

Note: In IBM MobileFirst Platform Foundation V6.3.0, the predefined MobileFirst
Operations Console that is deployed to the embedded Liberty server has the
following authentication configuration:
v Role "worklightadmin", user "admin", password "admin"
v Role "worklightdeployer", user "deployer", password: "demo"
v Role "worklightmonitor", user "monitor", password: "demo"
v Role "worklightoperator", user "operator", password: "demo"

You must map the different administrators to these roles when you configure
MobileFirst Server during installation of MobileFirst Operations Console. See
“Installing the MobileFirst Server administration” on page 6-46.

© Copyright IBM Corp. 2006, 2015 12-1

MobileFirst Operations Console can be used to administer several runtime
environments, which are issued from several independent MobileFirst projects and
are deployed to the same application server or cluster. For more information about
deploying a MobileFirst project, see “Deploying an application from development
to a test or production environment” on page 11-2.

MobileFirst Operations Console is not the only way to administer MobileFirst
applications. IBM MobileFirst Platform Foundation also provides other tools to
incorporate administration operations into your build and deployment process.

A set of REST services is available to perform administration operations. For API
reference documentation of these services, see “REST Services API” on page 10-8.

With this set of REST services, you can perform the same operations that you can
do in MobileFirst Operations Console. You can manage applications, adapters, and,
for example, upload a new version of an application or disable an old version.

MobileFirst applications can also be administered by using Ant tasks or with the
wladmin command line tool. See “Administering MobileFirst applications through
Ant” on page 12-12 or “Administering MobileFirst applications through the
command line” on page 12-36.

Similar to the web-based console, the REST services, Ant tasks, and command line
tools are secured and require you to provide your administrator credentials, which
enable you to perform operations within your specified role.

Administering MobileFirst applications with MobileFirst Operations
Console

You can administer MobileFirst applications through the MobileFirst Operations
Console by deploying new versions of mobile and desktop apps, by locking apps
or denying access, or by displaying notification messages.

In V6.1.0 and earlier versions of the product, MobileFirst Operations Console was
deployed in the project WAR file. If two project WAR files were deployed, each
one had its own administration console. Starting with V6.2.0, MobileFirst
Operations Console is deployed separately and can administer all runtime
environments in the same server.

You can start the console by entering one of the following URLs:
v Secure mode for production or test: https://hostname:secure_port/

worklightconsole

v Development: http://server_name:port/worklightconsole

In either case, the list of all runtime environments is displayed. Select the runtime
environment that you want to administer to access the functions of the MobileFirst
Operations Console.

You can return to the list of runtime environments by clicking the Home link at the
top of the page in MobileFirst Operations Console.

Use the MobileFirst Operations Console to manage your applications.
v To see all the applications that are installed and all the device platforms that are

supported.

12-2 IBM MobileFirst Platform Foundation V6.3.0

v To disable specific application versions on specific platforms and force users to
upgrade before they continue to use the application. When you implement direct
updates to mobile devices and desktop apps, software updates are pushed
directly to application web resources or users’ desktops

v To send out notifications to application users and to manage push notifications
from defined event sources to applications.

v To install and manage adapters that are used by applications, and to inspect
aggregated usage statistics from MobileFirst Server.

v To lock apps to prevent them from being mistakenly updated and to prevent the
redeployment of web resources for a particular application.

v To display a notification message on app start to inform users without causing
the application to exit.

v To control authenticity testing for an application.

For an easy way to upgrade an application, see “Upgrading a mobile application
in MobileFirst Server and the Application Center” on page 12-94.

Locking an application
You can prevent developers or administrators from mistakenly updating an
application, by locking it in MobileFirst Operations Console.

About this task

You can lock applications for Android, iPhone, iPad, and Windows Phone.

Procedure

To lock an application version for a specific environment, select Lock this version
for the application version in the relevant environment.

Remotely disabling application connectivity
You can use the Remote Disable procedure to deny a user's access to a certain
application version due to phase-out policy or due to security issues encountered
in the application.

Before you begin

If you need to use the Remote Disable feature with servers and clusters that
experience heavy loads, consider enabling the Remote Disable cache. Enabling the
cache can improve performance by reducing how frequently the database is
checked to see if an app has been remotely disabled. By default, the cache is
disabled. To enable and configure the cache, add the following lines to the
MobileFirst project worklight.properties file:
v wl.remoteDisable.cache.enabled=true

v wl.remoteDisable.cache.refreshIntervalInSeconds=1

The refresh interval determines how long (measured in seconds) values are kept in
the cache before they are refreshed from the database. If you increase the interval,
performance is improved as a result of fewer connections being made to the
database, but you increase the duration before the remote disable state comes into
effect. For example, if your infrastructure contains a cluster of four MobileFirst
Server and you set wl.remoteDisable.cache.refreshIntervalInSeconds=1, the
database is accessed 4 times per second to check the remote disable state.

Administering MobileFirst applications 12-3

About this task

Using the MobileFirst Operations Console, you can disable access to a specific
version of a specific application on a specific mobile operating system and provide
a custom message to the user.

Procedure
1. To use this Remote Disable feature, change the status of the application version

that must be disabled from Active to Access Disabled.
2. Add a custom message as shown in the following text:

This version is no longer supported. Please upgrade to the next version.

You can also specify a URL for the new version of the application (usually in
the appropriate public or private app store). For some environments, the
Application Center provides a URL to access the Details view of an application
version directly. See “Application properties” on page 12-90.
When users run an application that is Remotely Disabled, they receive a text
message about the access denial. They can either close the dialog and continue
working offline (that is, without access to the MobileFirst Server), or they can
upgrade to the latest version of the application. Closing the dialog keeps the
application running, but any application interaction that requires server
connectivity causes the dialog to be displayed again.
Modifying the behavior of the Remote Disable operation

As noted above, the default dialog that is displayed to a user when an
application is remotely disabled contains two buttons, Get new version, and
Close. Clicking Close closes the dialog, but allows the user to continue
working offline, with no connection to the MobileFirst Server.

Note: The actual text on the two buttons is customizable, and can be
overridden in the message.properties file.
In older versions of IBM MobileFirst Platform Foundation, when you disabled
an application using the MobileFirst Operations Console, the default behavior
was to completely disable or end it, such that the application would not
function, even in offline mode.
There is a way to modify the default behavior of the Remote Disable feature to
completely disable an application if there is a need to do so (such as a severe
security flaw).
v Add a new Boolean attribute to your initOptions.js file, named

showCloseOnRemoteDisableDenial.
v If this attribute is missing or is set to true, the Remote Disable notification

displays the default behavior described earlier.
v If this attribute is set to false (that is, "Do not show the Close button on the

dialog"), the behavior is as follows:
– If you disable the application on the MobileFirst Operations Console and

specify a link to the new version, the dialog displays only a single button,
the Get new version button. The Close button is not shown. The user has
no choice but to update the application, and this preserves the older
behavior of forcing the user to exit the application.

– If you disable the application and do not specify a link to the new version,
the dialog again displays only a single button, but in this case the Close
button.

Related tasks:

12-4 IBM MobileFirst Platform Foundation V6.3.0

“Defining administrator messages from MobileFirst Operations Console in multiple
languages”
You can set the deny and notification messages from IBM MobileFirst Platform
Operations Console in multiple languages. The messages are sent based on the
locale of the device, and must comply with the ISO 639-1 and ISO 3166-2
standards.

Displaying a notification message on application startup
You can set a notification message that is displayed for the user when the
application starts, but does not cause the application to exit.

About this task

You can use this type of message to notify application users of temporary
situations, such as planned service downtime.

Procedure
1. For the relevant application, change the status of the application version from

Active to Active, Notifying.
2. Add a custom message, such as the following text:

Server downtime is planned for Saturday 4am to 6am.

Results

The message is displayed the next time that the app is started or resumed. The
message is displayed only once.
Related tasks:
“Defining administrator messages from MobileFirst Operations Console in multiple
languages”
You can set the deny and notification messages from IBM MobileFirst Platform
Operations Console in multiple languages. The messages are sent based on the
locale of the device, and must comply with the ISO 639-1 and ISO 3166-2
standards.

Defining administrator messages from MobileFirst Operations
Console in multiple languages

You can set the deny and notification messages from IBM MobileFirst Platform
Operations Console in multiple languages. The messages are sent based on the
locale of the device, and must comply with the ISO 639-1 and ISO 3166-2
standards.

Procedure

To add the deny and notification messages for multiple languages, follow these
steps.
1. In MobileFirst Operations Console, select the status Active, Notifying, or

Access Disabled in the list of application rules.
2. Click Enter messages for multiple languages.
3. In the Messages for multiple languages window that opens, notice that you

can upload a CSV file.

Administering MobileFirst applications 12-5

Such a CSV file must define a series of lines. Each line contains a locale code,
such as “fr-FR” for French (France) or “en” for English, a comma, and the
corresponding message text. The specified locale codes must comply with the
ISO 639-1 and ISO 3166-2 standards. The first line with an empty locale defines
the default message. If you did not define an alternative, or if the locale from
the client matches none of the uploaded locales, this default message is
displayed

Note: To create a CSV file, you must use an editor that supports UTF-8
encoding, such as NotePad. In the CSV file.
The following figure shows an example of a CSV file:

4. Click Upload CSV to browse and select the CSV file that you want to upload.
You can see the languages that you uploaded in the Supported Languages list.

Figure 12-1. Defining messages for multiple languages

Figure 12-2. Sample CSV file

12-6 IBM MobileFirst Platform Foundation V6.3.0

5. Click a language in the Supported Languages list to see the translation of your
message in this language in the Translation box.

6. Optional: Click Clear to clear the Supported Languages list. This action does
not clear the default message.

7. Click Save to save the messages that you uploaded, or Cancel to discard the
changes and return to the console.

Note: If you modified the default message, then the new default message
shows.

Figure 12-3. View of your uploaded languages, and the default message with its translation

Administering MobileFirst applications 12-7

Controlling authenticity testing for an app
You can control authenticity testing for apps that connect to the MobileFirst Server.

When an app first connects to the MobileFirst Server, the server tests the
authenticity of the app. This test helps to protect apps against some malware and
repackaging attacks. This option is available for iPhone, iPad, Android, and
Windows Phone 8 apps.

This figure displays the mobile device of the user, which shows the localized message. The title and the button
caption are in English. If the locale does not supply any messages, the default message is returned.
Figure 12-4. Application Disabled message

12-8 IBM MobileFirst Platform Foundation V6.3.0

The application developer must configure the app to enable authenticity testing
(see “MobileFirst security framework” on page 8-480 for details).
v If the app is configured with authenticity testing disabled for a specific version,

then the Authenticity Testing drop down menu in the Console is disabled. An
example for the iPhone environment is shown in the following figure.

v If the app is configured with authenticity testing enabled for a specific version,
then the Authenticity Testing drop-down menu in the Console is enabled. An
example for the Android environment is shown in the following figure.

The menu has three options:
v Disabled – the MobileFirst Server does not test the authenticity of the app

(despite the developer's settings).
v Enabled, servicing – the MobileFirst Server tests the authenticity of the app. If

the app fails the test, the MobileFirst Server outputs an information message to
the log but services the app.

v Enabled, blocking – the MobileFirst Server tests the authenticity of the app. If
the app fails the test, the MobileFirst Server outputs an information message to
the log and blocks the app.

Note: The authenticity feature is only enabled for apps that use the customer
version of the MobileFirst Development Studio. Since the non-customer version of
the studio is available on the web, it is a common developer mistake to use it
instead of the customer version.

Error log of operations on runtime environments
Use the error log to access failed management operations initiated from MobileFirst
Operations Console or the command line on the current runtime environment, and
to see the effect of the failure on the servers.

The error log shows the most recent operation first.

You access the error log by clicking Error log at the bottom of each page in
MobileFirst Operations Console.

Figure 12-5. Authenticity testing disabled for iPhone

Figure 12-6. Authenticity testing enabled for the Android environment

Administering MobileFirst applications 12-9

Expand the row that lists the failed operation to access more information about the
current state of each server. In this view, only the main error message is shown. To
access the complete log, download the log by clicking the Download complete log
link.

Audit log of administration operations
In the MobileFirst Operations Console, you can refer to an audit log of
administration operations.

MobileFirst Operations Console provides access to an audit log for login, logout,
and all administration operations, such as deploying apps or adapters or locking
apps. The audit log can be disabled by setting the ibm.worklight.admin.audit Java
Naming and Directory Interface (JNDI) property on the web application of the
MobileFirst Administration service (worklightadmin.war) to false.

Each record in the audit log has the following fields, separated by a vertical bar
(|); see Figure 12-8 on page 12-12.

Table 12-1. Fields in audit log records

Field name Description

Timestamp Date and time when the record was created.

Type The type of operation. See list of operation
types for the possible values.

User The username of the user who is signed in.

Outcome The outcome of the operation; possible
values are SUCCESS, ERROR, PENDING.

ErrorCode If the outcome is ERROR, ErrorCode indicates
what the error is.

Figure 12-7. Sample error log

12-10 IBM MobileFirst Platform Foundation V6.3.0

Table 12-1. Fields in audit log records (continued)

Field name Description

Runtime Name of the MobileFirst project associated
with the operation.

The following list shows the possible values of Type of operation.
v Login

v Logout

v AdapterDeployment

v AdapterDeletion

v ApplicationDeployment

v ApplicationDeletion

v ApplicationLockChange

v ApplicationAuthenticityCheckRuleChange

v ApplicationAccessRuleChange

v ApplicationVersionDeletion

v add config profile

v DeviceStatusChange

v DeviceApplicationStatusChange

v DeviceDeletion

v unsubscribeSMS

v DeleteDevice

v DeleteSubscriptions

v SetPushEnabled

v SetGCMCredentials

v DeleteGCMCredentials

v sendMessage

v sendMessages

v setAPNSCredentials

v DeleteAPNSCredentials

v setMPNSCredentials

v deleteMPNSCredentials

v createTag

v updateTag

v deleteTag

v add runtime

v delete runtime

Administering MobileFirst applications 12-11

Administering MobileFirst applications through Ant
You can administer MobileFirst applications through the wladm Ant task.

Comparison with other facilities

You can execute administration operations with IBM MobileFirst Platform
Foundation in the following ways:
v The MobileFirst Operations Console, which is interactive.
v The wladm Ant task.
v The wladm program.
v The MobileFirst administration REST services.

The wladm Ant task, wladm program, and REST services are useful for automated or
unattended execution of operations, such as eliminating operator errors in
repetitive operations or operating outside the operator's normal working hours.

The wladm Ant task and the wladm program are simpler to use and have better error
reporting than the REST services. The advantage of the wladm Ant task over the
wladm program is that it is platform independent and easier to integrate when
integration with Ant is already available.

Figure 12-8. Sample audit log of MobileFirst administration operations

12-12 IBM MobileFirst Platform Foundation V6.3.0

Prerequisites

Apache Ant is required to run the wladm task. For information about the minimum
supported version of Ant, see “System requirements for using IBM MobileFirst
Platform Foundation” on page 2-12.

For convenience, Apache Ant 1.8.4 is included in MobileFirst Server. In the
product_install_dir/shortcuts/ directory, the following scripts are provided.
v ant for UNIX / Linux
v ant.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

You can use the wladm Ant task on a different computer than the one on which you
installed MobileFirst Server.
v Copy the file product_install_dir/WorklightServer/worklight-ant-

deployer.jar to the computer.
v Make sure that a supported version of Apache Ant and a Java runtime

environment are installed on the computer.

To use the wladm Ant task, add this initialization command to the Ant script:
<taskdef resource="com/worklight/ant/deployers/antlib.xml">

<classpath>
<pathelement location="product_install_dir/WorklightServer/worklight-ant-deployer.jar"/>

</classpath>
</taskdef>

Other initialization commands that refer to the same worklight-ant-deployer.jar
file are redundant because the initialization by defaults.properties is also
implicitly done by antlib.xml. Here is one example of a redundant initialization
command:
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<pathelement location="product_install_dir/WorklightServer/worklight-ant-deployer.jar"/>

</classpath>
</taskdef>

Calling the wladm Ant task
You can use the wladm Ant task and its associated commands to administer
MobileFirst applications.

Syntax

Call the wladm Ant task as follows:
<wladm url=... user=... password=...|passwordfile=... [secure=...]>

some commands
</wladm>

Administering MobileFirst applications 12-13

Attributes

The wladm Ant task has the following attributes:

Table 12-2. List of <wladm> attributes

Attribute Description RequiredDefault

url The base URL of the MobileFirst web application for
administration services

Yes

secure Whether to avoid operations with security risks No true

user The user name for accessing the MobileFirst
administration services

Yes

password The password for the user Either
one is
required

passwordfile The file that contains the password for the user

url

The base URL preferably uses the HTTPS protocol. For example, if you use
default ports and context roots, use the following URL.
v For WebSphere Application Server: https://server:9443/worklightadmin
v For Tomcat: https://server:8443/worklightadmin

secure The default value is true. Setting secure="false" might have the following
effects:
v The user and password might be transmitted in an unsecured way,

possibly even through unencrypted HTTP.
v The server's SSL certificates are accepted even if self-signed or if they

were created for a different host name than the specified server's host
name.

password

Specify the password either in the Ant script, through the password
attribute, or in a separate file that you pass through the passwordfile
attribute. The password is sensitive information and therefore needs to be
protected. You must prevent other users on the same computer from
knowing this password. To secure the password, before you enter the
password into a file, remove the read permissions of the file for users other
than yourself. For example, you can use one of the following commands:
v On UNIX: chmod 600 adminpassword.txt
v On Windows: cacls adminpassword.txt /P Administrators:F

%USERDOMAIN%\%USERNAME%:F

Additionally, you might want to obfuscate the password to hide it from an
occasional glimpse. To do so, use the wladm config password command to
store the obfuscated password in a configuration file. Then, you can copy
and paste the obfuscated password to the Ant script or to the password
file.

The wladm call contains commands that are encoded in inner elements. These
commands are executed in the order in which they are listed. If one of the
commands fails, the remaining commands are not executed, and the wladm call
fails.

12-14 IBM MobileFirst Platform Foundation V6.3.0

Elements

You can use the following elements in wladm calls:

Table 12-3. Elements that can be used in <wladm>

Element Description Count

show-info Shows user and
configuration information

0..∞

show-versions Shows versions information 0..∞

list-runtimes Lists the runtimes 0..∞

show-runtime Shows information about a
runtime

0..∞

delete-runtime Deletes a runtime 0..∞

list-adapters Lists the adapters 0..∞

deploy-adapter Deploys an adapter 0..∞

show-adapter Shows information about an
adapter

0..∞

delete-adapter Deletes an adapter 0..∞

adapter Other operations on an
adapter

0..∞

list-apps Lists the apps 0..∞

deploy-app Deploys an app 0..∞

show-app Shows information about an
app

0..∞

delete-app Deletes an app 0..∞

delete-app-version Delete a version of an app 0..∞

app-version Other operations on an app 0..∞

list-beacons Lists the beacons 0..∞

set-beacon Specifies information about a
beacon

0..∞

show-beacon Shows information about a
beacon

0..∞

remove-beacon Removes information about a
beacon

0..∞

list-beacon-triggers Lists the beacon triggers 0..∞

set-beacon-trigger Specifies a beacon trigger 0..∞

show-beacon-trigger Shows a beacon trigger 0..∞

delete-beacon-trigger Deletes a beacon trigger 0..∞

list-beacon-trigger-
associations

Lists the associations
between beacons and beacon
triggers

0..∞

set-beacon-trigger-
association

Specifies an association
between a beacon and a
beacon trigger

0..∞

show-beacon-trigger-
association

Shows the association
between a beacon and a
beacon trigger

0..∞

Administering MobileFirst applications 12-15

Table 12-3. Elements that can be used in <wladm> (continued)

Element Description Count

delete-beacon-trigger-
association

Deletes the association
between a beacon and a
beacon trigger

0..∞

list-devices Lists the devices 0..∞

remove-device Removes a device 0..∞

device Other operations for a device 0..∞

XML Format

The output of most commands is in XML, and the input to specific commands,
such as <set-accessrule>, is in XML too. You can find the XML schemas of these
XML formats in the product_install_dir/WorklightServer/wladm-schemas/
directory. The commands that receive an XML response from the server verify that
this response conforms to the specific schema. You can disable this check by
specifying the attribute xmlvalidation="none".

Output character set

Normal output from the wladm Ant task is encoded in the encoding format of the
current locale. On Windows, this encoding format is the so-called "ANSI code
page". The effects are as follows:
v Characters outside of this character set are converted to question marks when

they are output.
v When the output goes to a Windows command prompt window (cmd.exe),

non-ASCII characters are incorrectly displayed because such windows assume
characters to be encoded in the so-called "OEM code page".

To work around this limitation:
v On operating systems other than Windows, use a locale whose encoding is

UTF-8. This locale is the default locale on Red Hat Linux and OS X. Many other
operating systems have the en_US.UTF-8 locale.

v Or use the attribute output="some file name" to redirect the output of a wladm
command to a file.

Commands for adapters
When you call the wladm Ant task, you can include various commands for
adapters.

The list-adapters command

The list-adapters command returns a list of the adapters deployed for a given
runtime. It has the following attributes:

Table 12-4. list-adapters command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

output Name of output file. No

12-16 IBM MobileFirst Platform Foundation V6.3.0

Table 12-4. list-adapters command attributes (continued)

Attribute Description Required Default

outputproperty Name of Ant property for the
output.

No

Example:

<list-adapters runtime="worklight"/>

This command is based on the “Adapters (GET)” on page 10-18 REST service.

The deploy-adapter command

The deploy-adapter command deploys an adapter in a runtime. It has the
following attributes:

Table 12-5. deploy-adapter command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

file Binary adapter file (.adapter). Yes Not available

Example:

<deploy-adapter runtime="worklight" file="MyAdapter.adapter"/>

This command is based on the “Adapter (POST)” on page 10-15 REST service.

The show-adapter command

The show-adapter command shows details about an adapter. It has the following
attributes:

Table 12-6. show-adapter command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an adapter. Yes Not available

output Name of output file. No

outputproperty Name of Ant property for the
output.

No

Example:

<show-adapter runtime="worklight" name="MyAdapter"/>

This command is based on the “Adapter (GET)” on page 10-13 REST service.

Administering MobileFirst applications 12-17

The delete-adapter command

The delete-adapter command removes (undeploys) an adapter from a runtime. It
has the following attributes:

Table 12-7. delete-adapter command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an adapter. Yes Not available

Example:

<delete-adapter runtime="worklight" name="MyAdapter"/>

This command is based on the “Adapter (DELETE)” on page 10-10 REST service.

The adapter command group

The adapter command group has the following attributes:

Table 12-8. adapter command group attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an adapter. Yes Not available

It supports the following elements:

Table 12-9. adapter command group elements

Element Description Count

get-binary Gets the binary data. 0..∞

The get-binary command

The get-binary command inside an <adapter> element returns the binary adapter
file. It has the following attributes:

Table 12-10. get-binary command attributes

Attribute Description Required Default

tofile Name of the output file. Yes Not available

Example:
<adapter runtime="worklight" name="MyAdapter">

<get-binary tofile="/tmp/MyAdapter.adapter"/>
</adapter>

This command is based on the “Adapter Binary (GET, HEAD)” on page 10-9 REST
service.

12-18 IBM MobileFirst Platform Foundation V6.3.0

Commands for apps
When you call the wladm Ant task, you can include various commands for apps.

The list-apps command

The list-apps command returns a list of the apps that are deployed in a runtime.
It has the following attributes:

Table 12-11. list-apps command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

output Name of output file. No

outputproperty Name of Ant property for
the output.

No

Example:

<list-apps runtime="worklight"/>

This command is based on the “Applications (GET)” on page 10-54 REST service.

The deploy-app command

The deploy-app command deploys an app (possibly with multiple environments)
in a runtime. It has the following attributes:

Table 12-12. deploy-app command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

file Binary app file (.wlapp,
not .apk, or .ipa).

Yes Not available

Example:

<deploy-app runtime="worklight" file="MyApp-all.wlapp"/>

This command is based on the “Application (POST)” on page 10-50 REST service.

The show-app command

The show-app command returns a list of the apps that are deployed in a runtime. It
has the following attributes:

Table 12-13. show-app command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

Administering MobileFirst applications 12-19

Table 12-13. show-app command attributes (continued)

Attribute Description Required Default

name Name of an app. Yes Not available

output Name of output file. No

outputproperty Name of Ant property for
the output.

No

Example:

<show-app runtime="worklight" name="MyApp"/>

This command is based on the “Application (GET)” on page 10-46 REST service.

The delete-app command

The delete-app command removes (undeploys) an app, with all its app versions,
for all environments for which it was deployed, from a runtime. It has the
following attributes:

Table 12-14. delete-app command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an app. Yes Not available

Example:

<delete-app runtime="worklight" name="MyApp"/>

This command is based on the “Application (DELETE)” on page 10-44 REST
service.

The delete-app-version command

The delete-app-version command removes (undeploys) an app version from a
runtime. It has the following attributes:

Table 12-15. delete-app-version command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an app. Yes Not available

environment Mobile platform. Yes Not available

version Version of the app. Yes Not available

Example:

12-20 IBM MobileFirst Platform Foundation V6.3.0

<delete-app-version runtime="worklight" name="MyApp" environment="iphone"
version="1.1"/>

This command is based on the “App Version (DELETE)” on page 10-37 REST
service.

The app-version command group

The app-version command group has the following attributes:

Table 12-16. app-version command group attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an app. Yes Not available

environment Mobile platform. Yes Not available

version Version of the app. Yes Not available

It supports the following elements:

Table 12-17. app-version command group elements

Element Description Count

get-binary Gets the binary data. 0..∞

get-accessrule Gets the access rule. 0..∞

set-accessrule Changes the access rule. 0..∞

get-authenticitycheckrule Gets the authenticity check
rule.

0..∞

set-authenticitycheckrule Changes the authenticity
check rule.

0..∞

get-lock Gets the lock state. 0..∞

set-lock Changes the lock state. 0..∞

The get-binary command

The get-binary command, inside an <app-version> element, returns the binary file
wlapp for a version of an app. It has the following attributes:

Table 12-18. get-binary command attributes

Attribute Description Required Default

tofile Name of the output file. Yes Not available

Example:
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<get-binary tofile="/tmp/MyApp.wlapp"/>
</app-version>

This command is based on the “Application Binary (GET, HEAD)” on page 10-42
REST service.

Administering MobileFirst applications 12-21

The get-accessrule command

The get-accessrule command returns the access rule for an app version. It has the
following attributes:

Table 12-19. get-accessrule command attributes

Attribute Description Required Default

output Name of a file in which to
store the output.

No

outputproperty Name of an Ant property
in which to store the
output.

No

Example:
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<get-accessrule output="/tmp/MyApp-accessrule.xml"/>
</app-version>

This command is based on the “Application (GET)” on page 10-46 REST service.

The set-accessrule command

The set-accessrule command changes the access rule for an app version. It has
the following attributes:

Table 12-20. set-accessrule command attributes

Attribute Description Required Default

file Name of the input file. Yes Not available

Example:
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<set-accessrule file="/tmp/new-accessrule.xml"/>
</app-version>

This command is based on the “App Version Access Rule (PUT)” on page 10-28
REST service.

The get-authenticitycheckrule command

The get-authenticitycheckrule command returns the authenticity check rule for
an app version. It has the following attributes:

Table 12-21. get-authenticitycheckrule command attributes

Attribute Description Required Default

output Name of a file in which to
store the output.

No

outputproperty Name of an Ant property
in which to store the
output.

No

Example:

12-22 IBM MobileFirst Platform Foundation V6.3.0

<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">
<get-authenticitycheckrule output="/tmp/MyApp-authenticitycheckrule.txt"/>

</app-version>

This command is based on the “Application (GET)” on page 10-46 REST service.

The set-authenticitycheckrule command

The set-authenticitycheckrule command changes the authenticity check rule for
an app version. It has the following attributes:

Table 12-22. set-authenticitycheckrule command attributes

Attribute Description Required Default

action Action to perform for
authenticity checking.

Yes Not available

The possible actions are:
v DISABLED: Authenticity is not checked.
v IGNORED: Authenticity is checked, but not enforced. If it fails, only a warning is

given and the session is authorized.
v ENABLED: Authenticity is checked and enforced.

Example:
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<set-authenticitycheckrule action="enabled"/>
</app-version>

This command is based on the “App Version Authenticity Check (PUT)” on page
10-33 REST service.

The get-lock command

The get-lock command returns information about whether an app version is
locked or unlocked. It has the following attributes:

Table 12-23. get-lock command attributes

Attribute Description Required Default

output Name of a file in which to
store the output.

No

outputproperty Name of an Ant property
in which to store the
output.

No

Example:
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<get-lock output="/tmp/MyApp-lock.txt"/>
</app-version>

This command is based on the “Application (GET)” on page 10-46 REST service.

The set-lock command

The set-lock command sets an app version to locked or unlocked state. It has the
following attributes:

Administering MobileFirst applications 12-23

Table 12-24. set-lock command attributes

Attribute Description Required Default

lock New lock state. Yes Not available

The possible lock values are true and false.

Example:
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<set-lock lock="true"/>
</app-version>

This command is based on the “App Version Lock (PUT)” on page 10-40 REST
service.

Commands for beacons
When you call the wladm Ant task, you can include various commands for the
beacons and beacon triggers. A beacon is a piece of information that is associated
with an iBeacon. A beacon trigger is an action that a mobile device runs in relation
to an iBeacon, when there is an association between the beacon and the beacon
trigger.

The list-beacons command

The list-beacons command returns a list of the beacons that match a given UUID
and optionally, a given major and minor number. It has the following attributes.

Table 12-25. list-beacons command attributes

Attribute Description Required Default

uuid UUID (32 hex digits)
of the beacons to
search for.

Only if major or minor
are specified

wild

major Major number of the
beacons to search for.

No wild

minor Minor number of the
beacons to search for.

No wild

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<list-beacons uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6"/>

This command is based on the “Beacons (GET)” on page 10-88 REST service.

The set-beacon command

The set-beacon command specifies or updates information about a beacon. It has
the following attributes:

12-24 IBM MobileFirst Platform Foundation V6.3.0

Table 12-26. set-beacon command attributes

Attribute Description Required Default

file Name of the input
file.

Yes Not available

The input file can be in JSON or XML format. If it is in XML format, it must follow
the schema that is given in the file product_install_dir/WorklightServer/wladm-
schemas/input/beacon.xsd.

Example:

<set-beacon file="entrance.xml"/>

This command is based on the “Beacons (PUT)” on page 10-91 REST service.

The show-beacon command

The show-beacon command shows details about a beacon. It has the following
attributes:

Table 12-27. show-beacon command attributes

Attribute Description Required Default

uuid UUID (32 hex digits)
of the beacon.

Yes Not available

major Major number of the
beacon.

Yes Not available

minor Minor number of the
beacon.

Yes Not available

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-beacon uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1"
minor="23"/>

This command is based on the “Beacons (GET)” on page 10-88 REST service.

The remove-beacon command

The remove-beacon command removes (clears) the information about a beacon. It
has the following attributes:

Table 12-28. remove-beacon command attributes

Attribute Description Required Default

uuid UUID (32 hex digits)
of the beacon.

Yes Not available

major Major number of the
beacon.

Yes Not available

minor Minor number of the
beacon.

Yes Not available

Administering MobileFirst applications 12-25

Example:

<remove-beacon uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1"
minor="23"/>

This command is based on the “Beacons (DELETE)” on page 10-85 REST service.

The list-beacon-triggers command

The list-beacon-triggers command returns the list of beacon triggers, belonging
to a given runtime. It has the following attributes:

Table 12-29. list-beacon-triggers command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<list-beacon-triggers runtime="worklight"/>

This command is based on the “Beacon Triggers (GET)” on page 10-74 REST
service.

The set-beacon-trigger command

The set-beacon-trigger command specifies or updates information about a beacon
trigger, belonging to a given runtime. It has the following attributes:

Table 12-30. set-beacon-trigger command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

file Name of the input
file.

Yes Not available

The input file can be in JSON or XML format. If it is in XML format, it must follow
the schema that is given in the file product_install_dir/WorklightServer/wladm-
schemas/input/beacon-trigger.xsd.

Example:

<set-beacon-trigger runtime="worklight" file="entrance-alert.xml"/>

This command is based on the “Beacon Triggers (PUT)” on page 10-81 REST
service.

12-26 IBM MobileFirst Platform Foundation V6.3.0

The show-beacon-trigger command

The show-beacon-trigger command shows details about a beacon trigger,
belonging to a given runtime. It has the following attributes:

Table 12-31. show-beacon-trigger command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

name Name of the beacon
trigger.

Yes Not available

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-beacon-trigger runtime="worklight" name="entrance-alert"/>

This command is based on the “Beacon Trigger (GET)” on page 10-72 REST
service.

The delete-beacon-trigger command

The delete-beacon-trigger command deletes a beacon trigger from a given
runtime. It has the following attributes:

Table 12-32. delete-beacon-trigger command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

name Name of the beacon
trigger.

Yes Not available

Example:

<delete-beacon-trigger runtime="worklight" name="entrance-alert"/>

This command is based on the “Beacon Trigger (DELETE)” on page 10-69 REST
service.

The list-beacon-trigger-associations command

The list-beacon-trigger-associations command returns the list of associations
between beacons and beacon triggers that match given criteria, belonging to an
app in a given runtime. It has the following attributes:

Administering MobileFirst applications 12-27

Table 12-33. list-beacon-trigger-associations command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

app Name of an app. Yes Not available

uuid UUID (32 hex digits)
of the beacon.

Only if major or
minor are specified

major Major number of the
beacon.

No

minor Minor number of the
beacon.

No

triggerName Name of the beacon
trigger.

No

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Examples:

<list-beacon-trigger-associations runtime="worklight" app="productguide"/>

<list-beacon-trigger-associations runtime="worklight" app="productguide"
uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1" minor="23"/>

<list-beacon-trigger-associations runtime="worklight" app="productguide"
triggerName="entrance-alert"/>

This command is based on the “Associate beacons and triggers (GET)” on page
10-62 REST service.

The set-beacon-trigger-association command

The set-beacon-trigger-association command specifies an association between a
beacon and a beacon trigger, belonging to an app in a given runtime. It has the
following attributes:

Table 12-34. set-beacon-trigger-association command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

app Name of an app. Yes Not available

uuid UUID (32 hex digits)
of the beacon.

Yes Not available

major Major number of the
beacon.

Yes Not available

minor Minor number of the
beacon.

Yes Not available

12-28 IBM MobileFirst Platform Foundation V6.3.0

Table 12-34. set-beacon-trigger-association command attributes (continued)

Attribute Description Required Default

triggerName Name of the beacon
trigger.

Yes Not available

Example:

<set-beacon-trigger-association runtime="worklight" app="productguide"
uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1" minor="23"
triggerName="entrance-alert"/>

This command is based on the “Associate beacons and triggers (PUT)” on page
10-65 REST service.

The show-beacon-trigger-association command

The show-beacon-trigger-association command shows an association between a
beacon and a beacon trigger, belonging to an app in a given runtime. It has the
following attributes:

Table 12-35. show-beacon-trigger-association command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

app Name of an app. Yes Not available

uuid UUID (32 hex digits)
of the beacon.

Yes Not available

major Major number of the
beacon.

Yes Not available

minor Minor number of the
beacon.

Yes Not available

triggerName Name of the beacon
trigger.

Yes Not available

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-beacon-trigger-association runtime="worklight" app="productguide"
uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1" minor="23"
triggerName="entrance-alert"/>

This command is based on the “Associate beacons and triggers (GET)” on page
10-62 REST service.

Administering MobileFirst applications 12-29

The delete-beacon-trigger-association command

The delete-beacon-trigger-association command deletes an association between
a beacon and a beacon trigger from an app in a given runtime. It has the following
attributes:

Table 12-36. delete-beacon-trigger-association command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

app Name of an app. Yes Not available

uuid UUID (32 hex digits)
of the beacon.

Yes Not available

major Major number of the
beacon.

Yes Not available

minor Minor number of the
beacon.

Yes Not available

triggerName Name of the beacon
trigger.

Yes Not available

Example:

<delete-beacon-trigger-association runtime="worklight" app="productguide"
uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1" minor="23"
triggerName="entrance-alert"/>

This command is based on the “Associate beacons and triggers (DELETE)” on page
10-59 REST service.

Commands for devices
When you call the wladm Ant task, you can include various commands for devices.

The list-devices command

The list-devices command returns the list of devices that have contacted the
apps of a runtime. It has the following attributes:

Table 12-37. list-devices command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

query A friendly name or
user identifier to
search for.

No

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

The query parameter specifies a string to search for. All devices that have a

12-30 IBM MobileFirst Platform Foundation V6.3.0

friendly name or user identifier that contains this string (with case-insensitive
matching) are returned.

Examples:

<list-devices runtime="worklight"/>

<list-devices runtime="worklight" query="john"/>

This command is based on the “Devices (GET)” on page 10-105 REST service.

The remove-device command

The remove-device command clears the record about a device that has contacted
the apps of a runtime. It has the following attributes:

Table 12-38. remove-device command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

id Unique device
identifier.

Yes Not available

Example:

<remove-device runtime="worklight" id="496E974CCEDE86791CF9A8EF2E5145B6"/>

This command is based on the “Device (DELETE)” on page 10-99 REST service.

The device command group

The device command group has the following attributes:

Table 12-39. device command group attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

id Unique device
identifier.

Yes Not available

It supports the following elements:

Table 12-40. device command group elements

Element Description Count

set-status Changes the status. 0..∞

set-appstatus Changes the status for an
app.

0..∞

Administering MobileFirst applications 12-31

The set-status command

The set-status command changes the status of a device, in the scope of a runtime.
It has the following attributes:

Table 12-41. set-status command attributes

Attribute Description Required Default

status New status. Yes Not available

The status can be one of:
v ACTIVE

v LOST

v STOLEN

v EXPIRED

v DISABLED

Example:
<device runtime="worklight" id="496E974CCEDE86791CF9A8EF2E5145B6">

<set-status status="EXPIRED"/>
</device>

This command is based on the “Device Status (PUT)” on page 10-102 REST service.

The set-appstatus command

The set-appstatus command changes the status of a device, regarding an app in a
runtime. It has the following attributes:

Table 12-42. set-appstatus command attributes

Attribute Description Required Default

app Name of an app. Yes Not available

status New status. Yes Not available

The status can be one of:
v ENABLED

v DISABLED

Example:
<device runtime="worklight" id="496E974CCEDE86791CF9A8EF2E5145B6">

<set-appstatus app="MyApp" status="DISABLED"/>
</device>

This command is based on the “Device Application Status (PUT)” on page 10-95
REST service.

Commands for troubleshooting
The following commands can help investigate problems with the MobileFirst
Server web applications.

The show-info command

The show-info command shows basic information about the MobileFirst
administration services that can be returned without accessing any runtime nor

12-32 IBM MobileFirst Platform Foundation V6.3.0

database. This command can be used to test whether the MobileFirst
administration services are running at all. It has the following attributes:

Table 12-43. show-info command attributes

Attribute Description Required Default

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-info/>

The show-versions command

The show-versions command displays the MobileFirst versions of various
components:
v wladmVersion: the exact MobileFirst Server version number from which

worklight-ant-deployer.jar is taken.
v productVersion: the exact MobileFirst Server version number from which

worklightadmin.war is taken.

And for every project WAR file:
v serverVersion: the exact MobileFirst Server version number from which

worklight-jee-library.jar is taken.
v platformVersion: the exact version number of the MobileFirst development tools

that built the project WAR file.

It has the following attributes:

Table 12-44. show-versions command attributes

Attribute Description Required Default

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-versions/>

The list-runtimes command

The list-runtimes command returns a list of the deployed runtimes (MobileFirst
projects). It has the following attributes:

Table 12-45. list-runtimes command attributes

Attribute Description Required Default

inDatabase Whether to look in
the database instead
of via MBeans.

No false

Administering MobileFirst applications 12-33

Table 12-45. list-runtimes command attributes (continued)

Attribute Description Required Default

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Examples:

<list-runtimes/>

<list-runtimes inDatabase="true"/>

This command is based on the “Runtimes (GET)” on page 10-156 REST service.

The show-runtime command

The show-runtime command shows information about a given deployed runtime
(MobileFirst project). It has the following attributes:

Table 12-46. show-runtime command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-runtime runtime="worklight"/>

This command is based on the “Runtime (GET)” on page 10-148 REST service.

The delete-runtime command

The delete-runtime command deletes the runtime, including its apps and
adapters, from the database. It is only possible to delete a runtime when its web
application is stopped. It has the following attributes:

Table 12-47. delete-runtime command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

condition Condition when to
delete it: empty or
always (dangerous!)

No

Example:

12-34 IBM MobileFirst Platform Foundation V6.3.0

<delete-runtime runtime="worklight" condition="empty"/>

This command is based on the “Runtime (DELETE)” on page 10-147 REST service.

A complex example of a wladm Ant task
Here is an example of how to use several wladm invocations and XML processing to
solve more complex tasks.

This example lists all access rules of all apps in all runtimes. The third-party
XMLTask Ant task, from oopsconsultancy is used, which provides, in particular:
v Iteration over a list of XML elements that are specified through an XPath

expression.
v Access to several attributes of an XML element, in each iteration.

Here is an example of the code:
<?xml version="1.0" encoding="UTF-8"?>
<project default="main">

<!-- Prerequisite for using the <wladm> Ant task. -->
<taskdef resource="com/worklight/ant/deployers/antlib.xml">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>
<!-- Prerequisite for using the <xmltask> Ant task. -->
<taskdef name="xmltask" classname="com.oopsconsultancy.xmltask.ant.XmlTask">
<classpath>

<pathelement location="/opt/xmltask/xmltask.jar"/>
</classpath>

</taskdef>

<!-- Parameters for every <wladm> invocation. -->
<property name="url" value="https://localhost:8443/worklightadmin"/>
<property name="user" value="demo"/>
<property name="password" value="demo"/>
<property name="secure" value="false"/>

<target name="main">
<wladm url="${url}" user="${user}" password="${password}" secure="${secure}">

<list-runtimes output="/tmp/ListRuntimes.xml" inDatabase="true"/>
</wladm>
<xmltask source="/tmp/ListRuntimes.xml">

<call path="/projectconfiguration/projects/project">
<param name="runtime" path="@name"/>
<actions>

<echo message="runtime=@{runtime}"/>
<sequential>

<wladm url="${url}" user="${user}" password="${password}" secure="${secure}">
<list-apps runtime="@{runtime}" output="/tmp/ListApps.xml"/>

</wladm>
<xmltask source="/tmp/ListApps.xml">
<call path="/applications/items/item/appVersions/appVersion">

<param name="name" path="@application"/>
<param name="environment" path="@environment"/>
<param name="version" path="@version"/>
<actions>

<sequential>
<echo message="Access rules for app name=@{name}, environment=@{environment}, version=@{version}:"/>
<wladm url="${url}" user="${user}" password="${password}" secure="${secure}">
<app-version runtime="@{runtime}" name="@{name}" environment="@{environment}" version="@{version}">

<get-accessrule/>
</app-version>

</wladm>
</sequential>

Administering MobileFirst applications 12-35

http://www.oopsconsultancy.com/software/xmltask/

</actions>
</call>

</xmltask>
</sequential>

</actions>
</call>

</xmltask>
</target>

</project>

Administering MobileFirst applications through the command line
You can administer MobileFirst applications through the wladm program.

Comparison with other facilities

You can execute administration operations with IBM MobileFirst Platform
Foundation in the following ways:
v The MobileFirst Operations Console, which is interactive.
v The wladm Ant task.
v The wladm program.
v The MobileFirst administration REST services.

The wladm Ant task, wladm program, and REST services are useful for automated or
unattended execution of operations, such as eliminating operator errors in
repetitive operations or operating outside the operator's normal working hours.

The wladm program and the wladm Ant task are simpler to use and have better error
reporting than the REST services. The advantage of the wladm program over the
wladm Ant task is that it is easier to integrate when integration with operating
system commands is already available. Moreover, it is more suitable to interactive
use.

Prerequisites

The wladm command is provided in the product_install_dir/shortcuts/ directory
as a set of scripts:
v wladm for UNIX / Linux
v wladm.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

To use the wladm program, either put the product_install_dir/shortcuts/
directory into your PATH environment variable, or reference its absolute file name
in each call.

Calling the wladm program
You can use the wladm program to administer MobileFirst applications.

Syntax

Call the wladm program as follows:
wladm --url= --user= ... [--passwordfile=...] [--secure=false] some command

12-36 IBM MobileFirst Platform Foundation V6.3.0

The wladm program has the following options:

Table 12-48. wladm program options

Option Type Description Required Default

--url URL Base URL of the MobileFirst web
application for administration
services

Yes

--secure Boolean Whether to avoid operations with
security risks

No true

--user name User name for accessing the
MobileFirst admin services

Yes

--passwordfile file File containing the password for
the user

No

--verbose Detailed output No

url

The URL preferably uses the HTTPS protocol. For example, if you use
default ports and context roots, use this URL:
v For WebSphere Application Server: https://server:9443/wladmin
v For Tomcat: https://server:8443/wladmin

secure

The --secure option is set to true by default. Setting it to --secure=false
might have the following effects:
v The user and password might be transmitted in an unsecured way

(possibly even through unencrypted HTTP).
v The server's SSL certificates are accepted even if self-signed or if they

were created for a different host name from the server's host name.

password

Specify the password in a separate file that you pass in the --passwordfile
option. In interactive mode (see “Interactive mode” on page 12-39), you
can alternatively specify the password interactively. The password is
sensitive information and therefore needs to be protected. You must
prevent other users on the same computer from knowing these passwords.
To secure the password, before you enter the password into a file, you
must remove the read permissions of the file for users other than yourself.
For example, you can use one of the following commands:
v On UNIX: chmod 600 adminpassword.txt
v On Windows: cacls adminpassword.txt /P Administrators:F

%USERDOMAIN%\%USERNAME%:F

For this reason, do not pass the password to a process through a
command-line argument. On many operating systems, other users can
inspect the command-line arguments of your processes.

The wladm calls contains a command. The following commands are supported.

Table 12-49. wladm invocation supported commands

Command Description

show info Shows user and configuration information

show versions Shows version information

Administering MobileFirst applications 12-37

Table 12-49. wladm invocation supported commands (continued)

Command Description

list runtimes [--in-database] Lists the runtimes

show runtime [runtime-name] Shows information about a runtime

delete runtime [runtime-name] condition Deletes a runtime

list adapters [runtime-name] Lists the adapters

deploy adapter [runtime-name] file Deploys an adapter

show adapter [runtime-name] adapter-name Shows information about an adapter

delete adapter [runtime-name]
adapter-name

Deletes an adapter

adapter [runtime-name] adapter-name get
binary [> tofile]

Get the binary data of an adapter

list apps [runtime-name] Lists the apps

deploy app [runtime-name] file Deploys an app

show app [runtime-name] app-name Shows information about an app

delete app [runtime-name] app-name Deletes an app

delete app version [runtime-name]
app-name environment version

Deletes a version of an app

app version [runtime-name] app-name
environment version get binary [>
tofile]

Gets the binary data of an app version

app version [runtime-name] app-name
environment version get accessrule

Gets the access rule of an app version

app version [runtime-name] app-name
environment version set accessrule file

Changes the access rule of an app version

app version [runtime-name] app-name
environment version get
authenticitycheckrule

Gets the authenticity check rule of an app
version

app version [runtime-name] app-name
environment version set
authenticitycheckrule action

Changes the authenticity check rule of an
app version

app version [runtime-name] app-name
environment version get lock

Gets the lock state of an app version

app version [runtime-name] app-name
environment version set lock lock

Changes the lock state of an app version

list beacons [uuid [major minor]] Lists the beacons

set beacon file Specifies information about a beacon

show beacon uuid major minor Shows information about a beacon

remove beacon uuid major minor Removes information about a beacon

list beacon-triggers [runtime-name] Lists the beacon triggers

set beacon-trigger [runtime-name] file Specifies a beacon trigger

show beacon-trigger [runtime-name]
trigger-name

Shows a beacon trigger

delete beacon-trigger [runtime-name]
trigger-name

Deletes a beacon trigger

12-38 IBM MobileFirst Platform Foundation V6.3.0

Table 12-49. wladm invocation supported commands (continued)

Command Description

list beacon-trigger-associations
[runtime-name] app-name [uuid major
minor] [trigger-name]

Lists the associations between beacons and
beacon triggers

set beacon-trigger-association
[runtime-name] app-name uuid major minor
trigger-name

Specifies an association between a beacon
and a beacon trigger

show beacon-trigger-association
[runtime-name] app-name uuid major minor
trigger-name

Shows the association between a beacon and
a beacon trigger

delete beacon-trigger-association
[runtime-name] app-name uuid major minor
trigger-name

Deletes the association between a beacon
and a beacon trigger

list devices [runtime-name] [--query
query]

Lists the devices

remove device [runtime-name] id Removes a device

device [runtime-name] id set status
new-status

Changes the status of a device

device [runtime-name] id set appstatus
app-name new-status

Changes the status of a device for an app

Interactive mode

Alternatively, you can also call wladm without any command in the command line.
You can then enter commands interactively, one per line.

The exit command, or end-of-file on standard input (Ctrl-D on UNIX terminals)
terminates wladm.

Help commands are also available in this mode. For example:
v help

v help show versions

v help device

v help device set status

Command history in interactive mode

On some operating systems, the interactive wladm command remembers the
command history. With the command history, you can select a previous command,
using the arrow-up and arrow-down keys, edit it, and execute it.
v On Linux, the command history is enabled in terminal emulator windows if the

rlwrap package is installed and found in PATH. To install the rlwrap package:
– On Red Hat Linux: sudo yum install rlwrap
– On SUSE Linux: sudo zypper install rlwrap
– On Ubuntu: sudo apt-get install rlwrap

v On OS X, the command history is enabled in the Terminal program if the rlwrap
package is installed and found in PATH. To install the rlwrap package:
1. Install MacPorts by using the installer from www.macports.org.
2. Run the command:

Administering MobileFirst applications 12-39

sudo /opt/local/bin/port install rlwrap

Then, to make the rlwrap program available in PATH, use this command in a
Bourne-compatible shell:
PATH=/opt/local/bin:$PATH

v On Windows, the command history is enabled in cmd.exe console windows.

In environments where rlwrap does not work or is not desired, you can disable its
use through the option --no-readline.

The configuration file

You can also store the options in a configuration file, instead of passing them on
the command line at every call. When a configuration file is present and the option
–configfile=file is specified, you can omit the following options:
v --url=URL

v --secure=boolean

v --user=name

v --passwordfile=file

v runtime-name

Use these commands to store these values in the configuration file.

Table 12-50. Commands to store values in the configuration file

Command Comment

wladm [--configfile=file] config url URL

wladm [--configfile=file] config secure
boolean

wladm [--configfile=file] config user
name

wladm [--configfile=file] config
password

Prompts for the password.

wladm [--configfile=file] config runtime
runtime-name

Use this command to list the values that are stored in the configuration file: wladm
[--configfile=file] config

The configuration file is a text file, in the encoding of the current locale, in Java
.properties syntax. The default configuration file is on
v UNIX: $HOME/.wladm.config
v Windows: My Documents\IBM MobileFirst Platform Server Data\wladm.config,

or My Documents\IBM Worklight Server Data\wladm.config

Note: When you do not specify a --configfile option, the default configuration
file is used only in interactive mode and in config commands. For noninteractive
use of the other commands, you must explicitly designate the configuration file if
you want to use one.

Important: The password is stored in an obfuscated format that hides the
password from an occasional glimpse. However, this obfuscation provides no
security.

12-40 IBM MobileFirst Platform Foundation V6.3.0

Generic options

There are also the usual generic options:

Table 12-51. Generic options

Option Description

--help Shows some usage help

--version Shows the version

XML format

The commands that receive an XML response from the server verify that this
response complies with the specific schema. You can disable this check by
specifying --xmlvalidation=none.

Output character set

Normal output that is produced by the wladm program is encoded in the encoding
format of the current locale. On Windows, this encoding format is "ANSI code
page". The effects are as follows:
v Characters outside of this character set are converted to question marks when

they are output.
v When the output goes to a Windows command prompt window (cmd.exe),

non-ASCII characters are incorrectly displayed because such windows assume
characters to be encoded in "OEM code page".

To work around this limitation:
v On operating systems other than Windows, use a locale whose encoding is

UTF-8. This format is the default locale on Red Hat Linux and OS X. Many other
operating systems have a en_US.UTF-8 locale.

v Or use the wladm Ant task, with attribute output="some file name" to redirect
the output of a command to a file.

Commands for adapters
When you invoke the wldam program, you can include various commands for
adapters.

The list adapters command

The list adapters command returns a list of the adapters that are deployed for a
runtime.

Syntax:
list adapters [runtime-name]

It takes the following arguments:

Table 12-52. list adapters command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

Administering MobileFirst applications 12-41

It takes the following options after the object:

Table 12-53. list adapters options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
list adapters worklight

This command is based on the “Adapters (GET)” on page 10-18 REST service.

The deploy adapter command

The deploy adapter command deploys an adapter in a runtime.

Syntax:
deploy adapter [runtime-name] file

It takes the following arguments:

Table 12-54. deploy adapter command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

file Binary adapter file (.adapter)

Example:
deploy adapter worklight MyAdapter.adapter

This command is based on the “Adapter (POST)” on page 10-15 REST service.

The show adapter command

The show adapter command shows details about an adapter.

Syntax:
show adapter [runtime-name] adapter-name

It takes the following arguments:

Table 12-55. show adapter command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

adapter-name Name of an adapter

It takes the following options after the object:

12-42 IBM MobileFirst Platform Foundation V6.3.0

Table 12-56. show adapter options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
show adapter worklight MyAdapter

This command is based on the “Adapter (GET)” on page 10-13 REST service.

The delete adapter command

The delete adapter command removes (undeploys) an adapter from a runtime.

Syntax:
delete adapter [runtime-name] adapter-name

It takes the following arguments:

Table 12-57. delete adapter command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

adapter-name Name of an adapter

Example:
delete adapter worklight MyAdapter

This command is based on the “Adapter (DELETE)” on page 10-10 REST service.

The adapter command prefix

The adapter command prefix takes the following arguments before the verb:

Table 12-58. adapter command prefix arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

adapter-name Name of an adapter

The adapter get binary command

The adapter get binary command returns the binary adapter file.

Syntax:
adapter [runtime-name] adapter-name get binary [> tofile]

It takes the following options after the verb:

Administering MobileFirst applications 12-43

Table 12-59. adapter get binary options

Option Description Required Default

> tofile Name of the output
file.

No Standard output

Example:
adapter worklight MyAdapter get binary > /tmp/MyAdapter.adapter

This command is based on the “Adapter Binary (GET, HEAD)” on page 10-9 REST
service.

Commands for apps
When you invoke the wladm program, you can include various commands for apps.

The list apps command

The list apps command returns a list of the apps that are deployed in a runtime.

Syntax:
list apps [runtime-name]

It takes the following arguments:

Table 12-60. list apps command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

It takes the following options after the object:

Table 12-61. list apps options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
list apps worklight

This command is based on the “Applications (GET)” on page 10-54 REST service.

The deploy app command

The deploy app command deploys an app (possibly with multiple environments)
in a runtime.

Syntax:
deploy app [runtime-name] file

It takes the following arguments:

12-44 IBM MobileFirst Platform Foundation V6.3.0

Table 12-62. deploy app command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

file Binary app file (.wlapp, not .apk or .ipa)

Example:
deploy app worklight MyApp-all.wlapp

This command is based on the “Application (POST)” on page 10-50 REST service.

The show app command

The show app command shows details about an app in a runtime, in particular its
environments and versions.

Syntax:
show app [runtime-name] app-name

It takes the following arguments:

Table 12-63. show app command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app

It takes the following options after the object:

Table 12-64. show app options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
show app worklight MyApp

This command is based on the “Application (GET)” on page 10-46 REST service.

The delete app command

The delete app command removes (undeploys) an app (from all environments,
and all versions) from a runtime.

Syntax:
delete app [runtime-name] app-name

It takes the following arguments:

Administering MobileFirst applications 12-45

Table 12-65. delete app command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app

Example:
delete app worklight MyApp

This command is based on the “Application (DELETE)” on page 10-44 REST
service.

The delete app version command

The delete app version command removes (undeploys) an app version from a
runtime.

Syntax:
delete app version [runtime-name] app-name environment version

It takes the following arguments:

Table 12-66. delete app version command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app

environment Mobile platform

version Version of the app

Example:
delete app version worklight MyApp iPhone 1.1

This command is based on the “App Version (DELETE)” on page 10-37 REST
service.

The app version command prefix

The app version command prefix takes the following arguments before the verb:

Table 12-67. app version command prefix arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app

environment Mobile platform

version Version of the app

12-46 IBM MobileFirst Platform Foundation V6.3.0

The app version get binary command

The app version get binary command returns the binary wlapp file for a version
of an app.

Syntax:
app version [runtime-name] app-name environment version get binary [> tofile]

It takes the following arguments after the verb:

Table 12-68. delete app version command arguments

Argument Description Required Default

> tofile Name of the output
file.

No Standard output

Example:
app version worklight MyApp iPhone 1.1 get binary > /tmp/MyApp.wlapp

This command is based on the “Application Binary (GET, HEAD)” on page 10-42
REST service.

The app version get accessrule command

The app version get accessrule command returns the access rule for an app
version.

Syntax:
app version [runtime-name] app-name environment version get accessrule

Example:
app version worklight MyApp iPhone 1.1 get accessrule

This command is based on the “Application (GET)” on page 10-46 REST service.

The app version set accessrule command

The app version set accessrule command changes the access rule for an app
version.

Syntax:
app version [runtime-name] app-name environment version set accessrule file

It takes the following arguments after the verb:

Table 12-69. app version set accessrule command arguments

Argument Description

file Name of the input file.

Example:
app version worklight MyApp iPhone 1.1 set accessrule /tmp/new-accessrule.xml

This command is based on the “App Version Access Rule (PUT)” on page 10-28
REST service.

Administering MobileFirst applications 12-47

The app version get authenticitycheckrule command

The app version get authenticitycheckrule command returns the authenticity
check rule for an app version.

Syntax:
app version [runtime-name] app-name environment version get authenticitycheckrule

Example:
app version worklight MyApp iPhone 1.1 get authenticitycheckrule

This command is based on the “Application (GET)” on page 10-46 REST service.

The app version set authenticitycheckrule command

The app version set authenticitycheckrule command changes the authenticity
check rule for an app version.

Syntax:
app version [runtime-name] app-name environment version set authenticitycheckrule action

It takes the following arguments after the verb:

Table 12-70. app version set authenticitycheckrule command arguments

Argument Description

action Action to perform for authenticity checking

The possible actions are:
v DISABLED: Authenticity is not checked
v IGNORED: Authenticity is checked, but not enforced. If it fails, only a warning is

given and the session is authorized
v ENABLED: Authenticity is checked and enforced

Example:
app version worklight MyApp iPhone 1.1 set authenticitycheckrule enabled

This command is based on the “App Version Authenticity Check (PUT)” on page
10-33 REST service.

The app version get lock command

The app version get lock command returns information about whether an app
version is locked or unlocked.

Syntax:
app version [runtime-name] app-name environment version get lock

Example:
app version worklight MyApp iPhone 1.1 get lock

This command is based on the “Application (GET)” on page 10-46 REST service.

12-48 IBM MobileFirst Platform Foundation V6.3.0

The app version set lock command

The app version set lock command sets an app version to locked or unlocked
state.

Syntax:
app version [runtime-name] app-name environment version set lock lock

It takes the following arguments after the verb:

Table 12-71. app version set lock command arguments

Argument Description

lock New lock state.

The possible lock values are true and false.

Example:
app version worklight MyApp iPhone 1.1 set lock true

This command is based on the “App Version Lock (PUT)” on page 10-40 REST
service.

Commands for beacons
When you call the wladm program, you can include various commands for the
beacons and beacon triggers. A beacon is a piece of information that is associated
with an iBeacon. A beacon trigger is an action that a mobile device executes in
relation to an iBeacon, when there is an association between the beacon and the
beacon trigger.

The list beacons command

The list beacons command returns the list of beacons that match a given UUID
and optionally, a given major and minor number.

Syntax:
list beacons [uuid [major minor]]

It takes the following arguments:

Table 12-72. list beacons command arguments

Argument Description

uuid UUID (32 hex digits) of the beacons to
search for.

major Major number of the beacons to search for.
Use '_' as a wildcard.

minor Minor number of the beacons to search for.
Use '_' as a wildcard.

It takes the following options after the object:

Administering MobileFirst applications 12-49

Table 12-73. list beacons options

Option Description

--xml Produce XML output instead of tabular
output.

Example:

list beacons 496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6

This command is based on the “Beacons (GET)” on page 10-88 REST service.

The set beacon command

The set beacon command specifies or updates information about a beacon.

Syntax:
set beacon file

It takes the following arguments:

Table 12-74. set beacon command arguments

Argument Description

file Name of the input file.

The input file can be in JSON or XML format. If it is in XML format, it must follow
the schema that is given in the file product_install_dir/WorklightServer/wladm-
schemas/input/beacon.xsd.

Example:

set beacon entrance.xml

This command is based on the “Beacons (PUT)” on page 10-91 REST service.

The show beacon command

The show beacon command shows details about a beacon.

Syntax:
show beacon uuid major minor

It takes the following arguments:

Table 12-75. show beacon command arguments

Argument Description

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon.

minor Minor number of the beacon.

It takes the following options after the object:

12-50 IBM MobileFirst Platform Foundation V6.3.0

Table 12-76. show beacon options

Option Description

--xml Produce XML output instead of tabular
output.

Example:

show beacon 496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6 1 23

This command is based on the “Beacons (GET)” on page 10-88 REST service.

The remove beacon command

The remove beacon command removes (clears) the information about a beacon.

Syntax:
remove beacon uuid major minor

It takes the following arguments:

Table 12-77. remove beacon command arguments

Argument Description

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon.

minor Minor number of the beacon.

Example:

remove beacon 496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6 1 23

This command is based on the “Beacons (DELETE)” on page 10-85 REST service.

The list beacon-triggers command

The list beacon-triggers command returns the list of beacon triggers, belonging
to a given runtime.

Syntax:
list beacon-triggers [runtime-name]

It takes the following arguments:

Table 12-78. list beacon-triggers command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

It takes the following options after the object:

Administering MobileFirst applications 12-51

Table 12-79. list beacon-triggers options

Option Description

--xml Produce XML output instead of tabular
output.

Example:

list beacon-triggers worklight

This command is based on the “Beacon Triggers (GET)” on page 10-74 REST
service.

The set beacon-trigger command

The set beacon-trigger command specifies or updates information about a beacon
trigger, belonging to a given runtime.

Syntax:
set beacon-trigger [runtime-name] file

It takes the following arguments:

Table 12-80. set beacon-trigger command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

file Name of the input file.

The input file can be in JSON or XML format. If it is in XML format, it must follow
the schema that is given in the file product_install_dir/WorklightServer/wladm-
schemas/input/beacon-trigger.xsd.

Example:

set beacon-trigger worklight entrance-alert.xml

This command is based on the “Beacon Triggers (PUT)” on page 10-81 REST
service.

The show beacon-trigger command

The show beacon-trigger command shows details about a beacon trigger,
belonging to a given runtime.

Syntax:
show beacon-trigger [runtime-name] trigger-name

It takes the following arguments:

Table 12-81. show beacon-trigger command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

12-52 IBM MobileFirst Platform Foundation V6.3.0

Table 12-81. show beacon-trigger command arguments (continued)

Argument Description

trigger-name Name of the beacon trigger.

It takes the following options after the object:

Table 12-82. show beacon-trigger options

Option Description

--xml Produce XML output instead of tabular
output.

Example:

show beacon-trigger worklight entrance-alert

This command is based on the “Beacon Trigger (GET)” on page 10-72 REST
service.

The delete beacon-trigger command

The delete beacon-trigger command deletes a beacon trigger from a given
runtime.

Syntax:
delete beacon-trigger [runtime-name] trigger-name

It takes the following arguments:

Table 12-83. delete beacon-trigger command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

trigger-name Name of the beacon trigger.

Example:

delete beacon-trigger worklight entrance-alert

This command is based on the “Beacon Trigger (DELETE)” on page 10-69 REST
service.

The list beacon-trigger-associations command

The list beacon-trigger-associations command returns the list of associations
between beacons and beacon triggers that match given criteria, belonging to an
app in a given runtime.

Syntax:
list beacon-trigger-associations [runtime-name] app-name [uuid major minor] [trigger-name]

It takes the following arguments:

Administering MobileFirst applications 12-53

Table 12-84. list beacon-trigger-associations command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app.

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon. Use '_' as a
wildcard.

minor Minor number of the beacon. Use '_' as a
wildcard.

trigger-name Name of the beacon trigger.

It takes the following options after the object:

Table 12-85. list beacon-trigger-associations options

Option Description

--xml Produce XML output instead of tabular
output.

Examples:

list beacon-trigger-associations worklight productguide

list beacon-trigger-associations worklight productguide 496E-974C-CEDE-
8679-1CF9-A8EF-2E51-45B6 1 23

list beacon-trigger-associations worklight productguide entrance-alert

This command is based on the “Associate beacons and triggers (GET)” on page
10-62 REST service.

