IBM MobileFirst Platform Foundation
for iOS V7.0.0

<||IH

Note
FBefore you use this information and the product it supports, read the information in[“Notices” on page A-1]

IBM MobileFirst Platform Foundation for iOS V7.0.0

This edition applies to version V7.0.0 of IBM MobileFirst Platform Foundation for iOS and to all subsequent releases

and modifications until otherwise indicated in new editions.
This edition was updated last on 16 June 2016.

This PDF document is made available for convenience and on an "as is" basis only. The master and control

document can be found in Knowledge Center at |http:/ /ibm.biz/knowctr#SSHSCD_7.0.0/wl_welcome.html|

ing
This

PDF document may contain uncontrollable formatting errors or differences from the master version in Knowledge

Center.

© Copyright IBM Corporation 2006, 2016.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://ibm.biz/knowctr#SSHSCD_7.0.0/wl_welcome.html

Contents

IBM MobileFirst Platform Foundation
for iOS V7.0.0 documentation 1-1

Product overview. . . . e e e . . 241

Introduction to mobile application development . 2-1
Product main capabilities21
Product components24
Product editions27
System requirements . . . o277
Matrix of features and platforms e28

Releasenotes 31

What's new . . N R |
Efficient and scalable app data storage Lo 231
Standards-based integration and authentication 3-2
Core value features33
Improved MobileFirst APT35
Tutorials and samples.36

What's new in V7.0.0 interim fixes3-6

iOS 9 support 37

Exporting and importing custom chart def1n1t1ons

for analytics38

Deprecated and removed features I
Deprecated features and API elements 3-8
Removed features39

Knownissues310

Known limitations3-10

Troubleshooting 4-1

Tutorials, samples, and additional
resources «51

Installing and configuring 6-1

Installation overview61
Installing command-line tools for developers . .62
Uninstalling command-line tools for developers . . 6-2
Installing MobileFirst Server . . . 6-2

Planning the installation of MobrleFrrst Server 6-3
Tutorial for a basic installation of MobileFirst

Server623
Running IBM Installatlon Manager .. . 629
Installing the MobileFirst Server adm1n1strat10n 6-43
Installing a server farm.697
Configuring MobileFirst Server. 6-105
Backup and recovery . . . 6-105

Optimization and tuning of MobrleFrrst Server 6-105
Optimization of MobileFirst Server project

databases6-108
Testing MobileFirst Server performance .. L6111
Security configuration 6-117

Protecting your mobile appl1cat1on trafﬁc by
using IBM WebSphere DataPower as a
security gateway6-122

© Copyright IBM Corp. 2006, 2016

Configuring MobileFirst Server to enable TLS
Vi12.
Configuring SSL between MobrleFrrst adapters
and back-end servers by using self—s1gned
certificates .
Configuring SSL by usmg untrusted
certificates .
Handling MySQL stale connect1ons
Managing the DB2 transaction log size
Installing the IBM MobileFirst Platform
Operational Analytics .
Installing IBM MobileFirst Platform
Operational Analytics for WebSphere
Application Server Liberty
Installing IBM MobileFirst Platform
Operational Analytics for WebSphere
Application Server .
IBM MobileFirst Platform Operat1onal
Analytics installation for Tomcat .
Configuring the MobileFirst Server for the
IBM MobileFirst Platform Operat1onal
Analytics . .
Installing the Mob1leF1rst Data Proxy
Planning the installation of MobileFirst Data
Proxy .
Installing and confrgurmg the MobrleFrrst
Data Proxy
Installing and conf1gur1ng the Appl1cat1on Center
Installing Application Center with IBM
Installation Manager
Manual installation of Appllcatlon Center
Configuring the Application Center after
installation
Configuring WebSphere Appl1cat10n Server
full profile.
Configuring WebSphere Appl1cat1on Server
Liberty profile
Configuring Apache Tomcat
Configuring properties of DB2 JDBC dr1ver in
WebSphere Application Server .
Configuring WebSphere Application Server to
support applications in public app stores
Managing users with LDAP .
Defining the endpoint of the appllcat10n
resources .
Configuring Secure Sockets Layer (SSL)
Managing the DB2 transaction log size
List of JNDI properties for the Application
Center .
Predefining Mob1leF1rst Server conf1gurat1on for
several deployment environments .
Creating the property file. .
Using a property file in the file system .
Using property files injected into a web
archive file
Using a shared library of]NDI propertles

. 6-133

. 6-135
. 6-136
. 6-144
. 6-145

. 6-146

. 6-146

. 6-147

. 6-151

. 6-151

. 6-152

. 6-152

. 6-153
6-162

. 6-162

6-167

. 6-188

. 6-189

. 6-191

. 6-192

. 6-192

. 6-193
. 6-194

. 6-214
. 6-219
. 6-222
. 6-223
. 6-227
. 6-228
. 6-229

. 6-232

6-235

iii

Typical topologies of a MobileFirst instance in an

extranet infrastructure . . . 6-239
Setting up IBM MobileFirst Platform
Foundation for iOS in WebSphere Application
Server cluster environment . . 6-241
Setting up an IBM HTTP Server in an IBM
WebSphere Application Server Liberty profile
farm. . 6-252
Integrating IBM WebSphere DataPower w1th a
cluster of instances of MobileFirst Server . 6-260

Endpoints of the IBM MobileFirst Platform

Server production server . . . 6-272
HTTP Interface of the productlon server. . 6-275

Troubleshooting IBM MobileFirst Platform Server 6-280
Troubleshooting to find the cause of

installation failure . . . 6-280
Troubleshooting failure to Create the DBZ

database . 6-280
Troubleshooting a M0b1leF1rst Server upgrade

with Derby as the database . . . 6-281
Troubleshooting failure to authentlcate to
Application Center and applications that use

the basic registry element. . .. 6-281
Troubleshooting server farm confrguratlon

issues . 6-282

Upgrading to IBM MobileFirst Platform
Foundation foriOS V7.00 7-1

Version compatibility71
Migrating projects to V7.0.0 us1ng Mob1leF1rst
Platform Command Line Interface for iOS. . . . 7-3

Migrating IBM SmartCloud Analytics Embedded to
IBM MobileFirst Platform Operational Analytics. . 7-3
Upgrading to MobileFirst Server V7.0.0 in a

production environment.74
Overview of the upgrade to Mob1leF1rst Server
V7.0.0 process . . .75

Preparation for upgrades to M0b1leF1rst Server 7-7
Starting the MobileFirst Server V7.0.0 upgrade

process . . 7-20
Running IBM lnstallatlon Manager and
completing the Application Center upgrade . . 7-25
Upgrading the MobileFirst runtime
environment for MobileFirst Server V7.0.0 . 7-31
Additional MobileFirst Server V7.0.0 upgrade
information. .o .. . 743
Updating deployment scrlpts . . 7-52
Rolling upgrade procedure to apply a fix pack to
IBM MobileFirst Platform Foundation for iOS
V7.0.0. . . 7-53
Planning the rollmg upgrade procedure . 7-54
Overview of the rolling upgrade procedure 7-55
Performing a rolling upgrade to install a fix
pack . . 7-55
Applying a fix pack to the MobrleFrrst Data Proxy 7-62

Developing MobileFirst applications 8-1

Artifacts produced during development cycle. . . 8-1
MobileFirst projects
Integrating with source control systems ... 82

iV IBM MobileFirst Platform Foundation for iOS V7.0.0

Developing applications for iOS
Developing native applications for iOS .

Updating mobile apps with IBM MobileFirst

Platform Foundation for iOS and the Application

Center .

MobileFirst Platform Command Lme lnterface for

ios ... 0
CLI commands usage
Commands . .

Developing the server srde of a MobrleFrrst

application . .

MobileFirst Java adapters .
MobileFirst JavaScript adapters .
USSD Support .o
Deploying adapters.
Testing adapters . .
Client access to adapters .
JSONStore . .
JSONStore overview
General JSONStore termlnology
JSONStore API concepts .
Troubleshooting JSONStore .
JSONStore examples .
JSONStore advanced topics .
JSONStore security utilities .

Storing mobile data in Cloudant
Configuring access to Cloudant.
Obtaining the IMFData SDK.

Creating databases . .
Setting user permissions .
Modeling data

Performing CRUD operatlons
Creating indexes. .o
Querying data

Supporting offline storage and
synchronization .

Push notification
Possible MobileFirst push not1f1catlon
architectures .

Setting up push notlflcatlons

Broadcast notifications.

Event source-based not1f1cat1ons

Interactive notifications

Tag-based notification .

Silent notifications .

Unicast notifications

Web-based SMS subscr1ptlon

Sending push notifications

Sending SMS push notifications

Sending push notifications from WebSphere
Application Server — IBM DB2 . .
Configuring a polling event source to send
push notifications . .o
Using two-way SMS commun1cat10n .
Troubleshooting push notification problems

MobileFirst security framework.
OAuth-based security model
Classic security model.

Simple data sharing . .

Simple data sharing overview . .
Simple data sharing general termmology

. 84

. 8-14

. 815
. 8-16
. 8-16

. 8-85
. 8-85
.. 894
. 8-151
. 8-156
. 8-157
. 8-158
. 8-161
. 8-161
. 8-162
. 8-165
. 8-168
. 8-174
. 8-178
. 8-184
. 8-186
. 8-188
. 8-190
. 8191
. 8-192
. 8-193
. 8-196
. 8-199
. 8-200

. 8201
. 8-203

. 8-204
. 8-206
. 8207
. 8-208
. 8-209
. 8-210
. 8211
. 8-212
. 8212
. 8-214
. 8215

. 8216

. 8-216
. 8219

8-220

. 8221
. 8221
. 8-242
. 8-253
. 8-253

8-254

Enabling the Simple Data Sharing feature

Simple data sharing API concepts .

Troubleshooting simple data sharing .
Simple data sharing limitations and special

considerations
Authenticators and login modules
Mobile device authentication .
The authentication configuration file .
Configuring authenticators and realms
Implementing basic authenticators.

Implementing form-based authenticators
Implementing custom authenticators .

Header authenticator . .
Persistent cookie authenticator .

Implementing adapter-based authent1cators

LTPA authenticator .

Configuring login modules .
Non-validating login module
Single identity login module.
Header login module .
WASLTPAModule login module
LDAP login module .

Configuring device auto provisioning

Configuring and 1mplement1ng custom deV1ce

provisioning .
Device single sign-on (SSO)

Configuring device single sign-on .
Developing accessible applications.
Client-side log capture.

Server preparation for uploaded log data
Client-side log capture configuration from

MobileFirst Operations Console
MobileFirst Filtered Export .

API reference
MobileFirst client-side API .

Objective-C client-side API for 1OS apps

MobileFirst server-side API .
JavaScript server-side API
Java server-side API .
MobileFirst OAuth TAI API.
REST Services API.
Adapter Binary (GET, HEAD)
Adapter (DELETE).
Adapter (GET) .
Adapter (POST)
Adapters (GET)
Adobe Air Application Bmary (GET)
APNS Credentials (DELETE) .
APNS Credentials (GET)
APNS Credentials (PUT)
App Version Access Rule (PUT) .
App Version (DELETE) .
App Version Lock (PUT)
Application Binary (GET, HEAD)
Application (DELETE) .
Application (GET)
Application (POST) .
Applications (GET) .

Associate beacons and tr1ggers (DELETE).

Associate beacons and triggers (GET) .

8-254

. 8-255
. 8-256

. 8-256
. 8-257
. 8-257
. 8-260
. 8-262
. 8-263
. 8-265
. 8-269
. 8-274
. 8-274

8-274

. 8-281
. 8-282
. 8-283
. 8-284
. 8-284
. 8-285
. 8-285
. 8-288

. 8-289
. 8-294
. 8-295
. 8-300
. 8-300

8-304

. 8-305
. 8-306

. 9-1

.91
.92
.92
. 93
. 94
. 94
. 94
. 94
. 95
. 9-8

. 9-12
. 9-15
. 9-19
. 921
. 923
. 9-24
. 9-27
. 9-31
. 9-35
. 9-37
. 9-38
. 941
. 9-45
. 9-49
. 9-53
. 9-57

Associate beacons and triggers (PUT) .

Beacon Trigger (DELETE) .
Beacon Trigger (GET)

Beacon Triggers (GET) .

Beacon Triggers (POST).

Beacon Triggers (PUT) .
Beacons (DELETE)

Beacons (GET).

Beacons (PUT).

Device Application Status (PUT)
Device (DELETE) .

Device Status (PUT) .

Devices (GET)

Event Source (GET).

Event Sources (GET) .
Farm topology members (GET).
Farm topology members (DELETE)
GCM Credentials (DELETE) .
GCM Credentials (GET)

GCM Credentials (PUT)
Mediator (GET) .

Mediators (GET).

MPNS Credentials (DELETE)
MPNS Credentials (GET) .

MPNS Credentials (PUT) .

Push Device Registration (DELETE)
Push Device Registration (GET)

Push Device Subscription (DELETE) .

Push Device Subscription (GET)

Push Devices Registration (GET)

Push Enabled Applications (GET) .

Push Tags (DELETE) .

Push Tags (GET).

Push Tags (POST)

Push Tags (PUT).

Runtime (DELETE) .

Runtime (GET) . .

Runtime Lock (DELETE) .

Runtime Lock (GET)

Runtimes (GET) . .

Send Bulk Messages (POST)

Send Message (POST) .

Transaction (GET)

Transactions (GET) .

Unsubscribe SMS (POST) .

WNS Credentials (DELETE) .

WNS Credentials (GET)

WNS Credentials (PUT)
MobileFirst Cloudant API reference

Objective-C API for MobileFirst Cloudant

extensions .

Deploying MobileFirst projects

. 9-59
. 9-64
. 9-67
. 9-69
. 9-71
. 9-76
. 9-80
. 9-83
. 9-86
. 990
. 9-94
.. 997
. 9-100
. 9-104
. 9-105
. 9-107
. 9-109
. 9-111
. 9-113
. 9-114
. 9-117
. 9-118
. 9-120
. 9-122
. 9-124
. 9-126
. 9-128
. 9-130
. 9-132
. 9-134
. 9-136
. 9-138
. 9-140
. 9-142
. 9-144
. 9-146
. 9-147
. 9-155
. 9-156
. 9-158
. 9-160
. 9-165
. 9-170
. 9-172
. 9-175
. 9-177
. 9-179
. 9-181
. 9-183

. 9-183

. 10-1

Deploying MobileFirst applications to test and

productlon environments .

. 10-1

Deploying an application from development to

a test or production environment

Building a project WAR file with Ant .

Deploying the project WAR file .

. 10-1
. 10-4
. 10-5

Configuration of MobileFirst applications on

the server .

. 10-48

Contents V

Ant tasks for building and deploying
applications and adapters .
Deploying applications and adapters to
MobileFirst Server . .
Administering adapters and apps in
MobileFirst Operations Console
MobileFirst security overview

High availability.

Updating MobileFirst apps in productlon

Administering MobileFirst

applications.
Administering MobileFirst apphcatrons w1th
MobileFirst Operations Console .
Locking an application .
Remotely disabling application Connect1V1ty
Displaying a notification message on
application startup . .
Defining administrator messages from
MobileFirst Operations Console in multiple
languages . . .
Error log of operatlons on runtlme
environments . .
Audit log of admlnlstratlon operatlons
Administering MobileFirst applications through
Ant 000
Calling the wladm Ant task .
Commands for adapters .
Commands for apps
Commands for beacons
Commands for devices
Commands for troubleshootmg
A complex example of a wladm Ant task
Administering MobileFirst apphcatlons through
the command line A
Calling the wladm program
Commands for adapters .
Commands for apps
Commands for beacons
Commands for devices .
Commands for troubleshooting .
Administering push notifications with the
MobileFirst Operations Console.
Application Center .
Concept of the Apphcatlon Center
Specific platform requirements .
General architecture
Preliminary information .
Preparations for using the mobile chent
Push notifications of application updates
The Application Center console. .
Command-line tool for uploading or deletrng
an application
The mobile client .
Federal standards support in IBM MoblleFrrst
Platform Foundation for iOS
FDCC and USGCB support.
FIPS 140-2 support

. 10-69
. 10-76
. 10-77

. 10-79
. 10-95

10-97

. 111

. 11-2
. 11-3
11-3

. 11-5

. 11-5

. 11-8
. 119

. 11-11
. 11-12
. 11-15
. 11-18
. 11-23
. 11-29
. 11-32
. 11-35

. 11-36
. 11-37
. 11-42
. 11-44
. 11-50
. 11-57
. 11-59

. 11-63
. 11-65
. 11-65
. 11-66
. 11-66
. 11-68
. 11-69
. 11-72
. 11-76

.. 11-98
. 11-104

. 11-122
. 11-122
. 11-123

Vi IBM MobileFirst Platform Foundation for iOS V7.0.0

Monitoring and mobile operations
Logging and monitoring mechanisms .
Vitality queries for checking server health
Setting logging and tracing for Application
Center on the application server . .
Analytics
Comparison of operatlonal analytlcs and
reports features
Operational analytics
Reports database
Mobile application management .
User to device mapping and control .
Device access management in the MobileFirst
Operations Console.
Enabling the device access management
features.
Performance 1mp11cat10ns for the server .
User certificate authentication . .
User certificate authentication overview
User certificate authentication on the server
User certificate authentication on the client
Troubleshooting the User Certificate
Authentication feature
License tracking . .
Configuring your hcense tracklng detalls
License Tracking report .
Integration with IBM License Metr1c TooI

Integrating with other IBM products

12-1
1241
1222

. 12-4
. 12-6

. 12-7
. 12-8

. 12-74
. 12-95
. 12-96

. 12-96
. 12-98

. 12-99
. 12-100

12-100
12-102
12-112

. 12-114
. 12-115

12-115

. 12-116

12-117

13-1

Introduction to MobileFirst integration capabilities 13-1

Integration with Cast Iron . . 132
Integration and authentication w1th a reverse
proxy 13-3
Integration w1th IBM Endpomt Manager . . 13-5
IBM Endpoint Manager for Mobile Devices 13-5
End-point management with IBM Endpornt
Manager. . . . 13-7
Integration with IBM Tealeaf . 13-8
IBM Tealeaf client-side integration . . 13-8
IBM Tealeaf server-side integration . . 139
Integration with IBM Trusteer . 139
Integrating IBM Trusteer for iOS. . 139
Using WebSphere DataPower as a push
notification proxy . . . 13-10
More about integration . 13-11
Reference . 141
Ant configuredatabase task reference . 14-1
Customizing the database connection with]DBC
properties . 14-8
Encrypting database password w1th Ant tasks for
Liberty . . 149
Ant tasks for 1nsta11at10n of MoblleFrrst
Operations Console and Administration Services . 14-10
Ant tasks for installation of MobileFirst runtime
environments. . .. 14-16
Ant tasks for 1nsta11at10n of MobrleFrrst Data
Proxy . 14-27
Internal runtlme database tables . 14-32
Sample configuration files . 14-35

. 15-1
. 15-1
. 15-2
. 152
. 154
. 154
. 154
. 155
. 155
. 15-5
. 15-5
. 15-6
. 15-6
. 15-7
. 15-7
. 15-8
. 15-8

o
o
(73
73
Y
=
<

HOoZZICOr AT T IOoOHEEHgNwE >

. 159

. 159
. 15-10
. 15-11
. 15-11
. 15-11
. 15-11

xs<cH®R

Support and comments. 16-1

Notices . e e e e . A1
TrademarksA3
Terms and conditions for product documentation A-3
IBM Online Privacy Statement A4

IndexXA1

Contents Vil

viili IBM MobileFirst Platform Foundation for iOS V7.0.0

IBM MobileFirst Platform Foundation for iOS V7.0.0
documentation

Welcome to the IBM MobileFirst " Platform Foundation for iOS V7.0.0
documentation, where you can find information about how to install, maintain,
and use the IBM MobileFirst Platform Foundation for iOS.

Getting started

[“Product overview” on page 2-1]|
IBM MobileFirst Platform Foundation for iOS is an integrated platform that
helps you extend your business to mobile devices.

[“Notices” on page A-1|

[‘Release notes” on page 3-1]|
You can identify the latest information about this product release and all its fix
packs.

[“Tutorials, samples, and additional resources” on page 5-1|

Tutorials and samples help you get started with and learn about IBM
MobileFirst Platform Foundation for iOS. Use them to evaluate what the
product can do for you.

[“Installation overview” on page 6-1|

IBM MobileFirst Platform Foundation for iOS provides the following installable
components: MobileFirst Platform Command Line Interface for iOS, and
MobileFirst Server. This section gives an overview of the installation process.

[“Configuring MobileFirst Server” on page 6-105|
Consider your backup and recovery policy, optimize your MobileFirst Server
configuration, and apply access restrictions and security options.

[“System requirements” on page 2-7|
System requirements for IBM MobileFirst Platform Foundation for iOS include
operating systems, SDKs, and other software.

Common tasks

[“Developing MobileFirst applications” on page 8-1]
You use IBM MobileFirst Platform Command Line Interface for iOS, the
MobileFirst client, and the server-side API to develop iOS applications.

["Deploying MobileFirst projects” on page 10-1|

[“Administering MobileFirst applications” on page 11-1|
Run and maintain MobileFirst applications in production.

[“Application Center” on page 11-65|
Learn about the Application Center: what it is for, the different components and
features, and how to use the console and the client.

Troubleshooting and support

[“Troubleshooting” on page 4-1]|
You can find advice on how to troubleshoot problems, and more information
about known limitations and technotes (Troubleshooting).

[“Known issues” on page 3-10]
You can identify the latest known issues and their resolutions, for this product
release and all its fix packs, by browsing this dynamic list of documents.

[[[BM Software Support home page]

More information

© Copyright IBM Corp. 2006, 2016 1-1

http://www.ibm.com/support/entry/portal/overview/software/software_support_(general)

(il [Latest PDF file for this documentation|

[[Mobile Application Developer skills|

[** [BM MobileFirst Platform blogs

[[developerWorks blogs and articles|

[IBM Redbooks

1-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mobilefirst_platform_foundation_ios_doc.pdf
http://www-304.ibm.com/services/learning/ites.wss/zz/en/?pageType=page&c=J179530Z42409M36
https://developer.ibm.com/mobilefirstplatform/blogs/
http://www.ibm.com/search/csass/search/?q=MobileFirst+Platform&dws=dw&ibm-search.x=0&ibm-search.y=0&sn=dw&cc=US&ddr=&en=utf&lo=en&hpp=20
http://www.redbooks.ibm.com/

Product overview

IBM MobileFirst Platform Foundation for iOS is an integrated platform that helps
you extend your business to mobile devices.

IBM MobileFirst Platform Foundation for iOS includes a comprehensive
development environment, mobile-optimized runtime middleware, a private
enterprise application store, and an integrated management and analytics console,
all supported by various security mechanisms.

With IBM MobileFirst Platform Foundation for iOS, your organization can
efficiently develop, connect, run, and manage rich mobile applications (apps) that
can access the full capabilities of your target mobile devices. IBM MobileFirst
Platform Foundation for iOS can help reduce time-to-market, cost, and complexity
of development, and enables an optimized customer and employee user experience
across multiple environments.

As part of this comprehensive mobile solution, IBM MobileFirst Platform
Foundation for iOS can be integrated with application lifecycle, security,
management, and analytics capabilities to help you address the unique mobile
needs of your business.

Introduction to mobile application development

With IBM MobileFirst Platform Foundation for iOS, you can develop mobile
applications by using native development.

IBM MobileFirst Platform Foundation for iOS provides capabilities to help you
respond to the fast-paced development of mobile devices.

Pure native development

With the pure native development approach, you can create applications that are
written for a specific platform and run on that platform only. Your applications
achieve great performance and can fully leverage all platform functions such as
accessing the camera or contact list, enabling gestures, or interacting with other
applications on the device.

Product main capabilities

With IBM MobileFirst Platform Foundation for iOS, you can use capabilities such
as development, testing, back-end connections, push notifications, offline mode,
update, security, analytics, monitoring, and application publishing.

Development
IBM MobileFirst Platform Foundation for iOS provides a framework that enables
the development, integration, and management of secure mobile applications

(apps). IBM MobileFirst Platform Foundation for iOS does not introduce a
proprietary programming language or model that users must learn.

© Copyright IBM Corp. 2006, 2016 2-1

2-2

You can write native code (Objective-C and Swift). IBM MobileFirst Platform
Foundation for iOS provides an SDK that includes libraries that you can access
from native code.

Back-end connections

Some mobile applications run strictly offline with no connection to a back-end
system, but most mobile applications connect to existing enterprise services to
provide the critical user-related functions. For example, customers can use a mobile
application to shop anywhere, at any time, independent of the operating hours of
the store. Their orders must still be processed by using the existing e-commerce
platform of the store. To integrate a mobile application with enterprise services,
you must use middleware such as a mobile gateway. IBM MobileFirst Platform
Foundation for iOS can act as this middleware solution and make communication
with back-end services easier.

Push notifications

With push notifications, enterprise applications can send information to mobile
devices, even when the application is not being used. IBM MobileFirst Platform
Foundation for iOS includes a unified notification framework that provides a
consistent mechanism for such push notifications.

Offline mode

In terms of connectivity, mobile applications can operate offline, online, or in a
mixed mode. IBM MobileFirst Platform Foundation for iOS uses a client/server
architecture that can detect whether a device has network connectivity, and the
quality of the connection. Acting as a client, mobile applications periodically
attempt to connect to the server and to assess the strength of the connection. An
offline-enabled mobile application can be used when a mobile device lacks
connectivity but some functions can be limited. When you create an offline-enabled
mobile application, it is useful to store information about the mobile device that
can help preserve its functionality in offline mode. This information typically
comes from a back-end system, and you must consider data synchronization with
the back end as part of the application architecture. IBM MobileFirst Platform
Foundation for iOS includes a feature that is called JSONStore for data exchange
and storage. With this feature, you can create, read, update, and delete data
records from a data source. Each operation is queued when operating offline.
When a connection is available, the operation is transferred to the server and each
operation is then performed against the source data.

Update

IBM MobileFirst Platform Foundation for iOS simplifies version management and
mobile application compatibility. Whenever a user starts a mobile application, the
application communicates with a server. By using this server, IBM MobileFirst
Platform Foundation for iOS can determine whether a newer version of the
application is available, and if so, give information to the user about it. The server
can also force an upgrade to the latest version of an application to prevent
continued use of an outdated version.

Security

Protecting confidential and private information is critical for all applications within
an enterprise, including mobile applications. Mobile security applies at various

IBM MobileFirst Platform Foundation for iOS V7.0.0

levels, such as mobile application, mobile application services, or back-end service.
You must ensure customer privacy and protect confidential data from being
accessed by unauthorized users. Dealing with privately owned mobile devices
means giving up control on certain lower levels of security, such as the mobile
operating system.

IBM MobileFirst Platform Foundation for iOS provides secure, end-to-end
communication by positioning a server that oversees the flow of data between the
mobile application and your back-end systems. With IBM MobileFirst Platform
Foundation for iOS, you can define custom security handlers for any access to this
flow of data. Because any access to data of a mobile application has to go through
this server instance, you can define different security handlers for mobile
applications, web applications, and back-end access. With this kind of granular
security, you can define separate levels of authentication for different functions of
your mobile application. You can also prevent mobile applications from accessing
sensitive information.

Analytics

The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage, or to detect problems.

In addition to reports that summarize app activity, IBM MobileFirst Platform
Foundation for iOS includes a scalable operational analytics platform accessible in
the MobileFirst Operations Console. The analytics feature enables enterprises to
search across logs and events that are collected from devices, apps, and servers for
patterns, problems, and platform usage statistics. You can enable analytics, reports,
or both, depending on your needs.

Monitoring

IBM MobileFirst Platform Foundation for iOS includes a range of operational
analytics and reporting mechanisms for collecting, viewing, and analyzing data
from your IBM MobileFirst Platform Foundation for iOS applications and servers,
and for monitoring server health.

Application publishing

IBM MobileFirst Platform Foundation for iOS Application Center is an enterprise
application store. With the Application Center, you can install, configure, and
administer a repository of mobile applications for use by individuals and groups
across your enterprise. You can control who in your organization can access the
Application Center and upload applications to the Application Center repository,
and who can download and install these applications onto a mobile device. You
can also use the Application Center to collect feedback from users and access
information about devices on which applications are installed.

The concept of the Application Center is similar to the concept of the Apple public
App Store , except that it targets the development process.

The Application Center provides a repository for storing the mobile application
files and a web-based console for managing that repository. The Application Center
also provides a mobile client application to allow users to browse the catalog of
applications that are stored by the Application Center, install applications, leave
feedback for the development team, and expose production applications to IBM®
Endpoint Manager. Access to download and install applications from the

Product overview 2-3

Application Center is controlled by using access control lists (ACLs).