The set beacon-trigger-association command

The set beacon-trigger-association command specifies an association between a
beacon and a beacon trigger, belonging to an app in a given runtime.

Syntax:
set beacon-trigger-association [runtime-name] app-name uuid major minor trigger-name

It takes the following arguments:

Table 12-86. set beacon-trigger-association command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app.

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon.

minor Minor number of the beacon.

12-54 IBM MobileFirst Platform Foundation V6.3.0

Table 12-86. set beacon-trigger-association command arguments (continued)

Argument Description

trigger-name Name of the beacon trigger.

Example:

set beacon-trigger-association worklight productguide 496E-974C-CEDE-8679-
1CF9-A8EF-2E51-45B6 1 23 entrance-alert

This command is based on the “Associate beacons and triggers (PUT)” on page
10-65 REST service.

The show beacon-trigger-association command

The show beacon-trigger-association command shows an association between a
beacon and a beacon trigger, belonging to an app in a given runtime.

Syntax:
show beacon-trigger-association [runtime-name] app-name uuid major minor trigger-name

It takes the following arguments:

Table 12-87. show beacon-trigger-association command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app.

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon.

minor Minor number of the beacon.

trigger-name Name of the beacon trigger.

It takes the following options after the object:

Table 12-88. show beacon-trigger-association options

Option Description

--xml Produce XML output instead of tabular
output.

Example:

show beacon-trigger-association worklight productguide 496E-974C-CEDE-8679-
1CF9-A8EF-2E51-45B6 1 23 entrance-alert

This command is based on the “Associate beacons and triggers (GET)” on page
10-62 REST service.

Administering MobileFirst applications 12-55

The delete beacon-trigger-association command

The delete beacon-trigger-association command deletes an association between
a beacon and a beacon trigger from an app in a given runtime.

Syntax:
delete beacon-trigger-association [runtime-name] app-name uuid major minor trigger-name

It takes the following arguments:

Table 12-89. delete beacon-trigger-association command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app.

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon.

minor Minor number of the beacon.

trigger-name Name of the beacon trigger.

Example:

delete beacon-trigger-association worklight productguide
496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6 1 23 entrance-alert

This command is based on the “Associate beacons and triggers (DELETE)” on page
10-59 REST service.

Commands for devices
When you invoke the wladm program, you can include various commands for
devices.

The list devices command

The list devices command returns the list of devices that have contacted the
apps of a runtime.

Syntax:
list devices [runtime-name] [--query query]

It takes the following arguments:

Table 12-90. list devices command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

query A friendly name or user identifier, to search
for.

The query parameter specifies a string to search for. All devices that have a
friendly name or user identifier that contains this string (with case-insensitive
matching) are returned.

12-56 IBM MobileFirst Platform Foundation V6.3.0

It takes the following options after the object:

Table 12-91. list devices options

Option Description

--xml Produce XML output instead of tabular
output.

Examples:
list-devices worklight
list-devices worklight --query=john

This command is based on the “Devices (GET)” on page 10-105 REST service.

The remove device command

The remove device command clears the record about a device that has contacted
the apps of a runtime.

Syntax:
remove device [runtime-name] id

It takes the following arguments:

Table 12-92. remove device command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

id Unique device identifier.

Example:
remove device worklight 496E974CCEDE86791CF9A8EF2E5145B6

This command is based on the “Device (DELETE)” on page 10-99 REST service.

The device command prefix

The device command prefix takes the following arguments before the verb:

Table 12-93. device command prefix arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

id Unique device identifier.

The device set status command

The device set status command changes the status of a device, in the scope of a
runtime.

Syntax:
device [runtime-name] id set status new-status

It takes the following arguments:

Administering MobileFirst applications 12-57

Table 12-94. device set status command arguments

Argument Description

new-status New status.

The status can be:
v ACTIVE

v LOST

v STOLEN

v EXPIRED

v DISABLED

Example:
device worklight 496E974CCEDE86791CF9A8EF2E5145B6 set status EXPIRED

This command is based on the “Device Status (PUT)” on page 10-102 REST service.

The device set appstatus command

The device set appstatus command changes the status of a device, regarding an
app in a runtime.

Syntax:
device [runtime-name] id set appstatus app-name new-status

It takes the following arguments:

Table 12-95. device set appstatus command arguments

Argument Description

app-name Name of an app.

new-status New status.

The status can be:
v ENABLED

v DISABLED

Example:
device worklight 496E974CCEDE86791CF9A8EF2E5145B6 set appstatus MyApp DISABLED

This command is based on the “Device Application Status (PUT)” on page 10-95
REST service.

Commands for troubleshooting
When you invoke the wladm program, you can include various commands for
troubleshooting.

The show info command

The show info command shows basic information about the MobileFirst
administration services that can be returned without accessing any runtime nor
database. This command can be used to test whether the MobileFirst
administration services are running at all.

12-58 IBM MobileFirst Platform Foundation V6.3.0

Syntax:
show info

It takes the following options after the object:

Table 12-96. show info options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
show info

The show versions command

The show versions command displays the MobileFirst versions of various
components:
v wladmVersion: the exact MobileFirst Server version number from which

worklight-ant-deployer.jar is taken.
v productVersion: the exact MobileFirst Server version number from which

worklightadmin.war is taken

and for every project WAR file:
v serverVersion: the exact MobileFirst Server version number from which

worklight-jee-library.jar is taken
v platformVersion: the exact version number of the MobileFirst development tools

that built the project WAR file

Syntax:
show versions

It takes the following options after the object:

Table 12-97. show versions options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
show versions

The list runtimes command

The list runtimes command returns a list of the deployed runtimes (MobileFirst
projects).

Syntax:
list runtimes [--in-database]

It takes the following options:

Administering MobileFirst applications 12-59

Table 12-98. list runtimes options

Option Description

--in-database Whether to look in the database instead of
via MBeans

--xml Produce XML output instead of tabular
output.

Examples:
list runtimes
list runtimes --in-database

This command is based on the “Runtimes (GET)” on page 10-156 REST service.

The show runtime command

The show runtime command shows information about a given deployed runtime
(MobileFirst project).

Syntax:
show runtime [runtime-name]

It takes the following arguments:

Table 12-99. show runtime arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

It takes the following options after the object:

Table 12-100. show runtime options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
show runtime worklight

This command is based on the “Runtime (GET)” on page 10-148 REST service.

The delete runtime command

The delete runtime command deletes a runtime, including its apps and adapters,
from the database. It is only possible to delete a runtime when its web application
is stopped.

Syntax:
delete runtime [runtime-name] condition

It takes the following arguments:

12-60 IBM MobileFirst Platform Foundation V6.3.0

Table 12-101. delete runtime arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

condition Condition when to delete it: 'empty' or
'always' (dangerous!)

Example:
delete runtime worklight empty

This command is based on the “Runtime (DELETE)” on page 10-147 REST service.

Administering push notifications with the MobileFirst Operations
Console

The Push Notifications page in the MobileFirst Operations Console provides you
with a quick view of the various entities in the push notification chain.

The left column displays the list of data sources that are configured in your
MobileFirst Server, including the number of users that are subscribed to
notifications from each source.

The right column displays deployed applications, which can receive push
notifications. For each application, the push notification services available for this
application are also displayed. The console displays the number of notifications
that are retrieved by an event source and sent to each application since system

Figure 12-9. Push notifications in the MobileFirst Operations Console

Administering MobileFirst applications 12-61

startup. It also displays errors that are related to connectivity to the push
notification services.

Administrators can forcibly unsubscribe existing SMS subscriptions by clicking
Unsubscribe devices. The Unsubscribe SMS Devices window opens, and
administrators can then enter the mobile phone numbers to be unsubscribed.

Note: It is possible to have two subscriptions for the same phone number and user
name; one created by using the device and one created by using the subscribe SMS
servlet. If there are two subscriptions for the same phone number and user name,
unsubscription by using the MobileFirst Operations Console unsubscribes both
subscriptions.

Application Center
Learn about the Application Center: what it is for, the different components and
features, and how to use the console and the client.

Figure 12-10. SMS push notifications in the MobileFirst Operations Console

Figure 12-11. Unsubscribe existing SMS subscriptions

12-62 IBM MobileFirst Platform Foundation V6.3.0

The sale of mobile devices now exceeds that of personal computers. Consequently,
mobile applications become critical for businesses.

The Application Center is a tool to make sharing mobile applications within an
organization easier.

You can use the Application Center as an enterprise application store. With the
Application Center, you can target some mobile applications to particular groups
of users within the company.

A development team can also use the Application Center during the development
phase of an application to share applications with testers, designers, or executives
in the company. In such a scenario, it makes collaboration easier between all the
people who are involved in the development process.

Concept of the Application Center
The Application Center can be used as an Enterprise application store and is a
means of sharing information among different team members within a company.

The concept of the Application Center is similar to the concept of the Apple public
App Store or the Android Market, except that it targets only private usage within a
company.

By using the Application Center, users from the same company or organization
download applications to mobile phones or tablets from a single place that serves
as a repository of mobile applications.

The Application Center targets mobile applications that are installed on the device
itself. Those applications can be native applications that are built by using the
device SDK or hybrid applications that mix native and web content. The
Application Center does not target mobile web applications; such applications are
delivered to the mobile device web browser through a URL like a website.

In the current version, the Application Center supports applications that are built
for the Google Android platform, the Apple iOS platform, the Windows Phone 8
platform, Windows 8 platform, and the BlackBerry platform for OS versions 6 and
7. Windows Phone 7, Windows RT, and BlackBerry OS 10 are not supported by the
current version of the Application Center.

The Application Center manages mobile applications; it supports any kind of
Android, iOS, Windows Phone 8, Windows 8, or BlackBerry OS 6 or OS 7
application, including applications that are built on top of the MobileFirst platform.

You can use the Application Center as part of the development process of an
application. A typical scenario of the Application Center is a team building a
mobile application; the development team creates a new version of an Android,
iOS, Windows Phone, Windows 8, or BlackBerry application. The development
team wants this new version to be reviewed and tested by the extended team. A
developer goes to the Application Center console and uploads the new version of
the application to the Application Center. As part of this process, the developer can
enter a description of the application version. For example, the description could
mention the elements that the development team added or fixed from the previous
version. The new version of the application is then available to the other members
of the team.

Administering MobileFirst applications 12-63

Another person, for example, a beta tester, can launch the Application Center
installer application, the mobile client, to locate this new version of a mobile
application in the list of available applications and install it on his mobile device.
After testing the new version, the beta tester can rate the application and submit
feedback. The feedback is visible to the developer from the Application Center
console.

The Application Center is a convenient way to share mobile applications within a
company or a group; it is a means of sharing information among team members.

Specific platform requirements
Different operating systems impose specific requirements for deploying, installing,
or using applications on the appropriate mobile devices.

Android
The mobile device must be configured for installation from unknown
sources. The corresponding toggle can be found in the Android Settings.
See User Opt-in for apps from unknown sources for details.

iOS All applications managed through the Application Center must be
packaged for “Ad Hoc Distribution”. With an iOS developer account, you
can share your application with up to 100 iOS devices. With an iOS
enterprise account, you can share your in-house application with an
unlimited number of iOS devices. See iOS Developer Program and iOS
Enterprise Program for details.

BlackBerry
Applications must be signed with a signing key for “BlackBerry OS 7 and
earlier” that can be obtained by BlackBerry. Unsigned applications cannot
access the full BlackBerry API of the device. Therefore, only very simple
applications do not require this signing process. See BlackBerry Keys Order
Form for details.

Windows Phone 8
Applications are not installed from the Windows Store, but from the
Application Center, which acts as what Microsoft documentation calls a
“Company Hub”. See Company app distribution for Windows Phone for
details.

To use a company hub, Windows Phone requires you to register a
company account with Microsoft and to sign all applications, including the
Application Center client, with the company certificate. Only signed
applications can be managed through the Application Center.

You must enroll all mobile devices through an application enrollment
token associated with your company account.The Application Center helps
you to enroll devices through facilities to distribute the application
enrollment token. See “Application enrollment tokens in Windows Phone
8” on page 12-107 for details.

Windows 8
The Application Center mobile client is provided as a normal desktop
executable file (.exe). Use it to install on the device Windows Store
applications, packaged as .appx files.

Installing a file of type appx on your device without using Windows Store
is called sideloading an app. To sideload an app, you must comply with
the prerequisites in Prepare to Sideload Apps. The Windows 8.1 update

12-64 IBM MobileFirst Platform Foundation V6.3.0

http://developer.android.com/distribute/open.html#unknown-sources
https://developer.apple.com/programs/ios/distribute.html
https://developer.apple.com/programs/ios/enterprise/
https://developer.apple.com/programs/ios/enterprise/
https://www.blackberry.com/SignedKeys/codesigning.html
https://www.blackberry.com/SignedKeys/codesigning.html
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj206943%28v=vs.105%29.aspx
http://technet.microsoft.com/fr-fr/library/dn613842.aspx

simplifies the prerequisites for sideloading. For more information, see
Sideloading Store Apps to Windows 8.1 Devices.

Files of type .exe cannot be executed on ARM-based tablets, so Application
Center does not support Windows RT; only Windows 8 and Windows 8.1
are supported.

Application Center does not provide any predefined way for distributing
the mobile client.

General architecture
The Application Center is composed of these main elements: a server-side
component, a repository, an administration console, and a mobile client
application.

Server-side component

The server-side component is a Java Enterprise application that must be deployed
in a web application server such as IBM WebSphere or Apache Tomcat.

The server-side component consists of an administration console and a mobile
application. This mobile application installs the mobile applications available to the
client-side component.

The web console and the installer application communicate through REST services
with the server component.

Several services compose the Application Center server-side component; for
example, a service that lists available applications, a service that delivers the
application binary files to the mobile device, or a service that registers feedback
and ratings.

Repository

A database that stores information such as which application is installed on which
devices, the feedback about applications, and the mobile application binary files.
The Application Center application is associated with the database when you
configure the Application Center for a particular web application server and a
supported database.

Administration console

A web console through which administrators can manage applications, user access
rights to install applications, user feedback about mobile applications, and details
about applications installed on devices. See “The Application Center console” on
page 12-82.

Mobile client application

You use the mobile client to install applications on a mobile device and to send
feedback about an application to the server. See “The mobile client” on page
12-117.

The following figure shows an overview of the architecture.

Administering MobileFirst applications 12-65

http://blogs.msdn.com/b/micham/archive/2014/05/30/sideloading-store-apps-to-windows-8-1-devices.aspx

From the Application Center console you can:
v Upload different versions of mobile applications.
v Remove unwanted applications.
v Control access to applications.

Access to the applications stored in the Application Center can be controlled from
the Application Center console. Each application is associated with the list of
people who can install the application.
v View feedback that mobile users have sent about an application.
v Obtain information about applications installed on a device.
v Make an application inactive so that it is not visible in the available applications

for download.

From the mobile client you can:
v List available mobile applications.
v Install a new application on a device.
v Send feedback about an application.

The Application Center supports applications for Android, iOS, Windows Phone 8,
Windows 8, and BlackBerry devices. Therefore, the mobile client comes in several
versions: an Android, an iOS, a Windows Phone 8, a Windows 8, and a BlackBerry
version.

The Android, iOS and Windows Phone 8 mobile clients are built on the MobileFirst
platform. You will find instructions in this document about how to configure the
Application Center server-side component on various Java application servers after
the product is installed, as well as how to build MobileFirst applications for the
Application Center client.

Figure 12-12. Architecture of the Application Center

12-66 IBM MobileFirst Platform Foundation V6.3.0

Preliminary information
To use the Application Center, you must configure security settings, start the web
application server where IBM MobileFirst Platform Foundation is installed, start
the Application Center console, and log in.

When you install IBM MobileFirst Platform Foundation, the Application Center is
automatically installed in the specified application server.

If you install the Application Center in WebSphere Application Server Liberty
profile, the server is created and located in installation-directory/server.

After the installation is complete, you must configure the security settings for the
applications. See “Configuring the Application Center after installation” on page
6-203 or, if you are using LDAP authentication, “Managing users with LDAP” on
page 6-210.

The following example shows how to start the server and then the Application
Center console on Liberty profile.

You can start the Liberty server by using the server command located in the
directory installation-directory/server/wlp/bin.

To start the server, use the command:
server start worklightServer

When the server is running, you can start the Application Center console by
entering this address in your browser:

http://localhost:9080/appcenterconsole/

You are requested to log in. By default, the Application Center installed on Apache
Tomcat or WebSphere Liberty Profile has two users defined for this installation:
v demo with password demo
v appcenteradmin with password admin

To start using the Application Center console, refer to “The Application Center
console” on page 12-82.

To install and run the mobile client on:
v Android operating system: see “Installing the client on an Android mobile

device” on page 12-117.
v iOS operating system: see “Installing the client on an iOS mobile device” on

page 12-120.
v BlackBerry OS 6 and OS 7: see “Installing the client on a BlackBerry mobile

device” on page 12-121.
v Windows Phone 8: see “Installing the client on Windows Phone 8” on page

12-122.

Windows 8: The mobile client for Windows 8 is not intended to be deployed in
Application Center for later distribution. See “Microsoft Windows 8: Building the
project” on page 12-72.

Administering MobileFirst applications 12-67

Preparations for using the mobile client
To use the mobile client to install apps on mobile devices, you must either generate
the app by using the provided Eclipse and Visual Studio projects or use the
version of the client provided for Android, iOS, Windows Phone, Windows 8, or
BlackBerry directly.

Prerequisites for building the Application Center installer

The Application Center comes with an Android, an iOS, a Windows Phone, a
Windows 8, and a BlackBerry version of the client application that runs on the
mobile device. This mobile application that supports installation of applications on
your mobile device is called the mobile client. The mobile client is a MobileFirst
mobile application.

The MobileFirst project IBMAppCenter contains the Android, the iOS, and the
Windows Phone versions of the client.

The Windows 8 project is provided as a Visual Studio project located at
IBMApplicationCenterWindowsStore\AppCenterClientWindowsStore.csproj.

The BlackBerry project IBMAppCenterBlackBerry6 contains the version of the client
for BlackBerry OS 6 and OS 7 devices. BlackBerry OS 10 is not supported by the
current version of the Application Center.

The Android version of the mobile client is included in the software delivery in the
form of an Android application package (.apk) file. The IBMApplicationCenter.apk
file is in the directory ApplicationCenter/installer. Push notifications are
disabled. If you want to enable push notifications, you must rebuild the .apk file.
See “Push notifications of application updates” on page 12-76 for more information
about push notifications in the Application Center.

To build the Android version, you must have the latest version of the Android
development tools.

The iOS version for iPad and iPhone is not delivered as a compiled application.
The application must be created from the MobileFirst project named IBMAppCenter.
This project is also delivered as part of the distribution in the ApplicationCenter/
installer directory.

To build the iOS version, you must have the appropriate MobileFirst and Apple
software. The version of MobileFirst Studio must be the same as the version of
IBM MobileFirst Platform Server on which this documentation is based. The Apple
Xcode version is V5.0.

The Windows Phone version of the mobile client is included as an unsigned
Windows Phone application package (.xap) file in the software delivery. The
IBMApplicationCenterUnsigned.xap file is in the ApplicationCenter/installer
directory.

The unsigned .xap file cannot be used directly. You must sign it with your
company certificate obtained from Symantec/Microsoft before you can install it on
a device.

Optional: If necessary, you can also build the Windows Phone version from
sources.

12-68 IBM MobileFirst Platform Foundation V6.3.0

To build the Windows Phone version, you must have the latest version of the
Microsoft Visual Studio development tools.

The Windows 8 version of the mobile client is included as an archive (.zip file).
The IBMApplicationCenterWindowsStore.zip file contains an executable file (.exe)
and its dependent Dynamic-Link Library (.dll) files. To use the content of this
archive, you download the archive to a location on you local drive and run the
executable file.

Optional: If necessary, you can also build the Windows 8 version from sources. For
this purpose, you must have the latest version of Microsoft Visual Studio.

The BlackBerry version is included as an archive (.zip) file. The
IBMApplicationCenterBB6.zip file is in the ApplicationCenter/installer directory.

Optional: If necessary, you can also build the BlackBerry version from sources by
using the BlackBerry project named IBMAppCenterBlackBerry6. This project is
delivered as part of the distribution in the ApplicationCenter/installer directory.

To build the BlackBerry version, you must have the BlackBerry Eclipse IDE (or
Eclipse with the BlackBerry Java plug-in) with the BlackBerry SDK 6.0. The
application also runs on BlackBerry OS 7 when compiled with BlackBerry SDK 6.0.

Download the software from: https://developer.blackberry.com/java/download/
eclipse/.
1. Start the BlackBerry Eclipse IDE.
2. Select Help > Install New Software > Work with: BlackBerry Update Site.
3. Expand the BlackBerry Java Plug-in Category and select “BlackBerry Java SDK

6.0.x.y.”

Importing and building the project (Android, iOS, Windows
Phone)
You must import the IBMAppCenter project into MobileFirst Studio and then build
the project.

About this task

Follow the normal procedure to import a project into MobileFirst Studio.

Procedure
1. Select File > Import.
2. Select General > Existing Project into Workspace.
3. On the next page, select Select root directory and locate the root of the

IBMAppCenter project.
4. Select “IBMAppCenter project”.
5. Select “Copy projects into workspace”. This selection creates a copy of the

project in your workspace. On UNIX systems, the IBMAppCenter project is read
only at the original location. so copying projects into workspace avoids
problems with file permissions.

6. Click Finish to import the IBMAppCenter project into MobileFirst Studio.

Administering MobileFirst applications 12-69

https://developer.blackberry.com/java/download/eclipse/
https://developer.blackberry.com/java/download/eclipse/

What to do next

Build the IBMAppCenter project. The MobileFirst project contains a single
application named AppCenter. Right-click the application and select Run as > Build
All Environments.

Android
MobileFirst Studio generates a native Android project in
IBMAppCenter/apps/AppCenter/android/native. A native Android
development tools (ADT) project is in the android/native folder. You can
compile and sign this project by using the ADT tools. This project requires
Android SDK level 16 to be installed, so that the resulting APK is
compatible with all Android versions 2.3 and later. If you choose a higher
level of the Android SDK when you build the project, the resulting APK
will not be compatible with Android version 2.3.

See the Android site for developers for more specific Android information
that affects the mobile client application.

If you want to enable push notifications for application updates, you must
first configure the Application Center client properties. See “Configuring
push notifications for application updates” on page 12-77 for more
information.

iOS MobileFirst Studio generates a native iOS project in IBMAppCenter/apps/
AppCenter/iphone/native. The IBMAppCenterAppCenterIphone.xcodeproj
file is in the iphone/native folder. This file is the Xcode project that you
must compile and sign by using Xcode.

See The Apple developer site to learn more about how to sign the iOS
mobile client application. To sign an iOS application, you must change the
Bundle Identifier of the application to a bundle identifier that can be used
with the provisioning profile that you use. The value is defined in the
Xcode project settings as com.your_internet_domain_name.appcenter,
where your_internet_domain_name is the name of your internet domain.

If you want to enable push notifications for application updates, you must
first configure the Application Center client properties. See “Configuring
push notifications for application updates” on page 12-77 for more
information.

Windows Phone 8
MobileFirst Studio generates a native Windows Phone 8 project in
IBMAppCenter/apps/AppCenter/windowsphone8/native. The
AppCenter.csproj file is in the windowsphone8/native folder. This file is the
Visual Studio project that you must compile by using Visual Studio and
the Windows Phone 8 SDK.

See Windows Phone Dev Center to learn more about how to build and
sign the Windows Phone mobile client application.

See “Developing MobileFirst applications” on page 8-1 for more information about
how you can create hybrid mobile applications with MobileFirst Studio.

For experts: Android, iOS, Windows Phone
You can customize features by editing a central property file and manipulating
some other resources.

12-70 IBM MobileFirst Platform Foundation V6.3.0

https://developer.android.com/index.html
https://developer.apple.com/
http://dev.windowsphone.com/en-us

Purpose

To customize features: several features are controlled by a central property file
called config.json in the directory IBMAppCenter/apps/AppCenter/common/js/
appcenter/. If you want to change the default application behavior, you can adapt
this property file before you build the project.

Properties

This file contains the properties shown in the following table.

Table 12-102. Properties in the config.js file

Property Description

url The hardcoded address of the Application Center
server. If this property is set, the address fields of the
Login view are not displayed.

defaultPort If the url property is null, this property prefills the
port field of the Login view on a phone. This is a
default value; the field can be edited by the user.

defaultContext If the url property is null, this property prefills the
context field of the Login view on a phone. This is a
default value; the field can be edited by the user.

ssl The default value of the SSL switch of the Login view.

allowDowngrade This property indicates whether installation of older
versions is authorized or not; an older version can be
installed only if the operating system and version
permit downgrade,

showPreviousVersions This property indicates whether the device user can
show the details of all the versions of applications or
only details of the latest version.

showInternalVersion This property indicates whether the internal version is
shown or not. If the value is false, the internal version
is shown only if no commercial version is set.

listItemRenderer This property can have one of these values:

v full, the default value; the application lists show
application name, rating, and latest version.

v simple: the application lists show the application
name only.

listAverageRating This property can have one of these values:

v latestVersion: the application lists show the average
rating of the latest version of the application.

v allVersions: the application lists show the average
rating of all versions of the application.

requestTimeout This property indicates the timeout in milliseconds for
requests to the Application Center server.

gcmProjectId The Google API project ID (project name =
com.ibm.appcenter), which is required for Android
push notifications; for example, 123456789012.

Administering MobileFirst applications 12-71

Table 12-102. Properties in the config.js file (continued)

Property Description

allowAppLinkReview This property indicates whether local reviews of
applications from external application stores can be
registered and browsed in the Application Center.
These local reviews are not visible in the external
application store. These reviews are stored in the
Application Center server.

Other resources

Other resources that are available are application icons, application name, splash
screen images, icons, and translatable resources of the application.

Application icons
Android: The file named icon.png in the IBMAppCenter/apps/AppCenter/
android/native/res/drawabledensity directories; one directory exists for
each density.

iOS: Files named iconsize.png in the IBMAppCenter/apps/AppCenter/
iphone/native/Resources directory.

Windows Phone: Files named ApplicationIcon.png,
IconicTileSmallIcon.png, and IconicTileMediumIcon.png in the
IBMAppCenter/apps/AppCenter/windowsphone8/native directory.

Application name
Android: Edit the app_name property in the IBMAppCenter/apps/AppCenter/
android/native/res/values/strings.xml file.

iOS: Edit the CFBundleDisplayName key in the IBMAppCenter/apps/
AppCenter/iphone/native/IBMAppCenterAppCenterIphone-Info.plist file.

Windows Phone: Edit the Title attribute of the App entry in the
IBMAppCenter/apps/AppCenter/windowsphone8/native/Properties/
WMAppManifest.xml file.

Splash screen images
Android: Edit the file named splashimage.9.png in the
IBMAppCenter/apps/AppCenter/android/native/res/drawable/density
directories; one directory exists for each density. This file is a patch 9
image.

iOS: Files named Default-size.png in the IBMAppCenter/apps/AppCenter/
iphone/native/Resources directory.

Hybrid splash screen during auto login: /IBMAppCenter/apps/AppCenter/
common/js/idx/mobile/themes/common/idx/Launch.css

Windows Phone: Edit the file named SplashScreenImage.png in the
IBMAppCenter/apps/AppCenter/windowsphone8/native directory.

Icons (buttons, stars, and similar objects) of the application
IBMAppCenter/apps/AppCenter/common/css/images.

Translatable resources of the application
IBMAppCenter/apps/AppCenter/common/js/appcenter/nls/common.js.

Microsoft Windows 8: Building the project
Build the Application Center client project for Windows 8 in Microsoft Visual
Studio 2013.

12-72 IBM MobileFirst Platform Foundation V6.3.0

About this task

You must build the client project in Microsoft Visual Studio 2013 before you can
distribute it.

Building the project is a prerequisite to distributing it to your users, but the
Windows 8 mobile client is not intended to be deployed on Application Center for
later distribution.

Procedure

To build the Windows 8 project:
1. Open the Visual Studio project file called IBMApplicationCenterWindowsStore\

AppCenterClientWindowsStore.csproj in Microsoft Visual Studio 2013.
2. Perform a full build of the application.

What to do next

To distribute the mobile client to your Application Center users, you can later
generate an installer that will install the generated executable (.exe) file and its
dependent Dynamic-Link Library (.dll) files. Alternatively, you can provide these
files without including them in an installer.

Importing and building the project (BlackBerry)
You must import the BlackBerry project into the BlackBerry Eclipse IDE and then
build the project.

About this task

Follow the normal procedure to import a project into the BlackBerry Eclipse IDE.

Procedure
1. Select File > Import.
2. Select General > Existing Project into Workspace.
3. On the next page, select Select root directory and locate the root of the

IBMAppCenterBlackBerry6 project.
4. Select "IBMAppCenterBlackBerry6 project".
5. Click Finish to import the IBMAppCenterBlackBerry6 project into the BlackBerry

Eclipse IDE.

What to do next

The IBMAppCenterBlackBerry6 project is a native BlackBerry application that
requires protected BlackBerry API. Therefore, you must first obtain a signature to
sign the project. In your web browser, open https://www.blackberry.com/
SignedKeys/codesigning.html. Follow the instructions to obtain the signature,
which consists of several keys. All signature keys must be imported into Eclipse by
using Window > Preferences > BlackBerry Java Plugin > Signature Tool.

To build the IBMAppCenterBlackBerry6 project:
1. Right-click the project and select BlackBerry > Package Project(s).

This action packages the project.
2. Right-click the project and select BlackBerry > Sign with Signature Tool.

Administering MobileFirst applications 12-73

https://www.blackberry.com/SignedKeys/codesigning.html
https://www.blackberry.com/SignedKeys/codesigning.html

This action signs the project.

The result is located in a generated directory called deliverables. This directory
contains two subdirectories:

Standard
This directory contains the packaged application for uploading with USB
cable to the device. This method is incompatible with the packaging
required for the Application Center server.

Web This directory contains the packaged application for uploading over the air.
This method is compatible with the Application Center. Therefore, use this
directory and not the Standard directory. Place this directory into an
archive (.zip) file.

Important: Make sure that the archive file does not contain the Standard
directory.

Refer to the BlackBerry site for developers for more specific information that affects
the mobile client application for BlackBerry projects.

For experts: BlackBerry
You can customize features by adapting a central property file and manipulating
some other resources .

Purpose

To customize features: look and feel and various features are controlled by a
central property file called appcenter.properties in the directory
IBMAppCenterBlackBerry6/src/main/resources. If you want to disable or customize
various features, you can adapt this property file before you build the project. For
example, you can disable the feature for reverting the installation of an application
to a previous version.

Properties

This file contains the properties shown in the following table.

Table 12-103. Properties in the appcenter.properties file

Property Description

defaultServer The default value of the server field of the
Login view. The field can be edited by the
user.

defaultPort The default value of the port field of the
Login view. The field can be edited by the
user.

defaultContext The default value of the context field of the
Login view. The field can be edited by the
user.

defaultUseSSL The default value of the SSL switch of the
Login view.

12-74 IBM MobileFirst Platform Foundation V6.3.0

https://developer.blackberry.com/java/

Table 12-103. Properties in the appcenter.properties file (continued)

Property Description

serverSettingVisibleInLoginScreen This property indicates whether the server,
port, and context fields and the SSL check
box are visible in the login screen. If this
property is disabled, the defaultServer,
defaultPort, defaultContext, and
defaultUseSSL properties must be set,
because the user cannot edit their values
when they are not visible.

KeepLoginCredentialsTime The number of minutes the password
remains valid after exiting the application. If
set to 0, the user must log in again
whenever the application starts. If set to -1,
the login credentials are kept forever until
the user explicitly logs out. If any other
value is given and the user restarts the
application within this time, it is not
necessary to log in again.

listAverageRating This property can have one of these values:

v latestVersion: the application lists show
the average rating of the latest version of
the application.

v allVersions: the application lists show the
average rating of all versions of the
application.

AdaptAppCatalogInfoLineToSorting This property indicates whether the
rendering of the application list shows
popularity or updates when sorting
according to popularity and updates.
Normally, the rendering shows version
numbers. When this feature is enabled and
you choose sorting according to the
timestamps of popularity or updates, the
rendering shows popularity or update
timestamps instead of versions.

Other resources

Other resources that are available are application icon, application name, icons, and
translatable resources of the application.

Application icon
IBMAppCenterBlackBerry6/src/main/resources/img/launchicon-
144x144.png.

Application name
Edit the IBMAppCenterBlackBerry6/BlackBerry_App_Descriptor.xml file.
The key title is the application name.

Icons (buttons, stars, and similar objects) of the application
IBMAppCenterBlackBerry6/src/main/resources/img/.

Depending on the color theme, either dark or light icons are chosen. For
example, if the background is dark, light icons are chosen. Therefore, all
icon file names have the suffix “light” or “dark”. Several buttons can be
disabled. To show the corresponding icon on a disabled button, some icons

Administering MobileFirst applications 12-75

have the file name suffix “t50”. The visual indicator of disabled buttons is
implemented by adding 50% transparency to the icon.

Translatable resources of the application
IBMAppCenterBlackBerry6/src/main/resources/com/ibm/appcenter/i18n/
I18N.rrc.

Deploying the mobile client in the Application Center
Deploy the different versions of the client application to Application Center.

The Windows 8 mobile client is not intended to be deployed in Application Center
for later distribution. You can choose to distribute the Windows 8 mobile client the
way you want, either by providing users with the client executable file (.exe) and
dynamic link library (.dll) files directly packaged in an archive, or by creating an
executable installer for the Windows 8 mobile client.

The Android, iOS, Windows Phone, and BlackBerry versions of the mobile client
must be deployed to the Application Center. To do so, you must upload the
Android application package (.apk) files, iOS application (.ipa) files, Windows
Phone application (.xap) files, and BlackBerry Web directory archive (.zip) files to
the Application Center.

Follow the steps described in “Adding a mobile application” on page 12-85 to add
the mobile client application for Android, iOS, Windows Phone, and BlackBerry.
Make sure that you select the Installer application property to indicate that the
application is an installer. Selecting this property enables mobile device users to
install the mobile client application easily over the air. To install the mobile client,
see the related task that corresponds to the version of the mobile client app
determined by the operating system.
Related tasks:
“Installing the client on an Android mobile device” on page 12-117
You can install the mobile client, or any signed application marked with the
installer flag, on your Android mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.
“Installing the client on an iOS mobile device” on page 12-120
You can install the mobile client, or any signed application marked with the
installer flag, on your iOS mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.
“Installing the client on Windows Phone 8” on page 12-122
You can install the mobile client, or any signed application marked with the
installer flag, on Windows Phone 8 by entering the access URL in your browser,
entering your credentials, and completing the required steps. The company account
must be preinstalled on your mobile device.
“Installing the client on a BlackBerry mobile device” on page 12-121
You can install the mobile client, or any signed application marked with the
installer flag, on your BlackBerry mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

Push notifications of application updates
You can configure the Application Center client so that push notifications are sent
to users when an update is available for an application in the store.

The Application Center administrator uses push notifications to automatically send
a notification to any iOS or Android device where a specific application is installed
when a new version of this application is available.

12-76 IBM MobileFirst Platform Foundation V6.3.0

Push notifications are currently not available for the BlackBerry Application Center
client.

Push notification process

The first time that the Application Center client starts on a device, the user might
be asked whether or not to accept incoming push notifications; that is the case for
iOS mobile devices. The push notification feature does not work when the service
is disabled on the mobile device. iOS and modern Android operating system
versions offer a way to switch this service on or off on a per application basis.
Refer to your device vendor to learn how to configure your mobile device for push
notifications.

Configuring push notifications for application updates
Configure the Application Center services to communicate with Google or Apple
push notification servers.

Purpose

You must configure the credentials or certificates of the Application Center services
to be able to communicate with third-party push notification servers.

Configuring the server scheduler of the Application Center

The server scheduler is a background service that automatically starts and stops
with the server. This scheduler is used to empty at regular intervals a stack that is
automatically filled by administrator actions with push update messages to be sent.
The default interval between sending two batches of push update messages is
twelve hours. If this default value does not suit you, you can modify it by using
the server environment variables ibm.appcenter.push.schedule.period.amount and
ibm.appcenter.push.schedule.period.unit.

The value of ibm.appcenter.push.schedule.period.amount is an integer. The value of
ibm.appcenter.push.schedule.period.unit can be seconds, minutes, or hours. If the unit
is not specified, the amount is an interval that is expressed in hours. These
variables are used to define the elapsed time between two batches of push
messages.

Use JNDI properties to define these variables.

Important: In production, you should avoid setting the unit to seconds. The
shorter the elapsed time, the higher the load on the server; the unit expressed in
seconds is only implemented for testing and evaluation purposes. For example,
when the elapsed time is set to 10 seconds, push messages are sent almost
immediately.

See “List of JNDI properties for the Application Center” on page 6-238 for a
complete list of properties that you can set.

Example for Apache Tomcat server

Define these variables with JNDI properties in the server.xml file:
<Environment name="ibm.appcenter.push.schedule.period.unit" override="false" type="java.lang.String" value="hours"/>
<Environment name="ibm.appcenter.push.schedule.period.amount" override="false" type="java.lang.String" value="2"/>

Administering MobileFirst applications 12-77

For information about how to configure JNDI variables for WebSphere Application
Server v8.5, see Using resource environment providers in WebSphere Application
Server.

For information about how to configure JNDI variables for WebSphere Application
Server Liberty profile, see Using JNDI binding for constants from the server
configuration files.

The remaining actions for setting up the push notification service depend on the
vendor of the device where the target application is installed. See the following
topics.

Configuring the Application Center server for connection to
Google Cloud Messaging
Enable Google Cloud Messaging (GCM) for your application.

About this task

To enable Google Cloud Messaging (GCM) for an application, you must attach the
GCM services to a developer Google account with the Google API enabled. See
Getting Started with GCM for details.

Important: The Application Center client without Google Cloud Messaging: The
Application Center relies on the availability of the Google Cloud Messaging (GCM)
API. This API might not be available on devices in some territories such as China.
To support those territories, you can build a version of the Application Center
client that does not depend on the GCM API. The push notification feature does
not work on that version of the Application Center client. See “Building a version
of the mobile client that does not depend on the GCM API” on page 12-81 for
details.

Procedure
1. If you do not have the appropriate Google account, go to Create a Google

account and create one for the Application Center client.
2. Register this account by using the Google API in the Google API console.

Registration creates a new default project that you can rename. The name you
give to this GCM project is not related to your Android application package
name. When the project is created, a GCM project ID is appended to the end of
the project URL. You should record this trailing number as your project ID for
future reference.

3. Enable the GCM service for your project; in the Google API console, click the
Services tab on the left and enable the “Google Cloud Messaging for Android”
service in the list of services.

4. Make sure that a Simple API Access Server key is available for your application
communications.
a. Click the API Access vertical tab on the left of the console.
b. Create a Simple API Access Server key or, if a default key is already created,

note the details of the default key. Two other kinds of key exist that are not
of interest at this time.

c. Save the Simple API Access Server key for future use in your application
communications through GCM. The key is about 40 characters long and is
referred to as the Google API key that you will need later on the server
side.

12-78 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/developerworks/websphere/library/techarticles/0611_totapally/0611_totapally.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0611_totapally/0611_totapally.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_dep_jndi.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_dep_jndi.html
http://developer.android.com/google/gcm/gs.html
https://mail.google.com/mail/signup
https://mail.google.com/mail/signup
https://code.google.com/apis/console/

5. Enter the GCM project ID as a string resource property in the JavaScript project
of the Application Center Android client; in the IBMAppCenter/apps/AppCenter/
common/js/appcenter/config.json template file, modify this line with your
own value:
gcmProjectId:""// Google API project (project name = com.ibm.appcenter) ID needed for Android push.
// example : 123456789012

6. Register the Google API key as a JNDI property for the Application Center
server. The key name is : ibm.appcenter.gcm.signature.googleapikey. For
example, you can configure this key for an Apache Tomcat server as a JNDI
property in the server.xml file:
<Context docBase="AppCenterServices" path="/applicationcenter" reloadable="true" source="org.eclipse.jst.jee.server:AppCenterServices">
<Environment name="ibm.appcenter.gcm.signature.googleapikey" override="false" type="java.lang.String"
value="AIxaScCHg0VSGdgfOZKtzDJ44-oi0muUasMZvAs"/>
</Context>

The JNDI property must be defined in accordance with your application server
requirements.
See “List of JNDI properties for the Application Center” on page 6-238 for a
complete list of properties that you can set.

Important:

v If you use GCM with earlier versions of Android, you might need to pair
your device with an existing Google account for GCM to work effectively.
See GCM service: “It uses an existing connection for Google services. For
pre-3.0 devices, this requires users to set up their Google account on their
mobile devices. A Google account is not a requirement on devices running
Android 4.0.4 or higher.”

v You must also ensure that your firewall accepts outgoing connections to
android.googleapis.com on port 443 for push notifications to work.

Configuring the Application Center server for connection to
Apple Push Notification Services
Configure your iOS project for Apple Push Notification Services (APNs).

Before you begin

Ensure that the following servers are accessible from Application Center server.

Sandbox servers

v gateway.sandbox.push.apple.com:2195
v feedback.sandbox.push.apple.com:2196

Production servers

v gateway.push.apple.com:2195
v feedback.push.apple.com:2196

About this task

You must be a registered Apple developer to successfully configure your iOS
project with Apple Push Notification Services (APNs). In the company, the
administrative role responsible for Apple development requests APNs enablement.
The response to this request should provide you with an APNs-enabled
provisioning profile for your iOS application bundle; that is, a string value that is
defined in the configuration page of your Xcode project. This provisioning profile
is used to generate a signature certificate file.

Administering MobileFirst applications 12-79

http://developer.android.com/google/gcm/gcm.html

Two kinds of provisioning profile exist: development and production profiles,
which address development and production environments respectively.
Development profiles address Apple development APNs servers exclusively.
Production profiles address Apple production APNs servers exclusively. These
kinds of servers do not offer the same quality of service.

Procedure
1. Obtain the APNs-enabled provisioning profile for the Application Center Xcode

project. The result of your administrator's APNs enablement request is shown
as a list accessible from https://developer.apple.com/ios/my/bundles/
index.action. Each item in the list shows whether or not the profile has APNs
capabilities. When you have the profile, you can download and install it in the
Application Center client Xcode project directory by double-clicking the profile.
The profile is then automatically installed in your keystore and Xcode project.

2. If you want to test or debug the Application Center on a device by launching it
directly from XCode, in the "Xcode Organizer" window, go to the "Provisioning
Profiles" section and install the profile on your mobile device.

3. Create a signature certificate used by the Application Center services to secure
communication with the APNs server. This server will use the certificate for
purposes of signing each and every push request to the APNs server. This
signature certificate is produced from your provisioning profile.
a. Open the "Keychain Access" utility and click the My Certificates category in

the left pane.
b. Find the certificate you want to install and disclose its contents. You see

both a certificate and a private key; for the Application Center, the
certificate line contains the Application Center application bundle
com.ibm.imf.AppCenter.

c. Select File > Export Items to select both the certificate and the key and
export them as a Personal Information Exchange (.p12) file. This .p12 file
contains the private key required when the secure handshaking protocol is
involved to communicate with the APNs server.

d. Copy the .p12 certificate to the computer responsible for running the
Application Center services and install it in the appropriate place. Both the
certificate file and its password are needed to create the secure tunneling
with the APNs server. You also require some information that indicates
whether a development certificate or a production certificate is in play. A
development provisioning profile produces a development certificate and a
production profile gives a production certificate. The Application Center
services web application uses JNDI properties to reference this secure data.
The examples in the table show how the JNDI properties are defined in the
server.xml file of the Apache Tomcat server.

Table 12-104. JNDI properties

JNDI Property
Type and
description Example for Apache Tomcat server

ibm.appcenter.apns.p12.certificate.locationA string value that
defines the full
path to the .p12
certificate.

<Environment name="ibm.appcenter.apns.p12.certificate.location"
override="false" type="java.lang.String" value=
"/Users/someUser/someDirectory/apache-tomcat/conf/AppCenter_apns_dev_cert.p12"/>

ibm.appcenter.apns.p12.certificate.passwordA string value that
defines the
password needed
to access the
certificate.

<Environment name="ibm.appcenter.apns.p12.certificate.password" override="false"
type="java.lang.String"
value="this_is_a_secure_password"/>

12-80 IBM MobileFirst Platform Foundation V6.3.0

https://developer.apple.com/ios/my/bundles/index.action
https://developer.apple.com/ios/my/bundles/index.action

Table 12-104. JNDI properties (continued)

JNDI Property
Type and
description Example for Apache Tomcat server

ibm.appcenter.apns.p12.certificate.isDevelopmentCertificateA boolean value
(identified as true
or false) that
defines whether or
not the
provisioning
profile used to
generate the
authentication
certificate was a
development
certificate.

<Environment name="ibm.appcenter.apns.p12.certificate.isDevelopmentCertificate"
override="false" type="java.lang.String"
value="true"/>

See “List of JNDI properties for the Application Center” on page 6-238 for a
complete list of JNDI properties that you can set.

Building a version of the mobile client that does not depend on
the GCM API
You can remove the dependency on Google Cloud Messaging (GCM) API from the
Android version of the client to comply with constraints in some territories. Push
notifications do not work on this version of the client.

About this task

The Application Center relies on the availability of the Google Cloud Messaging
(GCM) API. This API might not be available on devices in some territories such as
China. To support those territories, you can build a version of the Application
Center client that does not depend on the GCM API. The push notification feature
does not work on that version of the Application Center client.

Procedure
1. Check that push notifications are disabled by checking that the

IBMAppCenter/apps/AppCenter/common/js/appcenter/config.json file contains
this line: "gcmProjectId": "" ,.

2. Remove from two places in the IBMAppCenter/apps/AppCenter/android/
native/AndroidManifest.xml file all the lines that are located between these
comments: <!-- AppCenter Push configuration --> and <!-- end of
AppCenter Push configuration -->.

3. Delete the IBMAppCenter/apps/AppCenter/android/native/src/com/ibm/
appcenter/GCMIntenteService.java class.

4. In Eclipse, run "Build Android Environment" in the IBMAppCenter/apps/
AppCenter/android folder.

5. Delete the IBMAppCenter/apps/AppCenter/android/native/libs/gcm.jar file that
was created by the MobileFirst plug-in when you ran the previous "Build
Android Environment" command.

6. Refresh the newly created IBMAppCenterAppCenterAndroid project, so that the
removal of the GCM library is taken into account.

7. Build the .apk file of the Application Center.

Administering MobileFirst applications 12-81

What to do next

The gcm.jar library is automatically added by the MobileFirst Eclipse plug-in each
time that the Android environment is built. Therefore, this java archive file must be
deleted from the IBMAppCenter/apps/AppCenter/android/native/libs/ directory
each time that the MobileFirst Android build process is run. Otherwise, the
gcm.jar library is present in the resulting appcenter.apk file.

The Application Center console
With the Application Center console, you can manage the repository of the
Application Center and your applications.

The Application Center console is a web application to manage the repository of
the Application Center. The Application Center repository is the central location
where you store the mobile applications that can be installed on mobile devices.

Use the Application Center console to:
v Upload applications written for these operating systems: Android, iOS,

BlackBerry OS 6 and OS 7, Windows 8 (Windows Store packages only), or
Windows Phone 8.

v Manage several different versions of mobile applications.
v Review the feedback of testers of mobile applications.
v Define the users who have the rights to list and install an application on the

mobile devices.
v Track which applications are installed on which devices.

Note:

Only users with the administrator role can log in to the Application Center
console.

Multicultural support: the user interface of the Application Center console has not
been translated.

Starting the Application Center console
You can start the Application Center with your web browser and log in if you have
the administrator role.

Procedure
1. Start a web browser session on your desktop.
2. Contact your system administrator to obtain the address and port of the server

where the Application Center is installed.
3. Enter the following URL: http://server/appcenterconsole

Where server is the address and port of the server where the Application Center
is installed.
http://localhost:9080/appcenterconsole

4. Log in to the Application Center console
Contact your system administrator to get your credentials so that you can log
in to the Application Center console.

12-82 IBM MobileFirst Platform Foundation V6.3.0

Note:

Only users with the administrator role can log in to the Application Center
console.

Troubleshooting a corrupt login page (Apache Tomcat)
You can recover from a corrupt login page of the Application Center console when
the Application Center is running in Apache Tomcat.

Symptom

When the Application Center is running in Apache Tomcat, the use of a wrong
user name or password might corrupt the login page of the Application Center
console.

When you try to log in to the console with an incorrect user name or an incorrect
password, you receive an error message. When you correct the user name or
password, instead of a successful login, you have one of the following errors; the
message depends on your web browser.
v The same error message as before
v The message “The connection was reset”
v The message “The time allowed for login exceeded”

Figure 12-13. Login of the Application Center console

Administering MobileFirst applications 12-83

Cause

The behavior is linked to the management by Apache Tomcat of the
j_security_check servlet. This behavior is specific to Apache Tomcat and does not
occur in any of the WebSphere Application Server profiles.

Solution

The workaround is to click the refresh button of the browser to refresh the web
page after a login failure. Then, enter the correct credentials.

Application Management
You can use Application Management to add new applications and versions and to
manage those applications.

The Application Center enables you to add new applications and versions and to
manage those applications.

Click Applications to access Application Management.

Application Center installed on WebSphere Application Server Liberty
profile or on Apache Tomcat

Installations of the Application Center on these application servers, during
installation of IBM MobileFirst Platform Foundation with the IBM Installation
Manager package, have two different users defined that you can use to get started.
v User with login demo and password demo
v User with login appcenteradmin and password admin

WebSphere Application Server full profile

If you installed the Application Center on WebSphere Application Server full
profile, one user named appcenteradmin is created by default with the password
indicated by the installer.

12-84 IBM MobileFirst Platform Foundation V6.3.0

Adding a mobile application
Add applications to the repository on the server by using the Application Center
console. These applications can then be installed on mobile devices by using the
mobile client.

About this task

In the Applications view, you can add applications to Application Center. Initially
the list of applications is empty and you must upload an application file.
Application files are described in this procedure.

Procedure

To add an application to make it available to be installed on mobile devices:
1. Click Add Application.
2. Click Upload.
3. Select the application file to upload to the Application Center repository.

Android

The application file extension is apk.

iOS

The application file extension is ipa for normal iOS applications.

The application file extension is zip for instrumented iOS applications
for use in IBM MobileFirst Platform Test Workbench.

BlackBerry OS 6 and OS 7

Figure 12-14. Available applications

Administering MobileFirst applications 12-85

The application file extension is zip. This archive file must contain a
file with extension jad and all related files with extension cod. If you
are using the BlackBerry Eclipse IDE for a native application, the files
are in the deliverables/Web folder. You can place the entire folder in an
archive (.zip) file.

If you are using the Ripple Environment in combination with IBM
MobileFirst Platform Studio for a hybrid application, the files are in the
OTAInstall folder. You can place the entire folder in an archive (.zip)
file.

Windows Phone 8

The application file extension is xap. The application must be signed
with a company account. The application enrollment token for this
company account must be made available to Windows Phone 8 devices
before the application can be installed on the devices. See “Application
enrollment tokens in Windows Phone 8” on page 12-107 for details.

Windows 8
The application is provided as a Windows Store package; the file
extension is appx.

Windows Store appx packages can be dependent on one or more
Windows component library app packages, also known as “framework”
packages. MobileFirst hybrid applications for Windows 8 depend on
the Microsoft.WinJS framework package. When you use Microsoft
Visual Studio to generate the application package, the dependencies
packages are also generated and packaged as separate .appx files. To
successfully install such applications by using the mobile client, you
must upload onto the Application Center server the application appx
package as well as any other dependency package. When you upload a
dependency package, it appears as inactive in the Application Center
console. This behavior is expected, so that the framework package does
not appear as an installable application in the client. Later, when a user
installs an application, the mobile client checks whether the
dependency is already installed on the device. If the dependency
package is not installed, the client will automatically retrieve the
dependency package from the Application Center server and install it
on the device. For more information about dependencies, see this topic
in the Windows developer documentation about packages and
deployment of applications, Dependencies.

4. Click Next to access the properties to complete the definition of the application.
5. Complete the properties to define the application. See Application properties

for information about how to complete property values.
6. Click Finish.

12-86 IBM MobileFirst Platform Foundation V6.3.0

http://msdn.microsoft.com/library/windows/apps/hh464929.aspx#dependencies

Adding an application from a public app store
Application Center supports adding to the catalog applications that are stored in
third-party application stores, such as Google play or Apple iTunes.

About this task

Applications from third-party app stores appear in the Application Center catalog
like any other application, but users are directed to the corresponding public app
store to install the application. You add an application from a public app store in
the console, in the same place as you add an application created within your own
enterprise. See “Adding a mobile application” on page 12-85.

Figure 12-15. Application properties, adding an application

Administering MobileFirst applications 12-87

Note: Currently, the Application Center supports only Google play and Apple
iTunes. Windows Phone Store, Windows Store, and BlackBerry App World are not
yet supported.

Instead of providing the application executable, you must provide a URL to the
third party application store where the application is stored. To make it easy to
find the correct application link, the console provides direct links in the “Add an
application” page to the supported third-party application store web sites.

The Google play store address is https://play.google.com/store/apps.

The Apple iTunes store address is https://linkmaker.itunes.apple.com/; use the
linkmaker site rather than the iTunes site, because you can search this site for all
kinds of iTunes items, including songs, podcasts, and other items supported by
Apple. Only selecting iOS applications provides you with compatible links to
create application links.

Procedure
1. Click the URL of the public app store that you want to browse.
2. Copy the URL of the application in the third-party app store to the Application

URL text field in the “Add an application” page of the Application Center
console.
v Google play:

a. Select an application in the store.
b. Click the detail page of the application.
c. Copy the address bar URL.

v Apple iTunes:
a. When the list of items is returned in the search result, select the item that

you want.
b. At the bottom of the selected application, click “Direct Link” to open the

application details page.

Note: Do not copy the “Direct Link” to the Application Center. “Direct
Link” is a URL with redirection, you will need to get the URL it redirects
to.

c. Copy the address bar URL.
3. When the application link is in the Application URL text field of the console,

click Next to validate the creation of the application link. If the validation is
successful, this action will display the application properties.
If the validation is unsuccessful, an error message will be displayed in the
“Add an application” page. You can either try another link or cancel the
attempt to create the current link.
If the validation of the application link is successful, you can modify the
application description in the application properties before performing the next
step.

12-88 IBM MobileFirst Platform Foundation V6.3.0

https://play.google.com/store/apps
https://linkmaker.itunes.apple.com/

4. Click Done to create the application link. This action makes the application
available to the corresponding version of the Application Center mobile client.
A small link icon appears on the application icon to show that this application
is stored in a public app store and is different from a binary app.

Related concepts:
Configuring WebSphere Application Server to support applications in public app
stores
Configure WebSphere Application Server full profile and Liberty profile before
access to public app stores through application links, because of the use of SSL
connections.
Related tasks:
Configuring WebSphere Application Server to support applications in Google play
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Google play.
Configuring WebSphere Application Server to support applications in Apple iTunes
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Apple iTunes.
“Installing applications through public app stores” on page 12-143
You can link from the mobile client to applications that are stored in supported
public app stores and install these applications on your compatible device by
following the normal procedure of the public app store.

Figure 12-16. Modified application description in application properties

Figure 12-17. Link to an application stored in Google play

Administering MobileFirst applications 12-89

Application properties
Applications have their own sets of properties that depend on the operating
system on the mobile device and that cannot be edited. Applications also have a
common property and editable properties.

The values of the following fields are taken from the application and you cannot
edit them.
v Package.
v Internal Version.
v Commercial Version.
v Label.
v External URL; this property is supported for applications that run on Android,

iOS, and Windows Phone 8.

Properties of Android applications
v Package is the package name of the application; package attribute of the

manifest element in the manifest file of the application. See the Android SDK
documentation.

v Internal Version is the internal version identification of the application;
android:versionCode attribute of the manifest element in the manifest file of the
application. See the Android SDK documentation.

v Commercial Version is the published version of the application.
v Label is the label of the application; android:label attribute of the application

element in the manifest file of the application. See the Android SDK
documentation.

v External URL is a URL that enables you to have the mobile client of the
Application Center launched automatically in the Details view of the latest
version of the current application.

Properties of iOS applications
v Package is the company identifier and the product name; CFBundleIdentifier

key. See the iOS SDK documentation.
v Internal Version is the build number of the application; CFBundleVersion key

of the application. See the iOS SDK documentation.
v Commercial Version is the published version of the application.
v Label is the label of the application; CFBundleDisplayName key of the application.

See the iOS SDK documentation.
v Instrumented indicates whether the uploaded application is an instrumented

application for use in IBM Mobile Test Workbench for IBM MobileFirst Platform
Foundation or a normal iOS application.

v External URL is a URL that enables you to have the mobile client of the
Application Center launched automatically in the Details view of the latest
version of the current application.

Properties of BlackBerry applications
v Package is the name of the application project; MIDlet-Name entry of the jad file.

See JSR-118 specification.
v Internal Version is the version of the application; MIDlet-Version entry of the

jad file. See JSR-118 specification.
v Commercial Version, like Internal Version, is the version of the application.

12-90 IBM MobileFirst Platform Foundation V6.3.0

v Label is the label of the application; MIDlet-l entry of the jad file. See JSR-118
specification. This property is optional. The label can be set or updated during
the import of the application to the Application Center.

v Vendor is the vendor who created this application; MIDlet-Vendor entry of the
jad file. See JSR-118 specification.

Properties of Windows Phone 8 applications
v Package is the product identifier of the application; ProductID attribute of the

App element in the manifest file of the application. See Windows Phone
documentation.

v Internal Version is the version identification of the application; Version
attribute of the App element in the manifest file of the application. See Windows
Phone documentation.

v Commercial Version, like Internal Version, is the version of the application.
v Label is the title of the application; Title attribute of the App element in the

manifest file of the application. See Windows Phone documentation.
v Vendor is the vendor who created the application; Publisher attribute of the App

element in the manifest file of the application. See Windows Phone
documentation.

v External URL is a URL that enables you to have the mobile client of the
Application Center launched automatically in the Details view of the latest
version of the current application.

v Commercial Version, like Internal Version, is the version of the application.

Properties of Windows Store applications
v Package is the product identifier of the application; Package name attribute in the

manifest file of the application. See Windows Store documentation about
application development.

v Internal Version is the version identification of the application; Version
attribute in the manifest file of the application. See Windows Store
documentation about application development.

v Commercial Version, like Internal Version, is the version of the application.
v Label is the title of the application; Package display name attribute in the

manifest file of the application. See Windows Store documentation about
application development.

v Vendor is the vendor who created the application; Publisher attribute in the
manifest file of the application. See Windows Store documentation about
application development.

Common property

Author

The Author field is read only. It displays the user name of the user who uploads
the application.

Editable properties

You can edit the following fields:

Description

Use this field to describe the application to the mobile user.

Administering MobileFirst applications 12-91

Recommended

Select Recommended to indicate that you recommend users to install this application.
Recommended applications appear in a special list of recommended applications in
the mobile client.

Installer

For the Administrator only: This property indicates that the application is used to
install other applications on the mobile device and send feedback on an application
from the mobile device to the Application Center. Usually only one application is
qualified as Installer and is called the mobile client. This application is
documented in “The mobile client” on page 12-117.

Active

Select Active to indicate that an application can be installed on a mobile device. If
you do not select Active, the mobile user will not see the application in the list of
available applications displayed on the device.

If you do not select Active, the application is inactive. In the list of available
applications in Application Management, if Show inactive is selected, the
application is disabled.

If Show inactive is not selected, the application does not appear in the list of
available applications.

Ready for production

Select Ready for production to indicate that an application can be managed by the
application store of Tivoli Endpoint Manager. Applications with this property
selected are the only ones that are flagged to Tivoli Endpoint Manager. The
property Ready for production indicates that an application is ready to be
deployed in a production environment and is therefore suitable to be managed by
Tivoli Endpoint Manager through its application store.

Editing application properties
You can edit the properties of an application in the list of uploaded applications.

Procedure

To edit the properties of an uploaded application:
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Click the version of the application to edit the properties: Application Details.
3. Edit any of the editable properties that you want. See “Application properties”

on page 12-90 for details about these properties. The name of the current
application file is shown below the properties.
Important: If you want to update the file, it must belong to the same package
and be the same version number. If either of these properties is not the same
you must go back to the application list and add the new version first.

4. Click OK to save your changes and return to Available Applications or Apply
to save and keep Application Details open.

12-92 IBM MobileFirst Platform Foundation V6.3.0

Figure 12-18. Application properties for editing

Administering MobileFirst applications 12-93

Upgrading a mobile application in MobileFirst Server and the
Application Center
You can easily upgrade deployed mobile applications by using a combination of
MobileFirst Operations Console and the Application Center.

Before you begin

The mobile client of the Application Center must be installed on the mobile device.
The HelloWorld application must be installed on the mobile device and must
connect to MobileFirst Server when the application is running. See “Connecting to
MobileFirst Server” on page 8-145.

About this task

You can use this procedure to update Android, iOS, and Windows Phone
applications that have been deployed on MobileFirst Server and also in the
Application Center. In this task, the application HelloWorld version 1.0 is already
deployed on MobileFirst Server and in the Application Center.

Procedure

HelloWorld version 2.0 is released and you would like users of version 1.0 to
upgrade to the later version. To deploy the new version of the application:
1. Deploy HelloWorld 2.0 in the Application Center. See “Adding a mobile

application” on page 12-85.
2. From the Application Details page, copy the setting of the external URL.

3. When the external URL is copied to the clipboard, open the MobileFirst
Operations Console.

4. Change the access rule of HelloWorld version 1.0 to “Access Disabled”.
5. Paste the external URL into the URL field.
Running the client: When a mobile device connects to MobileFirst Server to try to
run HelloWorld version 1.0, the device user is requested to upgrade the version of

Figure 12-19. Copying the external URL from Application Details

12-94 IBM MobileFirst Platform Foundation V6.3.0

the application.

Figure 12-20. Remotely disabling an old version of an application

Administering MobileFirst applications 12-95

6. Click Upgrade to open the Application Center client. When the login details are
correctly completed, you access the Details page of HelloWorld version 2.0
directly.

12-96 IBM MobileFirst Platform Foundation V6.3.0

Figure 12-21. Details of HelloWorld 2.0 in the Application Center client

Administering MobileFirst applications 12-97

Downloading an application file
You can download the file of an application registered in the Application Center.

Procedure
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Tap the version of the application under Application Details.
3. Tap the file name in the "Application File" section.

Viewing application reviews
In the Application Center console, you can see reviews about mobile application
versions sent by users.

About this task

Users of mobile applications can write a review, which includes a rating and a
comment, and submit the review through the Application Center client. Reviews
are available in the Application Center console and the client. Individual reviews
are always associated with a particular version of an application.

Procedure

To view reviews from mobile users or testers about an application version:
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Select the version of the application.
3. In the menu, select Reviews.

12-98 IBM MobileFirst Platform Foundation V6.3.0

The rating is an average of the ratings in all recorded reviews. It consists of one
to five stars, where one star represents the lowest level of appreciation and five
stars represent the highest level of appreciation. The client cannot send a zero
star rating.
The average rating gives an indication of how the application satisfies the
intended use of the application.

4. Click the two arrow heads

on the right to expand the comment that is part
of the review and to view the details of the mobile device where the review is
generated.
For example, the comment can give the reason for submitting the review, such
as failure to install.
If you want to delete the review, click the trash can on the right.

User and group management
You can use users and groups to define who has access to some features of the
Application Center, such as installing applications on mobile devices.

Purpose

Use users and groups in the definition of access control lists (ACL).

Managing registered users

To manage registered users, click the Users/Groups tab and select Registered
users. You obtain a list of registered users of the Application Center that includes:

Figure 12-22. Reviews of application versions

Administering MobileFirst applications 12-99

v Mobile client users
v Console users
v Local group members
v Members of an access control list

If the Application Center is connected to an LDAP repository, you cannot edit the
user display names. If the repository is not LDAP, you can change a user display
name by selecting it and editing it.

To register new users, click Register User, enter the login name and the display
name, and click OK.

To unregister a user, click the trash icon next to the user name.

Unregistering a user from the Application Center has the effect of:
v Removing feedback given by the user
v Removing the user from the access control lists
v Removing the user from local groups

Note:

When you unregister a user, the user is not removed from the application server or
the LDAP repository.

Managing local groups

To manage local groups, click the Users/Groups tab and select User group.

Figure 12-23. List of registered users of the Application Center

12-100 IBM MobileFirst Platform Foundation V6.3.0

To create a local group, click Create group. Enter the name of the new group and
click OK.

If the Application Center is connected to an LDAP repository, the search includes
local groups as well as the groups defined in the LDAP repository. If the repository
is not LDAP, only local groups are available to the search.

To delete a group, click the trash icon next to the group name. The group is also
removed from the access control lists.

To add or remove members of a group, click the Edit members link of the group.

Figure 12-24. Local user groups

Administering MobileFirst applications 12-101

To add a new member, search for the user by entering the user display name,
select the user, and click Add.

If the Application Center is connected to an LDAP repository, the search for the
user is performed in the LDAP repository. If the repository is not LDAP, the search
is performed in the list of registered users.

To remove a member from a group, click the cross on the right of the user name.

Access control
You can decide whether installation of an application on mobile devices is open to
any users or whether you want to restrict the ability to install an application.

Installation of applications on a mobile device can be limited to specific users or
available to any users.

Access control is defined at the application level and not at the version level.

By default, after an application is uploaded, any user has the right to install the
application on a mobile device.

The current access control for an application is displayed in Available Applications
for each application. The unrestricted or restricted access status for installation is
shown as a link to the page for editing access control.

Installation rights are only about the installation of the application on the mobile
device. If access control is not enabled, everybody has access to the application.

Managing access control
You can add or remove access for users or groups to install an application on
mobile devices.

Figure 12-25. Managing group membership

12-102 IBM MobileFirst Platform Foundation V6.3.0

Procedure

You can edit access control:
1. In Application Management under Available Applications, click the unrestricted

or restricted state of Installation of an application.

2. Select Access control enabled to enable access control.
3. Add users or groups to the access list.

To add a single user or group, enter a name, select the entry in the matching
entries found, and click Add.
If the Application Center is connected to an LDAP repository, you can search
for users and groups in the repository as well as locally defined groups. If the
repository is not LDAP, you can search only local groups and registered users.
Local groups are exclusively defined in the Users/Groups tab. When you use
the Liberty profile federated registry, you can only search for users by using the
login name; the result is limited to a maximum of 15 users and 15 groups
(instead of 50 users and 50 groups).
To register a user at the same time as you add the user to the access list, enter
the name and click Add. Then you must specify the login name and the
display name of the user.
To add all the users of an application, click Add users from application and
select the appropriate application.

Administering MobileFirst applications 12-103

To remove access from a user or group, click the cross on the right of the name.

Device Management
You can see the devices that connected to the Application Center from the
Application Center mobile client and their properties.

Device Management shows under the Registered Devices the list of devices that
have connected to the Application Center at least once from the Application Center
mobile client.

Figure 12-26. Adding users to the access list

12-104 IBM MobileFirst Platform Foundation V6.3.0

Device properties

Click a device in the list of devices to view the properties of the device or the
applications installed on that device.

Figure 12-27. The device list

Administering MobileFirst applications 12-105

Select Properties to view the device properties.

Name

The name of the device. You can edit this property.

Note: on iOS, the user can define this name in the settings of the device in
Settings > General > Information > Name. The same name is displayed on
iTunes.

User Name

The name of the first user who logged into the device.

Manufacturer

The manufacturer of the device.

Model

The model identifier.

Operating System

Figure 12-28. Device properties

12-106 IBM MobileFirst Platform Foundation V6.3.0

The operating system of the mobile device.

Unique identifier

The unique identifier of the mobile device.

If you edit the device name, click OK to save the name and return to Registered
Devices or Apply to save and keep Edit Device Properties open.

Applications installed on device

Select Applications installed on device to list all the applications installed on the
device.

Application enrollment tokens in Windows Phone 8
The Windows Phone 8 operating system requires users to enroll each device with
the company before users can install company applications on their devices. One
way to enroll devices is by using an application enrollment token.

Purpose

Application enrollment tokens enable you to install company applications on a
Windows Phone 8 device. You must first install the enrollment token for a
specified company on the device to enroll the device with the company. Then, you
can install applications that are created and signed by the corresponding company.

The Application Center simplifies the delivery of the enrollment token. In your role
of administrator of the Application Center catalog, you can manage the enrollment

Figure 12-29. Applications installed on a device

Administering MobileFirst applications 12-107

tokens from the Application Center console. Once the enrollment tokens are
declared in the Application Center console, they are available for Application
Center users to enroll their devices.

The enrollment tokens interface available from the Application Center console in
the Settings view enables you to manage application enrollment tokens for
Windows Phone 8 by registering, updating, or deleting them.

Managing application enrollment tokens

In your role of administrator of the Application Center, you can access the list of
registered tokens by clicking the gear icon in the screen header to display
Application Center Settings. Then, select Enrollment Tokens to display the list of
registered tokens.

To enroll a device, the device user must upload and install the token file before
installing the Application Center mobile client. The mobile client is also a company
application. Therefore, the device must be enrolled before the mobile client can be
installed.

The registered tokens are available through the bootstrap page at
http://hostname:portnumber/applicationcenter/installers.html, where hostname
is the host name of the server hosting the Application Center and portnumber is the
corresponding port number.

To register a token in the Application Center console, click Upload Token and
select a token file. The token file extension is aetx.

To update the certificate subject of a token, select the token name in the list, change
the value, and click OK.

To delete a token, click the trash can icon on the right side of the token in the list.

Signing out of the Application Center console
For security purposes, you must sign out of the console when you have finished
your administrative tasks.

Purpose

To log out of the secure sign-on to the Application Center console..

To sign out of the Application Center console, click Sign out next to the Welcome
message that is displayed in the banner of every page.

Command-line tool for uploading or deleting an application
To deploy applications to the Application Center through a build process, use the
command-line tool.

You can upload an application to the Application Center by using the web
interface of the Application Center console. You can also upload a new application
by using a command-line tool.

This is particularly useful when you want to incorporate the deployment of an
application to the Application Center into a build process. This tool is located at:

installDir/ApplicationCenter/tools/applicationcenterdeploytool.jar

12-108 IBM MobileFirst Platform Foundation V6.3.0

The tool can be used for application files with extension APK or IPA. It can be
used stand alone or as an ant task.

The tools directory contains all the files required to support the use of the tool.
v applicationcenterdeploytool.jar: the upload tool.
v json4j.jar: the library for the JSON format required by the upload tool.
v build.xml: a sample ant script that you can use to upload a single file or a

sequence of files to the Application Center.
v acdeploytool.sh and acdeploytool.bat: Simple scripts to call java with

applicationcenterdeploytool.jar.

Using the stand-alone tool to upload an application
To upload an application, call the stand-alone tool from the command line.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload [options] [files]

You can pass any of the available options in the command line.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

-d description The description of the
application to be uploaded.

-l label The fallback label. Normally
the label is taken from the
application descriptor stored
in the file to be uploaded. If
the application descriptor
does not contain a label, the
fallback label is used.

-isActive true or false The application is stored in
the Application Center as an
active or inactive application.

-isInstaller true or false The application is stored in
the Application Center with
the “installer” flag set
appropriately.

-isReadyForProduction true or false The application is stored in
the Application Center with
the “ready-for-production”
flag set appropriately.

Administering MobileFirst applications 12-109

Option Content indicated by Description

-isRecommended true or false The application is stored in
the Application Center with
the “recommended” flag set
appropriately.

-e Shows the full exception
stack trace on failure.

-f Force uploading of
applications, even if they
exist already.

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

The files parameter can specify files of type Android application package
(.apk) files or iOS application (.ipa) files.
In this example user demo has the password demopassword. Use this command
line.
java com.ibm.appcenter.Upload -s http://localhost:9080 -c applicationcenter -u demo -p demopassword -f app1.apk app2.ipa

Using the stand-alone tool to delete an application
To delete an application from the Application Center, call the stand-alone tool from
the command line.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload -delete [options] [files or applications]

You can pass any of the available options in the command line.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

12-110 IBM MobileFirst Platform Foundation V6.3.0

Option Content indicated by Description

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

You can specify files or the application package, operating system, and version.
If files are specified, the package, operating system and version are determined
from the file and the corresponding application is deleted from the Application
Center. If applications are specified, they must have one of the following
formats:
package@os@version: This exact version is deleted from the Application Center.
The version part must specify the “internal version”, not the “commercial
version” of the application.
package@os: All versions of this application are deleted from the Application
Center.
package: All versions of all operating systems of this application are deleted
from the Application Center.

Example

In this example, user demo has the password demopassword. Use this command line
to delete the Android application demo.HelloWorld with internal version 3.
java com.ibm.appcenter.Upload -delete -s http://localhost:9080 -c applicationcenter -u demo -p demopassword demo.HelloWorld@Android@3

Using the stand-alone tool to clear the LDAP cache
Use the stand-alone tool to clear the LDAP cache and make changes to LDAP users
and groups visible immediately in the Application Center.

About this task

When the Application Center is configured with LDAP, changes to users and
groups on the LDAP server become visible to the Application Center after a delay.
The Application Center maintains a cache of LDAP data and the changes only
become visible after the cache expires. By default, the delay is 24 hours. If you do
not want to wait for this delay to expire after changes to users or groups, you can
call the stand-alone tool from the command line to clear the cache of LDAP data.
By using the stand-alone tool to clear the cache, the changes become visible
immediately.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload -clearLdapCache [options]

You can pass any of the available options in the command line.

Administering MobileFirst applications 12-111

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

Example

In this example, user demo has the password demopassword.
java com.ibm.appcenter.Upload -clearLdapCache -s http://localhost:9080 -c applicationcenter -u demo -p demopassword

Ant task for uploading or deleting an application
You can use the upload and delete tools as an Ant task and use the Ant task in
your own Ant script.

Apache Ant is required to run these tasks. The minimum supported version of
Apache Ant is listed in “System requirements for using IBM MobileFirst Platform
Foundation” on page 2-12.

For convenience, Apache Ant 1.8.4 is included in IBM MobileFirst Platform Server.
In the product_install_dir/shortcuts/ directory, the following scripts are
provided:
v ant for UNIX / Linux
v ant.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

When you use the upload tool as an Ant task, the classname value of the upload
Ant task is com.ibm.appcenter.ant.UploadApps. The classname value of the delete
Ant task is com.ibm.appcenter.ant.DeleteApps.

Parameters of
Ant task Description

serverPath To connect to the Application Center. The default value is
http://localhost:9080.

context The context of the Application Center. The default value is
/applicationcenter.

loginUser The user name with permissions to upload an application.

12-112 IBM MobileFirst Platform Foundation V6.3.0

Parameters of
Ant task Description

loginPass The password of the user with permissions to upload an application.

forceOverwrite If set to true, the Ant task attempts to overwrite applications in the
Application Center when it uploads an application that is already
present. This parameter is available only in the upload Ant task.

file The .apk or .ipa file to be uploaded to the Application Center or to be
deleted from the Application Center. This parameter has no default
value.

fileset To upload or delete multiple files.

application The package name of the application; this parameter is available only in
the delete Ant task.

os The operating system of the application. (For example, Android, iOS, or
BlackBerry.) This parameter is available only in the delete Ant task.

version The internal version of the application; this parameter is available only
in the delete Ant task. Do not use the commercial version here, because
the commercial version is unsuitable to identify the version exactly.

Example

You can find an extended example in the ApplicationCenter/tools/build.xml
directory.

The following example shows how to use the Ant task in your own Ant script.
<?xml version="1.0" encoding="UTF-8"?>
<project name="PureMeapAntDeployTask" basedir="." default="upload.AllApps">

<property name="install.dir" value="../../" />
<property name="workspace.root" value="../../" />

<!-- Server Properties -->
<property name="server.path" value="http://localhost:9080/" />
<property name="context.path" value="applicationcenter" />
<property name="upload.file" value="" />
<property name="force" value="true" />

<!-- Authentication Properties -->
<property name="login.user" value="appcenteradmin" />
<property name="login.pass" value="admin" />
<path id="classpath.run">
<fileset dir="${install.dir}/ApplicationCenter/tools/">
<include name="applicationcenterdeploytool.jar" />
<include name="json4j.jar"/>

</fileset>
</path>
<target name="upload.init">
<taskdef name="uploadapps" classname="com.ibm.appcenter.ant.UploadApps">
<classpath refid="classpath.run" />

</taskdef>
</target>
<target name="upload.App" description="Uploads a single application" depends="upload.init">
<uploadapps serverPath="${server.path}"
context="${context.path}"
loginUser="${login.user}"
loginPass="${login.pass}"
forceOverwrite="${force}"
file="${upload.file}" />

</target>
<target name="upload.AllApps" description="Uploads all found APK and IPA files" depends="upload.init">
<uploadapps serverPath="${server.path}"
loginUser="${login.user}"
loginPass="${login.pass}"
forceOverwrite="${force}"
context="${context.path}" >
<fileset dir="${workspace.root}">

<include name="**/*.ipa" />
<include name="**/*.apk" />

</fileset>
</uploadapps>

</target>
</project>

Administering MobileFirst applications 12-113

This sample Ant script is in the tools directory. You can use it to upload a single
application to the Application Center.
ant upload.App -Dupload.file=sample.apk

You can also use it to upload all applications that are found in a directory
hierarchy.
ant upload.AllApps -Dworkspace.root=myDirectory

Properties of the sample Ant script

Property Comment

install.dir Defaults to ../../

server.path The default value is http://localhost:9080.

context.path The default value is applicationcenter.

upload.file This property has no default value. It must include the exact file path.

workspace.root Defaults to ../../

login.user The default value is appcenteradmin.

login.pass The default value is admin.

force The default value is true.

To specify these parameters by command line when you call Ant, add -D before
the property name. For example:
-Dserver.path=http://localhost:8888/

Publishing MobileFirst applications to the Application Center
You can use the application management plug-in to publish native applications to
the Application Center.

About this task

You can deploy applications for Android, iOS, Windows Phone, Windows 8
(Windows Store applications only), and BlackBerry operating systems to the
Application Center directly from the MobileFirst Studio IDE. In MobileFirst Studio,
you can deploy Android application package (.apk) files, iOS application (.ipa)
files, Windows Phone application (.xap) files, Windows Store application package
(.appx) files, and BlackBerry (.zip) files that you choose from your file system. You
can right-click an application (.apk, .ipa, .xap, .appx, or .zip) file to deploy it to
the Application Center.

Procedure

To publish an application to the Application Center, complete the following steps:
1. Specify the publish preferences for the Application Center:

a. In the main menu, click Window > Preferences.
b. Expand IBM Application Center > Publish Preferences.

12-114 IBM MobileFirst Platform Foundation V6.3.0

c. Specify the default publish preference settings for the Application Center:

Preference Description

Credentials Specify the login and password required to
access the application repository.

Application Center Server Specify the URL of the application center
server to use when publishing applications.

2. Publish an application (.apk, .ipa, .xap, .appx, or .zip file) from a MobileFirst
project:
a. Right-click the application and click IBM Application Center > Publish on

IBM Application Center. The Publish Confirm dialog opens.

b. In the Publish Confirm dialog, choose one of the following options:

Administering MobileFirst applications 12-115

Option Description

Publish the application by using the current
preferences.

Click Publish.

Change any of the preferences before
publishing the application.

Click Preferences to open the Publish
Preferences page and edit the preference
settings.

You receive confirmation when publication is successful.

If the application already exists, publication will fail. You are given the
option to overwrite the existing version of the application.

Tip: To publish an application that is not part of the MobileFirst project:
1) Right-click the MobileFirst project and click IBM Application Center >

Publish on IBM Application Center. The Select Application to Publish
window opens.

12-116 IBM MobileFirst Platform Foundation V6.3.0

2) Navigate to the application (.apk, .ipa, .xap, .appx, or .zip) file that
you want to publish and click Open to open the Publish Confirm
dialog.

The mobile client
You can install applications on your mobile device with the Application Center
mobile client.

The Application Center mobile client is the application that runs on your Android,
iOS, Windows Phone, Windows, or BlackBerry device. (Only Windows Phone 8
and BlackBerry OS 6 and OS 7 are supported by the current version of the
Application Center.) You use the mobile client to list the catalog of available
applications in the Application Center. You can install these applications on your
device. The mobile client is sometimes referred to as the Application Center
installer. This application must be present on your device if you want to install on
your device applications from your private application repository.

Prerequisites

Your system administrator must give you a user name and password before you
can download and install the mobile client. The user name and password are
required whenever you start the mobile client on your device. For Windows Store
applications, the user name and password are required for the mobile client only at
run time. For security reasons, do not disseminate these credentials. These
credentials are the same credentials used to log in to the Application Center
console.

Installing the client on an Android mobile device
You can install the mobile client, or any signed application marked with the
installer flag, on your Android mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

Administering MobileFirst applications 12-117

Procedure
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/applicationcenter/installers.html

Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the client
on a mobile device: http://hostname:portnumber/applicationcenter/inst.html.
The page of this URL works better with some older or some nonstandard
mobile web browsers. If the page installers.html does not work on your
mobile device, you can use inst.html. This page is provided in English only
and is not translated into other languages.

The Android browser is not able to run pages when SSL communication and
self-signed certificates are used. In this case, you must use a non self-signed
certificate or use another browser on the Android device, such as Firefox, Chrome,
or Opera.
3. Enter your user name and password. See Prerequisites in “The mobile client”

on page 12-117.
When your user name and password are validated, the list of compatible
installer applications for your device is displayed in the browser. Normally,
only one application, the mobile client, appears in this list.

Before you can see the mobile client in the list of available applications, the
Application Center administrator must install the mobile client application. The
administrator uploads the mobile client to the Application Center and sets the
Installer property to true. See “Application properties” on page 12-90.

4. Select an item in the list to display the application details.
Typically, these details include the application name and its version number.

Figure 12-30. List of available mobile client applications to install

12-118 IBM MobileFirst Platform Foundation V6.3.0

5. Tap Install Now to download the mobile client.
6. Launch the Android Download applications.
7. Select the Application Center client installer.

You can see the access granted to the application when you choose to install it.

8. Select Install to install the mobile client.
9. When the application is installed, select Open to open the mobile client or

Done to close the Downloads application.

Figure 12-31. Application details

Figure 12-32. Installation of the mobile client on Android

Administering MobileFirst applications 12-119

Installing the client on an iOS mobile device
You can install the mobile client, or any signed application marked with the
installer flag, on your iOS mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

Before you begin

Important: To install applications on iOS devices, you must first configure the
Application Center server with SSL. See “Configuring Secure Sockets Layer (SSL)”
on page 6-235.

▌For experts▐

The ibm.appcenter.ios.plist.onetimeurl JNDI property of the IBM Application
Center Services controls whether One-Time URLs are used when the mobile client
is installed on an iOS mobile device. Set this property to false for maximal
security. When you set this property to false, users must enter their credentials
several times when they install the mobile client: once when they select the client
and once when they install the client.

When you set the property to true, users enter their credentials only once. A
temporary download URL with a cryptographic hash is generated when the user
enters the credentials. This temporary download URL is valid for one hour and
does not require additional authentication. This solution is a compromise between
security and ergonomy.

The steps to specify the ibm.appcenter.ios.plist.onetimeurl JNDI property are
similar to the steps for the ibm.appcenter.proxy.host property. See “Defining the
endpoint of the application resources” on page 6-230.

Procedure

Installing the mobile client on an iOS device is similar to installing it on Android,
but with some differences. The installer is automatically launched directly after
download. Your user name and password credentials are requested for almost all
the installation steps.
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/applicationcenter/installers.html

Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the client
on a mobile device: http://hostname:portnumber/applicationcenter/inst.html.
The page of this URL works better with some older or some nonstandard
mobile web browsers. If the page installers.html does not work on your
mobile device, you can use inst.html. This page is provided in English only
and is not translated into other languages.

3. Select an item in the list of available applications to display the application
details.

4. Tap Install Now to download the mobile client.
5. Enter your credentials to authorize the downloader transaction.
6. To authorize the download, tap Install.

12-120 IBM MobileFirst Platform Foundation V6.3.0

7. Enter your credentials to authorize the installation.
If you entered valid credentials, the browser will close and you can watch the
download progress.
Installing an application on a device requires a provisioning profile that enables
the application to be installed on the selected device. If you accidentally try to
install an application that is not valid for your device, iOS version 6 or earlier
gives an error message. Some versions of iOS 7 might try to install the
application in an endless loop without ever succeeding or indicating any error.
The application icon that shows the progress of the installation appears on the
home screen, but, because of the endless loop, it is difficult to delete this
application icon to stop the endless loop. A workaround is to put the device
into Airplane mode. In this mode, the endless loop is stopped and you can
delete the application icon by following the normal steps to delete apps on iOS
devices.

Installing the client on a BlackBerry mobile device
You can install the mobile client, or any signed application marked with the
installer flag, on your BlackBerry mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

Figure 12-33. Confirm app to be installed

Administering MobileFirst applications 12-121

Procedure

The installer is automatically launched directly after download. Your user name
and password credentials are requested for almost all the installation steps.
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/applicationcenter/installers.html.
Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the client
on a mobile device: http://hostname:portnumber/applicationcenter/inst.html.
The page of this URL works better with some older or some nonstandard
mobile web browsers. If the page installers.html does not work on your
mobile device, you can use inst.html. This page is provided in English only
and is not translated into other languages.

3. Enter your credentials to authorize access to the server.
4. Select an item in the list of available applications to display the application

details.
5. Tap Install Now to download the mobile client.
6. In the BlackBerry Over The Air Installation Screen, tap Download to complete

the installation.

Note: BlackBerry OS 10 is not supported by the current version of the
Application Center.

Installing the client on Windows Phone 8
You can install the mobile client, or any signed application marked with the
installer flag, on Windows Phone 8 by entering the access URL in your browser,
entering your credentials, and completing the required steps. The company account
must be preinstalled on your mobile device.

Before you begin

Before you can install apps published by your company, you must add the
company account to your mobile device. You must download an application

Figure 12-34. The installer in the BlackBerry browser

12-122 IBM MobileFirst Platform Foundation V6.3.0

enrollment token (AET) to your Windows Phone device. This AET must already be
present on the IBM MobileFirst Platform Server. It is uploaded to the MobileFirst
Server by using the Application Center console. See “Application enrollment
tokens in Windows Phone 8” on page 12-107 for details.

Procedure
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/applicationcenter/installers.html.
Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the
client on a mobile device: http://hostname:portnumber/applicationcenter/
inst.html. The page of this URL works better with some older or some
nonstandard mobile web browsers. If the page installers.html does not
work on your mobile device, you can use inst.html. This page is provided in
English only and is not translated into other languages.

3. Enter your credentials to authorize access to the server.
In the lower part of the screen, a toolbar contains Installers tab and Tokens
tab.

4. Tap Tokens and select an application enrollment token in the list of available
tokens to display the token details.

Figure 12-35. Preparing to install tokens and applications on a Windows Phone device

Administering MobileFirst applications 12-123

5. Tap Add to download the application enrollment token.
6. Tap Add to add the company account.

Windows Phone 8 does not provide any feedback about adding the company
account.

7. Tap the Back icon to return to the details of application enrollment tokens.

Figure 12-36. AET details on a Windows Phone device

Figure 12-37. Adding a company account in Windows Phone 8

12-124 IBM MobileFirst Platform Foundation V6.3.0

8. Tap Installers and select the mobile client application in the list of available
applications. The application details are displayed.

9. Tap Install to download the selected application.

10. Tap Install to install the application.

Windows Phone 8 does not provide any feedback about installing the
application.

Tip: When you install a company application on a device, the device must
connect to the Microsoft server to verify the application signature. Sometimes,
the Microsoft server does not respond. In this case, you can try the installation
again a few minutes later. See “Installing an application on a Windows Phone
device” on page 12-135 for the possible error messages.

Results

When the installation is finished, the mobile client application should be available
in your applications list in Windows Phone.

The Login view
In the Login view, you can access the fields that are required to connect to the
server to view the list of applications available for your device.

Use the Login view to enter your credentials to connect to the Application Center
server to view the list of applications available for your device.

The Login view presents all the mandatory fields for the information required to
connect to the server.

When the application is started the Login page is displayed. The login credentials
are required to connect to the server.

Figure 12-38. The application selected to download on a Windows Phone device

Figure 12-39. Installing the downloaded application on a Windows Phone device

Administering MobileFirst applications 12-125

On iOS devices, the credentials are saved in the keychain. After you successfully
log in to the Application Center server, when you start the application
subsequently, the login page is not displayed and the previous credentials are
used. If the login cannot be performed, the login view is displayed.

User name and password
Enter your credentials for access to the server. These are the same user
name and password granted by your system administrator for
downloading and installing the mobile client.

Application Center server address
The Application Center server address is composed of:
v Host name or IP address.
v Port, which is optional if the default port is used.
v Context, which is optional if the Application Center is installed at the

root of the server.

On a phone, a field is available for each part of the address.

On a tablet, a single field that contains a preformatted example address is
displayed. Use it as a model for entering the correct server address to
avoid formatting errors. See “Preparations for using the mobile client” on
page 12-68 for information on filling parts of the address in advance, or
hardcode the address and hide the associated fields.

Secure Socket Layer (SSL)
SSL is mandatory on iOS devices. Therefore, this option is not displayed in
the login view.

On the other supported operating systems, select SSL to turn on the SSL
protocol for communications over the network. (Tapping this field again
when SSL is selected switches SSL off.)

SSL selection is available for cases where the Application Center server is
configured to run over an SSL connection. Selecting SSL when the server is
not configured to handle an SSL layer prevents you from connecting to the
server. Your system administrator can inform you whether the Application
Center runs over an SSL connection.

Complex input on BlackBerry devices
If you have non-Latin characters to enter in the text field, such as Chinese
and Japanese user names, select Complex input on a BlackBerry device.
Selecting Complex input switches to the BlackBerry complex input mode
in all text fields of the application.

12-126 IBM MobileFirst Platform Foundation V6.3.0

Connecting to the server

To connect to the server:
1. Enter your user name and password.
2. Enter your Application Center server address.
3. If your configuration of the Application Center runs over the SSL protocol,

select SSL.
4. Tap Log in to connect to the server.

If this login is successful, the user name and server address are saved to fill the
fields when you subsequently start the client.

Views in the Application Center client
The client provides views that are adapted to the various tasks that you want to
perform.

After a successful login, you can choose among these views.

Figure 12-40. Login view on BlackBerry devices

Figure 12-41. Views in the client application (Android, iOS, and Windows Phone operating systems)

Administering MobileFirst applications 12-127

These views enable you to communicate with a server to send or retrieve
information about applications or to manage the applications located on your
device.

The Windows 8 client home screen displays up to six applications in each category.
On the Windows 8 client, if you want the full list of applications in a category,
click the title of the category.

Here are descriptions of the different views.

Catalog

This view shows the applications that can be installed on a device.

Favorites

This view shows the list of applications that you marked as favorites.

Installed on BlackBerry version.

Figure 12-42. Views in the client application (BlackBerry devices)

Figure 12-43. Client home screen on Windows 8

12-128 IBM MobileFirst Platform Foundation V6.3.0

This view shows the applications installed on your mobile device. This view is not
available on Android, iOS, Windows Phone, or Windows 8 versions of the client.

Updates

This view shows all applications that you marked as favorite apps and that have a
later version available in Application Center than the version, if any, installed on
the device.

When you first start the mobile client, it opens the Login view for you to enter
your user name, password, and the address of the Application Center server. This
information is mandatory.

Displays on different device types

The layout of the views is specific to the Android, iOS, Windows Phone, Windows
8, or BlackBerry environment, even though the common functions that you can
perform in the views are the same for all operating systems. Different device types
might have quite different page displays. On the phone, a list is displayed. On a
tablet, a grid of applications is used.

Administering MobileFirst applications 12-129

Features of the views

On an Android or iOS tablet, you can sort the lists by tapping one of the sort
criteria.

Figure 12-44. Catalog view on a phone

Figure 12-45. Catalog view on a tablet

12-130 IBM MobileFirst Platform Foundation V6.3.0

On a Windows Phone, an Android, iOS, or BlackBerry phone, sort criteria are

available through the sort button.

On BlackBerry devices, if the list of applications is too long, you can use the search
field to find an application that contains the search string it its name.

On the Windows 8 client, you can sort the list of applications within a category. To
sort the applications, select from the list of sort criteria in the “Sort By” field.

Applications that are marked as favorites are indicated by a star superposed on the
application icon.

The average rating of the latest version of an application is shown by using a
number of stars and the number of ratings received. See “Preparations for using
the mobile client” on page 12-68 for how to show the rating of all versions of the
application instead of the latest version only.

Tapping an application in the list navigates to the Details view of the latest
installed version of this application.

To refresh the view, tap the refresh button:

or, on Windows 8,

.

To return to the login page:

v In Android, iOS, and Windows Phone applications, tap the logout button.
v In the Windows 8 version of the client, tap the logout button.

v In the BlackBerry version of the client, tap the return button.

Then tap
Log out/Change User.

The Details view

Tapping an application in the Catalog, Favorites, or Updates view navigates to the
Details view where you can see details of the application properties. Details of the
application version are displayed in this view.

On Android, iOS, Windows Phone, and BlackBerry clients, the following details of
the application version are displayed:

Administering MobileFirst applications 12-131

v The name of the application.
v Commercial version: the published version of the application.
v Internal version: on Android, the internal version identification of the

application; on iOS, the build number of the application; on BlackBerry, the
version of the application and the same as the commercial version. See
“Application properties” on page 12-90 for technical details concerning this
property on all operating systems.

v Update date.
v Approximate size of the application file.
v Rating of the version and number of ratings received.
v Description of the application.

On Windows 8 client the following details of the application version are displayed:
v Application name.
v Version.
v Vendor name.
v Update date.
v Rating of the version and the number of ratings received.
v Existing reviews of either the current version or of all the versions of the current

application.

You can perform several actions in this view.
v Install, upgrade, downgrade, or uninstall an application version.
v Cancel the current operation in progress (if available).
v Rate the application version if it is installed on the device.
v List the reviews of the this version or of all versions of the application.
v Show details of a previous version.
v Mark or unmark the application as a favorite app.
v Refresh the view with the latest changes from the Application Center server.

Installing an application on an Android device
From the Details view, you can install an application on your Android device.

About this task

In the Details view, if a previous version of the application is not installed, you
can install this application version on your Android device.

12-132 IBM MobileFirst Platform Foundation V6.3.0

Procedure
1. In the Details view, tap Install.

The application is downloaded. You can tap Cancel in the Details view at any
time during the download to cancel the download. (The Cancel button appears
only during the installation steps.) If you let the download complete, you will
see the rights that are granted to the application.

2. Tap Install to confirm installation of the application or Cancel to cancel
installation..
Depending on the action taken, the application is installed or not. When the
application is successfully installed, it is also marked as a favorite app.

Figure 12-46. Details view of an app version shown on your Android device

Figure 12-47. Application rights on your Android device

Administering MobileFirst applications 12-133

If you selected Cancel, in the application rights confirmation panel, you can tap
Cancel in the Details view at any time to notify the application that the
installation has been canceled. The Cancel button appears in the Details view
only during the installation steps.

Installing an application on an iOS device
From the Details view, you can install an application version on your iOS mobile
device.

About this task

Important: To install applications on iOS devices, you must first configure the
Application Center server with SSL. See “Configuring Secure Sockets Layer (SSL)”
on page 6-235.

Procedure
1. In the Details view, tap Install. You are requested to confirm the download and

installation of the application version.
2. Tap Install to confirm download and installation of the application version or

Cancel to cancel the installation.

Figure 12-48. Details view of an app version shown on your iOS device

12-134 IBM MobileFirst Platform Foundation V6.3.0

Depending on the action taken, the application is installed or not. When the
application is successfully installed, it is also marked as a favorite app.
Installing an application on a device requires a provisioning profile that enables
the application to be installed on the selected device. If you accidentally try to
install an application that is not valid for your device, iOS version 6 or earlier
gives an error message.
Unlike the Android client, after the installation is finished, the Install button in
the Details view does not change its label to Uninstall. In iOS, there is no
Uninstall button. It is only possible to uninstall applications through the home
screen.
Some versions of iOS 7 might try to install the application in an endless loop
without ever succeeding or indicating any error. The application icon that
shows the progress of the installation appears on the home screen, but, because
of the endless loop, it is difficult to delete this application icon to stop the
endless loop. A workaround is to put the device into Airplane mode. In this
mode, the endless loop is stopped and you can delete the application icon by
following the normal steps to delete apps on iOS devices.

Installing an application on a Windows Phone device
From the Details view, you can install a company application on your Windows
phone device.

Figure 12-49. Canceling application installation on your iOS device

Administering MobileFirst applications 12-135

About this task

The Details view of the selected application displays information about the
application that you want to install.

Procedure
1. In the Details view, tap Install. The application is downloaded and installed.

You can tap Cancel at any time during the downloading of the application to
cancel the activity. Cancel appears only during the downloading step of the
installation process.
At the beginning of the installation process, you are requested to confirm
whether you want to add the company application to the applications installed
on your mobile device.

2. Tap Install to confirm installation of the application or Cancel to cancel the
installation.
The application is marked as a favorite app.

Tip: When you install a company application on a device, the device must
connect to the Microsoft server to verify the application signature. Sometimes,
the Microsoft server does not respond. In this case, you can try the installation
again a few minutes later.
The possible error messages are:
v There's a problem with this company app. Contact your company's

support person for help.

You are probably using an unsigned Windows Phone application package
(.xap) file. You must sign application package (.xap) files before using them
in the Application Center. This message might also occur if the Microsoft
server does not respond and the signature of the company application cannot
be validated. In this case, try the installation again a few minutes later.

v Before you install this app, you need to add ... company account.

Figure 12-50. Details view of a version of a company application for installation on a Windows Phone device

Figure 12-51. Confirming or canceling installation of a company application on a Windows Phone device

12-136 IBM MobileFirst Platform Foundation V6.3.0

The Windows Phone application package (.xap) file is signed, but the device
is not enrolled for company applications. You must first install on the device
the application enrollment token of the company.

v We haven't been able to contact the company account to make sure you
can install this app. ...

Either the company account is expired or blocked, or the Microsoft server is
temporarily not responding. Make sure that your device is connected to the
internet and connected to the Microsoft server, and try again.

Note: If a device is registered with several company accounts, the Windows
Phone operating system might display the wrong company account in the
message Would you like to install application from company name?. This
message is outside the control of the Application Center. This situation is a
display problem only and does not affect the functionality.

Results

Depending on the action that you take, the application is installed or not.

Tip: The install process will not work if the PFX certificate used to code sign the
application package (.xap) file of the application that you want to install has
expired. Windows Phone operating system returns an error with HRESULT
0x81030110. When you renew your PFX certificate, you must code sign again with
this new certificate all the deployed applications that you have in your Application
Center catalog.

When you renew your PFX code-signing certificate, you must also renew the
enrollment token and deploy it on the Application Center console. Devices must
also be re-enrolled to the company account with this new token. Users of devices
enrolled with an expired token cannot install any applications.

In Windows Phone 8.1, if the Application Center client is not code signed (for
example, when you debug it in Visual Studio), you cannot install any application
by using this unsigned client. In this case, the Windows Phone operating system
returns an error with HRESULT 0x800703F0. Prior to installing applications in
Windows Phone 8.1, you must code sign the application package (.xap) file of the
client.

Installing a Windows Store application on a Windows device
Use sideloading to install Windows Store apps through Application Center.

Before you begin

You must check that your configuration satisfies the application sideloading
prerequisites that are described in Prepare to Sideload Apps.

About this task

Installing APPX packages through Application Center is done by a process called
sideloading. As part of Windows 8.1 Update, sideloading is enabled for all
Windows 8.1 Pro devices that are part of an Active Directory domain, which
matches the current behavior of Windows 8.1 Enterprise. If you use either of those
product versions and the device is part of an Active Directory domain, you have
no concerns about sideloading keys or activating sideloading.

Administering MobileFirst applications 12-137

http://technet.microsoft.com/fr-fr/library/dn613842.aspx

When you develop a Windows Store application, Microsoft Visual Studio
automatically generates a self-signed certificate and uses it to code sign the
application package. To be able to install the application later by using Application
Center, you must import this certificate into the “Trusted Root Certification
Authorities” store of the “Local Machine”. Importing the certificate is a manual
procedure.

Note: Manual installation of a certificate is only required for the development
phase, because APPX code signing relies on a self-signed certificate generated by
Microsoft Visual Studio. In production, your APPX file must be signed by a
genuine certificate purchased from a recognized root certificate authority.

Procedure

The first step of this procedure tells you how to install the certificate before you
can install the application through Application Center.
1. Import this certificate into the “Trusted Root Certification Authorities” store of

the “Local Machine”.
a. After you have generated an APPX file by using Visual Studio, place this

file in your file system. In the folder of the APPX file, you can see a
certificate (.cer) file that contains the self-signed certificate that you must
import.

b. To open the certificate, double-click the CER file.
c. Click Install Certificate.

Figure 12-52. Certificate file in the application package folder

12-138 IBM MobileFirst Platform Foundation V6.3.0

d. Select “Local Machine” and click Next.

Figure 12-53. General information about the certificate

Administering MobileFirst applications 12-139

e. Select “Place all certificate in the following store” and then browse to select
“Trusted Root Certification Authorities”.

Figure 12-54. Specifying the local machine in the Certificate Import Wizard

12-140 IBM MobileFirst Platform Foundation V6.3.0

f. Click Next and then Finish. The successful import of the certificate should
be confirmed.

The following steps describe how to perform the installation of a Windows Store
application on a Windows device by using Application Center.
2. Log in to the Application Center mobile client for Windows Store applications.
3. Select the application that you want to install to access its details.

Figure 12-55. Placing the certificate in “Trusted Root Certification Authorities”

Administering MobileFirst applications 12-141

4. To install the application, tap Install. If the application is already installed and
other versions are available, you can decide to update to a higher version or to
revert to a lower version.

Installing an application on a BlackBerry device
From the Details view, you can install or reinstall an application version on your
BlackBerry device.

Procedure
1. In the Details view, tap Install or Reinstall. You are requested to confirm the

download and installation of the application version.
2. Optional: During the installation, a progress bar is displayed; tap or click the

red cross next to the progress bar to cancel the installation while the application
is being downloaded. When the download of the application is complete, the
installation can no longer be canceled. When the application is successfully
installed, it is also marked as a favorite app.

Figure 12-56. Details view for installing a Windows Store app

12-142 IBM MobileFirst Platform Foundation V6.3.0

Updating or reverting an application often results in a request for a reboot. If
you choose to reboot later, the list of installed applications displayed in the
mobile client might temporarily become unsynchronized until the next reboot.

Installing applications through public app stores
You can link from the mobile client to applications that are stored in supported
public app stores and install these applications on your compatible device by
following the normal procedure of the public app store.

About this task

The Application Center administrator can create links to selected applications
stored in supported public app stores and make them available to users of the
Application Center mobile client on the operating systems that match these
applications. See “Adding an application from a public app store” on page 12-87.
You can install these applications through the mobile client on your compatible
device.

Links to Android applications stored in Google play and to iOS applications stored
in Apple iTunes are listed in the application list on the device along with the
binary files of private applications created within your enterprise.

Procedure
1. Select an application stored in a public app store from the application list to see

the application details. Instead of Install, you see Go to Store.
2. Tap Go to Store to open Google play or Apple iTunes.

Figure 12-57. Downloading an application to a BlackBerry device

Administering MobileFirst applications 12-143

3. Follow the usual procedure of the public app store to install the application.

Removing an installed application
You can remove an application that is installed on your mobile device.

Procedure
1. Start the removal procedure that is valid for the operating system of your

device.
v Android: See the procedure in step 2.
v iOS: You can remove applications only from the iOS Home screen, and not

through the Application Center client. Use the normal iOS procedure for
removing an application.

v Windows Phone: You can remove applications only from the Windows Phone
Home screen, and not through the Application Center client. Use the normal
Windows Phone procedure for removing an application.

v Windows Store: You can remove applications either from the Application
Center mobile client or from the Windows home screen.

v BlackBerry: See the procedure in step 3 on page 12-145.
2. Android only: Remove an application from an Android device.

a. In the Details view of any version of the application, tap Uninstall. The
Uninstall button appears in the Details view only when a version of the
application is installed. You are requested to confirm that the application
version is to be uninstalled.

Figure 12-58. Accessing an application in Google play from the mobile client on the device

Figure 12-59. Accessing an application in Apple iTunes from the mobile client on the device

12-144 IBM MobileFirst Platform Foundation V6.3.0

b. Tap Uninstall to uninstall the application version or Cancel to notify the
application that the uninstallation command has been canceled.

3. BlackBerry only: Remove an application from a BlackBerry device.
a. In the Details view of any version of the application, tap Uninstall. The

Uninstall button appears in the Details view only when this version of the
application is installed. You are requested to confirm that the application
version is to be uninstalled.

b. Tap Uninstall to uninstall the application version or Cancel to cancel the
uninstallation command. Removing an installed application often results in
a reboot request. If you choose to reboot later, the list of installed
applications displayed in the mobile client might temporarily become
unsynchronized until the next reboot.

Showing details of a specific application version
Select a version of an application to show its details.

About this task

You can show the details of the selected version of an application by following the
appropriate procedure for an Android or iOS phone or tablet, a Windows Phone
device, a Windows device, or a BlackBerry device.

Procedure
1. Show details of a specific application version on a mobile device by selecting

the appropriate procedure to follow for your device.
v A Windows Phone, Android, or iOS phoneA phone; see step 2.
v A BlackBerry phone; see step 3.
v A Windows device; see step 4 on page 12-146
v A tablet; see step 5 on page 12-146.

2. Windows Phone, Android, iOS only: Show details of a specific application
version on a Windows Phone, Android, or iOS phone.
a. Tap Select a version to navigate to the version list view.

b. Tap the required version of the application. The Details view is updated
and shows the details of the selected application version.

3. BlackBerry only: Show details of a specific application version on a BlackBerry
phone.

Figure 12-60. Specific version of an application selected in the list of versions on a Windows Phone, Android, or iOS
phone

Administering MobileFirst applications 12-145

a. Slide to the Versions pane.

b. Tap the required version of the application. The Details view is updated
and shows the details of the selected application version.

4. Windows only: Show details of a specific Windows Store application version
on a Windows device. If more than one version is available for the Windows
Store application, then you can select which version that you want to install.
a. Tap the required version of the application. The Details view is updated

and shows the details of the selected application version.
5. Tablet devices only: Show details of a specific application version on a tablet.

a. Tap Select version.
b. In the pop-up menu, select the required version of the application. The

Details view is updated and shows the details of the selected application
version.

Updating an application
You can update an application that is installed on your device if a new version is
available in the Application Center.

About this task

Follow this procedure to make the latest versions of favorite and recommended
apps available on your device. Applications that are marked as favorites and that
have an updated version are listed in the Updates view. The applications that are
marked as recommended by the Application Center server administrator are also
listed in the Updates view, even if they are not favorites.

If a more up-to-date version of an installed application is available on the server, it
is listed under Update or Recommended.

Procedure
1. In the Updates view, navigate to the Details view.
2. In the Details view, select a newer version of the application or take the latest

available version.
3. Android, Windows Phone, Windows 8, and BlackBerry only: On Android,

Windows Phone, Windows 8, and BlackBerry devices, tap Update.

Figure 12-61. List of versions of an application on a BlackBerry phone

12-146 IBM MobileFirst Platform Foundation V6.3.0

4. iOS only: On iOS devices, tap Install latest.
5. Follow the appropriate application installation procedure.
v “Installing an application on an Android device” on page 12-132
v “Installing an application on an iOS device” on page 12-134
v “Installing an application on a Windows Phone device” on page 12-135
v “Installing a Windows Store application on a Windows device” on page

12-137
v “Installing an application on a BlackBerry device” on page 12-142

Upgrading the Application Center client automatically
You can enable automatic detection of new versions of the client application. Then,
you can choose whether to download and install the new version on your mobile
device.

Before you begin

Start the Application Center client.

About this task

New versions of the mobile client application that are available on the Application
Center server can be detected automatically. When this feature is enabled, a more
recent version of the application, if it exists, can be detected at start up or each
time that the Available applications view is refreshed.

If a later version of the application is detected, you are requested to download and
install the later version.

Automatic upgrade of the Application Center client application is enabled by
default with the appCenterAutoUpgrade property set to true. This property is
located in the MobileFirst project for the Application Center: IBMAppCenter/apps/
AppCenter/common/js/appcenter/config.json.

If you want to disable automatic upgrade, you must set this property to false and
rebuild the project for the required platforms.

Procedure
1. When a later version of the client is detected, tap OK to start the download

and installation sequence.

Administering MobileFirst applications 12-147

2. Tap Install to install the later version of the application.

Figure 12-62. Detection of a later version of the client application available on the server

12-148 IBM MobileFirst Platform Foundation V6.3.0

3. Tap Open to start the updated application.

Figure 12-63. Confirm installation of the updated version of the application

Administering MobileFirst applications 12-149

Results

You must log in to the updated version of the application to run it.

Figure 12-64. Starting the updated application

12-150 IBM MobileFirst Platform Foundation V6.3.0

Reverting an installed application
You can revert the version of an installed application if an earlier version exists on
the server.

Purpose

To replace the currently installed version of an application with an earlier version,
from the Catalog, Updates, or Favorites view, navigate to the Details view. In the
Details view, select an earlier version. See “Showing details of a specific
application version” on page 12-145 for information about how to display details
of a specific application version on a mobile device.

See “Preparations for using the mobile client” on page 12-68 for information about
how to disable reverting to earlier versions of an application.

Figure 12-65. Logging in to the new version of the client application

Administering MobileFirst applications 12-151

On Android

If the installed version of the Android operating system is earlier than 4.2.2, tap
Revert.

If the installed version of the Android operating system is 4.2.2 or later, you must
uninstall the version currently installed before you can install the earlier version.

Then, follow the procedure documented in “Installing an application on an
Android device” on page 12-132.

On iOS

Use the normal procedure of the operating system to remove the application.

Tap Install to install the earlier version of the application. Follow the procedure
documented in “Installing an application on an iOS device” on page 12-134.

On Windows Phone

Tap Revert. Follow the procedue documented in “Installing an application on a
Windows Phone device” on page 12-135.

On BlackBerry

Tap or click Revert. Follow the procedure documented in “Installing an application
on a BlackBerry device” on page 12-142.

Marking or unmarking a favorite app
Mark your favorite apps or unmark an app to have it removed from the favorites
list.

An application marked as a favorite on your device indicates that you are
interested in this application. This application is then listed in the list of favorite
apps to make locating it easier. This application is displayed on every device
belonging to you that is compatible with the application. If a later version of the
app is available in the Application Center, the application is listed in the Updates
view.

To mark or unmark an application as a favorite app, tap the Favorites icon

in
the header of the Details view.

An installed application is automatically marked as a favorite app.

Submitting a review for an installed application
You can review an application version installed on your mobile device; the review
must include a rating and a comment.

About this task

You can only submit a review of a version of an application if that version is
installed on your mobile device.

12-152 IBM MobileFirst Platform Foundation V6.3.0

Procedure
1. In the Details view, initiate your review:
v On iOS phones and tablets, tap Review version X.
v On Android phones and tablets, tap Review version X.
v On BlackBerry phones, slide to the Reviews pane and select Write Review.

2. Enter a nonzero star rating:
v On mobile devices with touch screens, tap a star, from 1 to 5, to represent

your approval rating of the version of the application.
v On BlackBerry devices without touch screen, use the trackpad to slide and

select the number of stars.

One star represents the lowest level of appreciation and five stars represent the
highest level of appreciation.

3. Enter a comment about this version of the application.
4. Tap Submit to send your review to the Application Center.

Viewing reviews
You can view reviews of a specific version of an application or of all versions of an
application.

Purpose

To view reviews of application versions; reviews are displayed in descending order
from the most recent review. If the number of reviews fills more than one screen,
tap Load more to show more reviews. On Android, iOS, and Windows Phone
devices, the review details are visible in the list. On BlackBerry devices, select a
review to view the review details.

Viewing reviews of a specific version

The Details view always shows the details of a specific version. On a phone, the
reviews are for that version.

In the Details view of an application version:

On a Windows Phone, Android, or iOS phone
Tap View Reviews to navigate to the Reviews view.

On a BlackBerry phone
Slide to the Reviews pane.

On a tablet
Tap Reviews xx, where xx is the displayed version of the application.

Viewing reviews of all versions of an application

In the Details view of an application version:

On a Windows Phone, Android, or iOS phone
Tap View Reviews to navigate to the Reviews view. Then tap the settings

icon , tap All versions, and confirm the selection.

On a BlackBerry phone
Viewing reviews of all versions is only available when the details of the
latest version are displayed. This action is not available when the details of

Administering MobileFirst applications 12-153

another specific version are displayed. Slide to the Reviews pane, select
the settings icon, select All versions, and confirm the selection.

On a tablet
Tap All Reviews.

Advanced information for BlackBerry users
You have a choice of connection suffixes for manual connection between the
mobile client and BlackBerry.

Purpose

Sometimes you might have to set up the connection between the Application
Center mobile client and BlackBerry service manually. This information helps you
to set the correct connection.

The mobile client connects to the Application Center Server through HTTP.
BlackBerry offers a wide range of HTTP connection modes that can be controlled
by a connection suffix. The Application Center mobile client tries to detect the
connection mode automatically. By default, the mobile client tries WiFi, then WAP
2.0, and then direct TCP over the mobile carrier (GPRS, 3G, and so on).

Note: BlackBerry OS 10 is not supported by the current version of the Application
Center.

Setup of a manual connection

In rare cases, it might be necessary to set up the connection suffix manually.

On the BlackBerry home screen:
1. Open Options.
2. Open Third Party Application.
3. Open IBM Application Center.

You can then specify the connection suffix and the connection timeout
parameter.

The table shows the possible connection suffixes. For corporate-owned devices, you
might need to contact your network administrator for the correct connection suffix.
Corporate-owned devices might disallow certain connection modes in the service
book of the device.

See http://supportforums.blackberry.com/t5/Java-Development/Network-
Transports/ta-p/482457 for more details.

Table 12-105. Details for manual connection.

Connection suffix User type Conditions Connection path

interface=wifi All users WiFi must be
enabled. The
device service
book must allow
WiFi. The device
must be
connected to a
WiFi access point.

Device > Wifi
access point >
Internet > IBM
Application
Center Server

12-154 IBM MobileFirst Platform Foundation V6.3.0

http://supportforums.blackberry.com/t5/Java-Development/Network-Transports/ta-p/482457
http://supportforums.blackberry.com/t5/Java-Development/Network-Transports/ta-p/482457

Table 12-105. Details for manual connection (continued).

Connection suffix User type Conditions Connection path

deviceside=true All users The mobile carrier
must allow data
connections. The
device service
book must allow
direct TCP. The
mobile carrier's
APN must be set
up.

Device > Mobile
carrier > Internet
> IBM Application
Center Server

deviceside=true;apn=xyz Similar to
deviceside=true,
but uses the
specified APN.

deviceside=true;apn=xyz;TunnelAuthUsername=user;TunnelAuthPassword=passwordSimilar to
deviceside=true,
but uses the
specified APN
and user name
and password.

deviceside=true;ConnectionUID=xyzAll users The mobile carrier
must allow data
connections. The
device service
book must allow
WAP 2.0. The
WAP 2.0
connection details
for the UID must
be set up in the
service book.

Device > Mobile
carrier > WAP 2.0
Gateway >
Internet > IBM
Application
Center Server

deviceside=true;WapGatewayIP=127.0.0.1;WapGatewayPort:9201;
WapGatewayAPN=xyz

All users The mobile carrier
must allow data
connections. The
device service
book must allow
WAP 1.0/1.1.

Device > Mobile
carrier > WAP 1.0
/1.1 Gateway >
Internet > IBM
Application
Center Server

deviceside=false Corporate users Your corporate
entity must set up
a BlackBerry
Enterprise Server
(BES) for mobile
device services
(MDS). The MDS
connection UID
must be set up in
the service book.

Device > Wifi or
Mobile carrier >
Blackberry
Infrastructure
Network
Operation Center
(NOC) >
Corporate BES >
IBM Application
Center Server

deviceside=false;ConnectionUID=xyz Similar to
deviceside=false,
but uses the
specified UID.
This setting is
useful when your
corporate entity
has set up
multiple BES.

Administering MobileFirst applications 12-155

Table 12-105. Details for manual connection (continued).

Connection suffix User type Conditions Connection path

A secret connection suffix. BlackBerry
Alliance members

You must be a
member of the
BlackBerry
Alliance. In this
case, you have
received your
own connection
suffix. Instead of a
corporate BES,
you connect to the
central Internet
Service Browsing
Server (BIS-B) of
BlackBerry.

Device > Wifi or
Mobile carrier >
Blackberry
Infrastructure
Network
Operation Center
(NOC) > BIS-B >
IBM Application
Center Server

EndToEndRequired All users SSL connections
only; use this
suffix in
combination with
the other
connection
suffixes.

Device > ... > IBM
Application
Center Server is
fully SSL
encrypted

EndToEndDesired All users SSL connections
only; use this
suffix in
combination with
the other
connection
suffixes.

Device > ... > (BES
or BIS-B does not
necessarily use
SSL) BES or BIS-B
> ... > IBM
Application
Center Server
uses SSL

Federal standards support in IBM MobileFirst Platform Foundation
IBM MobileFirst Platform Foundation supports Federal Desktop Core
Configuration (FDCC), and United States Government Configuration Baseline
(USGCB) specifications. IBM MobileFirst Platform Foundation also supports the
Federal Information Processing Standards (FIPS) 140-2, which is a security
standard that is used to accredit cryptographic modules.

For more information about the Federal Desktop Core Configuration and United
States Government Configuration Baseline, see FDCC and USGCB.

For more information about the Federal Information Processing Standards 140-2,
see FIPS 140-2 support.

FDCC and USGCB support
The United States federal government mandates that federal agency desktops that
run on Microsoft Windows platforms adopt Federal Desktop Core Configuration
(FDCC) or the newer United States Government Configuration Baseline (USGCB)
security settings.

IBM Worklight V5.0.6 was tested by using the USGCB and FDCC security settings
via a self-certification process. Testing includes a reasonable level of testing to
ensure that installation and core features function on this configuration.

12-156 IBM MobileFirst Platform Foundation V6.3.0

References

For more information, see USGCB.

FIPS 140-2 support
Federal Information Processing Standards (FIPS) are standards and guidelines that
are issued by the United States National Institute of Standards and Technology
(NIST) for federal government computer systems. FIPS Publication 140-2 is a
security standard that is used to accredit cryptographic modules.

FIPS 140-2 on the MobileFirst Server, and SSL communications
with the MobileFirst Server

The IBM MobileFirst Platform Foundation server runs in an application server,
such as the WebSphere Application Server. The WebSphere Application Server can
be configured to enforce the use of FIPS 140-2 validated cryptographic modules for
inbound and outbound Secure Socket Layer (SSL) connections. The cryptographic
modules are also used for the cryptographic operations that are performed by the
applications by using the Java™ Cryptography Extension (JCE). Since the
MobileFirst Server is an application that runs on the application server, it uses the
FIPS 140-2 validated cryptographic modules for the inbound and outbound SSL
connections.

When an IBM MobileFirst Platform Foundation client transacts a Secure Socket
Layer (SSL) connection to a MobileFirst Server, which is running on an application
server that is using the FIPS 140-2 mode, the results are the successful use of the
FIPS 140-2 approved cipher suite. If the client platform does not support one of the
FIPS 140-2 approved cipher suites, the SSL transaction fails and the client is not
able to establish an SSL connection to the server. If successful, the client uses a
FIPS 140-2 approved cipher suite.

Note: The cryptographic module instances that are used on the client are not
necessarily FIPS 140-2 validated. For options to use FIPS 140-2 validated libraries
on client devices, see “FIPS 140-2 on the MobileFirst client device for protection of
data at rest in JSONStore and data in motion when using HTTPS
communications.”
Specifically, the client and server are using the same cipher suite
(SSL_RSA_WITH_AES_128_CBC_SHA for example), but the client side
cryptographic module perhaps did not go through the FIPS 140-2 validation
process, whereas the server side is using FIPS 140-2 certified modules.

See “References” on page 12-159 for links to documentation to enable FIPS 140-2
mode in WebSphere Application Server.

FIPS 140-2 on the MobileFirst client device for protection of data
at rest in JSONStore and data in motion when using HTTPS
communications

Protection of data at rest on the client device is provided by the JSONStore feature
of IBM MobileFirst Platform Foundation. Protection of data in motion is provided
by the use of HTTPS communication between the MobileFirst client and the
MobileFirst Server. By default, these features use non-FIPS 140-2 validated libraries.
But for iOS and Android devices, there is an option to use FIPS 140-2 validated
libraries for the protection (encryption and decryption) of the local data that is
stored by JSONStore and for the HTTPS communication to the MobileFirst Server.

Administering MobileFirst applications 12-157

http://usgcb.nist.gov/

This support is achieved by using an OpenSSL library that achieved FIPS 140-2
validation (Certificate #1747). To enable this option in a MobileFirst client project,
select the FIPS 140-2 optional feature in the MobileFirst Studio.

Note: There are some restrictions to be aware of:
v This FIPS 140-2 validated mode applies only to the protection (encryption) of

local data that is stored by the JSONStore feature and protection of HTTPS
communications between the MobileFirst client and the MobileFirst Server.

v This feature is only supported on the iOS and Android platforms.
– On Android, this feature is only supported on devices or simulators that use

the x86 or armv7 architectures. It is not supported on Android using armv5 or
armv6 architectures. The reason is because the OpenSSL library used did not
obtain FIPS 140-2 validation for armv5 or armv6 on Android.

– On iOS, it is supported on i386, armv7, and armv7s architectures. FIPS is not
yet supported on 64-bit architecture even though MobileFirst library does
support 64-bit architecture. Therefore, FIPS must not be enabled on 64-bit
target platform when XCode Build Setting (Architecture) is also set to 64 bit.

v It only works with hybrid applications (not native).
v For HTTPS communications:

– Only the communications between the MobileFirst client and the MobileFirst
Server use the FIPS 140-2 libraries on the client. Direct connections to other
servers or services do not use the FIPS 140-2 libraries.

– The MobileFirst client can only communicate with a MobileFirst Server that
runs in supported environments, which are listed in the System
Requirements. If the MobileFirst Server runs in a non-supported environment,
the HTTPS connection might fail with a "key size too small" error. This error
does not occur with HTTP communications.

v The use of the User Certificate Authentication feature is not supported with the
FIPS 140-2 feature.

v The MobileFirst Application Center client does not support the FIPS 140-2
feature.

v The use of the Direct Update feature occurs over a non-FIPS 140-2 protected
channel. If you want to use only a FIPS 140-2 protected channel, you must
disable the Direct Update feature. To disable the Direct Update feature, you can
override the mobile security test in the authenticationConfig.xml file in your
server/conf directory.
<mobileSecurityTest name="mobileTests">

<testDirectUpdate mode="disabled" />
</mobileSecurityTest>

Use this mobile security test for Android and iOS environments as follows:
<android securityTest="mobileTests" version="1.0">

or
<iphone bundleId="com.TestHybridApp" version="1.0" securityTest="mobileTests">

The FIPS 140-2 optional feature supersedes the changes that were described in
tutorial JSONStore - Encrypting sensitive data with FIPS 140-2 that was available for
IBM MobileFirst Platform Foundation V6.0.0 and earlier, Advanced client side
development. This tutorial is now available on the Getting Started page.

If you previously made the changes that are described in the tutorial, you must
first save any other environment-specific changes that you made, and then delete

12-158 IBM MobileFirst Platform Foundation V6.3.0

http://www-01.ibm.com/support/docview.wss?uid=swg27024838
http://www-01.ibm.com/support/docview.wss?uid=swg27024838
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3

and re-create your Android or iOS environments.

For more information about JSONStore, see “JSONStore overview” on page 8-401.

References

For information about how to enable FIPS 140-2 mode in WebSphere Application
Server, see Federal Information Processing Standard support.

For the WebSphere Application Server Liberty profile, no option is available in the
administrative console to enable FIPS 140-2 mode. But you can enable FIPS 140-2
by configuring the Java runtime environment to use the FIPS 140-2 validated
modules. For more information, see Java Secure Socket Extension (JSSE) IBMJSSE2
Provider Reference Guide.

Enabling FIPS 140-2
To use the FIPS 140-2 feature in IBM Worklight V6.1.0, you must first enable the
optional feature.

About this task

To enable this option in a MobileFirst client project, select the FIPS 140-2 optional
feature in the IBM MobileFirst Platform Studio. After the optional feature is
enabled, it must then be configured as described in the What to do next section.
After the FIPS 140-2 optional feature is enabled and configured, this feature applies
both to HTTPS and JSONStore data encryption.

Figure 12-66. Example

Administering MobileFirst applications 12-159

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rovr_fips.html
http://ibm.biz/knowctr#SSYKE2_5.0.0/com.ibm.java.security.component.doc.50/secguides/jsse2Docs/JSSE2RefGuide.html
http://ibm.biz/knowctr#SSYKE2_5.0.0/com.ibm.java.security.component.doc.50/secguides/jsse2Docs/JSSE2RefGuide.html

Note: FIPS 140-2 is only supported on Android and iOS, and only for i386, armv7,
and armv7s architectures.

Note: On Android, FIPS 140-2 is not supported on 64-bit architecture even though
the MobileFirst library does support 64-bit architecture. When you use FIPS 140-2
on a 64-bit device, you might see the following error:
java.lang.UnsatisfiedLinkError: dlopen failed: "..." is 32-bit instead of 64-bit

This error means that you have 64-bit native libraries in your Android project, and
FIPS 140-2 does not currently work when you use these libraries. To confirm, go to
src/main/libs or src/main/jniLibs under your Android project, and check
whether you have the x86_64 or arm64-v8a folders. If you do, delete these folders,
and FIPS 140-2 can work again.

The FIPS 140-2 feature is an optional feature in IBM Worklight V6.1.0. To use the
FIPS 140-2 feature, you must enable it by modifying the application-
descriptor.xml file.

Procedure
1. Double-click the application-descriptor.xml file to open it in the Application

Descriptor Editor.
2. Click the Design tab.
3. Under Overview, expand Application [your application's name].
4. Click Optional Features.
5. Click Add.
6. Select FIPS 140-2.
7. Click OK.

12-160 IBM MobileFirst Platform Foundation V6.3.0

What to do next

“Configure FIPS 140-2 mode for HTTPS and JSONStore encryption”

Configure FIPS 140-2 mode for HTTPS and JSONStore
encryption
Learn about settings to configure FIPS 140-2 for encrypting data for HTTPS and
JSONStore.

The following code snippet is populated into a new IBM MobileFirst Platform
Foundation application in the initOptions.js file for configuring FIPS 140-2:
var wlInitOptions = {

...
// # Enable FIPS 140-2 for data-in-motion (network) and data-at-rest (JSONStore) on iOS or Android.
// Requires the FIPS 140-2 optional feature to be enabled also.
// enableFIPS : false
...

};

Notice the default value of enableFIPS is false. To enable FIPS 140-2 for both
HTTPS and JSONStore data encryption, uncomment and set the option to true.
After you set the value of enableFIPS to true, you should listen for the FIPS ready
JavaScript event.

The following example assumes that you are using jQuery 1.7 or later, or WLJQ
(jQuery that is included with IBM MobileFirst Platform Foundation).

Figure 12-67. Installing the FIPS 140-2 optional feature

Administering MobileFirst applications 12-161

$(document).on(’WL/FIPS/READY’, function(evt, obj) {
//evt - Contains information about the event
//obj - JavaScript object sent after the attempt to enable FIPS completes
// if successfully enabled, object will be {enabled: true}
// if enablement failed, object will be {enabled: false, msg: "message
// indicating cause of the failure to enable"}

});

After you set the value of the enableFIPS property, create an Android, iPhone, or
iPad environment, and build those environments.

Note: You must enable the FIPS 140-2 optional feature before you set the
enableFIPS property to true. Otherwise, a warning message is logged that states
the initOption value is set but the optional feature was not found. The FIPS 140-2
and JSONStore features are both optional. FIPS 140-2 affects JSONStore data
encryption only if the JSONStore optional feature is also enabled. If JSONStore is
not enabled, then FIPS 140-2 does not affect JSONStore.
[WARN] FIPSHttp feature not found, but initOptions enables it on startup

For more information about installing the FIPS 140-2 optional feature, see
“Enabling FIPS 140-2” on page 12-159.

Configuring FIPS 140-2 for existing applications
You must modify applications that were created in earlier versions of IBM
MobileFirst Platform Foundation to enable the FIPS 140-2 feature.

Before you begin

The FIPS 140-2 optional feature is not enabled by default. To enable the FIPS 140-2
optional feature, see “Enabling FIPS 140-2” on page 12-159. After the optional
feature is enabled, you can configure FIPS 140-2.

About this task

After you completed the steps that are described in “Enabling FIPS 140-2” on page
12-159, you must configure FIPS 140-2 by modifying the initOptions.js file to add
the FIPS configuration property.

Note: For JSONStore FIPS 140-2 users – Starting with IBM Worklight V6.1.0, the
FIPS 140-2 feature, combined with the JSONStore feature, enables FIPS 140-2
support for JSONStore. This combination supersedes what was indicated in tutorial
JSONStore - Encrypting sensitive data with FIPS 140-2 that was available for IBM
Worklight V6.0 or earlier. If you previously modified an application by following
the instructions in this tutorial, delete and re-create its iPhone, iPad, and Android
environments. Because any environment-specific changes that you previously made
are lost when you delete an environment, make sure to back up any such changes
before you delete any environment. After the environment is re-created, you can
reapply those changes to the new environment.