Product components

2-4

IOS Developer
Tooling

CLI for iOS Native
Integrated SDK

Devalopmeant Server

MoblleFirst Cloudant Local

Usar Authentication
and Mobile Trust

and Service Composition

JSON Translation

Geolocation Services
APNS
Adapter Library notifications
for Backend Connectivity

Figure 2-1. IBM MobileFirst Platform Foundation for iOS architecture

IBM MobileFirst Platform Foundation for iOS consists of the following
components: MobileFirst Platform Command Line Interface for iOS, MobileFirst
Server, client-side runtime components, MobileFirst Operations Console,
MobileFirst Platform Cloudant® Local, and Application Center.

Component overview

The following figure shows the components of IBM MobileFirst Platform
Foundation for iOS:

MoblleFirst Device Runtime
Application Center

Development Team Server Integration
Provisioning Framework

Enterprisa App Encrypted and
Provisioning and Governance Syncable Storage

Location-based

A pp Feedback Management Event Handling

Enhanced Crash

and Platform-level
Excaption Capture

MoblleFirst Server

& © httpz/www.ibm.com/ @O Q,

MoblleFirst Operations Console

Mashups

Push and SMS Notification

Development and Operational Analytics

App Version Managemeant

MobileFirst Server

The MobileFirst Server is a runtime container for the mobile applications you
develop by using MobileFirst tooling. It is not an application server in the Java™
Platform, Enterprise Edition (Java EE) sense. It acts as a container for IBM
MobileFirst Platform Foundation for iOS application packages, and is in fact a
collection of web applications, optionally packaged as an EAR (enterprise archive)
file that run on top of traditional application servers.

IBM MobileFirst Platform Foundation for iOS V7.0.0

MobileFirst Server integrates into your enterprise environment and uses existing
resources and infrastructure. This integration is based on adapters that are
server-side software components responsible for channeling back-end enterprise
systems and cloud-based services to the user device. You can use adapters to
retrieve and update data from information sources, and to allow users to perform
transactions and start other services and applications.

You can use MobileFirst Server for the following tasks:

* Empower hundreds of thousands of users with transactional capabilities and
enable their direct access to back-end systems and cloud-based services.

* Configure, test, and deploy descriptive XML files to connect to various back-end
systems by using standard MobileFirst tools.

* Automatically convert hierarchical data to JSON format for optimal delivery and
consumption.

* Enhance user interaction with a uniform push notification architecture.
* Define complex mashups of multiple data sources to reduce overall traffic.

* Integrate with the existing security and authentication mechanisms of your
organization.

MobileFirst Platform Cloudant Local

MobileFirst Platform Cloudant Local is an advanced NoSQL database that is
capable of handling a wide variety of data types, such as JSON, full-text, and
geospatial data.

As a JSON document store, MobileFirst Platform Cloudant Local is ideal for
managing multi-structured or unstructured data. With advanced indexing, you can
enrich applications with location-based, geospatial services, full-text search, and
real-time analytics.

MobileFirst Cloudant extensions include an SDK and proxy.
The SDK extends the Cloudant APIs with support for native language objects for

iOS developers, offline access, and online remote access. For more information, see
[“Storing mobile data in Cloudant” on page 8-186|

Authentication with OAuth is available through integration with the MobileFirst
Data Proxi. For more information, see [“Installing the MobileFirst Data Proxy” onl|

page 6-152.

Client-side runtime components

IBM MobileFirst Platform Foundation for iOS provides client-side runtime code
that embeds server functionality within the target environment of deployed apps.
These runtime client APIs are libraries that are integrated into the locally stored
app code. They complement MobileFirst Server by defining a predefined interface
for apps to access native device functions.

The client-side runtime components provide the following functions:
* Mobile data integration: connectivity and authentication APIs

* Security features: on-device encryption, offline authentication, and remote
disablement of the ability to connect to MobileFirst Server

* Mobile client functionality: access to device APIs and push notification
registration

Product overview 2-5

2-6

MobileFirst Operations Console

The MobileFirst Operations Console is used for the control and management of the
mobile applications.

You can use the MobileFirst Operations Console for the following tasks:

* Monitor all deployed applications, adapters, and push notification rules from a
centralized, web-based console.

* Assign device-specific identifiers (IDs) to ensure secure application provisioning.

* Remotely disable the ability to connect to MobileFirst Server by using
preconfigured rules of app version and device type.

* Customize messages that are sent to users on application launch.
* Collect user statistics from all running applications.

* Generate built-in, pre-configured reports about user adoption and usage
(number and frequency of users that are engaging with the server through the
applications).

* Configure data collection rules for application-specific events.

* Export raw reporting data to be analyzed by the business intelligence systems of
your organization.

IBM MobileFirst Platform Operational Analytics

IBM MobileFirst Platform Foundation for iOS includes a scalable operational
analytics feature that is accessible from the MobileFirst Operations Console. The
analytics feature enables enterprises to search across logs and events that are
collected from devices, apps, and servers for patterns, problems, and platform
usage statistics.

The data for operational analytics includes the following sources:

* Crash events of an application on iOS devices (crash events for native code
errors).

* Interactions of any application-to-server activity (anything that is supported by
the MobileFirst client/server protocol, including push notification).
* Server-side logs that are captured in traditional MobileFirst log files.

Application Center

With the Application Center, you can share mobile applications that are under
development within your organization in a single repository of mobile
applications. Development team members can use the Application Center to share
applications with members of the team. This process facilitates collaboration
between all the people who are involved in the development of an application.

Your company can typically use the Application Center as follows:
1. The development team creates a version of an application.

2. The development team uploads the application to the Application Center,
enters its description, and asks the extended team to review and test it.

3. When the new version of the application is available, a tester runs the
Application Center installer application, which is the mobile client. Then, the
tester locates this new version of the application, installs it on their mobile
device, and tests it.

IBM MobileFirst Platform Foundation for iOS V7.0.0

4. After the tests, the tester rates the application and submits feedback, which is
visible to the developer from the Application Center console.

The Application Center is aimed for private use within a company, and you can
target some mobile applications to specific groups of users. You can use the
Application Center as an enterprise application store.

MobileFirst Platform Command Line Interface for iOS

To help you get a better tools experience, IBM MobileFirst Platform Foundation for
iOS provides a command-line interface (CLI) tool to easily create and manage
apps. The CLI lets you use your preferred text editors or alternative IDEs to create
mobile applications.

The commands support tasks such as creating, adding, and configuring with the
API library, adding the client-side properties file and performing the build and
deploy of the application. From the command-line, you can create and deploy
adapters, and test them locally. You can administer your project from CLI or REST
services, or the Console, where you can control the local server and observe the
logs.

Product editions

IBM MobileFirst Platform Foundation for iOS is available in one edition.

This edition contains the following components:

¢ IBM MobileFirst Platform Command Line Interface for iOS, which is available as
an installable download.

* IBM MobileFirst Platform Server component, which is available as an IBM
Installation Manager package.

System requirements

System requirements for IBM MobileFirst Platform Foundation for iOS include
operating systems, SDKs, and other software.

IBM MobileFirst Platform Foundation for iOS has a number of system
requirements that must be met for you to install and configure the product
successfully. The system requirements include the following items:

* Operating systems that support IBM MobileFirst Platform Foundation for iOS,
including mobile device operating systems

* Required hardware configuration
* Supported software development kits (SDKs)

* Application servers, database management systems, and other software that are
required or supported by IBM MobileFirst Platform Foundation for iOS

System requirements by type (high-level)

The requirements in the following links are organized by high-level categories:

* |Operating systems|

e [Software,
e |Hardware

Product overview 2-7

https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/osForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/prereqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/hardwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807

System requirements by platform (detail)

The requirements in the following links are organized by installation target
platform:

« |AIXY

.
System requirements by component (detail)

The requirements in the following links are organized by product component:
+ [IBM MobileFirst Platform Application Center|

+ [IBM MobileFirst Platform Cloudant Data Layer Local Edition|

[[BM MobileFirst Platform Foundation Application Patterns|

[[BM MobileFirst Platform Operational Analytics|

[[BM MobileFirst Platform Server|

[[BM MobileFirst Platform Command Line Interface for iOS|

[[BM MobileFirst Platform Studio|

[[BM MobileFirst Platform Test Workbench|

[[BM MobileFirst Platform Device Runtimel

Matrix of features and platforms

2-8

IBM MobileFirst Platform Foundation for iOS provides many features and supports
many platforms.

The [Mobile OS feature mapping for IBM MobileFirst Platform Foundation for iOS|
technote on the IBM Support Portal lists the features that are available on each of
the platforms that IBM MobileFirst Platform Foundation for iOS supports.

Consider compatibility with prior releases before you decide what version of each
product component to install. For more information, see [“Version compatibility” on|
_a ge 7-1.

IBM MobileFirst Platform Foundation for iOS V7.0.0

https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=AIX
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=Linux
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=Mac%20OS
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=Mobile%20OS
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=Solaris
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=Windows
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=S005
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=S010
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=S009
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=S004
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=S003
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=D008
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=D001
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=D002
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=M007
http://www.ibm.com/support/docview.wss?uid=swg27039422

Release notes

You can identify the latest information about this product release and all its fix
packs.

What's new

Discover the new features and changes in IBM MobileFirst Platform Foundation for
iOS V7.0.0 compared to the previous version of this product.

Efficient and scalable app data storage

Store your app data with a simplified programming model that supports offline
access, scalable storage, and enterprise integration. Choose to store your data on
premises or in the cloud.

IBM MobileFirst Platform Cloudant Data Layer Local Edition
overview

The IBM MobileFirst Platform Cloudant Data Layer Local Edition, powered by
Cloudant Local, provides an advanced NoSQL database with easy-to-use
administration and management capabilities, rich developer support, and powerful
mobile and web capabilities.

As a JSON document store, Cloudant Local is ideal for managing multi-structured
or unstructured data. With indexing, you can enrich applications with
location-based, geospatial services, full-text search, and real-time analytics.

Native APIs

The MobileFirst Cloudant extensions extend the Cloudant Local APIs with support
for native language objects for iOS developers, offline access, and online remote
access.

For more information about the APIs, see [“Storing mobile data in Cloudant” on|
_ae 8-186.

Security

OAuth authentication is available through integration with the MobileFirst Data
Proxi. For more information, see [“Installing the MobileFirst Data Proxy” on page|

6-152.

Licensing options

Single node license
A single node license is included with MobileFirst Platform Cloudant
Local. This single node enables development and test with full API support
and tools. This license can be used for production with appropriate
planning for availability, performance, and backup.

IBM Cloudant Data Layer Local Edition V1.0
Upgrade to Cloudant Data Layer Local Edition to support clustered nodes
and gain horizontal and geographic scalability, fault tolerance, and

© Copyright IBM Corp. 2006, 2016 3-1

3-2

continuous availability. Cloudant Data Layer Local Edition is designed
with applications in mind that require the availability, elasticity, and reach
of possibly massive amounts of mobile data and devices. It is best suited
for apps that require an operational data store to handle a massively
concurrent mix of low-latency reads and writes.

Off premises
If you do not want to manage local installations, you can use off-premises
options, including the Cloudant.com database instance or the Cloudant
NoSQL DB service on IBM Bluemix®. Both services have separate charging
and licensing.

JSONStore and Cloudant comparison

Use the Cloudant Toolkit when you are storing data on a device that needs to be
synchronized to a Cloudant database. The Cloudant Toolkit provides the most
efficient means for synchronizing data to and from a Cloudant database. The
Cloudant Toolkit is available for native mobile applications for iOS in Swift or
Objective-C.

You can also access Cloudant data through the Cloudant REST APIs by configuring
a MobileFirst HTTP adapter. With this approach, you can synchronize data from a
Cloudant database to an encrypted JSONStore database on the device. However,
you add the performance expense of introducing the adapter layer in the middle.

You might consider using JSONStore instead of Cloudant in the following
scenarios:

* When you are storing data on the mobile device that needs to be encrypted.
JSONStore can also be enabled for FIPS 140-2 encryption.

* When you need to synchronize data between the device and the enterprise.
JSONStore can be connected to the MobileFirst adapter layer to synchronize data
to or from an enterprise source.

For more information about JSONStore, see ['JSONStore” on page 8-161

Standards-based integration and authentication

New features enable app developers with back end domain-specific knowledge to
securely integrate a mobile app with any enterprise system by using industry
standard technologies such as REST and OAuth.

Authentication and SSO using standard-based authentication
(OAuth)

Prior to V7.0.0, MobileFirst security was based entirely on a proprietary model.
Starting with V7.0,0, a new security model has been added to support the standard
OAuth 2.0 specification.

To support backward compatibility, the classic (pre-V7.0.0) security model can be
used in the flows that are based on the existing MobileFirst APIs (for example,
invokeProcedure) in Java. MobileFirst V7.0.0 provides seamless integration between
the two security models. The platform allows you to combine classic and new APlIs
in the same application, while keeping a consistent security context on the server
side.

In addition, the protected resources can report analytic events to IBM MobileFirst
Platform Operational Analytics such as authentication successes and failures.

IBM MobileFirst Platform Foundation for iOS V7.0.0

For more information, see [“OAuth-based security model” on page 8-221

With the new security model, you can enforce MobileFirst security on external
resources written in Java, Node.js, or any other language. For more information,
see [“Protecting external resources” on page 8-230.|

Adapters

Starting with V7.0.0, the following new adapter features were introduced to IBM
MobileFirst Platform Foundation for iOS:

Java adapters
Java adapters are based on the JAX-RS specification and expose a full REST
API to the client. For more information, see [“MobileFirst Java adapters” on|
|o age 8-85.

RESTAul access to JavaScript adapters
It is possible to call existing JavaScript adapter procedures over HTTP via
REST URLs from the /adapters endpoint. For more information, see
[“RESTful access to JavaScript adapters” on page 8-159 |

Service discovery for IBM BPM

You can now use IBM MobileFirst Platform Foundation for iOS V7.0.0 to discover
IBM BPM back-end services.

Service discovery with REST

You can describe a RESTful resource to access your back-end service. You can
describe URL segments that are dynamic parameters to generate MobileFirst
adapters.

SAP JCo adapters

Starting with V7.0.0, you can use the SAP Java Connector (SAP JCo) adapters to
develop SAP-compatible components and applications in Java. For more
information, see [‘SAP JCo adapters” on page 8-147 |

CLI commands

Starting with V7.0.0, there are new CLI commands.

* The adapter call command: call an adapter's procedure on the MobileFirst
Server. For more information, see

* The adapter add and add adapter commands: both create a new adapter. For
more information, see [“Commands” on page 8-16.

Core value features

IBM MobileFirst Platform Foundation for iOS enables enterprise application
developers to use the latest supported mobile OS software and tools, strengthens
the security of apps against hacking and tampering and makes reverse engineering
more difficult, and provides an enhanced and more efficient user experience of
operations and deployment.

Release notes 3-3

Mobile operating system currency

Upgraded version of Liberty
IBM MobileFirst Platform Foundation for iOS V7.0.0 uses an upgraded
version of Liberty. With V7.0.0, Liberty 8.5.5.4 is bundled with MobileFirst
Platform Command Line Interface for iOS.

Versions of Apache Cordova components
The version of Apache Cordova included in IBM MobileFirst Platform
Foundation for iOS V7.0.0 is composed of the following components:
Platforms
* cordova-android: 3.6.4
* cordova-blackberry10: 3.6.3
* cordova-ios: 3.7.0
* cordova-windows: 3.7.1
* cordova-wp8: 3.7.0
Plugins
* org.apache.cordova.battery-status: 0.2.12
* org.apache.cordova.camera: 0.3.4
* org.apache.cordova.console: 0.2.12
* org.apache.cordova.contacts: 0.2.15
* org.apache.cordova.device-motion: 0.2.11
* org.apache.cordova.device-orientation: 0.3.10
* org.apache.cordova.device: 0.2.13
* org.apache.cordova.dialogs: 0.2.11
* org.apache.cordova.file: 1.3.2
* org.apache.cordova. file-transfer: 0.4.8
* org.apache.cordova.geolocation: 0.3.11
* org.apache.cordova.globalization: 0.3.3
* org.apache.cordova.inappbrowser: 0.5.4
* org.apache.cordova.media-capture: 0.3.5
* org.apache.cordova.media: 0.2.15
* org.apache.cordova.network-information: 0.2.14
* org.apache.cordova.splashscreen: 0.3.5
* org.apache.cordova.statusbar: 0.1.9
* org.apache.cordova.vibration: 0.3.12

Secure integration and app security

Continuous delivery (operations and deployment)

New design of MobileFirst Operations Console
The redesigned MobileFirst Operations Console provides an enhanced user
experience, is compatible with tablets, and is accessible. For examples of
the new design and to follow enhanced interactions with MobileFirst
Operations Console, see, for example:

* [“Administering push notifications with the MobileFirst Operations|
Console” on page 11-63

* |“Device access management in the MobileFirst Operations Console” on|

page 12-96|

3-4 IBM MobileFirst Platform Foundation for iOS V7.0.0

* [“Error log of operations on runtime environments” on page 11-8|

Scalable deployment of MobileFirst applications by using a server farm
IBM MobileFirst Platform Foundation for iOS now offers an easy way to
deploy applications by replicating management operations to all instances
of a runtime configured in a server farm. You can automatically add or
remove servers to scale the capacity of the farm up or down. This
capability is available on WebSphere® Application Server Liberty profile,
WebSphere Application Server full profile, and Apache Tomcat.

For more information about this topology, see [‘Installing a server farm” on|

Miscellaneous improvements

Application Center: self-signed CA certificates
You can use self-signed certificate authority (CA) certificates in test
environments, when the administrator might not have a real Secure Sockets
Layer (SSL) certificate available, to install applications with Application
Center on a mobile device from a secured server. Such certificates work if
they get installed on the device as root certificate. For more information,
see [“Managing and installing self-signed CA certificates in an Application|
[Center test environment” on page 6-221.

New debug option for CLI
Starting with V7.0.0, you can use the new debug option to produce verbose
log output. For more information, see [“CLI commands usage” on page|
i8-16

Database password encryption for WebSphere Application Server Liberty
profile
Starting with V7.0.0, the Ant tasks, the server installer, and the Server
Configuration Tool encrypt database passwords by default for WebSphere
Application Server Liberty profile. For more information, see |”Encrypting|
|database password with Ant tasks for Liberty” on page 14-9.|

New internal database tables
The following database tables are new in V7.0.0:

CLIENT_INSTANCES
Stores instances of client applications that have registered with the
OAuth server.

FARM_CONFIG
Stores the configuration of farm nodes if a server farm is used.

For more information, see [“Internal runtime database tables” on page]

Improved MobileFirst API

New features improve and extend the APIs that you can use to develop mobile
applications.

Updated Objective-C client-side API for iOS

IBM MobileFirst Platform Foundation for iOS V7.0.0 includes updates in its
Objective-C client-side API to develop native apps on iOS, as follows:

New API classes:

Release notes 3-5

WLAuthorizationManager
The WLAuthorizationManager class manages the entire OAuth flow, from
client registration to token generation.

For more information, see the WLAuthorizationManager class.

WLResourceRequest
The WLResourceRequest class encapsulates a resource request and provides
several send methods with different inputs for the body of a request.

WLResourceRequest can also be used to access the Java adapters with a
relative URL.

For more information, see the WLResourceRequest class.

Updated API classes:

WLResponse
The WLResponse class now provides access to the server JSON response
through a property. The getResponseJson method is deprecated.

For more information, see the WLResponse class.

WLClient
The HTTPCookieStorage method has been added to enhance cookie
management.

MobileFirst Cloudant extensions APls
You can store data for your mobile application in a Cloudant database, which is an

advanced NoSQL database that is capable of handling a wide variety of data types,
such as JSON, full-text, and geospatial data. The SDK is available for Objective-C.

For more information about the Objective-C APlIs, see |”MobileFirst Cloudant AP]]
[reference” on page 9-183 |

Tutorials and samples

New and updated tutorials, and their associated sample files, are available, on the
Developer Center web site.

For more information, see the [Mobile First Platform Developer Centerl web site.

What's new in V7.0.0 interim fixes

3-6

Interim fixes provide patches and updates to correct problems and keep IBM
MobileFirst Platform Foundation for iOS current for new releases of mobile
operating systems.

Interim fixes are cumulative. When you download the latest V7.0.0 interim fix, you
get all of the fixes from earlier interim fixes.

Download and install the latest interim fix to obtain all of the fixes that are
described in the following sections. If you install earlier fixes, you might not get all
of the fixes described here.

IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-all-tutorials-7-0/

iOS 9 support

If you use Xcode 7 to compile your apps, or if you use extended authenticity
protection for your apps, install the latest interim fix and review the following
sections to ensure that your apps continue to work on iOS 9.

If you build your apps with Xcode 6.4 and do not use extended authenticity
protection, you can rebuild your apps with iOS 9 support without installing the
latest IBM MobileFirst Platform Foundation for iOS interim fix.

Extended authenticity checking for apps that undergo app
thinning

App thinning| was introduced by Apple in iOS 9 for apps that are compiled with
Xcode 7. App thinning reduces the size of files that are downloaded from the App
Store. The feature might affect the extended authenticity features of IBM
MobileFirst Platform Foundation for iOS apps because the binary file in the App
Store might differ from the one that is downloaded to the client device.

After you apply latest interim fix, the app thinning feature is available for any app
that uses iOS 9 and later and Xcode 7 and later and that was created by using IBM
MobileFirst Platform Foundation for iOS V7.0.0 and later.

For more information, see [“Enabling extended authenticity checking for apps that]
[undergo app thinning” on page 10-52.

Disabling bitcode-enabled Xcode builds

Starting with Xcode 7, bitcode is a default, but optional option for iOS apps. The
bitcode option is not currently supported in IBM MobileFirst Platform Foundation
for iOS. To use the MobileFirst SDK in any project that uses Xcode 7, you must
disable bitcode.

Applications that are based on Apple watchOS 2 require the bitcode to be enabled
and are currently not supported in IBM MobileFirst Platform Foundation for iOS.

For more information, see [“Disabling bitcode in Xcode builds” on page 8-14

Support for dynamic .tbd libraries in Xcode 7

Xcode 7 replaces dynamic .dy1ib libraries with more lightweight .tbd files. Up to
now, IBM MobileFirst Platform Foundation for iOS projects link with .dy1ib
libraries such as: 1ibc++.dylib, Tibstdc.dylib, and 1ibz.dylib. These libraries
must be replaced with the corresponding .tbd libraries.

For guidelines, see the following topics:

+ [“Copying files of iOS applications” on page 8-7]

+ |Adding Mobilefirst web capabilities to an existing native app|

Enforcing TLS-secure connections in iOS apps
Apple's App Transport Security (ATS) is a new feature of iOS 9 that enforces best

practices for connections between the app and the server. By default, this feature
enforces some connection requirements that improve security. These include

Release notes 3-7

https://developer.apple.com/library/prerelease/watchos/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html

=6

client-side HTTPS requests and server-side certificates and connection ciphers that
conform to Transport Layer Security (TLS) version 1.2 using forward secrecy.

For development purposes, you can override the default behavior by specifying an
exception in the Info.plist file in your app. However, in a full production
environment, all iOS apps must enforce TLS-secure connections for them to work

properly.

By applying the latest interim fix, the apps that you develop in IBM MobileFirst
Platform Foundation for iOS V6.0.0 and later automatically turn off transport
security to allow all non-secure connections to the IBM MobileFirst Platform
Foundation for iOS development server.

For more information, see [“Enforcing TLS-secure connections in iOS apps” on page|

Exporting and importing custom chart definitions for analytics

If you are using the latest interim fix of IBM MobileFirst Platform Foundation for
i0S, you can export and import your custom chart definitions programmatically or
in the IBM MobileFirst Platform Operational Analytics Console.

For more information, see [“Exporting and importing custom chart definitions” on|

Deprecated and removed features

3-8

If you are migrating from an earlier release of the product, be aware of the various
features that have been deprecated or removed in this and earlier releases.

Deprecated features

Definition: Pertaining to an entity, such as a programming element or
feature, that is supported but no longer recommended and that might
become obsolete.

For a list of deprecated features, see [‘Deprecated features and APJ|

Removed features

Definition: Pertaining to a feature that is no longer included in a product.

For a list of removed features, see [“Removed features” on page 3-9|

Deprecated features and API elements

The following API elements are deprecated from this release.

IBM MobileFirst Platform Foundation for iOS V7.0.0

Features deprecated in V7.0.0
Table 3-1. Features deprecated in V7.0.0.

Category

Deprecation

Recommended Action

Analytics Reports database

The Reports database, often
referenced as WLREPORT in the
documentation, is deprecated
in IBM MobileFirst Platform
Foundation for iOS V7.0.0.

Use IBM MobileFirst
Platform Operational
Analytics instead. Note that
setting up the Reports
database is optional in this
release and prior releases.
Also note that the use of the
Reports database is
redundant with MobileFirst
Operational Analytics in this
release and recent prior
releases.

Analytics BIRT predefined
reports

The predefined BIRT reports
are deprecated.

Use IBM MobileFirst

Platform Operational

Analytics console and
custom chart support
instead.

The JAR files and JavaScript
libraries that enable SSO
between IBM MobileFirst
Platform Foundation for iOS
and other external services

The external-server-
libraries directory and its
contents are deprecated. The
following API URLSs are also
deprecated:

<application root
context>/oauth/*

Use the MobileFirst
OAuth-based security model
instead. For more
information about this

model, see |”OAuth—based|

security model” on page]

8-221 |

API elements deprecated in V7.0.0
Table 3-2. API elements deprecated in V7.0.0.

Category | Deprecation Recommended Action
WLClient |[WLCLient lastAccessToken] Use [WLAuthorizationManager
cached AuthorizationHeader] instead.
[WLCLient lastAccessTokenForScope] Use [WLAuthorizationManager
cachedAuthorizationHeader] instead.
[WLCLient Use [WLAuthorizationManager
obtainAccessTokenForScope] obtainAuthorizationHeaderForScope]
instead.
WLRespons¢ [WLResponse getResponseJson] Use the responseJson property
instead.

Removed features

The following features are removed from this and earlier releases of this product.

3-9

Release notes

Features removed in V7.0.0

Table 3-3. Features removed in V7.0.0.

Feature

The JAR files and JavaScript libraries that enable SSO between IBM MobileFirst Platform
Foundation for iOS and other external services are removed. Use the MobileFirst
OAuth-based security model instead.

For more information about the OAuth-based security model, see [“OAuth-based security]|
[model” on page 8-221)

The "shake to refresh" feature is removed in IBM MobileFirst Platform Foundation for iOS
Vv7.0.0.

Known issues

You can identify the latest known issues and their resolutions, for this product
release and all its fix packs, by browsing this dynamic list of documents.

Click the following link to receive a dynamically generated list of documents for
this specific release and all its fix packs, including known issues and their
resolutions, and relevant downloads: Ihttp: / /www.ibm.com /support/ |
[search.wss?tc=SSHSCDé&atrn=SW Versioné&atrv=7.0|

The following websites provide helpful community resources:

+ [Developer Center for IBM MobileFirst Platform| (Help page), where you can post
questions to Stack Overflow website, and get answers, by using the following
tags:

-
- for past releases

. website, where you can post questions and get answers, by using
the following tags:

-
- for past releases

Known limitations

General limitations apply to IBM MobileFirst Platform Foundation for iOS as
detailed here. Limitations that apply to specific features are explained in the topics
that describe these features.

In this documentation, you can find the description of IBM MobileFirst Platform

Foundation for iOS known limitations in different locations:

* When the known limitation applies to a specific feature, you can find its
description in the topic that explains this specific feature. You can then
immediately identify how it affects the feature.

* When the known limitation is general, that is, applies to different and possibly
not directly related topics, you can find its description here.

Note: For more information about product known limitations or issues, see
[“Known issues.”|

3-10 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/search.wss?tc=SSHSCD&atrn=SWVersion&atrv=7.0
http://www.ibm.com/support/search.wss?tc=SSHSCD&atrn=SWVersion&atrv=7.0
https://developer.ibm.com/mobilefirstplatform/help/
http://stackoverflow.com/questions/tagged/mobilefirst
http://stackoverflow.com/questions/tagged/worklight
https://developer.ibm.com/answers
https://developer.ibm.com/answers/search.html?f=&type=question&redirect=search_search&sort=relevance&q=mobilefirst
https://developer.ibm.com/answers/search.html?f=&type=question&redirect=search_search&sort=relevance&q=worklight

Globalization

If you are developing globalized apps, notice the following restrictions:

Part of the product IBM MobileFirst Platform Foundation for iOS V7.0.0,
including its documentation, is translated in the following languages: Simplified
Chinese, Traditional Chinese, French, German, Italian, Japanese, Korean,
Portuguese (Brazil), Russian, and Spanish. Only user-facing text is translated.

The MobileFirst Platform Command Line Interface for iOS and MobileFirst
Operations Console provide only partial support for bidirectional languages.
The applications that are generated by IBM MobileFirst Platform Foundation for
iOS are not fully bidirectional enabled. Mirroring of the graphic user interface
(GUI) elements and the control of the text direction are not provided by default.
However, there is no hard dependency from the generated applications on this
limitation. It is possible for the developers to achieve full bidi compliance by
manual adjustments in the generated code.