Procedure
1. Add the following lines of code to the initOptions object found in the

appFolder/common/js/initOptions.js file.
enableFIPS : true

2. Rebuild and deploy your app.

12-162 IBM MobileFirst Platform Foundation V6.3.0

Monitoring and mobile operations

IBM MobileFirst Platform Foundation includes a range of operational analytics and
reporting mechanisms for collecting, viewing, and analyzing data from your IBM
MobileFirst Platform Foundation applications and servers, and for monitoring
server health.

Logging and monitoring mechanisms
IBM MobileFirst Platform Foundation reports errors, warnings, and informational
messages into a log file. The underlying logging mechanism varies by application
server.

IBM MobileFirst Platform Server

MobileFirst Server uses the standard java.util.logging package. By default, all
MobileFirst logging goes into the application server log files. You can control
MobileFirst Server logging by using the standard tools available in each
application server. If, for example, you want to activate trace logging in Liberty,
add a trace element to the server.xml file. To activate trace logging in WebSphere
Application Server, use the logging screen in the console and enable trace for
MobileFirst logs. MobileFirst logs all begin with "com.worklight".

Application Center logs begin with “com.ibm.puremeap”.

For more information about the logging models of each server platform, including
the location of the log files, see the documentation for the relevant platform, as
shown in the following table.

Table 13-1. Documentation for different server platforms

Server platform Location of documentation

Apache Tomcat http://tomcat.apache.org/tomcat-7.0-doc/
logging.html#Using_java.util.logging_(default)

WebSphere Application
Server Version 7.0

http://ibm.biz/knowctr#SSEQTP_7.0.0/
com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html

WebSphere Application
Server Version 8.0

http://ibm.biz/knowctr#SSEQTP_8.0.0/
com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html

WebSphere Application
Server Version 8.5 full profile

http://ibm.biz/knowctr#SSEQTP_8.5.5/
com.ibm.websphere.base.doc/ae/ttrb_trcover.html

WebSphere Application
Server Version 8.5 Liberty
profile

http://ibm.biz/knowctr#SSEQTP_8.5.5/
com.ibm.websphere.wlp.doc/ae/
rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0

Log level mappings

MobileFirst Server uses java util logging. The logging levels map to the following
levels:
v WL.Logger.debug: FINE
v WL.Logger.info: INFO
v WL.Logger.warn: WARNING

© Copyright IBM Corp. 2006, 2015 13-1

http://tomcat.apache.org/tomcat-7.0-doc/logging.html#Using_java.util.logging_(default)
http://tomcat.apache.org/tomcat-7.0-doc/logging.html#Using_java.util.logging_(default)
http://ibm.biz/knowctr#SSEQTP_7.0.0/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_7.0.0/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.0.0/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.0.0/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0

v WL.Logger.error: SEVERE

Log monitoring tools

For Apache Tomcat, you can use IBM Operations Analytics - Log Analysis or other
industry standard log file monitoring tools to monitor logs and highlight errors
and warnings.

For WebSphere Application Server, use the log viewing facilities that are described
in the IBM Knowledge Center at the URLs that are listed in the table in the
MobileFirst Server section.

Back-end connectivity

To enable trace to monitor back-end connectivity, see the documentation for your
specific application server platform in the table in the MobileFirst Server section.
The packages to be enabled for trace are com.worklight.adapters and
com.worklight.integration. Set the log level to FINEST for each package.

Audit log for administration operations

MobileFirst Operations Console stores an audit log for login, logout, and for all
administration operations, such as deploying apps or adapters or locking apps. The
audit log can be disabled by setting the JNDI property ibm.worklight.admin.audit
on the web application of the MobileFirst Administration service
(worklightadmin.war) to false.

When the audit log is enabled, you can download it from MobileFirst Operations
Console by clicking the Audit log link in the footer of the page.

Audit logs for adapters

To write log information for auditing adapter calls, activate the audit logs by
setting audit="true" in your adapter.xml file in the procedure definition.

Login and authentication issues

To diagnose login and authentication issues, enable the package
com.worklight.auth for trace and set the log level to FINEST.

Vitality queries for checking server health
Use MobileFirst vitality queries to run a health check of your server, and determine
the vitality status of your server.

You generally use the MobileFirst vitality queries from a load balancer or from a
monitoring app (for example, Patrol).

You can run vitality queries for the server as a whole, for a specific adapter, for a
specific app, or for a combination of. The following table shows some examples of
vitality queries.

13-2 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/software/products/en/ibm-operations-analytics---log-analysis

Table 13-2. Examples of queries that help determine server vitality

Query Purpose

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality

Checks the server as a whole.

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality?app=MyApp

Checks the server and the MyApp application.

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality?app=MyApp&adapter=MyAdapter

Checks the server, the MyApp application, and
the MyAdapter adapter.

Note: Do not include the /<publicWorkLightContext> part of the URL if you use
IBM MobileFirst Platform Foundation Developer Edition. You must add this part of
the URL only if MobileFirst Server is running on another application server, such
as Apache Tomcat or WebSphere Application Server (full profile or Liberty profile).

Vitality queries return an XML content that contains a series of <ALERT> tags, one
for each test.

Example query and response

By running the http://<server>:<port>/ws/rest/vitality?app=MyApp query, you
might have the following successful response, with an <ALERT> tag for each of the
three tests:
<ROOT>

<ALERT>
<DATE> 2011-05-17T15:31:35.583+0300 </DATE>
<EVENTID>0</EVENTID>
<SUBJECT>SRV</SUBJECT>
<TYPE>I</TYPE>
<COMPUTER>worklight.acme.com</COMPUTER>
<DESCRIPTION>Server is running</DESCRIPTION>

</ALERT>
<ALERT>
<DATE> 2011-05-17T15:31:35.640+0300 </DATE>
<EVENTID>0</EVENTID>
<SUBJECT>APPL</SUBJECT>
<TYPE>I</TYPE>
<COMPUTER>worklight.acme.com</COMPUTER>
<DESCRIPTION>Application 'MyApp’ is deployed</DESCRIPTION>

</ALERT>
<ALERT>
<DATE>2014-07-08T11:39:42.622+0300</DATE>
<EVENTID>0</EVENTID>
<SYSTEM>WRKL</SYSTEM>
<SUBJECT>BUILD</SUBJECT>
<COMPUTER>192.168.218.1</COMPUTER>
<DESCRIPTION>6.2.0.00.20140707-1736</DESCRIPTION>

</ALERT>
</ROOT>

Return values

The following table lists the attributes that might be returned, and their possible
values.

Monitoring and mobile operations 13-3

Table 13-3. Return values and values

Return attribute Possible values

DATE Date value in JavaScript™ format

EVENTID 0 for the running server, deployed adapter,
or deployed application

1 for not deployed adapter

2 for not deployed application

3 for malfunctioning server

SUBJECT SRV for MobileFirst Server

ADPT for adapter

APPL for application

BUILD for the version of the MobileFirst
Server

TYPE I – valid

E – error

COMPUTER Reporting computer name

DESCRIPTION Status description in plain text

The returning XML contains more attributes, which are undocumented constants
that you must not use.

Configuring logging in the development server
Information about the default logging settings for the embedded development
server, and procedures for changing them.

When you are trying to diagnose problems in the MobileFirst Studio embedded
test server (for example, when debugging a custom login module), it is important
to be able to see log messages. The default settings for server logging are
described in this section, along with the procedures for changing them if you must
see finer levels of messages.

In previous releases of MobileFirst Studio, the embedded Jetty test server did not
allow viewing the server logs. In Worklight Studio V6.0.0, the test server was
replaced with an instance of the WebSphere Application Server Liberty profile
server and is now referred to as the MobileFirst Development Server.

Logging levels for the MobileFirst Studio plugin and builder can be configured
with a new file named logging.properties. This file is in the .metadata folder of
your Eclipse workspace.

For example, if your MobileFirst Studio workspace is /usr/workspace (on UNIX)
or C:\workspace (on Windows), the corresponding logging configuration file is
/usr/workspace/.metadata/logging.properties or C:\workspace\.metadata\
logging.properties.

This file contains the following default settings:

13-4 IBM MobileFirst Platform Foundation V6.3.0

handlers = java.util.logging.FileHandler
.level = WARNING
com.worklight.level = INFO

Changing the MobileFirst Operations Console logging levels

To change the logging level for all packages in this instance of Eclipse, edit the
.level = line. To change the logging level only for MobileFirst Studio, edit the
com.worklight.level = line.

The available setting levels for com.worklight.level = are:
v SEVERE (highest value)
v WARNING

v INFO

v CONFIG

v FINE

v FINER

v FINEST (lowest value)

In addition, there is an ALL level that specifies logging of all messages, and an OFF
level that turns off logging.

If you edit the logging.properties file to change the logging level, you must
restart MobileFirst Studio before the change takes effect.

Whatever the logging level, the messages are displayed in MobileFirst Studio in its
console view with the name MobileFirst Console, as shown in the following
screen capture:

Changing the logging levels of a web application in Liberty
profile

Changing the logging properties for individual application server types is done
with those servers' administration tools.

To provide two examples for WebSphere Application Server Liberty profile, the
server.xml file can be modified by appending the new logging element:
v To enable the INFO logging level for the server console, the following line is

added to the server.xml file:
<logging consoleLogLevel="INFO"/>

v To enable trace log files, the following line is added to the server.xml file:
<logging traceSpecification="*=audit=enabled:com.worklight.*=info=enabled" />

Monitoring and mobile operations 13-5

The available setting levels for consoleLogLevel are:
v INFO

v AUDIT

v WARNING

v ERROR

v OFF

This parameter does not support DEBUG level logging.

No server restart is necessary after you modify these settings.

Whatever the logging level, the messages are displayed in MobileFirst Studio in its
console view with the name MobileFirst Development Server, as shown in the
following screen capture:

This console view allows you to see messages from the MobileFirst Development
Server, but with some known limitations:
v Localized log messages are shown incorrectly. For more information about this

issue, see Liberty profile: Trace and logging.
v Setting the value of consoleLogLevel to WARNING, ERROR, or OFF causes the server

not to start from MobileFirst Studio using the Eclipse servers view.

Trace log messages are written to the trace.log file only. This logging trace is
optional and supports fine-tuning such as packaging and more precise reporting
levels, and is mainly used for debugging.

The trace*.log file is found under your Eclipse workspace in the folder
WorklightServerConfig\servers\worklight\logs\.

For example, if your MobileFirst Studio workspace is /usr/workspace (on UNIX)
or C:\workspace (on Windows), the log files are created under
/usr/workspace/WorklightServerConfig/servers/worklight/logs/ or
C:\workspace\WorklightServerConfig\servers\worklight\logs\.

The available setting levels for <logging
traceSpecification="*=audit=enabled:com.worklight.*=info=enabled" /> are:
v Off - No events are logged.
v Fatal - Task cannot continue and component cannot function.
v Severe - Task cannot continue, but component can still function.

13-6 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html

v Warning - Potential error or impending error.
v Audit - Significant event affecting server state or resources.
v Info - General information outlining overall task progress.
v Config - Configuration change or status.
v Detail - General information detailing subtask progress.
v Fine - Trace information - General trace.
v Finer - Trace information - Detailed trace + method entry / exit / return values.
v Finest - Trace information - A more detailed trace - Includes all the detail that is

needed to debug problems.
v All - All events are logged. If you create custom levels, All includes your

custom levels, and can provide a more detailed trace than Finest.

For more information about WebSphere Application Server Liberty profile logging
configuration, see Liberty profile: Trace and logging.

Setting logging and tracing for Application Center on the
application server

You can set logging and trace parameters for particular application servers and use
JNDI properties to control output on all supported application servers.

You can set the logging levels and the output file for tracing operations for
Application Center in ways that are specific to particular application servers. In
addition, IBM MobileFirst Platform Foundation provides Java Naming and
Directory Interface (JNDI) properties to control the formatting and redirection of
trace output, and to print generated SQL statements.

Enabling logging and tracing in WebSphere Application Server
full profile
You can set the logging levels and the output file for tracing operations on the
application server.

About this task

When you try to diagnose problems in the Application Center (or other
components of IBM MobileFirst Platform Foundation), it is important to be able to
see the log messages. To print readable log messages in log files, you must specify
the applicable settings as Java virtual machine (JVM) properties.

Procedure
1. Open the administrative console of WebSphere Application Server.
2. Select Troubleshooting > Logs and Trace.
3. In “Logging and tracing”, select the appropriate application server and then

select “Change log detail levels”.
4. Select the required packages and their corresponding detail level. For example,

in this way you can select following packages and set the detail level. This
example enables logging for IBM MobileFirst Platform Foundation, including
Application Center, with level FINEST (equivalent to ALL)
com.ibm.puremeap.*=all
com.ibm.worklight.*=all
com.worklight.*=all

Where:
v com.ibm.puremeap.* is for Application Center.

Monitoring and mobile operations 13-7

http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html

v com.ibm.worklight.* and com.worklight.* are for other MobileFirst
components.

The traces are sent to a file called trace.log. Note that they are not sent to
SystemOut.log or to SystemErr.log.
For more details, see Configuring Java logging using the administrative
console.

Enabling logging and tracing in WebSphere Application Server
Liberty profile
You can set the logging levels and the output file for tracing operations for
Application Center on the Liberty profile application server.

When you try to diagnose problems in the Application Center, it is important to be
able to see the log messages. To print readable log messages in log files, you must
specify the applicable settings.

To enable logging for IBM MobileFirst Platform Foundation, including Application
Center, with level FINEST (equivalent to ALL), add a line to the server.xml file.
For example:
<logging traceSpecification="com.ibm.puremeap.*=all:com.ibm.worklight.*=all:com.worklight.*=all"/>

Where multiple entries of a package and its logging level are separated by a colon
(:).

The traces are sent to a file called trace.log. Note that they are not sent to
messages.log or to console.log.

For more details, see Liberty profile: Logging and Trace.

Enabling logging and tracing in Apache Tomcat
You can set the logging levels and the output file for tracing operations undertaken
on the Apache Tomcat application server.

When you try to diagnose problems in the Application Center, it is important to be
able to see the log messages. To print readable log messages in log files, you must
specify the applicable settings.

To enable logging for IBM MobileFirst Platform Foundation, including Application
Center, with level FINEST (equivalent to ALL), edit the conf/logging.properties
file. For example, add lines similar to these lines:
com.ibm.puremeap.level = ALL
com.ibm.worklight.level = ALL
com.worklight.level = ALL

For more details, see Logging in Tomcat.

JNDI properties for controlling trace output
On all supported platforms, you can use Java Naming and Directory Interface
(JNDI) properties to format and redirect trace output for Application Center, and to
print generated SQL statements.

The following table shows the applicable properties and settings.

13-8 IBM MobileFirst Platform Foundation V6.3.0

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_configjavalog.html
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_configjavalog.html
http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0
http://tomcat.apache.org/tomcat-7.0-doc/logging.html

Table 13-4. JNDI property settings for controlling trace output

Property settings Description

ibm.appcenter.logging.formatjson=true This setting uses white space to
format the JSON output for easier
reading in log files.

ibm.appcenter.logging.tosystemerror=true This setting prints all log messages
to system error in log files. It
enables you to turn on logging
globally.

ibm.appcenter.openjpa.Log=DefaultLevel=WARN,
Runtime=INFO, Tool=INFO, SQL=TRACE

This setting prints all the generated
SQL statements in the log files.

Analytics
The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage or detect problems.

IBM MobileFirst Platform Foundation includes a scalable operational analytics
feature that is accessible from the MobileFirst Operations Console. The analytics
feature enables enterprises to search across logs and events that are collected from
devices, apps, and servers for patterns, problems, and platform usage statistics.

The data for operational analytics includes the following sources:
v Interactions of any app-to-server activity (anything that is supported by the

MobileFirst client/server protocol, including push notification).
v Client-side logs and crashes.
v Server-side logs that are captured in traditional MobileFirst log files.

The operational analytics feature is accessible from the MobileFirst Operations
Console and includes these capabilities:

Interactive web-based usage.

Dashboard view
These features include interaction support to see the full device
usage across the platform for the last 30, 60 or 90 days. You can
drill down to specific apps and app versions.

Devices view
View device information, including session activity, network
activity, and JSONStore analytics. Search is provided to view
information about a particular device.

Adapters view
View information about adapters such as invocation frequency and
network latency. You can drill down to a specific adapter or
procedure.

Servers view
View analytics information about individual servers in a cluster.
Download server logs.

Activities view
View analytics data on custom activities that are created with the
client-side logging features.

Monitoring and mobile operations 13-9

Search view
Provides a text search for client and server-side logs. Allows
filtering by application, version, environment, severity, and so on.

Comparison of operational analytics and reports features
Compare the reports and operational analytics features to know why and how to
best use each.

With the introduction of the IBM MobileFirst Platform Operational Analytics,
enabling the BIRT feature is redundant. A comparison of the capabilities of these
two features can help clarify the strengths of each, and help determine how you
can best use them.

The data that is collected by the “Reports database” on page 13-43 feature is a
subset of the total data that is collected as part of the Operational “Analytics” on
page 13-9 feature. You can use the reports database and the operational analytics
feature simultaneously, but usage of both in a production environment is
redundant. Use the reports feature in cases where you want direct access to the
Reports database to run custom queries. An example of a scenario where direct
database access is needed is the use of BIRT or a customized online analytics
processing (OLAP) system that runs database queries directly against the Reports
database.

Table 13-5. Comparison of analytics and reports features. This table lists a comparison of
analytics and reports features.

Operational analytics
feature Reports feature

Primary usage Problem determination,
device usage summary,
geographic view of mobile
activity

Device usage summary

Typical user Administrator, operational
support personnel,
developer, analyst

Administrator, analyst

Data used in analytics App crash from clients,
MobileFirst Server log,
MobileFirst app to server
interaction activities

MobileFirst app to server
interaction activities

Data storage mechanism Files on the IBM MobileFirst
Platform Operational
Analytics

Relational database

Analytics mechanism Each log event is treated as a
JSON document. The data in
the document is indexed so
that it can be searched by
keyword in the document
and presented in a canonical
form that shows the app,
version, some device data,
location (if enabled),
timestamp, adapter (if
present in the document) and
other data.

Each log event is treated as a
row in the raw Reports
database table and then
aggregated for statistics into
the app_activities database
table, summarized to app,
device operating system, and
timestamp relationships.

13-10 IBM MobileFirst Platform Foundation V6.3.0

Table 13-5. Comparison of analytics and reports features (continued). This table lists a
comparison of analytics and reports features.

Operational analytics
feature Reports feature

Access mechanism MobileFirst Operations
Console

BIRT or other reporting tools
that can understand data
cubes

Extendable Extending the published
reports is not supported.

Data can be extracted from
the database tables by using
any means that you desire,
including but not limited to,
BIRT.

Search across logs Yes No

Optional Yes Yes

In addition to an at-a-glance view of your mobile and web application analytics,
the operational analytics includes the capability to perform raw search against
server logs, client activities, captured client crash data. The operational analytics
feature can also search any additional data that you explicitly provide through
client and server-side API function calls that feed into the IBM MobileFirst
Platform Operational Analytics.

Operational analytics
The operational analytics platform collects data about applications, adapters,
devices, and logs to give a high-level view of the client interaction with the
MobileFirst Server and to enable problem detection.

The data for operational analytics includes the following sources:
v Crash events of an application on iOS and Android devices (crash events for

native code and JavaScript errors).
v Interactions of any application-to-server activity (anything that is supported by

the MobileFirst client/server protocol, including push notification).
v Server-side logs that are captured in traditional MobileFirst log files.

The operational analytics feature is accessible from the MobileFirst Operations
Console and includes the following capabilities:
v Near real-time analytics for client activity with the MobileFirst Server.
v Analytics for adapter hits.
v Network latency analytics.
v Client log search and download.
v Server log search and download.
v Crash and stack trace search.

In addition to an at-a-glance view of your mobile and web application analytics,
the analytics feature includes the capability to perform a raw search against server
and client logs, captured client crash data, and any extra data you explicitly
provide through client and server API function calls that feed into the IBM
MobileFirst Platform Operational Analytics.

Monitoring and mobile operations 13-11

Data capture
When the IBM MobileFirst Platform Operational Analytics is deployed and the
MobileFirst Server is properly configured, data begins to flow from the MobileFirst
Server to the IBM MobileFirst Platform Operational Analytics. Some types of data
are captured automatically without extra client or server configurations. Some
types of data require changes to be made in the client application to capture or
forward the data to the MobileFirst Server.

Analytics event types

The following image shows the analytics data flow:

All data that is sent from the MobileFirst Server to the IBM MobileFirst Platform
Operational Analytics is categorized by its type. This section briefly describes the
different types of analytics data that is captured and analyzed.

App Activities
All IBM MobileFirst Platform Foundation client/server network
communication is considered to be an app activity. An app activity is sent
to the IBM MobileFirst Platform Operational Analytics when:
v A client device begins a new session with the MobileFirst Server.
v A client device makes an adapter request.

When the client communicates with the MobileFirst Server through one of
the previously mentioned events, it also sends metadata about the device,
including:
v Device environment (Android, , Windows Phone, and so on).
v Device model (Nexus, and so on).
v Device OS version (6.2, 4.2.2, and so on).

Extra information that is captured during a client/network communication
includes:
v Response times for adapter calls.
v Response payload sizes for adapter calls.

Server Logs
Normal MobileFirst Server activity produces log messages that are saved to
the disk. These messages are also forwarded to the IBM MobileFirst
Platform Operational Analytics and can be searched.

13-12 IBM MobileFirst Platform Foundation V6.3.0

Client Logs
Client devices can be configured to capture log data and crash events to be
forwarded to the MobileFirst Server. For more information, see “Manually
captured data.”

Notification Activities
Upon a successful push notification, a notification activity is automatically
sent to the IBM MobileFirst Platform Operational Analytics.

Note: No session data is sent to the MobileFirst Operational Analytics Server until
the application is connected to the MobileFirst Server. A connection to the
MobileFirst Server can be achieved by calling WL.Client.connect(). Adapter calls
can still be logged in the MobileFirst Operational Analytics Server without a
successful connection.

Manually captured data

The following data must be captured manually by changing the client application.

Client Logs
The following examples show how to create client logs to be sent to the
IBM MobileFirst Platform Operational Analytics.

Hybrid applications (JavaScript):
// Set logging level (default level is FATAL).
WL.Logger.config({level: "DEBUG"});

// Log the message.
WL.Logger.debug("This message is persisted locally until it is sent to the server");

// Call the ’send’ method explicitly to send the logs to the MobileFirst Server.
WL.Logger.send();

Native Android applications:
import com.worklight.common.Logger;

// Set logging level (default level is FATAL).
Logger.setLevel(LEVEL.DEBUG);

// Create a new instance of the logger and log the message.
Logger logger = Logger.getInstance("MyPackage");
logger.debug("This message is persisted locally until it is sent to the server");

// Call the ’send’ method explicitly to send the logs to the MobileFirst Server
Logger.send();

For more information about capturing client-side logs, see “Client-side log
capture configuration from the MobileFirst Operations Console” on page
8-607.

All persisted client-side logs are sent automatically upon a successful
initialization (successful session start) with the MobileFirst Server. An
explicit API is provided if you want to send the logs more frequently.

Client Network Activities
Network activities for client devices are captured and persisted on the
device automatically. However, they are only sent when the client
successfully initializes with the MobileFirst Server (successful session start).

Analytics Logging
The client-logging feature enables developers to create logs to help debug

Monitoring and mobile operations 13-13

problems and capture errors. A separate API exists for creating logs that
are not meant for problem detection and capture:
WL.Analytics.log(object, message);

For example:
WL.Analytics.log({ "hello": "world" } , "This is an analytics log");

Logs that are created by the client-side logger are only captured based on
the logging level that is set. For example, DEBUG logs are not captured
when the logging level is set to FATAL. However, logs that are produced
by WL.Analytics.log are always captured, despite the current logging
level.

The metadata object that is passed into this method is searchable. However
the Analytics console does not make further use of the object beyond the
custom activities that are shown next. The primary purpose of the
metadata object is to allow developers to log custom JSON objects if they
wish to export analytics data into their own custom tool.

Crash reports
If you want uncaught exceptions recorded and sent to IBM MobileFirst
Platform Operational Analytics in your native iOS application, you can do
so by registering an uncaught exception handler.
NSSetUncaughtExceptionHandler(&unCaughtExceptionHandler);

Then you can implement your uncaught exception handler, utilizing
OCLogger to record information about the exception.
static void unCaughtExceptionHandler(NSException *e) {

[[OCLogger getInstanceWithPackage:@"example.package"] fatal:@"Uncaught Exception: %@. Reason: %@", e.name, e.reason];
}

Note that the logs will not get sent to the server until the application is
restarted and connects to the MobileFirst Server.

Custom Activities
The operational analytics console provides a page to view analytics for
custom activities. These activities can be created on the client-side by the
WL.Analytics API. Using the _activity key in the object for the
WL.Analytics call creates a new activity on the server. For example:
WL.Analytics.log({ "_activity" : "myCustomActivity" });

creates a new activity in the IBM MobileFirst Platform Operational
Analytics that can be searched on the Activities page of the analytics
console.

JSONStore Analytics
For more information about configuring the client to send analytics data
for JSONStore, see “JSONStore analytics” on page 8-450.

Client configurations

No additional client configurations are needed for client devices to forward
analytics data to the MobileFirst Server.

The Analytics Optional Feature is not required to be enabled on the client for
analytics in IBM MobileFirst Platform Foundation V6.3.0.

13-14 IBM MobileFirst Platform Foundation V6.3.0

The analyticsEnabled flag in the initOptions.js file is not required to be enabled
on the client for analytics in IBM MobileFirst Platform Foundation V6.3.0.

These configurations are only necessary if you are using the previous analytics
platform (IBM SmartCloud Analytics Embedded). If you are using the new IBM
MobileFirst Platform Operational Analytics in IBM MobileFirst Platform
Foundation V6.3.0, then these properties can be ignored.

Security for MobileFirst Operational Analytics
Learn about security with the IBM MobileFirst Platform Operational Analytics.

Protecting the analytics data entry point with basic authentication:

IBM MobileFirst Platform Operational Analytics is configured to protect the data
entry point by using basic authentication.

Default path protection

Data is sent from the MobileFirst Server to the IBM MobileFirst Platform
Operational Analytics when the following IBM MobileFirst Platform Foundation
property is set:
wl.analytics.url=http://<hostname>:<port>/worklight-analytics-service/data

The IBM MobileFirst Platform Operational Analytics exposes this path and it is
protected by default using basic authentication (user name and password).

Configuration of basic authentication

In the worklight-analytics-service WAR file, basic authentication is configured in
the WEB-INF/web.xml file. The default configuration has the following structure:
<!-- SECURITY ROLES -->
<security-role>
<role-name>worklightadmin</role-name>
</security-role>
<security-role>
<role-name>worklightdeployer</role-name>
</security-role>
<security-role>
<role-name>worklightmonitor</role-name>
</security-role>
<security-role>
<role-name>worklightoperator</role-name>
</security-role>

<!-- SECURITY CONSTRAINTS -->
<security-constraint>
<web-resource-collection>
<web-resource-name>allAccess</web-resource-name>

<url-pattern>/data/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>worklightadmin</role-name>
<role-name>worklightdeployer</role-name>
<role-name>worklightmonitor</role-name>
<role-name>worklightoperator</role-name>
</auth-constraint>
<user-data-contraint>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
</security-constraint>

Monitoring and mobile operations 13-15

<!-- AUTHENTICATION METHOD: basic auth -->
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>worklightRealm</realm-name>
</login-config>

Four roles are created (worklightadmin, worklightdeployer, worklightmonitor,
worklightoperator) and the data endpoint is protected from all requests made by
authenticated users not belonging to one of these roles.

Note: These role names also exist in the worklight-analytics WAR file, which
must also be edited if roles are added or changed.

Basic authentication credentials

In the worklight.properties file, set the wl.analytics.username and
wl.analytics.password values for basic authentication. For more information about
encrypting sensitive information in the worklight.properties file, see “Storing
properties in encrypted format” on page 11-52. After this configuration, the IBM
MobileFirst Platform Operational Analytics will not accept any incoming data
unless the request also contains the correct credentials. When the
wl.analytics.username and wl.analytics.password values are set, the MobileFirst
Server uses these credentials when it forwards data to the IBM MobileFirst
Platform Operational Analytics. For more information about IBM MobileFirst
Platform Foundation properties, see “MobileFirst properties” on page 13-40.

Note: This configuration protects only the /data path that accepts incoming data.
It does not protect the console.

Ports that are used by the IBM MobileFirst Platform Operational Analytics:

When the IBM MobileFirst Platform Operational Analytics is started, it listens on a
predefined port. In V6.3.0, it listens on ports 9500 and 9600. In the latest interim
fix, it listens on port 9600.

Port 9500 - HTTP Port
This port can be used for HTTP requests that are made directly to the IBM
MobileFirst Platform Operational Analytics. It is not required to be open
and should not be accessible from outside the cluster. It is important to
protect this port because foreign commands can be sent directly to the IBM
MobileFirst Platform Operational Analytics through this port. In V6.3.0,
this port is open by default. In the latest interim fix, this port is closed by
default. You can open this port by setting the http.enabled JNDI property
to true. For more information, see “Properties and configurations” on page
13-40.

Port 9600 - Transport Port
This port is used for communication between nodes in a cluster. This port
should be open to other nodes in the cluster for node communication to
work properly. This port should also not be accessible from outside the
cluster. This port is open by default.

These ports can be changed by using the following JNDI properties:
v httpport

v transportport

The following example shows how you can modify the ports.

13-16 IBM MobileFirst Platform Foundation V6.3.0

<jndiEntry jndiName="analytics/httpport" value="9700" />
<jndiEntry jndiName="analytics/transportport" value="9800" />

Production deployment and clustering
Most of the clustering functionality and logic is handled by the IBM MobileFirst
Platform Operational Analytics. It is not necessary to do any additional work to
cluster the application server that the IBM MobileFirst Platform Operational
Analytics is running on. The application servers are only necessary to host the IBM
MobileFirst Platform Operational Analytics and do not require special
configuration for clustering.

Creating an IBM MobileFirst Platform Operational Analytics cluster can be scoped
down to the following steps:
1. Configure the master node or nodes.
2. Set the number of shards.
3. Set the number of replicas.
4. Add a node to the cluster.
5. Point the new node to the master node or nodes.

It is important to fully understand how the clustering works for the IBM
MobileFirst Platform Operational Analytics before you create the cluster.

Clustering terminology:

Learn about clustering terminology for the IBM MobileFirst Platform Operational
Analytics.

Cluster
A collection of one or more master and data nodes.

Master Node
Coordinator of the cluster. Manages the distribution of shards and keeps
track of all nodes in the cluster. There can be more than one master node.
If a master node fails, then a new node that is marked as a master node is
automatically elected as a new master node. The cluster cannot operate
without at least one master node.

Data Node
Workhorse of the cluster. Stores data and processes incoming search and
index requests. A node can act as both a data node and a master node.

Shard Each data node stores data in a shard. For more information about shards,
see “Understanding shards” on page 13-18.

Replica shard
Each shard can have any number of replicas. Replicas are used to ensure
high availability in the case that a node is no longer available. For more
information about replicas, see “Understanding replicas” on page 13-24.

The following image shows a basic clustering topology:

Monitoring and mobile operations 13-17

Note: Data can be forwarded from the MobileFirst Server to any node in the
server. The MobileFirst Server does not have to point to a master node.

In development, a cluster that contains one node and one shard is sufficient. The
single node acts as the master and data nodes.

In production, it is ideal to have multiple nodes that perform specific functions to
ensure high availability and performance.

Understanding shards:

Learn about shards in the IBM MobileFirst Platform Operational Analytics.

It is important to carefully consider setting the number of shards when you set up
a cluster. The number of shards can be set only once, by the first node in the
cluster. If the number of shards must be changed later, you must completely
reindex all of the data that is stores in the IBM MobileFirst Platform Operational
Analytics.

Ideally, the number of shards is equal to the maximum number of nodes that the
cluster eventually expands to. Because the maximum number of nodes that are
needed is often unknown at installation time, it is a common practice to create
more shards than needed.

The following images show how sharding works.

Here is a cluster with one node and six shards. Because there is only one node, all
six shards live on the same node. The single node handles all requests and data
processing.

13-18 IBM MobileFirst Platform Foundation V6.3.0

After several months of use, requests that are made to the cluster begin to perform
poorly. It is determined that a single node is no longer adequate to handle
processing for all of the incoming data. A new node is added to the cluster.

After a new node is added, the shards are automatically evenly distributed across
all of the nodes.

Monitoring and mobile operations 13-19

Now when a request comes in to either node, the request is forwarded to the node
that has the shard that contains the data. The data indexing and processing is now
split between the two nodes. Because the requests and data processing is now split
between the nodes, the performance and response times improve.

13-20 IBM MobileFirst Platform Foundation V6.3.0

After several months, requests begin to slow down again, and it is determined that
a third node is required.

Monitoring and mobile operations 13-21

The shards are split between the three nodes.

13-22 IBM MobileFirst Platform Foundation V6.3.0

This process repeats itself until there are six nodes, which each contains one shard.
It is now no longer possible to add more nodes because each shard contains only
one node.

Monitoring and mobile operations 13-23

If it is determined that six nodes are no longer sufficient to handle the incoming
data load, a new cluster must be set up. The data must then be reindexed with a
larger shard limit.

It is important to understand that the distribution of the shards happens
automatically. The only configuration that must be made for shards is specifying
the number of shards at installation time.

A small performance hit comes with having more than one shard per node.
Although this performance hit is often negligible, the cluster should not be
configured with an arbitrarily large number of shards.

Understanding replicas:

Learn about replicas in the IBM MobileFirst Platform Operational Analytics.

Shards contain the actual data that is sent from the MobileFirst Server. The master
node keeps track of which shards are on which nodes so that it can evenly
distribute incoming requests. Because of the way shards are distributed among
nodes, performance can be increased by adding another node and allowing the
shards to be distributed.

But what happens if a node fails? The data that was stored in the lost shards is no
longer available. Incoming analytics data might no longer be indexable. Search
requests for data on a particular shard fail. To increase shard availability to avoid
these problems, you can create a replica of each shard. By using JNDI properties,

13-24 IBM MobileFirst Platform Foundation V6.3.0

you can tell the IBM MobileFirst Platform Operational Analytics to create a
specified number of replicas for each shard.

The following images show how replicas work.

Here is a cluster with one node, three shards, and one replica for each shard.

In this case, the replicas are redundant. Because there is only one node, having a
replica exist on the same node does not accomplish anything. If the single node
fails, the shards and replicas are all lost.

Now two more nodes are added to the cluster to improve performance:

Monitoring and mobile operations 13-25

Notice that the shards and replicas are both automatically distributed evenly
among the nodes. Now consider the scenario where a node fails due to a network
or hardware issue.

13-26 IBM MobileFirst Platform Foundation V6.3.0

The analytics cluster can still operate normally because a replica of the lost shards
still exists on one of the remaining nodes.

Monitoring and mobile operations 13-27

13-28 IBM MobileFirst Platform Foundation V6.3.0

When the failed node comes back online and rejoins the cluster, the shards and
replicas are again evenly distributed. The cluster returns to the state it was in
before one of the nodes failed.

But what happens when two of the nodes fail simultaneously?

Monitoring and mobile operations 13-29

The cluster cannot operate normally. Even with one replica per shard, if two nodes
were to fail, you would still lose information that was stored in the lost shards.

The answer to this problem is to use two replicas per shard.

13-30 IBM MobileFirst Platform Foundation V6.3.0

Now even when two nodes fail, all of the data is available and the cluster can still
operate normally.

Having replica shards can also increase performance because an incoming request
can be handled by either a primary or replica shard.

The ideal number of replicas for each shard varies based on several factors such as:
v Hardware limitations.
v Availability requirements.
v Clustering topology.

Setting up a production cluster:

You can set up a production cluster for operational analytics.

Before you begin

For a production cluster, do not run the IBM MobileFirst Platform Operational
Analytics on the same server as the MobileFirst Server. The IBM MobileFirst
Platform Operational Analytics uses a large amount of the computer's processor
and memory resources. Each node should run on a separate server.

If you are deploying to a WebSphere Application Server cluster, also see
“Deploying in a clustered WebSphere Application Server environment” on page
13-33.

Monitoring and mobile operations 13-31

About this task

To set up your production cluster, follow these steps.

Procedure

1. Set the heap size for the application server. The heap size has a very significant
impact on the performance of the IBM MobileFirst Platform Operational
Analytics. The heap size must be set on each application server that is hosting
a node. The -Xms Java option sets the minimum heap size value. The -Xmx Java
option sets the maximum heap size value. For example, to reserve 8 GB of
memory for the IBM MobileFirst Platform Operational Analytics, set the
following Java options:
-Xms8G -Xmx8G

Note:

v The minimum heap size for a production server is 8 GB.
v Do not allocate more than half of the system memory to the application

server that is running the IBM MobileFirst Platform Operational Analytics.
v Set the minimum and maximum heap size to the same value for an

application server that is hosting the IBM MobileFirst Platform Operational
Analytics.

For an IBM MobileFirst Platform Operational Analytics that runs on a server
with 32 GB of RAM, the optimal heap size is:
-Xms16G -Xmx16G

2. Configure the first node in the cluster. The first node in the cluster is important
because some properties can be set only by this node. It is important to ensure
that the settings for the node are present before you start the application
servers. The first node in a cluster must be a master node. A master node can
also act as a data node.
a. Configure the node to be a master node. Set the nodetype JNDI property to

master.
<jndiEntry jndiName="analytics/nodetype" value="master" />

Note: By default, a node acts as a master and data node. If you want to
create a node that acts as both a master and a data node, the node type
does not need to be set.

b. Set the number of shards. Set the shards JNDI property to the number of
shards you want.
<jndiEntry jndiName="analytics/shards" value="10" />

c. Set the number of replicas. Set the replicas_per_shard JNDI property to the
number of replicas you want.
<jndiEntry jndiName="analytics/replicas_per_shard" value="2" />

After all of the JNDI properties are set, the application server can be started.
3. Add a node to an existing cluster.

a. Set the node type. Set the nodetype JNDI property to either master or data.
<jndiEntry jndiName="analytics/nodetype" value="master" />
<jndiEntry jndiName="analytics/nodetype" value="data" />

Note: By default, a node acts as a master and data node. If you want to
create a node that acts as both a master and a data node, the node type
does not need to be set.

13-32 IBM MobileFirst Platform Foundation V6.3.0

Note: If you are deploying to a WebSphere Application Server cluster, do
not set the nodetype JNDI property. All nodes in the WebSphere Application
Server cluster must act as master and data nodes.

b. Provide a list of the master nodes. Set the masternodes JNDI property to a
comma delimited list of host names for the master node.
<host>:<transport-port>,<host>:<transport-port>

The default transport port is 9600. You can change this value by using a
JNDI property. For more information about the transport port, see “Ports
that are used by the IBM MobileFirst Platform Operational Analytics” on
page 13-16.
For example:
<jndiEntry jndiName="analytics/masternodes"

value="master1.ibm.com:9600,master2.ibm.com:9600" />

4. Configure the worklight.properties file. Set the wl.analytics.url property to
point to any of the nodes (can point to a master or data node).
wl.analytics.url=http://<hostname>:<port>/worklight-analytics-service/data

Results

You have set up a production cluster.

Note:

A node that is set as a pure data node cannot run on its own without a master
node. The masternodes JNDI property must be set and must point to an active
master node.

A node that is set as a pure master node cannot store data. Any attempts to store
or view data from a master node fails until a data node connects to it.

Data nodes are active, which makes them more prone to network and hardware
failures. If a data node fails, the cluster can still operate normally if the other data
nodes are alive. If the master node or nodes fail, then the cluster cannot operate.
Data nodes can communicate with only each other through master nodes. This
behavior is why it is important to consider having separate master nodes that can
run on servers with fewer chances for failure.

The same version of Java must be installed on all nodes in the cluster. Using
different versions of Java for different nodes causes the cluster to fail.

Deploying in a clustered WebSphere Application Server environment:

You can deploy the Analytics Platform in a clustered WebSphere Application
Server environment.

Before you begin

Note: In previous topics, the term node is used as a general term to define a
separate machine that runs an instance of the Analytics Platform. The term node is
used here to identify a node in a WebSphere Application Server cluster.

About this task

All clustering is handled by the Analytics Platform regardless of the topology that
is configured in WebSphere Application Server. You must determine which

Monitoring and mobile operations 13-33

machines in the cluster you want to be the master nodes and define them through a
JNDI property. The list of master nodes are passed down to the WAR file, where
the distribution of analytics data within the cluster is handled.

To use the Analytics Platform in a clustered environment on WebSphere
Application Server, follow these steps.

Procedure

1. Identify the machines in the cluster that you want to be the master nodes and
record their IP addresses or host names.

2. Deploy the analytics WAR file to the WebSphere Application Server cluster. Do
not start the web application yet.

3. Set the JNDI property for masternodes to a comma-separated list of the nodes
in the cluster that you want to be the host name. The following example shows
possible values for the JNDI property:
<hostname>:<port>,<hostname>:<port>,<hostname>:<port>

192.168.1.32:9600,192.168.1.8:9600

clusterhost1:9600,clusterhost2:9600,clusterhost3:9600

Note: The port value is the transport port, which by default is 9600. You can
change this port through the JNDI property. For more information, see “Ports
that are used by the IBM MobileFirst Platform Operational Analytics” on page
13-16.
The following image shows the environment entries for web modules:

4. Set the remaining JNDI properties. For more information about the JNDI
properties, see “Properties and configurations” on page 13-40.

13-34 IBM MobileFirst Platform Foundation V6.3.0

5. Open the analytics console page on each cluster. When the console is accessed,
each node in the cluster establishes a connection with each node listed in the
masternodes list.

Results

You deployed the Analytics Platform in a clustered WebSphere Application Server
environment.

Note: When you install analytics on WebSphere Application Server, a profile can
contain multiple servers. Each server can have multiple analytics WAR files. By
default, each of these WAR files points to the same directory to store analytics
data. Normally, a JNDI property is used to change the location of the directory that
is used to store analytics data. However, in this case, each server shares the same
JNDI property. Because of this scenario, you must use WebSphere Application
Server variables to define the location of the data directory when you set the JNDI
property for the analytics data folder. The following example shows how you can
set the JNDI property with the variables:
${USER_INSTALL_ROOT}/MFPAnalyticsDir/${WAS_SERVER_NAME}/AnalyticsData

Performance tuning:

Learn about performance tuning for the IBM MobileFirst Platform Operational
Analytics.

MobileFirst throughput-tuning

You can tune the amount of data that is held on the MobileFirst Server to balance
the risk of data loss against the risk of overloading the IBM MobileFirst Platform
Operational Analytics. When Analytics data is sent from the client, it is bundled
together and placed in a queue on the MobileFirst Server. When a queue is filled
up on the MobileFirst Server, it posts that data to the Analytics Platform. Then, the
queue is emptied.

You can use the following two parameters in the JNDI configuration for
throughput-tuning:
v wl.analytics.queues

v wl.analytics.queue.size

The wl.analytics.queues parameter determines the maximum number of queues
that the MobileFirst Server holds in memory. If all of the queues fill up before they
post to the Analytics Platform, the MobileFirst Server drops the most recently
received data.

The wl.analytics.queue.size parameter is the number of individual elements that
each queue can hold. Adjustment of these parameters affects:
v Memory that is used by the server.
v Frequency of POSTs to the IBM MobileFirst Platform Operational Analytics.

The following image shows the data accumulation on the MobileFirst Server:

Monitoring and mobile operations 13-35

The number of individual analytics events that the server holds at one time is
wl.analytics.queues * wl.analytics.queue.size. Take this fact into consideration
when you define these two parameters. If you set them too low, large amounts of
analytics data can be dropped if the server is unusually busy. If you set them too
high, too much memory can be used on the MobileFirst Server.

Java virtual machine (JVM) swapping

The underlying technology that is used by the IBM MobileFirst Platform
Operational Analytics is called Elasticsearch. Elasticsearch performs poorly when
the JVM starts swapping. To ensure that the JVM never swaps, the following JNDI
property can be set to true:
<jndiEntry jndiName="analytics/bootstrap.mlockall" value="true" />

Setting the Field Cache Size

The underlying technology used by the analytics platform loads several field
values into memory to provide fast access to those documents. This is known as
the field cache. By default, the amount of data loaded into memory by the field
cache is unbounded. If the field cache becomes too large, it can cause an out of
memory exception and crash the analytics platform. You can put an upper limit on
the field cache to prevent this from happening. The field cache can be set using the
following JNDI property:
<jndiEntry jndiName="analytics/indices.fielddata.cache.size" value="80%"/>
<jndiEntry jndiName="analytics/indices.fielddata.cache.size" value="10GB"/>

13-36 IBM MobileFirst Platform Foundation V6.3.0

Note: The field cache can be set using a hardcoded value (such as 10GB) or it can
be set to a percentage of the heap (such as 80%).

Placing an upper limit on the cache will prevent the field cache from causing an
out of memory exception. However, when the limit is reached, the analytics
platform will begin to take longer to perform search queries. At this point, you can
either add additional memory to your machine or add an additional node to your
cluster.

Administration
Learn about the administrative aspects of the IBM MobileFirst Platform
Operational Analytics.

Multi-tenancy:

Learn about multi-tenancy in the IBM MobileFirst Platform Operational Analytics.

Several instances of MobileFirst Server can be configured to send analytics data to
the same analytics cluster. All of the data is indexed together, which means that all
charts and queries that are performed on the analytics server reflect data that was
sent from every MobileFirst Server. If you want to use the same analytics cluster
for multiple instances of MobileFirst Server, but also want the data to be indexed
separately so that it can be searched and viewed separately, you can add a tenant.

Servers can be configured to send their data to a new tenant on the analytics
cluster so that the data can be viewed separately, even though all of the data lives
on the same cluster.

To forward data to a different tenant, append the following format to the
wl.analytics.url property on the MobileFirst Server:
?tenant=<tenant-name>

For example, if you want to send data to the default tenant, set the
wl.analytics.url property as follows:
wl.analytics.url=http://host.ibm.com/analytics-service/data

If you want to send data to a new tenant that is named test, set the
wl.analytics.url property as follows:
wl.analytics.url=http://host.ibm.com/analytics-service/data?tenant=test

To view the analytics data for a specific tenant, append the same format to the
URL for the analytics console:
http://host.ibm.com/analytics/console?tenant=test

Data purging:

Learn about data purging in the IBM MobileFirst Platform Operational Analytics.

By default, data that is stored in the Analytics Platform is not automatically
deleted. To enable automatic purging of data, the time to live (TTL) property must
be set for each data type.

The TTL for analytics data types that are stored in the Analytics Platform can be
set by using JNDI properties. For more information about analytics data types, see
“Operational analytics” on page 13-11.

Monitoring and mobile operations 13-37

The following table shows the TTL properties:

Table 13-6. TTL properties for purging data that is stored in the Analytics Platform. This
table lists TTL property names and description for purging data that is stored in the
Analytics Platform.

Property Name Description

app_activities_ttl Time to live for app activities, such as
session starts, adapter hits, and network hits.

notification_activities_ttl Time to live for notification activities, such
as push notifications.

client_logs_ttl Time to live for client logs, such as
client-side captured logs, and stack traces.

server_logs_ttl Time to live for server logs.

Note: All JNDI properties must be preceded with the analytics/ string. For more
information about JNDI properties, see “JNDI properties” on page 13-40.

By default, the format for the TTL is in milliseconds. TTL can also be set by using
a number followed by a character that represents the time interval:
v d (days)
v m (minutes)
v h (hours)
v ms (milliseconds)
v w (weeks)

The following example shows how to set the app activities data TTL to one day in
milliseconds:
<jndiEntry jndiName="analytics/app_activities_ttl" value="86400000" />

The following example shows how to set the client logs data TTL to five days:
<jndiEntry jndiName="analytics/client_logs_ttl" value="5d" />

The following example shows how to set the server logs TTL to one week:
<jndiEntry jndiName="analytics/server_logs_ttl" value="1w" />

Note: The TTL properties are not applied to data that already exists in the
Analytics Platform. You must set the TTL properties before you add data.

Exporting raw reports:

Learn about exporting raw reports in the IBM MobileFirst Platform Operational
Analytics.

Raw analytics data can be exported from the IBM MobileFirst Platform Operational
Analytics for the following types of data:
v Application session data
v Adapter invocation data
v JSONStore operation data

This data can be exported through a REST API that is exposed by the IBM
MobileFirst Platform Operational Analytics. Currently, the supported export
formats include JSON and CSV.

13-38 IBM MobileFirst Platform Foundation V6.3.0

Exporting application sessions

The following example shows the format for exporting analytics data for
application sessions:
/export/{tenant}/sessions/{days}/{gadgetName}/{gadgetVersion}/{env}/{model}/{os}/{limit}/{offset}/{accept}

You can place a * character for {gadgetName}, {gadgetVersion}, {env}, {model}, and
{os} only. Explicit values for {tenant}, {days}, {limit}, {offset}, and {accept}
must be provided.

If the analytics console is hosted here:
http://hostname.ibm.com:9080/analytics

Then, session data can be exported by invoking the following link:
http://hostname.ibm.com:9080/analytics/data/export/{tenant}/sessions/{days}/{gadgetName}/{gadgetVersion}/{env}/{model}/{os}/{limit}/{offset}/{accept}

For example, by using the curl command-line tool:
curl "http://hostname.ibm.com:9080/analytics/data/export/worklight/sessions/30/TestApp/*/iphone/*/7.0/100/0/csv"

This previous curl command exports data from the tenant that is named worklight
for all versions of the application that is called TestApp for the last 30 days. It
returns only data for the iPhone environment, for all models of the iPhone, and
only for iOS 7.0. It returns the first 100 results that are found and start with the
first result (limit = 100, offset = 0).

Note:

v The default tenant is worklight. If you did not configure a specific tenant for the
IBM MobileFirst Platform Operational Analytics, then use worklight.

Exporting adapter invocations

The following example shows the format for exporting analytics data for adapter
invocations:
/export/{tenant}/adapters/{days}/{adapter}/{procedure}/{gadgetName}/{gadgetVersion}/{env}/{model}/{os}/{limit}/{offset}/{accept}

You can place a * character for {adapter}, {procedure}, {gadgetName},
{gadgetVersion}, {env}, {model}, and {os} only. Explicit values for {tenant},
{days}, {limit}, {offset}, and {accept} must be provided.

For example, by using the curl command-line tool:
curl "http://hostname.ibm.com:9080/analytics/data/export/worklight/adapters/10/UploadAdapter/uploadProcedure/TestApp/1.0/android/nexus/4.4/10/0/csv"

Exporting JSONStore operation data

The following example shows the format for exporting analytics data for
JSONStore operation data:
/export/{tenant}/jsonstore/{days}/{gadgetName}/{gadgetVersion}/{env}/{model}/{os}/{collection}/{operation}/{limit}/{offset}/{accept}

You can place a * character for {gadgetName}, {gadgetVersion}, {env}, {model},
{os}, {collection}, and {operation} only. Explicit values for {tenant}, {days},
{limit}, {offset}, and {accept} must be provided.

For example, by using the curl command-line tool:
curl "http://hostname.ibm.com:9080/analytics/data/export/worklight/jsonstore/100/*/*/iphone/*/*/people/add/100/50/csv"

Monitoring and mobile operations 13-39

Properties and configurations
Learn about the properties and configurations that are used for configuring the
MobileFirst Server and IBM MobileFirst Platform Operational Analytics.

MobileFirst properties

These properties can be set on the MobileFirst Server in the worklight.properties
file. The server must be restarted for these properties to take effect.

Note: All properties in the worklight.properties file can also be set by using
JNDI properties. For more information about JNDI properties, see “Configuring a
MobileFirst project in production by using JNDI environment entries” on page
11-56.

For more information about the IBM MobileFirst Platform Operational Analytics
properties, see “Analytics” on page 11-49.

JNDI properties

JNDI environment properties can bet set on the application server. For a clustered
environment, some properties can be set only on the first node in the cluster. For
more information, see “Setting up a production cluster” on page 13-31. The
Analytics runtime web application must be restarted for any changes in these
properties to take effect. It is not necessary to restart the entire application server.

All JNDI properties are namespaced with analytics/.

The following example shows how to set the datapath JNDI property in Liberty:
<jndiEntry jndiName="analytics/datapath" value="/opt/IBM/analytics/data" />

The following example shows how to set the datapath JNDI property in Tomcat:
<Environment name="analytics/datapath"

value="/opt/IBM/analytics/data"
type="java.lang.String"
override="false" />

Note: For Tomcat, the JNDI property must include the override="false" attribute
to work properly.

The following table shows the JNDI properties:

Table 13-7. JNDI properties for the IBM MobileFirst Platform Operational Analytics. This
table lists the JNDI property names, default values, and descriptions for the IBM MobileFirst
Platform Operational Analytics.

Property Name Default Value Description

nodetype None. Defines the node type. Valid
values are master and data.
If this JNDI property is not
set, then the node acts as a
master node and a data node
by default.

13-40 IBM MobileFirst Platform Foundation V6.3.0

Table 13-7. JNDI properties for the IBM MobileFirst Platform Operational
Analytics (continued). This table lists the JNDI property names, default values, and
descriptions for the IBM MobileFirst Platform Operational Analytics.

Property Name Default Value Description

shards 5 The number of shards per
index that the cluster creates.
This value can be set only by
the first node in a cluster.
This value can never be
changed after the first node
in the cluster starts.

replicas_per_shard 1 The number of replicas for
each shard in the cluster.
This value can be set only by
the first node in a cluster.

masternodes None. A comma-delimited string
that contains the hostname
and ports of the master
nodes. For more information
about this property, see
“Setting up a production
cluster” on page 13-31.

clustername worklight Name of the cluster. Set this
value if you plan to have
multiple clusters and want to
uniquely identify them.

nodename Randomly generated. Name of a node in a cluster.
A node that joins a cluster
randomly generates a name
to uniquely identify itself.
You can specify your own
name by using this property.

datapath ./analyticsData The path that analytics data
is saved to on the file
system. By default, a folder
that is named analyticsData
is created.

settingspath None. Specifies the path to an extra
settings file. For more
information, see
“Elasticsearch properties” on
page 13-42.

transportport 9600 Port that is used for
node-to-node
communication. For more
information, see “Ports that
are used by the IBM
MobileFirst Platform
Operational Analytics” on
page 13-16.

Monitoring and mobile operations 13-41

Table 13-7. JNDI properties for the IBM MobileFirst Platform Operational
Analytics (continued). This table lists the JNDI property names, default values, and
descriptions for the IBM MobileFirst Platform Operational Analytics.

Property Name Default Value Description

httpport 9500 Port that is used for HTTP
communication to the IBM
MobileFirst Platform
Operational Analytics. For
more information, see “Ports
that are used by the IBM
MobileFirst Platform
Operational Analytics” on
page 13-16.

http.enabled true (V6.3.0)

false (latest interim fix)

Controls whether
Elasticsearch can be queried
directly by using the HTTP
Port. If false, the port that is
specified by the JNDI value
httpport is not opened, and
Elasticsearch is not accessible
by using HTTP.

app_activities_ttl None. The TTL for automatic
deletion of app activities
data.

notification_activities_ttl None. The TTL for automatic
deletion of notification
activities data.

client_logs_ttl None. The TTL for automatic
deletion of client logs data.

server_logs_ttl None. The TTL for automatic
deletion of server logs data.

serviceProxyURL None This property enables the
IBM MobileFirst Platform
Operational Analytics
console to locate the
Analytics REST services. The
value of this property must
be specified as the external
address and context root of
the worklight-analytics-
service.war web application.

Elasticsearch properties

Elasticsearch is the underlying technology that is used by the IBM MobileFirst
Platform Operational Analytics. Elasticsearch provides several extra properties for
performance tuning. The JNDI properties that are exposed and documented here
are abstractions around the properties that are provided by Elasticsearch. Normally,
these properties are set in a custom settings file.

If you are familiar with Elasticsearch and the format of its properties files, you can
specify the path to the settings file by using the settingspath JNDI property:
<jndiEntry jndiName="analytics/settingspath"

value="/home/system/elasticsearch.yml" />

13-42 IBM MobileFirst Platform Foundation V6.3.0

All properties that are provided by Elasticsearch can also be set by using a JNDI
property with the analytics/ string added before the property name. For example,
threadpool.search.queue_size is a property that is provided by Elasticsearch that
is used for performance tuning. This property can be set by using a JNDI property
as follows:
<jndiEntry jndiName="analytics/threadpool.search.queue_size" value="100" />

Reports database
IBM MobileFirst Platform Foundation provides an extensible mechanism for
enterprises to use to integrate reporting tools with IBM MobileFirst Platform
Foundation.

IBM MobileFirst Platform Foundation provides raw data reports and a number of
device reports that are aggregated from the raw data report table. IBM MobileFirst
Platform Foundation also comes bundled with a third-party Business Intelligence
Report Tools (BIRT) feature, which provides a range of predefined report
templates. To understand the similarities and differences between the existing
reports feature and the new operational analytics feature, see “Comparison of
operational analytics and reports features” on page 13-10.

Note: Enabling the BIRT feature is redundant if you already use the IBM
MobileFirst Platform Operational Analytics.

IBM MobileFirst Platform Foundation provides three reporting mechanisms:

Raw data feeds
IBM MobileFirst Platform Foundation emits raw data, which enables an
OLAP system to extract the required information and present it through
corporate reporting mechanisms. For more information, see “Using raw
data reports” on page 13-44.

Device usage reports
IBM MobileFirst Platform Foundation provides reports about device
usage. Device usage reports are default aggregations that are based on raw
data, and are provided for the benefit of organizations that do not have
OLAP systems or choose not to integrate IBM MobileFirst Platform
Foundation with an OLAP system. For more information, see “Device
usage reports” on page 13-48.

Note: Device usage reports are functional only in IBM MobileFirst
Platform Foundation Customer Edition and IBM MobileFirst Platform
Foundation Enterprise Edition.

BIRT reports
IBM MobileFirst Platform Foundation comes bundled with predefined
BIRT report to use either as they are or as templates to modify. For more
information, see “Predefined BIRT Reports” on page 13-50.

Monitoring and mobile operations 13-43

The reports architecture diagram shows how the raw data feed comes from three
devices into the MobileFirst Server and then into the IBM MobileFirst Platform
Foundation database, the Reports database, or both. From the Reports database,
data then becomes aggregated data and is filtered out into the BIRT reports or to
other reporting tools.

Important: When you work with report generation, you must update the
.rptdesign file with your reports database user name and password, which are
considered sensitive information. You are responsible for protecting it against
unauthorized access.

Using raw data reports
You can use the raw data reports feature to extract raw data to different databases
and view it in the form of reporting tables.

Figure 13-1. High-level overview of the reports architecture

13-44 IBM MobileFirst Platform Foundation V6.3.0

About this task

Raw data reports provide you with analytics information about your applications
and adapter usage, such as activity type, device information, and application
version. Use the following steps to enable the raw data reports feature:

Procedure
1. Ensure that the IBM MobileFirst Platform Server application server is not

running.
2. Create a separate database or a new schema for reports. This action is not

mandatory but is useful because the raw data table is rapidly populated. For
information about creating databases in a development environment, see
“Runtime database setup for development mode” on page 11-47. For
information about creating databases and schemas in a production
environment, see “Creating and configuring the databases manually” on page
11-17.

3. When you work in a development environment, complete the following steps.
a. Edit the worklight.properties file. Uncomment the reports.exportRawData

property and set its value to true.
b. Modify the wl.reports.db properties to contain your database settings as

shown in the following example.
###
Raw reports
###
reports.exportRawData=true
jndi name; empty value means Apache DBCP data source
#wl.reports.db.jndi.name=${wl.db.jndi.name}
Default values for DBCP connection pool
#wl.reports.db.initialSize=${wl.db.initialSize}
#wl.reports.db.maxActive=${wl.db.maxActive}
#wl.reports.db.maxIdle=${wl.db.maxIdle}
#wl.reports.db.testOnBorrow=${wl.db.testOnBorrow}
wl.reports.db.url=jdbc:mysql://localhost:3306/wlreport
wl.reports.db.username=worklight
wl.reports.db.password=worklight

c. Ensure that the wl.reports.db.url property contains the URL of the
database you are planning to use for raw data.

4. When you work in a production environment, connect to the reports database
by using JNDI environment entries in addition to editing the
worklight.properties file, as described in the previous step. See “Configuring
a MobileFirst project in production by using JNDI environment entries” on
page 11-56.

5. Restart your application server.
The app_activity_report table of the raw data database is populated with data
as you use your applications and adapters.

Monitoring and mobile operations 13-45

The raw data app_activity_report table contains the following information:

Column Description

ACTIVITY_TIMESTAMP UTC time of entry

GADGET_NAME MobileFirst Application name

GADGET_VERSION Application version

ACTIVITY Activity type

ENVIRONMENT Application environment name (Android,
and so on)

SOURCE User identifier

ADAPTER MobileFirst adapter name

PROC MobileFirst adapter procedure name

USERAGENT User agent from HTTP header of client
device

SESSION_ID A unique identifier for the user's session on
the server

IP_ADDRESS IP address of the client

DEVICE_ID A unique device ID

DEVICE_MODEL Manufacturer model, for example Galaxy
I9000

DEVICE_OS Device operating system version

LONGITUDE The longitude of the device. Requires that
ongoing acquisition is enabled for Geo.

LATITUDE The latitude of the device. Requires that
ongoing acquisition is enabled for Geo.

POS_USER_TIME The local time on the device when the latest
position information (longitude and latitude)
were updated. Requires that ongoing
acquisition is enabled for Geo.

WIFI_APS The access points visible on the device.
Requires that ongoing acquisition is enabled
for WiFi.

13-46 IBM MobileFirst Platform Foundation V6.3.0

Column Description

WIFI_CONNECTED_SSID The SSID (network identification) of the
connected WiFi access point. Requires that
ongoing acquisition is enabled for WiFi.

WIFI_CONNECTED_MAC The MAC address of the connected WiFi
access point. Requires that ongoing
acquisition is enabled for WiFi.

WIFI_USER_TIME The local time on the device when the latest
WiFi information was updated. Requires that
ongoing acquisition is enabled for WiFi.

APP_CONTEXT The application context, as set by
WL.Server.setApplicationContext.

The following activities can be included in reports:

Activity Description

Init Application initialization

Login Successful authentication in using the
application

Adoption New Not supported in IBM Worklight V5.0

Adoption Not supported in IBM Worklight V5.0

Query Procedure call to an adapter

Logout User logout

Event An event handler was called

In addition to predefined activity types, custom activities can be logged by
using WL.Client.logActivity("custom-string") APIs.
When the activity is Event, the reporting information comes from the event
device context instead of WL.Server.getClientDeviceContext. Also, when the
activity is Event the PROC column gives the name of the event handler function
that was called.

Important: MobileFirst raw data feed can increase rapidly. The data is typically
used by a BI system such as Cognos® or Business Objects. It is the
administrator's responsibility to purge built-in tables periodically. For example,
the following commands delete Oracle database rows that are more than 30
days old from the activities_cube and app_activity_report tables. For other
databases such as MySQL, modify the syntax appropriately.

To delete rows from activities_cube that are more than 30 days old (assuming
ACTIVITY_DATE is a DATE type field):

DELETE FROM ACTIVITIES_CUBE WHERE ACTIVITY_DATE <= TRUNC(SYSDATE) - 30

To delete rows from app_activity_report that are more than 30 days old
(assuming ACTIVITY_TIMESTAMP is a TIMESTAMP type field):

DELETE FROM APP_ACTIVITY_REPORT WHERE ACTIVITY_TIMESTAMP <= TO_TIMESTAMP(TRUNC(SYSDATE) - 30)

Purging data by deleting rows might fail on heavily loaded systems. An
alternative approach is to use database table partitions to facilitate the purging
of accumulated data. For more information, see “Optimization of MobileFirst
Server project databases” on page 6-121.
In addition to the app_activity_report table, the raw data engine also
populates the notification_report table. This raw data table contains

Monitoring and mobile operations 13-47

information about notifications that are sent from SMS event sources.

Device usage reports
For simpler and faster access to the reports data, IBM MobileFirst Platform Server
runs an analytics data processor task at a default time interval of every 24 hours.

The analytics data processor task retrieves raw entries for the specified time
interval from the app_activity_report table and processes them to populate the
fact_activities table.

Note: The fact_activities table is only populated with usage data from hybrid
and native applications from actual devices. Usage data from MobileFirst mobile
web applications that are running on actual devices or from a browser, such as
when you are using preview, is not populated into this table.

13-48 IBM MobileFirst Platform Foundation V6.3.0

The fact_activities table contains a total activity count (number of logged
actions) per application, application version, device, and environment. The
fact_activities data is also processed and put into the activities_cube table.
This table has the same structure as the fact_activities table and only contains
records for the last 30 days.

Monitoring and mobile operations 13-49

Each time the data processing is done, a time stamp is added to a proc_report
table with the processing result (time stamp and number of processed entries).

In addition, notification_report table data is also processed to populate the
notification_activities table with consolidated data. The table is populated in
the same way as the fact_activities table. Every time the notification_report
table data is processed, an entry is added to the notification_proc_report table,
which is similar to the proc_report table.