Although translation into Hebrew is provided for IBM MobileFirst Platform
Foundation for iOS core functionality, some GUI elements are not mirrored.

In MobileFirst Platform Command Line Interface for iOS and MobileFirst
Operations Console, dates and numbers might not be formatted according to the
locale.

Names of projects, apps, and adapters must be composed only of the following
characters:

— Uppercase and lowercase letters (A-Z and a-z)
— Digits (0-9)
— Underscore (_)

There is no support for Unicode characters outside the Basic Multilingual Plane.

The Server Configuration Tool has the following restrictions:

The descriptive name of a server configuration can contain only characters that
are in the system character set. On Windows, it is the ANSI character set.

Passwords that contain single quotation mark or double quotation mark
characters might not work correctly.

The console of the Server Configuration Tool has the same globalization
limitation as the Windows console to display strings that are out of the default
code page.

IBM MobileFirst Platform Operational Analytics has the following limitations in
terms of globalization:

In reports, the format for dates and times do not follow the International
Components for Unicode (ICU) rules.

In reports, searching for Chinese, Japanese, and Korean characters (CJK) returns
no results.

In Analytics Console, the format for numbers does not follow the International
Components for Unicode (ICU) rules.

In Analytics Console, the numbers do not use the user's preferred number script.

When you create a custom filter for a custom chart, the numerical data must be
in base 10, Western, or European numerals, such as 0, 1, 2, 3,4, 5, 6,7, 8, 9.

The numbers that represent the page numbers in the pagination elements of the
MobileFirst Operations Console are limited to Western or European numerals.

The Analytics page of the MobileFirst Operations Console does not work in the
following browsers:

Release notes 3-11

3-12

— Microsoft Internet Explorer version 8 or earlier
— Apple Safari on iOS version 4.3 or earlier

You might also experience restrictions or anomalies in various aspects of
globalization because of limitations in other products, such as browsers, database
management systems, or software development kits in use. For example:

* You must define the user name and password of the Application Center with
ASCII characters only. This limitation exists because IBM WebSphere Application
Server (full or Liberty profiles) does not support non-ASCII passwords and user
names. See [Characters that are valid for user IDs and passwords]

* In Java 7.0 Service Refresh 4-FP2 and previous versions, you cannot paste
Unicode characters that are not part of the Basic Multilingual Plane into the
input field. To avoid this issue, create the path folder manually and choose that
folder during the installation.

* Custom title and button names for the alert, confirm, and prompt methods must
be kept short to avoid truncation at the edge of the screen.

* The applications that are developed with MobileFirst Application Framework
running in Portuguese (Portugal) will see runtime messages in Portuguese
(Brazil).

* JSONStore does not handle normalization. The Find functions for the JSONStore
API do not take account of language sensitivity such as accent insensitive, case
insensitive, and 1 to 2 mapping.

* The sorted results of JSONStore Find API are not language-specific and not
compliant with Common Locale Data Repository (CLDR) rules.

Application Center mobile client

The Application Center mobile client follows the cultural conventions of the
running device, such as the date formatting. It does not always follow the stricter
International Components for Unicode (ICU) rules.

Application Center requires MobileFirst Studio for importing and
building the IBMAppCenter project

MobileFirst Studio is not part of IBM MobileFirst Platform Foundation for iOS, but
if you purchased this product, you are entitled to the full cross-platform version of
the product as well. You can install MobileFirst Studio from the Eclipse
Marketplace, or download the full MobileFirst Platform Command Line Interface
for iOS from [IBM MobileFirst Developer Center| to perform the build of the
Application Center mobile client for iOS.

JSONStore resources for iPhone and iPad

When you develop apps for iPhone and iPad, the JSONStore resources are always
packaged in the application, regardless of whether you enabled JSONStore or not
in the application descriptor. The application size is not reduced even if JSONStore
is not enabled.

Analytics page of the MobileFirst Operations Console
Response times in the Analytics page of the MobileFirst Operations Console

depend on several factors, such as hardware (RAM, CPUs), quantity of
accumulated analytics data, and IBM MobileFirst Platform Operational Analytics

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/csec_chars.html
https://developer.ibm.com/mobilefirstplatform/

clustering. Consider testing your load before integrating IBM MobileFirst Platform
Operational Analytics into production.

Installation on a cluster of IBM WebSphere Application Servers
Liberty profile that you administer with a collective controller

The following limitations apply if you install MobileFirst Server on a cluster of
IBM WebSphere Application Servers, Liberty profile, that you administer with a
collective controller:

* The Application Center installation with the MobileFirst Server installer does not
use the collective controller. You must install MobileFirst Server on each server
separately.

* The MobileFirst Operations Console installation with the
<configureApplicationServer> Ant task does not use the collective controller.
You must run the <configureApplicationServer> Ant task for each server
separately.

No white space with Eclipse workspace path

The MobileFirst Development Server (an instance of the WebSphere Application
Server Liberty profile server) cannot handle an Eclipse workspace path with white
space. As a result, a simple app cannot be deployed or previewed. In MobileFirst
Operations Console, an error message is displayed:

Server error. Contact the server administrator.

In the log file, the following error messages are logged:

[12/11/14 10:27:57:376 IST]

0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W:
The manifest class path jaxb-api.jar can not be found in jar file
wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wip/usr/servers/
worklight/apps/worklightconsole.war!/

WEB-INF/1ib/jaxb-imp1-2.1.12.0sgi.jar or its parent.

[12/11/14 10:27:57:376 IST]

0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W:
The manifest class path activation.jar can not be found in jar file
wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wlp/usr/servers/
worklight/apps/worklightconsole.war!/

WEB-INF/1ib/jaxb-imp1-2.1.12.0sgi.jar or its parent.

[12/11/14 10:27:57:376 IST]

0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W:
The manifest class path jsrl73_1.0_api.jar can not be found in jar file
wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wip/usr/servers/
worklight/apps/worklightconsole.war!

/WEB-INF/1ib/jaxb-imp1-2.1.12.0sgi.jar or its parent.

[12/11/14 10:27:57:377 1ST]

0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W:
The manifest class path jaxbl-impl.jar can not be found in jar file
wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wlp/usr/servers/
worklight/apps/worklightconsole.war!

/WEB-INF/1ib/jaxb-imp1-2.1.12.0sgi.jar or its parent.

[12/11/14 10:27:57:637 IST]

00000029 com.ibm.ws.webcontainer.osgi.webapp.WebGroup I SRVEO169I:

Loading Web Module: IBMJMXConnectorREST.

Do not use an Eclipse workspace path with white space.

Release notes 3-13

Installation of a fix pack or interim fix to the Application Center
or the MobileFirst Server

When you apply a fix pack or an interim fix to Application Center or MobileFirst
Server, manual operations are required, and you might have to shut down your
applications for some time. For more information, see ["Upgrading to IBM|
MobileFirst Platform Foundation for iOS V7.0.0” on page 7-1] or |[“Upgrading to]
MobileFirst Server V7.0.0 in a production environment” on page 7-4.

FIPS 140-2 feature limitations

The following known limitations apply when you use the FIPS 140-2 feature in

IBM MobileFirst Platform Foundation for iOS:

» This FIPS 140-2 validated mode applies only to the protection (encryption) of
local data that is stored by the JSONStore feature and protection of HTTPS
communications between the MobileFirst client and the MobileFirst Server.

— For HTTPS communications, only the communications between the
MobileFirst client and the MobileFirst Server use the FIPS 140-2 libraries on
the client. Direct connections to other servers or services do not use the FIPS
140-2 libraries.

* On iOS, this feature is supported on 1386, armv7, and armv7s architectures. FIPS
is not yet supported on 64-bit architecture even though MobileFirst library does
support 64-bit architecture. Therefore, FIPS must not be enabled on 64-bit target
platform when XCode Build Setting (Architecture) is also set to 64 bit.

* This feature works with hybrid applications only (not native).

* The use of the user enrollment feature on the client is not supported by the FIPS
140-2 feature.

* The Application Center client does not support the FIPS 140-2 feature.

For more information about this feature, see [“FIPS 140-2 support” on page 11-123/

LTPA token limitations

An SESNOOO8E exception occurs when an LTPA token expires before the user session
expires.

An LTPA token is associated with the current user session. If the session expires
before an LTPA token expires, a new session is created automatically. However,
when an LTPA token expires before a user session expires, the following exception
occurs:

com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException: SESNOOOSE:
A user authenticated as anonymous has attempted to access a session owned by {user name}

To resolve this limitation, you must force the user session to expire when the LTPA
token expires.

* On WebSphere Application Server Liberty, set the httpSession attribute
invalidateOnUnauthorizedSessionRequestException to true in the server.xml
file.

* On WebSphere Application Server, add the session management custom
property InvalidateOnUnauthorizedSessionRequestException with the value
true to fix the issue.

Note: On certain versions of WebSphere Application Server or WebSphere
Application Server Liberty, the exception is still logged, but the session is correctly
invalidated. For more information, see/APAR PM85141}

3-14 1BM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg1PM85141

Support of Oracle 12c by MobileFirst Server

The installation tools of the MobileFirst Server (Installation Manager, Server
Configuration Tool, and Ant tasks) support installation with Oracle 12¢c as a
database.

The users and tables can be created by the installation tools but the database, or
databases, must exist before you run the installation tools.

Liberty server limitations

If you use the Liberty studio server on a 32-bit JDK 7, Eclipse might not start, and
you might receive the following error: Error occurred during initialization of
VM. Could not reserve enough space for object heap. Error: Could not create
the Java Virtual Machine. Error: A fatal exception has occurred. Program
will exit.

To fix this issue, use the 64-bit JDK with the 64-bit Eclipse and 64-bit Windows. If
you use the 32-bit JDK on a 64-bit machine, you might configure JVM preferences
to mx512m and -Xms216m.

Application servers restrictions for MobileFirst Data Proxy

You cannot install MobileFirst Data Proxy on the following application servers:
* Apache Tomcat
* Versions of WebSphere Application Server Liberty profile earlier than V8.5.5.0.

Physical iOS device required for testing extended app
authenticity

The testing of the extended app authenticity feature requires a physical iOS device,
because an IPA cannot be installed on an iOS simulator.

Release notes 3-15

3-16 IBM MobileFirst Platform Foundation for iOS V7.0.0

Troubleshooting

You can find advice on how to troubleshoot problems, and more information about
known limitations and technotes (Troubleshooting).

The following links point to troubleshooting topics in other parts of this user
documentation. To navigate from there back to this topic, click Back in your Web
browser.

+ [“Troubleshooting IBM MobileFirst Platform Server” on page 6-280|
[“Troubleshooting IBM HTTP Server startup” on page 6-259|
[“Troubleshooting to find the cause of installation failure” on page 6-280)

[“Troubleshooting a Cast Iron adapter — connectivity issues” on page 8-149|
[“Troubleshooting JSONStore” on page 8-168]
[“Troubleshooting simple data sharing” on page 8-256

[“Troubleshooting a corrupt login page (Apache Tomcat)” on page 11-77]

* [“Troubleshooting failure to authenticate to Application Center and applications
that use the basic registry element” on page 6-281]

[“Troubleshooting push notification problems” on page 8-220)

[“Troubleshooting JMX configuration for Liberty profile” on page 6-49|

For more information about known limitations or issues in the product, and
removed or deprecated features, see [“Release notes” on page 3-1]

Important: If you have to contact IBM Support for help, see the information in
[Collect troubleshooting data} This document details how to gather the necessary
information about your environment so that IBM Support can help diagnose and
resolve your problem.

© Copyright IBM Corp. 2006, 2016 4-1

http://www.ibm.com/support/docview.wss?uid=swg21598161

4-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

Tutorials, samples, and additional resources

Tutorials and samples help you get started with and learn about IBM MobileFirst
Platform Foundation for iOS. Use them to evaluate what the product can do for
you.

Tutorials and associated samples

For you to learn the most important features of IBM MobileFirst Platform

Foundation for iOS, tutorials are available on the page of the

Developer Center for IBM MobileFirst Platform Foundation for iOS.
Tutorials are organized in categories.

Each tutorial is composed of web pages to learn the steps and one or two
companion samples to practice and reuse. The samples are provided as compressed
files and contain pieces of code or script files that support the step-by-step
instructions. When a tutorial includes some exercises, a companion sample
provides the solutions to these exercises.

The same page provides links for you to download compressed files that contain
the materials for the tutorials and samples.

Sample applications

Demonstrations are available from the [Starter application samples| page of the
Developer Center for a collection of features.

Additional documentation

The [Additional documentation| page of the Developer Center provides more useful
links, including a guide to scalability and hardware sizing.

Terms and conditions

Before you use the IBM MobileFirst Platform Foundation for iOS Getting Started
modules, exercises, and code samples that are available from Getting Started pages,
you must agree on the terms and conditions that are set forth here:

This information contains sample code provided in source code form. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample code is written. Notwithstanding anything to the
contrary, IBM PROVIDES THE SAMPLE SOURCE CODE ON AN “AS IS” BASIS
AND IBM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE, AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM SHALL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY OR ECONOMIC
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR OPERATION OF
THE SAMPLE SOURCE CODE. IBM SHALL NOT BE LIABLE FOR LOSS OF, OR

© Copyright IBM Corp. 2006, 2016 5-1

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-native-ios-development-7-0/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/starter-application-samples/
https://developer.ibm.com/mobilefirstplatform/additional-documentation/

DAMAGE TO, DATA, OR FOR LOST PROFITS, BUSINESS REVENUE,
GOODWILL, OR ANTICIPATED SAVINGS. IBM HAS NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS OR
MODIFICATIONS TO THE SAMPLE SOURCE CODE.

The resources might include applicable third-party licenses. Review the third-party
licenses before you use any of the resources. You can find the third-party licenses
that apply to each sample in the notices.txt file that is included with each
sample.

5-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

Installing and configuring

This topic is intended for IT developers and administrators who want to install
and configure IBM MobileFirst Platform Foundation for iOS.

This topic describes the tasks required to install and configure the different
components of IBM MobileFirst Platform Foundation for iOS. It also contains
information about installing and configuring database and application server
software that you need to support the runtime database.

For more information about how to size your system, see the Scalability and
Hardware Sizing document and the hardware calculator spreadsheet at the
[Developer Center website for IBM MobileFirst Platform Foundation]

Consider compatibility with prior releases before you decide what version of each
product component to install. For more information, see [“Version compatibility” on|
-a ge 7-1.

Installation overview

IBM MobileFirst Platform Foundation for iOS provides the following installable
components: MobileFirst Platform Command Line Interface for iOS, and
MobileFirst Server. This section gives an overview of the installation process.

Installing MobileFirst Server with IBM Installation Manager

To ensure the correct installation of MobileFirst Server, see [“Installatio

[prerequisites” on page 6-4

You must install IBM Installation Manager 1.6.3 or later separately before installing
IBM MobileFirst Platform Foundation for iOS. For more information, see

[[BM Installation Manager” on page 6-29.

Note: IBM Installation Manager is sometimes referred to as IBM Rational®
Enterprise Deployment on the eXtreme Leverage, Passport Advantage® sites, and on
the distribution disks. The file names for the images take the form IBM Rational
Enterprise Deployment <version number><hardware platform> <language>; for
example, IBM Rational Enterprise Deployment V1.6.3.1Windows Multilingual.

You then use IBM Installation Manager to install MobileFirst server-side
components on your application server, and to create databases on your database
management system. Some application server and database configuration is
required. For actual instructions, see [“Installing MobileFirst Server” on page 6-2.|

Upgrading from earlier versions

The preceding sections provide an overview of IBM MobileFirst Platform
Foundation for iOS "first time" installations. For information about upgradin
existing installations of MobileFirst Server to a newer version, see [“Upgrading tol

[[BM MobileFirst Platform Foundation for iOS V7.0.0” on page 7-1.

Consider compatibility with prior releases before you decide what version of each
product component to install. For more information about compatibility between

© Copyright IBM Corp. 2006, 2016 6-1

https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

releases, see [“Version compatibility” on page 7-1)

Installing command-line tools for developers

Follow these instructions to install IBM MobileFirst Platform Command Line
Interface for iOS (CLI).

Procedure

1. Download the IBM MobileFirst Platform Command Line Interface for iOS with
the rest of IBM MobileFirst Platform Foundation for iOS from IBM Passport
Advantage.

2. In the Finder, double-click the mobilefirst_ios_cli_installer_7.0.0.zip
package. The CLI is packaged as a single compressed file, which contains
installation executable files for each platform, as listed:

* Readme file
* install_mac.app
* resources/

3. From the Finder, right-click the install_mac.app file and select Open. A GUI

appears which guides you through the installation of IBM MobileFirst Platform

Command Line Interface for iOS. Follow the instructions to complete your
installation.

4. On completion of your installation, log out and then log back in. This action
ensures that the mobilefirst and mfp commands are on your system path.

Uninstalling command-line tools for developers

Follow these instructions to uninstall the IBM MobileFirst Platform Command Line
Interface for iOS.

Before you begin

Open your command-line terminal to the path where you installed the IBM
MobileFirst Platform Command Line Interface for iOS, and change the directory to
the Uninstaller folder.

Procedure

GUI Uninstallation: Select and run the uninstall. A GUI appears which guides you

through the uninstallation of the IBM MobileFirst Platform Command Line
Interface for iOS. Follow the instructions to complete your uninstallation.

Installing MobileFirst Server

6-2

IBM installations are based on an IBM product called IBM Installation Manager.
Install IBM Installation Manager 1.6.3.1 or later separately before you install IBM
MobileFirst Platform Foundation for iOS.

Important: Ensure that you use IBM Installation Manager 1.6.3.1 or later. This
version contains an important fix for an issue identified in IBM Installation
Manager 1.6.3. See [http:/ /www.ibm.com /support/docview.wss?uid=swg24035049}

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg24035049

The MobileFirst Server installer copies onto your computer all the tools and
libraries that are required for deploying a MobileFirst project or the IBM
MobileFirst Platform Application Center in production, and IBM SmartCloud®
Analytics Embedded.

MobileFirst Server can also automatically deploy the Application Center at
installation time. In this case, a database management system and an application
server are required as prerequisites and must be installed before you start the
MobileFirst Server installer.

The installer can also help with upgrading an existing installation of MobileFirst
Server to the current version. See [“Upgrading to IBM MobileFirst Platform|
[Foundation for iOS V7.0.0” on page 7-1|

Before you install, take the time to consider the server topology in which you will
deploy the administration components and the runtimes. The supported topologies
are introduced in [“Planning deployment of administration components and|
[runtimes” on page 6-7.

The following topics describe the installation of MobileFirst Server, installation
prerequisites, and the procedures for a manual installation and configuration of
Application Center. After MobileFirst Server is installed, a MobileFirst project must
be deployed to an application server. This deployment installs a IBM MobileFirst
Platform Operations Console that can be used to upload applications and adapters.
The instructions in [“Tutorial for a basic installation of MobileFirst Server” on page]
are based on a simple installation scenario. For a complete description of the

process of deploying a MobileFirst project, see |“Deploying MobileFirst projects” on|
|o; e 10-1.

Planning the installation of MobileFirst Server

You must plan your installation and choose one installation scenario. You must
also plan the creation of your databases and the topology of the application server.

To install the MobileFirst Server, you can choose one of the following scenarios:
* With the Server Configuration Tool.

The Server Configuration Tool is a graphical tool and is available for Windows,
Linux on x86, and Mac OS. With this tool, you get easily started, but expect
some limitations when you maintain an application in production, in particular
for some upgrade scenarios. This tool can export Ant files.

Restriction:

— The Server Configuration Tool does not support server farms. Therefore, you
cannot use it to define, install, upgrade, or uninstall server farms. For server
farms, use the provided Ant script or follow manual steps in your application
server. For more information, see [“Installing a server farm” on page 6-97.

— The Server Configuration Tool for Mac OS is available for development and
test purposes only.

* Ant tasks: Ant command-line files automate the process of creating or upgrading
a database, either automatically or as a complement of a database preparation by
a database administrator. The Ant tasks also automate the process of installing
or upgrading the Administration Services and the MobileFirst Operations
Console in an application server. Ant tasks provide a high level of control for
individual operations on the database or on the application server.

¢ Manual installation.

Installing and configuring 6-3

6-4

Installation prerequisites
For smooth installation of MobileFirst Server, ensure that you fulfill all required
environment setup and software prerequisites before you attempt installation.

You can find a complete list of supported hardware together with prerequisite
software in [“System requirements” on page 2-7.

Important: If a version of MobileFirst Server is already installed, review
[“Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0” on page 7-1|
before you install MobileFirst Server and deploy a MobileFirst project on the same
application server or databases. Failure to do so can result in an incomplete
installation and a non-functional MobileFirst Server.

Download the IBM MobileFirst Platform Foundation for iOS package from
[Passport Advantagel

Ensure that you have the latest fix packs for the IBM MobileFirst Platform
Foundation for iOS product. If you are connected to the Internet during the
installation, IBM Installation Manager can download the latest fix packs for you.

The package contains an Install Wizard that guides you through the MobileFirst
Server installation.

MobileFirst Server requires an application server and relies on a database
management system.

You can use any of the following application servers:
* WebSphere Application Server Liberty Core

* WebSphere Application Server

* Apache Tomcat

You can use any of the following database management systems:

+ IBM DB2°®

* MySQL

¢ Oracle

* Apache Derby in embedded mode. Included in the installation image.

Verify that the application server you selected provides support for your database.

Note: Apache Derby is supplied for evaluation and testing purposes only and is
not supported for production-grade MobileFirst Server.

The MobileFirst installer can install the IBM MobileFirst Platform Application
Center and deploy it to your application server. In this case, the application server
and the database management system (if different from Apache Derby) must be
installed before you start the MobileFirst Server installer. If you do not need the
Application Center or decide to install it manually, you do not need to install the
application server and database management system before you start the
MobileFirst Server installer. However, you need them before you deploy IBM
MobileFirst Platform Foundation for iOS projects.

The IBM MobileFirst Platform Foundation for iOS packages include the following
installers:

+ IBM DB2 Workgroup Server Edition

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/software/passportadvantage/pao_customers.htm
http://www.ibm.com/software/passportadvantage/pao_customers.htm

« IBM DB2 Enterprise Server Edition (on Linux for System z® only)
+ IBM WebSphere Application Server Liberty Core

File system prerequisites

To install IBM MobileFirst Platform Foundation for iOS to an application server,
the MobileFirst installation tools must be run by a user that has specific file system
privileges.

The installation tools include:

* IBM Installation Manager

* The Server Configuration Tool

* The Ant tasks to deploy the MobileFirst Server

For WebSphere Application Server Liberty profile, you must have the right to
perform the following actions:

* Read the files in the Liberty installation directory.

* Create files in the configuration directory of the Liberty server, which is typically
usr/servers/<servername>, to create backup copies and modify server.xml and
jvm.options.

* Create files and directories in the Liberty shared resource directory, which is
typically usr/shared.

* Create files in the Liberty server apps directory, which is typically
usr/servers/<servername>/apps.

For WebSphere Application Server full profile and WebSphere Application Server
Network Deployment, you must have the right to perform the following actions:

* Read the files in the WebSphere Application Server installation directory.

* Read the configuration file of the selected WebSphere Application Server full
profile or of the Deployment Manager profile.

¢ Run the wsadmin command.

* Create files in the profiles configuration directory. The installation tools put
resources such as shared libraries or JDBC drivers in that directory.

For Apache Tomcat, you must have the right to perform the following actions:
* Read the configuration directory.

* Create backup files and modify files in the configuration directory, such as
server.xml, and tomcat-users.xml.

* Create backup files and modify files in the bin directory, such as setenv.bat.
* Create files in the 11b directory.
* Create files in the webapps directory.

For all these application servers, the user who runs the application server must be
able to read the files that were created by the user who ran the MobileFirst
installation tools.

Introduction to the MobileFirst Server components

The MobileFirst Server is composed of one or more runtime environments, an
administration console and administration services, an enterprise application store,
and an operational analytics feature.

Installing and configuring 6-5

6-6

MobileFirst Server components run as web applications on an application server.
To set up MobileFirst Server, you must first choose which of the following
supported application servers you want to use:

* WebSphere Application Server

* WebSphere Application Server Liberty

* Apache Tomcat

For implementations that require several servers, you might want to set up one of
the following topologies:

* A server cluster that is defined by using the WebSphere Application Server
Network Deployment solution. (Use the hardware-sizing tool on
developerWorks® to decide on the number of servers and the size of the
database.)

* A farm of individual application servers. Specific installation steps must be
taken. See [“Installing a server farm” on page 6-97.|

The following sections describe each of the following MobileFirst Server
components:

* [“MobileFirst runtime environments.”|

+ |“IBM MobileFirst Platform Operations Console and Administration Services”
+ [“IBM MobileFirst Platform Application Center” on page 6-7|
+ [“MobileFirst Operational Analytics” on page 6-7|

MobileFirst runtime environments

The MobileFirst runtime environment is a mobile-optimized server-side component
that runs the server side of your mobile applications (back-end integration, version
management, security, unified push notification).

Each runtime environment is packaged as a web application (WAR file), which is
created by using IBM MobileFirst Platform Command Line Interface for iOS. Each
runtime environment can host one or more MobileFirst applications.

Each runtime environment requires a database to host information such as the list
of devices that connect to it. Different runtime environments (different project WAR
files) cannot share database tables. If you have multiple runtime environments, the
tables must be in different schemas or different databases, depending on your
database management system. Similar runtime environments (project WAR files) that
run in the same cluster of farm must use the same database unless you implement
a disaster recovery topology with replication and conflict management as described
in|Active/Active topology for the MobileFirst Platform Foundation Server| You can
also optionally set up a report database to host data for simple usage reports of a
particular runtime environment.

IBM MobileFirst Platform Operations Console and Administration
Services

The MobileFirst Administration component consists of two applications that are
used for the administration of the runtime environments:

* The MobileFirst Operations Console application.
* The MobileFirst Administration Services application.

IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/2015/01/29/activeactive-topology-mobilefirst-platform-foundation-server/

The MobileFirst Operations Console is the web-based interface that an IT
administrator uses to run administration tasks on the mobile application such as
application deployment, management, version enforcement, and management of
push notifications.

The MobileFirst Operations Console is supported by the MobileFirst
Administration Services application. This application acts as host for all the REST
services and administration tasks. Both the MobileFirst Operations Console and the
Administration Services can be secured through standard Java Platform, Enterprise
Edition security. Several administration user roles are available to cover different
administration scenarios.

One MobileFirst Operations Console can be used for the administration of several
runtime environments. The administration tasks are run through standard JMX
(Java Management Extension) calls.

Note: Since V6.2.0, the MobileFirst runtime environment registers an MBean called
com.worklight.core.jmx.ProjectManagementMXBean and exposes the JMX API with
this MBean. This MBean is exposed with all other MBeans that are registered in the
application server. It is used by the runtime environment for such things as the
management of deployed applications and adapters, devices, and push services.
This MBean is intended to be used only by the MobileFirst Administration
Services, so methods in this MBean are private and are not meant to be accessed
directly.

A database is required for the MobileFirst Operations Console and Administration
Services.

IBM MobileFirst Platform Application Center

The Application Center is a private application store that developers can use to get
feedback about their mobile applications from testers and stakeholders. The
Application Center is used to distribute private or public applications to employees
and partners. The Application Center is an optional component that can be
installed separately from the other MobileFirst Server components.

The Application Center consists of two web applications:
* The Application Center console application that provides the user interface.
* The Application Center services application that provides the REST services.

A database is required for the Application Center. For more information, see
[“Application Center” on page 11-65.

MobileFirst Operational Analytics

The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage or to detect problems.

The feature is packaged as a web application. To enable the collection of analytics
information, you must configure the runtime environment with the URL of the
analytics platform. For more information, see [“Analytics” on page 12-6

Planning deployment of administration components and
runtimes

Plan the deployment of MobileFirst administration components and runtimes
depending on the server topology that you use.

Installing and configuring 6-7

6-8

See [“Introduction to the MobileFirst Server components” on page 6-5| for an
introduction to the administration components and runtimes.

You can use the following topologies of application servers:
+ Stand-alone server: WebSphere Application Server Liberty profile, Apache
Tomcat, or WebSphere Application Server full profile

* Server farm: WebSphere Application Server Liberty profile, Apache Tomcat, or
WebSphere Application Server full profile

* WebSphere Application Server Network Deployment cell

Depending on the application server topology that you use, you can deploy either
symmetrically or asymmetrically. In symmetrical deployment, you must install
runtimes and administration components on the same application server. In
asymmetric deployment, you can install the runtimes on different application
servers from the administration components.

Modes of deployment

Two modes are available to deploy the MobileFirst administration components and
the runtimes in the application server infrastructure.

* Symmetric deployment: the MobileFirst administration components (MobileFirst
Operations Console and administration service applications) are deployed in the
same Java Virtual Machine (JVM) as the runtimes.

* asymmetric deployment: The administration components are deployed in a
different JVM from the runtimes.

Asymmetric deployment is only supported for WebSphere Application Server
Network Deployment cell topology.

Stand-alone server topology:

You can configure a stand-alone topology for WebSphere Application Server full
profile, WebSphere Application Server Liberty profile, and Apache Tomcat.

In this topology, all the administration components and the runtimes are deployed
in a single Java Virtual Machine (JVM).

IBM MobileFirst Platform Foundation for iOS V7.0.0

MaobileFirst Operations Console

Administration service Admin DB

Rurtirme 1

Runtime 2

Figure 6-1. Topology of a stand-alone server

With one JVM, only symmetric deployment is possible with the following
characteristics:

One or several administration components can be deployed. Each MobileFirst
Operations Console communicates with one administration service.

One or several runtimes can be deployed.

One MobileFirst Operations Console can manage several runtimes.

One runtime is managed by only one MobileFirst Operations Console.
Each administration service uses its own administration database schema.

Each runtime uses its own runtime database schema.

Configuration of JNDI properties

Some JNDI properties are required to enable Java Management Extensions (JMX)
communication between the administration service and the runtime, and to define
the administration service that manages a runtime. For details about these
properties, see [“List of JNDI properties for MobileFirst Server administration” on|

page 6-86| and [“Configuring a MobileFirst project in production by using IND]|

environment entries” on page 10-60.|

Stand-alone WebSphere Application Server Liberty profile server

The following global JNDI properties are required for the administration
services and for the runtimes.

Installing and configuring 6-9

6-10

Table 6-1. Global JNDI properties for administration services and runtimes in WebSphere
Application Server Liberty stand-alone topology

JNDI properties Values
ibm.worklight.topology.platform “Liberty”
ibm.worklight.topology.clustermode “Standalone”
ibm.worklight.admin.jmx.host Hostname of the WebSphere Application

Server Liberty profile server

ibm.worklight.admin. jmx.port Port of the REST connector that is the port
of the httpsPort attribute declared in the
<httpEndpoint> element of the server.xml
file of WebSphere Application Server Liberty
profile server. This property has no default
value.

ibm.worklight.admin. jmx.user The user name of the WebSphere
Application Server Liberty administrator,
which must be identical to the name defined
in the <administrator-role> element of the
server.xml file of the WebSphere
Application Server Liberty profile server.

ibm.worklight.admin. jmx.pwd Password of the WebSphere Application
Server Liberty administrator user.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:

* On each administration service, a unique value for the local
ibm.worklight.admin.environmentid JNDI property.

* On each runtime, the same value for the local
ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

Stand-alone Apache Tomcat server

The following local JNDI properties are required for the administration
services and for the runtimes.

Table 6-2. Local JNDI properties for administration services and runtimes in Apache Tomcat
stand-alone topology

JNDI properties Values
ibm.worklight.topology.platform “Tomcat”
ibm.worklight.topology.clustermode “Standalone”

JVM properties are also required to define Java Management Extensions
(IMX) Remote Method Invocation (RMI). For more information, see
[‘Configuring Apache Tomcat” on page 6-47

If the Apache Tomcat server is running behind a firewall, the
ibm.worklight.admin.rmi.registryPort and
ibm.worklight.admin.rmi.serverPort JNDI properties are required for the
administration service. See [“Configuring Apache Tomcat” on page 6-47.

IBM MobileFirst Platform Foundation for iOS V7.0.0

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:

* On each administration service, a unique value for the local
ibm.worklight.admin.environmentid JNDI property.
* On each runtime, the same value for the local

ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

Stand-alone WebSphere Application Server

The following local JNDI properties are required for the administration
services and for the runtimes.

Table 6-3. Local JNDI properties for administration services and runtimes in WebSphere
Application Server stand-alone topology

JNDI properties Values

ibm.worklight.topology.platform “WAS”

ibm.worklight.topology.clustermode “Standalone”

ibm.worklight.admin.jmx.connector The JMX connector type; the value can be
“SOAP”or “RMI".

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:

* On each administration service, a unique value for the local
ibm.worklight.admin.environmentid JNDI property.

* On each runtime, the same value for the local
ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

Server farm topology:

You can configure a farm of WebSphere Application Server full profile, WebSphere
Application Server Liberty profile, or Apache Tomcat application servers.

A farm is a set of individual servers where the same components are deployed and
where the same administration database and runtime database are shared between
the servers. The farm topology enables the load of MobileFirst applications to be
distributed across several servers. Each server in the farm must be a Java Virtual
Machine (JVM) of the same type of application server; that is, a homogeneous
server farm.

In this topology, all the administration components and the runtimes are deployed
on every server in the farm.

Installing and configuring 6-11

MebileFirst Operations Console MobileFirst Operations Console

Adrinistration servica Adrinistration service

Runtirme 1 Runtirme 1

Runtirne 2 Runtirne 2

Figure 6-2. Topology of a server farm

This topology supports only symmetric deployment. The runtimes and the
administration components must be deployed on every server in the farm. The
deployment of this topology has the following characteristics:

* One or several administration components can be deployed. Each instance of
MobileFirst Operations Console communicates with one administration service.

* The administration components must be deployed on all servers in the farm.
* One or several runtimes can be deployed.

* The runtimes must be deployed on all servers in the farm.

* One MobileFirst Operations Console can manage several runtimes.

* One runtime is managed by only one MobileFirst Operations Console.

* Each administration service uses its own administration database schema. All
deployed instances of the same administration service share the same
administration database schema.

* Each runtime uses its own runtime database schema. All deployed instances of
the same runtime share the same runtime database schema.

Configuration of JNDI properties

Some JNDI properties are required to enable JMX communication between the
administration service and the runtime of the same server, and to define the
administration service that manages a runtime. For convenience, the tables in this
section list these properties. For instructions about how to install a server farm, see
“Installing a server farm” on page 6-97 For details about the JNDI properties, see
“List of JNDI properties for MobileFirst Server administration” on page 6-86/ and
“Configuring a MobileFirst project in production by using JNDI environment]
entries” on page 10-60.

6-12 IBM MobileFirst Platform Foundation for iOS V7.0.0

WebSphere Application Server Liberty profile server farm

The following global JNDI properties are required in each server of the
farm for the administration services and for the runtimes.

Table 6-4. Global JNDI properties for administration services and runtimes in server farm
topology of WebSphere Application Server Liberty profile

JNDI properties Values
ibm.worklight.topology.platform “Liberty”
ibm.worklight.topology.clustermode “Farm”

ibm.worklight.admin.jmx.host

Hostname of the WebSphere Application
Server Liberty profile server

ibm.worklight.admin.jmx.port

Port of the REST connector that must be
identical to the value of the httpsPort
attribute declared in the <httpEndpoint>
element of the server.xml file of the
WebSphere Application Server Liberty
profile server.

<httpEndpoint id="defaultHttpEndpoint"

httpPort="9080" httpsPort="9443"
host="+" />

ibm.worklight.admin. jmx.user

The user name of the WebSphere
Application Server Liberty administrator
that is defined in the <administrator-role>
element of the server.xml file of the
WebSphere Application Server Liberty
profile server.

<administrator-role>

<user>Work1ightRESTUser</user>
</administrator-role>

ibm.worklight.admin.jmx.pwd

Password of the WebSphere Application
Server Liberty administrator user.

The ibm.worklight.admin.serverid JNDI property is required for the
administration service to manage the server farm configuration. Its value is
the server identifier, which must be different for each server in the farm.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different

runtimes.

When you deploy several administration components, you must specify:

* On each administration service, a unique value for the local
ibm.worklight.admin.environmentid JNDI property.

* On each runtime, the same value for the local
ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

Apache Tomcat server farm

The following global JNDI properties are required in each server of the
farm for the administration services and for the runtimes.

Installing and configuring 6-13

Table 6-5. Global JNDI properties for administration services and runtimes in server farm
topology of Apache Tomcat

JNDI properties Values
ibm.worklight.topology.platform “Tomcat”
ibm.worklight.topology.clustermode “Farm”

JVM properties are also required to define Java Management Extensions
(JMX) Remote Method Invocation (RMI). For more information, see
[‘Configuring Apache Tomcat” on page 6-47.

The ibm.worklight.admin.serverid JNDI property is required for the
administration service to manage the server farm configuration. Its value is
he server identifier, which must be different for each server in the farm.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:

* On each administration service, a unique value for the local
ibm.worklight.admin.environmentid JNDI property.

* On each runtime, the same value for the local
ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

WebSphere Application Server full profile server farm

The following global JNDI properties are required on each server in the
farm for the administration services and for the runtimes.

Table 6-6. Global JNDI properties for administration services and runtimes in server farm
topology of WebSphere Application Server full profile

JNDI properties Values
ibm.worklight.topology.platform “WAS”
ibm.worklight.topology.clustermode “Farm”
ibm.worklight.admin.jmx.connector “SOAP”

The following JNDI properties are required for the administration service
to manage the server farm configuration.

JNDI properties Values

ibm.worklight.admin.jmx.user The user name of WebSphere Application
Server. This user must be defined in the
WebSphere Application Server user registry.

ibm.work1ight.admin.jmx.pwd The password of the WebSphere Application
Server user.

ibm.worklight.admin.serverid The server identifier, which must be
different for each server in the farm and
identical to the value of this property used
for this server in the server farm
configuration file.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

6-14 IBM MobileFirst Platform Foundation for iOS V7.0.0

When you deploy several administration components, you must specify

the following values:

* On each administration service, a unique value for the local
ibm.worklight.admin.environmentid JNDI property.

¢ On each runtime, the same value for the local
ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

WebSphere Application Server Network Deployment topologies:

The administration components and the runtimes are deployed in servers or
clusters of the WebSphere Application Server Network Deployment cell.

Examples of these topologies support either asymmetric or symmetric deployment,
or both. You can, for example, deploy the administration components in one
cluster and the runtimes managed by these components in another cluster.

Symmetric deployment in the same server or cluster

shows symmetric deployment where the runtimes and the
administration components are deployed in the same server or cluster.

Adrministration servica

MobileFirst Operations Console MobileFirst Operations Console

Administration service

H
g
5
&

H

by

EL

Figure 6-3. Symmetric deployment, same server or cluster

The deployment of this topology has the following characteristics:

* One or several administration components can be deployed in one or several
servers or clusters of the cell. Each instance of MobileFirst Operations Console
communicates with one administration service.

Installing and configuring ~ 6-15

* One or several runtimes can be deployed in the same server or cluster as the
administration components that manage them.

* One runtime is managed by only one MobileFirst Operations Console.
¢ Each administration service uses its own administration database schema.

¢ Each runtime uses its own runtime database schema.

Asymmetric deployment with runtimes and administration services in different
server or cluster

shows a topology where the runtimes are deployed in a different server
or cluster from the administration services.

Adminlistration service Adminlstration servics

|
z
5
0

9!

|

Il
2

Figure 6-4. Asymmetric deployment, different server or cluster

The deployment of this topology has the following characteristics:

* One or several administration components can be deployed in one or several
servers or clusters of the cell. Each instance of MobileFirst Operations Console
communicates with one administration service.

* One or several runtimes can be deployed in other servers or clusters of the cell.

* One MobileFirst Operations Console manages several runtimes deployed in the
other servers or clusters of the cell.

* One runtime is managed by only one MobileFirst Operations Console.
¢ Each administration service uses its own administration database schema.

¢ Each runtime uses its own runtime database schema.

This topology is advantageous, because it enables the runtimes to be isolated from
the administration components and from other runtimes. It can be used to provide

6-16 1BM MobileFirst Platform Foundation for iOS V7.0.0

performance isolation, to isolate critical applications, and to enforce Service Level
Agreement (SLA).

Symmetric and asymmetric deployment

shows an example of symmetric deployment in Clusterl and of
asymmetric deployment in Cluster2, where Runtime2 and Runtime3 are deployed
in a different cluster from the administration components. MobileFirst Operations
Console manages the runtimes deployed in Clusterl and Cluster2.

Admin DB

Adminlstration service Adminlstration service

|

b

Rurtime: 1 DE

W

L

—* Runtime 3 DB

Figure 6-5. Symmetric and asymmetric deployment in different clusters of a cell

The deployment of this topology has the following characteristics:

* One or several administration components can be deployed in one or several
servers or clusters of the cell. Each instance of MobileFirst Operations Console
communicates with one administration service.

* One or several runtimes can be deployed in one or several servers or clusters of
the cell.

* One MobileFirst Operations Console can manage several runtimes deployed in
the same or other servers or clusters of the cell.

* One runtime is managed by only one MobileFirst Operations Console.
* Each administration service uses its own administration database schema.
* Each runtime uses its own runtime database schema.

Configuration of JNDI properties

Some JNDI properties are required to enable J]MX communication between the
administration service and the runtime, and to define the administration service

that manages a runtime. For details about these properties, see[“List of JNDI

Installing and configuring 6-17

6-18

properties for MobileFirst Server administration” on page 6-86 and [“Configuring al
MobileFirst project in production by using JNDI environment entries” on page]

10—60.|

The following local JNDI properties are required for the administration services
and for the runtimes:

Table 6-7. Local JNDI properties for administration services and runtimes in WebSphere
Application Server Network Deployment topologies

JNDI properties Values

ibm.worklight.topology.platform “WAS”
ibm.worklight.topology.clustermode “Cluster”
ibm.worklight.admin.jmx.connector The JMX connector type to connect with the

Deployment Manager. The value can be
“SOAP”or “RMI”. “SOAP” is the default
and preferred value. “RMI” must be used if
the SOAP port is disabled

ibm.worklight.admin. jmx.dmgr.host The host name of the Deployment Manager.

ibm.worklight.admin.jmx.dmgr.port The RMI or the SOAP port used by the
Deployment Manager, depending on the
value of

ibm.worklight.admin. jmx.connector.

Several administration components can be deployed to enable you to run the same
server or cluster with separate administration components managing each of the
different runtimes.

When several administration components are deployed, you must specify:

* On each administration service, a unique value for the local
ibm.worklight.admin.environmentid JNDI property.

¢ On each runtime, the same value for the local
ibm.worklight.admin.environmentid as the value defined for the administration
service that manages that runtime.

Using a reverse proxy with server farm and WebSphere Application Server
Network Deployment topologies:

You can use a reverse proxy with distributed topologies. If your topology uses a
reverse proxy, configure the required JNDI properties for the administration
service.

See [the Glossary| for the definition of a reverse proxy.

You can use a reverse proxy, such as IBM HTTP Server, to front server farm or
WebSphere Application Server Network Deployment topologies. In this case, you
must configure the administration components appropriately.

You can call the reverse proxy from:
* The browser when you access MobileFirst Operations Console.
* The runtime when it calls the administration service.

* The MobileFirst Operations Console component when it calls the Administration
services.

IBM MobileFirst Platform Foundation for iOS V7.0.0

If the reverse proxy is in a DMZ (a firewall configuration for securing local area
networks) and a firewall is used between the DMZ and the internal network, this
firewall must authorize all incoming requests from the application servers.

When a reverse proxy is used in front of the application server infrastructure, the
following JNDI properties must be defined for the administration service.

Table 6-8. JNDI properties for reverse proxy

JNDI properties Values

ibm.worklight.admin.proxy.protocol The protocol used to communicate with the
reverse proxy, which can be HTTP or
HTTPS.

ibm.worklight.admin.proxy.host The host name of the reverse proxy.

ibm.worklight.admin.proxy.port The port number of the reverse proxy.

The ibm.worklight.admin.endpoint property that references the URL of the reverse
proxy is also required for MobileFirst Operations Console. See |“Defining thel
fendpoint of the MobileFirst Administration services” on page 6-78

For detailed instructions to configure an IBM HTTP Server or a Data Store, see
“Typical topologies of a MobileFirst instance in an extranet infrastructure” on page|

6-259]

Planning the creation of the databases
You must plan the creation of the three databases that are needed for the
Administration Services and the MobileFirst runtime environments.

Note: The Reports database, referenced below as WorklightReports and WLREPORT,
is deprecated in V7.0.0. You should use [‘Operational analytics” on page 12-§|
instead. Note that setting up the Reports database is optional in this release and
prior releases.

The installation of the MobileFirst Server requires the following three databases:
¢ For the Administration Services, an administration database.
» For each MobileFirst runtime environment:

— a runtime database

— a reports database

Note: By default, the databases have the following names and kind attributes, as
defined in table 1 of [“Ant configuredatabase task reference” on page 14-1}

¢ The default name of the administration database is WLADMIN, and its kind is
Work1lightAdmin.

* The default name of the runtime database is WRKLGHT, and its kind is Worklight.

* The default name of the reports database is WLREPORT, and its kind is
WorklightReports.

Optionally, the Application Center can be installed. The Application Center also
requires a database.

An installation of MobileFirst Server includes at least one MobileFirst runtime

environment, which is the web application that is in contact with the mobile
devices, but might contain more than one MobileFirst runtime environment.

Installing and configuring 6-19

6-20

The databases can be instantiated automatically by the Server Configuration Tool
or by the Ant tasks. In these two installation scenarios, it is also possible that a
database administrator creates the database beforehand. For more information
about the creation of these databases, see [“Optional creation of the administration|
[database” on page 6-43For more information about the MobileFirst runtime
environments, see [“Optional creation of databases” on page 10-5.

For DB2, the administration, the runtime database, and the reports database can be
in the same database, but they must be in different schemas.

For Oracle, these databases must be created for a different user.

For each database, it is possible to restrict the privileges of the database user that
uses the data source at run time.

Restricting database user permissions for IBM MobileFirst Platform Server
runtime operations:

When the databases are operational, you can decide to create a database user with
restricted privileges. You use this database user to perform database underlying
operations from the MobileFirst administration and runtime components. The user
credentials appear in the application server configuration.

MobileFirst Server data is stored in three databases, which are described in
[“Introduction to the MobileFirst Server components” on page 6-5] The database
administrator might require you to provide specific permissions that you need
when you access those databases at run time. The connection to the MobileFirst
Server databases at run time, which is established in the data source credentials,
and any subsequent requests to the databases, are handled through a single
database user or one distinct user per database. Using different users that can
access only one kind of database, and especially to separate the databases of the
MobileFirst runtime environment from the database of the MobileFirst
administration component, improves security. These database users have no
relation to the standard MobileFirst Server groups. The following table shows the
minimal permissions that the database administrator must define on the
MobileFirst Server databases for these users:

Table 6-9. Minimal permissions defined by the database administrator

Database permission Use MobileFirst Server Operation
ALTER TABLE Not required
CREATE INDEX Not required
CREATE ROLE Not required
CREATE SEQUENCE Not required
CREATE TABLE Not required
CREATE VIEW Not required
DROP INDEX Not required
DROP SEQUENCE Not required
DROP TABLE Not required
DROP VIEW Not required
SELECT TABLE Required
INSERT TABLE Required

IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-9. Minimal permissions defined by the database administrator (continued)

Database permission Use MobileFirst Server Operation
UPDATE TABLE Required
DELETE TABLE Required
SELECT SEQUENCE Required

These minimal permissions also apply to the database user of the (optional)
Application Center database.

Using complex Oracle connection descriptors:

For some topologies of the Oracle DBMS, for example Oracle Real Application
Clusters (RAC), you might have to use complex Oracle Net connection descriptors.
In that case, review the following steps.

Procedure

1. You must create the databases manually for the Application Center, the
MobileFirst Server administration, and the MobileFirst project WAR file. This
step is mandatory and cannot be performed with the Ant tasks or Server
Configuration Tool. See the following links for instructions on how to create
these databases.

+ For installing the Application Center, see [“Creating the Oracle database for|
[Application Center” on page 6-164.|

* For installing the MobileFirst Server administration, see [“Creating the Oracle]
[database for MobileFirst Server administration” on page 6-45

* For deploying the MobileFirst project WAR file, see [“Creating the Oracle]
[databases” on page 10-8|

2. In IBM Installation Manager, or in the Server Configuration Tool, you must use
a generic Oracle JDBC URL instead of the host name and port.

@ Configuration Details

@ Console Settings

@ Database Selection

) Database Settings

(O Database Additional Set
@ Databases creation requ
O Application Server Selec
O Application Server Settir

Oracle Database Settings

IBM MobileFirst Platform Server uses databases for the MobileFirst Administration Services and for each MobileFirst runtime
environment on the Oracle database server.
These databases might already exist. If they do not exist, you can use this wizard to create them.

Enter the settings that MaobileFirst Server should use to access these databases.

Network Settings
(@ Connect to Oracle databases on a single Oracle server.

Host name (example: localhost):
Port: 1521

() Connect using generic Oracle JDBC URLs.
See the Oracle documentation for details.

Oracle 11g JDBC Driver

Path to Jar file:

Figure 6-6. Oracle Database Settings window

3. For Ant tasks, you must use the alternative attributes for the <oracle> element.
For more information, see [“Ant configuredatabase task reference” on page|

table 19.

Installing and configuring 6-21

6-22

Note: The example files in [“Sample configuration files” on page 14-35 do not
use the alternative attributes for the <oracle> element. If you use an example
file, you must modify the <oracle> elements in the file so that they use the
alternative attributes.

4. The URL must be a URL for the Oracle thin driver. It must not include the user

name and password, for example: jdbc:oracle:thin:@(DESCRIPTION= [Oracle
Net connection descriptor]).

Configuring DB2 HADR seamless failover for MobileFirst Server and
Application Center data sources:

You must enable the seamless failover feature with WebSphere Application Server
Liberty profile and WebSphere Application Server. With this feature, you can
manage an exception when a database fails over and gets rerouted by the DB2
JDBC driver.

Note: DB2 HADR failover is not supported for Apache Tomcat.

By default with DB2 HADR, when the DB2 JDBC driver performs a client reroute
after detecting that a database failed over during the first attempt to reuse an
existing connection, the driver triggers
com.ibm.db2.jcc.am.ClientRerouteException, with ERRORCODE=-4498 and
SQLSTATE=08506. WebSphere Application Server maps this exception to

com. ibm.websphere.ce.cm.StaleConnectionException before it is received by the
application.

In this case, the application would have to catch the exception and execute again
the transaction. The MobileFirst and Application Center runtime environments do
not manage the exception but rely on a feature that is called seamless failover. To
enable this feature, you must set the enableSeamlessFailover JDBC property to "1".

WebSphere Application Server Liberty profile configuration

You must edit the server.xml file, and add the enableSeamlessFailover property
to the properties.db2.jcc element of the MobileFirst and Application Center data
sources. For example:
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">
<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLADMIN" currentSchema="WLADMSC"
serverName="db2server" portNumber="50000"
enableSeamlessFailover= "1"
user="worklight" password="worklight"/>
</dataSource>

WebSphere Application Server configuration

From the WebSphere Application Server administrative console for each
MobileFirst and Application Center data source:

1. Go to Resources > JDBC > Data sources > DataSource name.

2. Select New and add the following custom property, or update the values if the
properties already exist:

enableSeamlessFailover : 1
3. Click Apply.
4. Save your configuration.

IBM MobileFirst Platform Foundation for iOS V7.0.0

For more information about how to configure a connection to an HADR-enabled
DB2 database, see [Setting up a connection to an HADR-enabled DB2 databasel

Planning the topology of the application server
You must install MobileFirst Server in an application server, and decide which
topology to use.

For more information about the choice of topology, see [“Typical topologies of al
[MobileFirst instance in an extranet infrastructure” on page 6-239

Tutorial for a basic installation of MobileFirst Server

Learn about the MobileFirst Server installation process by walking through a
simple configuration that creates a functional MobileFirst Server for demonstration
purposes or tests.

Before you begin

1. Install IBM MobileFirst Platform Command Line Interface for iOS on your
computer, if you have not already done so.

2. Use MobileFirst Platform Command Line Interface for iOS to create a project,
which you can then run on MobileFirst Server.

About this task

This task shows how to install MobileFirst Server, based on a tutorial of a simple
configuration. It is designed as an overview, to show you where to find the
following tools and information:

* Tools to install a MobileFirst Server and the Application Center, and tools to
deploy a MobileFirst project.

* Information about configuring MobileFirst Server and the Application Center.
e Information about manual MobileFirst Server installation.

Note: Manual installation provides greater flexibility, but can make the
diagnosis of issues more complex, and make the subsequent description of your
configuration to IBM Support more difficult.

For this task, install the following components:

* An IBM WebSphere Application Server Liberty Core application server.
* A database management system (DBMS): IBM DB2, Oracle, or MySQL.
* The Application Center.

* A simple MobileFirst project and its console.

Procedure

1. Install WebSphere Application Server Liberty Core. The installer for WebSphere
Application Server Liberty Core is provided as part of the package for IBM
MobileFirst Platform Foundation for iOS.

a. Load the repository for WebSphere Application Server Liberty Core in IBM
Installation Manager and install the product.

Note: IBM Installation Manager is sometimes referred to as IBM Rational

Enterprise Deployment on the eXtreme Leverage, Passport Advantage sites,
and on the distribution disks. The file names for the images take the form

Installing and configuring 6-23

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tdat_db2_hadr.html?cp=SSAW57_8.5.5%2F3-3-6-3-3-0-7-3&lang=en

6-24

IBM Rational Enterprise Deployment <version number><hardware
platform> <language>; for example, IBM Rational Enterprise Deployment
V1.6.3.1Windows Multilingual.

For more information about loading repositories with IBM Installation
Manager, see of this procedure. See also the IBM Installation
Manager user documentation at |https://www.ibm.com/support /|
knowledgecenter/SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc //
helpindex_imic.html|

During the installation process, take note of the installation directory of
Liberty.

You need this information later on in the procedure.

2. Create a server for Liberty.

You use this server to install the Application Center and to deploy a
MobileFirst project and its console.

a.

Go to the installation directory of Liberty. For example, on Windows, if the
product is installed with administrator rights, it is located by default in
C:\Program Files\IBM\WebSphere\Liberty.

Type the command that creates a server.

In this scenario, the server name is simpleServer.

On UNIX and Linux systems:
bin/server create simpleServer

On Windows systems:
bin\server.bat create simpleServer

The server is created with all default settings. For more information about
configuring a Liberty server, read the file README. txt in the Liberty installation
directory. Default settings are sufficient for this tutorial.

3. Install the database management system.

You use this DBMS to install the Application Center and to deploy a
MobileFirst project and its console.

If you use IBM DB2, the installer for IBM DB2 is provided as part of the
package for IBM MobileFirst Platform Foundation for iOS.

a. Run the installer and follow the instructions.

b. On Windows, when you are asked whether to install the IBM Secure
Shell Server for Windows, say Yes.

c. In the following steps, you must have a Secure Shell server installed and
running so that the MobileFirst tools can create the required databases.

— On Windows, the IBM Secure Shell Server for Windowsor the Cygwin
openssh package, as described at |http://docs.oracle.com/cd /|
[E25178_01/install.1111/e22624 / preinstall_req_cygwin_ssh.htm|

— On UNIX, the sshd daemon
d. Take note of the user name and password for the DB2 administrator role.
If you use MySQL:
a. Install MySQL on your computer.

b. Take note of the user name and password for the administrator.

— By default for some installations, the administrator is root and there is
no password.

— If there is no password for the MySQL administrator in your
installation, set a password for the administrator, following the
instructions from the MySQL documentation.

IBM MobileFirst Platform Foundation for iOS V7.0.0

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
http://docs.oracle.com/cd/E25178_01/install.1111/e22624/preinstall_req_cygwin_ssh.htm
http://docs.oracle.com/cd/E25178_01/install.1111/e22624/preinstall_req_cygwin_ssh.htm

* If you use Oracle:
a. Install the Oracle database on your computer.

b. Install an ssh shell on your computer. On Windows, install cygwin and
the openssh package.

c. Start the ssh server. On Windows, you need administrator rights.
d. In subsequent steps, you must have that Secure Shell server running.
4. Install MobileFirst Server.
a. Add the MobileFirst Server repository in IBM Installation Manager:

1) Download the Installation Manager Repository for IBM MobileFirst
Platform Server from Passport Advantage.

) Extract the file on your disk.

) Start IBM Installation Manager.

4) Open the File > Preferences menu.
) In the Preferences dialog, click Add Repositories.
)

Select the file diskl/diskTag.inf from the repository directory you
extracted.

7) Click OK and close the Preferences dialog.

b. Load the repository for MobileFirst Server in IBM Installation Manager and
install the product.

1) In the Configuration Choice panel, select the first choice. This option
installs Application Center.

2) In the Database Choice panel, select the name of the database
management system you installed.

Restriction: Apache Derby is not supported by the Server Configuration
Tool , which is used later in this tutorial.

3) In the following database panels of the installer:
* If you use IBM DB2:
— In the Database Server Properties panel:
- Enter Tocalhost as the host name.

- Select the db2jcc4.jar JAR file in the JDBC driver directory (in
<DB2InstallDir>/Java).