The processing interval can be modified by adding the following property to your
worklight.properties file and setting the required interval in seconds.
Default interval value for analytics processing task
wl.db.factProcessingInterval=86400

The processing interval can also be disabled by setting this property to a negative
value.
Set to a negative value to disable the analytics processing task
wl.db.factProcessingInterval=-1

Predefined BIRT Reports
You can use predefined BIRT reports to generate and display information about
mobile devices and usage.

13-50 IBM MobileFirst Platform Foundation V6.3.0

IBM MobileFirst Platform Foundation generates raw reports, which are stored in
an app_activity_report table. IBM MobileFirst Platform Foundation also includes
device usage reports, which are aggregations of data from the
app_activity_report, and are described in “Device usage reports” on page 13-48
and “Using raw data reports” on page 13-44. Users can view or extract data from
the app_activity_report table or from the device usage reports, and process it
using their own business intelligence systems.

For users with no existing business intelligence analysis system, IBM MobileFirst
Platform Foundation provides a selection of predefined Business Intelligence
Reporting Tool (BIRT) reports. BIRT is a third-party tool, and is not created or
supported by IBM. IBM MobileFirst Platform Foundation provides several
*.rptdesign files that contain logic to connect to the reports database, pull data
from device usage tables, process, and display the data.

IBM MobileFirst Platform Foundation Consumer Edition and MobileFirst
Enterprise Edition include the following predefined BIRT reports:

Table 13-8. Predefined BIRT reports

Report Name Description Report file name

Active Users Active users in last 30
days.

report_active_users.rptdesign

Daily Hits The daily aggregated
hits for last 30 days.
Any action from the
user/device that
caused a request to the
server is counted as a
hit. This number,
aggregated over a day,
equals the daily hits.

report_daily_hits.rptdesign

Daily Visits The number of
discreet visits by
separate user/device
in last 30 days. All
actions by a
user/device that
caused one or more
requests to the server
within a day is
counted as a visit.

report_daily_visits.rptdesign

Environment
Usage

Application version
and application
environment used:
number of visits that
were recorded in the
last 30 days.

report_environment_usage.rptdesign

New Devices A record of unique
devices that were
connected in the last
30 days.

report_new_devices.rptdesign

Notification
Messages Per
Day

Number of messages
sent each day in the
past 90 days per data
source.

report_notification_messages_per_day.rptdesign

Monitoring and mobile operations 13-51

Table 13-8. Predefined BIRT reports (continued)

Report Name Description Report file name

Notification
Messages Per
Source

Total number of
messages that were
sent in the last 90 days
per data source.

report_notification_messages_per_source.rptdesign

License Total
New Device
Count

A record of unique
devices that were
connected over a
specified period (90
days as default), for
licensing purposes.

report_license_total_device_count.rptdesign

There are several ways of viewing predefined reports, by using one of the
following options.
v The Eclipse report designer plug-in. For instructions, see “BIRT in Eclipse” on

page 13-59
v The BIRT Viewer application that is installed on your Tomcat, WebSphere Full

Profile or WebSphere Liberty Profile application server.

Installing BIRT on Apache Tomcat
You can use the Business Intelligence Reporting Tool (BIRT) to generate and render
report content. You can view this content either by using an Eclipse plug-in, or an
application server and browser.

Figure 13-2. An example of a report generated by BIRT, in this case report_license_total_device_count.rptdesign

13-52 IBM MobileFirst Platform Foundation V6.3.0

About this task

The MobileFirst installation contains a number of predefined BIRT reports. These
reports are configurable XML files that are designed to retrieve and present data
from the MobileFirst reports database tables. These files have an .rptdesign
extension.

Complete the following steps to set up the BIRT Reports for viewing in an Apache
Tomcat application server. For information about how to set up the BIRT Reports
on other application servers, refer to the BIRT Reports website at Birt Tools.

Procedure
1. Ensure that your Tomcat instance is not running.
2. Download the BIRT Reports runtime archive from Birt Report Downloads.
3. Extract the BIRT Reports runtime archive.
4. Copy the WebViewerExample folder to the webapps folder of your Tomcat server.
5. Rename the WebViewerExample folder to birt (this step isan option, and is just

to simplify later execution).
6. Copy your database jdbc connector JAR file package to the Tomcat \lib

folder (if you are using the same Tomcat instance that is running IBM
MobileFirst Platform Server the jdbc connector package is already in the \lib
folder).

7. In some cases, Tomcat might not have enough memory allocated to run BIRT
Reports. To resolve this problem, edit the catalina.bat file under your Tomcat
\bin folder and add the following line at the start of it. You might want to
consult with your IT manager about exact settings.

8. Restart your Tomcat.
9. Go to theTomcat manager application at http://your-server/manager/ to

verify that the BIRT Reports application started.

10. Your BIRT Reports viewer application is accessible at http://your-server/
birt/.

11. You can test the BIRT Reports installation by going to http://your-server/
birt/frameset?__report=test.rptdesign&sample=my+parameter.

Monitoring and mobile operations 13-53

http://www.eclipse.org/birt/phoenix/
http://download.eclipse.org/birt/downloads/

Installing BIRT on WebSphere Application Server Liberty profile
Complete these steps to install Business Intelligence Reporting Tools on the
WebSphere Application Server Liberty profile.

Procedure
1. Verify that your WebSphere Application Server Liberty profile instance is not

running.
2. Go to your WebSphere Application Server Liberty profile folder and create

two folders as follows:
v apps
v libs

3. Locate the jdbc connector driver that you are using and copy it to the libs
folder.

4. Download the latest release of BIRT run time from http://
download.eclipse.org/birt/downloads/

5. Extract the downloaded file and go to the extracted folder.
6. Rename WebViewerExample folder to birt.
7. Go to the folder birt\WEB-INF\lib and delete the following files.
v org.apache.xerces*.jar
v org.apache.xml.resolver*.jar
v org.apache.xml.serializer*.jar

Set up the BIRT Viewer application on a Liberty instance by following these
steps.

8. Copy the birt folder to {your-liberty-instance}\usr\servers\{your-
server-name}\apps\

9. Update the server.xml file of your Liberty server profile.
10. Make sure that the JSP feature is enabled.
11. Add an application definition.
12. Add classloader definition with a privateLibrary definition that is

configured to point to your JDBC connector driver.
<server description="new server">

<featureManager>
<feature>jsp-2.2</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"

13-54 IBM MobileFirst Platform Foundation V6.3.0

http://download.eclipse.org/birt/downloads/
http://download.eclipse.org/birt/downloads/

httpPort="9080"
httpsPort="9443" />

<application id="birt"
name="birt"
type="war"
location="${server.config.dir}/apps/birt"
context-root="/birt">

<classloader delegation="parentLast">
<privateLibrary>

<fileset dir="${server.config.dir}/libs"
includes="mysql-connector*.jar" />

</privateLibrary>
</classloader>

</application>
</server>

13. Start your Liberty instance.
14. Browse to http://server:port/birt. The BIRT Viewer landing page opens.

15. Click View Example link.
16. If you see the following error message, refresh your page.

17. The BIRT Viewer sample report appears.

Monitoring and mobile operations 13-55

Note test.rptdesign in the page URL. You can replace this text with the
name of other rptdesign files, as shown here for example:

Installing BIRT on WebSphere Application Server full profile
Complete these steps to install Business Intelligence Reporting Tools (BIRT) on
WebSphere Application Server full profile.

Procedure
1. Download the BIRT package and extract the contents.
2. From the folder birt-runtime-version\WebViewerExample\WEB-INF\lib, delete

(or remove) the following packages:
v org.apache.xerces.jar

v org.apache.resolver.jar

v org.apache.serializer.jar

13-56 IBM MobileFirst Platform Foundation V6.3.0

3. Use a .war command to package the directory WebViewerExample into a WAR
file named birt.war

4. Start the WebSphere Server.
5. Open the console web page.
6. Log in.
7. From the console, install BIRT package by installing birt.war from the

runtime download.
8. Click Enterprise Applications in left menu.
9. Click the name of the deployed application, birt_war, to enter the

configuration page.
10. Under the heading Modules, click Manage Modules.
11. In the Module list, click Eclipse BIRT Report Viewer.
12. In the General Properties page, under Class loader order, select the Classes

loaded with parent class loader first option.
13. Click OK.
14. Save the Master Configuration.

Configuring BIRT reports for your application server by using
Ant
You can update your BIRT reports with your web application server settings by
using Ant.

About this task

To use BIRT reports, you must update them with your web application server
settings and install them in your server web applications folder. The easiest way to
do this is to specify a <reports> element in the Ant script that invokes the
<configureapplicationserver> Ant task.

Figure 13-3. Deleting three files

Monitoring and mobile operations 13-57

Procedure
1. Ensure that the <configureapplicationserver> invocation has the inner

element <reports todir=”web applications directory”/>. See “Ant tasks for
installation of MobileFirst runtime environments” on page 15-16 for more
details.

2. Invoke the Ant script, which copies the report templates from the
WorklightServer/report-templates/ directory to the web applications directory,
adjusting the <data-sources> element as needed.

3. Verify that the BIRT Viewer application is installed and running on your
application server.

4. To view or edit a BIRT Report, go to the path http://your-server/birt/
frameset?__report=[report name].rptdesign., in which [report
name].rtpdesign represents one of the following files:
report_active_users.rptdesign
report_daily_hits.rptdesign
report_daily_visits.rptdesign
report_environment_usage.rptdesign
report_license_total_device_count.rptdesign
report_new_devices.rptdesign
report_notification_messages_per_day.rptdesign
report_notification_messages_per_source.rptdesign

Manually configuring BIRT Reports for your application server
To use BIRT reports, you must update them with your web application server
settings.

About this task

Before using the BIRT Viewer application to see predefined reports, you must edit
them to adjust the reports database settings, and then copy the reports to a specific
folder on the application server.

Procedure
1. Go to your IBM MobileFirst Platform Server installation folder created by the

IBM Installation Manager.
2. Locate the \report-templates\ folder, which contains a set of .rptdesign files.
3. Copy all of the files with the .rptdesign extension from the

\report-templates\ folder to your server web applications folder.
4. Edit each .rptdesign file as needed and adjust the <data-sources> element

with the properties of your reports database.
<data-sources>

<oda-data-source extensionID="org.eclipse.birt.report.data.oda.jdbc" ...>
<list-property name="privateDriverProperties">

<ex-property>
<name>metadataBidiFormatStr</name>
<value>ILYNN</value>

</ex-property>
<ex-property>
<name>disabledMetadataBidiFormatStr</name>

</ex-property>
<ex-property>
<name>contentBidiFormatStr</name>
<value>ILYN</value>

</ex-property>
<ex-prperty>
<name>disabledContentBidiFormatStr</name>

</ex-property>
</list-property>

13-58 IBM MobileFirst Platform Foundation V6.3.0

<property name="odaDriverClass">WLREPORT_DRIVER_CLASS</property>
<property name="odaURL">WLREPORT_JDBC_URI</property>
<property name="odaUser">WLREPORT_DBUSERNAME</property>
<encrypted-property name="odaPassword" encryptionID="base64">

WLREPORT_DBPASSWORD_BASE64
</encrypted-property>

</oda-data-source>
</data-sources>

5. Make sure that BIRT Viewer application is installed and running on your
application server

6. To view or edit a BIRT Report, go to the path http://your-server/birt/
frameset?__report=[report name].rptdesign., where [report name].rtpdesign
represents one of the following files:
v report_active_users.rptdesign

v report_daily_hits.rptdesign

v report_daily_visits.rptdesign

v report_environment_usage.rptdesign

v report_license_total_device_count.rptdesign

v report_new_devices.rptdesign

v report_notification_messages_per_day.rptdesign

v report_notification_messages_per_source.rptdesign

BIRT in Eclipse
When BIRT is installed in Eclipse, it displays reports through the Eclipse interface.

You can install Business Intelligence Reporting Tools (BIRT) as either a stand-alone
instance of Eclipse, or as a plug-in added to your existing IBM MobileFirst
Platform Foundation Eclipse instance, or any other instance of Eclipse. Each of
these choices has potential advantages, depending on your needs.

Installing a stand-alone Eclipse instance means having a dedicated tool for creating
reports. This option involves downloading an Eclipse installer that comes with
BIRT included.

Installing BIRT as a plug-in to your existing Eclipse instance that is running IBM
MobileFirst Platform Foundation can provide you with a more integrated interface,
for both IBM MobileFirst Platform Foundation and reports. Use the following links
to select the option you want to install.

Installing BIRT in stand-alone Eclipse:

You can install BIRT including the BIRT Report Designer in a stand-alone instance
of Eclipse as a dedicated reporting tool.

About this task

To use the BIRT Report Designer in a stand-alone, dedicated instance of Eclipse,
follow these steps:

Procedure

1. In your web browser, go to http://www.eclipse.org/downloads/
2. Download the Eclipse IDE for Java and Report Developers

Monitoring and mobile operations 13-59

http://www.eclipse.org/downloads/

3. Follow the Eclipse installation instructions in the installation package. Eclipse
and the BIRT components, including the Report Designer, are installed along
with Eclipse.

Installing BIRT in MobileFirst Eclipse:

You can install BIRT in the instance of Eclipse on which IBM MobileFirst Platform
Foundation is running, and use the Report Designer as an integrated tool.

About this task

To install BIRT in the existing instance of Eclipse that is running IBM MobileFirst
Platform Foundation, follow these steps:

Procedure

1. Click Help > Install new software

2. In Work with..., select http://download.eclipse.com/release/juno
3. Select Business Intelligence Reporting and Charting
4. Click Next and follow the installation instructions. When the installation is

completed, you must install the reports.
5. Click Window > Open perspective > Other...

6. Select the Report Design perspective
7. Click File > New > Project

8. Select Report project and click Next

9. Enter a project name and click Finish

10. Using the import command, go to your MobileFirst Server installation folder
created by IBM Installation Manager.

11. Locate the \report-templates\ folder, which contains a set of .rptdesign files.
12. Import all files with the suffix .rptdesign from the \report-templates\ folder

into the Eclipse project. Eclipse comes with a bundled driver for Apache
Derby database. If you use another database type, you must add a JDBC
connector driver manually.

13. Click Manage Drivers...

14. Click Add... and add the JDBC connector driver package to communicate with
your MobileFirst reports database

15. Select Driver Class and adjust the rest of your database settings
16. Click Test Connection... to validate that database settings are correct.

Viewing BIRT reports in Eclipse:

With BIRT installed in Eclipse, you can view reports through the Eclipse interface.

About this task

To view BIRT reports in Eclipse, follow these steps:

Procedure

1. Click the black arrow next to View Report.

13-60 IBM MobileFirst Platform Foundation V6.3.0

2. Select the output format for your report
3. View the report.

Notification reports database schema
IBM MobileFirst Platform Foundation uses a database schema to store the
notification reports data derived from the raw data.

Monitoring and mobile operations 13-61

A notification activities table is populated to simplify the use of report
construction. This notification activities table, NOTIFICATION_ACTIVITIES, is
populated as part of the analytics setup.

Mobile application management
The Mobile Application Management feature enables mobile operators and
administrators to securely track, search, and control access to users through the
mobile applications that are used on their devices, all from the MobileFirst
Operations Console.

The MobileFirst Server runtime tracks devices that access your mobile
infrastructure by the MobileFirst apps that are used by your users. Each user,
whether employee, customers, suppliers, or business partners, can use several
devices to access your mobile environment through one or more apps that you
deployed. IBM MobileFirst Operations Console now provides a view into this
mapping of user to devices through the apps that are used to access your
MobileFirst Server. Mobile operators and administrators can use the console to not
only search for registered users by name, but also block access to a specific app
from a specific user's device. They can also block any MobileFirst App that is
installed on the device from connecting to the MobileFirst Server.

When multiple applications from the same enterprise are installed to the same
device, it is desirable to disable access for all of the applications at once when the
device is lost, stolen, or its security compromised. When these applications on the
same device are authenticated to and routing traffic through a MobileFirst Server,
administrators can disable access for all MobileFirst applications on that device.

In some cases, it might not be desirable to block access for every MobileFirst
application that is installed on the device. MobileFirst application management
features allow the administrator to view each individual application that is
installed on a user’s device and select which applications to block access.

When a MobileFirst application requires a certificate from the user to authenticate,
the serial number of the certificate is recorded on the MobileFirst Server. In

Figure 13-4. NOTIFICATION_ACTIVITIES schema

13-62 IBM MobileFirst Platform Foundation V6.3.0

addition to viewing each application installed on a device, the certificate serial
number can also be viewed in the MobileFirst Operations Console. This feature
allows administrators to revoke access to an application installed on the device by
using the serial number to locate and revoke the certificate.

IBM MobileFirst Platform Foundation maintains a database table of device IDs,
among other device-related metadata, to enable this feature. In addition to the
device ID column in the database, a status column is also kept. The possible status
values are:
v active
v lost
v stolen
v expired (the device has not connected to this MobileFirst Server in 90 days) -

configurable
v disabled

When a MobileFirst application from a device attempts to connect through the
MobileFirst Server, the device ID is stored in the in-memory session data on the
server. This device ID is checked against the database before any further
processing of the inbound message. If the status column for this device ID is any
value other than active, a 401 forbidden is returned. If the status is lost, stolen,
or disabled, only an administrator with access to the MobileFirst Operations
Console or direct database access can restore the status to the active state.

User to device mapping and control
Starting in IBM Worklight V6.1.0, the MobileFirst Server tracks the devices that
access the system as part of the core runtime database. You can now enable the
user to device mapping feature, which provides the ability for mobile operators or
administrators to query their mobile systems by user. A device friendly name can
also be established to see the devices that are mapped to a user. Further, specific
controls can be applied to a user-app-device mapping to either disable that link or
reactivate that link to address common situations. For example, a user loses a
device and must block all access from that device. Another example is the
requirement to block access to an app across all devices, or block access to an app
on a device, when a user changes departments. Reactivation is available for all of
these disablement control actions.

For the user to device mapping feature to work, a security realm must exist that
establishes the user identity. The user identity is then used to associate the
MobileFirst Device ID with the user. Developers can create custom challenge
handlers or specific API calls to set a device friendly name as preferred by the
user, programmatically. This feature helps in querying the device by its friendly
name.

The following list shows what a mobile operator or admin can do with this set of
features:
v Search for a device by friendly name or search by user name.
v A matching search yields all devices that belong to that user or the single device

and the associated user, along with device model and information.
v The apps that are used on the device to access this system are also displayed.

The following list shows the available actions that can be taken for a queried
device:

Monitoring and mobile operations 13-63

v Disable the specific device, marking the state as lost or stolen so that access from
any of the apps on that device is blocked.

v Re-enable a disabled device so that access from the device to the MobileFirst
Server is allowed.

v Disable a specific app, marking the state as disabled so that access from the
specific app on that device is blocked.

v Re-enable that specific app on the device so that access from the specific app on
the device to the MobileFirst Server is allowed.

Device access management in the MobileFirst Operations
Console

Since IBM Worklight V6.1.0, the console displays a new tab that is called Devices.
With this tab, the MobileFirst administrator can search for devices that access the
MobileFirst Server and manage their access rights.

In the search field, devices can be searched for by either the user ID (the ID that
was used to log in to the Authentication Realm), or the friendly name (a name that
is associated with the device to distinguish it from other devices that share the
user ID). The friendly name can be set on the client by using the client-side
JavaScript APIs: WL.Device.getFriendlyName and WL.Device.setFriendlyName. For
more information about the getFriendlyName API, see the getFriendlyName
method, as defined in the WL.Device class. For more information about the
setFriendlyName API, see setFriendlyName method, as defined in the WL.Device.

When a valid device is found, all devices that match the user ID or friendly name
are listed.

The Status column contains the current access rights of the device. Any device
with the column marked as “Stolen”, “Lost”, or “Disabled” is not allowed to access
MobileFirst Server. The “Expired” status is used only for licensing purposes. After
successful connection to the server, any device with the status marked as
“Expired” is allowed to access MobileFirst Server and its status is changed to
“Active”. For more information about licensing, see “License Tracking report” on
page 13-85.

Clicking the + icon in the column shows a list of all applications that this device
accessed.

Figure 13-5. User or friendly name search

13-64 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Device.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Device.html

Each row in the table contains the name of the application, the certificate serial
number for this device-application pair (if enabled), and a status menu that is used
to disable an application's access to the MobileFirst Server for this device.

Enabling the device access management features
All devices that access the MobileFirst Server are recorded in the runtime database
without any additional configurations. However, IBM MobileFirst Platform
Foundation does not enforce the device access settings that are set from the
MobileFirst Operations Console unless you enable a property on the MobileFirst
Server.

About this task

More processing is required on the MobileFirst Server when this property is
enabled to enforce access management on devices. Appropriate performance
testing must be done before production to measure how enabling this feature
impacts the server’s performance.

Procedure
1. Set the wl.device.enableAccessManagement=true property on the MobileFirst

Server (this value is false by default). The wl.device.tracking.enabled=true
property must also be set (this value is true by default).

2. Capture the UserID. The user ID is recorded for the device automatically when
the user logs in to an authentication realm that is marked as isInternalUserID.
The following example shows a sample authentication configuration file:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<tns:loginConfiguration xmlns:tns="http://www.worklight.com/auth/config"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- Licensed Materials - Property of IBM

5725-G92 (C) Copyright IBM Corp. 2006, 2013. All Rights Reserved.
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp. -->

<securityTests>
<customSecurityTest name="DummyAdapter-securityTest">

<test isInternalUserID="true" realm="SampleAppRealm" />
</customSecurityTest>

</securityTests>

<realms>
<realm loginModule="StrongDummy" name="SampleAppRealm">

Figure 13-6. List of applications that are accessed by a device

Monitoring and mobile operations 13-65

<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>
</realm>

</realms>

<loginModules>
<loginModule name="StrongDummy">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

</loginModules>

</tns:loginConfiguration>

Since a security test can include several realms that require a user ID, only the
realm that has the isInternalUserID property is recorded for the device in the
runtime database. For a mobileSecurityTest, the realm that is set by the
testUser element is used. For more information about security tests, see
“Security tests” on page 8-490.
If the user is authenticated through the UserCertificateAuthenticator, the
serial number that is generated for the certificate that is sent to the device is
automatically saved in the runtime database. For more information about the
UserCertificateAuthenticator and serial number, see “User certificate
authentication” on page 13-67.

Performance implications for the server
You must consider two questions when you measure the Mobile Application
Management feature and its impact on performance.
1. Does IBM MobileFirst Platform Foundation save information about a device

when it accesses the server?
2. Does IBM MobileFirst Platform Foundation enforce access rights when a device

tries to access the server?

Saving device information

The MobileFirst administrator can control whether the server saves device
information to the internal database when a device connects to the MobileFirst
Server. This behavior is controlled by the following flag in the
worklight.properties file:
wl.device.tracking.enabled=true

When this flag is enabled, the MobileFirst Server attempts to store information
about the device each time a device begins a new session with the server. In terms
of performance, this behavior results in a potential database write each time that a
device starts a new session.

Note: This flag is enabled by default in production, and is used for license
tracking. Do not disable this flag unless you fully understand the implications. For
more information about licensing, see “License tracking” on page 13-84.

Enforcing access rights

The MobileFirst Server tries to save the device information only on the first request
of a session from the device. However, IBM MobileFirst Platform Foundation must
enforce access rights on every request that is made to the server from the device.
This behavior ensures that the rights that are set by the MobileFirst administrator
take effect immediately. This feature can be controlled by the following flag in the
worklight.properties file:
wl.device.enableAccessManagement=true

13-66 IBM MobileFirst Platform Foundation V6.3.0

From a performance perspective, this behavior results in an extra database read
that occurs each time that the device tries to access a resource on the server. The
performance hit for the read is smaller than the write for saving device
information. Administrators must consider the fact that this read occurs every time
that a device tries to connect to the server. When this flag is disabled, the
administrator can still view the devices in the database from the MobileFirst
Operations Console. However, they cannot block access from the device to the
MobileFirst Server.

Space limitations for the database

Database administrators must consider how enabling the Mobile Application
Management feature can affect the Worklight runtime database size. The Mobile
Application Management feature does not affect the Worklight raw reports
database. The following example shows a typical database row entry for a single
device:
(’db7abddf-3d5f-4b03-b3b8-f706e56e8306’, ’Lucas’, ’Tillman’, ’6.2’, ’iPad2,5’,’2013-10-08 15:12:32’, 3)

For each application that the device uses, another entry is created as follows:
(db7abddf-3d5f-4b03-b3b8-f706e56e8306, 12, 0)

The size impact for each device is small. However, administrators must consider
the potential size increases if their MobileFirst Server serves thousands of devices
that use multiple applications that are hosted by the server. Devices can be deleted
from the runtime database in the MobileFirst Operations Console, but each device
entry has a Last Accessed time stamp column. That time stamp gives
administrators the ability to clear out old rows that are no longer being used, by
creating custom queries.

Note: Database rows that contain device information are used for licensing
purposes. Database administrators must not delete data from these rows if the
action of deleting the data affects licensing.

User certificate authentication
Enterprises can now use X.509 client-side certificates to authenticate users, by
applying a new user authentication realm to their existing security tests. This new
realm is called UserCertificateAuthRealm. This feature allows enterprises to enroll
users to their enterprise certificate authority (CA) directly from their mobile
devices. The traffic between the MobileFirst application on the device and the
MobileFirst Server in the enterprise can be secured over HTTPS with client-side
certificates that are issued to the users as part of the initial enrollment process.

This feature is available only on the hybrid iOS and Android environments for this
current release.

This feature is not supported with the FIPS 140-2 feature.

User certificate authentication overview
The User Certificate Authentication feature is a newly introduced user
authentication realm in IBM Worklight V6.1 that establishes user identity with an
X.509 client certificate.

With the User Certificate Authentication feature, IBM MobileFirst Platform
Foundation provides a mechanism for enterprises to easily integrate their mobile

Monitoring and mobile operations 13-67

infrastructure and existing public key infrastructure (PKI). With this new added
function, enterprises can now authenticate users that are trying to access sensitive
backend systems through mobile devices with X.509 client side certificates. Mobile
clients can now present an X.509 certificate to establish a secure client identity over
the transport layer security (TLS) protocol.

This feature allows enterprises to use their existing PKI to obtain full control of the
user authentication and user enrollment process. An embedded PKI
implementation is provided, which allows enterprises without their own PKI to
quickly set it up. With the embedded PKI option, IBM MobileFirst Platform
Foundation internally signs certificates and manages the validation and enrollment
process.

More specifically, mobile clients are now able to present an X.509 client certificate
to establish a secure connection over the transport layer security (TLS) protocol.
Users are enrolled to the enterprise certificate authority (CA) directly from their
device. The client certificate is then used to authenticate and establish a user
identity on subsequent requests.

This feature is only available on hybrid iOS and Android environments for this
current release.

How it works

The MobileFirst Server can be configured to protect an application or adapter with
the user certificate authentication user realm (UserCertificateAuthRealm). This
realm requires the use of a PKI for managing X.509 client certificates. An existing
PKI can be used by implementing the PKI bridge interface that is provided for
you. The PKI bridge interface serves as the bridge between IBM MobileFirst
Platform Foundation and your PKI. Another option is to use the embedded PKI
that is provided with this feature for testing and development purposes.

The first time a user accesses a protected application or adapter procedure from a
device, the server initiates the applicable challenges and starts the user enrollment
process. The user enrollment process consists of having the user enroll into the
configured PKI and then provisioning the device with an X.509 certificate for
future use. Users enroll into existing PKIs through the help of a dependent user
authentication realm. After the user is authenticated through the dependent realm,
IBM MobileFirst Platform Foundation, through the PKI, generates the client
certificate and provisions the device with the certificate that is issued to the user.
The server enrolls the user after successfully establishing the user identity by using
one of the pre-existing login modules. This process results in an X.509 certificate
that is issued to the user and installed securely on the device.

The following figure shows the user enrollment flow:

13-68 IBM MobileFirst Platform Foundation V6.3.0

Subsequent calls from that MobileFirst application use this X.509 certificate to
establish a secure connection over HTTPS, authenticate the user, and establish the
user identity on the server. Users need to log in only once for the life of the
certificate. When the certificate expires or is revoked by the PKI, the enrollment
process is initiated again. You can allow user enrollment to continue, ban the user,
or allow the user to log in only through the dependent realm.

Both the client and the server runtimes enforce certificate verification, ensuring that
the client certificate is valid and is issued to a known user. The client certificate is
valid if it is issued by a trusted CA, is not expired and is not revoked, and its
validity period is current. The server also verifies the client certificate's subject
against a user registry to ensure that the client certificate was issued to a known
user. Support for certificate revocation lists (CRL) is provided by the underlying
Java Platform, Enterprise Edition server, and JVM. For more information about
how to enable CRL support in WebSphere Application Server, see SSL
configurations.

Note: Not all JVMs provide CRL support.

The following figure shows the client certificate authentication flow:

Monitoring and mobile operations 13-69

http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/csec_sslconfigs.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/csec_sslconfigs.html

Protecting resources with user certificate authentication
You can protect your application or adapter procedures with the user certificate
authentication user realm.

About this task

Follow the steps to configure the user certificate authentication user realm to
protect your application or adapter procedure.

Procedure
1. Create a MobileFirst project.
2. Create a new hybrid MobileFirst application.
3. Configure the challenge handlers for your dependent realm. These challenge

handlers help establish the identity of the user as part of the enrollment
process. For more information, see “User certificate authentication on the
client” on page 13-80.

4. Configure the server.
a. Configure your WebSphere Application Server Liberty profile server. For

more information, see “Configuring the Liberty profile” on page 13-78.
b. Configure the server for HTTPS. For more information, see “SSL

configuration” on page 13-71.
c. Configure an embedded public key infrastructure (PKI) or external PKI. For

more information, see “PKI bridge configuration” on page 13-72.
d. Uncomment out the wl_UserCertificateAuthRealm realm elements in the

authentication configuration and update it as needed. For more information,
see “Updating the server authentication configuration” on page 13-79.

5. Edit the application descriptor to specify the security test that enforces
certificate authentication of the user. You can protect the application or the
adapter.

13-70 IBM MobileFirst Platform Foundation V6.3.0

6. Install the root certificate authority (CA). For more information, see
“Configuring SSL by using untrusted certificates” on page 6-150.

7. Complete the deployment to the server.
8. Install the application on the client.

What to do next

For a more comprehensive sample, see the tutorials on the Getting Started page.

User certificate authentication on the server
Both the MobileFirst Server and its hosting application server must be configured
to use the User Certificate Authentication feature. The application server must be
configured for client-side SSL. The MobileFirst Server must be configured with a
PKI bridge and an appropriate security test to use the feature.

SSL configuration
The User Certificate Authentication feature depends on the use of the Secure
Sockets Layer (SSL) for authentication purposes. You can host your application
only on HTTPS, unless a reverse proxy is being used.

For more information about how to configure SSL, see “WebSphere Application
Server and Liberty profile requirements” on page 13-78.

The User Certificate Authentication feature requires integration with a public key
infrastructure (PKI). For the embedded PKI option, you must provide a certificate
authority (CA) that can be used to generate the client X.509 certificates.

Certificates and CAs

Client certificates that are issued to the user by the User Certificate Authentication
feature can be signed by a custom CA or a well-trusted CA through your PKI.
Server-side certificates can be signed by either type of CA.

If you encounter errors with certificates that are not signed by well-trusted CAs,
see “Configuring SSL by using untrusted certificates” on page 6-150.

Restriction: Self-signed certificates are not supported.
For more information about how to use and create an intermediate CA to sign both
the server and client certificates, see the tutorials on the Getting Started page.

Certificate chains, keystore, and truststore

You must set the server certificate as the MobileFirst Server keystore. Also, set the
client’s certificate-signing CA as part of the truststore so that the server can trust
the client certificates. For more information about setting up the server with these
certificates, see “WebSphere Application Server and Liberty profile requirements”
on page 13-78.

Note: If you use intermediate custom CAs, ensure that you concatenate the server
certificate with the certificate chain. When you create the server certificate, use the
following order:
Server certificate -> intermediate(s) in order -> trust anchor

The following example works in Mac OS X and Linux, and concatenates the server
certificate with one intermediate CA and the trust anchor (root CA):

Monitoring and mobile operations 13-71

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

cat server/server.crt signingca/signing_ca.crt rootca/root_ca.crt > server_chain.crt

PKI bridge configuration
The PKI bridge is an interface between the MobileFirst Server and a business'
public key infrastructure (PKI). Each realm definition that uses the
WorklightCertificateAuthenticator must have a PKI bridge that is defined in its
configuration.

User certificate identity versus standard MobileFirst user identity

The standard MobileFirst user identity contains basic user details and is built after
a user realm is authenticated. The identity contains user name, display name, and
extra attributes. The identity can be requested for each realm in a security test by
authenticated resources, such as an adapter. For user certificate authentication,
more details might be required, such as device ID and application name. These
details are provided in the user certificate identity object that is sent to the PKI
bridge.

A user certificate identity instance contains the following elements:
v Standard MobileFirst user identity

– User name
– Display name
– Attributes

v Device ID
v Application name

Custom PKI bridge interface

A custom PKI bridge can be implemented by extending the
com.org.auth.ext.UserCertificatePKIBridge abstract class. The API for the PKI
bridge abstract class can be found at UserCertificatePKIBridge.

Embedded PKI bridge:

The embedded PKI bridge is an included PKI bridge that can be used with user
certificate authentication. The embedded PKI bridge is available with the
com.worklight.core.auth.ext.UserCertificateEmbeddedPKI class name and is
configured by adding parameters to the realm definition.

The embedded PKI bridge is useful for developers without direct access to the
business’ PKI during testing. Administrators that are interested in testing the user
certificate authentication feature without implementing their own PKI bridge can
also use the embedded PKI bridge. The embedded PKI bridge is not recommended
or supported for production environments.

Requirements for use

For the embedded PKI bridge, a certificate authority (CA) certificate and private
key must be available. The certificate and private key must be added to a keystore
manually. The keystore must be in the PKCS #12 file format, such as a .p12 file. A
password to access the keystore can be supplied optionally in plaintext form. If the
.p12 file does not exist, cannot be read, or is supplied an invalid password, an
error is thrown in the server trace. The following example shows a realm definition
for wl_userCertificateAuthRealm with the embedded PKI:

13-72 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-server/html/com/worklight/core/auth/ext/UserCertificatePKIBridge.html

<realm name="wl_userCertificateAuthRealm"
loginModule="UserCertificateLoginModule">

<className>com.worklight.core.auth.ext.UserCertificateAuthenticator</className>
<parameter name="dependent-user-auth-realm"

value="WASLTPARealm" />
<parameter name="pki-bridge-class"

value="com.worklight.core.auth.ext.UserCertificateEmbeddedPKI" />
<parameter name="embedded-pki-bridge-ca-p12-password"

value="capassword" />
<parameter name="embedded-pki-bridge-ca-p12-file-path"

value="/opt/ssl_ca/ca.p12" />
<parameter name="embedded-pki-bridge-organization"

value="IBM Worklight" />
<parameter name="embedded-pki-bridge-add-cert-extensions"

value="true" />
</realm>

Configuration parameters

The following embedded PKI bridge parameters are available.

embedded-pki-bridge-ca-p12-file-path
Required

Full file path of the .p12 file for the CA that signs user certificate requests.

embedded-pki-bridge-ca-p12-password
Optional

Password in plaintext that is used to decode the CA .p12 file that is
specified. No password is used if not specified.

embedded-pki-bridge-organization
Optional

Organization name that is added to the distinguished name (DN) inside a
signed certificate (O=<organization name specified>). If not specified, no
organization is added to the DN.

embedded-pki-bridge-add-cert-extensions
Optional

Add non-critical MobileFirst custom certificate extensions to the user
certificate before it is signed. This parameter provides more details to user
identity attributes on subsequent runs. These details include device ID,
group ID, and application name that is stored in the certificate. By default,
this parameter is false. You can enable the parameter by using the true
value. This parameter is not always supported and may not work for your
configured server configuration. You must test this option first on your
infrastructure to ensure that a certificate is not marked invalid if extensions
are enabled. When this parameter is enabled, the device ID is added with
the OID 1.3.6.1.4.1.2.6.256.1 and the app name is added with the OID
1.3.6.1.4.1.2.6.256.2. These OIDs are not formally registered and may
change.

embedded-pki-bridge-days-before-expire
Optional

Configure the length of time the generated certificate is valid. This setting
defaults to one year (365 days).

embedded-pki-bridge-crl-uri
Optional

Monitoring and mobile operations 13-73

Configure an optional CRL for your certificate authority. If the certificate
that is generated exists on a client’s device and is revoked in the CRL, the
client is required to generate a certificate.

External/adapter-based PKI bridge:

The adapter-based PKI bridge is an included PKI bridge that can be used with user
certificate authentication. The adapter-based PKI bridge is available with the
com.worklight.core.auth.ext.UserCertificateAdapterBasedPKI class name, and is
configured by adding parameters to the realm definition. An adapter is required
for this PKI bridge to work, and must be uploaded before any user connects with
this configuration. The adapter-based PKI bridge is useful if your PKI can be
accessed with an adapter (such as a REST API).

Requirements for use

For the adapter-based PKI bridge, an adapter must be added in the console and
the parameters for the bridge must be configured in the realm definition. The
following example shows a realm definition for wl_userCertificateAuthRealm with
the adapter-based PKI that uses an adapter that is called PKIAdapter:
<realm name="wl_userCertificateAuthRealm"

loginModule="UserCertificateLoginModule">
<className>com.worklight.core.auth.ext.UserCertificateAuthenticator</className>
<parameter name="dependent-user-auth-realm"

value="WASLTPARealm" />
<parameter name="pki-bridge-class"

value="com.worklight.core.auth.ext.UserCertificateAdapterBasedPKI" />
<parameter name="adapter-pki-bridge-init-procedure"

value="PKIAdapter.init" />
<parameter name="adapter-pki-bridge-identity-validation-procedure"

value="PKIAdapter.validateIdentity" />
<parameter name="adapter-pki-bridge-csr-requirements-procedure"

value="PKIAdapter.getCSRRequirements" />
<parameter name="adapter-pki-bridge-csr-validation-procedure"

value="PKIAdapter.validateCSR" />
<parameter name="adapter-pki-bridge-certificate-generation-procedure"

value="PKIAdapter.generateCertificate" />
<parameter name="adapter-pki-bridge-identity-from-certificate-procedure"

value="PKIAdapter.getIdentityFromCertificate" />
<parameter name="adapter-pki-bridge-certificate-validation-procedure"

value="PKIAdapter.validateCertificate" />
</realm>

Configuration parameters

The following adapter-based PKI bridge parameters are available.

adapter-pki-bridge-init-procedure
Required

An adapter procedure that is called to initialize the PKI bridge on each
call. Requires a single parameter for the configuration that is available in
the realm definition. The following example shows a sample value of this
parameter:
{"adapter-pki-bridge-csr-validationprocedure":"
PKIBridgeAdapter.validateCSR","adapter-pki-bridge-identity-fromcertificate-
procedure":"PKIBridgeAdapter.identityFromCertificate","pkibridgeclass":"
com.worklight.core.auth.ext.UserCertificateAdapterBasedPKI","adapterpki-
bridge-identity-validationprocedure":"
PKIBridgeAdapter.identityVerify","adapter-pki-bridge-csrrequirements-
procedure":"PKIBridgeAdapter.csrRequirements","adapter-pkibridge-
certificate-generationprocedure":"
PKIBridgeAdapter.generateCertificate","adapter-pki-bridgecertificate-

13-74 IBM MobileFirst Platform Foundation V6.3.0

validationprocedure":"
PKIBridgeAdapter.certificateVerify","adapter-pki-bridge-initprocedure":"
PKIBridgeAdapter.init","dependent-user-authrealm":"
WASLTPARealm"}

adapter-pki-bridge-identity-validation-procedure
Optional

An adapter procedure that is called that allows the adapter to determine
whether the user identity from the dependent realm is allowed to generate
a certificate. This procedure is optional. By default, the PKI bridge always
returns YES. Requires a single userIdentity parameter. The following
example shows a sample value of this parameter:
{"deviceId":"C146B473-DA25-46A7-8A79-E8CE5E9270EE","userIdentity":
{"userName":"user@ibm.com","attributes":
{"LtpaToken":"dHwRqHp61ukJCkEFBMRd6g63uV1bDg0rmGBU2cuBrinFp+7L7BVb
+4OebyIRMOoKLhHldLxj9JIPiWH4s16tHtNjddBxxbd9rdjZUgnicVY8+6GM8uTEwleRW
+lVzzwJX0Htvfa2iOQD9KAWLXkNHgneiELIANjAUxGsMzJGGg2K8LYYWeBhE0JGqJcb8WFFLYH4T5
Cgb9C+qXpre/KF/MNTrv2WQF9kWjPmMlPuT1Lh1tY9oSSqN20DNNZ8VcQ8p26po5yBMvtDMtn4/
EzfdhKYeTNFzQEmQpR66caQJlRV++m/
Oq4EiZBBzkOY6zpBVtmUzcH3D2xh5PYYVcFO8g=="},"displayName":""},"appId":"UserCert"}

The procedure must return an object with the following format:
{valid: "YES"}

Options for valid:
v YES - The user is allowed to generate a certificate.
v NO_USE_DEPENDENT_REALM_ONLY - The user is allowed to log in to the

dependent realm, but is not allowed to generate a certificate.
v NO - The user is not allowed to log in at all, and is not allowed to

generate a certificate.

adapter-pki-bridge-csr-requirements-procedure
Optional

Build a set of requirements that must be in a CSR that the client generates.
This procedure is optional. By default, the CSR requirements include the
commonName that is equal to the user name from the dependent realm user
identity. The procedure has a single parameter that is called userIdentity
with the following format:
{"deviceId":"C146B473-DA25-46A7-8A79-E8CE5E9270EE","userIdentity":
{"userName":"user@ibm.com","attributes":
{"LtpaToken":"dHwRqHp61ukJCkEFBMRd6g63uV1bDg0rmGBU2cuBrinFp+7L7BVb
+4OebyIRMOoKLhHldLxj9JIPiWH4s16tHtNjddBxxbd9rdjZUgnicVY8+6GM8uTEwleRW
+lVzzwJX0Htvfa2iOQD9KAWLXkNHgneiELIANjAUxGsMzJGGg2K8LYYWeBhE0JGqJcb8WFFLYH4T5
Cgb9C+qXpre/KF/MNTrv2WQF9kWjPmMlPuT1Lh1tY9oSSqN20DNNZ8VcQ8p26po5yBMvtDMtn4/
EzfdhKYeTNFzQEmQpR66caQJlRV++m/
Oq4EiZBBzkOY6zpBVtmUzcH3D2xh5PYYVcFO8g=="},"displayName":""},"appId":"UserCert"}

This procedure must return a JSON object in the following format:
{ commonName: "user@ibm.com", additionalSubject: { "O": "IBM" }, additionalAttributes: {} }

v commonName - This attribute is a required entry that is used as the CN
attribute in the CSR. This value must match a user in the user registry of
the application server.

v additionalSubject - This attribute is a required JSON object that contains
key/value pairs for each additional attribute that must be in the subject
of the CSR, such as O for organization. If no additional attributes are
required, use an empty JSON object.

v additionalAttributes - This attribute is a required JSON object that
contains key/value pairs for each additional attribute that must be
included in the CSR. If no additional attributes are required, use an
empty JSON object.

Monitoring and mobile operations 13-75

adapter-pki-bridge-csr-validation-procedure
Optional

This procedure is called after a client sends a CSR that follows a request. It
is responsible for ensuring that all of the CSR attributes that were
requested in the requirements exist in the CSR. This procedure is optional.
By default, the PKI bridge always returns YES. The procedure has a single
parameter csr that contains a JSON object with the following format:
{"csr":"MIICXzCCAUcCADAbMRkwFwYDVQQDFBBsaXpldEB1cy5pYm0uY29tMIIBIjANBgkqhkiG9w0
BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLCCGEBCUQAgNPZKcf3wW2LhQ75
MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv81+wHaTIu2QggqpBMFPhvBdTbS
93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQABoAAwDQYJKoZIhvcNAQEFBQADggEBAHHOJbrGBCZCiDi3hXzVzji7
1euKMf8IUjGe+sfr+Sy5sfx9k
+icvKixImHCxSy0PeKp4QICSgfZxk2xQzHhYVgdeB0Uv2WT7FjPngRjAgLL1jxu7LIkEMKWgiGiJMPg
54gOx8kWuj5uE9vqpWGRK0dGuPNlnQxh50pSgZi4PhRGz2nCBF6WdQFNmHDqssijk//
CUHWbNvMTIWyuHhXEhtwkplc0dAp1b3hHBywYM9Vae9fUmfpbHDb0yvjBjCHvceRjwkoQG6ABfh9
9ucE1NWO51Rc03XqGnHKsnk16BlqSH0YpM/sVWYrmio/F9h75aNX+Sz5EhkB7t/n4301aPOo="}

Note: csr is the CSR in DER format and is represented in base64.

The procedure must return a JSON object with the following format:
{valid: "YES"}

or
{valid: "NO"}

Options for valid:
v YES - The CSR meets the requirements from the PKI.
v NO - The CSR does not meet the requirements from the PKI.

Authentication fails.

adapter-pki-bridge-certificate-generation-procedure
Required

This procedure is responsible for requesting a certificate from the PKI and
returning a certificate. This procedure is required and has one required
parameter csr, which has the following format:
{"deviceId":"C146B473-DA25-46A7-8A79-
E8CE5E9270EE","csr":"MIICXzCCAUcCADAbMRkwFwYDVQQDFBBsaXpldEB1cy5pYm0uY29tMIIBIjA
NBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLCCGEBCUQAgNPZK
cf3wW2LhQ75MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv81+wHaTIu2Qggq
pBMFPhvBdTbS93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQABoAAwDQYJKoZIhvcNAQEFBQADggEBAHHOJbrGBCZCiDi3hXzVzji7
1euKMf8IUjGe+sfr+Sy5sfx9k
+icvKixImHCxSy0PeKp4QICSgfZxk2xQzHhYVgdeB0Uv2WT7FjPngRjAgLL1jxu7LIkEMKWgiGiJMPg
54gOx8kWuj5uE9vqpWGRK0dGuPNlnQxh50pSgZi4PhRGz2nCBF6WdQFNmHDqssijk//
CUHWbNvMTIWyuHhXEhtwkplc0dAp1b3hHBywYM9Vae9fUmfpbHDb0yvjBjCHvceRjwkoQG6ABfh9
9ucE1NWO51Rc03XqGnHKsnk16BlqSH0YpM/sVWYrmio/F9h75aNX+Sz5EhkB7t/
n4301aPOo=","userIdentity":{"userName":"lizet@us.ibm.com","attributes":
{"LtpaToken":"dHwRqHp61ukJCkEFBMRd6g63uV1bDg0rmGBU2cuBrinFp+7L7BVb
+4OebyIRMOoKLhHldLxj9JIPiWH4s16tHtNjddBxxbd9rdjZUgnicVY8+6GM8uTEwleRW
+lVzzwJX0Htvfa2iOQD9KAWLXkNHgneiELIANjAUxGsMzJGGg2K8LYYWeBhE0JGqJcb8WFFLYH4T5
Cgb9C+qXpre/KF/MNTrv2WQF9kWjPmMlPuT1Lh1tY9oSSqN20DNNZ8VcQ8p26po5yBMvtDMtn4/
EzfdhKYeTNFzQEmQpR66caQJlRV++m/
Oq4EiZBBzkOY6zpBVtmUzcH3D2xh5PYYVcFO8g=="},"displayName":""},"appId":"UserCert"}

Note: csr is the CSR in DER format and is represented in base64.

The procedure must return a base64 string of the X.509 certificate in DER
format in a JSON object with the following format:

13-76 IBM MobileFirst Platform Foundation V6.3.0

{ certificateBase64: "<BASE64 STRING OF THE X.509 CERTIFICATE>" }

adapter-pki-bridge-certificate-validation-procedure
Optional

This procedure is responsible for validating a user’s certificate when it is
first received. This procedure is optional. If it is not used, the PKI bridge
always returns YES. The procedure has one parameter certificate that is
in the same format as the procedure in the adapter-pki-bridge-identity-
from-certificate-procedure parameter.

The procedure is required to return a JSON object that states the validity of
the certificate:
{valid: "YES"}

or
{valid: "NO"}

Options for valid:
v YES - The certificate is considered valid by the PKI.
v NO - The certificate is not considered valid by the PKI, and the client is

required to start the enrollment process over.

adapter-pki-bridge-identity-from-certificate-procedure
Required

This procedure is responsible for creating a user certificate identity from a
certificate that is passed by the user. The procedure must have one
parameter certificate with the following format:
{"publicKey":
{"base64":"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLC
CGEBCUQAgNPZKcf3wW2LhQ75MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv8
1+wHaTIu2QggqpBMFPhvBdTbS93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQAB","algorithm":"RSA"},"signature":
{"base64":"cONA8EKOQBiIKtdhAzG68pm0FMRkNfbVAIyZlttp+J9nXYmjO/
aGOEJk37oGzEPTO5uA/
eDArvQ9WF3BtzOdF9hw4j3ACJjo5oEnD7UTXbPzK2k1w3INX4cuOInLi7EJEKb
+CuO5uMy1mUOjx1aj/WaK
+E2KroFKNPyXdHAL7mwpkZO0aSYxUYYwcu8IAureMWZGps196Swk1YptboIEUSd5r3j07rBZX81B
AX5awqEx3tpbP3qpIJIK+6xoiu2tL67mKqJj9l1/Yb/
qQmUg6ouJtt9fWYUO7p1wJgUm9N0eixXftKttJ32Fp/
s0B7R72ntO9pGPrkYt8IUkzSq22Q==","algorithm":"SHA1withRSA"},"subjectUniqueId":"","version"
:1,"issuer":{"dn":"CN=Worklight Test Beta Signing CA,OU=Security Division,O=IBM
Worklight,L=Austin,ST=TX,C=US","cn":"Worklight Test Beta Signing
CA","uniqueId":""},"dn":"CN=user@us.ibm.com","cn":"user@us.ibm.com","valid":{"notBefore":
1381193593,"notAfter":
1382403193},"serialNumber":"efa7b0e3f0d9cef0","base64":"MIIDIzCCAgsCCQDvp7Dj8NnO8DA
NBgkqhkiG9w0BAQUFADCBizELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAlRYMQ8wDQYDVQQHEwZ
BdXN0aW4xFjAUBgNVBAoTDUlCTSBXb3JrbGlnaHQxGjAYBgNVBAsTEVNlY3VyaXR5IERpdmlzaW9u
MSowKAYDVQQDEyFXb3JrbGlnaHQgR2FycmljayBCZXRhIFNpZ25pbmcgQ0EwHhcNMTMxMDA4M
DA1MzEzWhcNMTMxMDIyMDA1MzEzWjAbMRkwFwYDVQQDFBBsaXpldEB1cy5pYm0uY29tMIIBIjA
NBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLCCGEBCUQAgNPZK
cf3wW2LhQ75MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv81+wHaTIu2Qggq
pBMFPhvBdTbS93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQABMA0GCSqGSIb3DQEBBQUAA4IBAQBw40DwQo5AGIgq12EDMbry
mbQUxGQ19tUAjJmW22n4n2ddiaM79oY4QmTfugbMQ9M7m4D94MCu9D1YXcG3M50X2HDiPcA
ImOjmgScPtRNds/MraTXDcg1fhy44icuLsQkQpv4K47m4zLWZQ6PHVqP9Zor4TYqugUo0/
Jd0cAvubCmRk7RpJjFRhjBy7wgC6t4xZkamzX3pLCTVim1uggRRJ3mvePTusFlfzUEBflrCoTHe2ls/
eqkgkgr7rGiK7a0vruYqomP2XX9hv+pCZSDqi4m2319ZhQ7unXAmBSb03R6LFd+0q20nfYWn
+zQHtHvae072kY+uRi3whSTNKrbZ"}

Monitoring and mobile operations 13-77

Note: base64 is the DER formatted certificate. publicKey is also encoded in
base64.

The procedure must return a JSON object in the following format:
{ userName:"user@us.ibm.com",displayName:"",attributes:{},appID:"UserCert",deviceId:"C146B473-DA25-46A7-8A79-E8CE5E9270EE” }

The goal of the JSON object that is returned is to form the original user
identity of the user that is provided by the dependent realm during
generation.

Note: appId and deviceId are optional in this step. If not used, use an
empty string as the value.

Custom PKI bridge:

A custom PKI bridge can be implemented by extending the
com.org.auth.ext.UserCertificatePKIBridge abstract class.

The API for the PKI bridge abstract class can be found at UserCertificatePKIBridge.

WebSphere Application Server and Liberty profile requirements
User certificate authentication uses standard SSL X.509 User Certificates, which
requires the use of an SSL channel.

There are a few requirements around SSL that must be configured in order for user
certificate authentication to work.
v The SSL channel for WebSphere Application Server or the Liberty profile must

be configured to include the certificate authority (CA) in the trust store that is
used to sign user certificates.

v The application server must be configured to allow a user certificate, but not
require it. This configuration is important so that IBM MobileFirst Platform
Foundation can send unauthenticated challenges to the device when the device
does not provide a user certificate.

v The user registry for the application server must be defined. The name that is
used to authenticate a user against that user registry must match the common
name (CN) in a generated user certificate.

v The User Certificate Authentication feature requires the server to be configured
to require a valid X.509 client certificate. The feature also requires an alternate
fallback authentication mechanism when a certificate does not yet exist on the
client. WebSphere Application Server Liberty Profile Versions 8.5.5.0 and 8.5.5.1
allow a basic authentication, or a HTTP 401 status code, as a fallback to
authenticate a user. However, a MobileFirst client cannot handle this
configuration. If you want to protect the MobileFirst Server with the WebSphere
Application Server Liberty Profile security mechanisms, you must install a fix for
APAR PI10103 for Liberty Versions 8.5.5.0 and 8.5.5.1. For more information, see
PI10103: Support certificate authentication to fail over to a form-based login.

Configuring the Liberty profile:

You must enable an HTTPS endpoint in WebSphere Application Server Liberty
profile that uses the server's certificate, and trusts the client certificates.

Before you begin

Ensure that you understand the documentation at Enabling SSL communication for
the Liberty profile. To set up the MobileFirst Server, see the WebSphere Application

13-78 IBM MobileFirst Platform Foundation V6.3.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-server/html/com/worklight/core/auth/ext/UserCertificatePKIBridge.html
http://www.ibm.com/support/docview.wss?uid=swg24037078
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html

Server Liberty profile documentation about setting up SSL for the server at Liberty
profile: SSL configuration attributes.

About this task

The application server requirements can be configured on the WebSphere
Application Server Liberty profile in the server.xml file.

Procedure

1. Install a server certificate for use by the SSL channel, and configure the SSL
channel.

2. Add a truststore to the configuration that contains a keystore with the CA
certificate that is used to sign user certificates. Add the following element to the
server.xml file:
<keyStore id="defaultTrustStore" location="trust.jks" type="JKS" password="defaultPWD" />

3. Enable the client authentication support by adding the
clientAuthenticationSupported="true" attribute to the SSL element in the
server.xml file.

4. Access the MobileFirst Operations Console over SSL. You are presented with a
trusted website that asks for an optional user certificate.

Updating the server authentication configuration
A requirement to enable the User Certificate Authentication feature is to configure
the authentication configuration on the MobileFirst Server.

About this task

You must update the authenticationConfig.xml file to configure your server to
use the User Certificate Authentication feature. User certificate authentication uses
standard MobileFirst authentication mechanisms: authenticator and login modules.
The com.worklight.core.auth.ext.UserCertificateAuthenticator and the
com.worklight.core.auth.ext.UserCertificateLoginModule modules are bundled
with the core MobileFirst Server library.

Procedure
1. From within your server configuration, open the authenticationConfig.xml file

for editing.
2. Add a realm definition inside the <realms> attribute in your

authenticationConfig.xml file.
<realm name="wl_userCertificateAuthRealm"

loginModule="UserCertificateLoginModule">
<className>com.worklight.core.auth.ext.UserCertificateAuthenticator</className>
<parameter name="dependent-user-auth-realm"

value="<DEPENDENT REALM NAME HERE>" />
<parameter name="pki-bridge-class"

value="<PKI BRIDGE CLASS>" />
</realm>

3. Modify this realm definition by supplying your own dependent realm by
specifying its name for the dependent-user-auth-realm parameter and a PKI
bridge implementation (full Java class path) for the pki-bridge-class
parameter. You can use the included PKI bridge classes such as embedded
(“Embedded PKI bridge” on page 13-72) or adapter-based (“External/adapter-
based PKI bridge” on page 13-74) or supply your own custom PKI bridge
implementation (“Custom PKI bridge” on page 13-78).

Monitoring and mobile operations 13-79

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html

4. Add your custom parameters to this realm definition based on your PKI bridge
implementation. Bundled PKI bridge implementations such as Embedded
(“Embedded PKI bridge” on page 13-72) or Adapter-Based
(“External/adapter-based PKI bridge” on page 13-74) have extra required
parameters that must be added.

5. Add the following login module definition, as-is, to your <loginModules>
element in the authenticationConfig.xml file.
<loginModule name="UserCertificateLoginModule">

<className>com.worklight.core.auth.ext.UserCertificateLoginModule</className>
</loginModule>

6. Add the wl_userCertificateAuthRealm realm as a test in the security test that
you want to use for your application or environment.

7. Add the security test to the resource you want to protect. To protect an adapter
procedure, add the securityTest attribute for the procedure. For more
information, see “Overview of MobileFirst adapters” on page 8-333. To protect
an application environment, define a security test for each environment in the
application-descriptor.xml file, by using the securityTest="your_test_name"
property. If no security test is defined for a specific environment, only a
minimal set of default platform tests are run.
<securityTest name="your_test_name">

<testUser realm="wl_userCertificateAuthRealm" />
<testDeviceId provisioningType="none" />

</securityTest>

Note: To protect your application or adapter procedure, reference your security
test in your application descriptor file.
<iphone bundleId="com.UserCertApp" version="1.0" securityTest="your_test_name">

User certificate authentication on the client
The User Certificate Authentication feature requires little configuration on the
client side. The MobileFirst client run time takes care of most of the heavy lifting
on your behalf. There are however, a few things you need to be aware of to ensure
successful and secure communication with your server.

Establishing trust

Because the User Certificate Authentication feature requires communication over
HTTPS, the first thing you must ensure is that your client device trusts the server's
credentials that are sent on the SSL handshake.

Each mobile platform comes with a predefined set of trusted certificate authorities
(CAs) that are deemed trustworthy by the platform. Trust is easily established if
your server uses a server certificate that is signed by one of these trusted CAs.

However, if your server uses a CA that is unknown to your device, you must do
some extra work on the client side to establish appropriate trust. To establish trust,
you must install the trust anchor certificate on the client device. The trust anchor is
either the root CA, or the root certificate if you are using a self-signed certificate.
For more information, see “Configuring SSL by using untrusted certificates” on
page 6-150.

Dependent user realm

The first time a user attempts to connect to the server, IBM MobileFirst Platform
Foundation tries to enroll the user into the PKI and provision the device with the

13-80 IBM MobileFirst Platform Foundation V6.3.0

user certificate. To enroll the user, IBM MobileFirst Platform Foundation requires
the help of a dependent user authentication realm. This behavior is all configured
on the server. But you must ensure that your application has the appropriate
challenge handlers that are required to handle the challenges that come from the
server. The dependent realm challenge handlers do not require any additional
configuration. For more information, see the appropriate section of this user
documentation or getting started modules for instructions on how to write the
respective challenge handlers for your dependent user realm.

Group support

User certificates are issued by default to a user on a specific application and
device. Group support allows a certificate to be issued to the user on a specific
device and to a group of applications. The same user certificate can be shared
among a group of applications that are installed on the device, allowing the user to
only authenticate through a dependent realm once, and not for every application.

In this case, the user enrollment process that requires the user to log in to a
dependent realm happens the first time that the user attempts to log in to the
server on a particular device. After the device is provisioned with the necessary
certificate, all subsequent authentications to the server from any of the MobileFirst
applications that are designated by you use the same certificate to authenticate to
the server.

To configure the sharing of user certificates among a group of applications, see
“Configuring user certificate authentication for a group of applications” on page
13-82.

Clearing certificates on the chain

Certificates on the client are managed by the MobileFirst client run time. They are
installed and removed from the device as needed. However, there might be
situations when you want the ability to clear the certificates that are installed on
the device. For this reason, a JavaScript API is provided. The API allows the
application to remove the certificates at more convenient times, like during test
and development, or when the device is transferred to a new user.

The following API removes the certificate on the device for the specific application
in use:
WL.UserAuth.deleteCertificate();

On iOS only, if you would like to delete the certificate that is associated with a
specific group of applications, use the following API:
WL.UserAuth.deleteCertificate("yourGroupNameHere");

Security considerations

This new feature introduces a powerful and ITU-T X.509 standards-based way to
authenticate users. It also introduces a password-less login mechanism. The
identity is established by the MobileFirst client run time as part of the application
that presents the certificate as part of the server-side connection. Although this
behavior greatly simplifies the user experience, the following precautions must be
taken by the enterprise. These precautions ensure that there is adequate protection
on the device to ensure cases where the user loses the device or when the device is
stolen.

Monitoring and mobile operations 13-81

1. Single user is required. The device is owned and used only by a single user
and not accessible to others.

2. Device must be maintained under a device passcode lock or PIN to ensure that
only the designated user can access the device and applications.

Configuring user certificate authentication for a group of
applications
You can configure the User Certificate Authentication feature to issue a certificate
to a user on a device for a group or family of applications that are protected by the
user certificate authentication realm. This configuration allows a user to
authenticate once and be automatically authenticated to a set of applications on the
device (single sign-on). This single sign-on option among a family of applications
can be achieved with the Simple Data Sharing feature. The Simple Data Sharing
feature allows the User Certificate Authentication feature to provision a device
with a user certificate that applies to, and is used by, all applications in the same
specified MobileFirst family.

About this task

You can configure the User Certificate Authentication feature to provision the
device with a user certificate that is shared among a group of applications. This
configuration allows a group of applications to authenticate with the same X.509
client certificate. This function is supported only on iOS and Android hybrid
environments.

Note: The iOS x509AccessGroup property is deprecated since IBM MobileFirst
Platform Foundation V6.3.0. Use the Simple Data Sharing feature instead.

Procedure
1. Enable the Simple Data Sharing feature as explained in “Enabling the Simple

Data Sharing feature for hybrid applications” on page 8-550.
2. Ensure that you select the user certificate authentication group support option

in the application descriptor file.

13-82 IBM MobileFirst Platform Foundation V6.3.0

Troubleshooting the User Certificate Authentication feature
Find solutions to problems with the User Certificate Authentication feature.

Table 13-9. User Certificate Authentication troubleshooting guidelines. This table lists
possible problems and actions to take to troubleshoot the User Certificate Authentication
feature.

Problem Actions to take

The server is not responding even though it
is accessible through the browser when it
uses a certificate that is signed by a private
CA.

Make sure that you can reach the
MobileFirst Server on your device. For
example, go to the MobileFirst Operations
Console on the device's internet browser. If
you can reach it, then the most likely error is
that the client is not trusting the server's
certificate. The server’s certificate is most
likely a certificate that is signed by a private
CA. To fix this problem, you must install the
root CA on the device so that it is trusted.
For more information, see “Establishing
trust” on page 13-80.

Certificates that are signed by a private CA
work on Android but not on iOS.

When Android is in debuggable mode, some
SSL errors are ignored. This behavior gives
the impression that SSL is working. Android
is in debuggable mode when the APK is
unsigned, or when you explicitly set it in the
manifest. . Verify that the debuggable flag is
set to false (debuggable:false) in the
Android manifest file, or sign the APK.
Make sure that there is no explicit
declaration in the manifest that sets it to
debuggable mode. For more information
about how to trust certificates that are
signed by your private CA, see “Configuring
SSL by using untrusted certificates” on page
6-150.

javax.net.ssl.SSLPeerUnverifiedException
on Android or
WLSecureRequest:sendRequestToServerWithURL
A connection failure occured: SSL
Problem (Possible causes may include a
bad/expired/self-signed certificate,
clock set to the wrong date) on iOS.

One of the certificates was not trusted.
Usually it is because the server did not send
the server certificate with the whole
certificate chain in the right order, when it
uses an intermediate CA. For more
information, see “SSL configuration” on
page 13-71. Another explanation can be that
the certificate was revoked by the certificate
revocation list (CRL), and the PKI did not
allow the device to renew the certificate.

Authentication fails with an exception in the
PKI.

There was an exception somewhere in the
PKI bridge. To see more information about
the exception, make sure that the
MobileFirst Server has trace that is enabled
for com.worklight.*=all, and search for
UserCertificate* in the trace file. Possible
reasons include a syntax or runtime error in
the adapter when you use the adapter-based
PKI bridge, or a configuration error in the
embedded PKI.

Monitoring and mobile operations 13-83

Table 13-9. User Certificate Authentication troubleshooting guidelines (continued). This
table lists possible problems and actions to take to troubleshoot the User Certificate
Authentication feature.

Problem Actions to take

The client certificate is expired or not yet
valid.