— In the Database Server Additional Properties panel:
- Select Simple Mode.

- Enter a database user and password. This user must already
exist.

— In the Create Database panel:

- Enter the name and password of a user account on the database
server that has DB2 privilege SYSADM or SYSCTRL.

- The installer creates the database.
* If you use MySQL:
— In the Database Server Properties panel:
- Enter Tocalhost as the host name.
- Enter the name of the JDBC JAR file for MySQL.
— In the Database Server Additional Properties panel:
- Select Simple Mode.

Installing and configuring 6-25

- Enter a database user and password. This user is already created
by the installer.

— In the Create Database panel:

- Enter the name and password of a superuser account in your
MySQL database server. The default superuser account is root.

- The installer creates the database.
* If you use Oracle:
— In the Database Server Properties panel:
- Enter Tocalhost as the host name.
- Enter the name of the JDBC JAR file for Oracle.
— In the Database Server Additional Properties panel:
- Select Simple Mode.

- Enter a password for the user APPCENTER. This user is created by
the installer.

- The installer creates a database if it does not already exist.
— In the Create Database panel:
- For Administrator Login Name and Passwords, enter an
administrator login name and password that can be used to run

an ssh session. The default Oracle Administrator Login name is
oracle.

- If the database already exists, provide the password of the
SYSTEM user that is used to create the user APPCENTER. If the
database does not already exist, enter the passwords for the SYS
and SYSTEM users that are created to manage the database.

4) In the Application Server Selection panel, select WebSphere
Application Server.

5) In the Application Server Configuration panel, select the installation
directory for IBM WebSphere Application Server Liberty Core that is
installed in step 2.

6) Select simpleServer as the server name.

7) Install the product.

The files that are described in [“Distribution structure of MobileFirst Server” on|
page 6-39| are installed on your computer.

5. Explore Application Center. Application Center is now functional. The artifacts
of the Application Center are deployed into the Liberty server, which now
includes the features that Application Center requires, and a demonstration
user account exists. The required database also exists.

a. To test the Application Center, start the Liberty server.

On UNIX and Linux systems:
bin/server start simpleServer

On Windows systems:
bin\server.bat start simpleServer

b. Open the Application Center by using the program shortcut that the
installer creates: IBM MobileFirst Platform Server > Application Center.
Alternatively, you can enter the URL for the Application Center into a
browser window. When a Liberty server is created with default settings, the
default URL for Application Center is http://localhost:9080/
appcenterconsole/.

6-26 IBM MobileFirst Platform Foundation for iOS V7.0.0

C.

d.

Log in to the Application Center with the demonstration account credentials
(login: demo, password: demo)

Explore further by using any of the following resources:
+ See[“Configuring the Application Center after installation” on page 6-188

* See [“Distribution structure of MobileFirst Server” on page 6-39) for a list
of MobileFirst applications that you can compile and upload to the
Application Center. These applications provide access to the Application
Center for mobile devices.

* If you are considering a manual installation of Application Center, see
[“Manual installation of Application Center” on page 6-167|In some cases,
manual installations can make the diagnosis of issues more complex, and
can make the description of a configuration to IBM Support more
difficult.

6. Install the MobileFirst Server administration components: Administration
Services and MobileFirst Operations Console.

a.

-0 oo00oT

Start the Server Configuration Tool.
* On Linux:

— Click the desktop menu IBM MobileFirst Platform Server > Server
Configuration Tool.

* On Windows:

— Click the Start menu IBM MobileFirst Platform Server > Server
Configuration Tool.

* On Mac OS X:

— In the Finder, double-click the file mf_server_install _dir/shortcuts/
configuration-tool.sh.

Restriction: MobileFirst Server is not supported for production use on
Mac OS X.

mf_server_install_dir is the directory where you install MobileFirst Server.
mf_server is the shortcut for MobileFirst Server.

Select Create a MobileFirst Server Configuration.

Name the configuration Hello MobileFirst Server.

Do not change the default entries in the Configuration Description panel.
Do not change the default entries in the Console Settings panel.

In the Database Properties panel:

1) Select your database.

2) Proceed as described in the Install MobileFirst Server section when you
entered data to create the database for Application Center.

. In the Application Server panel:

* Proceed as described in the Install MobileFirst Server section when you
entered data to create the database for Application Center.

* Take note of the default password and login: demo (for both).

. When all the data is entered, click Deploy.

The log of the deployment operations appears in the console.
The Configuration appears in the tree view.

After the database operation is completed, a log file that is named databases
appears in the tree view, under the Configuration.

Installing and configuring 6-27

6-28

+ After the deployment to the application server is complete, a log file that is

named install appears in the tree view, under the Configuration.

Create a simple MobileFirst project. You create a MobileFirst runtime

environment.

a. Install command-line tools for developers on your computer. See
fcommand-line tools for developers” on page 6-2.|

b. Use the Create command to create a MobileFirst project. Assign the name
simpleProject, and name the application simpTeApp.

c. Use the Build command to build the application.

Deploy a MobileFirst runtime environment with the Server Configuration Tool.

a.

In the Server Configuration Tool, select File/Add MobileFirst runtime
environment

In the dialog box, select the Hello MobileFirst Server configuration created
in step 6.

In Enter the name of the new runtime, enter First Runtime.

In the MobileFirst runtime environment Configuration Description panel:
* Load the WAR file that you created in the previous step.

In the Database Properties panel:

1) Select your database.

2) Proceed as described in the Install MobileFirst Server section when you
entered data to create the database for Application Center.

When all the data is entered, click Deploy.
The log of the deployment operations appears in the console.
The Runtime appears in the tree view.

After the database operation is completed, a log file that is named databases
appears in the tree view, under the Configuration.

After the deployment to the application server is complete, a log file that is
named install appears in the tree view, under the Configuration.

9. Restart the Liberty server and open the MobileFirst Operations Console.

a. Go to the Liberty installation directory. Type the following command:

* On Linux and UNIX systems:
bin/server stop simpleServer
* On Windows systems:
bin\server.bat stop simpleServer
Restart the server with the following command:
* On Linux and UNIX systems:
bin/server start simpleServer
* On Windows systems:
bin\server.bat start simpleServer
In the shortcut directory that you specified in the MobileFirst runtime
environment Configuration Description panel of the Server Configuration
Tool:
* On Linux and UNIX systems:
Run the mobilefirst-console.sh script.
* On Windows systems:

Double-click the file mobilefirst-console.url. (On Windows 7, this
shortcut can appear as mobilefirst-console, with a file type of Internet
Shortcut.)

IBM MobileFirst Platform Foundation for iOS V7.0.0

You see the MobileFirst Operations Console. You can log in with the default
user login and password that you created in step 6 (by default demo/demo).

What to do next

For more information about the Server Configuration Tool, see |”Deploying,|
updating, or undeploying MobileFirst Server by using the Server Configuration|
Tool” on page 10-9.|

If you want to explore the MobileFirst Operations Console further, you can
complete the following tasks:

* Deploy an application as described in [“Deploying applications and adapters to|
[MobileFirst Server” on page 10-76|

* Review [“Administering MobileFirst applications” on page 11-1)

+ Review [“Deploying the project WAR file” on page 10-5)

* Review [“Configuration of MobileFirst applications on the server” on page 10-48|
and [“Configuring a MobileFirst project in production by using JNDI|
fenvironment entries” on page 10-60)

* Review the options to deploy an IBM MobileFirst Platform Foundation for iOS
project manually. In some cases, manual installations can make the diagnosis of
issues more complex, and can make the description of a configuration to IBM
Support more difficult. See [“Deploying a project WAR file and configuring the|
lapplication server manually” on page 10-39.

Running IBM Installation Manager

IBM Installation Manager installs the IBM MobileFirst Platform Foundation for iOS
files and tools on your computer.

IBM Installation Manager helps you install, update, modify, and uninstall packages
on your computer. The installer for MobileFirst Server does not support rollback
operations and updates from one version to another cannot be undone.

The way that you use IBM Installation Manager to upgrade from a previous
release depends on your upgrade path.

You can use IBM Installation Manager to install IBM MobileFirst Platform
Foundation for iOS in several different modes, including single-user and multi-user
installation modes.

You can also use silent installations to deploy IBM MobileFirst Platform
Foundation for iOS to multiple systems, or systems without a GUI interface.

For more information about Installation Manager, see the [[BM Installation Manager|
fuser documentation}

Note: IBM Installation Manager is sometimes referred to as IBM Rational Enterprise
Deployment on the eXtreme Leverage, Passport Advantage sites, and on the
distribution disks. The file names for the images take the form IBM Rational
Enterprise Deployment <version number><hardware platform> <language>; for
example, IBM Rational Enterprise Deployment V1.6.3.1Windows Multilingual.

Installing and configuring 6-29

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html

6-30

Installation of the Application Center with IBM Installation
Manager

Run IBM Installation Manager. If you plan to install the Application Center with
IBM Installation Manager, verify that the user who runs IBM Installation Manager
has the privileges that are described in [“File system prerequisites” on page 6-5,
then see [“Installing and configuring the Application Center” on page 6-162| and
install the Application Center before you proceed to the installation of MobileFirst
Operations Console. For more information, see [“Installing the MobileFirst Server|
[administration” on page 6-43

If you do not plan to install the Application Center with IBM Installation Manager,
or if you plan to install the Application Center manually, answer No to the
question Install IBM Application Center.

Single-user versus multi-user installations
You can install MobileFirst Server in two different IBM Installation Manager
modes.

Administrator installation
It is an administrator installation when IBM Installation Manager is
installed through the install command. In this case, it requires
administrator privileges to run, and it produces multi-user installations of
products.

When you have chosen an administrator installation of MobileFirst Server,
it is advisable to run the application server from a non-administrator user
account. Running it from an administrator or root user account is
dangerous in terms of security risks.

Because of this, during an administrator installation of MobileFirst Server,
you can choose an operating system user or an operating system user
group. Each of the users in this group can:

* Run the specified application server (if WebSphere Application Server
Liberty, or Apache Tomcat).

* Modify the Application Center Derby database (if Apache Derby is
chosen as your database management system).

In this case, the MobileFirst Server installer sets restrictive access
permissions on the Liberty or Tomcat configuration files, so as to:

1. Allow the specified users to run the application server.

2. At the same time, protect the database or user passwords that these
files contain.

Nonadministrator (single-user) installation
It is a nonadministrator (single-user) installation when IBM Installation
Manager is installed through the userinst command. In this case, only the
user who installed this copy of IBM Installation Manager can use it.

The following constraints regarding user accounts on UNIX apply:
* If the application server is owned by a non-root user, you can install MobileFirst
Server in either of two ways:

— Through a nonadministrator (single-user) installation of IBM Installation
Manager, as the same non-root user.

— Through an administrator installation of IBM Installation Manager, as root,
and afterward change the owner of all files and directories added or modified
during the installation to that user. The result is a single-user installation.

IBM MobileFirst Platform Foundation for iOS V7.0.0

* If the application server is owned by root, you can install MobileFirst Server
only through an administrator installation of IBM Installation Manager; a
single-user installation of IBM Installation Manager does not work, because it
lacks the necessary privileges.

Note: MobileFirst Server does not support the group mode of IBM Installation
Manager.

Installing a new version of MobileFirst Server
Create a fresh installation of IBM MobileFirst Platform Server by creating a new
package group in IBM Installation Manager.

Procedure
1. Start IBM Installation Manager.
2. On the IBM Installation Manager main page, click Install.

3. In the panel that prompts for the package group name and the installation
directory, select Create a new package group.

4. Complete the installation by following the instructions that are displayed.

Upgrading MobileFirst Server from a previous release
The way that you use IBM Installation Manager to upgrade to the latest version of
MobileFirst Server depends on your upgrade path.

Before you begin

Before you apply these instructions, see [“Upgrading to IBM MobileFirst Platform|
[Foundation for iOS V7.0.0” on page 7-1[It describes important steps to upgrade
MobileFirst applications, or to upgrade a production server in a production
environment.

Procedure
1. Start the IBM Installation Manager.
2. Depending on your upgrade path, take one of the following actions:
+ To upgrade from Worklight® Server to MobileFirst Server:
a. Click Install.

b. In the panel that prompts for the package group name and the
installation directory, select Use the existing package group. In this
situation, installation MobileFirst Server automatically removes a
Worklight Server installation that was installed in the same directory.

* To upgrade from MobileFirst Server to a newer version, click Update.

Command-line installation with XML response files (silent
installation)

With IBM Installation Manager, you can complete a command-line installation of
MobileFirst Server with XML response files, on multiple computers, or on
computers where a GUI interface is not available. In the following documentation,
this installation is referred to as silent installation.

About this task
Silent installation uses predetermined answers to wizard questions, rather than

presenting a GUI that asks the questions and records the answers. Silent
installation is useful when:

Installing and configuring 6-31

6-32

* You want to install MobileFirst Server on a set of computers that are configured
in the same way.

* You want to install MobileFirst Server on a computer where a GUI is not readily
available. For example, a GUI might not be available on a production server
behind a firewall that prevents the use of VNC, RDP, remote X11, and ssh -X.

Silent installations are defined by an XML file that is called a response file. This file
contains the necessary data to complete installation operations silently. Silent
installations are started from the command line or a batch file.

You can use IBM Installation Manager to record preferences and installation actions
for your response file in user interface mode. Alternatively, you can create a
response file manually by using the documented list of response file commands
and preferences.

You can use one response file to install, update, or uninstall multiple products.

You can use a response file to do almost anything that is possible by using IBM
Installation Manager in wizard mode. For example, with a response file you can
specify the location of the repository that contains the package, the package to
install, and the features to install for that package. You can also use a response file
to apply updates or interim fixes or to uninstall a package.

Silent installation is described in the IBM Installation Manager user documentation,
see [Working in silent mode]

There are two ways to create a suitable response file:

* Working with sample response files provided in the MobileFirst user
documentation.

* Working with a response file recorded on a different computer.
Both of these methods are documented in the following sections.
In addition, for a list of the parameters that are created in the response file by the

IBM Installation Manager wizard, see [“Command-line (silent installation)|
[parameters” on page 6-35.

Working with sample response files for IBM Installation Manager:

Instructions for working with sample response files for IBM Installation Manager
to facilitate creating a silent MobileFirst Server installation.

Procedure
Sample response files for IBM Installation Manager are provided in the

[Silent Install Sample Files.zip|compressed file. The following procedures
describe how to use them.

1. Pick the appropriate sample response file from the compressed file. The
Silent_Install_Sample_Files.zip file contains one subdirectory per release.

Important: For an installation that does not install Application Center on an
application server, use the file named install-no-appcenter.xml.

For an installation that installs Application Center, pick the sample response file
from the following table, depending on your application server and database.

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silentinstall_overview.html
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/Silent_Install_Sample_Files.zip

Table 6-10. Sample installation response files in the Silent Install Sample Files.zip file
to install the Application Center

Application
server where
you install the

Application

Center Derby IBM DB2 MySQL Oracle
WebSphere install- install- install- install-
Application liberty- liberty-db2.xml | Tiberty- liberty-
Server Liberty derby.xml mysql.xml (See oracle.xml

profile

Note)

WebSphere install-was- install-was- install-was- install-was-
Application derby.xml db2.xm1 mysql.xml (See |oracle.xml
Server full Note)

profile,

stand-alone

server

WebSphere n/a install-wasnd- |install-wasnd- |install-wasnd-
Application cluster-db2.xml |cluster- cluster-
Server Network mysql.xml (See oracle.xml
Deployment install-wasnd- | Note)

server-db2.xml

install-wasnd-
node-db2.xm1l

install-wasnd-
cell-db2.xml

install-wasnd-
server-
mysql.xml (See
Note)

install-wasnd-
node-mysql.xml

install-wasnd-
cell-mysql.xml

install-wasnd-
server-
oracle.xml

install-wasnd-
node-oracle.xml

install-wasnd-
cell-oracle.xml

(See Note)
Apache Tomcat |install-tomcat- |install-tomcat- |install-tomcat- |install-tomcat-
derby.xml db2.xm1l mysql.xml oracle.xml

Note: MySQL in combination with WebSphere Application Server Liberty
profile or WebSphere Application Server full profile is not classified as a
supported configuration. For more information, see [WebSphere Application|

[Server Support Statement| You can use IBM DB2 or another DBMS that is

supported by WebSphere Application Server to benefit from a configuration
that is fully supported by IBM Support.

For uninstallation, use a sample file that depends on the version of MobileFirst
Server or Worklight Server that you initially installed in the particular package

group:

* MobileFirst Server uses the package group IBM MobileFirst Platform

Server.

* Worklight Server V6.x, or later, uses the package group IBM Worklight.

* Worklight Server V5.x uses the package group Worklight.

Table 6-11. Sample uninstallation response files in the Silent_Install_Sample Files.zip

Initial version of MobileFirst Server

Sample file

Worklight Server V5.x

uninstall-initially-worklightv5.xml

Installing and configuring

6-33

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

6-34

Worklight Server V6.x uninstall-initially-worklightv6.xml

IBM MobileFirst Platform Server V6.x or uninstall-initially-mfpserver.xml
later

2. Change the file access rights of the sample file to be as restrictive as possible.

Step 4 requires that you supply some passwords. If you must prevent other
users on the same computer from learning these passwords, you must remove
the read permissions of the file for users other than yourself. You can use a
command, such as the following examples:

* On UNIX:
chmod 600 <target-file.xml>
* On Windows:
cacls <target-file.xml> /P Administrators:F %USERDOMAIN%\%USERNAME%:F

Similarly, if the server is a WebSphere Application Server Liberty profile or
Apache Tomcat server, and the server is meant to be started only from your
user account, you must also remove the read permissions for users other than
yourself from the following file:

* For WebSphere Application Server Liberty profile: wlp/usr/servers/
<server>/server.xml
* For Apache Tomcat: conf/server.xml

Adjust the list of repositories, in the <server> element. For more information
about this step, see section named Information about the repositories in |”Become|
[familiar with IBM Installation Manager before you start” on page 7-18[and the
IBM Installation Manager documentation at [Repositories|

In the <profile> element, adjust the values of each key/value pair.

In the <offering> element in the <install> element, set the version attribute to
match the release you want to install, or remove the version attribute if you
want to install the newest version available in the repositories.

Type the following command:

<InstallationManagerPath>/eclipse/tools/imc1 input <responseFile>
-log /tmp/installwl.log -acceptLicense

Where:

+ <InstallationManagerPath> is the installation directory of IBM Installation
Manager.

* <responseFile> is the name of the file that is selected and updated in step 1.

For more information, see the IBM Installation Manager documentation at
[[nstalling a package silently by using a response filel

Working with a response file recorded on a different machine:

Instructions for working with response files for IBM Installation Manager created
on another machine to facilitate creating a silent MobileFirst Server installation.

Procedure

1.

Record a response file, by running IBM Installation Manager in wizard mode
and with option -record responsefile on a machine where a GUI is available.
For more details, see [Record a response file with Installation Manager]

Change the file access rights of the response file to be as restrictive as possible.
Step 4 requires that you supply some passwords. If you must prevent other
users on the same computer from learning these passwords, you must remove

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/r_repository_types.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_response_file_install.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_create_response_files_IM.html

the read permissions of the file for users other than yourself. You can use a
command, such as the following examples:

* On UNIX:
chmod 600 response-file.xml
* On Windows:
cacls response-file.xml /P Administrators:F %USERDOMAIN%\%USERNAME%:F

Similarly, if the server is a WebSphere Application Server Liberty or Apache
Tomcat server, and the server is meant to be started only from your user
account, you must also remove the read permissions for users other than
yourself from the following file:

» For WebSphere Application Server Liberty: wip/usr/servers/<server>/
server.xml

* For Apache Tomcat: conf/server.xml

Modify the response file to take into account differences between the machine
on which the response file was created and the target machine.

Install MobileFirst Server by using the response file on the target machine, as
described in [Install a package silently by using a response file}

Command-line (silent installation) parameters:

The response file that you create for silent installations by running the IBM
Installation Manager wizard supports a number of parameters.

Table 6-12. Parameters available for silent installation

Key

When necessary Description Allowed values

user.appserver.selection2

Always Type of application was, tomcat, none
server. was means
preinstalled WebSphere | The value none means
Application Server 7.0, | that the installer will

8.0, or 8.5. tomcat not install the
means Tomcat 7.0 or Application Center. If
newer. this value is used,

both user.appserver
.selection2 and
user.database
.selection2 must
take the value none.

user.appserver.was.installdir ${user.appserver.selection2} == was WebSphere Application | An absolute directory
Server installation name.
directory.

user.appserver.was.profile ${user.appserver.selection2} == was Profile into which to The name of one of
install the applications. | the WebSphere
For WebSphere Application Server
Application Server profiles.

Network Deployment,
specify the Deployment
Manager profile.
Liberty means the
Liberty profile
(subdirectory w1p).

user.appserver.was.cell ${user.appserver.selection2} == was && WebSphere Application | The name of the
${user.appserver.was.profile} != Liberty Server cell into which | WebSphere
to install the Application Server
applications. cell.
user.appserver.was.node ${user.appserver.selection2} == was && WebSphere Application | The name of the
${user.appserver.was.profile} != Liberty Server node into which | WebSphere
to install the Application Server
applications. This node of the current
corresponds to the machine.

current machine.

Installing and configuring 6-35

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_response_file_install.html

Table 6-12. Parameters available for silent installation (continued)

Key

When necessary

Description

Allowed values

user.appserver.was.scope

${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

Type of set of servers
into which to install the
applications. server
means a standalone
server. nd-cell means a
WebSphere Application
Server Network
Deployment cell.
nd-cluster means a
WebSphere Application
Server Network
Deployment cluster.
nd-node means a
WebSphere Application
Server Network
Deployment node
(excluding clusters).
nd-server means a
managed WebSphere
Application Server
Network Deployment
server.

server, nd-cell,
nd-cluster, nd-node,
nd-server

user.appserver.was.serverInstance

${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty &&
${user.appserver.was.scope} == server

Name of WebSphere
Application Server
server into which to
install the applications.

The name of a
WebSphere
Application Server
server on the current
machine.

user.appserver.was.nd.cluster

${user.appserver.selection2} == was &&
${user.appserver.was.profile} = Liberty &&
${user.appserver.was.scope} == nd-cluster

Name of WebSphere
Application Server
Network Deployment
cluster into which to
install the applications.

The name of a
WebSphere
Application Server
Network Deployment
cluster in the
WebSphere
Application Server
cell.

user.appserver.was.nd.node

${user.appserver.selection2} == was &&
${user.appserver.was.profile} = Liberty &&
(${user.appserver.was.scope} == nd-node | |
${user.appserver.was.scope} == nd-server)

Name of WebSphere
Application Server
Network Deployment
node into which to
install the applications.

The name of a
WebSphere
Application Server
Network Deployment
node in the
WebSphere
Application Server
cell.

user.appserver.was.nd.server

${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty &&
${user.appserver.was.scope} == nd-server

Name of WebSphere
Application Server
Network Deployment
server into which to
install the applications.

The name of a
WebSphere
Application Server
Network Deployment
server in the given
WebSphere
Application Server
Network Deployment
node.

user.appserver.was.admin.name

${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

Name of WebSphere
Application Server
administrator.

user.appserver.was.admin.password2

${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

Password of WebSphere
Application Server
administrator,
optionally encrypted in
a specific way.

user.appserver.was.appcenteradmin.password

${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

Password of
appcenteradmin user to
add to the WebSphere
Application Server
users list, optionally
encrypted in a specific
way.

6-36

IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-12. Parameters available for silent installation (continued)

Key

When necessary

Description

Allowed values

user.appserver.was.serial

${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

Suffix that distinguishes
the applications to be
installed from other
installations of
MobileFirst Server.

String of 10 decimal
digits.

user.appserver.was851iberty.serverInstance_

${user.appserver.selection2} == was &&

Name of WebSphere

${user.appserver.was.profile} == Liberty Application Server
Liberty server into
which to install the
applications.
user.appserver.tomcat.installdir ${user.appserver.selection2} == tomcat Apache Tomcat An absolute directory
installation directory. name.
For a Tomcat
installation that is split
between a
CATALINA_HOME directory
and a CATALINA_BASE
directory, here you
need to specify the
value of the
CATALINA_BASE
environment variable.
user.database.selection2 Always Type of database derby, db2, mysql,
management system oracle, none
used to store the
databases. The value none means
that the installer will
not install the
Application Center. If
this value is used,
both user.appserver
.selection2 and
user.database
.selection2 must
take the value none.
user.database.preinstalled Always true means a true, false

preinstalled database
management system,
false means Apache
Derby to install.

user.database.derby.datadir

${user.database.selection2} == derby

The directory in which
to create or assume the
Derby databases.

An absolute directory
name.

user.database.db2.host

${user.database.selection2} == db2

The host name or IP
address of the DB2
database server.

user.database.db2.port

${user.database.selection2} == db2

The port where the
DB2 database server
listens for JDBC
connections. Usually
50000.

A number between 1
and 65535.

user.database.db2.driver

${user.database.selection2} == db2

The absolute file name

An absolute file

of db2jcc.jar or name.
db2jcc4.jar.
user.database.db2.appcenter.username ${user.database.selection2} == db2 The user name used to | Non-empty.

access the DB2 database
for Application Center.

user.database.db2.appcenter.password

${user.database.selection2} == db2

The password used to
access the DB2 database
for Application Center,
optionally encrypted in
a specific way.

Non-empty password.

user.database.db2.appcenter.dbname

${user.database.selection2} == db2

The name of the DB2
database for
Application Center.

Non-empty; a valid
DB2 database name.

Installing and configuring

6-37

Table 6-12. Parameters available for silent installation (continued)

Key

When necessary

Description

Allowed values

user.database.oracle.appcenter
.isservicename. jdbc.url

Optional

Indicates if
user.database.mysql
.appcenter.dbname is a
Service name or a SID
name. If the parameter
is absent then
user.database.mysql
.appcenter.dbname is
considered to be a SID
name.

true (indicates a
Service name) or
false(indicates a SID
name)

user.database.db2.appcenter.schema

${user.database.selection2} == db2

The name of the
schema for Application
Center in the DB2
database.

user.database.mysql.host

${user.database.selection2} == mysql

The host name or IP
address of the MySQL
database server.

user.database.mysql.port

${user.database.selection2} == mysql

The port where the
MySQL database server
listens for JDBC
connections. Usually
3306.

A number between 1
and 65535.

user.database.mysql.driver

${user.database.selection2} == mysql

The absolute file name

An absolute file

access the MySQL
database for
Application Center.

of mysql-connector- name.
java-5.*-bin.jar.
user.database.mysql.appcenter.username ${user.database.selection2} == mysql The user name used to | Non-empty.

user.database.mysql.appcenter.password

${user.database.selection2} == mysql

The password used to
access the MySQL
database for
Application Center,
optionally encrypted in
a specific way.

user.database.mysql.appcenter.dbname

${user.database.selection2} == mysql

The name of the
MySQL database for
Application Center.

Non-empty, a valid
MySQL database
name.

user.database.oracle.host

${user.database.selection2} == oracle, unless
${user.database.oracle.appcenter.jdbc.url} is
specified

The host name or IP
address of the Oracle
database server.

user.database.oracle.port

${user.database.selection2} == oracle, unless
${user.database.oracle.appcenter.jdbc.url} is
specified

The port where the
Oracle database server
listens for JDBC
connections. Usually
1521.

A number between 1
and 65535.

user.database.oracle.driver

${user.database.selection2} == oracle

The absolute file name
of ojdbc6. jar.

An absolute file
name.

user.database.oracle.appcenter.username

${user.database.selection2} == oracle

The user name used to
access the Oracle
database for
Application Center.

A string consisting of
1 to 30 characters:
ASCII digits, ASCII
uppercase and
lowercase letters, '_',
'#,'$' are allowed.

user.database.oracle.appcenter.username.jdbc

${user.database.selection2} == oracle

The user name used to
access the Oracle
database for
Application Center, in a
syntax suitable for
JDBC.

Same as
${user.database.oracle
.appcenter.username}
if it starts with an
alphabetic character
and does not contain
lowercase characters,
otherwise it must be
${user.database.oracle
.appcenter.username}
surrounded by
double quotes.

6-38

IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-12. Parameters available for silent installation (continued)

Key When necessary Description Allowed values
user.database.oracle.appcenter.password ${user.database.selection2} == oracle The password used to | The password must
access the Oracle be a string consisting
database for of 1 to 30 characters:
Application Center, ASCII digits, ASCII
optionally encrypted in | uppercase and
a specific way. lowercase letters, '_,
'#,'$' are allowed.
user.database.oracle.appcenter.dbname ${user.database.selection2} == oracle, unless | The name of the Oracle | Non-empty, a valid

${user.database.oracle.appcenterjdbc.url} is
specified

database for
Application Center.

Oracle database
name.

user.database.oracle.appcenter.isservicename
.jdbc.url

Optional

Indicates if
user.database.oracle
.appcenter.dbname is a
Service name or a SID
name. If the parameter
is absent then
user.database.oracle
.appcenter.dbname is
considered to be a SID
name.

true (indicates a
Service name) or
false(indicates a SID
name)

user.database.oracle.appcenter.jdbc.url

${user.database.selection2} == oracle, unless
${user.database.oracle.host},
${user.database.oracle.port},
${user.database.oracle.appcenter.dbname}
are all specified

The JDBC URL of the
Oracle database for
Application Center.

A valid Oracle JDBC
URL. Starts with
"jdbc:oracle:".

user.writable.data.user Always The operating system An operating system
user that is allowed to | user name, or empty.
run the installed server.

user.writable.data.group2 Always The operating system An operating system

users group that is
allowed to run the
installed server.

users group name, or

empty.

Distribution structure of MobileFirst Server
The MobileFirst Server files and tools are installed in the MobileFirst Server
installation directory.

Table 6-13. Files and subdirectories in the MobileFirst Server installation directory

Item

Description

shortcuts

Launcher scripts for Apache Ant, the
MobileFirst Server Server Configuration
Tool, and the wladm command, which are

supplied with MobileFirst Server.

Table 6-14. Files and subdirectories in the WorklightServer subdirectory

Item

Description

worklight-jee-library.jar

The MobileFirst Server library for
production. For instructions on deploying a
MobileFirst project and this library to an
Application Server, see |”Deployiné
[MobileFirst projects” on page 10-1The
deployment is typically performed by using

Ant tasks, but instructions for manual
deployment are also provided.

Installing and configuring 6-39

Table 6-14. Files and subdirectories in the WorklightServer subdirectory (continued)

Item

Description

worklight-ant-deployer.jar

A set of Ant tasks that help you deploy
projects, applications, and adapters to your
MobileFirst Server. For documentation about
the Ant tasks that are provided in this
library, see [“Deploying MobileFirst projects”|

fon page 10-1]

worklight-ant-builder.jar

A set of Ant tasks that help you build
projects, applications, and adapters for use
in MobileFirst Server. For more information
about the Ant tasks that are provided in this
library, see|Ant tasks for building and|
|deploying applications and adapters}

configuration-samples

Contains the sample Ant files for
configuring a database for the MobileFirst
Server and deploying a MobileFirst project
to an Application Server. For instructions on
how to use these Ant projects, see ”Samplel
|configuration files” on page 14-35.

databases

SQL scripts to be used for the manual
creation of tables for MobileFirst Server and
the Administration Services, instead of using
Ant tasks for the automatic configuration of
these tables. For information about these
scripts, see |“Creating and configuring the
[databases manually” on page 10-17.|

encrypt.bat and encrypt.sh

Tools to encrypt confidential properties that
are used to configure a MobileFirst Server,
such as a database password or a certificate.
For information about this tool, see |”Storin§|
properties in encrypted format” on page|
10-56.|

report-templates

Report templates to configure BIRT reports
for your Application Server. For information
about these BIRT reports, see |”Manua11;1|
configuring BIRT Reports for your|
application server” on page 12-90|

wladm-schemas

XML schemas that describe the format of
input and output of the <wladm> Ant task.

workTightadmin.war

The WAR file for the Administration
Services web application.

worklightconsole.war

The WAR file for the MobileFirst Operations
Console user interface web application.

external-server-libraries

JAR file and manifest file of the OAuth Trust
Association Interceptor (TAI) that is used to
protect application resources on
WebSphere®Application Server or
WebSphere Application Server Liberty. For
more information, see [“Protecting resources|
on WebSphere Application Server orf
WebSphere Application Server Liberty” on|

page 8-232.|

IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-15. Files and subdirectories in the ApplicationCenter subdirectory

Item

Description

ApplicationCenter/installer/IBMAppCenter

Contains the MobileFirst project for the
mobile Client. You must build this project to
create the iOS version of the mobile client.

ApplicationCenter/console/

appcenterconsole.war
The WAR file for the Application
Center console user interface web
application.

applicationcenter.war
The WAR file for the Application
Center REST services web
application.

applicationcenter.ear
The enterprise application archive
(EAR) file to be deployed under
IBM PureApplication® System.

ApplicationCenter/databases

create-appcenter-derby.sql
The SQL script to re-create the
application center database on

derby.

create-appcenter-db2.sql
The SQL script to re-create the
application center database on DB2.

create-appcenter-mysql.sql
The SQL script to re-create the
application center database on

mySQL.

create-appcenter-oracle.sql
The SQL script to re-create the
application center database on
Oracle.

In addition, this directory contains the SQL
scripts to upgrade the database from earlier
versions of IBM MobileFirst Platform
Foundation for iOS.

6-41

Installing and configuring

6-42

Table 6-15. Files and subdirectories in the ApplicationCenter subdirectory (continued)

Item

Description

ApplicationCenter/tools

applicationcenterdeploytool.jar
The JAR file that contains the Ant
task to deploy an application to the
Application Center.

acdeploytool.bat
The startup script of the
deployment tool for use on
Microsoft Windows systems.

acdeploytool.sh
The startup script of the
deployment tool for use on UNIX
systems.

build.xml
Example of an Ant script to deploy
applications to the Application
Center.

dbconvertertool.sh
The startup script of the database
converter tool for use on UNIX
systems.

dbconvertertool.bat
The startup script of the database
converter tool for use on Microsoft
Windows systems.

dbconvertertool. jar
The main library of the database
converter tool.

1ib The directory that contains all Java
Archive (JAR) files that are required
by the database converter tool.

jsondj.jar
The required JSON4J Java archive
file.

README. TXT
Readme file that explains how to

use the deployment tool.

Table 6-16. Files and subdirectories in the License subdirectory

Item

Description

Text

License for IBM MobileFirst Platform
Foundation

Table 6-17. Files and subdirectories in the too

s subdirectory

Item

Description

tools/apache-ant-<version>

A binary installation of Apache Ant that can
be used to run the Ant tasks. For more
information, see [“Deploying MobileFirst|

[projects” on page 10-1]

IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-18. Files and subdirectories in the Analytics subdirectory

Item Description

analytics.ear The IBM MobileFirst Platform Operational
Analytics EAR file. Contains the
analytics-service.war file for deployment
on WebSphere Application Server and
WebSphere Application Server Liberty. For
installation instructions, see |”Installing thel
IBM MobileFirst Platform Operational
[Analytics” on page 6-146.

analytics-ui.war The WAR file for the analytics console user
interface web application.

analytics-service.war The WAR file for the analytics REST services
web application.

Table 6-19. Files and subdirectories in the Datastore subdirectory.

Item Description
imf-data-proxy.war The WAR file for the MobileFirst Data Proxy.
configuration-samples Sample Ant files for deploying a MobileFirst

Data Proxy to an application server.

For more information on how to use these
Ant projects, see |“Installing the MobileFirst]
[Data Proxy with Ant tasks” on page 6-153

Installing the MobileFirst Server administration

You must install the Administration Services, and optionally the MobileFirst
Operations Console, as part of the MobileFirst Server installation.

Optional creation of the administration database

If you want to activate the option to install the administration database when you
run the Ant tasks or the Server Configuration Tool, you must have certain database
access rights that entitle you to create the databases, or the users, or both, that are
required by the MobileFirst Server administration.

If you have sufficient database administration credentials, and if you enter the
administrator user name and password when prompted, or use Ant files with dba
tags, the installation tools can create the databases for you. Otherwise, you need to
ask your database administrator to create the required database for you. In this
case, the database must be created before you start the installation tools.

The following topics describe the procedure for the supported database
management systems.

Important: This step is optional if you install IBM MobileFirst Platform
Foundation for iOS with the Server Configuration Tool or the Ant tasks because
the Server Configuration Tool and the Ant tasks can create the databases
automatically.

Creating the DB2 database for MobileFirst Server administration:

During the installation of IBM MobileFirst Platform Foundation for iOS, the
installation tools can create the administration database for you.

Installing and configuring 6-43

6-44

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see [“Configuring the DB2 database manually for the IBM MobileFirst|
[Platform Server administration” on page 6-56| instead.

About this task

The installation tools can create the administration database for you if you enter
the name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the administration database for

you. For more information, see the [DB2 Solution| user documentation.

When you create the database manually, you can replace the database name (here
WLADMIN) and the password with a database name and password of your choice.

Important: You can name your database and user differently, or set a different
password, but ensure that you enter the appropriate database name, user name,
and password correctly across the DB2 database setup. DB2 limits:

* Database names: no more than 8 characters on all platforms

* User name and passwords: no more than 8 characters for UNIX and Linux, and
no more than 30 characters for Windows

Procedure

1. Create a system user named, for example, wluser in a DB2 admin group such
as DB2USERS, by using the appropriate commands for your operating system.
Give it a password, for example, wluser.

If you want multiple MobileFirst Server instances to connect to the same
database, use a different user name for each connection. Each database user has
a separate default schema. For more information about database users, see the
DB2 documentation and the documentation for your operating system.

2. Open a DB2 command-line processor, with a user that has SYSADM or SYSCTRL
permissions.

* On Windows systems, click Start > IBM DB2 > Command Line Processor.
* On Linux or UNIX systems, navigate to ~/sq11ib/bin and enter ./db2.

3. To create the administration database, enter database manager and SQL
statements similar to the following example.

Replace the user name wluser with your own.

CREATE DATABASE WLADMIN COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLADMIN

GRANT CONNECT ON DATABASE TO USER wluser

DISCONNECT WLADMIN

QUIT

What to do next

The installation tools can create the database tables and objects for MobileFirst
Server administration in a specific schema. You can then use the same database for
MobileFirst Server administration and for a MobileFirst project.

* If the IMPLICIT_SCHEMA authority is granted to the user that you created in
no further action is required. This is the default in the database creation

script of

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html

* If the user does not have the IMPLICIT_SCHEMA authority, create a SCHEMA
for the administration database tables and objects.

Creating the MySQL database for MobileFirst Server administration:

During the MobileFirst installation, the installation tools can create the
administration database for you.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see [‘Configuring the MySQL database manually for the IBM|
[MobileFirst Platform Server administration” on page 6-64] instead.

About this task

The installation tools can create the database for you if you enter the name and
password of the superuser account. For more information, see [Securing the Initiall
[MySQL Accounts|on your MySQL database server. Your database administrator
can also create the databases for you. When you create the database manually, you
can replace the database name (here WLADMIN) and password with a database name
and password of your choice.

Attention: On UNIX, MySQL database names are case-sensitive.

Procedure
1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE WLADMIN CHARACTER SET utf8 COLLATE utf8 general ci;

GRANT ALL PRIVILEGES ON WLADMIN.* TO 'worklight'@'Worklight-host' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON WLADMIN.* TO 'worklight'@'localhost' IDENTIFIED BY 'password';
FLUSH PRIVILEGES;

Here, you need to replace Worklight-host with the name of the host on which
IBM MobileFirst Platform Foundation for iOS runs.

Creating the Oracle database for MobileFirst Server administration:

During the installation of IBM MobileFirst Platform Foundation for iOS, the
installation tools can create the administration database, except for the Oracle 12c
database type, or the user and schema inside an existing database.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see |“Configuring the Oracle database manually for the IBM|
[MobileFirst Platform Server administration” on page 6-67] instead.

About this task

The installation tools can create the database, except for the Oracle 12¢ database, or
the user and schema inside an existing database, if you enter the name and
password of the Oracle administrator on the database server, and the account can
be accessed through SSH. Otherwise, the database administrator can create the

Installing and configuring 6-45

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

database or user and schema for you. When you manually create the database or
user, you can use database names, user names, and a password of your choice.

Attention: Lowercase characters in Oracle user names can lead to unwanted
results.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new general-purpose database named ORCL:

a. Use global database name ORCL_your_domain, and system identifier (SID)
ORCL.

b. On the Custom Scripts tab of the step Database Content, do not run the
SQL scripts because you must first create a user account.

C. On the Character Sets tab of the step Initialization Parameters, select Use
Unicode (AL32UTFS8) character set and UTFS8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.

2. Create a database user by using either Oracle Database Control or the Oracle
SQLPlus command-line interpreter.

* Using Oracle Database Control.
a. Connect as SYSDBA.
b. Go to the Users page and click Server, then Users in the Security section.

c. Create a user, for example WLADMIN. If you want multiple MobileFirst
Server instances to connect to the general-purpose database that you
created in use a different user name for each connection. Each
database user has a separate default schema.

d. Assign the following attributes:
— Profile: DEFAULT
— Authentication: password
— Default tablespace: USERS
— Temporary tablespace: TEMP
— Status: Unlocked
— Add system privilege: CREATE SESSION
— Add system privilege: CREATE SEQUENCE
— Add system privilege: CREATE TABLE
— Add quota: Unlimited for tablespace USERS
* Using the Oracle SQLPlus command-line interpreter.

The commands in the following example create a user named WLADMIN for the
database:

CONNECT SYSTEM/<SYSTEM_password>@0RCL

CREATE USER WLADMIN IDENTIFIED BY WLADMIN_ password

DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;

GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WLADMIN;

DISCONNECT;

Configuration of the application server
IBM MobileFirst Platform Foundation for iOS has some requirements for the
configuration of the application server that are detailed in the following topics.

6-46 IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring WebSphere Application Server Liberty profile:

You must configure a secure JMX connection for WebSphere Application Server
Liberty profile.

Procedure

MobileFirst Server requires the secure JMX connection to be configured.

* The Server Configuration Tool and the Ant tasks can configure a default secure
JMX connection, which includes the generation of a self-signed SSL certificate
with a validity period of 365 days. This configuration is not intended for
production use.

* To configure the secure JMX connection for production use, follow the
instructions from the page [Configuring secure JMX connection to the Liberty|
-roﬁle

* The rest-connector is available for WebSphere Application Server, Liberty Core,
and other editions of Liberty, but it is possible to package a Liberty Server with
a subset of the available features. To verify that the rest-connector feature is
available in your installation of Liberty, enter the following command:

<libertyInstallDir>/bin/productInfo featureInfo

Note: Verify that the output of this command contains restConnector-1.0.
What to do next
For more information about the optimization of MobileFirst Server, especially the

tuning of the JVM memory allocation, see [‘Optimization and tuning of MobileFirst|
[Server” on page 6-105)

Configuring Apache Tomcat:
You must configure a secure JMX connection for Apache Tomcat application server.
About this task

The Server Configuration Tool and the Ant tasks can configure a default secure
JMX connection, which includes the definition of a JMX remote port, and the
definition of authentication properties. They modify <tomcatInstallDir>/bin/
setenv.bat and <tomcatInstallDir>/bin/setenv.sh to add these options to
CATALINA_OPTS:

-Djava.rmi.server.hostname=Tocalhost

-Dcom. sun.management.jmxremote.port=8686

-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ss1=false

Note: 8686 is a default value. The value for this port can be changed if the port is
not available on the computer.

* The setenv.bat file is used if you start Apache Tomcat with
<tomcatInstallDir>/bin/startup.bat, or <tomcatInstallDir>/bin/catalina.bat.

* The setenv.sh file is used if you start Apache Tomcat with
<tomcatInstallDir>/bin/startup.sh, or <tomcatInstallDir>/bin/catalina.sh.

This file might not be used if you start Apache Tomcat with another command. If
you installed the Apache Tomcat Windows Service Installer, the service launcher
does not use setenv.bat.

Installing and configuring 6-47

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1

Important: This configuration is not secure by default. To secure the configuration,
you must manually complete steps 2 and 3 of the following procedure.

Procedure

Manually configuring Apache Tomcat:
1. For a simple configuration, add the following options to CATALINA_OPTS:

-Djava.rmi.server.hostname=Tocalhost

-Dcom. sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ss1=false

2. To activate authentication, see the Apache Tomcat user documentation @
[Support - BIO and NIO|and [SSL Configuration HOW-TO}

3. For a JMX configuration with SSL enabled, add the following options:

-Dcom. sun.management.jmxremote=true

-Dcom. sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.ss1=true
-Dcom.sun.management.jmxremote.authenticate=false
-Djava.rmi.server.hostname=1ocalhost
-Djavax.net.ss1.trustStore=<key store location>
-Djavax.net.ss1.trustStorePassword=<key store password>
-Djavax.net.ss1.trustStoreType=<key store type>
-Djavax.net.ss1.keyStore=<key store location>
-Djavax.net.ss1.keyStorePassword=<key store password>
-Djavax.net.ss1.keyStoreType=<key store type>

Note: The port 8686 can be changed.

4. If the Tomcat instance is running behind a firewall, the JMX Remote Lifecycle
Listener must be configured. See the Apache Tomcat documentation for
[Remote Lifecycle Listener|

The following environment properties must also be added to the Context
section of the Administration Services application in the server.xml file, such
as in the following example:
<Context docBase="worklightadmin" path="/worklightadmin ">
<Environment name="ibm.worklight.admin.rmi.registryPort" value="registryPort" type="java.lang.String" override="false"/>

<Environment name="ibm.worklight.admin.rmi.serverPort" value="serverPort" type="java.lang.String" override="false"/>
</Context>

In the previous example:

* registryPort must have the same value as the rmiRegistryPortPlatform
attribute of the JMX Remote Lifecycle Listener.

* serverPort must have the same value as the rmiServerPortPTlatform attribute
of the JMX Remote Lifecycle Listener.

5. If you installed Apache Tomcat with the Apache Tomcat Windows Service
Installer instead of adding the options to CATALINA_OPTS, run
<TomcatInstallDir>/bin/Tomcat7w.exe, and add the options in the Java tab of
the Properties window.

6-48 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener
http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener

'ﬁ Apache Tomcat 7.0 Tomcat7 Properties

| General | Log On | Logging

...................................

...................................

Java Classpath:

Java Options:

Java | Startup | Shutdown

Java Virtual Machine:

C:\Program Files (x86)\Java\jre6\bin\client'jvm.dll

=

C:\Program Files (x86)\Apache Software Foundation\Tomeat 7.0%bin\bo

-Djava.util.logging.config.file=C:\Program Files (x86)\Apache Softw =
-Djava.rmi.server.hostname=localhost

-Dcom.sun.management.jmxremote.port=8686
-Deom.sun.management. jmxremote.authenticate=false

|

Initial memory pool: 128 MB
Maximum memory pool: 258 MB
Thread stack size: KB
OK] | Cancel | Apply

What to do next

For more information about the optimization of MobileFirst Server, especially the

tuning of the JVM memory allocation, see [‘Optimization and tuning of MobileFirst|

[Server” on page 6-105

Troubleshooting JMX configuration for Liberty profile:

When you start the IBM MobileFirst Platform Foundation for iOS Admin Services
and the MobileFirst runtimes, you can encounter several exceptions in the Liberty

profile server logs.

Table 6-20. Configuring JMX for Liberty profile: errors. Table that describes multiple errors that you might receive
when you try to configure the Liberty profile JMX server.

Message title

Error

Cause

Resolution

Invalid administrator user

Failed to obtain JMX
connection to access an
MBean. There might be a JMX
configuration error:
CWWKX0215E: There was a
problem with the user name
or password provided. The
server responded with code
401 and message
'"Unauthorized’

The value of the
ibm.worklight.admin.jmx.user
JNDI property is not an
administrative Liberty profile
user.

Edit the server.xml file and
make sure that the user
referenced in
ibm.worklight.admin.jmx.user
is defined in the
<administrator-role> element.

Installing and configuring

6-49

Table 6-20. Configuring JMX for Liberty profile: errors (continued). Table that describes multiple errors that you might
receive when you try to configure the Liberty profile JMX server.

Message title

Error

Cause

Resolution

SSL socket factory not found

Failed to obtain JMX
connection to access an
MBean. There might be a JMX
configuration error:
java.lang.
CTassNotFoundException:
Cannot find the specified
class com.ibm.websphere.ss]
.protocol.SSLSocketFactory

The IBM JDK cannot be used
with the SSL socket factories of
WebSphere Application Server
Liberty profile.

For information about
resolving this issue, see

“Configuring Liberty profile|

lwhen IBM JDK is used” onl|

[page 6—193.|

No JMX connector configured

Failed to obtain JMX
connection to access an
MBean. There might be a JMX
configuration error: No JMX
connector is configured

The host name or the port
number that is required for the
JMX connection is not
configured.

Edit the server.xml file and
make sure that both the
ibm.worklight.admin.jmx.port
and the
ibm.worklight.admin.jmx.host
JNDI properties are defined.

Read timed out

Failed to obtain JMX
connection to access an
MBean. There might be a JMX
configuration error: Read
timed out

The JMX connection times out
before the operation completes.
By default, the JMX connection
times out after one minute.

Edit the Liberty profile
jvm.options file and add the
following property:

-Dcom. ibm.ws.jmx.connector
.client.rest
.readTimeout=time in
milliseconds

The default value is 60000. Use
a greater value. The following
example uses three minutes.
-Dcom.ibm.ws.jmx.connector

.client.rest
.readTimeout=180000

Invalid certification path

Failed to obtain JMX
connection to access an
MBean. There might be a JMX
configuration error:
com.ibm.jsse2.util.h: PKIX
path building failed:
java.security.cert
.CertPathBuilderException:
unable to find valid
certification path to
requested target

The SSL configuration of the
Liberty profile server is not
correct.

For instructions about how to
resolve this issue, see

Configuring secure JMX]

connection to the Liberty]

Erofilf_el

Connection exception

java.net.ConnectException:
Connection refused: connect

The JMX connection fails.

Edit the server.xml file. Make
sure that both the
ibm.worklight.admin.jmx.port
and the
ibm.worklight.admin.jmx.host
JNDI properties reference the
local host, and that the https
port number is defined in the
<httpEndpoint> element.

Configuring WebSphere Application Server and WebSphere Application Server
Network Deployment:

You must configure a secure JMX connection for WebSphere Application Server
and WebSphere Application Server Network Deployment.

Procedure
» IBM MobileFirst Platform Foundation for iOS requires access to the SOAP port,

6-50

IBM MobileFirst Platform Foundation for iOS V7.0.0

or the RMI port to perform JMX operations. By default, the SOAP port is active

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1

on a WebSphere Application Server. IBM MobileFirst Platform Foundation for

iOS uses the SOAP port by default. If both the SOAP and RMI ports are
deactivated, IBM MobileFirst Platform Foundation for iOS does not run.

* RMI is only supported with a WebSphere Application Server Network
Deployment. RMI is not supported with a stand-alone profile, or with a
WebSphere Application Server server farm.

* You must activate Administrative and Application Security.

What to do next

For more information about the optimization of MobileFirst Server, especially the

tuning of the JVM memory allocation, see [‘Optimization and tuning of MobileFirst|

[Server” on page 6-105)

Installing MobileFirst Server administration with the Server
Configuration Tool

You can use the Server Configuration Tool to install and configure MobileFirst
Server administration.

Before you begin

Verify that the user who runs the Server Configuration Tool has the privileges that

are described in [“File system prerequisites” on page 6-5.

About this task

Restriction:

* The Server Configuration Tool does not support server farms. Therefore, you

cannot use this tool to install, upgrade, or configure a server farm.
* MobileFirst Server is not supported for production use on Mac OS X.

Procedure

1. Start the Server Configuration Tool.

* On Linux: In the desktop menu, click IBM MobileFirst Platform Server >

Server Configuration Tool.

* On Windows: In the Start menu, click IBM MobileFirst Platform Server >

Server Configuration Tool.

* On Mac OS X: In the Finder, double-click the file mf_server_install_dir/

shortcuts/configuration-tool.sh.

Note: The mf_server_install_dir placeholder represents the directory where

you install MobileFirst Server. mf_server is the shortcut for MobileFirst
Server.

2. Select Create a MobileFirst Server Configuration.

w

Name your configuration.
4. In the Configuration Description window:
a. Enter the context root of the MobileFirst Administration REST service.

The context root is used to create the URL to the MobileFirst REST
Administration service. This URL is typically in the form

<URL_TO APPLICATION_SERVER HTTPS PORT>/contextroot or
<URL_TO APPLICATION_SERVER HTTP_PORT>/contextroot.

b. Enter an environmentId.

Installing and configuring

6-51

6-52

This ID is optional and is used to distinguish between different
deployments of the MobileFirst Server administration components in the
same application server environment, for example in the same cell of
WebSphere Application Server Network Deployment.

Important: Review carefully this environment ID. It must match the
environment ID of all the runtime environments that are managed by this
MobileFirst Server administration component. If you install or upgrade the
MobileFirst runtime environments with separate Ant files, this verification
is particularly important because the environmentId attribute must match.
For a server farm, all installations must also have the same environmentId
attribute.

The environmentld attribute is an attribute of the following Ant tasks:

* installworklightadmin, updateworklightadmin, and
uninstallworklightadmin, which are documented at |“Ant tasks fo;l
installation of MobileFirst Operations Console and Administration|
Services” on page 14-10.|

* configureapplicationserver, updateapplicationserver,
unconfigureapplicationserver, which are documented at |”Ant tasks fo;l
finstallation of MobileFirst runtime environments” on page 14-16.

5. In the Console Settings window, enter the context root of the MobileFirst
Operations Console.

6. In the Database Properties window:

a.
b.
c.

Select your database type: IBM DB2, MySQL, or Oracle.

In the next window, enter the details to connect to the database instance.
In the Database Additional properties window, enter the parameters to
connect to the administration database.

If the database administrator did not create the databases in step
[“Optional creation of the administration database” on page 6-43) enter
database administration credentials in the database creation request
window.

Note: For IBM DB2 and for Oracle, you must have an SSH access to the
host where the database management system (DBMS) is installed.

The Server Configuration Tool creates the database for you.

7. In the Application Server Choice window:

a.

Select your application server type: WebSphere Application Server,
WebSphere Application Server Liberty profile, or Apache Tomcat.

In the Application Server window, enter the data so that you can deploy
IBM MobileFirst Platform Foundation for iOS to that application server.

Depending on your application server, proceed as follows:

* If the application server is WebSphere Application Server Liberty profile,
or Apache Tomcat, select Create a default user if you want to declare a
user who can log in to the console as administrator to the MobileFirst
Operations Console

* If the application server is WebSphere Application Server, select Declare
the WebSphere Administrator as an administrator of IBM MobileFirst
Platform Operations Console if you want to allow the WebSphere
administrator to log in to the MobileFirst Operations Console.

IBM MobileFirst Platform Foundation for iOS V7.0.0

For more information about further configuration of security roles, see
“Configuring user authentication for MobileFirst Server administration” on|

page 6—82.|

8. When all the data is entered, click Deploy.
The following effects take place.

a. If the database administrator did not complete step [“Optional creation of|
[the administration database” on page 6-43) the database for the MobileFirst
Server administration is created and access rights are granted to the user
that is specified in the database additional properties window.

b. If the tables for MobileFirst administration do not exist in the database,
they are created.

c. The MobileFirst administration components are installed in the application
server and are connected to the database.

9. Restart the application server

10. If you are in an environment where you must protect the password of the
user who can log in to the console as administrator to the MobileFirst
Operations Console, follow the steps in [“Securing the MobileFirst Server|
ladministration” on page 6-117

11. Open the console.
If the context root of the console was not changed in the Console Settings
window, you find it at <URL_TO_APPLICATION_SERVER _HTTPS_PORT=>/
worklightconsole, or if HTTPS is not supported in your application server, at
the unsecured URL <URL_TO_APPLICATION_SERVER_HTTP_PORT>/
worklightconsole.

What to do next
Install a MobileFirst runtime environment. For more information, see |”Deploying,|

updating, or undeploying MobileFirst Server by using the Server Configuration|
Tool” on page 10-9)

Using Ant tasks to install MobileFirst Server administration
Learn about the Ant tasks that you can use to install MobileFirst Server
administration.

Creating and configuring the database for MobileFirst Server administration
with Ant tasks:

If you did not manually create databases, you can use Ant tasks to create and
configure your database for MobileFirst Server administration.

Before you begin

Make sure that a database management system (DBMS) is installed and running on
a database server, which can be the same computer, or a different computer.

Note: This preliminary step is not required if you plan to use Apache Derby,
which is not supported for production use. You can install an Apache Derby
database with Ant tasks.

If you want to start the Ant task from a computer on which MobileFirst Server is

not installed, you must copy the file mf_server_install_dir/WorklightServer/
worklight-ant-deployer.jar to that computer.

Installing and configuring 6-53

6-54

If you did not create your databases manually as described in [“Optional creation|
[of the administration database” on page 6-43| complete the following steps.

Note: The mf_server_install_dir placeholder represents the directory where you
installed MobileFirst Server.

About this task

Procedure

1. Review the sample configuration files in [‘Sample configuration files” on page]
14-35)|and copy the Ant file that corresponds to your database.

The files for creating a database are named after the following pattern:

create-database-<database>.xml

For more information, see table 1, [Table 14-62 on page 14-35| in [“Sample|
fconfiguration files” on page 14-35.

2. See step 4 of the page [‘Sample configuration files” on page 14-35| to edit the
Ant file and replace the placeholder values for the properties at the top of the
file.