If the certificate is expired or not yet valid,
the client logs this information in the client's
logs. The client then proceeds with the
authentication as if it did not have a
certificate. The PKI then decides whether it
allows the user to renew the certificate or
not. In the ’certificate not yet valid’ scenario,
verify that the device and the server clocks
are set correctly.

License tracking
IBM MobileFirst Platform Foundation is available in Enterprise (B2E) and
Consumer (B2C) editions, and the license terms vary depending on which edition
was sold.

License tracking is enabled by default in IBM MobileFirst Platform Foundation,
which tracks metrics relevant to the licensing policy such as active client devices
and installed apps.

This information helps determine if the current usage of IBM MobileFirst Platform
Foundation is within the license entitlement levels and can prevent potential
license violations.

Also, by tracking the usage of client devices, and determining whether the devices
are active, MobileFirst administrators can decommission devices that are no longer
accessing the IBM MobileFirst Platform. This situation might arise if an employee
has left the company, for example.

License tracking details are gathered by specifying configuration properties in
JNDI, and the data that is gathered is displayed in a License Tracking report that is
accessed from the IBM MobileFirst Platform Operations Console.

Configuring your license tracking details
Administrators can set Java Naming and Directory Interface (JNDI) configuration
properties to gather data that relates to license terms for devices that are accessing
the MobileFirst platform. This data can be displayed in the License Tracking report,
which is accessed from the IBM MobileFirst Platform Operations Console.

About this task

Administrators can specify the following JNDI configuration properties, which
enable the administrators to gather the required data:

wl.device.decommission.when
The number of days of inactivity after which a client device is decommissioned
by the device decommissioning task. The default value is 90 days.

wl.device.archiveDecommissioned.when
A value, in days, that defines when client devices that were decommissioned
will be placed in an archive file when the decommissioning task is run. The

13-84 IBM MobileFirst Platform Foundation V6.3.0

archived client devices are written to a file in the IBM MobileFirst Platform
Server home\devices_archive directory. The name of the file contains the time
stamp when the archive file is created. The default value is 90 days.

wl.device.tracking.enabled
A value that is used to enable or disable device tracking in IBM MobileFirst
Platform Foundation. For performance reasons, you can disable this flag when
IBM MobileFirst Platform Foundation is running only Business-to-Consumer
(B2C) apps. When device tracking is disabled, the license reports are also
disabled and no license metrics are generated.

For more information about specifying JNDI properties, see Configuring an IBM
MobileFirst project in production by using JNDI environment entries.

The decommissioning task is run daily, as a MobileFirst Server task in the
background. This task performs the following actions:
v Decommissions inactive devices, based on the wl.device.decommission.when

setting.
v Optionally, archives older decommissioned devices, based on the

wl.device.archiveDecommissioned.when setting.
v Generates the License Tracking report.

Active client devices are those devices whose status is not decommissioned;
inactive client devices have a decommissioned status.

Procedure
1. Specify the required properties as JNDI properties.
2. View the data in the License Tracking report in the MobileFirst Operations

Console. For more information, see “License Tracking report.”

License Tracking report
IBM MobileFirst Platform Foundation provides a report that shows how many
client devices are accessing the platform, and whether they are active or
decommissioned. The report also provides historical data.

The License Tracking report shows the following data:
v The number of applications deployed in the IBM MobileFirst Platform Server
v The number of client devices, both active and decommissioned
v The highest number of client devices reported over the last n days, where n is

the number of days of inactivity after which a client device is decommissioned.

Administrators might want to analyze data further. For this purpose, the number
of active client devices per application, the generated report details, and an
historical listing of license metrics are captured in a CSV file that can be
downloaded for further analysis.

The data is gathered by using the following JNDI configuration properties:
v wl.device.decommission.when

v wl.device.archiveDecommissioned.when

v wl.device.tracking.enabled

For more information, see Configuring your license tracking details.

Monitoring and mobile operations 13-85

To access the License Tracking report, click License tracking in the lower left
corner of the IBM MobileFirst Platform Operations Console (). The License
Tracking report is displayed:

To save key details from the License Tracking report in a CSV file, click the CSV
icon at the lower left corner of the report.

Integration with IBM License Metric Tool
IBM MobileFirst Platform Foundation generates IBM Software License Metric Tag
(SLMT) files. Versions of IBM License Metric Tool that support IBM Software
License Metric Tag can generate License Consumption Reports. Read this section to
interpret these reports for MobileFirst Server, and to configure the generation of
the IBM Software License Metric Tag files.

If you have not installed a version of IBM License Metric Tool that supports IBM
Software License Metric Tag, you can review the license usage with the License
Tracking reports of MobileFirst Operations Console. For more information, see
“License Tracking report” on page 13-85.

13-86 IBM MobileFirst Platform Foundation V6.3.0

Each instance of a running MobileFirst runtime environment generates an IBM
Software License Metric Tag file. The metrics monitored are CLIENT_DEVICE and
APPLICATION. Their values are refreshed every 24 hours.

About the CLIENT_DEVICE metric

The CLIENT_DEVICE metric can have the following subtypes:

Active Devices
The number of client devices that used the MobileFirst runtime
environment, or another MobileFirst runtime instance belonging to the
same cluster or server farm, and that were not decommissioned. For more
information about decommissioned devices, see “Configuring your license
tracking details” on page 13-84.

Inactive Devices
The number of client devices that used the MobileFirst runtime
environment, or another MobileFirst runtime instance belonging to the
same cluster or server farm, and that were decommissioned. For more
information about decommissioned devices, see “Configuring your license
tracking details” on page 13-84.

The following cases are specific:
v If the decommissioning period of the device is set to a small period, the subtype

"Inactive Devices" is replaced by the subtype "Active or Inactive Devices".
v If device tracking was disabled, only one entry is generated for CLIENT_DEVICE,

with the value 0, and the metric subtype "Device Tracking Disabled".
v If the MobileFirst runtime environment is running in a development server, and

device tracking is not disabled, only one entry is generated for CLIENT_DEVICE.
This entry has the sum of active and decommissioned devices as its value, and
"Development Server" as its metric subtype.

About the APPLICATION metric

The APPLICATION metric has no subtype unless the MobileFirst runtime
environment is running in a development server.

The value reported for this metric is the number of applications that are deployed
in the MobileFirst runtime environment. Each application is counted as one unit,
whether it is a new application, an additional brand deployment, or an additional
type of an existing application (for example native, hybrid, or web).

This number of applications is monitored even if wl.device.tracking.enabled is
set to false.

The following cases are specific:
v If the MobileFirst runtime environment is running in a development server, the

metric Application is reported with the subtype "Development Server".

Configuring IBM License Metric Tool log files

By default, the IBM Software License Metric Tag files are in the following
directories:
v On Windows: %ProgramFiles%\ibm\common\slm
v On UNIX and UNIX-like operating systems: /var/ibm/common/slm

Monitoring and mobile operations 13-87

If the directories are not writable, the files are created in the log directory of the
application server that runs the MobileFirst runtime environment.

You can configure the location and management of those files with the following
properties:
v license.metric.logger.output.dir: Location of the IBM Software License Metric

Tag files
v license.metric.logger.file.size: Maximum size of an SLMT file before a

rotation is performed. The default size is 1 MB.
v license.metric.logger.file.number: Maximum number of SLMT archive files to

keep in rotations. The default number is 10.

To change the default values, you must create a Java property file, with the format
key=value, and provide the path to the properties file through the
license_metric_logger_configuration JVM property.
Related tasks:
“Configuring your license tracking details” on page 13-84
Administrators can set Java Naming and Directory Interface (JNDI) configuration
properties to gather data that relates to license terms for devices that are accessing
the MobileFirst platform. This data can be displayed in the License Tracking report,
which is accessed from the IBM MobileFirst Platform Operations Console.

13-88 IBM MobileFirst Platform Foundation V6.3.0

Integrating with other IBM products

IBM MobileFirst Platform Foundation integrates with other IBM products.

You can find samples and more documentation about such integration for
developers and administrators on the Integration page of the Developer Center
website for IBM MobileFirst Platform.

Introduction to MobileFirst integration capabilities
As a developer or administrator, you can use IBM MobileFirst Platform Foundation
integration capabilities to connect specific IBM products to existing back-end
systems and other Internet or intranet sources.

IBM MobileFirst Platform Foundation Enterprise Edition and IBM MobileFirst
Platform Foundation Consumer Edition provide capabilities to integrate with IBM
Endpoint Manager for Mobile Devices and IBM WebSphere® Cast Iron® for
enterprise and application security.

To implement integration to external resources, you use the product adapter
technology.

IBM MobileFirst Platform Foundation also provides a flexible authentication
framework to support existing security requirements through authenticator or login
modules. For more information, see “MobileFirst security framework” on page
8-480.

Figure 1 gives a high-level view of the topology context for an app on a device
that connects to IBM MobileFirst Platform Foundation.

Figure 2 shows where other IBM products fit within the typical MobileFirst
topology diagram in Figure 1.

Item Description

A App

D Device

N Network

I/i Internet or intranet

MFP IBM MobileFirst Platform Foundation

EBE Existing back ends

I Other Internet sources

© Copyright IBM Corp. 2006, 2015 14-1

https://developer.ibm.com/mobilefirstplatform/documentation/integration-6-3/

Figure 14-2 shows where these products fit within the typical MobileFirst topology
diagram in Figure 14-1.

Integration with Cast Iron
You can use IBM WebSphere Cast Iron to enable enterprise connectivity within a
MobileFirst environment.

IBM MobileFirst Platform Foundation supports the following adapters:
v SQL
v HTTP
v Cast Iron
v Java Message Service (JMS)

The Cast Iron adapter provides first-class integration with all of the cloud-based,
hardware appliance, or software-based hypervisor editions of IBM WebSphere Cast
Iron.

Figure 14-1. Overall Topology

Figure 14-2. Integration Points

14-2 IBM MobileFirst Platform Foundation V6.3.0

By using IBM WebSphere Cast Iron, companies can integrate applications,
regardless of whether the applications are located on-premises or in public or
private clouds. With WebSphere Cast Iron, you do not need any programming
knowledge to integrate applications. You can build integration flows in WebSphere
Cast Iron Studio, which is a graphical development environment that is installed
on a personal computer. With Cast Iron Studio, you can create an integration
project that contains one or more orchestrations. Each orchestration is built with a
number of activities that define the flow of data. You can define the details of an
activity from the configuration panes within Cast Iron Studio.

Figure 1 shows how the topology changes to reflect the use of Cast Iron.

For more information about Cast Iron adapters, see the tutorial on the Getting
Started page and “Typical topologies of a MobileFirst instance” on page 6-255.

Integration and authentication with a reverse proxy
You can use of a reverse proxy to enable enterprise connectivity within a
MobileFirst environment and to provide authentication to IBM MobileFirst
Platform Foundation.

General architecture

Reverse proxies typically front MobileFirst runtimes as part of the deployment, as
shown in Figure 1, and follow the gateway pattern.

The gateway icon (GW) represents a reverse proxy such as WebSphere
DataPoweror IBM Security Access Manager. In addition to protecting MobileFirst

Figure 14-3. Integration with Cast Iron

Figure 14-4. Integration with reverse proxy

Integrating with other IBM products 14-3

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-6-3/

resources from the Internet, the reverse proxy provides termination of SSL
connections and authentication. The reverse proxy can also act as a policy
enforcement point (PEP).

When a gateway is used, app (A) on device (D) uses the public URI that is
advertised by the gateway instead of the internal MobileFirst URI. The public URI
can be exposed as a setting within the app or can be built in during promotion of
the app to production before the app is published to public or private app stores.

Authentication at the gateway

If authentication ends at the gateway, IBM MobileFirst Platform Foundation can be
informed of the authenticated user by a shared context, such as a custom HTTP
header or a cookie. By using the extensible authentication framework, you can
configure IBM MobileFirst Platform Foundation to use the user identity from one
of these mechanisms and establish a successful login. Figure 14-5 shows a typical
authentication flow.

This configuration was tested with DataPower and IBM Security Access Manager
for header-based authentication and LTPA-based authentication.

Header-based authentication

v On successful authentication, the gateway forwards a custom HTTP
header with the user name or ID to IBM MobileFirst Platform
Foundation.

v IBM MobileFirst Platform Foundation is configured to use
HeaderAuthenticator and HeaderLoginModule on either Tomcat or
WebSphere Application Server.

Figure 14-5. Authentication flow

14-4 IBM MobileFirst Platform Foundation V6.3.0

LTPA-based authentication

v On successful authentication, the gateway forwards an LTPA token (in
the form of an HTTP cookie) toIBM MobileFirst Platform Foundation

v IBM MobileFirst Platform Foundation on WebSphere Application Server
is configured to use WebSphereFormBasedAuthenticator and
WebSphereLoginModule.

Integration with IBM Endpoint Manager
In a MobileFirst environment, you can implement an IBM Endpoint Manager
architecture to make your enterprise devices and applications benefit of endpoint
management features such as data security, compliance, and unified infrastructure.

IBM Endpoint Manager for Mobile Devices
An overview of the features and architecture of IBM Endpoint Manager for Mobile
Devices.

Features

With IBM MobileFirst Platform Foundation, you can integrate the security features
that IBM Endpoint Manager provides. The purpose of IBM Endpoint Manager is to
deliver a unified solution for the management of systems and security, for all
enterprise devices.

IBM Endpoint Manager for Mobile Devices provides security capabilities in the
following areas:
v Enterprise Access Management: Configuration of email, VPN, and WiFi.
v Policy and security management: Password policies, device encryption, jailbreak,

and root detection.
v Management actions: Selective wipe, full wipe, deny email access, remote lock,

user notification, clear passcode.

Integrating with other IBM products 14-5

v Application management: Application inventory, enterprise app store,
whitelisting, blacklisting, Apple Volume Purchase Program (VPP).

v Container solution: Enterproid Divide provides a secure and manageable
container for BYOD (Bring Your Own Device) devices. The Divide app provides
a workspace that mimics device capabilities. Because this workspace is isolated
from the rest of the device, Divide can manage information separately and
safely.

v Personal Information Manager (PIM) – NitroDesk TouchDown is a PIM product
that allows enterprise data such as email to be secured separately in a BYOD
Android environment.

v Support for SAFE, Samsung's proprietary APIs that provide more security than
standard Android.

Architecture

IBM Endpoint Manager for Mobile Devices uses two approaches to manage those
devices:
v An agent-based, Mobile Device Management (MDM) API-based approach that is

supported on Android and iOS devices through the IBM Mobile Client. This
approach provides the full set of capabilities through either a native Agent on
the Android platform or the usage of Apple’s MDM APIs and the Push
Notification Server infrastructure (APNS).

v An email-based management through Exchange (Active Sync) and Lotus®

Traveler (IBM Sync). In this approach, Android, iOS, Windows Phone, and
Symbian are supported, but the functionality is limited and includes the ability
to wipe a device, deny email access, and set password policies. You cannot see
individual device details, perform application management, configure WiFi or
VPN connections, or provide advance restrictions as in the agent–based, MDM
API-based approach.

v Container management is available through Enterproid Divide, as indicated in
“Features” on page 14-5.

v PIM is available through NitroDesk TouchDown.

The following diagram shows an architectural overview of a production-level,
agent-based, MDM API-based implementation with IBM Endpoint Manager for
Mobile Devices.

14-6 IBM MobileFirst Platform Foundation V6.3.0

End-point management with IBM Endpoint Manager
IBM Endpoint Manager for Mobile Devices provides features to manage devices in
a MobileFirst environment.

IBM MobileFirst Platform Foundation provides app management capabilities as
part of the platform. IBM Endpoint Manager provides specific device management
capabilities. The app can also use certain device functions, which leads to an
overlap in some of the management aspects between IBM MobileFirst Platform
Foundation and IBM Endpoint Manager for Mobile Devices, as shown in
Figure 14-6 on page 14-8.

Integrating with other IBM products 14-7

For devices that must be managed as enterprise assets and devices that must be
controlled across applications, IBM Endpoint Manager provides the following
mobile device management capabilities:
v Safeguard of enterprise data
v Flexible management
v Maintained compliance
v Unified infrastructure

Safeguard of enterprise data

v Selectively wipes enterprise data when devices are lost or stolen.
v Configures and enforces passcode policies, encryption, VPN, and more.

Flexible management

v Secures and manages employee-owned and corporate-owned mobile
devices by a combination of email-based and agent-based management,
while preserving the native device experience.

Maintained compliance

v Automatically identifies non-compliant devices.
v Denies email access or issues user notifications until corrective actions

are implemented.

Unified infrastructure

v Uses a single infrastructure to manage and secure all your enterprise
devices; that is, smartphones, media tablets, desktops, notebooks, and
servers.

Figure 14-6. IBM MobileFirst Platform Foundation and IBM Endpoint Manager management capabilities

14-8 IBM MobileFirst Platform Foundation V6.3.0

Integration with IBM Tealeaf
An overview of the use of IBM Tealeaf.

IBM Tealeaf CX Mobile helps customers apply the power of Tealeaf powerful
solutions for customer experience management to their mobile websites, hybrid
applications, and native applications, including support for HTML5. IBM Tealeaf
gives customers visibility where they do not have it today, helping to deliver
winning mobile services. IBM Tealeaf CX Mobile is an add-on to the Tealeaf CX
platform.IBM Tealeaf is provided as a set of libraries. To use it, you must take
steps on both your client and your server.

For more information, see the Integration pages.

IBM Tealeaf client-side integration
To make the IBM Tealeaf client SDK available for development, you can use
MobileFirst Studio to place the libraries and configuration files in the appropriate
location of your MobileFirst project file system for each supported environment.

About this task

Integrating the IBM Tealeaf client SDK into your application is meaningful only
when you also have an IBM Tealeaf CX server to which the clients send their
collected data. Use the MobileFirst Studio application-descriptor.xml editor to
manage the optional feature.

Procedure
1. Find and double-click the application-descriptor.xml file to open the

Application Descriptor editor view.
2. Find and click Optional Features.
3. Click Add.
4. Click IBM Tealeaf SDK.
5. Click OK.

Results

After the libraries and configuration files are in the correct directory, the IBM
Tealeaf client-side API is on your Java class path and available in XCode
(Objective-C), and the TLT global variable is available in your JavaScript code.

Important:

Be aware of the following effects:
v Selecting the IBM Tealeaf SDK for inclusion in your application in MobileFirst

Studio does not overwrite existing IBM Tealeaf artifacts.
v Removing the IBM Tealeaf SDK from inclusion in your application by removing

the optional feature item removes existing IBM Tealeaf artifacts from your
project, including any you placed manually.

Therefore, you can place specific versions of the IBM Tealeaf SDK artifacts
manually and avoid managing the placement of IBM Tealeaf artifacts in your
project in the application descriptor editor.

Integrating with other IBM products 14-9

https://developer.ibm.com/mobilefirstplatform/documentation/

For more information about how to edit the properties file (Android), the pList file
(iOS), or the configuration object (JavaScript), and how to use the IBM Tealeaf CX
Mobile API, see the Tealeaf documentation indicated in the Tealeaf CX Mobile page
of the Developer Center website for IBM MobileFirst Platform.

Example

The following figure shows the Application Descriptor editor view. The steps are
highlighted:

IBM Tealeaf server-side integration
To aggregate the data that is collected in client applications by the IBM Tealeaf
client SDK, you must install the IBM Tealeaf Mobile CX server.

For more information about installation, configuration, and usage, see Tealeaf CX
Mobile.

Integration with IBM Trusteer
You can use IBM Trusteer to collect mobile device risk factors. By providing these
to your mobile app, you can restrict mobile app functionality by risk levels.

IBM MobileFirst Platform Foundation supports the following versions of IBM
Trusteer Mobile SDK:
v IBM Trusteer Mobile SDK Version 3.6 and later fix packs
v IBM Trusteer Mobile SDK Version 4.0 and later fix packs

IBM MobileFirst Platform Foundation supports full integration with the IBM
Trusteer Mobile SDK for Android and iOS applications only.

After the Trusteer Mobile SDK is installed, you must configure MobileFirst Server
to support it:
v “MobileFirst security overview” on page 11-76 and “MobileFirst security

configuration” on page 11-77 provide an overview of general MobileFirst
security configuration.

v “Configuring the MobileFirst Server for Trusteer” on page 11-82 provides steps
for configuring MobileFirst Server to support Trusteer.

For more information, see the Integration pages.

14-10 IBM MobileFirst Platform Foundation V6.3.0

https://developer.ibm.com/mobilefirstplatform/documentation/integration-6-3/tealeaf-cx-mobile/
http://www.ibm.com/software/products/en/cx-mobile
http://www.ibm.com/software/products/en/cx-mobile
https://developer.ibm.com/mobilefirstplatform/documentation/

Integrating IBM Trusteer for iOS
You might want to integrate Trusteer with IBM MobileFirst Platform Foundation.

Before you begin
v If you are using a Trusteer compressed archive:

1. Make sure that you have the following files:
– Trusteer Mobile iOS library: libtas_full.a.
– A MobileFirst-compatible Trusteer license file: tas.license
– A Trusteer configuration package: default_conf.rpkg
– A Trusteer Application Security Manifest: manifest.rpkg

Note: You might need to generate the manifest manually. For more
information, see the Trusteer documentation.

If any of these items is missing, consult your local IBM representative.
2. In your file system, create a tas folder and place in it the files that are listed

previously.
3. Continue from step 1.

v If you are using a Trusteer MobileFirst component, first follow the instructions
in “Adding application components to MobileFirst projects” on page 8-300, then
continue from step 1.

Note: Starting with its version 4.0, Trusteer supports the arm64 architecture. Earlier
versions of Trusteer do not.

Procedure
1. In your Xcode project, drag the folder onto your project navigator.
2. Select the check box Copy items into destination group's folder (if needed).
3. Select the option Create folder references for any added folders.
4. Make sure that your target is selected, then click Finish.
5. Click the project name at the top of the tree in the Project Navigator, then

click Build Phases.
6. To link your project with the Trusteer library, drag the libtas_full.a file

from the Project Navigator to the Link Binary With Libraries list.

Note: To avoid possible link issues, arrange the items in the list so that
libWorklightStaticLibProject.a appears at the top and libtas_full.a
appears next.

7. In Build Settings > Linking > Other Linker Flags, add: -force_load
"$(SRCROOT)/tas/libtas_full.a".

8. In Build Settings > Linking > Dead Code Stripping, select NO.
9. In the Xcode Project Navigator, drag tas.license into the Resources group.

10. In the dialog box that opens, click Finish.
11. Open the tas.license file and check that the values for vendorId, clientId,

and clientKey match the licensing information that was provided by Trusteer.

Integrating IBM Trusteer for Android by using a MobileFirst
component

You can integrate Trusteer with IBM MobileFirst Platform Foundation for Android
apps by using a MobileFirst component.

Integrating with other IBM products 14-11

Procedure
1. Make sure that you have obtained a Trusteer MobileFirst Component.
2. Add the Trusteer MobileFirst component to your MobileFirst project, by

following the procedures in “Adding application components to MobileFirst
projects” on page 8-300.

3. In the Project Navigator, under your application, navigate to nativeResources
> assets.

4. Open the tas.license file and check that the values for vendorId, clientId and
clientKey match the licensing information that was provided by Trusteer.

Integrating IBM Trusteer for Android from a zipped archive
You might want to integrate Trusteer with IBM MobileFirst Platform Foundation
for Android apps using a zipped archive.

Procedure
1. Make sure that Trusteer has provided you with the following:

a. Trusteer Mobile Android native libraries (libtaz_full.so and
libgnustl_shared.so).

b. Trusteer Mobile Android Java Libraries (taz.jar and reflectutils.jar).
c. MobileFirst-compatible Trusteer license file (tas.license).
d. Trusteer configuration package (default_conf.rpkg).
If any of these items is missing, consult your local IBM representative.

2. In your file system, create two folders: libs/armeabi and libs/armeabi-v7a.
3. Copy the Trusteer Mobile Android native libraries to the two folders.
4. Copy the Trusteer Mobile Android Java Libraries to the libs folder.
5. Copy the Trusteer configuration package (default_conf.rpkg) to the Assets

folder.
6. Copy the MobileFirst-compatible Trusteer license file (tas.license) to the

Assets folder.
7. Add the following permissions to the application manifest file

(androidManifest.xml):
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

8. If you use Trusteer Mobile SDK V4.0 or later, add the following permissions to
the application manifest file (androidManifest.xml):
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

9. Optional: Add the following permission to the application manifest file
(androidManifest.xml):
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

10. If you use Trusteer Mobile SDK V4.0 or later, add the following tags to the
<application> section of the application manifest file (androidManifest.xml):
<service android:name="com.trusteer.taz.service.TasService"/>

<receiver android:name="com.trusteer.taz.service.TasIntentReceiver" >
<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED" />
</intent-filter>

</receiver>

14-12 IBM MobileFirst Platform Foundation V6.3.0

Using WebSphere DataPower as a push notification proxy
IBM WebSphere DataPower can be used as a gateway for outbound connections to
facilitate monitoring and routing. IBM MobileFirst Platform Foundation makes
outbound connections to notification mediators in order to push notifications for
mobile applications. You can set up DataPower to act as a push notification proxy
for MobileFirst mobile applications.

About this task

IBM WebSphere DataPower SOA Appliances are built for simplified deployment
and hardened security, bridging multiple protocols, and performing conversions at
wire speed. These capabilities help an organization to achieve and maintain its
security and operational polices.

DataPower can act as a reverse proxy and security gateway for handling inbound
traffic into an enterprise. In addition, in a situation where corporate policy
mandates that all outbound connections must be made through a gateway to
facilitate monitoring and routing, DataPower can also be used as a gateway for
such a requirement.

IBM MobileFirst Platform Foundation makes outbound connections to a
notification mediator, APNS (Apple Push Notification Service) or GCM (Google
Cloud Messaging servers), in order to push notifications for mobile applications.
DataPower can act as a proxy between MobileFirst Server and APNS or GCM.

Procedure
v For both APNS and GCM, you must configure both DataPower and the

MobileFirst Server.
v For GCM, there are two possible DataPower configurations that would enable it

to act as a GCM proxy for IBM MobileFirst Platform Foundation: a TCP proxy
configuration and a web application firewall configuration.

v For more information, and detailed step-by-step instructions, see the
developerWorks article Using WebSphere DataPower as a push notification
proxy for MobileFirst mobile applications.

More about integration
More resources on integration with IBM WebSphere Cast Iron, IBM Endpoint
Manager, IBM WebSphere DataPower, and IBM Security Access Manager are
available from the product websites and IBM Redbooks® website.

For more information, use the following links:

IBM WebSphere Cast Iron

http://www.redbooks.ibm.com/redpapers/pdfs/redp4840.pdf

http://www.redbooks.ibm.com/abstracts/sg248004.html?Open

IBM Endpoint Manager

http://www.ibm.com/software/tivoli/solutions/endpoint/mdm/

IBM WebSphere DataPower

http://www.redbooks.ibm.com/abstracts/redp4790.html?Open

http://www.redbooks.ibm.com/abstracts/sg247620.html?Open

Integrating with other IBM products 14-13

http://www.ibm.com/developerworks/websphere/techjournal/1402_ramachandra/1402_ramachandra.html
http://www.ibm.com/developerworks/websphere/techjournal/1402_ramachandra/1402_ramachandra.html
http://www.redbooks.ibm.com/redpapers/pdfs/redp4840.pdf
http://www.redbooks.ibm.com/abstracts/sg248004.html?Open
http://www.ibm.com/software/tivoli/solutions/endpoint/mdm/
http://www.redbooks.ibm.com/abstracts/redp4790.html?Open
http://www.redbooks.ibm.com/abstracts/sg247620.html?Open

IBM Security Access Manager

http://www.redbooks.ibm.com/abstracts/redp4621.html?Open

http://www.ibm.com/support/docview.wss?uid=swg24034222

14-14 IBM MobileFirst Platform Foundation V6.3.0

http://www.redbooks.ibm.com/abstracts/redp4621.html?Open
http://www.ibm.com/support/docview.wss?uid=swg24034222

Reference

Reference information about Ant tasks, configuration sample files

Ant configuredatabase task reference
Reference information for the configuredatabase Ant task.

Overview

The configuredatabase Ant task creates the databases that are used by MobileFirst
Administration Services and by the MobileFirst runtime. This Ant task configures a
database for a MobileFirst project through the following actions:
v Checks whether the MobileFirst tables exist and creates them if necessary.
v If the tables exist for an older version of IBM MobileFirst Platform Foundation,

migrates them to the current version.
v If the tables exist for the current version of IBM MobileFirst Platform

Foundation, does nothing.

In addition, if one of the following conditions is met:
v The DBMS type is Derby.
v An inner element <dba> is present.
v The DBMS type is DB2, and the specified user has the permissions to create

databases.

Then, the task can have the following effects:
v Create the database if necessary.
v Create a user, if necessary, and grants that user access rights to the database.

In IBM Worklight Foundation V6.2.0, a new database was introduced, which is
referenced with kind WorklightAdmin for Administration Services. This database
can support one MobileFirst runtime or more, and can handle the artifacts of those
MobileFirst runtimes.

Important: If you upgrade from a IBM Worklight version earlier that V6.2.0, you
must also migrate the data from the IBM Worklight runtime to the new database
for MobileFirst Administration Services. IBM Worklight Foundation V6.2.0
introduced a new element, admindatabase, for this purpose, as shown in Table 2.

Attributes and elements for configuredatabase

The configuredatabase task has the following attributes:

Table 15-1. Attributes for the configuredatabase Ant task

Attribute Description Required Default

kind Type of database: Worklight,
WorklightReports, or WorklightAdmin

Yes None

IBM MobileFirst Platform Foundation V6.3.0 supports three kinds of database:
MobileFirst runtimes use Worklight and WorklightReports databases. MobileFirst
Administration Services use the WorklightAdmin database.

© Copyright IBM Corp. 2006, 2015 15-1

The configuredatabase task supports the following elements:

Table 15-2. Inner elements for the configuredatabase Ant task

Element Description Count

derby Parameters for Derby 0..1

db2 Parameters for DB2 0..1

mysql Parameters for MySQL 0..1

oracle Parameters for Oracle 0..1

driverclasspath JDBC driver class path 0..1

admindatabase Parameters for migrating data from IBM
Worklight V6.1.x runtime to IBM MobileFirst
Platform Foundation V6.3.0 Administration
Services database

0..1

For each database type, you can use a <property> element to specify a JDBC
connection property for access to the database. The <property> element has the
following attributes:

Table 15-3. Attributes for the property element

Attribute Description Required Default

name Name of the property Yes None

value Value for the
property

Yes None

Attributes and elements for admindatabase

Use the <admindatabase> element for migrating data from a MobileFirst runtime
database to the MobileFirst Administration Services database. This element is
mandatory when you migrate yourIBM Worklight runtime projects from V6.1.x
and the kind attribute of configuredatabase is Worklight.

The admindatabase element has the following attribute.

Table 15-4. Attribute for the admindatabase element

Attribute Description Required Default

runtimeContextRoot Context root of the
MobileFirst runtime

Yes None

Because the MobileFirst Administration Services can handle one or more
MobileFirst runtimes, you must reference a specific context root for each runtime.
Use the runtimeContextRoot attribute to specify this context root. After MobileFirst
data is migrated, you cannot change the context root of the MobileFirst runtime,
unless the MobileFirst Administration Services database is removed and a new
database is created.

The <admindatabase> element supports the following elements.

Table 15-5. Inner elements for the admindatabase element

Element Description Count

derby Parameters for Derby 0..1

db2 Parameters for DB2 0..1

15-2 IBM MobileFirst Platform Foundation V6.3.0

Table 15-5. Inner elements for the admindatabase element (continued)

Element Description Count

driverclasspath JDBC driver class path 0..1

mysql Parameters for MySQL 0..1

oracle Parameters for Oracle 0..1

Apache Derby

The <derby> element has the following attributes:

Table 15-6. Attributes for the derby element

Attribute Description Required Default

database Database name No WRKLGHT, WLREPORT, or
WLADMIN, depending on kind.

datadir Directory that
contains the
databases

Yes None

schema Schema name No WORKLIGHT, WORKLIGHT, or
WLADMINISTRATOR, depending
on kind

The <derby> element supports the following elements:

Table 15-7. Inner elements for the derby element

Element Description Count

property JDBC connection property 0..∞

For the available properties, see Setting attributes for the database connection URL.

DB2

The <db2> element has the following attributes:

Table 15-8. Attributes for the db2 element

Attribute Description Required Default

database Database name No WRKLGHT, WLREPORT, or
WLADMIN, depending on kind

server Host name of the
database server

Yes None

port Port on the database
server

No 50000

user User name for
accessing databases

Yes None

password Password for
accessing databases

No Queried interactively

instance Name of the DB2
instance

No Depends on the server

schema Schema name No Depends on the user

Reference 15-3

http://db.apache.org/derby/docs/10.8/ref/rrefattrib24612.html

For more information about DB2 user accounts, see DB2 security model overview.

The <db2> element supports the following elements:

Table 15-9. Inner elements for the db2 element

Element Description Count

property JDBC connection property 0..∞

dba Database administrator
credentials

0..1

For the available properties, see Properties for the IBM Data Server Driver for
JDBC and SQLJ.

The inner element <dba> specifies credentials for database administrators. This
element has the following attributes:

Table 15-10. Attributes for the dba element for DB2 databases

Attribute Description Required Default

user User name for accessing database Yes None

password Password or accessing database No Queried interactively

The user that is specified in a <dba> element must have the SYSADM or SYSCTRL DB2
privilege. For more information, see Authorities overview.

The <driverclasspath> element must contain JAR files for the DB2 JDBC driver
and for the associated license. You can retrieve those files in one of the following
ways:
v Download DB2 JDBC drivers from the DB2 JDBC Driver Versions page
v Or fetch the db2jcc4.jar file and its associated db2jcc_license_*.jar files from

the DB2_INSTALL_DIR/java directory on the DB2 server.

You cannot specify details of table allocations, such as the table space, by using the
Ant task. To control the table space, you must use the manual instructions in
section “Configuring the DB2 databases manually” on page 11-17.

MySQL

The element <mysql> has the following attributes:

Table 15-11. Attributes for the mysql element

Attribute Description Required Default

database Database name No WRKLGHT, WLREPORT,
or WLADMIN,
depending on kind

server Host name of the database server Yes None

port Port on the database server No 3306

user User name for accessing databases Yes None

15-4 IBM MobileFirst Platform Foundation V6.3.0

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0021804.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html
http://www.ibm.com/support/docview.wss?uid=swg21363866

password Password for accessing databases No Queried interactively

For more information about MySQL user accounts, see MySQL User Account
Management.

The <mysql> element supports the following elements:

Table 15-12. Inner elements for the mysql element

Element Description Count

property JDBC connection property 0..∞

dba Database administrator
credentials

0..1

client The host that is allowed to
access the database

0..∞

For the available properties, see Driver/Datasource Class Names, URL Syntax and
Configuration Properties for Connector/J.

The inner element <dba> specifies database administrator credentials. This element
has the following attributes:

Table 15-13. Attributes for the dba element for MySQL databases

Attribute Description Required Default

user User name for accessing databases Yes None

password Password for accessing databases No Queried interactively

The user that is specified in a <dba> element must be a MySQL superuser account.
For more information, see Securing the Initial MySQL Accounts.

Each <client> inner element specifies a client computer or a wildcard for client
computers. These computers are allowed to connect to the database. This element
has the following attributes:

Table 15-14. Attributes for the client element for MySQL databases

Attribute Description Required Default

hostname Symbolic host name, IP address, or
template with % as a placeholder

Yes None

For more information about the hostname syntax, see Specifying Account Names.

The <driverclasspath> element must contain a MySQL Connector/J JAR file. You
can download that file from the Download Connector/J page.

Alternatively, you can use the <mysql> element with the following attributes:

Table 15-15. Alternative attributes for the mysql element

Attribute Description Required Default

url Database connection URL Yes None

Reference 15-5

http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/refman/5.5/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.5/en/account-names.html
http://www.mysql.com/downloads/connector/j/

user User name for accessing databases Yes None

password Password for accessing databases No Queried interactively

Note: If you specify the database with the alternative attributes, this database must
exist, the user account must exist, and the database must already be accessible to
the user. In this case, the configuredatabase task does not attempt to create the
database or the user, nor does it attempt to grant access to the user. The
configuredatabase task ensures only that the database has the required tables for
the current MobileFirst Server version. You do not have to specify the inner
elements <dba> or <client>.

Oracle

The element <oracle> has the following attributes:

Table 15-16. Attributes for the oracle element

Attribute Description Required Default

database Database name No ORCL

server Host name of the database server Yes None

port Port on the database server No 1521

user User name for accessing databases.
See the note under this table.

Yes None

password Password for accessing databases No Queried interactively

sysPassword Password for the user SYS No Queried interactively if
the database does not
yet exist

systemPassword Password for the user SYSTEM No Queried interactively if
the database or the user
does not exist yet

Note: For the user attribute, use preferably a user name in uppercase letters.
Oracle user names are generally in uppercase letters. Unlike other database tools,
the configuredatabase Ant task does not convert lowercase letters to uppercase
letters in the user name. If the configuredatabase Ant task fails to connect to your
database, try to enter the value for the user attribute in uppercase letters.

For more information about Oracle user accounts, see Overview of Authentication
Methods.

The <oracle> element supports the following elements:

Table 15-17. Inner elements for the oracle element

Element Description Count

property JDBC connection property 0..∞

15-6 IBM MobileFirst Platform Foundation V6.3.0

http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374

Table 15-17. Inner elements for the oracle element (continued)

Element Description Count

dba Database administrator
credentials

0..1

For information about the available connection properties, see Class OracleDriver.

The inner element <dba> specifies database administrator credentials. This element
has the following attributes:

Table 15-18. Attributes for the dba element for Oracle databases

Attribute Description Required Default

user User name for accessing databases Yes None

password Password for accessing databases No Queried interactively

The <driverclasspath> element must contain an Oracle JDBC driver JAR file. You
can download Oracle JDBC drivers from JDBC, SQLJ, Oracle JPublisher and
Universal Connection Pool (UCP).

You cannot specify details of table allocation, such as the table space, by using the
Ant task. To control the table space, you can create the user account manually and
assign it a default table space before running the Ant task. To control other details,
you must use the manual instructions in section “Configuring the Oracle databases
manually” on page 11-32.

Alternatively, you can use the <oracle> element with the following attributes:

Table 15-19. Alternative attributes for the oracle element

Attribute Description Required Default

url Database connection URL Yes None

user User name for accessing databases Yes None

password Password for accessing databases No Queried interactively

Note: If you specify the database with the alternative attributes, this database must
exist, the user account must exist, and the database must already be accessible to
the user. In this case, the task does not attempt to create the database or the user,
nor does it attempt to grant access to the user. The configuredatabase task ensures
only that the database has the required tables for the current MobileFirst Server
version. You do not have to specify the inner element <dba>.

Customizing the database connection with JDBC properties
You can customize the database connection with JDBC properties. This can be used
to define the security (SSL) of the connection to the database server, timeouts, or
JDBC traces.

About this task

To customize the database connection, you must add <property> elements to the
database elements for the tasks configuredatabase, configureapplicationserver,

Reference 15-7

http://docs.oracle.com/cd/E11882_01/appdev.112/e13995/oracle/jdbc/OracleDriver.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

and installworklightadmin. The JDBC properties are used by the Ant tasks when
connecting to the database, and by the application server data source installed by
configureapplicationserver and installworklightadmin.

You can find in the following procedure an example that defines the properties to
set the command timeout for DB2 for the connection to the administration
database.

Procedure
1. From the “Sample configuration files” on page 15-30, select the file

configure-liberty-db2.xml, and copy it to your working directory.
2. Review the Properties for the IBM Data Server Driver for JDBC and SQLJ in the

DB2 for Linux UNIX and Windows user documentation.
3. Edit the Ant file to add the relevant JDBC properties in configuredatabase,

configureapplicationserver, and intallworklightadmin.
<target name="admdatabases">

<configuredatabase kind="WorklightAdmin">
<db2 database="${database.db2.wladmin.dbname}"

server="${database.db2.host}"
instance="${database.db2.instance}"
user="${database.db2.wladmin.username}"
port= "${database.db2.port}"
schema = "${database.db2.wladmin.schema}"
password="${database.db2.wladmin.password}">

<property name="commandTimeout" value="10"/>

</db2>

[...]
<target name="adminstall">

<installworklightadmin>
<console install="${wladmin.console.install}"/>
<jmx/>
<applicationserver>

<websphereapplicationserver installdir="${appserver.was.installdir}"
profile="${appserver.was.profile}">

<server name="${appserver.was85liberty.serverInstance}"/>
</websphereapplicationserver>

</applicationserver>
<user name="${wladmin.default.user}" role="worklightadmin" password="${wladmin.default.user.initialpassword}"/>
<database kind="WorklightAdmin">

<db2 database="${database.db2.wladmin.dbname}"
server="${database.db2.host}"
user="${database.db2.wladmin.username}"
port= "${database.db2.port}"
schema = "${database.db2.wladmin.schema}"
password="${database.db2.wladmin.password}">

<property name="commandTimeout" value="10"/>
</db2>

Ant tasks for installation of MobileFirst Operations Console and
Administration Services

The <installworklightadmin>, <updateworklightadmin>, and
<uninstallworklightadmin> Ant tasks are provided for the installation of the
MobileFirst Operations Console and Administration Services.

15-8 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html

Task effects

<installworklightadmin>

The <installworklightadmin> task configures an application server to run
an Administration Services WAR file as a web application and, optionally,
to install the MobileFirst Operations Console. This task has the following
effects:
v It declares the Administration Services web application in the specified

context root, by default /worklightadmin.
v It declares data sources and – on WebSphere Application Server Full

Profile – JDBC providers for Administration Services.
v It deploys the Administration Services on the application server.
v Optionally, it declares the MobileFirst Operations Console as a web

application in the specified context root, by default /worklightconsole. If
the MobileFirst Operations Console instance is specified, the Ant task
declares the appropriate JNDI environment entry to communicate with
the corresponding management service. For example:
<target name="adminstall">

<installworklightadmin servicewar="${worklight.service.war.file}">
<console install="${wladmin.console.install}" warFile="${worklight.console.war.file}"/>

v Optionally, it deploys the MobileFirst Operations Console WAR file on
the application server.

v It configures configuration properties for the Administration Services by
using JNDI environment entries. These JNDI environment entries also
give some additional information about the application server topology,
for example whether the topology is a stand-alone configuration, a
cluster, or a server farm.

v Optionally, it configures users that it maps to roles used by the
MobileFirst Operations Console and Administration Services web
applications.

v It configures the application server for use of JMX.
v On WebSphere Application Server, it configures the necessary custom

property for the web container.

<updateworklightadmin>

The <updateworklightadmin> task updates an already-configured
MobileFirst web application on an application server. This task has the
following effects:
v It updates the Administration Services WAR file. This file must have the

same base name as the corresponding WAR file that was previously
deployed.

v It updates the MobileFirst Operations Console WAR file. This file must
have the same base name as the corresponding WAR file that was
previously deployed.

The task does not change the application server configuration, that is, the
web application configuration, data sources, JNDI environment entries,
user-to-role mappings, and JMX configuration.

<uninstallworklightadmin>

The <uninstallworklightadmin> Ant task undoes the effects of an earlier run of
<installworklightadmin>. This task has the following effects:

Reference 15-9

v It removes the configuration of the Administration Services web application with
the specified context root. As a consequence, the task also removes the settings
that were added manually to that application.

v It removes the Administration Services WAR file and the MobileFirst Operations
Console WAR file from the application server as an option.

v It removes the data sources and – on WebSphere Application Server Full Profile
– the JDBC providers for Administration Services.

v It removes the database drivers that were used by Administration Services from
the application server.

v It removes the associated JNDI environment entries.
v It removes the users configured by the installworklightadmin invocation.
v It removes the JMX configuration.

Attributes and elements

The <installworklightadmin>, <updateworklightadmin>, and
<uninstallworklightadmin> tasks have the following attributes:

Table 15-20. Attributes for the <installworklightadmin>, <updateworklightadmin>, and
<uninstallworklightadmin> Ant tasks

Attribute Description RequiredDefault

contextroot Common prefix for URLs to admin
services, to get information about
MobileFirst runtime environments,
applications, and adapters

No /worklightadmin

id Distinguishes different deployments No Empty

environmentId Distinguishes different MobileFirst
environments

No Empty

servicewar The WAR file for the Administration
Services

No The
worklightadmin.war
file is in the same
directory as the
worklight-ant-
deployer.jar file.

shortcutsDir Directory where to place shortcuts No None

wasStartingWeight Start order for WebSphere
Application Server. Lower values
start first.

No 1

contextroot and id

The contextroot and id attributes distinguish different deployments of
MobileFirst Operations Console and Administration Services.

In WebSphere Application Server Liberty profiles and in Tomcat
environments, the contextroot parameter is sufficient for this purpose. In
WebSphere Application Server Full profile environments, the id attribute is
used instead. Without this id attribute, two WAR files with the same
context roots might conflict and these files would not be deployed.

environmentId
Use the environmentId attribute to distinguish several environments,
consisting each of MobileFirst Server administration and MobileFirst
runtime web applications, that must operate independently. For example,
with this option you can host a test environment, a pre-production

15-10 IBM MobileFirst Platform Foundation V6.3.0

environment, and a production environment on the same server or in the
same WebSphere Application Server Network Deployment cell. This
environmentId attribute creates a suffix that is added to MBean names that
the Administration Services and the MobileFirst runtime projects use when
they communicate through Java Management Extensions (JMX).

servicewar
Use the servicewar attribute to specify a different directory for the
Administration Services WAR file. You can specify the name of this WAR
file with an absolute path or a relative path.

shortcutsDir
The shortcutsDir attribute specifies where to place shortcuts to the
MobileFirst Operations Console. If you set this attribute, you can add the
following files to that directory:
v mobilefirst-console.url: This file is a Windows shortcut. It opens the

MobileFirst Operations Console in a browser.
v mobilefirst-console.sh: This file is a UNIX shell script and opens the

MobileFirst Operations Console in a browser.
v worklight-admin-service.url: This file is a Windows shortcut. It opens

in a browser and calls a REST service that returns a list of the
MobileFirst projects that can be managed in JSON format. For each listed
MobileFirst project, some details are also available about their artifacts,
such as the number of applications, the number of adapters, the number
of active devices, the number of decommissioned devices. The list also
indicates whether the MobileFirst project runtime is running or idle.

v worklight-admin-service.sh: This file is a UNIX shell script that
provides the same output as the worklight-admin-service.url file.

wasStartingWeight
Use the wasStartingWeight attribute to specify a value that is used in
WebSphere Application Server as a weight to ensure that a start order is
respected. As a result of the start order value, the Administration Services
web application is deployed and started before any other MobileFirst
runtime projects. If MobileFirst projects are deployed or started before the
web application, the JMX communication is not established and the
runtime cannot synchronize with the administration database and cannot
handle server requests.

The <installworklightadmin>, <updateworklightadmin>, and
<uninstallworklightadmin> tasks support the following elements:

Table 15-21. Inner elements for the installworklightadmin, updateworklightadmin, and
uninstallworklightadmin Ant tasks

Element Description Count

applicationserver Application server 1

console Administration console 0..1

database Databases 1

jmx Enable Java Management
Extensions

1

property Properties 0..∞

user User to be mapped to a
security role

0..∞

Reference 15-11

To specify a MobileFirst Operations Console

The <console> element collects information to customize the installation of the
MobileFirst Operations Console. This element has the following attributes:

Table 15-22. Attributes of the console element

Attribute Description Required Default

contextroot URI of the
MobileFirst
Operations
Console

No /worklightconsole

install Indicates whether
the MobileFirst
Operations
Console must be
installed

No Yes

warfile Console WAR file No The worklightconsole.war file is in
the same directory as the
worklight-ant-deployer.jar file.

The <console> element supports the following element:

Table 15-23. Inner element for the console element

Element Description Count

property Properties 0..∞

The <property> element specifies a deployment property to be defined in the
application server. It has the following attributes:

Table 15-24. Attributes for the property element

Attribute Description Required Default value

name Name of the property Yes None

value Value of the property Yes None

By using this element, you can define your own JNDI properties or override the
default value of the JNDI properties that are provided by the Administration
Services and the MobileFirst Operations Console WAR files.

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server administration” on page 6-92.

To specify an application server

Use the <applicationserver> element to define the parameters that depend on the
underlying application server. The <applicationserver> element supports the
following elements. The attributes and inner elements of these elements are
described in tables 6 through 13 of “Ant tasks for installation of MobileFirst
runtime environments” on page 15-16.

15-12 IBM MobileFirst Platform Foundation V6.3.0

Table 15-25. Inner elements of the applicationserver element

Attribute Description Count

websphereapplicationserver
or was

The parameters for WebSphere
Application Server.

0..1

tomcat The parameters for Apache Tomcat. 0..1

To specify JMX communication between the MobileFirst Server
administration and the MobileFirst projects

Use the <jmx> element to ensure that a JMX connection can be established between
the MobileFirst Server administration and the MobileFirst runtime projects. The
<jmx> element has the following attributes, which depend on the underlying
application server.

Table 15-26. Attributes of the jmx element

Attribute Description Required Default

libertyAdminUser The administrator (for
Liberty only)

No None

libertyAdminPasswordThe administrator password
(for Liberty only).

No None

CreateLibertyAdminWhether the admin user must
be created in the basic
registry, if it does not exist
(for Liberty only).

No true

tomcatRMIPort The RMI port that Apache
Tomcat uses to connect to
MobileFirst projects (for
Tomcat only)

No 8686

tomcatSetEnvConfigPrevents automatic
modification of setenv.bat
and setenv.sh scripts. The
valid values are manual and
auto.

No auto

Note: The libertyAdminUser and libertyAdminPassword attributes are not
mandatory, but if you define one of these attributes, you must also define the
other.

libertyAdminUser
libertyAdminCreate
libertyAdminPassword

You use these attributes to create an admin user in the server.xml file,
which is the configuration file for Liberty, in the basic registry section.

tomcatRMIPort
If the default port 8686 is not available on the system, you use this
attribute to specify a different port for JMX communication between the
MobileFirst Server administration and the managed MobileFirst projects. In
this case, the port values range from 1 to 65535.

tomcatSetEnvConfig

You use this attribute to allow or prevent the <installworklightadmin>
and <uninstallworklightadmin> Ant tasks from adding or removing

Reference 15-13

contents to the setenv.sh or setenv.bat script, in the
<TomcatRootInstallDir>/bin directory.

Important: Security warning. The default value auto does not secure the
JMX communication. This setting is not suitable for production
environments. In production environments, you must manually configure
JMX with authentication, as described in the Enabling JMX Remote page of
the Apache Tomcat user documentation.
Use the following values for this attribute:
v manual: The <installworklightadmin> and <uninstallworklightadmin>

Ant tasks do not update the setenv.bat and setenv.sh script for JMX
usage.
If you select the value manual, you must update the scripts manually to
define the RMI port that is used for JMX communications internally
between the Administration Services and the MobileFirst runtime
environment, whether this connection must be secured or not with user
or role authentication, or SSL. For more information, see the
documentation of the JVM that you are using.

v auto: The <installworklightadmin> and <uninstallworklightadmin> Ant
tasks update the setenv.bat and setenv.sh script automatically, for JMX
usage. If these scripts do not exist, they are created before they are
updated.
If you select the auto value, the following modifications are made to
extend the CATALINA_OPTS environment variable:
– For setenv.bat:

REM Allow to inspect the MBeans through jconsole
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote

REM Configure JMX.
set CATALINA_OPTS=%CATALINA_OPTS% -Djava.rmi.server.hostname=localhost
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.port=8686
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.authenticate=false
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.ssl=false

– For setenv.sh:
Allow to inspect the MBeans through jconsole
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote"

Configure JMX.
CATALINA_OPTS="$CATALINA_OPTS -Djava.rmi.server.hostname=localhost"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.port=8686"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.authenticate=false"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.ssl=false"

To specify a connection to the administration database

The <database> element collects the parameters that specify a data source
declaration in an application server to access the administration database.

You must declare a single database: <database kind="WorklightAdmin">. You
specify the <database> element similarly to the <configuredatabase> Ant task,
except that the <database> element does not have the <dba> and <client>
elements. It might have <property> elements.

The <database> element has the following attributes:

15-14 IBM MobileFirst Platform Foundation V6.3.0

http://tomcat.apache.org/tomcat-7.0-doc/monitoring.html#Enabling_JMX_Remote

Table 15-27. Attributes of the database element

Attribute Description Required Default

kind The kind of database
(WorklightAdmin)

Yes None

validate To validate whether the
database is accessible

No True

The <database> element supports the following elements. For more information
about the configuration of these database elements, see 18 through 28 in “Ant tasks
for installation of MobileFirst runtime environments” on page 15-16.

Table 15-28. Inner elements for the applicationserver element

Element Description Count

db2 Parameter for DB2 databases 0..1

derby Parameter for Apache Derby
databases

0..1

mysql Parameter for MySQL databases 0..1

oracle Parameter for Oracle databases 0..1

driverclasspath Parameter for JDBC driver class
path

0..1

To specify a user and a security role

The <user> element collects the parameters about a user to include in a certain
security role for an application.

Table 15-29. Attributes of the user element

Attribute Description Required Default

role A valid security role for
the application

Yes None

name The user name Yes None

password The password if the
user needs to be created

No None

After you defined users by using the <user> element, you can map them to any of
the following roles for authentication in the MobileFirst Operations Console.
v worklightmonitor

v worklightoperator

v worklightdeployer

v worklightadmin

For information about which authorizations are implied by the specific roles, see
the chapter about the “REST Services API” on page 10-8.

Tip: If users exist in an external LDAP directory, set only the role and name
attributes but do not define any passwords.

Reference 15-15

Ant tasks for installation of MobileFirst runtime environments
Reference information for the configureapplicationserver,
updateapplicationserver, and unconfigureapplicationserver Ant tasks.

Task effects

<configureapplicationserver>

The <configureapplicationserver> Ant task configures an application
server to run a MobileFirst project WAR file as a web application. This task
has the following effects.
v It declares the MobileFirst web application in the specified context root,

by default /worklight.
v It deploys the project WAR file on the application server.
v It declares data sources and – on WebSphere Application Server full

profile – JDBC providers for runtime and reports.
v It deploys the MobileFirst Server runtime file worklight-jee-

library.jar and the database drivers in the application server.
v It sets MobileFirst configuration properties through JNDI environment

entries. These JNDI environment entries override the MobileFirst project
default values that are contained in the worklight.properties file inside
the WAR file.

v On WebSphere Application Server, it configures a web container custom
property.

<updateapplicationserver>

The <updateapplicationserver> Ant task updates an already-configured
MobileFirst web application on an application server. This task has the
following effects.
v It updates the project WAR file. The file must have the same base name

as the project WAR file that was previously deployed.
v It updates the MobileFirst Server runtime worklight-jee-library.jar

library file.

The task does not change the application server configuration, that is, the
web application configuration, data sources, and JNDI environment entries.

<unconfigureapplicationserver>
The <unconfigureapplicationserver> Ant task undoes the effects of an
earlier <configureapplicationserver> run. This task has the following
effects.
v It removes the configuration of the MobileFirst web application with the

specified context root. The task also removes the settings that have been
added manually to that application.

v It removes the project WAR file from the application server.
v It removes the data sources and – on WebSphere Application Server full

profile – the JDBC providers for runtime and reports.
v It removes the MobileFirst Server runtime worklight-jee-library.jar

library file and the database drivers from the application server.
v It removes the associated JNDI environment entries.

15-16 IBM MobileFirst Platform Foundation V6.3.0

Attributes and elements

The <configureapplicationserver>, <updateapplicationserver>, and
<unconfigureapplicationserver> tasks have the following attributes:

Table 15-30. Attributes for the configureapplicationserver, updateapplicationserver, and
unconfigureapplicationserver Ant tasks

Attribute Description RequiredDefault

contextroot Common prefix in URLs to the
application (context root)

No /worklight

id Distinguishes different deployments No Empty

environmentId Distinguishes different MobileFirst
environments

No Empty

wasStartingWeight Start order for WebSphere
Application Server. Lower values
start first.

No 2

shortcutsDir Directory where to place shortcuts No None

contextroot and id

The contextroot and id attributes distinguish different MobileFirst
projects. By default, when a project is created in V6.0.0 of this product and
higher, its context root is the name of the project. The default value of
/worklight was chosen to facilitate compatibility with IBM Worklight V5.x
applications.

In WebSphere Application Server Liberty profiles and in Tomcat
environments, the contextroot parameter is sufficient for this purpose. In
WebSphere Application Server full profile environments, the id attribute is
used instead.

environmentId
Use the environmentId attribute to distinguish several environments,
consisting each of MobileFirst Server administration and MobileFirst
runtime web applications, that must operate independently. You must set
this attribute to the same value for the runtime application as the one that
was set in the <installworklightadmin> invocation, for the Administration
Services application.

wasStartingWeight
Use the wasStartingWeight attribute to specify a value that is used in
WebSphere Application Server as a weight to ensure that a start order is
respected. As a result of the start order value, the MobileFirst
Administration Services web application is deployed and started before
any other MobileFirst runtime projects. If MobileFirst projects are deployed
or started before the web application, the JMX communication is not
established and you cannot manage your MobileFirst projects.

shortcutsDir
The shortcutsDir attribute for the <unconfigureApplicationServer> Ant
task specifies where to expect the shortcuts to the MobileFirst Operations
Console if it was installed by a version of the
<configureApplicationServer> Ant task older than 6.2.0. If you set this
attribute, the Ant task might remove the following files from that directory:
worklight-console.url, worklight-console.sh, and worklight-
console.html.

Reference 15-17

The <configureapplicationserver>, <updateapplicationserver>, and
<unconfigureapplicationserver> tasks support the following elements:

Table 15-31. Inner elements for the configureapplicationserver,
updateapplicationserver, and unconfigureapplicationserver Ant tasks

Element Description Count

project Project 1

property Properties 0..∞

applicationserver Application server 1

reports Reports 0..1

database Databases 2

The <project> element specifies details about the project to deploy to the
application server. It has the following attributes:

Table 15-32. Attributes for the project element

Attribute Description RequiredDefault

warfile Project WAR file Yes None

libraryfile File name of
worklight-jee-library.jar

No In the same directory as
worklight-ant-
deployer.jar

migrate Whether to automigrate the
WAR file to the current
MobileFirst Server version

No True

migratedWarBackupFile Where to store a backup of
the migrated WAR file

No None

To create the warfile attribute, run the <war-builder> Ant task. See “Building a
project WAR file with Ant” on page 11-4.

By default, the WAR file is automatically migrated to the current MobileFirst
Server version. In this case, you can request a backup of the migrated WAR file on
disk before it is deployed in the application server. To do so, specify a value for the
migratedWarBackupFile attribute. If you set the migrate attribute to false, the
WAR file is not migrated and, if the MobileFirst version that produced the WAR
file is not suitable for the MobileFirst Server version, the deployment fails.

The <property> element specifies a deployment property to be defined in the
application server. It has the following attributes:

Table 15-33. Attributes for the property element

Attribute Description Required Default value

name Name of the
property

Yes None

value Value for the
property

Yes None

For general information about MobileFirst properties, or for a list of properties that
you can set, see “Configuration of MobileFirst applications on the server” on page
11-45.

15-18 IBM MobileFirst Platform Foundation V6.3.0

The <applicationserver> element describes the application server to which the
MobileFirst application is deployed. It is a container for one of the following
elements:

Table 15-34. Inner elements for the applicationserver element

Element Description Count

websphereapplicationserver
or was

Parameters for
WebSphere Application
Server

0..1

tomcat Parameters for Apache
Tomcat

0..1

The <websphereapplicationserver> element (or <was> in its short form) denotes a
WebSphere Application Server instance, version 7.0 or newer. WebSphere
Application Server full profile (Base, and Network Deployment) are supported, as
is Liberty profile (Core). Liberty profile Network Deployment is not yet supported.
The <websphereapplicationserver> element has the following attributes:

Table 15-35. Attributes for the websphereapplicationserver or was element

Attribute Description Required Default

installdir WebSphere Application Server
installation directory.

Yes None

profile WebSphere Application Server profile,
or Liberty

Yes None

user WebSphere Application Server
administrator name

Yes, except
for Liberty

None

password WebSphere Application Server
administrator password

No Queried interactively

It supports the following elements for single-server deployment:

Table 15-36. Inner elements for the was element (single-server deployment)

Element Description Count

server A single server 0..1

The <server> element, which is used in this context, has the following attributes:

Table 15-37. Inner elements for the server element (single-server deployment)

Attribute Description Required Default

name Server name Yes None

It supports the following elements for Network Deployment:

Table 15-38. Inner elements for the was element (network deployment)

Element Description Count

cell The entire cell 0..1

Reference 15-19

cluster All servers of a cluster 0..1

node All servers in a node,
clusters excluded

0..1

server A single server 0..1

The<cell> element has no attributes.

The <cluster> element has the following attributes:

Table 15-39. Attributes for the cluster element (network deployment)

Attribute Description Required Default

name Cluster name Yes None

The <node> element has the following attributes:

Table 15-40. Attributes for the node element (network deployment)

Attribute Description Required Default

name Node name Yes None

The <server> element, which is used in a Network Deployment context, has the
following attributes:

Table 15-41. Attributes for the server element (network deployment)

Attribute Description Required Default

nodeName Node name Yes None

serverName Server name Yes None

The <tomcat> element denotes an Apache Tomcat server. It has the following
attributes:

Table 15-42. Attributes of the tomcat element

Attribute Description Required Default

installdir Tomcat installation directory. For a
Tomcat installation that is split between
a CATALINA_HOME directory and a
CATALINA_BASE directory, specify the
value of the CATALINA_BASE environment
variable.

Yes None

The <reports> element specifies what set of BIRT *.rptdesign report files to
instantiate for access to the database of reports.

The <reports> element has the following attribute:

Table 15-43. Attributes of the reports element

Attribute Description Required Default

todir Destination directory Yes None

15-20 IBM MobileFirst Platform Foundation V6.3.0

The <reports> element supports the following element:

Table 15-44. Inner elements for the reports element

Element Description Count

fileset Set of files to copy and
process

0..∞

A <reports> element without any inner <fileset> element instantiates all the
report templates that are provided in the WorklightServer/report-templates/
directory in the MobileFirst Server distribution.

The <database> element specifies what information is necessary to access a
particular database. Two databases must be declared: <database
kind=”Worklight”> and <database kind=”WorklightReports”>. The <database>
element is specified like the <configuredatabase> Ant task, except that it does not
have the <dba> and <client> elements. It might, however, have <property>
elements. The<database> element has the following attributes:

Table 15-45. Attributes of the database element

Attribute Description Required Default

kind The kind of database: Worklight or
WorklightReports

Yes None

The<database> element supports the following elements:

Table 15-46. Inner elements for the database element

Element Description Count

derby Parameters for Derby 0..1

db2 Parameters for DB2 0..1

mysql Parameters for MySQL 0..1

oracle Parameters for Oracle 0..1

driverclasspath JDBC driver class path 0..1

To specify an Apache Derby database

The <derby> element has the following attributes:

Table 15-47. Attributes of the derby element

Attribute Description Required Default

database Database name No WRKLGHT or WLREPORT,
depending on the kind

datadir Directory that contains the databases Yes None

schema Schema name No WORKLIGHT

The <derby> element supports the following element:

Reference 15-21

Table 15-48. Inner element for the derby element

Element Description Count

property Data source property or
JDBC connection property

0..s∞

For more information about the available properties, see the documentation for
Class EmbeddedDataSource40. See also the documentation for Class
EmbeddedConnectionPoolDataSource40.

For more information about the available properties for a Liberty server, see the
documentation for properties.derby.embedded at Liberty profile: Configuration
elements in the server.xml file.

When the worklight-ant-deployer.jar file is used within the installation directory
of IBM MobileFirst Platform Foundation, a<driverclasspath> element is not
necessary.

To specify a DB2 database

The <db2> element has the following attributes:

Table 15-49. Attributes of the db2 element

Attribute Description Required Default

database Database name No WRKLGHT or WLREPORT,
depending on the kind

server Host name of the database server Yes None

port Port on the database server No 50000

user User name for accessing databases. This
user does not need extended privileges
on the databases. If you implement
restrictions on the database, you can set
a user with the restricted privileges that
are listed in “Restricting database user
permissions for IBM MobileFirst
Platform Server runtime operations” on
page 6-18.

Yes None

password Password for accessing databases No Queried interactively

schema Schema name No Depends on the user

For more information about DB2 user accounts, see DB2 security model overview.

The <db2> element supports the following element:

Table 15-50. Inner elements for the db2 element

Element Description Count

property Data source property or
JDBC connection property

0..∞

15-22 IBM MobileFirst Platform Foundation V6.3.0

http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedDataSource40.html
http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedConnectionPoolDataSource40.html
http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedConnectionPoolDataSource40.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0021804.html

For more information about the available properties, see Properties for the IBM
Data Server Driver for JDBC and SQLJ.

For more information about the available properties for a Liberty server, see the
properties.db2.jcc section at Liberty profile: Configuration elements in the
server.xml file.

The <driverclasspath> element must contain JAR files for the DB2 JDBC driver
and the associated license. You can download DB2 JDBC drivers from DB2 JDBC
Driver Versions.

To specify a MySQL database

The <mysql> element has the following attributes:

Table 15-51. Attributes of the mysql element

Attribute Description Required Default

database Database name No WRKLGHT or
WLREPORT, depending
on kind

server Host name of the database server Yes None

port Port on the database server No 3306

user User name for accessing databases. This
user does not need extended privileges
on the databases. If you implement
restrictions on the database, you can set
a user with the restricted privileges that
are listed in “Restricting database user
permissions for IBM MobileFirst
Platform Server runtime operations” on
page 6-18.

Yes None

password Password for accessing databases No Queried interactively

Instead of database, server, and port, you can also specify a URL. In this case, use
the following attributes:

Table 15-52. Alternative elements for the mysql element

Attribute Description Required Default

url URL for connection to the database Yes None

user User name for accessing databases. This
user does not need extended privileges
on the databases. If you implement
restrictions on the database, you can set
a user with the restricted privileges that
are listed in “Restricting database user
permissions for IBM MobileFirst
Platform Server runtime operations” on
page 6-18.

Yes None

password Password for accessing databases No Queried interactively

Reference 15-23

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

For more information about MySQL user accounts, see MySQL User Account
Management.

The <mysql> element supports the following element:

Table 15-53. Inner elements for the mysql element

Element Description Count

property Data source property or
JDBC connection property

0..∞

For more information about the available properties, see the documentation at
Driver/Datasource Class Names, URL Syntax and Configuration Properties for
Connector/J.

For more information about the available properties for a Liberty server, see the
properties section at Liberty profile: Configuration elements in the server.xml file.

The <driverclasspath> element must contain a MySQL Connector/J JAR file. You
can download it from Download Connector/J.

To specify an Oracle database

The <oracle> element has the following attributes:

Table 15-54. Attributes of the oracle element

Attribute Description Required Default

database Database name No ORCL

server Host name of the database server Yes None

port Port on the database server No 1521

user User name for accessing databases.
This user does not need extended
privileges on the databases. If you
implement restrictions on the
database, you can set a user with the
restricted privileges that are listed in
“Restricting database user
permissions for IBM MobileFirst
Platform Server runtime operations”
on page 6-18.

See the note under this table.

Yes None

password Password for accessing databases No Queried interactively

Note: For the user attribute, use preferably a user name in uppercase letters.
Oracle user names are generally in uppercase letters. Unlike other database tools,
the configureapplicationserver Ant task does not convert lowercase letters to

15-24 IBM MobileFirst Platform Foundation V6.3.0

http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://www.mysql.com/downloads/connector/j/

uppercase letters in the user name. If the configureapplicationserver Ant task
fails to connect to your database, try to enter the value for the user attribute in
uppercase letters.

Instead of database, server, and port, you can also specify a URL. In this case, use
the following attributes:

Table 15-55. Alternative attributes of the oracle element

Attribute Description Required Default

url URL for connection to the database Yes None

user User name for accessing databases. This
user does not need extended privileges
on the databases. If you implement
restrictions on the database, you can set
a user with the restricted privileges that
are listed in “Restricting database user
permissions for IBM MobileFirst
Platform Server runtime operations” on
page 6-18.

See the note under this table.

Yes None

password Password for accessing databases No Queried interactively

Note: For the user attribute, use preferably a user name in uppercase letters.
Oracle user names are generally in uppercase letters. Unlike other database tools,
the configureapplicationserver Ant task does not convert lowercase letters to
uppercase letters in the user name. If the configureapplicationserver Ant task
fails to connect to your database, try to enter the value for the user attribute in
uppercase letters.

For more information about Oracle user accounts, see Overview of Authentication
Methods.

For more information about Oracle database connection URLs, see the Database
URLs and Database Specifiers section at Data Sources and URLs.

It supports the following elements:

Table 15-56. Inner elements for the oracle element

Element Description Count

property Data source property or
JDBC connection property

0..∞

For more information about the available properties, see the Data Sources and
URLs section at Data Sources and URLs.

For more information about the available properties for a Liberty server, see the
properties.oracle section at Liberty profile: Configuration elements in the
server.xml file.

Reference 15-25

http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm
http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html

The <driverclasspath> element must contain an Oracle JDBC driver JAR file. You
can download Oracle JDBC drivers from JDBC, SQLJ, Oracle JPublisher and
Universal Connection Pool (UCP).

The <property> element, which can be used inside <derby>, <db2>, <mysql>, or
<oracle> elements, has the following attributes:

Table 15-57. Attributes for the property element in a database-specific element

Attribute Description Required Default

name Name of the property Yes None

type Java type of the property values,
usually java.lang.String/Integer/
Boolean

No java.lang.String

value Value for the property Yes None

Internal runtime database tables
You can access a database of common tables from the MobileFirst Server. The
database must not be written to, and it might change from one release to another.

The following table provides a list of common runtime database tables, their
description, and how they are used.

Name Description Order of Magnitude

CLUSTER_SYNC Internal cluster
synchronization tasks.

10s of rows.

DEVICES Tracks devices that access the
platform. The devices are
recorded as active or
inactive, based on the
configured decommissioning
policy, and other information
may be stored for them.

1 row per device that
accesses the platform in the
last n days, where n is the
sum of the values for the
wl.device.decommission.when
and
wl.device.archiveDecommissioned
parameters.

GADGET_DEVICE_ASSOC Stores relationships between
a device and the applications
that the device has used.

1 row per device/application
pair.

GADGET_USER_PREF User preferences according to
unique user identifier. No
user preferences are ready
for immediate use. The App
developer can add
preferences.

If used, this table can contain
1 row per preference, per
user.

LICENSE_TERMS Stores the various license
metrics captured every time
the device decommissioning
task is run.

10s of rows. Will not exceed
the value set by the property
wl.device.decommission.when.

PUSH_DEVICES Push notification table. Stores
a record per device.

1 row per device.

15-26 IBM MobileFirst Platform Foundation V6.3.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Name Description Order of Magnitude

PUSH_SUBSCRIPTIONS Push notification table. Stores
a record per tag subscription
or user subscription to event
sources.

1 row per device
subscription.

SSO_LOGIN_CONTEXTS Stores the active sessions that
use the SSO feature.

Depends if SSO is enabled. If
enabled, there is one entry
per session.

WORKLIGHT_VERSION The product version. 1 row.

The following table provides a list of common reports database tables and their
usage.

Name Description Order of Magnitude

ACTIVITIES_CUBE A materialized table of the 4
dimensional data cube.

Populated every night, based
on the last 30 days of data.
Can be used by BIRT or
other reporting tools.

Size depends on app and
device usage, but is limited
to the last 30 days for faster
access to the last 30 days of
activities.

APP_ACTIVITY_REPORT The reports row data. Data is
aggregated by either our
aggregation task or by the
customer aggregation task.

For more information about
using the row data, see
“Using raw data reports” on
page 13-44.

The size depends on
application. The customer is
responsible for purging older
entries after aggregating to
Data Warehouse.

FACT_ACTIVITIES Summarization of activities
that are used for device
analytics.

Updated by MobileFirst
Server every 24 hours with
data from the
APP_ACTIVITY_REPORT table.
Primarily used by BIRT
reports and by other
reporting tools. The update
interval can be configured
with the
wl.db.factProcessingInterval
property. The processing and
update can also be disabled
by setting the
wl.db.factProcessingInterval property
to a negative value if only
the raw data from the
APP_ACTIVITY_REPORT table is
of interest. For more
information about the
property, see “Device usage
reports” on page 13-48.

Size depends on app/device
usage.

Reference 15-27

Name Description Order of Magnitude

NOTIFICATION_ACTIVITIES Summarization of activities
that are used for notification
analytics.

Updated with data from the
NOTIFICATION_REPORT table.
Primarily used by BIRT
reports and by other
reporting tools.

Size depends on
app/notification usage.

NOTIFICATION_PROC_REPORT Internal table to store raw
notification data. The data is
aggregated by an
aggregation task.

1 row per notification.

NOTIFICATION_REPORT Each time the data
processing is done, a time
stamp is added to the
PROC_REPORT table with the
processing result (timestamp
and number of processed
entries).

About 72 rows per day.

OPENJPA_SEQUENCE_TABLE Internal table created for JPA.
Not used, and will be
removed in the future.

n/a

PROC_REPORT Internal table that is used for
housekeeping and
maintaining the state of the
scheduler tasks.

About 72 rows per day.

The following table provides a list of common administration database tables, their
description, and how they are used.

Name Description Order of Magnitude

ADAPTERS Stores the adapter
deployable elements. This
table is used to synchronize
the adapter deployable
elements between cluster
nodes. Many-to-many
relationships with the
PROJECTS table.

10s of rows.

APPLICATIONS Stores the application
deployable elements. This
table is used to synchronize
the application deployable
elements between cluster
nodes. Many-to-many
relationships with the
PROJECTS table.

10s of rows.

APPLICATIONS_ENVIRONMENTS Environments (for example,
iPhone, Android) of
deployed applications.
Many-to-one relationships
with the APPLICATIONS table.

10s of rows.

15-28 IBM MobileFirst Platform Foundation V6.3.0

Name Description Order of Magnitude

APP_VERSION_ACCESS_DATA Stores the applications that
have the remote disable
mode to block or notify.
References the
APPLICATIONS_ENVIRONMENTS
table.

10s of rows.

AUDIT_TRAIL Stores an audit trail of all
administrative actions
performed on the
administration server.

1,000s of rows.

BEACONS Stores information about
registered beacons.

1 row per registered beacon.

BEACON_TRIGGERS Stores information about the
action that is triggered when
the user's mobile device
comes in the vicinity of an
associated beacon.

10s of rows.

BEACON_TRIGGER_ASSOC Stores the association
between beacons and
triggers. Many-to-many
relationship between beacons
and beacon-triggers.

1 row for each association
between a registered beacon
and a beacon-trigger.

CONFIG_PROFILES Stores custom logging
configuration profiles that
have been created by the
server administrator.

1 row per configuration
profile. Usually no more than
5-10 rows in total.

DIFFERENTIAL_DIRECT_UPDATE Stores information on
differential direct updates
and their binaries.

1 row per environment per
deployment.

PROJECT Stores the names of the
deployed projects.

10s of rows.

PROJECT_ADAPTERS Bidirectional association
between projects and
adapters.

10s of rows.

PROJECT_APPLICATIONS Bidirectional association
between projects and
applications.

10s of rows.

PROJECT_LOCK Internal cluster
synchronization tasks.

10s of rows.

PUSH_ENVIRONMENTS Push notification table. Stores
details of push
environments.

10s of rows.

PUSH_TAGS Push notification table. Stores
details of tags defined.

10s of rows.

TRANSACTIONS Internal cluster
synchronization table storing
the state of all current
administrative actions.

10s of rows.

WORKLIGHTMGT_VERSION The product version. 1 row.

Reference 15-29

Sample configuration files
IBM MobileFirst Platform Foundation includes a number of sample configuration
files to help you get started with the Ant tasks to install the MobileFirst Server
administration and the MobileFirst runtime environment.

The easiest way to get started with the <configuredatabase>,
<installworklightadmin> and <configureapplicationserver> Ant tasks is by
working with the sample configuration files provided in the WorklightServer/
configuration-samples/ directory of the MobileFirst Server distribution.

Step 1

Pick the appropriate sample configuration file. The following files are provided

Table 15-58. Sample configuration files provided with IBM MobileFirst Platform Foundation

Task Derby DB2 MySQL Oracle

Create databases
with database
administrator
credentials

create-
database-
derby.xml

create-
database-
db2.xml

create-
database-
mysql.xml

create-
database-
oracle.xml

Install
MobileFirst
Server
administration
and MobileFirst
runtime
environment on
Liberty

configure-
liberty-
derby.xml

configure-
liberty-db2.xml

configure-
liberty-
mysql.xml (See
Note)

configure-
liberty-
oracle.xml

Install
MobileFirst
Server
administration
and MobileFirst
runtime
environment on
WebSphere
Application
Server full
profile, single
server

configure-was-
derby.xml

configure-was-
db2.xml

configure-was-
mysql.xml (See
Note)

configure-was-
oracle.xml

15-30 IBM MobileFirst Platform Foundation V6.3.0

Table 15-58. Sample configuration files provided with IBM MobileFirst Platform
Foundation (continued)

Task Derby DB2 MySQL Oracle

Install
MobileFirst
Server
administration
and MobileFirst
runtime
environment on
WebSphere
Application
Server Network
Deployment

configure-
wasnd-cluster-
derby.xml

configure-
wasnd-server-
derby.xml

configure-
wasnd-node-
derby.xml

configure-
wasnd-cell-
derby.xml

configure-
wasnd-cluster-
db2.xml

configure-
wasnd-server-
db2.xml

configure-
wasnd-node-
db2.xml

configure-
wasnd-cell-
db2.xml

configure-
wasnd-cluster-
mysql.xml (See
Note)

configure-
wasnd-server-
mysql.xml (See
Note)

configure-
wasnd-node-
mysql.xml (See
Note)

configure-
wasnd-cell-
mysql.xml

configure-
wasnd-cluster-
oracle.xml

configure-
wasnd-server-
oracle.xml

configure-
wasnd-node-
oracle.xml

configure-
wasnd-cell-
oracle.xml

Install
MobileFirst
Server
administration
and MobileFirst
runtime
environment on
Apache Tomcat

configure-
tomcat-
derby.xml

configure-
tomcat-db2.xml

configure-
tomcat-
mysql.xml

configure-
tomcat-
oracle.xml

Install or
upgrade IBM
Worklight V5.0.6
on Liberty

redeploy506-
liberty-
derby.xml

redeploy506-
liberty-db2.xml

redeploy506-
liberty-
mysql.xml (See
Note)

redeploy506-
liberty-
oracle.xml

Install or
upgrade IBM
Worklight V5.0.6
on WebSphere
Application
Server full
profile, single
server

redeploy506-
was-derby.xml

redeploy506-
was-db2.xml

redeploy506-
was-mysql.xml
(See Note)

redeploy506-
was-oracle.xml

Install or
upgrade IBM
Worklight V5.0.6
on WebSphere
Application
Server Network
Deployment

redeploy506-
wasnd-cluster-
derby.xml

redeploy506-
wasnd-server-
derby.xml

redeploy506-
wasnd-node-
derby.xml

redeploy506-
wasnd-cell-
derby.xml

redeploy506-
wasnd-cluster-
db2.xml

redeploy506-
wasnd-server-
db2.xml

redeploy506-
wasnd-node-
db2.xml

redeploy506-
wasnd-cell-
db2.xml

redeploy506-
wasnd-cluster-
mysql.xml (See
Note)

redeploy506-
wasnd-server-
mysql.xml (See
Note)

redeploy506-
wasnd-node-
mysql.xml (See
Note)

redeploy506-
wasnd-cell-
mysql.xml

redeploy506-
wasnd-cluster-
oracle.xml

redeploy506-
wasnd-server-
oracle.xml

redeploy506-
wasnd-node-
oracle.xml

redeploy506-
wasnd-cell-
oracle.xml

Reference 15-31

Table 15-58. Sample configuration files provided with IBM MobileFirst Platform
Foundation (continued)

Task Derby DB2 MySQL Oracle

Install or
upgrade IBM
Worklight V5.0.6
on Apache
Tomcat

redeploy506-
tomcat-
derby.xml

redeploy506-
tomcat-db2.xml

redeploy506-
tomcat-
mysql.xml

redeploy506-
tomcat-
oracle.xml

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. Consider using IBM DB2 or another database that is supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Step 2

Change the file access rights of the sample file to be as restrictive as possible. Step
3 requires that you supply some passwords. If you must prevent other users on the
same computer from learning these passwords, you must remove the read
permissions of the file for users other than yourself. You can use a command, such
as the following examples:
v On UNIX:

chmod 600 configure-file.xml

v On Windows:
cacls configure-file.xml /P Administrators:F %USERDOMAIN%\%USERNAME%:F

Step 3

Similarly, if the server is a WebSphere Application Server Liberty profile or Apache
Tomcat server, and the server is meant to be started only from your user account,
you must also remove the read permissions for users other than yourself from the
following file:
v For WebSphere Application Server Liberty profile: wlp/usr/servers/<server>/

server.xml

v For Apache Tomcat: conf/server.xml

Step 4

Replace the placeholder values for the properties at the top of the file.

Note: The following special characters need to be escaped when used in values in
Ant XML scripts:
v The dollar sign ($) must be written as $$, unless you explicitly want to reference

an Ant variable through the syntax ${variable}, as described in Properties in
the Apache Ant Manual.

v The ampersand character (&) must be written as &, unless you explicitly
want to reference an XML entity.

v Double quotation marks (") must be written as ", except when inside a
string that is enclosed in single quotation marks.

15-32 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://ant.apache.org/manual/properties.html

Step 5

In the <configureapplicationserver> and <unconfigureapplicationserver>
invocations (in target install and uninstall), define MobileFirst properties. For a
list of properties that can be set, see “Configuration of MobileFirst applications on
the server” on page 11-45. In production, you must often define the following
specific properties:
v publicWorkLightHostname

v publicWorkLightProtocol

v publicWorkLightPort

Step 6

Run the commands:
ant -f configure-file.xml admdatabases
ant -f configure-file.xml databases

These commands ensure that the designated databases exist and contain the
required tables for IBM MobileFirst Platform Foundation. The target admdatabases
must be run before the target databases. This is especially important in the case of
an upgrade where management data is migrated from the runtime database to the
administration database, which needs to have been initialized first by the target
admdatabases.

For an initial installation, and if a DBA has not created the databases manually, use
the file in row “Create databases with database administrator credentials” of
Table 15-58 on page 15-30. These files add special parameters to the
configuredatabase Ant task (the DBA credentials). The parameters enable the Ant
task to create a database and a user if required.

Step 7

Run the command:
ant -f configure-file.xml adminstall

This command installs your Administration Services and MobileFirst Operations
Console components onto the application server.

To install updated Administration Services and MobileFirst Operations Console
components (for example, to apply a MobileFirst Server fix pack), run the
command:
ant -f configure-file.xml minimal-admupdate

To reverse the installation step, run the command:
ant -f configure-file.xml admuninstall

This command uninstalls the Administration Services and MobileFirst Operations
Console components.

Step 8

Run the command:
ant -f configure-file.xml install

Reference 15-33

This command installs your MobileFirst runtime environment as a .war file onto
the application server.

To install an updated MobileFirst runtime environment onto the application server,
run the command:
ant -f configure-file.xml minimal-update

To reverse the installation step, run the command:
ant -f configure-file.xml uninstall

This command uninstalls the MobileFirst runtime environment.

At least for WebSphere Application Server, it is a good idea to keep the modified
configure-file.xml for later use when you install updates of the MobileFirst
project's .war file. This file makes it possible to redeploy an updated .war file with
the same MobileFirst properties. If you use the WebSphere Application Server
administrative console to update the .war file, all properties that are configured for
this web application are lost.

15-34 IBM MobileFirst Platform Foundation V6.3.0

Glossary

This glossary provides terms and definitions for the IBM MobileFirst Platform
Foundation software and products.

The following cross-references are used in this glossary:
v See refers you from a nonpreferred term to the preferred term or from an

abbreviation to the spelled-out form.
v See also refers you to a related or contrasting term.

For other terms and definitions, see the IBM Terminology website (opens in new
window).

“A” “B” on page 16-2 “C” on page 16-2 “D” on page 16-4 “E” on page 16-4 “F” on
page 16-4 “G” on page 16-5 “H” on page 16-5 “I” on page 16-5 “J” on page 16-5
“K” on page 16-5 “L” on page 16-6 “M” on page 16-6 “N” on page 16-7 “P” on
page 16-7 “R” on page 16-8 “S” on page 16-8 “T” on page 16-9 “U” on page 16-10
“V” on page 16-10 “W” on page 16-10 “X” on page 16-10

A
acquisition policy

A policy that controls how data is collected from a sensor of a mobile
device. The policy is defined by application code.

adapter
The server-side code of a MobileFirst application. Adapters connect to
enterprise applications, deliver data to and from mobile applications, and
perform any necessary server-side logic on sent data.

administration database
The database of the MobileFirst Console and of the Administration
Services. The database tables define elements such as applications,
adapters, projects with their descriptions and orders of magnitude.

Administration Services
An application that hosts the REST services and administration tasks. The
Administration Services application is packaged in its own WAR file.

alias An assumed or actual association between two data entities, or between a
data entity and a pointer.

Android
A mobile operating system created by Google, most of which is released
under the Apache 2.0 and GPLv2 open source licenses. See also mobile
device.

API See application programming interface.

app A web or mobile device application. See also web application.

Application Center
A MobileFirst component that can be used to share applications and
facilitate collaboration between team members in a single repository of
mobile applications. See also Company Hub.

© Copyright IBM Corporation 2014 © IBM 2006, 2015 16-1

http://www.ibm.com/software/globalization/terminology/

Application Center installer
An application that lists the catalog of available applications in the
Application Center. The Application Center Installer must be present on a
device in order to install applications from your private application
repository.

application descriptor file
A metadata file that defines various aspects of an application.

application programming interface (API)
An interface that allows an application program that is written in a
high-level language to use specific data or functions of the operating
system or another program.

authentication
A security service that provides proof that a user of a computer system is
genuinely who that person claims to be. Common mechanisms for
implementing this service are passwords and digital signatures. See also
credential.

authenticator

1. In the Kerberos protocol, a string of data that is generated by the client
and sent with a ticket that is used by the server to certify the identity
of the client.

2. A server-side component that issues a sequence of challenges on the
server side and responds on the client side. See also challenge handler.

B
Base64

A plain-text format that is used to encode binary data. Base64 encoding is
commonly used in User Certificate Authentication to encode X.509
certificates, X.509 CSRs, and X.509 CRLs. See also DER encoded, PEM
encoded.

binary Pertaining to something that is compiled, or is executable.

BlackBerry OS
A closed source, proprietary mobile operating system created by Research
in Motion. See also mobile device.

block A collection of several properties (such as adapter, procedure, or
parameter).

broadcast notification
A notification that is targeted to all of the users of a specific MobileFirst
application. See also tag-based notification.

build definition
An object that defines a build, such as a weekly project-wide integration
build.

C
CA See certificate authority.

callback function
Executable code that allows a lower-level software layer to call a function
defined in a higher-level layer.

16-2 IBM MobileFirst Platform Foundation V6.3.0

catalog
A collection of apps.

certificate
In computer security, a digital document that binds a public key to the
identity of the certificate owner, thereby enabling the certificate owner to
be authenticated. A certificate is issued by a certificate authority and is
digitally signed by that authority. See also certificate authority.

certificate authority (CA)
A trusted third-party organization or company that issues the digital
certificates. The certificate authority typically verifies the identity of the
individuals who are granted the unique certificate. See also certificate.

certificate authority enterprise application
A company application that provides certificates and private keys for its
client applications.

certificate revocation list (CRL)
A list of certificates that have been revoked before their scheduled
expiration date. Certificate revocation lists are maintained by the certificate
authority and used, during a Secure Sockets Layer (SSL) handshake to
ensure that the certificates involved have not been revoked.

challenge
A request for certain information to a system. The information, which is
sent back to the server in response to this request, is necessary for client
authentication.

challenge handler
A client-side component that issues a sequence of challenges on the server
side and responds on the client side. See also authenticator.

client A software program or computer that requests services from a server.

client-side authentication component
A component that collects client information, then uses login modules to
verify this information.

clone An identical copy of the latest approved version of a component, with a
new unique component ID.

cluster
A collection of complete systems that work together to provide a single,
unified computing capability.

company application
An application that is designed for internal use inside a company.

Company Hub
An application that can distribute other specified applications to be
installed on a mobile device. For example, Application Center is a
Company Hub. See also Application Center.

component
A reusable object or program that performs a specific function and works
with other components and applications.

credential
A set of information that grants a user or process certain access rights.

CRL See certificate revocation list.

Glossary 16-3

D
data source

The means by which an application accesses data from a database.

deployment
The process of installing and configuring a software application and all its
components.

DER encoded
Pertaining to a binary form of an ASCII PEM formatted certificate. See also
Base64, PEM encoded.

device See mobile device.

device context
Data that is used to identify the location of a device. This data can include
geographical coordinates, WiFi access points, and timestamp details. See
also trigger.

documentify
A JSONStore command used to create a document.

E
emulator

An application that can be used to run an application meant for a platform
other than the current platform.

encryption
In computer security, the process of transforming data into an
unintelligible form in such a way that the original data either cannot be
obtained or can be obtained only by using a decryption process.

enterprise application
See company application.

entity A user, group, or resource that is defined to a security service,

environment
A specific instance of a configuration of hardware and software.

event An occurrence of significance to a task or system. Events can include
completion or failure of an operation, a user action, or the change in state
of a process.

event source
An object that supports an asynchronous notification server within a single
Java virtual machine. Using an event source, the event listener object can
be registered and used to implement any interface.

F
facet An XML entity that restricts XML data types.

farm node
A networked server that is housed in a server farm.

fire In object-oriented programming, to cause a state transition.

fragment
A file that contains HTML tags that can be appended to a parent element.

16-4 IBM MobileFirst Platform Foundation V6.3.0

G
gateway

A device or program used to connect networks or systems with different
network architectures.

geocoding
The process of identifying geocodes from more traditional geographic
markers (addresses, postal codes, and so on). For example, a landmark can
be located at the intersection of two streets, but the geocode of that
landmark consists of a number sequence. See also geolocation.

geofence
A circle or a polygon that defines a geographical area.

geolocation
The process of pinpointing a location based on the assessment of various
types of signals. In mobile computing, often WLAN access points and cell
towers are used to approximate a location. See also geocoding, location
services.

H
hybrid application

An application that is primarily written in Web-oriented languages
(HTML5, CSS, and JS), but is wrapped in a native shell so that the app
behaves like, and provides the user with all the capabilities of, a native
app.

I
in-house application

See company application.

inner application
An application that contains the HTML, CSS, and JavaScript parts that run
within a shell component. Inner applications must be packaged within a
shell component to create a full hybrid application.

J
Java Management Extensions (JMX)

A means of doing management of and through Java technology. JMX is a
universal, open extension of the Java programming language for
management that can be deployed across all industries, wherever
management is needed.

JMX See Java Management Extensions.

K
key

1. A cryptographic mathematical value that is used to digitally sign,
verify, encrypt, or decrypt a message. See also private key, public key.

2. One or more characters within an item of data that are used to
uniquely identify a record and establish its order with respect to other
records.

Glossary 16-5

keychain
A password management system for Apple software. A keychain acts as a
secure storage container for passwords that are used by multiple
applications and services.

key pair
In computer security, a public key and a private key. When the key pair is
used for encryption, the sender uses the public key to encrypt the message,
and the recipient uses the private key to decrypt the message. When the
key pair is used for signing, the signer uses the private key to encrypt a
representation of the message, and the recipient uses the public key to
decrypt the representation of the message for signature verification.

L
library

1. A system object that serves as a directory to other objects. A library
groups related objects, and allows users to find objects by name.

2. A collection of model elements, including business items, processes,
tasks, resources, and organizations.

load balancing
A computer networking method for distributing workloads across multiple
computers or a computer cluster, network links, central processing units,
disk drives, or other resources. Successful load balancing optimizes
resource use, maximizes throughput, minimizes response time, and avoids
overload.

local store
An area on a device where applications can locally store and retrieve data
without the need for a network connection.

location services
A feature in MobileFirst that can be used to create differentiated services
that are based on a user location. Location services involve collecting
geolocational and WiFi data and transmitting this data to a server, where it
can be used for executing business logic and analytics. Changes in the
location data result in triggers being activated, which cause application
logic to execute. See also geolocation.

M
Managed Bean (MBean)

In the Java Management Extensions (JMX) specification, the Java objects
that implement resources and their instrumentation.

MBean
See Managed Bean.

mobile
See mobile device.

mobile client
See Application Center installer.

mobile device (mobile)
A telephone, tablet, or personal digital assistant that operates on a radio
network. See also Android, BlackBerry OS.

16-6 IBM MobileFirst Platform Foundation V6.3.0

MobileFirst adapter
See adapter.

MobileFirst Console
A web-based interface that is used to control and manage MobileFirst
runtime environments that are deployed in MobileFirst Server, and to
collect and analyze user statistics.

MobileFirst runtime environment
A mobile-optimized server-side component that runs the server side of
your mobile applications (back-end integration, version management,
security, unified push notification). Each runtime environment is packaged
as a web application (WAR file).

MobileFirst Server
A MobileFirst component that handles security, back-end connections, push
notifications, mobile application management, and analytics. The
MobileFirst Server is a collection of apps that run on an application server
and acts as a runtime container for MobileFirst runtime environments.

MobileFirst Studio
An MobileFirst component that is an integrated development environment
(IDE) that can be used to develop and test mobile applications.

N
native app

An app that is compiled into binary code for use on the mobile operating
system on the device.

node A logical group of managed servers.

notification
An occurrence within a process that can trigger an action. Notifications can
be used to model conditions of interest to be transmitted from a sender to
a (typically unknown) set of interested parties (the receivers).

P
page navigation

A browser feature that enables users to navigate backwards and forwards
in a browser.

PEM encoded
Pertaining to a Base64 encoded certificate. See also Base64, DER encoded.

PKI See public key infrastructure.

PKI bridge
A MobileFirst Server concept that enables the User Certificate
Authentication framework to communicate with a PKI.

poll To repeatedly request data from a server.

private key
In secure communication, an algorithmic pattern used to encrypt messages
that only the corresponding public key can decrypt. The private key is also
used to decrypt messages that were encrypted by the corresponding public
key. The private key is kept on the user system and is protected by a
password. See also key, public key.

Glossary 16-7

project
The development environment for various components, such as
applications, adapters, configuration files, custom Java code, and libraries.

project WAR file
A web archive (WAR) file that contains the configurations for the
MobileFirst runtime environment and is deployed on an application server.

provision
To provide, deploy, and track a service, component, application, or
resource.

proxy An application gateway from one network to another for a specific
network application such as Telnet or FTP, for example, where a firewall
proxy Telnet server performs authentication of the user and then lets the
traffic flow through the proxy as if it were not there. Function is performed
in the firewall and not in the client workstation, causing more load in the
firewall.

public key
In secure communication, an algorithmic pattern used to decrypt messages
that were encrypted by the corresponding private key. A public key is also
used to encrypt messages that can be decrypted only by the corresponding
private key. Users broadcast their public keys to everyone with whom they
must exchange encrypted messages. See also key, private key.

public key infrastructure (PKI)
A system of digital certificates, certification authorities, and other
registration authorities that verify and authenticate the validity of each
party involved in a network transaction. See also public key.

push To send information from a server to a client. When a server pushes
content, it is the server that initiates the transaction, not a request from the
client.

push notification
An alert indicating a change or update that appears on a mobile app icon.

R
realm A collection of resource managers that honor a common set of user

credentials and authorizations.

reverse proxy
An IP-forwarding topology where the proxy is on behalf of the back-end
HTTP server. It is an application proxy for servers using HTTP.

root The directory that contains all other directories in a system.

S
server farm

A group of networked servers.

server-side authentication component
See authenticator.

service
A program that performs a primary function within a server or related
software.

16-8 IBM MobileFirst Platform Foundation V6.3.0

session
A logical or virtual connection between two stations, software programs, or
devices on a network that allows the two elements to communicate and
exchange data for the duration of the session.

shell A component that provides custom native capabilities and security features
for applications.

sideloading
On Windows 8 environments, the process of loading a file of type appx on
a mobile device without using the Windows Store.

sign To attach a unique electronic signature, derived from the sender's user ID,
to a document or field when a document is mailed. Signing mail ensures
that if an unauthorized user creates a new copy of a user's ID, the
unauthorized user cannot forge signatures with it. In addition, the
signature verifies that no one has tampered with the data while the
message was in transit.

simulator
An environment for staging code that is written for a different platform.
Simulators are used to develop and test code in the same IDE, but then
deploy that code to its specific platform. For example, one can develop
code for an Android device on a computer, then test it using a simulator
on that computer.

skin An element of a graphical user interface that can be changed to alter the
appearance of the interface without affecting its functionality.

slide To move a slider interface item horizontally on a touchscreen. Typically,
apps use slide gestures to lock and unlock phones, or toggle options.

subelement
In UN/EDIFACT EDI standards, an EDI data element that is part of an
EDI composite data element. For example, an EDI data element and its
qualifier are subelements of an EDI composite data element.

subscription
A record that contains the information that a subscriber passes to a local
broker or server to describe the publications that it wants to receive.

syntax The rules for the construction of a command or statement.

system message
An automated message on a mobile device that provides operational status
or alerts, for example if connections are successful or not.

T
tag-based notification

A notification that is targeted to devices that are subscribed for a specific
tag. Tags are used to represent topics that are of interest to a user. See also
broadcast notification.

tap To briefly touch a touchscreen. Typically, apps use tap gestures to select
items (similar to a left mouse button click).

template
A group of elements that share common properties. These properties can
be defined only once, at the template level, and are inherited by all
elements that use the template.

Glossary 16-9

trigger
A mechanism that detects an occurrence, and can cause additional
processing in response. Triggers can be activated when changes occur in
the device context. See also device context.

U
Unstructured Supplementary Service Data (USSD)

A communication technology that is used by GSM cellular telephones to
send text messages between a mobile phone and an application program in
the network. USSD establishes a real-time session between the mobile
phone and the application that handles the service.

USSD See Unstructured Supplementary Service Data.

V
view A pane that is outside of the editor area that can be used to look at or

work with the resources in the workbench.

W
web application

An application that is accessible by a web browser and that provides some
function beyond static display of information, for instance by allowing the
user to query a database. Common components of a web application
include HTML pages, JSP pages, and servlets. See also app.

web application server
The runtime environment for dynamic web applications. A Java EE web
application server implements the services of the Java EE standard.

web resource
Any one of the resources that are created during the development of a web
application for example web projects, HTML pages, JavaServer Pages (JSP)
files, servlets, custom tag libraries, and archive files.

widget
A portable, reusable application or piece of dynamic content that can be
placed into a web page, receive input, and communicate with an
application or with another widget.

wrapper
A section of code that contains code that could otherwise not be
interpreted by the compiler. The wrapper acts as an interface between the
compiler and the wrapped code.

X
X.509 certificate

A certificate that contains information that is defined by the X.509
standard.

16-10 IBM MobileFirst Platform Foundation V6.3.0

Support and comments

For the entire IBM MobileFirst Platform documentation set, training material and
online forums where you can post questions, see the IBM website at:

http://www.ibm.com/mobile-docs

Support

Software Subscription and Support (also referred to as Software Maintenance) is
included with licenses purchased through Passport Advantage and Passport
Advantage Express. For additional information about the International Passport
Advantage Agreement and the IBM International Passport Advantage Express
Agreement, visit the Passport Advantage website at:

http://www.ibm.com/software/passportadvantage

If you have a Software Subscription and Support in effect, IBM provides you
assistance for your routine, short duration installation and usage (how-to)
questions, and code-related questions. For additional details, consult your IBM
Software Support Handbook at:

http://www.ibm.com/support/handbook

Comments

We appreciate your comments about this publication. Please comment on specific
errors or omissions, accuracy, organization, subject matter, or completeness of this
document. The comments you send should pertain to only the information in this
manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact
your IBM branch office, your IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you. IBM or any other organizations will only use the personal
information that you supply to contact you about the issues that you state.

Thank you for your support.

If you would like a response from IBM, please provide the following information:
v Name
v Address
v Company or Organization
v Phone No.
v Email address

© Copyright IBM Corp. 2006, 2015 17-1

http://www.ibm.com/mobile-docs
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/support/handbook

17-2 IBM MobileFirst Platform Foundation V6.3.0

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2006, 2015 A-1

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

A-2 IBM MobileFirst Platform Foundation V6.3.0

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Node.js is a trademark of Joyent, Inc. and is used with its permission. This
documentation is not formally endorsed by or affiliated with Joyent.

Other company products or service names may be trademarks or service marks of
others.

This document may not be reproduced in whole or in part without the prior
written permission of IBM.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Notices A-3

http://www.ibm.com/legal/us/en/copytrade.shtml

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies that collect session information (generated by the application
server). These cookies contain no personally identifiable information and are
required for session management. Additionally, persistent cookies may be
randomly generated to recognize and manage anonymous users. These cookies
also contain no personally identifiable information and are required.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent. For more information about the use of various technologies, including
cookies, for these purposes, see IBM’s Privacy Policy at http://www.ibm.com/
privacy and IBM’s Online Privacy Statement at http://www.ibm.com/privacy/
details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

A-4 IBM MobileFirst Platform Foundation V6.3.0

http://www.ibm.com/privacy
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Index

Special characters
<adapter>

element of adapter XML file 8-338
<authentication>

element of the HTTP adapter 8-344
<connectionPolicy>

element of adapter XML file 8-340
element of the Cast Iron

adapter 8-348
element of the HTTP adapter 8-341
element of the JMS adapter 8-349
element of the SAP adapter 8-352
element of the SQL adapter 8-346

<connectivity>
element of adapter XML file 8-340

<jmsConnection>
element of the JMS adapter 8-351

<maxConcurrentConnectionsPerNode>
element of HTTP adapter 8-344

<namingConnection>
element of the JMS adapter 8-350

<procedure>
element of adapter XML file 8-340

<proxy>
element of the HTTP adapter 8-345
11-23

A
Access Control List

Application Center 6-214, 6-216
access for users and groups

Application Center 6-214, 6-216,
6-217

accessibility 8-579
accuracy 8-135
ACL

Application Center 6-214, 6-216
ACL management for Application Center

with LDAP
WebSphere Application Server

V8 6-217
acquisition policy

setting 8-587
actions and data objects 8-72

overview 8-72
sending 8-72

adapter 8-359
adapter concurrency 8-357
adapter configuration files

exporting 11-75
adapter framework 8-333
adapter invocation 8-365
adapter procedures

implementing 8-365
adapter timeout 8-357
adapter validation 8-372
adapter XML file 8-337, 8-338, 8-357

<connectionPolicy> element 8-340
<connectivity> element 8-340

adapter XML file (continued)
<procedure> element 8-340

adapter XML schema 8-357
adapter-based authenticator 8-512
adapters 8-359, 11-67

See also HTTP adapters
administering in console 11-74
anatomy 8-333
backend responses 8-368
benefits 8-333
building

Ant task 11-69
Cast Iron

See Cast Iron adapters
composition 8-333
configuring 8-354
configuring and implementing custom

device provisioning 8-526
creating 8-354
deleting 11-76
deploying

Ant task 11-67, 11-71
from MobileFirst Studio 8-379
from the console 11-75

deploying between
environments 11-1, 11-2

HTTP
See HTTP adapters

JMS
See JMS adapters

modifying 11-75
overview 8-333
replacing 11-75
See JMS adapters 8-381, 8-382
SQL

See SQL adapters
time out and response time to

optimize MobileFirst
applications 8-331

adding
desktop environment 8-33
mobile environment 8-33
to an

MobileFirst application 8-33
web environment 8-33

adding custom splash images 8-17
administering

applications 12-1
apps and adapters

in MobileFirst Operations
Console 11-74

administration 6-47, 6-48, 13-37, 13-38
administration databases 6-46
administration services

Ant tasks
to deploy MobileFirst Operations

Console and administration
services 6-63

deploying with Ant tasks 6-63
Administration Services

installing during an upgrade 7-43

Administration Services (continued)
preparing the installation 7-18

Adobe AIR
in application descriptors 8-24

Adobe AIR applications
signing 8-161

Adobe AIR tools
installing 6-4

AES specification
encryption algorithm 11-52

AIR
See also Adobe AIR
See Adobe AIR 8-24

AIR applications
signing 8-161

AMD 8-101
analytics 6-170, 6-176, 13-9, 13-10, 13-11,

13-12, 13-15, 13-16, 13-17, 13-18, 13-24,
13-35, 13-37, 13-38, 13-40

cluster deployment 13-33
configuring 6-176
installing 6-171, 6-172
product main features 2-4
production cluster setup 13-31

android 8-190
Android 8-134

application authenticity 8-485
configuring SSL with untrusted

certificates 6-150
developing applications by using

native API 8-180
developing native applications 8-189
Mobile Browser Simulator 8-122
native applications

for Android 8-189
Run As menu options 8-311

Android 6.0 support 3-2
Android apps 8-60
Android automatic backup 3-2
Android examples 8-453
Android location services 3-2
Android marshmallow support 3-2
Android native 8-552
Android Studio 8-60
Android tools

installing 6-5
animating transitions

from and to Java page 8-158
from Objective-C page to web

view 8-156
from web view to Objective-C

page 8-157
ANPS

SSL certificate in application
descriptor 8-183

ANT Grunt 8-210
Ant tasks

application servers 15-30
building adapters 11-69
building and deploying adapters and

applications 11-67

© Copyright IBM Corp. 2006, 2015 X-1

Ant tasks (continued)
building applications 11-69
configuring application

servers 11-14, 11-16, 15-16, 15-30
WebSphere Application Server

Network Deployment 11-16
configuring databases 11-13, 15-1
deploying adapters 11-71
deploying applications 11-71
deploying projects 11-67
for beacons and beacon

triggers 12-24
for building projects 11-4
for IBM MobileFirst Platform

Foundation installation 15-9
for product upgrades 7-20
for the installation of server

farms 6-101
reference 15-30
sample configuration files 15-30
to create and configure databases for

MobileFirst Server 6-62
updating deployment scripts 7-58

anti 8-493
Apache 11-27
Apache Tomcat 6-92
Apache Tomcat server

manual configuration 6-79, 6-197,
11-36

API 8-553
API reference 10-1
APIs

Apache Cordova globalization 8-566
App Transport Security (ATS)

TLS 8-187
app transport security support 3-1
Apple Push Notification Service (APNS)

<pushsender> attribute in application
descriptors 8-24

push notification for iOS
devices 8-459

push notification system 8-575
Apple Swift

creating a project 8-187
Apple Swift language

what's new 3-4
Apple watchOS 2 8-188
application cache 8-312, 8-316, 8-317

managing 8-312, 8-316, 8-317
Application Center 6-20, 6-198, 6-214,

6-216, 6-296
access for users and groups 6-214,

6-216, 6-217
configuring Derby manually on

Tomcat 6-190
configuring Liberty profile for Oracle

manually 6-195
configuring Tomcat for DB2

manually 6-186
configuring WebSphere Application

Server for DB2 manually 6-184
configuring WebSphere Application

Server for Derby manually 6-188
configuring WebSphere Application

Server manually 6-200
deploying on IBM PureApplication

System 11-116

Application Center (continued)
deploying WAR files 6-198
installing manually 6-182
LDAP and WebSphere Application

Server V7 6-214
LDAP and WebSphere Application

Server V8 6-216
manual configuration of DB2 6-184
product main features 2-4
setting up your Derby database

manually 6-187
setting up your MySQL database

manually 6-190
settting up your DB2 database

manually 6-183
updating production apps 11-93

Application Center access control 6-214,
6-216

Application Center Access Control List
Virtual Member Manager 6-216

Application Center access control with
LDAP on WebSphere Application Server
V8 6-217

application components
adding hooks 8-288
adding to MobileFirst projects 8-300
configuring preferences 8-285
creating from MobileFirst

projects 8-286
elements

CordovaPlugin 8-290
ExternalLibraries 8-297
Files 8-298
Libraries (Android) 8-296
Libraries (iOS) 8-299
Receivers 8-294
Strings 8-295
UserPermission 8-293

introduction 8-286
removing from MobileFirst

projects 8-301
troubleshooting 8-301
validating 8-300
viewing 8-287

application descriptor 8-17, 8-201
application descriptors 8-198

deprecated elements 8-24
for native applications for iOS 8-183
of native API applications of Java

ME 8-195
application features 8-312, 8-313

including and excluding 8-312, 8-313
application folder 8-16
application icons 8-17
application main file 8-17
application resources 8-17
application server 6-20, 6-50, 6-54, 7-1,

7-3, 7-13, 7-16
configuring

Ant task 11-14, 11-16, 15-30
Ant tasks 15-16
reference 15-30

application servers
supported for server farm

configuration 6-99
application skins

applying 8-101

application skins (continued)
deleting 8-101
developing 8-101

application strings 8-566
applications

administering 12-1
anatomy 8-16
authenticity 8-485
building

Ant task 11-67, 11-69
composition 8-16
configuring FIPS 140-2 12-162
connecting to MobileFirst

Server 8-145
creating 8-5, 8-7, 8-9
deploying

Ant task 11-67, 11-71
descriptor file 8-24
developing 8-5
developing and publishing

product main features 2-4
developing by using the native

API 8-180
hybrid 8-5
identifier

constraints 8-24
native 8-5
overview 8-16
protecting traffic with

DataPower 6-136
storing properties in encrypted

format 11-52
subscribing to tags for push

notification 8-466
web 8-5

applying skins 8-101
apps 8-210

administering in console 11-74
deleting 11-75
deploying 11-74
deploying between

environments 11-1, 11-2
production apps

best practices 11-93
submitting 11-74
updating in production 11-93

architecture
push notification 8-456

Asynchronous Module Definition 8-101
authentication 6-296

configuring
Application Center 8-501
MobileFirst Operations

Console 8-501
usage reports 8-501

HTTP basic 6-141
of mobile devices 8-494
protecting resources with user

certificate 13-70
Secure Sockets Layer (SSL) 13-71
through a reverse proxy

header-based or LTPA-based 14-3
to protect application traffic 6-136

authentication configuration
attributes of login modules 8-520
authentication realms 8-492
authenticators 8-494

X-2 IBM MobileFirst Platform Foundation V6.3.0

authentication configuration (continued)
configuring

authenticators 8-501
realms 8-501

header login module 8-521
LDAP login module 8-523
login modules 8-494

attributes 8-520
header 8-521
LDAP 8-523
non-validating 8-521
single identity 8-521
WASLTPAModule 8-522

non-validating login module 8-521
single identity login module 8-521
WASLTPAModule login

module 8-522
authentication configuration file 8-497
authentication realms 8-492
authenticationConfig.xml 8-497
authenticators 8-494

adapter-based 8-512
configuring 8-501
customizing 8-507
form-based 8-502, 8-504
header 8-511
login forms 8-32
LTPA 8-519
persistent cookie 8-512

authenticity
of MobileFirst applications 8-485

auto-complete 8-372
auto-provisioning 8-494

B
back end

method for push notification
architecture 8-456

polling method
JMS, for push notification 8-456

back-end connections
product main features 2-4

back-end services 8-359
invoking 8-377
SAP 8-359
WSDL 8-359

backward-compatibility 7-1
basic registry 6-296
BasicAuthenticator 8-502
beacon triggers

Ant task 12-24
beacons

Ant task 12-24
benefits of adapters 8-333
best practices

for design and architecture
decisions 5-1

samples
terms and conditions of use 5-1

BIRT
installing on Apache Tomcat 13-53
installing on WebSphere Application

Server Liberty profile 13-54
bit code support 3-1
Bitcode

build options 8-188

Blackberry
Mobile Browser Simulator 8-122

BlackBerry
installing WebWorks tools 6-5

BlackBerry 10 project 8-62
broadcast notifications

sending to the device 8-471
unsubscription 8-462

browser configuration 8-106
Linux 8-106

browsers
Rich Page Editor 8-106

buffer zones
for geofencing 8-588

build 8-134
build settings 8-312, 8-321, 8-324, 8-327
build-settings.xml 8-321, 8-324, 8-327
building 8-60
building a project

Ant task 11-4
building adapters

Ant task 11-67, 11-69
building and deploying 8-306, 8-307,

8-308, 8-309
building and deploying in MobileFirst

Studio 8-304, 8-306, 8-307, 8-308, 8-309,
8-311

building and deploying to the MobileFirst
Development Server 8-306, 8-307,
8-308, 8-309

building applications
Ant task 11-67, 11-69

Business Intelligence Reporting Tools
(BIRT)

installing on WebSphere Application
Server full profile 13-56

C
C#

client-side API to develop native
applications 8-180

CA certificates 8-525
cache manifest

in application descriptors 8-24
Cache Manifest 8-312, 8-316, 8-317

editing 8-317
managing 8-312, 8-316, 8-317

capturing data 12-161
Cascading Style Sheet files

concatenation of 8-321, 8-327
minification of 8-321, 8-324

Cast Iron
integration with IBM MobileFirst

Platform Foundation 14-2
Cast Iron adapters 8-333

<connectionPolicy> element 8-348
generating adapters 8-333
root element 8-348
services discovery wizard 8-333
troubleshooting 8-333

certificate authority (CA) 8-526
definition 6-150
for Secure Sockets Layer (SSL)

configuration 13-71
protecting with user certificate

authentication 13-70

certificate keys
for application authenticity 8-485

certificate keystore
for authenticated push

notification 8-460
certificate signing request (CSR) 8-529

in client-side components for native
Android applications 8-531

in custom device provisioning 8-526
to implement client-side components

for custom device
provisioning 8-527

to implement client-side components
for native iOS 8-533

certificates
errors 13-71
self-signed

to configure SSL 6-148
to protect resources 13-70
untrusted

configuring SSL 6-150
X.509 13-71
X509 certificate 8-494

challenge handling for application
security 8-485

changing 8-91
context root 8-38
port number of application

server 6-6
the target server 8-38

Chrome
versions supported by Mobile Browser

Simulator 8-122
CLI 6-9, 8-210
CLI commands 8-211, 8-217, 8-223,

8-229, 8-236, 8-242, 8-248, 8-254, 8-260,
8-266, 8-273, 8-279

client configuration 13-80
client property file 8-190, 8-197, 8-199,

8-202
client property files

for native iOS applications 8-185
client side

authentication certificates 13-71
components for custom device

provisioning 8-527
components for hybrid

applications 8-529
components for native Android

applications 8-531
components for native iOS 8-533

client-side
Android 10-6
API 10-6, 10-7
C# 10-7
Java 10-6
Java Platform, Micro Edition 10-6
Windows 8 10-7
Windows Phone 8 10-7

client-side API
iOS 10-5, 10-6
Objective-C and Apple Swift

language 10-5, 10-6
cloud

deployment of MobileFirst Server and
MobileFirst applications 11-96

clustering 13-17

Index X-3

clusters
and application authenticity 8-485
installing a fix pack 7-62
Security Socket Layer (SSL)

provided by the MobileFirst
instance 6-256

tuning back-end connections for
MobileFirst Server 6-118

command 8-210
command-line interface

commands 8-211, 8-217, 8-223, 8-229,
8-236, 8-242, 8-248, 8-254, 8-260,
8-266, 8-273, 8-279

command-line tools
silent installation 6-8

compatibility 7-1
completing

configuration 7-64
IBM MobileFirst Platform

Foundation 7-64
compressed responses

optimizing MobileFirst
applications 8-331

concatenation 8-312, 8-321
engine 8-327

confidence 8-135
confidence levels

for geofencing 8-588
configuration 11-77

security 6-130
configuration files

for server farms 6-86, 6-99
sample files 6-63

configurations 13-40
supported for LTPA security 11-87

configureapplicationserver
Ant task 15-16

configuredatabase
Ant task 15-1

configuring 11-27
adapters 8-354
Apache 11-27
Apache Tomcat 6-50, 6-71, 6-75, 6-85
application server 6-50
authentication

web widgets 8-160
authenticators 8-501
custom device provisioning 8-526
Derby 11-27
device auto provisioning 8-525
implementing

custom device provisioning 8-526
MobileFirst Server

MySQL 6-168
realms 8-501
server farms 6-99
single sign-on 8-539
user authentication 6-88, 6-90, 6-91,

6-92
web widget authentication 8-160
WebSphere Application Server 6-54
WebSphere Application Server Liberty

profile 6-50
WebSphere Application Server

Network Deployment 6-54
Configuring

DB2 HADR seamless failover 6-20

configuring LDAP for Application Center
WebSphere Application Center

V8 6-216
WebSphere Application Server

V7 6-214
connection 8-145
console

administering apps and
adapters 11-74

constraints
on application identifiers 8-24

context root 15-16
changing 8-36, 8-38

Cordova 8-566
Objective-C client-side API 10-5

create 8-9
IBM MobileFirst Platform Application

Pattern
single db2 vm 11-103

creating
adapters 8-354
administration database 6-46
applications 8-5, 8-7, 8-10
Dojo-enabled MobileFirst

projects 8-79
projects 8-7
QNX 8-60

creating the Oracle database 6-48
Cross Origin Resource Sharing (CORS)

JNDI properties 6-92
cross site 8-493
cross-site 8-493
CSRF 8-493
CSS files

concatenation of 8-321, 8-327
minification of 8-321, 8-324

custom device provisioning
client-side and server-side

implementation 8-526
client-side components 8-527
configuring 8-526

custom security tests
in client-side components for native

Android applications 8-531
in client-side components of hybrid

applications 8-529
to implement client-side components

for custom device
provisioning 8-527

to implement client-side components
for native iOS 8-533

custom splash images 8-17
custome certificate authorities

(CA) 13-71
customizing

authenticators 8-507
login modules 8-507

customSecurityTest 8-490

D
data

stored as large objects (LOBs) 6-121
data capture 13-12
Data Management Zone (DMZ)

in MobileFirst topologies 6-256
data purging 13-37

data sharing
See simple data sharing

data sources 6-20
Database user permissions for MobileFirst

Server runtime operations 6-18
databases

configuring 11-17
Ant task 11-14, 11-16, 15-1, 15-30

configuring by using Ant tasks 11-13
creating 11-17
creating and configuring for

MobileFirst Server by using Ant
tasks 6-62

DB2
failure to create 6-295

optimizing and tuning 6-121
upgrading for runtime and

reports 7-45
DataPower

used as security gateway to protect
application traffic 6-136

DB2 6-68
configuring manually for Application

Center on Tomcat 6-186
configuring Tomcat manually 11-22
configuring WebSphere Application

Server Liberty manually for
MobileFirst Server 6-65

configuring WebSphere Application
Server manually for Application
Center 6-184

configuring WebSphere Application
Server manually for MobileFirst
Server 6-66

setting up your database
manually 11-18

setting up your database manually for
Application Center 6-183

setting up your database manually for
MobileFirst Server 6-64

DB2 database
created by the installer 6-47

DB2 databases
failure to create 6-295
Liberty server farm, manual

installation 6-109
Tomcat server farm, manual

installation 6-113
WebSphere Application Server server

farm, manual installation 6-105
DB2 SQL Error 6-170, 6-237
deleting

adapters 11-76
apps 11-75
skins 8-101

deploy 8-134
deploying

adapters 11-1, 11-2
from MobileFirst Studio 8-379
from the console 11-75

Application Center
to the cloud by using IBM

PureApplication System 11-116
apps 11-1, 11-2, 11-74

to the cloud 11-96

X-4 IBM MobileFirst Platform Foundation V6.3.0

deploying (continued)
MobileFirst Server

by using the Server Configuration
Tool 11-9

to the cloud 11-96
project WAR file 11-5
updated apps 11-93

deploying adapters
Ant task 11-67, 11-71

deploying applications
Ant task 11-67, 11-71

deploying projects
Ant task 11-67

deployment scripts
deploying 7-58

deprecated features 3-14, 3-15
Derby 6-71, 11-27

configuring manually for Application
Center on Tomcat 6-190

configuring WebSphere Application
Server manually 11-25

configuring WebSphere Application
Server manually for Application
Center 6-188

configuring WebSphere Application
Server manually for MobileFirst
Server 6-70

configuring your database manually
for MobileFirst Server 6-69

not supported for production 6-62
setting up the database manually for

Application Center 6-187
setting up your database

manually 11-23
Derby databases 6-69

manual configuration 6-69
not supported by server farms 6-99,

6-113
WebSphere Application Server Liberty

profile server 6-69
descriptor files

for applications 8-24
Desktop Browser apps 8-316
detect information 8-566
develop 8-9

hybrid app
windows phone 8 8-66

developer experience 3-4
developing

application skins 8-101
applications 8-5
guidelines

desktop and web
environments 8-159

hybrid apps 8-46
developing applications

product main features 2-4
development 8-14, 8-76

hybrid app 8-14
user interface 8-76

user interface
hybrid app 8-76

development environment 7-1, 7-3, 7-13,
7-16

development guidelines
desktop and web

environments 8-159

device
management 13-62, 13-63, 13-64,

13-65, 13-66
device access management 13-64
device auto provisioning

configuring 8-525
device single sign-on (SSO)

in application descriptors 8-24
device-specific 8-566
devices

authentication 8-494
provisioning 8-494
tracking location 8-598

disabling an app 12-3
distribution structure 6-42

MobileFirst Server 6-42
documentation improvements 3-14
Dojo 8-14, 8-555, 8-566
Dojo API 8-101
Dojo library project

removing 8-91
setup 8-80

Dojo Mobile 8-77
Dojo tooling 8-14
Dojo version 8-91

E
Eclipse 6-1

supported versions 2-12
editors 8-210

Rich Page Editor 8-103
embedded server

logging 13-4
embedded WebSphere Application Server

Liberty profile
logging 13-4

emulator 8-134
enabling 8-550, 13-65
encryption

for storing properties 11-52
Endpoint Manager

overview 14-5
enforce language preference

MobileFirst system messages 8-578
environments 8-5

production 11-1
QA 11-1
test 11-1

error
configuration 6-53
deploying with Application Center

console 6-237
deploying with MobileFirst

console 6-170
jmx configuration 6-53
transaction log full 6-170, 6-237

event-source based notifications
sending to the device 8-471

examples 8-452
exporting

adapter configuration files 11-75
extracting

public signing keys 8-55, 8-193

F
failure 8-415
feature comparison 13-10
feature table 2-12
feature-platform matrix 2-12
features

MobileFirst Studio 8-372
federal 12-156
Federal Desktop Core

Configuration 12-156
Federal Information Processing Standards

(FIPS)
security standards 12-157, 12-162

Federal Information Processing Standards
(FIPS) 140-2

configuring for existing
applications 12-162

files
of native API applications for iOS,

copying 8-186
FIPS 140-2 12-161

enabling 12-159
Firefox

versions supported by Mobile Browser
Simulator 8-122

fix pack 7-60, 7-61, 7-65
fix packs

installing in a new cluster 7-62
folder

application 8-16
folders for native code 8-159
for downloading to get started

tutorials
to get started 5-1

for iOS native applications
simple data sharing 8-551

form-based authenticator 8-502
form-based authenticators

implementing 8-504
FormBasedAuthenticator 8-502
framework 8-566

adapter 8-333
Dojo 8-555
globalization 8-555

G
generating 8-359
geo widget 8-135
Geo Wifi 8-135
geofences

buffer zones 8-588
confidence levels 8-588
creating 8-588

geolocation 8-135
geolocation widget 8-135
getting started 5-1
globalization 8-555, 8-566

push notifications 8-575
glossary 16-1
Google Cloud Messaging (GCM)

<pushsender> attribute in application
descriptors 8-24

push notification system 8-575

Index X-5

Google Cloud Messaging (GCM)
(continued)

SSL certificate
password defined in application

descriptors 8-24

H
handling

interactive push notification
hybrid 8-464
ios 8-464
native 8-464

silent push notification
hybrid 8-467
ios 8-467
native 8-467

hardware calculator 5-1
header authenticator 8-511
header login module 8-521
header-based authentication

through reverse proxy 14-3
HeaderAuthenticator 8-511
HeaderLoginModule 8-521
heap size

setting for the JVM 6-118
heterogeneous server farms

not supported 6-86
homogeneous server farms

supported 6-86, 6-99
HTTP

adapters 8-359
basic authentication, rules 6-141
Strict Transport Security

standards 6-92
HTTP adapter

<maxConcurrentConnectionsPerNode>
element 8-344

HTTP adapters 8-333
<authentication> element 8-344
<connectionPolicy> element 8-341
<proxy> element 8-345
and WebSphere Application Server

SSL configuration 11-50
encoding a SOAP XML

envelope 8-367
root element 8-341

HTTP connections
tuning 6-118

HTTP plug-in file 7-65
HTTP request 8-365
HTTPS port number

Liberty server farm, manual
installation 6-109

HTTPS protocol
JNDI properties 6-92

hybrid 8-135, 8-550
hybrid app 8-14, 8-76

development 8-14
user interface 8-76

user interface
development 8-76

hybrid application 8-134
hybrid applications 8-9, 8-555

accessibility 8-579
client-side components 8-529
Objective-C client-side API 10-5, 10-6

hybrid applications (continued)
testing 8-74

hybrid development 2-1
hybrid mixed development 2-1

I
IBM Installation Manager 6-1, 6-27
IBM MobileFirst Platform

Foundation 7-60, 8-9, 8-210, 10-5
integrating IBM Endpoint

Manager 14-5
security 8-480

IBM Endpoint Manager 14-5
IBM MobileFirst Platform Foundation

Consumer Edition 2-11
IBM MobileFirst Platform Foundation

Developer Edition 2-11
IBM MobileFirst Platform Foundation

Enterprise Edition 2-11
IBM Tealeaf

client-side integration 14-9
IBM WebSphere Application Server 7-62
icons

specifying
Android apps 8-55
iPhone apps 8-50

IDE 8-210
iKeyman, IBM truststore utility 6-109
implementing

adapter procedures 8-365
in-place upgrade

versus rolling upgrade 7-25
initialization options 8-14
initOptions.js 8-14
inner applications 8-9
install

combine MobileFirst tables 11-98
fix pack 7-62
MobileFirst database workload

standard 11-98
installation 6-1, 6-15, 6-27, 6-170, 6-176,

6-296
Ant tasks 15-9
of MobileFirst Server, tutorial 6-20
silent 6-8

installing 6-9
Administration Services 6-46

preparation tasks 7-18
Adobe AIR tools 6-4
Android tools 6-5
custom runtime database workload

standards 11-97
fix pack 7-62
IBM Mobile Application Platform

Pattern Type 11-97
IBM MobileFirst Platform Application

Pattern Extension for MobileFirst
Studio 11-99

IBM MobileFirst Platform
Foundation 7-62

IBM MobileFirst Platform Foundation
support for cloud
deployment 11-97

IBM MobileFirst Platform Test
Workbench 6-12

iOS tools 6-4

installing (continued)
MobileFirst Operations Console 6-46

preparation tasks 7-18
MobileFirst Server

administration 6-46
by using the Server Configuration

Tool 6-59
MobileFirst Studio 6-2

into an Eclipse IDE 6-3
with Rational Team Concert

V4.0 6-3
test

workbench 6-12
tools 6-4
WebWorks tools 6-5
Windows 8 tools 6-6
Windows Phone 8 tools 6-6

installworklightadmin
Ant task 15-9

integrating
Trusteer for Android 14-12
Trusteer for iOS 14-11

integration
IBM Tealeaf 14-9, 14-10

interactive notifications 8-464
interface 8-210
invalid server farm configurations 6-99
invoking

back-end services 8-377
iOS

application authenticity 8-485
application descriptor 8-183
client property file for native

applications 8-185
configuring SSL with untrusted

certificates 6-150
developing applications by using

native API 8-180
developing native applications 8-183

creating a Swift project 8-187
installing tools 6-4
Mobile Browser Simulator 8-122
Run As menu options 8-311
Swift to develop native

applications 3-4
iOS applications

Objective-C client-side API 10-5
iOS examples 8-452
iOS hybrid applications

Objective-C client-side API 10-6
iOS native applications

single sign-on (SSO) 8-535
iPhone iPad 8-134
ips 9 support 3-1

J
Java

client-side API to develop native
applications 8-180

Java Management Extensions (JMX)
configuring for Tomcat 6-50
configuring for Tomcat server

farms 6-113
JNDI properties 6-92

java me 8-197

X-6 IBM MobileFirst Platform Foundation V6.3.0

Java ME
developing applications by using

native API 8-180
Java Message Service (JMS)

polling method for push
notification 8-456

Java Micro Edition (Java ME)
application descriptor 8-195

Java Persistence API (JPA)
JNDI properties 6-92

Java Platform, Micro Edition (Java ME)
developing native applications 8-195
native applications

for Java Platform, Micro Edition
(Java ME) 8-195

Java remote debugging 8-36
Java Runtime Environment (JRE)

trusstores 11-50
Java virtual machine (JVM)

setting the heap size 6-118
JavaScript 3-4, 8-555, 8-566, 10-5

E4X 8-367
for adapter-based

authenticators 8-512
reserved words 8-183, 8-195
Rhino container 8-366
to configure and implement custom

device provisioning 8-526
JavaScript API

for user-interface controls 8-76
JavaScript code to native code

sending actions and data objects 8-72
JavaScript examples 8-454
JavaScript files

concatenation of 8-321, 8-327
minification of 8-321, 8-324

JavaScript frameworks 8-555
accessibility 8-579

JavaScript toolkits 8-77
JavaScript UI framework 8-77
JMS adapters 8-333, 8-381

<connectionPolicy> element 8-349
<jmsConnection> element 8-351
<namingConnection> element 8-350
connecting to a Liberty profile

server 8-382
connecting to a WebSphere

Application Server messaging
provider 8-381

connecting to WebSphere MQ 8-384
root element 8-349

JNDI properties 6-92
encoding 11-52
for a Liberty server farm 6-109
for a WebSphere Application Server

server farm 6-105
MobileFirst projects,

configuring 11-56
server farm, Ant installation 6-101

jQuery 8-555, 8-566
version 8-100

jQuery Mobile 8-77
JS files

concatenation of 8-321, 8-327
minification of 8-321, 8-324

JSON objects
formatting, JNDI property 6-92

JSON objects (continued)
in C# 8-180

JSONStore 8-401, 8-440, 8-451, 8-452,
8-453, 8-454

advanced 8-437
analytics 8-450
API 8-407
concurrency 8-442
enabling 8-407
error codes 8-415
errors 8-414
examples 8-419
Federal Information Processing