3. Run the following commands to create the databases.

ant -f create-database-database.xml admdatabases

You can find the Ant command in mf_server _install dir/shortcuts.
If the databases are created, and you must create only the database TABLES.

4. Edit the Ant script that you use later to create and configure the databases.

5. Review the sample configuration files in [“Sample configuration files” on pagel
14-35)and copy the Ant file that corresponds to your database. The files for
configuring an existing database are named after this pattern:

configure-appServer-database .xml

For more information, see table 1, [Table 14-62 on page 14-35| in [“Sample]
fconfiguration files” on page 14-35.

6. See step 4 of the page [‘Sample configuration files” on page 14-35| to edit the
Ant file and replace the placeholder values for the properties at the top of the
file.

7. Run the following commands to create the databases.

ant -f configure-appServer-database.xml admdatabases
You can find the Ant command in mf_server_install _dir/shortcuts.
What to do next

Deploy MobileFirst Operations Console and the Administration Services, see

“Deploying the MobileFirst Operations Console and Administration Services with|

Ant tasks” on page 6-55.

See also:

* |“Ant configuredatabase task reference” on page 14-1|

* [“Sample configuration files” on page 14-35|

IBM MobileFirst Platform Foundation for iOS V7.0.0

Deploying the MobileFirst Operations Console and Administration Services
with Ant tasks:

Use Ant tasks to deploy the MobileFirst Operations Console and Administration
Services to an application server, and configure data sources, properties, and

database drivers that are used by IBM MobileFirst Platform Foundation for iOS.

Before you begin

1. Complete the procedure in [‘Creating and configuring the databases with Ant|
[tasks” on page 10-13

2. Run the Ant task on the computer where the application server is installed, or
the Network Deployment Manager for WebSphere Application Server Network
Deployment. If you want to start the Ant task from a computer on which
MobileFirst Server is not installed, you must copy the file
mf_server_install_dir/WorklightServer/worklight-ant-deployer.jar to that
computer.

Note: The mf_server_install_dir placeholder represents the directory where you
installed MobileFirst Server.

Procedure
1. Edit the Ant script that you use later to deploy the project WAR File.

a. Review the sample configuration files in [“Sample configuration files” onl

page 14-35)and copy the Ant file that corresponds to your database. The
files for deploying a project WAR file are named after the following pattern:

configure-appServer-database .xml

For more information, see table 1, [Table 14-62 on page 14-35| in [“Sample
lconfiguration files” on page 14-35.

Note: If your file name follows the pattern configure-appServer-
database.xml, you can reuse it for [“Creating and configuring the databases|
fwith Ant tasks” on page 10-13

b. Follow step 4 of the page |[“Sample configuration files” on page 14-35|to edit
the Ant file and replace the placeholder values for the properties at the top
of the file. For WebSphere Application Server Liberty profile, the
administration services require access to the RESTConnector, which is only
accessible with Liberty administrator credentials. If you do not modify the
<jmx/> tag, a new user named WorklightRESTUser is declared in the basic
registry and is given administrator rights by declaring this user in the
<administrator-role/> tag. You might have to modify the <jmx/> tag to
define the Liberty administrator credentials for example if the Liberty
administrator is identified using LDAP. In the Ant file, replace the
empty <jmx/> tag by the following line.

<jmx TibertyAdminUser="demo" TibertyAdminPassword="demo" createlLibertyAdmin="false"/>
Where:

* libertyAdminUser is the name of the Liberty administrator.

* libertyAdminPassword is the password of the Liberty administrator.

If createlLibertyAdmin is set to false, the Ant task does not attempt to add
the user to the basic registry or to declare the user as a Liberty
administrator.

2. To deploy the Administration Services and the MobileFirst Operations Console
WAR files, run the following command:

Installing and configuring 6-55

6-56

ant -f configure-appServer-database.xml adminstall
You can find the Ant command in mf_server_install_dir/shortcuts
What to do next

Install a MobileFirst runtime environment. For more information, see
[tasks to deploy the project WAR file” on page 10-13

See also:

* |“Ant tasks for installation of MobileFirst Operations Console and Administration|
Services” on page 14-10|

* [“Sample configuration files” on page 14-35|

* |“Encrypting database password with Ant tasks for Liberty” on page 14-9|

Manually installing MobileFirst Server administration

You can install the MobileFirst Server administration manually instead of using the
Ant task or the Server Configuration Tool. You might also want to reconfigure
MobileFirst Server so that it uses a different database or schema from the one that
was specified during the first installation of MobileFirst Server. This
reconfiguration depends on the type of database and the kind of application server.

Configuring the DB2 database manually for the IBM MobileFirst Platform
Server administration:

You configure the DB2 database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in [‘Creating the DB2 database for|
[MobileFirst Server administration” on page 6-43]

2. Create the tables in the database. This step is described in [“Setting up your|
[DB2 database manually for the MobileFirst Server administration.”|

3. Perform the application server-specific setup as the following list shows.
Setting up your DB2 database manually for the MobileFirst Server administration:

You can set up your DB2 database for the MobileFirst Server administration
manually.

About this task

Set up your DB2 database for the MobileFirst Server administration by creating the
database schema.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password worklight. For more information, see the DB2 documentation and the
documentation for your operating system.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across

IBM MobileFirst Platform Foundation for iOS V7.0.0

the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:

* On Windows systems, click Start > IBM DB2 > Command Line Processor.
* On Linux or UNIX systems, go to “/sq11ib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called WLADMIN:

CREATE DATABASE WLADMIN COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLADMIN
GRANT CONNECT ON DATABASE TO USER worklight
QUIT
4. Run DB2 with the following commands to create the WLADMIN tables, in a
schema named WLADMSC You can change the name of the schema. This
command can be run on an existing database whose page size is compatible
with the one defined in step 3.
db2 CONNECT TO WLADMIN
db2 SET CURRENT SCHEMA = 'WLADMSC'
db2 -vf product_install_dir/WorklightServer/databases/create-worklightadmin-db2.sql -t

Configuring Liberty profile for DB2 manually for MobileFirst Server administration:

You can set up and configure your DB2 database manually for MobileFirst Server
administration with WebSphere Application Server Liberty profile.

Before you begin

Complete the DB2 Database Setup procedure before continuing.

Procedure
1. Add the DB2 JDBC driver JAR file to $LIBERTY HOME/wlp/usr/shared/
resources/db2.

If that directory does not exist, create it. You can retrieve the file in one of two
ways:

+ Download it from [DB2 JDBC Driver Versions]

* Fetch it from the db2_install_dir/java on the DB2 server directory.

2. Configure the data source in the $LIBERTY_HOME/w1p/usr/servers/
worklightServer/server.xml file as follows:

In this path, you can replace worklightServer by the name of your server.
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="x.jar"/>
</library>

<l-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">
<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLADMIN" currentSchema="WLADMSC"
serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>
</dataSource>

The workTight value after user= is the name of the system user with
CONNECT access to the WLADMIN database that you have previously created.
The worklight value after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace

Installing and configuring 6-57

http://www.ibm.com/support/docview.wss?uid=swg21363866

worklight accordingly. Also, replace db2server with the host name of your DB2
server (for example, Tocalhost, if it is on the same computer).

DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

3. You can encrypt the database password with the securityUtility program in
<liberty install_dir>/bin.

Configuring WebSphere Application Server for DB2 manually for MobileFirst Server
administration:

You can set up and configure your DB2 database manually for the MobileFirst
Server administration with WebSphere Application Server.

About this task
Complete the DB2 database setup procedure before continuing.

Note: The was_install_dir and mf_server_install_dir placeholders denote the
directories where you installed WebSphere Application Server and MobileFirst
Server.

Procedure
1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere

Application Server installation directory.

* For a standalone server, you can use a directory such as
WAS INSTALL DIR/optionalLibraries/IBM/WorklightAdmin/db2.

* For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Work1ightAdmin/db2.

* For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/db2.

* For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-
name /nodes/node-name /Work1ightAdmin/db2.

* For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name /nodes/node-name/servers/server-name/WorklightAdmin/db2.

If the directory for the JDBC driver JAR file does not exist, you must create it.

2. Add the DB2 JDBC driver JAR file (download it from [DB2 JDBC Driver|
or fetch it from the directory db2_install_dir/java on the DB2
server) to the directory that you determined in step 1.

3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.

d. Set Database type to DB2.

e. Set Provider type to DB2 Using IBM JCC Driver.

f. Set Implementation Type to Connection pool data source.

g. Set Name to DB2 Using IBM JCC Driver.

6-58 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

h.
i.

j-
k.
I

m.

n.

a
b
c
d.
e
f.
g

-~

T L T o 5 3

Click Next.

Set the Class path to the set of JAR files in the directory that you
determined in step 1, one per line, replacing WAS_INSTALL_DIR/profiles/
profile-name with the WebSphere Application Server variable reference
${USER_INSTALL_ROOT}.

Do not set Native library path.
Click Next.
Click Finish.

The JDBC provider is created.
Click Save.

. Create a data source for the administration database:

. Click Resources > JDBC > Data sources.

. Select the appropriate scope from the Scope combination box.
. Click New to create a data source.

Set the Data source name to administration database.

. Set JNDI Name to jdbc/WorklightAdminDS.

Click Next.

. Enter properties for the data source, for example:

* Driver type: 4

* Database Name: WLADMIN

* Server name: localhost

* Port number: 50000 (default)

Leave Use this data source in (CMP) selected.
Click Next.

Create JAAS-J2C authentication data, specifying the DB2 user name and
password as its properties. If necessary, go back to the data source creation
wizard, by repeating steps @ to

Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

Click Next and Finish.
Click Save.

. In Resources > JDBC > Data sources, select the new data source.

Click WebSphere Application Server data source properties.
Select the Non-transactional data source check box.

Click OK.

Click Save.

Click Custom properties for the data source, select property currentSchema,
and set the value to the schema used to create the MobileFirst Server
administration tables (WLADMSC in this example).

. Test the data source connection by selecting Data Source and clicking Test
Connection.

. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Installing and configuring 6-59

6-60

Configuring Apache Tomcat for DB2 manually for MobileFirst Server administration:

You can set up and configure your DB2 database manually for IBM MobileFirst
Platform Server administration with the Apache Tomcat application server.

About this task
Before you continue, complete the DB2 database setup procedure.

Procedure

1. Add the DB2 JDBC driver JAR file.
You can retrieve this JAR file in one of the following ways:
+ Download it from [DB2 JDBC Driver Versions}

* Or fetch it from the directory db2_install_dir/java on the DB2 server) to
$TOMCAT_HOME/T1b.

2. Prepare an XML statement that defines the data source, as shown in the
following code example.

<Resource auth="Container"

driverClassName="com.ibm.db2.jcc.DB2Driver"

name="jdbc/Work1ightAdminDS"

username="worklight"

password="password"

type="javax.sql.DataSource"

url="jdbc:db2://server:50000/WLADMIN: currentSchema=WLADMSC;" />
The worklight parameter after username= is the name of the system user with
"CONNECT" access to the WLADMIN database that you previously created. The
password parametere after password= is this user's password. If you defined
either a different user name, or a different password, or both, replace these
entries accordingly.

DB2 enforces limits on the length of user names and passwords.
* For UNIX and Linux systems: 8 characters
* For Windows: 30 characters

3. Insert this statement in the server.xml file, as indicated in |“Configurina
[Apache Tomcat for MobileFirst Server administration manually” on page 6-77.|

Configuring the Apache Derby database manually for the IBM MobileFirst
Platform Server administration:

You configure the Apache Derby database manually by creating the database and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database and the tables within them. This step is described in
“Setting up your Apache Derby database manually for the MobileFirst Server|
administration” on page 6-61.

2. Configure the application server to use this database setup. Go to one of the
following topics:

+ |[“Configuring Liberty profile for Derby manually for MobileFirst Server|
administration” on page 6-61

* |“Configuring WebSphere Application Server for Derby manually for|
MobileFirst Server administration” on page 6-62|

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

+ |“Configuring Apache Tomcat for Derby manually for the MobileFirst Server|
administration” on page 6-63|

Setting up your Apache Derby database manually for the MobileFirst Server
administration:

You can set up your Apache Derby database for the MobileFirst Server
administration manually.

About this task

Set up your Apache Derby database for the MobileFirst Server administration by
creating the database schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from [Apache Derby: Downloads}

For supported versions of Apache Derby, see [“System requirements” on page|

The script displays ij version number.

2. At the command prompt, enter the following commands:

connect 'jdbc:derby:WLADMIN;user=WLADMIN;create=true';
run 'product_install_dir/WorklightServer/databases/create-worklightadmin-derby.sql';
quit;

Configuring Liberty profile for Derby manually for MobileFirst Server administration:

If you want to manually set up and configure your Apache Derby database for
MobileFirst Server administration with WebSphere Application Server Liberty
profile, use the following procedure.

About this task
Complete the Apache Derby database setup procedure before continuing.
Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:

<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false" statementCacheSize="10">
<jdbcDriver TibraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>
<properties.derby.embedded databaseName="DERBY DATABASES DIR/WLADMIN" user="WLADMIN"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>
<connectionManager connectionTimeout="180"

Installing and configuring 6-61

http://db.apache.org/derby/derby_downloads

maxPoo1Size="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool"/>

</dataSource>

Configuring WebSphere Application Server for Derby manually for MobileFirst Server
administration:

You can set up and configure your Apache Derby database manually for the
MobileFirst Server administration with WebSphere Application Server.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.

For a standalone server, you can use a directory such as
WAS_INSTALL_DIR/optionalLibraries/IBM/WorklightAdmin/derby.

For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-name/
Work1lightAdmin/derby.

For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/derby.

For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name /Work1ightAdmin/derby.

For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name /nodes/node-name/servers/server-name/WorklightAdmin/derby.

If the directory for the JDBC driver JAR file does not exist, you must create it.

2. Add the Derby JAR file from product_install dir/ApplicationCenter/tools/
1ib/derby.jar to the directory that you determined in step 1.

3. Set up the JDBC provider.

a.

® oo 0o

>oQ -

j-

In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

Select the appropriate scope from the Scope combination box.
Click New.
Set Database Type to User-defined.

Set class Implementation name to
org.apache.derby. jdbc.EmbeddedConnectionPoolDataSource40.

Set Name to Worklight - Derby JDBC Provider.

. Set Description to Derby JDBC provider for Worklight.
. Click Next.

Set the Class path to the JAR file in the directory that you determined in
step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

Click Finish.

4. Create the data source for the administration database.

6-62 IBM MobileFirst Platform Foundation for iOS V7.0.0

-~

© = 3

©

s < c

In the WebSphere Application Server, click Resources > JDBC > Data
sources.

Select the appropriate scope from the Scope combination box.
Click New.

Set Data source Name to administration database.

Set JNDI name to jdbc/Work1ightAdminDS.

Click Next.

. Select the existing JDBC Provider that is named Worklight - Derby JDBC

Provider.

. Click Next.

Click Next.

Click Finish.

Click Save.

In the table, click the administration Database data source that you created.

. Under Additional Properties, click Custom properties.

Click databaseName.

Set Value to the path to the WLADMIN database that is created in |”Setting upl
your Apache Derby database manually for the MobileFirst Server|
administration” on page 6-61

Click OK.
Click Save.
At the top of the page, click administration atabase.

Under Additional Properties, click WebSphere Application Server data
source properties.

Select Non-transactional datasource.

. Click OK.

Click Save.

In the table, select the administration Database data source that you
created.

Optional: Only if you are not on the console of a WebSphere Application
Server Deployment Manager, click test connection.

5. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for Derby manually for the MobileFirst Server
administration:

If you want to manually set up and configure your Apache Derby database for the
IBM MobileFirst Platform Server administration with the Apache Tomcat server,
use the following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

Add the Derby JAR file from product_install_dir/WorklightServer/tools/1ib/
derby.jar to the directory $TOMCAT_HOME/11b.

1.

Installing and configuring 6-63

2. Prepare an XML statement that defines the data source, as shown in the
following code example. Insert this statement in the server.xml file, as
indicated in [“Configuring Apache Tomcat for MobileFirst Server administration|
[manually” on page 6-77]

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/Work1ightAdminDS"
username="WLADMIN"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WLADMIN"/>

Configuring the MySQL database manually for the IBM MobileFirst Platform
Server administration:

You configure the MySQL database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in [‘Creating the MySQL database|
[for MobileFirst Server administration” on page 6-45.|

2. Create the tables in the database. This step is described in [“Setting up your|
[MySQL database manually for the MobileFirst Server administration.”

3. Perform the application server-specific setup as the following list shows.

Setting up your MySQL database manually for the MobileFirst Server administration:

You can set up your MySQL database for the MobileFirst Server administration
manually.

About this task
Complete the following procedure to set up your MySQL database.

Procedure

1. Create the database schema.
a. Run a MySQL command line client with the option -u root.
b. Enter the following commands:

CREATE DATABASE WLADMIN CHARACTER SET utf8 COLLATE utf8_general ci;

GRANT ALL PRIVILEGES ON WLADMIN.* TO 'worklight'@'Worklight-host'IDENTIFIED BY 'worklight';
GRANT ALL PRIVILEGES ON WLADMIN.* TO 'worklight'@'Tocalhost' IDENTIFIED BY 'worklight';
FLUSH PRIVILEGES;

USE WLADMIN;
SOURCE product_install_dir/WorklightServer/databases/create-worklightadmin-mysql.sql;

Where worklight before the "at" sign (@) is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM MobileFirst Platform Foundation for iOS runs.

2. Add the following property to your MySQL option file:
max_allowed_packet=256M

For more information about option files, see the MySQL documentation at

6-64 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://dev.mysql.com

Configuring Liberty profile for MySQL manually for MobileFirst Server administration:

If you want to manually set up and configure your MySQL database for
MobileFirst Server administration with WebSphere Application Server Liberty
profile, use the following procedure.

Before you begin
Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:
<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">
<jdbcDriver TibraryRef="MySQLLib"/>
<properties databaseName="WLADMIN"
serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>
</dataSource>
where worklight after user= is the user name, worklight after password= is this
user's password, and mysqlserver is the host name of your MySQL server (for
example, localhost, if it is on the same machine).

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

Configuring WebSphere Application Server for MySQL manually for MobileFirst Server
administration:

If you want to manually set up and configure your MySQL database for
MobileFirst Server administration with WebSphere Application Server, use the
following procedure.

About this task
Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see [WebSphere Application Server Support|
We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.

Installing and configuring 6-65

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

* For a standalone server, you can use a directory such as
WAS_INSTALL_DIR/optionalLibraries/IBM/WorklightAdmin/mysql.

* For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-name/
WorkTightAdmin/mysql.

* For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/mysql.

* For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-
name /nodes/node-name /Work1ightAdmin/mysql.

* For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name /nodes/node-name/servers/server-name/WorklightAdmin/mysql.

If the directory for the JDBC driver JAR file does not exist, you must create it.

2. Add the MySQL JDBC driver JAR file that you downloaded from
ionnector /]

to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

Select the appropriate scope from the Scope combination box.
Click New.

Create a JDBC provider named MySQL.

Set Database type to User defined.

Set Scope to Cell.

Set Implementation class to

com.mysql.jdbc.jdbc2.optional. MysqlConnectionPoolDataSource.

h. Set the Class path to the JAR file in the directory that you determined in
step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

i. Save your changes.

@ o a0y

4. Create a data source for the administration database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Type any name (for example, Worklight administration Database).
e. Set JNDI Name to jdbc/Work1ightAdminDS.
f. Use the existing JDBC Provider MySQL, defined in the previous step.
g. Set Scope to New.
h. On the Configuration tab, select Non-transactional data source.
i. Click Next a number of times, leaving all other settings as defaults.
j. Save your changes.
5. Set the custom properties of the new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

6-66 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

portNumber = 3306

relaxAutoCommit=true

databaseName = WLADMIN

serverName = the host name of the MySQL server

user = the user name of the MySQL server

password = the password associated with the user name

6. Set the WebSphere Application Server custom properties of the new data
source.

a. In Resources > JDBC > Data sources, select the new data source.
b. Click WebSphere Application Server data source properties.

c. Select Non-transactional data source.

d. Click OK.

e. Click Save.

7. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for MySQL manually for MobileFirst Server administration:

If you want to manually set up and configure your MySQL database for IBM
MobileFirst Platform Server administration with the Apache Tomcat server, use the
following procedure.

About this task
Complete the MySQL database setup procedure before continuing.

Procedure
1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/1ib directory.

2. Prepare an XML statement that defines the data source, as shown in the
following code example. Insert this statement in the server.xml file, as
indicated in [“Configuring Apache Tomcat for MobileFirst Server administration|
[manually” on page 6-77]

<Resource name="jdbc/WorklightAdminDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/WLADMIN"/>

Configuring the Oracle database manually for the IBM MobileFirst Platform
Server administration:

You configure the Oracle database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in [‘Creating the Oracle database for]
[MobileFirst Server administration” on page 6-45]

2. Create the tables in the database. This step is described in [“Setting up your]
Oracle database manually for the MobileFirst Server administration” on page]

6-68

Installing and configuring 6-67

3. Perform the application server-specific setup as the following list shows.
Setting up your Oracle database manually for the MobileFirst Server administration:

You can set up your Oracle database for the MobileFirst Server administration
manually.

About this task
Complete the following procedure to set up your Oracle database.

Procedure
1. Ensure that you have at least one Oracle database.

In many Oracle installations, the default database has the SID (name) ORCL. For
best results, specify Unicode (AL32UTF8) as the character set of the database.

If the Oracle installation is on a UNIX or Linux computer, make sure that the
database is started next time the Oracle installation is restarted. To this effect,
make sure that the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create the user WLADMIN, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.

* Create the user for the runtime database/schema, by using Oracle Database
Control, proceed as follows:

a. Connect as SYSDBA.

b. Go to the Users page.

c. Click Server, then Users in the Security section.

d. Create a user, named WLADMIN with the following attributes:

Profile: DEFAULT

Authentication: password

Default tablespace: USERS

Temporary tablespace: TEMP

Status: Unlocked

Add system privilege: CREATE SESSION

Add system privilege: CREATE SEQUENCE

Add system privilege: CREATE TABLE

Add quota: Unlimited for tablespace USERS

* To create the user by using Oracle SQLPlus, enter the following commands:

CONNECT SYSTEM/<SYSTEM_password>@ORCL

CREATE USER WLADMIN IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WLADMIN;

DISCONNECT;

3. Create the database tables for the runtime database and reports database:

a. Using the Oracle SQLPlus command-line interpreter, create the tables for
the IBM administration database by running the create-worklightadmin-
oracle.sql file:

CONNECT WLADMIN/WLADMIN_password@ORCL

@product_install_dir/WorklightServer/databases/create-worklightadmin-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:

a. Download the JDBC driver from the Oracle website at|Oracle: JDBC, SQLJ |
[Oracle JPublisher and Universal Connection Pool (UCP)}

b. Ensure that the Oracle JDBC driver is in the system path. The driver file is
ojdbcb.jar.

6-68 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Configuring Liberty profile for Oracle manually for MobileFirst Server administration:

If you want to manually set up and configure your Oracle database for MobileFirst
Server administration with WebSphere Application Server Liberty profile, use the
following procedure.

Before you begin
Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC Driver JAR file to $LIBERTY_HOME/w1p/usr/shared/
resources/oracle. If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/w1p/usr/
servers/worklightServer/server.xml file (worklightServer may be replaced in
this path by the name of your server) as shown in the following JNDI code
example:
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="x.jar"/>
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">
<jdbcDriver TibraryRef="OraclelLib"/>
<properties.oracle driverType="thin"
serverName="oserver" portNumber="1521"
databaseName="ORCL"
user="WLADMIN" password="WLADMIN password"/>
</dataSource>
where WLADMIN after user= is the user name, WLADMIN_password after password=
is this user's password, and oserver is the host name of your Oracle server (for
example, localhost, if it is on the same machine).

Note: For more information on how to connect the Liberty server to the Oracle
database with a service name, or with a URL, see the [WebSphere Application|
[Server Liberty Core 8.5.5 documentation| section properties.oracle.

3. You can encrypt the database password with the securityUtility program in
<liberty install_dir>/bin.

Configuring WebSphere Application Server for Oracle manually for the MobileFirst Server
administration:

If you want to manually set up and configure your Oracle database for the
MobileFirst Server administration with WebSphere Application Server, use the
following procedure.

About this task
Complete the Oracle database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.

* For a standalone server, you can use a directory such as
WAS INSTALL DIR/optionalLibraries/IBM/WorklightAdmin/oracle.

Installing and configuring 6-69

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0

* For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-name/
WorklightAdmin/oracle.

* For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/oracle.

* For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name /nodes/node-name /Work1ightAdmin/oracle.

* For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name /nodes/node-name/servers/server-name/WorklightAdmin/oracle.

If the directory for the JDBC driver JAR file does not exist, you must create it.

2. Add the Oracle Nojdbc6. jar file downloaded from [[DBC and Universal|
[Connection Pool (UCP)|to the directory determined in step 1.

3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Complete the JDBC Provider fields as indicated in the following table:

Table 6-21. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver
Implementation type Connection pool data source
Name Oracle JDBC Driver

e. Click Next.

f. Set the Class path to the JAR file in the directory that you determined in
step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

g. Click Next.
The JDBC provider is created.

4. Create a data source for the administration database:

a. Click Resources > JDBC > Data sources.
Select the appropriate scope from the Scope combination box.
Click New.
Set Data source name to Oracle JDBC Driver DataSource.
Set JNDI name to jdbc/Work1ightAdminDS.
Click Next.
. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.

h. Click Next.
i. Set the URL value to jdbc:oracle:thin:@oserver:1521:ORCL, where oserver is

the host name of your Oracle server (for example, localhost, if it is on the
same machine).

j. Click Next twice.

@ "o a0y

6-70 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

k. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource
> Custom properties.

I. Set oracleLogPackageName to oracle.jdbc.driver.

m. Set user = WLADMIN.

n. Set password = WLADMIN_password.

0. Click OK and save the changes.

p. In Resources > JDBC > Data sources, select the new data source.
g. Click WebSphere Application Server data source properties.

r. Select the Non-transactional data source check box.

Click OK.

t. Click Save.

5. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

12

Configuring Apache Tomcat for Oracle manually for MobileFirst Server administration:

If you want to manually set up and configure your Oracle database for IBM
MobileFirst Platform Server administration with the Apache Tomcat server, use the
following procedure.

About this task
Complete the Oracle database setup procedure before continuing.

Procedure
1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/11ib.

2. Prepare an XML statement that defines the data source, as shown in the
following code example. Insert this statement in the server.xml file, as
indicated in |”Conﬁguring Apache Tomcat for MobileFirst Server administration|
fmanually” on page 6-77]

<Resource name="jdbc/WorklightAdminDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521:0RCL"
username="WLADMIN"
password="WLADMIN password"/>

Where WLADMIN after username= is the name of the system user with
"CONNECT" access to the WLADMIN database that you have previously created,
and WLADMIN_password after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these values accordingly.

Deploying the Administration Services and MobileFirst Operations Console and
configuring the application server manually:

The procedure to deploy the Administration services and IBM MobileFirst Platform
Operations Console manually to an application server depends on your application

server.

These manual instructions assume that you are familiar with your application
server.

Installing and configuring 6-71

Note: Using the MobileFirst Server installer to install MobileFirst Server
administration is more reliable than installing manually and should be used
whenever possible.

If you prefer to use the manual process, follow these steps to configure your
application server for MobileFirst Server administration. You must deploy the
worklightconsole.war and worklightadmin.war files to your MobileFirst Server
administration. The files are located in product_install_dir/WorklightServer.

Configuring WebSphere Application Server Liberty profile for MobileFirst Server
administration manually:

To configure WebSphere Application Server Liberty profile for MobileFirst Server
administration manually, you must modify the server.xml file.

About this task

In addition to modifications for the databases, which are described in
installing MobileFirst Server administration” on page 6-56] you must make the
following modifications to the server.xml file.

Note: In the following procedure, when the example uses the worklight.war file
name, use the name of your MobileFirst project, for example, myProject.war.

Procedure

1. Ensure that the <featureManager> element contains at least the following
<feature> elements:

* For WebSphere Application Server Liberty profile V8.5.0.x:

<feature>ss1-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>jndi-1.0</feature>
<feature>restConnector-1.0</feature>
<feature>appSecurity-1.0</feature>

* For WebSphere Application Server Liberty profile V8.5.5.0 and later:

<feature>jdbc-4.0</feature>
<feature>appSecurity-2.0</feature>
<feature>restConnector-1.0</feature>

2. Follow the instructions from the [[BM WebSphere Application Server Liberty|
[Core user documentation|to configure the secure JMX connection.