Standards (FIPS) 12-157
general terminology 8-405
Java 8-430
JavaScript 8-419
multiple user support 8-441
Objective-C 8-426
overview 8-401, 8-412
performance 8-441
security 8-437, 8-438, 8-439
SQLCipher 8-439
SQLite 8-439
sync 8-443
troubleshooting 8-411, 8-412

JSONStore features 8-24

K
Keychain Access Group

single sign-on (SSO) on for native iOS
applications 8-535

keys
extracting 8-193
See certificate keys. 8-485

keystores
for server certificates 13-71

Keytool
for self-signed certificates 6-148

KeyTool, IBM truststore utility 6-109
known issues 3-15, 4-1
known limitations 4-1

L
language 8-566
language preferences

in application descriptors 8-24
languages

for push notifications 8-575
large objects (LOBs)

constraining size of 6-121
latitude 8-135
LDAP

Application Center on WebSphere
Application Server V7 6-214

Application Center on WebSphere
Application Server V8 6-216, 6-217

LDAP configuration on WebSphere
Application Server V8 for Application
Center 6-216

LDAP login module 8-523
LdapLoginModule 8-523

Liberty
server farm

manual installation 6-109
signer certificates between

truststores 6-109
Liberty profile 13-78, 13-82

configuring endpoint 6-57
configuring for DB2 manually for

MobileFirst Server 6-65
configuring for Oracle for Application

Center 6-195
configuring manually 11-38
configuring manually for Application

Center 6-184, 6-198
JMS adapters 8-382
Oracle

configuring Liberty profile
manually for Application
Center 6-195

property encryption 11-52
setting JVM memory options 6-118
tuning HTTP connections 6-118

libraries
of native API applications for iOS,

copying 8-186
license tracking 13-84
Lightweight Directory Access Protocol

Application Center on WebSphere
Application Server V7 6-214

Application Center on WebSphere
Application Server V8 6-216, 6-217

limitations
of the Server Configuration Tool 6-14
Server Configuration Tool 11-9

line 8-210
Linux

browser configuration 8-107
installing Android tools 6-5
XULRunner browser

configuration 8-107
local test servers

and command-line interface
(CLI) 8-211, 8-217, 8-223, 8-229,
8-236, 8-242, 8-248, 8-254, 8-260,
8-266, 8-273, 8-279

locale 8-566
locate 8-101
location services 8-135

Android support 8-582
application in background 8-601
differentiating between indoor

areas 8-591
geofence 8-588
indoor areas 8-591
iOS support 8-582
overview 8-580
securing server resources 8-596
setting acquisition policy 8-587
tracking devices 8-598
triggers 8-585

logging 13-1, 13-4
JNDI properties 6-92

login forms
authenticators 8-32
web widgets 8-160

login modules 8-494
attributes 8-520

Index X-7

login modules (continued)
customizing 8-507
header 8-521
LDAP 8-523
non-validating 8-521
single identity 8-521
WASLTPAModule 8-522

login screen
screen widgets

setting size 8-161
logs

location 13-1
monitoring 13-1
of local test servers 8-211, 8-217,

8-223, 8-229, 8-236, 8-242, 8-248,
8-254, 8-260, 8-266, 8-273, 8-279

LOGSECOND 6-170, 6-237
longtitude 8-135
LTPA 11-77, 11-79, 11-81, 11-90

advanced security features 11-90
supported configurations 11-87

LTPA authenticator 8-519
LTPA-based authentication

through reverse proxy 14-3

M
main file, of application 8-17
management operations 7-62
manual configuration

configuring DB2 for MobileFirst
Server on Tomcat 6-68

configuring DB2 for MobileFirst
Server on WebSphere Application
Server Liberty 6-65

configuring DB2 for on Tomcat 11-22
configuring WebSphere Application

Server for Derby 11-25
configuring WebSphere Application

Server for Derby for MobileFirst
Server 6-70

configuring WebSphere Application
Server for Derby sfor Application
Center 6-188

configuring your Derby database for
MobileFirst Server 6-69

DB2 for Application Center on
WebSphere Application Server
Liberty profile 6-184

DB2 for WebSphere Application
Server 11-20

DB2 for WebSphere Application
Server for MobileFirst Server 6-66

DB2 for WebSphere Application
Server manually for Application
Center 6-184

of WebSphere Application
Server 11-40

Oracle database 6-194
Oracle databases 11-32
setting up your DB2 database 11-18
setting up your DB2 database for

Application Center 6-183
setting up your DB2 database for

MobileFirst Server 6-64
setting up your Derby

database 11-23

manual configuration (continued)
setting up your Derby database

Application Center 6-187
setting up your MySQL

database 11-28
setting up your MySQL database for

Application Center 6-190
setting up your MySQL database for

MobileFirst Server 6-72
setting up your Oracle database for

MobileFirst Server 6-75
Tomcat for DB2 for Application

Center 6-186
WebSphere Application Server for

Application Center 6-200
WebSphere Application Server Liberty

profile 11-38
WebSphere Application Server Liberty

profile for Application Center 6-198
manual configuration of WebSphere

Application Server Liberty 6-198
manual installation

Application Center 6-182
Liberty server farm 6-109
Tomcat server farm 6-113
WebSphere Application Server server

farm 6-105
manually 6-71, 6-75
memory options

setting for MobileFirst Server
optimization 6-118

Microsoft Push Notification Service
(MPNS)

push notification system 8-575
migrating 7-1, 7-5
migrating existing apps 7-12
migrating existing projects 7-12
migration 7-1, 7-3, 7-5, 7-7, 7-12, 7-13,

7-16
minification 8-312, 8-321, 8-324
minification engine 8-324
miscellaneous 3-9
mobile

testing 9-1
mobile applications

building 8-91
patterns 8-114, 8-115
running 8-91

Mobile Browser Simulator 8-2, 8-135
testing mobile web

applications 8-122
mobile devices 8-134

creating web pages 8-113
mobile navigation

view 8-120
mobile operations 8-493, 13-67, 13-70,

13-71, 13-72, 13-74, 13-78, 13-79, 13-80,
13-82, 13-83

mobile patterns 8-114, 8-115
creating 8-116

Mobile SDKs
installing 6-4
tools 6-4

mobile security tests
in client-side components for native

Android applications 8-531

mobile security tests (continued)
in client-side components of hybrid

applications 8-529
to implement client-side components

for custom device
provisioning 8-527

to implement client-side components
for native iOS 8-533

Mobile Web apps 8-316
mobile web pages

Mobile Navigation view 8-120
MobileFirst

security configuration 11-77
security overview 8-480

MobileFirst Application Framework 8-9
MobileFirst applications

accessibility 8-579
developing an application by using

the native API 8-180
optimizing for slow networks 8-331

MobileFirst build process 8-324, 8-327
MobileFirst Command Line Interface

Project 7-12
MobileFirst Development Server 8-36

debugging 8-36
default port for debugging 8-36

MobileFirst Operations Console 8-36
Access Disabled 12-3
Active 12-3
administering apps and

adapters 11-74
Ant tasks

to deploy MobileFirst Operations
Console and administration
services 6-63

controlling application
authenticity 8-485

deploying with Ant tasks 6-63
installing 6-46
installing during an upgrade 7-43
list of push notification tags 8-466

MobileFirst project templates
configuring preferences 8-285
creating 8-302
introduction 8-302
viewing 8-302

MobileFirst Project Upgrader 7-12
MobileFirst projects 8-91

configuring with JNDI
properties 11-56

creating 8-79
from MobileFirst project

templates 8-303
Dojo-enabled 8-79
upgrading 7-7

MobileFirst runtime environment 7-40
MobileFirst Server 6-15, 6-17, 6-20, 6-47,

6-48, 6-73, 7-3, 7-13, 7-14, 7-60, 7-65
administration 6-71, 6-75, 6-79, 6-88,

6-90, 6-91, 6-92
changing the target server 8-38
configuring Tomcat for DB2

manually 6-68
configuring WebSphere Application

Server for DB2 manually 6-66
configuring WebSphere Application

Server for Derby manually 6-70

X-8 IBM MobileFirst Platform Foundation V6.3.0

MobileFirst Server (continued)
configuring WebSphere Application

Server Liberty profile 6-80
configuring your Derby database

manually 6-69
connecting an application 8-145
creating and configuring databases by

using Ant tasks 6-62
installation

planning, for MobileFirst
Server 6-14

installation, tutorial 6-20
keystores 13-71
migration 7-1
planning installation of 6-14
separation of lifecycle 7-3
setting up your DB2 database

manually 6-64
setting up your MySQL database

manually 6-72
setting up your Oracle database

manually 6-75
Transport Layer Security v1.2 (TLS

v1.2) 6-147
upgrade 7-1
URL to the console 8-36

MobileFirst Server administration 6-69,
6-73, 6-76, 6-85

configuring for DB2 manually for
WebSphere Application Server
Liberty 6-65

installing by using the Server
Configuration Tool 6-59

MobileFirst Server runtime environment
upgrading 7-47

MobileFirst ServerMobileFirst Server
internal configuration 6-118
optimizing and tuning 6-118

MobileFirst Studio
adding a new server 8-38
features 8-372
migration 7-1, 7-5
new console 8-36
overview 8-2
starting 6-4
upgrade 7-5
upgrade path 7-1

mobileSecurityTest 8-490
modifying

adapters 11-75
monitoring 13-1

product main features 2-4
MPNS

certificate for authenticated push
notification 8-460

multi-language 8-566
multi-tenancy 13-37
MySQL 6-75, 6-168

setting up your database
manually 11-28

setting up your database manually for
Application Center 6-190

setting up your database manually for
MobileFirst Server 6-72

stale connections 6-168
MySQL databases 6-73

created by the installation tools 6-48

MySQL databases (continued)
Liberty server farm, manual

installation 6-109
manual configuration 6-73
Oracle databases

Liberty server farm, manual
installation 6-109

Tomcat server farm, manual
installation 6-113

WebSphere Application Server
server farm, manual
installation 6-105

Tomcat server farm, manual
installation 6-113

WebSphere Application Server 6-73
WebSphere Application Server Liberty

profile server 6-73
WebSphere Application Server server

farm, manual installation 6-105

N
native 8-210
native and JavaScript in same app 8-477
native and web development

technologies 8-2
native Android applications

client-side components 8-531
native API 8-9

to develop native mobile
applications 8-180

native API applications
for iOS

application descriptor 8-183
copying files 8-186

native applications
accessibility 8-579
developing 8-180
for iOS 8-183

creating a Swift project 8-187
native apps 8-203
native C# API 8-198, 8-201

application descriptor for Windows
Phone 8 8-198

native code to JavaScript code
sending actions and data objects 8-72

native development 2-1
native iOS applications

Apple Swift 3-4
client property file 8-185
client-side components 8-533

native pages
overview 8-155

net 8-137
network 8-137
Network Address Translation (NAT)

devices
topologies 6-256

network widget 8-137
new cluster 7-65
non-validating login module 8-521
NonValidatingLoginModule 8-521
notification

broadcast 8-462
notifications

tag-based, sending 8-471

O
object 10-5
Objective-C

client-side API for iOS 10-5, 10-6
client-side API to develop native

applications 8-180
of applications to MobileFirst

Server 8-145
offline mode

product main features 2-4
OpenJPA

See Java Persistence API (JPA) 6-92
operating systems

supported 2-12
operational 13-11
optimizing

MobileFirst applications 8-331
networks

optimizing MobileFirst
applications 8-331

slow networks
optimizing MobileFirst

applications 8-331
optimizing MobileFirst

applications 8-312
optimizing MobileFirst Server

performance 6-118
optional 6-46
Oracle

setting up your database
manually 6-194, 11-32

setting up your database manually for
MobileFirst Server 6-75

Oracle database
creating for MobileFirst Server

administration 6-48
Oracle Database Configuration Assistant

(DBCA)
creating an Oracle database for

MobileFirst Server
administration 6-48

Oracle databases 6-76, 6-77, 6-79, 6-196,
6-197, 11-34, 11-36

Apache Tomcat server 6-79, 6-197,
11-36

manual configuration 6-76, 6-77,
6-79, 6-196, 6-197, 11-34, 11-36

WebSphere Application Server 6-77,
6-196, 11-34

WebSphere Application Server Liberty
profile server 6-76

orchestrations
integrating applications with Cast

Iron 14-2
overview 8-135, 8-451, 11-76

adapters 8-333
location services 8-580
rolling upgrade 7-61

P
partitions

database optimization 6-121
Pattern Project

adding dojo framework 8-117
adding jquery framework 8-118

Index X-9

patterns
new 8-116

performance 13-35, 13-66
tuning back-end connections 6-118

performande
optimizing for MobileFirst

Server 6-118
persistent cookie authenticator 8-512
PersistentCookieAuthenticator 8-512
PKI bridge 13-72, 13-74, 13-78
planning

application server 6-20
creation 6-17
databases 6-17
rolling upgrade 7-60
topology 6-20

plug-in
globalization 8-560, 8-563
Mobile

jQuery 8-560
Sencha Touch 8-563

polling events source
configuring push notifications 8-474

port number
of application server 6-6

ports 13-16
preferences

Rich Page Editor 8-108
prerequisites 6-15
previewing

web changes 8-134
procedures

invoking 8-376
running 8-376
testing 8-376

product name 3-4
production deployment 13-17
production environment 7-1, 7-3, 7-13,

7-16
project databases

optimizing and tuning 6-121
projects 8-5

anatomy 8-14
building

Ant task 11-4
CLI 8-210
command line 8-210
command-line 8-210
composition 8-14
creating 8-7
deploying

Ant task 11-67
Dojo library 8-91
overview 8-14

properties 13-40
storing in encrypted format 11-52

Properties view
displaying tag information 8-119

property files
for native iOS applications 8-185

provisioning
devices 8-525
unique device ID 8-494

proxy
See DataPower 6-136

proxy settings
for push notification 8-455

public key infrastructure (PKI)
certificates 6-150
for the User Certificate Authentication

feature 13-71
to protect resources 13-70

public signing keys
extracting 8-55, 8-193

purging data 6-121
push notification

Android 8-458
architecture 8-455, 8-456
broadcast 8-462
iOS 8-459
mechanism 8-455
product main features 2-4
proxy settings 8-455
sending to the device 8-471
setting up 8-458
tag subscriptions 8-466
tag-based notification 8-466, 8-471
WebSphere DataPower as a

proxy 14-13
Windows Phone 8 8-460

push notification problems 8-480
push notification problems iOS 8-480
push notifications 8-473, 8-477, 8-555

datasource custom property 8-473
globalization 8-575
IBM DB2 8-473
polling event source 8-474
SMS 8-472
subscribing 8-463
WebSphere Application Server 8-473

Q
quick fix 8-372
Quick Response (QR) code icon

Mobile Browser Simulator 8-122

R
raw reports 13-38
realm 8-493, 11-81
realms

authentication 8-492
configuring 8-501
for application authenticity 8-485

receiving data
Java page 8-157
Objective-C page 8-156

reducing application size 8-312, 8-313,
8-316, 8-317, 8-324, 8-327

reference 6-92
release notes 3-1, 3-15

known limitations 3-16
releases 7-1
remote disable 12-3

default behavior 12-3
modifying the default behavior 12-3

remoteDisable 12-3
removed features 3-14, 3-15
replacing

adapters 11-75
replicas 13-24
Report viewer 13-53

reports 13-10
installing BIRT on WebSphere

Application Server full
profile 13-56

raw data 13-45
upgrading database schemas 7-45

resolution
of splash images 8-69

resources
accessibility 8-579
protecting with user certificate

authentication 13-70
response file

for silent installation 6-8
responses

compressed to optimize MobileFirst
applications 8-331

REST 8-210
restoring

configuration 7-68
IBM MobileFirst Platform

Foundation 7-68
restricting 6-18
returning control

from Java page 8-158
from Objective-C page 8-156

reverse proxies
configuring MobileFirst Server 6-147
single sign-on configuration 8-535

reverse proxy 8-539
integration and authentication 14-3
MobileFirst acting as 6-256

RFC 6797
HTTP Strict Transport Security

standards 6-92
Rhino container 8-366
Rich Page Editor 8-103, 8-106

browser requirements 8-105
creating web pages 8-112, 8-113
editing HTML files 8-110
opening web pages 8-109
setting preferences 8-108
views

design view 8-110
source view 8-110
split view 8-110

web pages
adding elements 8-118

Ripple emulator
to simulate the WebWorks API in

BlackBerry applications 8-122
RMI port number

Tomcat server farm, manual
installation 6-113

roles
configuring for a Liberty server

farm 6-109
configuring for a Tomcat server

farm 6-113
configuring for a WebSphere

Application Server server
farm 6-105

mapping users 15-9
rollback procedure 7-68
rolling upgrade 7-60, 7-62, 7-64, 7-68

versus in-place upgrade 7-25

X-10 IBM MobileFirst Platform Foundation V6.3.0

root CA certificate
definition 6-150

root element
Cast Iron adapters 8-348
HTTP adapters 8-341
JMS adapters 8-349
SAP adapters 8-352
SQL adapters 8-346

rules
for HTTP basic authentication 6-141

Run As command
Android Studio project option 8-311
Build All Environments option 8-307
Build Settings and Deploy Target

option 8-309
Preview option 8-308
Run on MobileFirst Development

Server option 8-306
Xcode project option 8-311

Run As commandMobileFirst
Studio 8-304

running
back-end services 8-377
IBM Installation Manager 6-27

runtime skinning 8-2

S
Safari

versions supported by Mobile Browser
Simulator 8-122

samples 5-1
for configuration files 6-63

SAP
adapters 8-359

SAP adapters
<connectionPolicy> element 8-352
root element 8-352

scalability
guide to scalability and hardware

sizing 5-1
screen widgets

setting size of login screen 8-161
scripts

as application resources 8-17
search 13-9
Secure Socket Layer (SSL) configuration

configuring in WebSphere Application
Server, HTTP adapters 11-50

Secure Sockets Layer (SSL)
certificate keystore for authenticated

push notification 8-460
to configure authentication 13-71

securing
administration

MobileFirst Server 6-130
security 3-8, 8-440, 11-76, 11-79, 11-81,

11-82, 11-90, 13-15
advanced features 11-90
application authenticity 8-485
authenticated, as opposed to

unauthenticated, push
notification 8-460

BlackBerry 10
creating QNX environment 8-60

configuration 6-130

security (continued)
configuring a MobileFirst

instance 11-77
configuring for a Liberty server

farm 6-109
configuring for a Tomcat server

farm 6-113
configuring for a WebSphere

Application Server server
farm 6-105

configuring for server farms, Ant
installation 6-101

customizing authenticators and login
modules 8-507

DataPower features to protect
application traffic 6-136

Federal Information Processing
Standards (FIPS) 12-157

HTTP Strict Transport Security
standards 6-92

IBM Endpoint Manager 14-5
LTPA 11-90
mapping users to roles 15-9
overview 8-480
product main features 2-4
supported configurations for

LTPA 11-87
tests 8-490
Transport Layer Security v1.2 6-147
XML elements in application

descriptors 8-24
security framework

overview 8-480
security tests

mobile or custom, configuring single
sign-on 8-535

protecting with user certificate
authentication 13-70

security utilities 8-451, 8-452, 8-453,
8-454

securityTest 8-490
self-signed certificates

not supported by the User Certificate
Authentication feature 13-71

to configure SSL 6-148
Sencha Touch 8-77, 8-555, 8-566
sending 8-72

interactive push notification 8-464
silent push notification 8-467

server configuration 13-71, 13-79
Server Configuration Tool

deploying a MobileFirst Server 11-9
installation tool for MobileFirst

Server 6-14
installing MobileFirst Server

administration 6-59
limitations 11-9

server farms
defining for MobileFirst Server

administration 6-86
homogeneous, as opposed to

heterogeneous 6-99
installation, specific

configuration 6-14
installing by using an Ant task 6-101
invalid configuration 6-99

server farms (continued)
Liberty

manual installation 6-109
not supported by the Server

Configuration Tool 6-14, 11-9
planning the configuration 6-99
Tomcat

manual installation 6-113
WebSphere Application Server

manual installation 6-105
when to declare 6-99

server requirements 13-78
server resources

securing 8-596
server side

authentication certificates 13-71
servers

for local tests 8-211, 8-217, 8-223,
8-229, 8-236, 8-242, 8-248, 8-254,
8-260, 8-266, 8-273, 8-279

services discovery wizard 8-359
session affinity 7-65
setting size

login screen
screen widgets 8-161

settings page 8-103
setup 8-452
shards 13-18
sharing

See simple data sharing
shell 8-2
shell components 8-9
Short Message Service (SMS)

as a form of push notification 8-455
signer certificates

exchanging between trust stores
WebSphere Application Server

server farm 6-105
exchanging between truststores

Liberty server farm 6-109
server farm, Ant installation 6-101

signing
AIR applications 8-161
Windows 8 apps 8-161

signing keys
extracting 8-55

silent installation
response file 6-8

silent notification 8-467
simple data sharing 8-549, 8-550, 8-553

enabling 8-550, 8-552
enabling for iOS native

applications 8-551
limitations 8-554
overview 8-549
troubleshooting 8-554

single identity login module 8-521
single sign-on (SSO)

configuring for devices 8-535
SingleIdentityLoginModule 8-521
skins 8-5

adding by using the command-line
interface (CLI) 8-211, 8-217, 8-223,
8-229, 8-236, 8-242, 8-248, 8-254,
8-260, 8-266, 8-273, 8-279

applying 8-101
deleting 8-101

Index X-11

skins (continued)
developing 8-101
testing with Mobile Browser

Simulator 8-122
SMS

push notification 8-472
two-way communication 8-475

SOAP
generating adapters 8-359
services in HTTP adapters 8-367
web services 8-359

SOAP port number
WebSphere Application Server server

farm, manual installation 6-105
software development kits

supported 2-12
source control 8-11
specifying

icons
Android apps 8-55
iPhone apps 8-50

taskbar
AIR 8-159

splash images 8-17
high resolution 8-69

splash screen images
on iPhone 6 and 6 Plus devices 8-69

splash screens 8-17
SQL adapters 8-333

<connectionPolicy> element 8-346
root element 8-346

SSL
configuring between adapters and

back-end servers 6-148
Configuring for Application

Center 6-235
configuring with untrusted

certificates 6-150
JNDI properties 6-92
security with a server farm 6-99
setting up certificate keystore 11-51
untrusted certificates

configuring SSL 6-150
SSL certificate

for native iOS applications 8-183
SSO (single sign-on) mechanism

optimization and tuning of
MobileFirst Server 6-118

starting
MobileFirst Studio 6-4

stopping
management operations 7-62
Worklight runtime

environments 7-40
Studio 8-210

features 8-372
style sheets 8-17
submitting

apps 11-74
supported browsers

Rich Page Editor 8-105
Swift

Apple language supported to develop
native iOS applications 3-4

creating a project 8-187
creating native applications for

iOSs 8-180

switching
HTTP traffic 7-65

symmetric-key algorithm
for encrypting properties 11-52

system messages 8-566, 10-5

T
tag-based notifications

sending 8-471
sending to the device 8-471

tags
displaying information 8-119
for tag-based notification 8-466

taskbar
AIR

specifying 8-159
Tealeaf

integration 14-9
server-side integration 14-10

terminology 8-549
terms and conditions of use

for samples 5-1
test server

logging 13-4
test servers

local, and command-line interface
(CLI) 8-211, 8-217, 8-223, 8-229,
8-236, 8-242, 8-248, 8-254, 8-260,
8-266, 8-273, 8-279

testing
hybrid applications 8-74
mobile

overview 9-1
mobile applications 8-107, 8-124,

8-126
Mobile Browser Simulator 8-107,

8-124, 8-126
mobile web applications 8-122

testing applications
product main features 2-4

testing location services 8-135, 8-137
tests

security 8-490
thumbnail images 8-17
timeout

optimizing MobileFirst
applications 8-331

TLS v1.2
See Transport Layer Security v1.2

to MobileFirst ServerV6.3.0 7-16
tokens

for challenge handling 8-485
Tomcat

configuring Derby manually for
Application Center 6-190

configuring for DB2 manually 11-22
configuring for DB2 manually for

Application Center 6-186
configuring for DB2 manually for

MobileFirst Server 6-68
configuring for MobileFirst Server

administration manually 6-85
configuring the JMX connection 6-50
server behind a firewall 6-86
server farm

manual installation 6-113

Tomcat (continued)
server farm (continued)

security, users and roles 6-113
setting JVM memory options 6-118
tuning HTTP connections 6-118

tools 8-210
installing 6-4

topologies 6-20, 11-90
topology

MobileFirst instance 6-256
Touch ID 8-440
tracking licenses 13-84
traffic of mobile applications

protecting with DataPower 6-136
transitions

animating from and to Java
page 8-158

animating from Objective-C page to
web view 8-156

animating from web view to
Objective-C page 8-157

translation 8-566, 10-5
Transport Layer Security (TLS) 8-187
Transport Layer Security v1.2

configuring MobileFirst Server 6-147
triggers 8-585
troubleshooting 4-1, 6-296, 13-83

Cast Iron adapters 8-333
DB2 databases 6-295
jmx configuration 6-53
liberty profile 6-53
push notification 8-480

trusstores
and SSL configuration 11-50

trusted certificates 6-150
Trusteer 11-77, 11-82

assessment 11-86
Trusteer for Android

integrating 14-12
Trusteer for iOS

integration 14-11
truststores

for client certificates 13-71
signer certificates in a Liberty server

farm 6-109
signer certificates in a WebSphere

Application Server server
farm 6-105

tutorials
basic installation of MobileFirst

Server 6-20
tutorials and samples 5-1

U
Ubuntu

installing Android tools 6-5
UI patterns 8-116
unconfigureapplicationserve

Ant task 15-16
uninstallation 6-296
uninstalling

IBM MobileFirst Platform
Foundation 7-68

uninstalling from
old cluster 7-68

X-12 IBM MobileFirst Platform Foundation V6.3.0

uninstallworklightadmin
Ant task 15-9

unique device ID 8-494
United States Government Configuration

Baseline 12-156
Unstructured Supplementary Service

Data (USSD)
command-line option 8-211, 8-217,

8-223, 8-229, 8-236, 8-242, 8-248,
8-254, 8-260, 8-266, 8-273, 8-279

updateapplicationserver
Ant task 15-16

updateworklightadmin
Ant task 15-9

updating
DB2 schema names 7-58

upgrade path 7-1
upgraded CLI 7-12
upgrades

from V5.0.6.x 7-20
from V6.0.0.x 7-20
in-place or rolling upgrade 7-25
installing Administration Services

and 7-43
of MobileFirst Server runtime

environments 7-47
to V6.3.0 7-16

upgrading 7-3, 7-13, 7-14, 7-16
MobileFirst Server 7-3, 7-13, 7-14

in production 7-3, 7-13, 7-14
overview 7-14

url
Worklight Server 8-103

user authentication for MobileFirst
Application Center 6-217

user certificate authentication 13-67,
13-71, 13-72, 13-74, 13-78, 13-79, 13-80,
13-82, 13-83

to protect resources 13-70
User Certificate Authentication

feature 13-71
user certificate enrollment 8-493
user experience 3-7
user interface 8-76, 8-77

development
hybrid app 8-76

hybrid app
development 8-76

user to device mapping 13-63
user-interface controls

JavaScript API 8-76
UserPrefs settings 8-145
users and roles

configuring for a Liberty server
farm 6-109

configuring for a Tomcat server
farm 6-113

configuring for a WebSphere
Application Server server
farm 6-105

V
validation

adapters 8-372

verifying
IBM MobileFirst Platform

Foundation 7-65
installation 7-65

version 7-1, 7-5
version control 8-11
versions 7-1
Virtual Member Manager

Application Center Access Control
List 6-216

Visual Studio
tools for Windows 8 6-6
Windows Phone 8 6-6

VMM
Virtual Member Manager 6-216

W
WAR files

Ant task for building a project 11-4
WAR files for MobileFirst projects

deploying 11-5
WASLTPAModule login module 8-522
web and native code in projects

guidelines for using 8-159
web and native pages

interaction 8-155
web applications

testing with Mobile Browser
Simulator 8-122

web browsers
supported 2-12

web capabilities 8-203
web development 2-1
web pages

adding elements
Rich Page Editor 8-118

creating in Rich Page Editor 8-112
opening in Rich Page Editor 8-109

web resource 8-134
web services 8-555

Cordova 8-574
globalization 8-574

web widget authentication
configuring 8-160

web widgets
login forms 8-160

webSecurityTest 8-490
WebSphere 13-33
WebSphere Application Server 8-381

configuring for Application
Center 6-200

configuring for DB2 manually for
Application Center 6-184

configuring for DB2 manually for
MobileFirst Server 6-66

configuring for Derby
manually 11-25

configuring for Derby manually for
Application Center 6-188

configuring for Derby manually for
MobileFirst Server 6-70

configuring manually 11-40
configuring manually for DB2 11-20
Liberty profile 6-80
manual configuration 6-73, 6-77,

6-80, 6-82, 6-196, 11-34

WebSphere Application Server (continued)
outbound dynamic

configuration 11-50
property encryption 11-52
server farm

manual installation 6-105
signer certificates between trust

stores 6-105
setting JVM memory options 6-118
SOAP XML envelope for HTTP

adapters 8-367
SSL configuration and HTTP

adapters 11-50
tuning HTTP connections 6-118

WebSphere Application Server full
profile 6-90

installing BIRT 13-56
WebSphere Application Server Liberty

configuring manually 11-38
Setting up an IBM HTTP

Server 6-268
WebSphere Application Server Liberty

profile 6-91, 6-296
installing BIRT 13-54

WebSphere Application Server Liberty
profile server

manual configuration 6-69, 6-73, 6-76
WebSphere Application Server Network

Deployment
configuring application servers

Ant tasks 11-16
WebSphere Application Server V7

configuring LDAP for Application
Center 6-214

WebSphere Application Server V7 for
Application Center 6-214

WebSphere Application Server V8
configuring LDAP for Application

Center 6-216
managing ACL for Application Center

with LDAP 6-217
WebSphere DataPower

push notification proxy 14-13
WebSphere MQ

JMS adapters 8-384
WebSphereFormBasedAuthenticator 8-

519
WebSphereLoginModule 8-522
WebWorks SDK 2.0 8-62
WebWorks tools

installing 6-5
what's new 3-1, 3-2, 3-4, 3-7, 3-8, 3-9,

3-14, 3-15
Android support 7-7
API 3-11
Apple Swift language 3-4
Dojo 3-11
external library 3-11
migrating existing apps 7-7
new mobile OS updates 7-7

widget 8-137
widgets

embedding in web pages 8-162
login forms 8-160

WiFi widget 8-135
Windows 6-9
windows 8 8-201, 8-202

Index X-13

Windows 8 8-438, 8-439
developing native applications 8-201
installing tools 6-6
native applications

for Windows 8 8-201
Windows 8 apps

signing 8-161
Windows 8.1 8-439
Windows Phone

developing applications by using
native API 8-180

Windows 8
developing applications by using

native API 8-180
windows phone 8 8-199

hybrid app 8-66
Windows Phone 8 8-198, 8-438, 8-439

application descriptor for native C#
API 8-198

Windows Phone 8 (continued)
developing native applications 8-198
installing tools 6-6
native applications

for Windows Phone 8 8-198
push notification 8-460

Windows Phone8
Mobile Browser Simulator 8-122
Run As menu options 8-311

wladm
Ant task for beacon and beacon

triggers 12-24
program

beacon triggers 12-49
beacons 12-49

working with multiple MobileFirst Server
instances 8-38

Worklight runtime environment
shutting down 7-40

www 8-14

X
X.509 certificates 13-71
X509 certificate

for mobile device
authentication 8-494

Xcode 8-188
installing 6-4

XCode IDE
creating a Swift project 8-187

XML envelope
for SOAP-based services in HTTP

adapters 8-367
XSRF 8-493
XULRunner browser

browser configuration 8-107

X-14 IBM MobileFirst Platform Foundation V6.3.0

	Contents
	IBM MobileFirst Platform Foundation V6.3.0 documentation
	Product overview
	Introduction to mobile application development
	Product main capabilities
	Product components
	Product editions
	System requirements for using IBM MobileFirst Platform Foundation
	Matrix of features and platforms

	Release notes
	What's new in V6.3.0 interim fixes
	iOS 9 support
	Android 6.0 Marshmallow support
	Apache Cordova
	What's new
	New product name
	Efficient development
	Enhanced user engagement
	Secure integration
	Continuous delivery
	Improved MobileFirst API
	Documentation improvements

	Deprecated and removed features
	Deprecated features
	Removed features

	Known issues
	Known limitations

	Troubleshooting
	Tutorials, samples, and additional resources
	Installing and configuring
	IBM MobileFirst Platform Foundation installation overview
	Installing MobileFirst Studio
	Running additional tasks for Rational Team Concert V4.0
	Starting MobileFirst Studio
	Installing mobile-specific tools
	Installing tools for Adobe AIR
	Installing tools for iOS
	Installing tools for Android
	Installing tools for BlackBerry
	Installing tools for Windows Phone 8
	Installing tools for Windows 8

	Changing the port number of the internal application server
	Uninstalling MobileFirst Studio

	Installing command-line tools for developers
	Installing in silent mode
	Windows 8.1 installation for IBM MobileFirst Platform Command Line Interface
	Console Installation for MobileFirst Platform Command Line Interface

	Uninstalling command-line tools for developers
	Installing and configuring IBM MobileFirst Platform Test Workbench
	Troubleshooting IBM MobileFirst Platform Test Workbench

	Installing MobileFirst Server
	Planning the installation of MobileFirst Server
	Installation prerequisites
	File system prerequisites
	Planning the creation of the databases
	Planning the topology of the application server

	Tutorial for a basic installation of MobileFirst Server
	Running IBM Installation Manager
	Single-user versus multi-user installations
	Installing a new version of MobileFirst Server
	Upgrading MobileFirst Server from a previous release
	Command-line installation with XML response files (silent installation)
	Distribution structure of MobileFirst Server

	Installing the MobileFirst Server administration
	Optional creation of the administration database
	Configuration of the application server
	Defining the endpoint of the MobileFirst Administration services
	Installing MobileFirst Server administration with the Server Configuration Tool
	Using Ant tasks to install MobileFirst Server administration
	Manually installing MobileFirst Server administration
	Configuring user authentication for MobileFirst Server administration
	List of JNDI properties for MobileFirst Server administration
	Verifying the installation of MobileFirst Server administration
	Installing the MobileFirst runtime environment

	Installing a server farm
	Planning the configuration of a server farm
	Installing a server farm by using an Ant task
	Installing a WebSphere Application Server farm manually
	Installing a Liberty server farm manually
	Installing a Tomcat server farm manually
	Verifying a farm configuration

	Configuring MobileFirst Server
	Backup and recovery
	Optimization and tuning of MobileFirst Server
	Optimization of MobileFirst Server project databases
	Testing MobileFirst Server performance
	Security configuration
	Securing the MobileFirst Server administration
	Database and certificate security passwords
	Apache Tomcat security options
	Running MobileFirst Server in WebSphere Application Server with Java 2 security enabled

	Transmitting MobileFirst data on the BlackBerry Enterprise Server MDS channel
	Protecting your mobile application traffic by using IBM WebSphere DataPower as a security gateway
	Rules for HTTP basic authentication
	Rules for HTML form-based authentication
	Sample form login stylesheet
	Sample redirect stylesheet

	Configuring MobileFirst Server to enable TLS V1.2
	Apache Tomcat
	WebSphere Application Server Liberty profile
	WebSphere Application Server full profile

	Configuring SSL between MobileFirst adapters and back-end servers by using self-signed certificates
	Configuring SSL by using untrusted certificates
	Installing the root CA on iOS
	Installing the root CA on Android
	Installing the root CA on Windows Phone
	Installing the root CA on Windows 8
	Updating your keystore and Liberty profile configuration to use a certificate chain

	Handling MySQL stale connections
	Managing the DB2 transaction log size

	Installing the IBM MobileFirst Platform Operational Analytics
	Installing IBM MobileFirst Platform Operational Analytics for WebSphere Application Server Liberty
	Installing IBM MobileFirst Platform Operational Analytics for WebSphere Application Server
	IBM MobileFirst Platform Operational Analytics installation for Tomcat
	Configuring the MobileFirst Server for the IBM MobileFirst Platform Operational Analytics

	Installing and configuring the Application Center
	Installing Application Center with IBM Installation Manager
	Optional creation of databases
	Installing MobileFirst Server in WebSphere Application Server Network Deployment
	Completing the installation
	Default logins and passwords created by IBM Installation Manager for the Application Center

	Manual installation of Application Center
	Configuring the DB2 database manually for IBM MobileFirst Platform Application Center
	Configuring the Apache Derby database manually for Application Center
	Configuring the MySQL database manually for Application Center
	Configuring the Oracle database manually for IBM MobileFirst Platform Application Center
	Deploying the Application Center WAR files and configuring the application server manually

	Configuring the Application Center after installation
	Configuring WebSphere Application Server full profile
	Configuring WebSphere Application Server Liberty profile
	Configuring Apache Tomcat
	Configuring properties of DB2 JDBC driver in WebSphere Application Server
	Configuring WebSphere Application Server to support applications in public app stores
	Configuring WebSphere Application Server to support applications in Google play
	Configuring WebSphere Application Server to support applications in Apple iTunes
	Configuring Liberty profile when IBM JDK is used

	Managing users with LDAP
	LDAP with WebSphere Application Server V7
	LDAP with WebSphere Application Server V8.x
	LDAP with Liberty profile
	LDAP with Apache Tomcat

	Defining the endpoint of the application resources
	Configuring the endpoint of the application resources (full profile)
	Configuring the endpoint of the application resources (Liberty profile)
	Configuring the endpoint of the application resources (Apache Tomcat)

	Configuring Secure Sockets Layer (SSL)
	Configuring SSL for WebSphere Application Server full profile
	Configuring SSL for Liberty profile
	Configuring SSL for Apache Tomcat

	Managing the DB2 transaction log size
	List of JNDI properties for the Application Center

	Predefining MobileFirst Server configuration for several deployment environments
	Creating the property file
	Using a property file in the file system
	Setting the file pointer property (WebSphere Application Server full profile)

	Using property files injected into a web archive file
	Using a shared library of JNDI properties
	Adding the shared library (WebSphere Application Server full profile)

	Typical topologies of a MobileFirst instance
	Setting up IBM MobileFirst Platform Foundation in WebSphere Application Server cluster environment
	Setting up an IBM HTTP Server in an IBM WebSphere Application Server Liberty profile farm
	Troubleshooting IBM HTTP Server startup

	Integrating IBM WebSphere DataPower with a cluster of instances of MobileFirst Server
	Sample dynamic routing stylesheet

	Endpoints of the MobileFirst Server production server
	HTTP Interface of the production server

	Troubleshooting IBM MobileFirst Platform Server
	Troubleshooting to find the cause of installation failure
	Troubleshooting failure to create the DB2 database
	Troubleshooting a MobileFirst Server upgrade with Derby as the database
	Troubleshooting failure to authenticate to Application Center and applications that use the basic registry element
	Troubleshooting server farm configuration issues

	Upgrading to IBM MobileFirst Platform Foundation V6.3.0
	Version compatibility
	Separation of lifecycle between MobileFirst Server and MobileFirst Studio
	Upgrading to MobileFirst Studio V6.3.0
	Upgrading MobileFirst Studio in the Consumer or Enterprise Editions to MobileFirst Studio V6.3.0
	Upgrading MobileFirst Studio in the Developer Edition to MobileFirst Studio V6.3.0
	Migrating projects to MobileFirst Studio V6.3.0
	Impact of migrating to a new version of MobileFirst Studio for applications already in production

	Migrating projects to V6.3.0 using MobileFirst Platform Command Line Interface
	Migrating IBM SmartCloud Analytics Embedded to IBM MobileFirst Platform Operational Analytics
	Upgrading to MobileFirst Server V6.3.0 in a production environment
	Overview of the upgrade to MobileFirst Server V6.3.0 process
	Preparation for upgrades to MobileFirst Server
	Gathering information for MobileFirst Server V6.3.0 upgrades
	Planning installation of the MobileFirst Administration Services and MobileFirst Operations Console
	Identify the MobileFirst WAR file and prepare the Ant deployment script
	Review and note the Application Server configuration for Worklight Server and Application Center
	Verify environments of deployed apps
	In-place upgrade or rolling upgrade to MobileFirst Server V6.3.0
	Packaging change of WebSphere Application Server Liberty profile in IBM Worklight V6.x
	Become familiar with IBM Installation Manager before you start

	Starting the MobileFirst Server V6.3.0 upgrade process
	Verify the ownership of your MobileFirst Server files
	Back up your application server
	Shutting down the application server
	Stop all instances of the Application Center applications
	Back up the Application Center database

	Running IBM Installation Manager and completing the Application Center upgrade
	Upgrading from MobileFirst Server V6.3.0
	Upgrading from Worklight Server V6.0.0, V6.1.0, or V6.2.0
	Upgrading from Worklight Server V5.0.6.x
	Upgrading from Worklight Server V5.0.6.x (changing the Liberty server)
	Restore the Application Center configurations and restart the application server

	Upgrading the MobileFirst runtime environment for MobileFirst Server V6.3.0
	Stop all Worklight Server instances
	Shutting down the application server to be upgraded
	Installation or upgrade of MobileFirst Server Administration Services
	Back up the runtime and reports databases
	Upgrade the runtime and reports databases
	Upgrade the MobileFirst Server runtime environment
	Restore the Worklight Server Configuration
	Restart the application server

	Additional MobileFirst Server V6.3.0 upgrade information
	Recovering from an unsuccessful upgrade to MobileFirst Server V6.3.0
	Manually installing the MobileFirst Server administration during the upgrade
	Manually upgrading the MobileFirst Server V6.3.0 databases
	Manually upgrading the application server
	Verifying and updating the HTTP redirections for MobileFirst Server V6.3.0
	Updating DB2 schema names in the case of a manual installation

	Updating deployment scripts

	Rolling upgrade procedure to apply a fix pack to IBM MobileFirst Platform Foundation V6.3.0
	Planning the rolling upgrade procedure
	Overview of the rolling upgrade procedure
	Performing a rolling upgrade to install a fix pack
	Stopping management operations
	Installing the IBM MobileFirst Platform Foundation fix pack in a new cluster
	Completing the configuration of the new installation of IBM MobileFirst Platform Foundation
	Verifying the new installation of IBM MobileFirst Platform Foundation
	Switching progressively the HTTP traffic to the new cluster, with session affinity
	Performing a rollback procedure
	Uninstalling IBM MobileFirst Platform Foundation from the old cluster

	Developing MobileFirst applications
	MobileFirst Studio overview
	Artifacts produced during development cycle
	MobileFirst projects, environments, and skins
	Creating MobileFirst projects
	Creating an application in a MobileFirst project
	Creating the client-side of a MobileFirst application
	Integrating with source control systems

	Developing hybrid and web applications
	Anatomy of a MobileFirst project
	Anatomy of a MobileFirst application
	The application folder
	Application resources
	The application descriptor
	Login form and authenticator

	Setting up a new MobileFirst environment for your application
	The MobileFirst Development Server and the MobileFirst Operations Console
	Removing a project from MobileFirst Operations Console
	Working with multiple MobileFirst Server instances in MobileFirst Studio
	Developing hybrid applications
	Developing hybrid applications for iOS
	Developing hybrid applications for Android
	Developing hybrid applications for BlackBerry
	Developing hybrid applications for Windows Phone
	Managing the splash screen
	Sending actions and data objects between JavaScript code and native code
	Guidelines for testing hybrid MobileFirst applications

	Developing user interface of hybrid applications
	JavaScript API for UI controls
	Using JavaScript toolkits
	Application skins
	Settings page to change the server URL
	Rich Page Editor
	Mobile Browser Simulator
	Previewing your MobileFirst applications
	Previewing web resource changes on an emulator or mobile device
	Testing hybrid location service applications

	Connecting to MobileFirst Server
	Configuring the MobileFirst Logger
	Set log level after IBM MobileFirst Platform Foundation starts
	Select log levels
	Log different data types
	Set Logger priority
	Filter log levels
	Log package whitelist and blacklist
	Create log for package
	Stringify
	Callback
	Log message tags
	Method chaining
	Pretty-print JSON objects
	Print stack traces
	Logger Android check and override
	Environment-specific settings
	JavaScript module example

	Web and native code in iPhone, iPad, and Android
	Switching between native and web views
	Receiving data from the web view in an Objective-C page
	Returning control to the web view from an Objective-C page
	Animating the transition from an Objective-C page to a web view
	Animating the transition from a web view to an Objective-C page
	Receiving data from the web view in a Java page
	Returning control to the web view from a Java page
	Animating the transitions from and to a Java page
	Guidelines for using native code in MobileFirst projects

	Development guidelines for desktop and web environments
	Specifying the application taskbar for Adobe AIR applications
	Configuring the authentication for web widgets
	Writing login form files for web widgets
	Setting the size of the login screen for web widgets
	Signing Adobe AIR applications
	Signing Windows 8 apps
	Embedding widgets in predefined web pages

	Configuring and customizing direct update
	Direct updates of app versions to mobile devices
	Direct updates of app versions to desktop apps
	Direct Update as a security realm
	Direct Update Authenticity
	Serving direct update requests from a CDN
	Customizing the direct update interface and process
	Troubleshooting unintended direct update requests on Windows Phone 8

	Developing native applications
	Development guidelines for using native API
	Developing native applications for iOS
	Application descriptor of native API applications for iOS
	Client property file for iOS
	Copying files of native API applications for iOS
	Creating a Swift project
	Enforcing TLS-secure connections in iOS apps
	Disabling bitcode in Xcode builds

	Developing native applications for Android
	Application Descriptor of Native API application for Android
	Client property file for Android
	Copying files of Native API applications for Android
	Extracting a public signing key from native apps

	Developing native applications for Java Platform, Micro Edition
	Application descriptor of native API applications for Java Platform, Micro Edition (Java ME)
	Client property file for Java Platform, Micro Edition (Java ME)
	Copying files of Native API applications for Java Platform, Micro Edition (Java ME)

	Developing native C# applications for Windows Phone 8
	Application descriptor of native C# API application for Windows Phone 8
	Client property file for Windows Phone 8
	Copying files of Native API applications for Windows Phone 8

	Developing native C# applications for Windows 8
	Application Descriptor of native C# API application for Windows 8
	Client property file for Windows 8
	Copying files of native API applications for Windows 8

	Adding MobileFirst web capabilities to an existing native app

	Updating mobile apps with IBM MobileFirst Platform Foundation and the Application Center
	MobileFirst Platform Command Line Interface
	CLI commands usage
	Commands
	A
	B
	C
	D
	E
	H
	I
	L
	P
	R
	S
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands

	Accelerating application development by reusing resources
	Configuring application component and template preferences
	Application components
	Creating application components from MobileFirst projects
	Viewing the contents of an application component
	Adding hooks to an application component
	Validating application components
	Adding application components to MobileFirst projects
	Removing application components from MobileFirst projects
	Troubleshooting adding and removing application components

	MobileFirst project templates
	Creating MobileFirst project templates
	Viewing MobileFirst project templates
	Creating MobileFirst projects from MobileFirst project templates

	Building and deploying in MobileFirst Studio
	The Run on MobileFirst Development Server command
	The Build All Environments command
	The Preview command
	The Build Settings and Deploy Target command
	Additional Run As menu options

	Optimizing MobileFirst applications
	Including and excluding application features
	Application cache management in Desktop Browser and Mobile Web apps
	Managing the application Cache Manifest in MobileFirst Studio

	MobileFirst application build settings
	Minification of JS and CSS files
	Concatenation of JS and CSS files
	Optimizing MobileFirst applications for use over slow networks

	Developing the server side of a MobileFirst application
	Overview of MobileFirst adapters
	The adapter XML File
	The adapter element of the adapter XML file
	The connectivity element of the adapter XML file
	The connectionPolicy element of the adapter XML file
	The procedure element of the adapter XML file
	The root element of the HTTP adapter XML file
	The connectionPolicy element of the HTTP adapter
	The maxConcurrentConnectionsPerNode element of the HTTP adapter
	The authentication element of the HTTP adapter
	The proxy element of the HTTP adapter
	The root element of the SQL adapter XML file
	The connectionPolicy element of the SQL adapter
	The root element of the Cast Iron adapter XML file
	The connectionPolicy element of the Cast Iron adapter
	The root element of the JMS adapter XML file
	The connectionPolicy element of the JMS adapter
	The namingConnection element of the JMS adapter
	The jmsConnection element of the JMS adapter
	The root element of the SAP Netweaver Gateway adapter XML file
	The connectionPolicy element of the SAP Netweaver Gateway adapter

	Creating a MobileFirst adapter
	Adapter timeout and concurrency
	Generating adapters with the services discovery wizard
	Invocation of generated SOAP adapters

	Adapter invocation service
	Implementing adapter procedures
	The Rhino container

	Encoding a SOAP XML envelope
	Backend responses in adapters
	Calling Java code from a JavaScript adapter
	Features of MobileFirst Studio
	Procedure invocation
	Invoking a back-end service
	Deploying an adapter
	JMS adapters
	Connecting a JMS adapter to the WebSphere Application Server messaging provider
	Connecting a JMS adapter to a Liberty profile server
	Connecting a JMS adapter to WebSphere MQ

	SAP adapters
	Starting an SAP adapter
	Configuring an SAP adapter for user-based authentication
	Configuring an SAP adapter with a system user

	USSD Support
	Invoking a back-end service for USSD

	JSONStore
	JSONStore overview
	General JSONStore terminology
	Enabling JSONStore
	JSONStore API concepts
	JSONStore troubleshooting
	JSONStore troubleshooting overview
	Store internals
	JSONStore errors
	JSONStore error codes

	JSONStore examples
	JavaScript API examples
	Objective-C API examples
	Java API examples

	JSONStore advanced topics
	JSONStore security
	JSONStore multiple user support
	JSONStore performance
	JSONStore concurrency
	Work with external data
	JSONStore wizard (JavaScript only)
	JSONStore analytics

	JSONStore security utilities
	JSONStore security utilities overview
	JSONStore security utilities setup
	JSONStore security utilities examples

	Push notification
	Possible MobileFirst push notification architectures
	Setting up push notifications
	Setting up push notifications for Android
	Setting up push notifications for iOS
	Setting up push notifications for Windows Phone 8

	Broadcast notifications
	Event source-based notifications
	Subscribing to an event source

	Interactive notifications
	Tag-based notification
	Setting up Tag-based notifications

	Silent notifications
	Unicast notifications
	Web-based SMS subscription
	Sending push notifications
	Sending SMS push notifications
	Sending push notifications from WebSphere Application Server – IBM DB2
	Configuring a polling event source to send push notifications
	Using two-way SMS communication
	Using native and JavaScript push APIs in the same app
	Troubleshooting push notification problems

	MobileFirst security framework
	MobileFirst security overview
	MobileFirst application authenticity overview
	Security tests
	Authentication realms
	User certificate authentication realm
	Anti-cross site request forgery (anti-XSRF) realm

	Authenticators and login modules
	Mobile device authentication
	The authentication configuration file
	Configuring MobileFirst web application authorization
	Configuring authenticators and realms
	Implementing basic authenticators
	Implementing form-based authenticators
	Implementing custom authenticators
	Header authenticator
	Persistent cookie authenticator
	Implementing adapter-based authenticators
	LTPA authenticator

	Configuring login modules
	Non-validating login module
	Single identity login module
	Header login module
	WASLTPAModule login module
	LDAP login module

	Configuring device auto provisioning
	Configuring and implementing custom device provisioning

	Device single sign-on (SSO)
	Configuring device single sign-on

	Using SSO between IBM MobileFirst Platform Foundation and external services

	Simple data sharing
	Simple data sharing overview
	Simple data sharing general terminology
	Enabling the Simple Data Sharing feature
	Enabling the Simple Data Sharing feature for hybrid applications
	Enabling the Simple Data Sharing feature for iOS native applications
	Enabling the Simple Data Sharing feature for Android native applications

	Simple data sharing API concepts
	Simple data sharing troubleshooting
	Simple data sharing limitations and special considerations

	Developing globalized hybrid applications
	Globalization in JavaScript frameworks
	Dojo globalization framework
	jQuery Mobile globalization plug-in
	Sencha Touch globalization plug-in

	Globalization mechanisms in IBM MobileFirst Platform Foundation
	Globalization of web services
	Globalization of push notifications
	Enforce language preference for MobileFirst messages

	Developing accessible applications
	Location services
	Platform support for location services
	Location services permissions
	Triggers
	Setting an acquisition policy
	Working with geofences and triggers
	Differentiating between indoor areas
	Securing server resources based on location
	Tracking the current location of devices
	Keeping the application running in the background

	Client-side log capture
	Server preparation for uploaded log data
	Client-side log capture configuration from the MobileFirst Operations Console

	MobileFirst Filtered Export

	Testing with IBM MobileFirst Platform Foundation
	Getting started
	Creating a Test Workbench project
	Managing mobile applications
	Creating mobile tests
	Editing mobile tests
	Running mobile tests
	Evaluating results
	Using MobileFirst Studio and Application Center
	Initiating mobile testing from Android, iPad, and iPhone environments in MobileFirst Studio
	Using the Application Center and the MobileFirst Test Workbench to share applications
	Publishing test-ready iOS applications to the Application Center

	API reference
	MobileFirst client-side API
	JavaScript client-side API
	The options Object
	The WL.ClientMessages object

	Objective-C client-side API for iOS apps
	Objective-C client-side API for hybrid apps
	Java client-side API for Android apps
	Java client-side API for Java Platform, Micro Edition (Java ME) apps
	C# client-side API for Windows Phone 8 apps
	C# client-side API for Windows 8 apps

	MobileFirst server-side API
	JavaScript server-side API
	Java server-side API

	REST Services API
	Adapter Binary (GET, HEAD)
	Adapter (DELETE)
	Adapter (GET)
	Adapter (POST)
	Adapters (GET)
	Adobe Air Application Binary (GET)
	APNS Credentials (DELETE)
	APNS Credentials (GET)
	APNS Credentials (PUT)
	App Version Access Rule (PUT)
	App Version Authenticity Check (PUT)
	App Version (DELETE)
	App Version Lock (PUT)
	Application Binary (GET, HEAD)
	Application (DELETE)
	Application (GET)
	Application (POST)
	Applications (GET)
	Associate beacons and triggers (DELETE)
	Associate beacons and triggers (GET)
	Associate beacons and triggers (PUT)
	Beacon Trigger (DELETE)
	Beacon Trigger (GET)
	Beacon Triggers (GET)
	Beacon Triggers (POST)
	Beacon Triggers (PUT)
	Beacons (DELETE)
	Beacons (GET)
	Beacons (PUT)
	Device Application Status (PUT)
	Device (DELETE)
	Device Status (PUT)
	Devices (GET)
	Event Source (GET)
	Event Sources (GET)
	GCM Credentials (DELETE)
	GCM Credentials (GET)
	GCM Credentials (PUT)
	Mediator (GET)
	Mediators (GET)
	MPNS Credentials (DELETE)
	MPNS Credentials (GET)
	MPNS Credentials (PUT)
	Push Device Registration (DELETE)
	Push Device Registration (GET)
	Push Device Subscription (DELETE)
	Push Device Subscription (GET)
	Push Devices Registration (GET)
	Push Enabled Applications (GET)
	Push Tags (DELETE)
	Push Tags (GET)
	Push Tags (POST)
	Push Tags (PUT)
	Runtime (DELETE)
	Runtime (GET)
	Runtime Lock (DELETE)
	Runtime Lock (GET)
	Runtimes (GET)
	Send Bulk Messages (POST)
	Send Message (POST)
	Transaction (GET)
	Transactions (GET)
	Unsubscribe SMS (POST)

	Deploying MobileFirst projects
	Deploying MobileFirst applications to test and production environments
	Deploying an application from development to a test or production environment
	Building a project WAR file with Ant
	Deploying the project WAR file
	Optional creation of databases
	Deploying, updating, or undeploying MobileFirst Server by using the Server Configuration Tool
	Using Ant tasks to deploy the project WAR file
	Deploying the project WAR file manually

	Configuration of MobileFirst applications on the server
	Configuring the IBM MobileFirst Platform Server location
	Runtime database setup for development mode
	Push notification settings
	Analytics
	WebSphere Application Server SSL configuration and HTTP adapters
	SSL certificate keystore setup
	Miscellaneous Settings
	Storing properties in encrypted format
	Obsolete properties
	Declaring and using application-specific configuration properties
	Configuring a MobileFirst project in production by using JNDI environment entries
	SMS gateway configuration

	Ant tasks for building and deploying applications and adapters
	Building applications and adapters
	Deploying applications and adapters

	Deploying applications and adapters to MobileFirst Server
	Administering adapters and apps in MobileFirst Operations Console
	Deploying apps
	Deleting apps
	Exporting adapter configuration files
	Deploying adapters
	Modifying adapters
	Deleting adapters

	MobileFirst security overview
	MobileFirst security configuration
	MobileFirst Security and LTPA
	Configuring the MobileFirst Server for Trusteer
	Accessing Trusteer risk assessment
	Supported configurations for LTPA
	Advanced security features
	Topologies and use cases

	High availability
	Clustering
	Configuring the load balancer
	Adding a node to the cluster
	Firewalls
	Disaster Recovery Site

	Updating MobileFirst apps in production

	Deploying to the cloud
	Installing MobileFirst support for cloud deployment
	Installing the IBM MobileFirst Platform Application Pattern Type
	Installing custom runtime database workload standards
	Installing new MobileFirst database workload standard that combines all MobileFirst tables
	Installing MobileFirst support for cloud deployment from the command line
	Installation of IBM MobileFirst Platform Application Pattern Extension for MobileFirst Studio

	Working with the IBM MobileFirst Platform Application Pattern Type
	Composition and components
	Creating an IBM MobileFirst Platform Application Pattern
	Creating an IBM MobileFirst Platform Application Pattern that uses a single DB2 VM
	Creating an IBM MobileFirst Platform Application Pattern from predefined templates
	Integrating with Tivoli Directory Server
	Performing operations on running MobileFirst Virtual Application Pattern instances
	Integrating by using inbound and outbound connection components
	Upgrading IBM MobileFirst Platform Application Pattern

	Working with IBM MobileFirst Platform Application Pattern Extension for MobileFirst Studio
	Specifying cloud environment preferences in MobileFirst Studio
	Deploying a MobileFirst project to IBM PureApplication System, IBM SmartCloud Orchestrator, or IBM PureApplication Service on SoftLayer
	Displaying the MobileFirst Operations Console URL for a deployed MobileFirst project
	Integration with Tivoli Directory Server

	Building and deploying MobileFirst virtual applications by using the command line interface
	Building a MobileFirst virtual application
	Deploying a MobileFirst virtual application

	Deployment of the Application Center to the cloud
	Deploying the Application Center on IBM PureApplication System

	Deployment of analytics to the cloud
	Deploying analytics on IBM PureApplication System
	Configuring MobileFirst Server and deploying IBM MobileFirst Platform Application Pattern with an analytics connection

	Administering MobileFirst applications
	Administering MobileFirst applications with MobileFirst Operations Console
	Locking an application
	Remotely disabling application connectivity
	Displaying a notification message on application startup
	Defining administrator messages from MobileFirst Operations Console in multiple languages
	Controlling authenticity testing for an app
	Error log of operations on runtime environments
	Audit log of administration operations

	Administering MobileFirst applications through Ant
	Calling the wladm Ant task
	Commands for adapters
	Commands for apps
	Commands for beacons
	Commands for devices
	Commands for troubleshooting
	A complex example of a wladm Ant task

	Administering MobileFirst applications through the command line
	Calling the wladm program
	Commands for adapters
	Commands for apps
	Commands for beacons
	Commands for devices
	Commands for troubleshooting

	Administering push notifications with the MobileFirst Operations Console
	Application Center
	Concept of the Application Center
	Specific platform requirements
	General architecture
	Preliminary information
	Preparations for using the mobile client
	Importing and building the project (Android, iOS, Windows Phone)
	For experts: Android, iOS, Windows Phone
	Microsoft Windows 8: Building the project
	Importing and building the project (BlackBerry)
	For experts: BlackBerry
	Deploying the mobile client in the Application Center

	Push notifications of application updates
	Configuring push notifications for application updates
	Configuring the Application Center server for connection to Google Cloud Messaging
	Configuring the Application Center server for connection to Apple Push Notification Services
	Building a version of the mobile client that does not depend on the GCM API

	The Application Center console
	Starting the Application Center console
	Troubleshooting a corrupt login page (Apache Tomcat)
	Application Management
	Adding a mobile application
	Adding an application from a public app store
	Application properties
	Editing application properties
	Upgrading a mobile application in MobileFirst Server and the Application Center
	Downloading an application file
	Viewing application reviews
	User and group management
	Access control
	Managing access control
	Device Management
	Application enrollment tokens in Windows Phone 8
	Signing out of the Application Center console

	Command-line tool for uploading or deleting an application
	Using the stand-alone tool to upload an application
	Using the stand-alone tool to delete an application
	Using the stand-alone tool to clear the LDAP cache
	Ant task for uploading or deleting an application

	Publishing MobileFirst applications to the Application Center
	The mobile client
	Installing the client on an Android mobile device
	Installing the client on an iOS mobile device
	Installing the client on a BlackBerry mobile device
	Installing the client on Windows Phone 8
	The Login view
	Views in the Application Center client
	Installing an application on an Android device
	Installing an application on an iOS device
	Installing an application on a Windows Phone device
	Installing a Windows Store application on a Windows device
	Installing an application on a BlackBerry device
	Installing applications through public app stores
	Removing an installed application
	Showing details of a specific application version
	Updating an application
	Upgrading the Application Center client automatically
	Reverting an installed application
	Marking or unmarking a favorite app
	Submitting a review for an installed application
	Viewing reviews

	Advanced information for BlackBerry users

	Federal standards support in IBM MobileFirst Platform Foundation
	FDCC and USGCB support
	FIPS 140-2 support
	Enabling FIPS 140-2
	Configure FIPS 140-2 mode for HTTPS and JSONStore encryption
	Configuring FIPS 140-2 for existing applications

	Monitoring and mobile operations
	Logging and monitoring mechanisms
	Vitality queries for checking server health
	Configuring logging in the development server
	Setting logging and tracing for Application Center on the application server
	Enabling logging and tracing in WebSphere Application Server full profile
	Enabling logging and tracing in WebSphere Application Server Liberty profile
	Enabling logging and tracing in Apache Tomcat
	JNDI properties for controlling trace output

	Analytics
	Comparison of operational analytics and reports features
	Operational analytics
	Data capture
	Security for MobileFirst Operational Analytics
	Production deployment and clustering
	Administration
	Properties and configurations

	Reports database
	Using raw data reports
	Device usage reports
	Predefined BIRT Reports
	Installing BIRT on Apache Tomcat
	Installing BIRT on WebSphere Application Server Liberty profile
	Installing BIRT on WebSphere Application Server full profile
	Configuring BIRT reports for your application server by using Ant
	Manually configuring BIRT Reports for your application server
	BIRT in Eclipse
	Notification reports database schema

	Mobile application management
	User to device mapping and control
	Device access management in the MobileFirst Operations Console
	Enabling the device access management features
	Performance implications for the server

	User certificate authentication
	User certificate authentication overview
	Protecting resources with user certificate authentication
	User certificate authentication on the server
	SSL configuration
	PKI bridge configuration
	WebSphere Application Server and Liberty profile requirements
	Updating the server authentication configuration

	User certificate authentication on the client
	Configuring user certificate authentication for a group of applications

	Troubleshooting the User Certificate Authentication feature

	License tracking
	Configuring your license tracking details
	License Tracking report
	Integration with IBM License Metric Tool

	Integrating with other IBM products
	Introduction to MobileFirst integration capabilities
	Integration with Cast Iron
	Integration and authentication with a reverse proxy
	Integration with IBM Endpoint Manager
	IBM Endpoint Manager for Mobile Devices
	End-point management with IBM Endpoint Manager

	Integration with IBM Tealeaf
	IBM Tealeaf client-side integration
	IBM Tealeaf server-side integration

	Integration with IBM Trusteer
	Integrating IBM Trusteer for iOS
	Integrating IBM Trusteer for Android by using a MobileFirst component
	Integrating IBM Trusteer for Android from a zipped archive

	Using WebSphere DataPower as a push notification proxy
	More about integration

	Reference
	Ant configuredatabase task reference
	Customizing the database connection with JDBC properties
	Ant tasks for installation of MobileFirst Operations Console and Administration Services
	Ant tasks for installation of MobileFirst runtime environments
	Internal runtime database tables
	Sample configuration files

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W
	X

	Support and comments
	Notices
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