3. Add the following global JNDI entries in the server.xml file:

<jndiEntry jndiName="1ibm.worklight.admin.jmx.host" value="localhost"/>

<jndiEntry jndiName="1ibm.worklight.admin.jmx.port" value="9443"/>

<jndiEntry jndiName="1ibm.worklight.admin.jmx.user" value="WorklightRESTUser"/>
<jndiEntry jndiName="1ibm.worklight.admin.jmx.pwd" value="WorklighRESTUserPassword"/>
<jndiEntry jndiName="1ibm.worklight.topology.platform" value="Liberty"/>

<jndiEntry jndiName="1ibm.worklight.topology.clustermode" value="Standalone"/>

Where:

* ibm.worklight.admin.jmx.host is the host name for the JMX REST
connection.

* ibm.worklight.admin.jmx.port is the HTTPS port. You can find its value in
the httpEndpoint element of the server.xml file.

* ibm.worklight.admin.jmx.user is a user with the <administrator-role> that
you created in step 2.

6-72 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html

* ibm.worklight.admin.jmx.pwd is the password of that user.
4. Modify the web container definition with the following values:
<webContainer invokeFlushAfterService="false" deferServletlLoad="false"/>

5. Declare a thread pool: Add the following <executor> declaration, or if the
server.xml file has an <executor> declaration already, modify its coreThreads
and maxThreads values accordingly.

<!-- Thread pool -->

<executor name="LargeThreadPool" id="default"
coreThreads="200" maxThreads="400" keepAlive="60s"
stealPolicy="STRICT" rejectedWorkPolicy="CALLER_RUNS"/>

6. Copy the following WAR files to the apps directory of the liberty server:
product_install_dir/WorklightServer/worklightadmin.war and
product_install _dir/WorklightServer/worklightconsole.war.

Note: the apps directory is in the same directory as the server.xml file.

7. Declare the Administration Services and MobileFirst Operations Console
applications:

<!-- Declare the Administration Services application. -->
<application id="worklightadmin" name="worklightadmin" Tocation="worklightadmin.war" type="war">
<application-bnd>
<security-role name="worklightadmin">
<!l-- This example adds a user to the worklightadmin security-role <user name="worklightUser"/> -->
</security-role>
<security-role name="worklightdeployer">
</security-role>
<security-role name="worklightmonitor">
</security-role>
<security-role name="worklightoperator">
</security-role>
</application-bnd>
<classloader delegation="parentLast">
<commonLibrary>
<!-- Important: the version number of the following cryptographic JAR file might change
according to the version of WebSphere Application Server Liberty profile, or its fix packs -->
<fileset dir="${wlp.install.dir}/1ib" includes="com.ibm.ws.crypto.passwordutil *.jar"/>
</commonLibrary>
</classloader>
</application>

<!-- Declare the MobileFirst Operations
Console application. -->
<application id="worklightconsole" name="worklightconsole" location="worklightconsole.war" type="war">
<application-bnd>
<security-role name="worklightadmin">
<!-- This example adds a user to the worklightadmin security-role <user name="worklightUser"/> -->
</security-role>
<security-role name="worklightdeployer">
</security-role>
<security-role name="worklightmonitor">
</security-role>
<security-role name="worklightoperator">
</security-role>
</application-bnd>
</application>

<jndiEntry jndiName="worklightconsole/ibm.worklight.admin.endpoint" value='"x://*:%/worklightadmin"'/>

Note: For more information about how to configure a user registry for Liberty
profile, see [Configuring a user registry for the Liberty profile|

Installing and configuring 6-73

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_sec_registries.html

6-74

The JNDI property worklightconsole/ibm.worklight.admin.endpoint is
prefixed by the context root of the MobileFirst Operations Console application,
in this example worklightconsole. The value of this property is the end point
to the MobileFirst administration.

The syntax "x://*:*/worklightadmin" means that the URL is the same as the
one that is used to contact the MobileFirst Operations Console. However, the
context root of the MobileFirst Operations Console is replaced by
worklightadmin.

You might also specify the full endpoint, for example: http://
myhostname.mydomain.com:9080/worklightadmin.

8. If the database is Oracle, add the commonLibraryRef attribute to the class loader
of the worklightadmin application.

<classloader delegation="parentlLast" commonLibraryRef="0racleLib">
<commonLibrary>

The name of the library reference (Oraclelib in this example) must be the ID of
the library that contains the JDBC JAR file. This ID is declared in the procedure
that is documented in [“Configuring Liberty profile for Oracle manually for]
[MobileFirst Server administration” on page 6-69

Configuring WebSphere Application Server for MobileFirst Server administration
manually:

To configure WebSphere Application Server for IBM MobileFirst Platform Server
administration manually, you must configure variables, custom properties, and
class loader policies.

Before you begin

These instructions assume that a stand-alone profile exists with an application
server named “Worklight” and that the server is using the default ports.

Procedure

1. Log on to the WebSphere Application Server administration console for your
MobileFirst Server.

The address is of the form http://server.com:9060/1ibm/console, where server
is the name of the server.

2. Enable application security.
a. Click Security > Global Security.

b. Ensure that Enable administrative security is selected. Application security
can be enabled only if administrative security is enabled.

c. Ensure that Enable application security is selected.
d. Click OK.
e. Save the changes.

For more information, see [Enabling security|in WebSphere Application Server
user documentation.

3. Review the server class loader policy: Click Servers > Server Types >
WebSphere application servers, and select the server used for IBM MobileFirst
Platform Foundation for iOS.

e If the class loader policy is set to Multiple, do nothing.

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_csec2.html

* If the class loader policy is set to Single and the class loading mode is set to
parent-last, do nothing.

* If the class loader policy is set to Single and the class loading mode is set to
parent-first, change the class loader policy to Multiple, and set the class
loader order of all applications other than MobileFirst applications to
parent-first.

. Create the MobileFirst Server administration JDBC data source and provider.

See the instructions in the appropriate subsection in [“Manually installing]
[MobileFirst Server administration” on page 6-56.]

. If you install on WebSphere Application Server Network Deployment, find the

SOAP port of the deployment manager by clicking System

Administration/Deployment manager.

a. In Additional properties, open Ports.

b. Take note of the value SOAP_CONNECTOR_ADDRESS, because you need it to set
the value of the ibm.workTight.admin.jmx.dmgr.port environment entry for
the Administration Services.

. Install the Administration Services WAR file:

a. Depending on your version of WebSphere Application Server, click one of
the following options:

* Applications > New > New Enterprise Application
* Applications > New Application > New Enterprise Application

b. Go to the MobileFirst Server installation directory product_install_dir/
WorklightServer.

c. Select worklightadmin.war, and then click Next.

d. On the How do you want to install the application? page, click Detailed,
and then click Next.

e. On the Application Security Warnings page, click Continue.

—h

Click Next until you reach the Map resource references to resources page,
and enter the JNDI name of the data source that you created in step 4.

Click Next until you reach the Map context roots for web modules page.

° @

In the Context Root field, type /worklightadmin.
i. Click Next.
j- In Map environment entries for web modules:

* If you install by using the Deployment Manager in the WebSphere
Application Server Network Deployment product, enter the following
values:

— For the entry ibm.worklight.admin.jmx.dmgr.host, enter the host name
of the deployment manager.

— For the entry ibm.worklight.admin.jmx.dmgr.port, enter the SOAP port
of the deployment manager that you noted in step 5.b.

— For the entry ibm.worklight.topology.platform, enter WAS.
— For the entry ibm.worklight.topology.clustermode, enter Cluster.
* If you install on a stand-alone server:
— For the entry ibm.worklight.topology.platform, enter WAS.
— For the entry ibm.worklight.topology.clustermode, enter Standalone.
k. Click Next until you reach the last step, and click Finish.
I. Click Save.

. Configure the class loader policies for the Administration Services and then
start the application:

Installing and configuring 6-75

Click the Manage Applications link, or click Applications > Applications
Types > WebSphere enterprise applications.

b. From the list of applications, click worklightadmin_war.

C. In the Detail Properties section, click the Class loading and update

SQ —~ o

k.

detection link.

In the Class loader order pane, click Classes loaded with local class loader
first (parent last).

Click OK.
In the Detail Properties section, click the Startup behavior link.

. In Startup Order, enter 1, and click OK.
. In the Modules section, click Manage Modules.

From the list of modules, click the Worklight Administration Services
module.

In the Class loader order pane, click Classes loaded with local class loader
first (parent last).

Click OK twice.
Click Save.

m. Select worklightadmin_war and click Start.
8. Install the IBM MobileFirst Platform Operations Console WAR file.

a.

e o

SQ —~ o

i

k.

Depending on your version of WebSphere Application Server, click one of
the following options:

» Applications > New > New Enterprise Application
* Applications > New Application > New Enterprise Application

Go to the MobileFirst Server installation directory product_install_dir/
WorklightServer.

Select worklightconsole.war, and then click Next.

On the How do you want to install the application? page, click Detailed,
and then click Next.

On the Application Security Warnings page, click Continue.
Click Next until you reach the Map context roots for web modules page.

. In the Context Root field, type /worklightconsole.
. Click Next.

In Map environment entries for web modules, enter the value
://:x/worklightadmin for the entry ibm.worklight.admin.endpoint.

Click Next until you reach the last step, and click Finish.
Click Save.

9. Configure the class loader policies for the MobileFirst Operations Console and
start the application:

a.

Click the Manage Applications link, or click Applications > Application
Types > WebSphere enterprise applications.

From the list of applications, click worklightconsole_war.

C. In the Detail Properties section, click the Class loading and update

e.

f.

detection link.

In the Class loader order pane, click Classes loaded with local class loader
first (parent last).

Click OK.
In the Detail Properties section, click the Startup behavior link.

6-76 IBM MobileFirst Platform Foundation for iOS V7.0.0

g. In Startup Order, enter 1, and click OK.
h. In the Modules section, click Manage Modules.
i. From the list of modules, click the Worklight Console module.

j- In the Class loader order pane, click Classes loaded with local class loader
first (parent last).

k. Click OK twice.
|. Click Save.

m. Click Applications > Application Types > WebSphere enterprise
applications.

n. Select Select for worklightconsole_war and click Start.
Results
You can now access the MobileFirst Server administration at http://
<server>:<port>/worklightconsole, where server is the host name of your server
and port is the port number (by default 9080).
What to do next

For more steps to configure MobileFirst Server administration, see |”Conﬁgurina
WebSphere Application Server full profile for MobileFirst Server administration”]

on page 6-84.|

Configuring Apache Tomcat for MobileFirst Server administration manually:

To configure Apache Tomcat for the MobileFirst Server administration manually,
you must copy JAR and WAR files to Tomcat, add database drivers, edit the
server.xml file, and then start Tomcat.

Before you begin

Prerequisites:

* Configure the database for MobileFirst Server administration. For more
information about various databases configuration, see [“Manually installing]
[MobileFirst Server administration” on page 6-56

* Define the CATALINA OPTS options to enable Java Management Extensions (JMX)
as described in [“Configuring Apache Tomcat” on page 6-47|

Procedure
1. Edit tomcat_install_dir/conf/server.xml file.

a. Uncomment the following element, which is initially commented out:
<Valve className="org.apache.catalina.authenticator.SingleSignOn" />.
b. Declare the MobileFirst Operations Console and Administration Services
applications and a user registry:
<!-- Declare the Administration Services application. -->
<Context docBase="worklightadmin" path="/worklightadmin">

<!-- Declare the JNDI environment entries for the Administration Services. -->
<Environment name="1ibm.worklight.topology.platform" value="Tomcat" type="java.lang.String" override="false"/>
<Environment name="1ibm.worklight.topology.clusterMode" value="Standalone" type="java.lang.String" override="false"/>

<l-- Declare the administration database. -->
<l-- <Resource name="jdbc/WorklightAdminDS" type="javax.sql.DataSource" ... /> -->

</Context>

Installing and configuring 6-77

<!-- Declare the MobileFirst Platform Operations Console application. -->
<Context docBase="worklightconsole" path="/worklightconsole">

<!-- Declare the JNDI environment entries for the Operations Console. -->
<Environment name="ibm.worklight.admin.endpoint" value="«://*:%/worklightadmin" type="java.lang.String" override="false"/>
</Context>

<!l-- Declare the user registry for the MobileFirst Server administration.
The MemoryRealm recognizes the users defined in conf/tomcat-users.xml.
For other choices, see Apache Tomcat "Realm Configuration HOW-TOQ"
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html . -->

<Realm className="org.apache.catalina.realm.MemoryRealm"/>

where you must uncomment and complete the <Resource> element to
declare the administration database as described in one of the following
sections:

+ [“Configuring Apache Tomcat for DB2 manually for MobileFirst Server|
administration” on page 6-60)|

+ [“Configuring Apache Tomcat for Derby manually for the MobileFirst]
Server administration” on page 6-63)|

* |[“Configuring Apache Tomcat for MySQL manually for MobileFirst Server|
administration” on page 6-67]

+ |[“Configuring Apache Tomcat for Oracle manually for MobileFirst Server|
administration” on page 6-71|
2. Copy the MobileFirst Server administration WAR files to Tomcat.
* On UNIX and Linux systems:
cp product_install_dir/WorklightServer/*.war tomcat_install_dir/webapps

* On Windows systems:

copy /B product_install_dir\WorklightServer\worklightconsole.war tomcat_install_dir\webapps\worklightconsole.war
copy /B product_install_dir\WorklightServer\worklightadmin.war tomcat_install_dir\webapps\worklightadmin.war

3. Start Tomcat.
What to do next

For more steps to configure the MobileFirst Server administration, see
[“Configuring Apache Tomcat for MobileFirst Server administration” on page 6-86.

Defining the endpoint of the MobileFirst Administration services
If circumstances require the parameters of the endpoint definition to be changed,
you must configure properties of the web application server appropriately.

MobileFirst Operations Console must be able to locate the MobileFirst
Administration REST services and must be able to generate various URI for the
entry points of web applications or for the download of audit log files.

By default, the URI protocol, host name, and port are the same as those defined in
the web application server used to access MobileFirst Operations Console; the
context root of the MobileFirst Administration REST services is worklightadmin.
When the context root of the MobileFirst Administration REST services is changed
or when the internal URI of the web application server is different from the
external URI, and the external URI is used to access MobileFirst Operations
Console, the externally accessible endpoint (protocol, host name, and port) must be
defined by configuring the web application server. Reasons for separating internal
and external URI could be, for example, a firewall or a secured reverse proxy that
uses HTTP redirection.

6-78 IBM MobileFirst Platform Foundation for iOS V7.0.0

The following figure shows a configuration with a secured reverse proxy that hides
the internal address (192.168...) when MobileFirst Operations Console is accessed
with the external address (wrklght.net).

Browser
accessing Secured ‘ MobileFirst
MobileFirst ; Reverse ; Administration
Operati e Proxy 5 Servi
perations wrkight.net.443 it et 192 168 ..:B080 EIVICES
Console wrkight.n 192.168 ...
Figure 6-7. Configuration with secured reverse proxy
Table 6-22. The endpoint properties
Property name Purpose Example

ibm.worklight.admin.endpoint

This property enables MobileFirst
Operations Console to locate the
MobileFirst Administration REST
services. The value of this property
must be specified as the external
address and context root of the
workTightadmin.war web application.
You can use the asterisk (*) character
as wildcard for specifying that the
MobileFirst Administration services
use the same value as MobileFirst
Operations Console. For example:
://:*/wladmin means use the same
protocol, host, and port as
MobileFirst Operations Console, but
use wladmin as context root. This
property must be specified for the
MobileFirst Operations Console
application.

https://wrklght.net:443/
worklightadmin

ibm.worklight.admin.proxy.protocol

If external access is required, this
property specifies the protocol for
external browsers to access the
MobileFirst Administration services.
This property must be specified for
the MobileFirst Administration
services application.

https

ibm.worklight.admin.proxy.host

If external access is required, this
property specifies the host name for
external browsers to access the
MobileFirst Administration services.
This property must be specified for
the MobileFirst Administration
services application.

wrklght.net

Installing and configuring

6-79

Table 6-22. The endpoint properties (continued)

Property name

Purpose Example

ibm.worklight.admin.proxy.port If external access is required, this 443

property specifies the port for
external browsers to access the
MobileFirst Administration services.
This property must be specified for
the MobileFirst Administration
services application.

Configuring the endpoint (WebSphere Application Server full profile):

Configure the endpoint of the application resources in the environment entries of
MobileFirst Operations Console and the MobileFirst Administration services
application.

About this task

Follow this procedure when you must change the endpoint of the MobileFirst
Administration services.

Procedure

1. Log in to the WebSphere Application Server console.

2. Select Applications > Application Types > WebSphere enterprise
applications.

3. Click Worklight Administration Services.

4. In the “Web Module Properties” section, select “Environment entries for Web
modules”.

5. Assign the appropriate values for the following environment entries:

a. For ibm.worklight.admin.proxy.host, assign the host name.

b. For ibm.worklight.admin.proxy.port, assign the port number.

c. For ibm.worklight.admin.proxy.protocol, assign the external protocol.

6. Click OK and save the configuration.
7. Select Applications > Application Types > WebSphere enterprise
applications.
8. Click Worklight Console.
9. In the “Web Module Properties” section, select “Environment entries for Web
modules”.
10. For ibm.worklight.admin.endpoint, assign the full URI of the MobileFirst

Administration services; That is, the URI of the worklightadmin.war file.

* In a scenario with a firewall or a secured reverse proxy, this URI must be
the external URI and not the internal URI inside the local LAN.

* You can use the asterisk (*) character as wildcard for specifying that the
MobileFirst Administration services use the same value as MobileFirst
Operations Console. For example, *://**/wladmin means use the same
protocol, host, and port as MobileFirst Operations Console, but use wladmin
as context root.

11. Click OK and save the configuration. For a complete list of JNDI properties

that you can set, see [“List of JNDI properties for MobileFirst Server|
[administration” on page 6-86.

6-80 IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring the endpoint (Liberty profile):

For the Liberty profile, configure the endpoint of the application resources through
the JNDI environment.

About this task

Follow this procedure when you must change the endpoint of MobileFirst
Administration services. The appropriate entries in the server.xml file must be
correctly defined.

Procedure

1. Ensure that the <feature> element in the server.xml file is correctly defined to
be able to define JNDI entries.

<feature>jndi-1.0</feature>

2. In the <server> section of the server.xml file, add an entry for each required
property. Each such entry should have the following syntax:

<jndiEntry jndiName="JNDI property name" value="property value"/>
Where:

* JNDI_property_name is the name of the property that you are adding.
* property_value is the value of the property that you are adding.

For a complete list of JNDI properties that you can set, see |”List of]NDil
[properties for MobileFirst Server administration” on page 6-86.

Example of setting properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file that are

required for configuring the endpoint of the application resources.

<jndiEntry jndiName="worklightconsole/ibm.worklight.admin.endpoint"
value="https://wrklght.net:443/worklightadmin" />

<jndiEntry jndiName="worklightadmin/ibm.worklight.admin.proxy.protocol"
value="https" />

<jndiEntry jndiName="worklightadmin/ibm.worklight.admin.proxy.host"
value="wrklght.net" />

<jndiEntry jndiName="worklightadmin/ibm.worklight.admin.proxy.port"
value="443" />

In this example, assume that the context root of MobileFirst Operations Console is
worklightconsole and that the context root of the Administration Services is
workTightadmin. You can prefix the JNDI properties with the context root of the
corresponding web application. If multiple instances of MobileFirst Server are
running in the same web application server, this technique is particularly useful. If
you have only one instance of MobileFirst Server, you can omit the context root
prefix; for example:
<jndiEntry jndiName="ibm.worklight.admin.endpoint"
value="https://wrklght.net:443/worklightadmin" />
<jndiEntry jndiName="ibm.worklight.admin.proxy.protocol"
value="https" />
<jndiEntry jndiName="ibm.worklight.admin.proxy.host"
value="wrklght.net" />

<jndiEntry jndiName="ibm.worklight.admin.proxy.port"
value="443"/>

For ibm.worklight.admin.endpoint, you can use the asterisk (*) character as
wildcard for specifying that the MobileFirst Administration services use the same

value as MobileFirst Operations Console. For example, *://*:*/wladmin means use

Installing and configuring 6-81

the same protocol, host, and port as MobileFirst Operations Console, but use
wladmin as context root.

Configuring the endpoint (Apache Tomcat):

For the Apache Tomcat server, configure the endpoint of the application resources
in the server.xml file.

About this task

Follow this procedure when you must change the endpoint of the MobileFirst
Administration services. You must edit the server.xml file in the conf directory of
your Apache Tomcat installation.

Procedure

In the server.xml file in the conf directory of your Apache Tomcat installation, add
an entry for each property in the <context> section of the corresponding
application. Each entry should have the following syntax:

<Environment name="JNDI property name" value="property value" type="property type" override="false"/>

Where:

* JNDI_property_name is the name of the property that you are adding.
* property_value is the value of the property that you are adding.

* property_type is the value of the type of property that you are adding.

For a complete list of JNDI properties that you can set, see [“List of JNDI properties|
[for MobileFirst Server administration” on page 6-86

Example of setting server.xml properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file that are
required for configuring the endpoint of the application resources.

In the context section of the MobileFirst Operations Console application:

<Environment name="ibm.worklight.admin.endpoint" value="https://wrklght.net:443/worklightadmin"
type="java.lang.String" override="false"/></p>

For ibm.worklight.admin.endpoint, you can use the asterisk (*) character as
wildcard for specifying that the MobileFirst Administration services use the same
value as MobileFirst Operations Console. For example, *://*:*/wladmin means use
the same protocol, host, and port as MobileFirst Operations Console, but use
wladmin as context root.

In the <context> section of the MobileFirst Administration Services application,
you can write:
<Environment name="ibm.worklight.admin.proxy.protocol" value="https" type="java.lang.String"
override="false"/>
<Environment name="ibm.worklight.admin.proxy.host" value="wrklght.net" type="java.lang.String"
override="false"/>
<Environment name="ibm.worklight.admin.proxy.port" value="443" type="java.lang.Integer" override="false"/>

Configuring user authentication for MobileFirst Server
administration

You configure user authentication and choose an authentication method.
Configuration procedure depends on the web application server that you use.

6-82 IBM MobileFirst Platform Foundation for iOS V7.0.0

The MobileFirst Server administration requires user authentication.

You must perform configuration after the installer deploys the MobileFirst Server
administration web applications in the web application server.

The MobileFirst Server administration has the following Java Platform, Enterprise
Edition (Java EE) security roles defined:

worklightadmin

worklightdeployer

worklightoperator

worklightmonitor

You must map the roles to the corresponding sets of users. The worklightmonitor

role can view data but cannot change any data. The purpose of the roles is
illustrated by the following table.

Table 6-23. MobileFirst Roles and Functionality - Production Server

Administrator Deployer Operator Monitor

Java EE security role. |worklightadmin worklightdeployer worklightoperator worklightmonitor

Deployment

Deploy an Y Y
application.

Deploy an adapter. Y Y

MobileFirst Server
Management

Configure runtime Y Y
settings.

Application
Management

Upload new Y Y
MobileFirst
application.

Remove MobileFirst |Y Y
application.

Upload new Y Y
MobileFirst adapter.

Remove MobileFirst |Y Y
adapter.

Turn on or off Y Y
application
authenticity testing
for an application.

Change properties on |Y Y Y
MobileFirst
application status:
Active, Active
Notifying, and
Disabled.

Installing and configuring 6-83

Table 6-23. MobileFirst Roles and Functionality - Production Server (continued)

Administrator Deployer Operator Monitor

Lock an application

so the new artifacts

cannot be used for a
version.

Y Y Y

Notifications

Unsubscribe a device
from SMS
notification.

Configure Push.

Logging

Enable and disable
device logging
remotely.

Configure log levels.

Disable the specific
device, marking the
state as lost or stolen
so that access from
any of the
applications on that
device is blocked.

Disable a specific
application, marking
the state as disabled
so that access from
the specific
application on that
device is blocked.

6-84

If you choose to use an authentication method through a user repository such as
LDAP, you can configure the MobileFirst Server administration so that you can use
users and groups with the user repository to define the Access Control List (ACL)
of the MobileFirst Server administration. This procedure is conditioned by the type
and version of the web application server that you use.

Configuring WebSphere Application Server full profile for MobileFirst Server
administration:

Configure security by mapping the MobileFirst Server administration Java EE roles
to a set of users for both web applications.

Procedure

You define the basics of user configuration in the WebSphere Application Server
console. Access to the console is usually by this address:
https://localhost:9043/ibm/console/

1. Select Security > Global Security.
2. Select Security Configuration Wizard to configure users.

You can manage individual user accounts by selecting Users and Groups >
Manage Users.

IBM MobileFirst Platform Foundation for iOS V7.0.0

3. Map the roles worklightadmin, worklightdeployer, worklightmonitor, and
worklightoperator to a set of users.

a. Select Servers > Server Types > WebSphere application servers.

b. Select the server.

c. In the Configuration tab, select Applications > Enterprise applications.

d. Select IBM_Worklight_Administration_Services.

e. In the Configuration tab, select Details > Security role to user/group
mapping.

f. Perform the necessary customization.

g. Click OK.

h. Repeat steps ¢ to g to map the roles for the console web application. In step

d, select IBM_Worklight_Console.

i. Click Save to save the changes.

Configuring WebSphere Application Server Liberty profile for MobileFirst
Server administration:

Configure the Java EE security roles of the MobileFirst Server administration and
the data source in the server.xml file.

Before you begin

In WebSphere Application Server Liberty profile, you configure the roles of
worklightadmin, worklightdeployer, worklightmonitor, and worklightoperator in
the server.xml configuration file of the server.

About this task

To configure the security roles, you must edit the server.xml file. In the
<application-bnd> element of each <application> element, create <security-role>
elements. Each <security-role> element is for each roles: worklightadmin,
worklightdeployer, worklightmonitor, and worklightoperator. Map the roles to
the appropriate user group name, in this example: worklightadmingroup,
worklightdeployergroup, worklightmonitorgroup, or worklightoperatorgroup.
These groups are defined through the <basicRegistry> element. You can customize
this element or replace it entirely with an <ldapRegistry> element or a
<safRegistry> element.

Then, to maintain good response times with a large number of installed
applications, for example with 80 applications, you should configure a connection
pool for the administration database.

Procedure
1. Edit the server.xml file.
For example:

<security-role name="worklightadmin">
<group name="worklightadmingroup"/>

</security-role>

<security-role name="worklightdeployer">
<group name="worklightdeployergroup"/>

</security-role>

<security-role name="worklightmonitor">
<group name="worklightmonitorgroup"/>

</security-role>

<security-role name="worklightoperator>

Installing and configuring 6-85

<group name="worklightoperatorgroup"/>
</security-role>

<basicRegistry id="worklightadmin">
<user name="admin" password="admin"/>
<user name="guest" password="guest"/>
<user name="demo" password="demo"/>
<group name="worklightadmingroup">
<member name="guest"/>
<member name="demo"/>
</group>
<group name="worklightdeployergroup">
<member name="admin" id="admin"/>
</group>
<group name="worklightmonitorgroup"/>
<group name="worklightoperatorgroup"/>
</basicRegistry>

2. Edit the server.xml file to define the AppCenterPool size.
<connectionManager id="AppCenterPool" minPool1Size="10" maxPoolSize="40"/>
3. In the <dataSource> element, define a reference to the connection manager:
<dataSource id="WLADMIN" jndiName="jdbc/Work1lightAdminDS" connectionManagerRef="AppCenterPool">

</dataSource>

Configuring Apache Tomcat for MobileFirst Server administration:

You must configure the Java EE security roles for the MobileFirst Server
administration on the Apache Tomcat web application server.

Procedure

1. If you installed the MobileFirst Server administration manually, declare the
following roles in the conf/tomcat-users.xml file.

<role rolename="worklightadmin"/>

<role rolename="worklightmonitor"/>
<role rolename="worklightdeployer"/>
<role rolename="worklightoperator"/>

2. Add roles to the selected users, for example:
<user name="demo" password="demo" roles="worklightadmin"/>

3. You can define the set of users as described in the Apache Tomcat
documentation, [Realm Configuration HOW-TO}

List of JNDI properties for MobileFirst Server administration
When you configure MobileFirst Server Administration Services and MobileFirst
Operations Console for your application server, you set optional or mandatory
JNDI properties, in particular for Java Management Extensions (JMX).

JNDI properties for MobileFirst Administration Services

The following properties can be set on the Administration Services web application
worklightadmin.war.

6-86 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

Table 6-24. JNDI properties for Administration Services: JMX

Optional or

Property mandatory Description Restrictions
ibm.worklight.admin.jmx.connector Optional The Java Management WebSphere Application
Extensions (JMX) Server only.
connector type.
The possible values are
SOAP and RMI. The default
value is SOAP.
ibm.worklight.admin. jmx.host Optional Host name for the J]MX Liberty profile only.
REST connection.
ibm.worklight.admin. jmx.port Optional Port for the JMX REST Liberty profile only.
connection.
ibm.worklight.admin.jmx.user Optional User name for the J]MX WebSphere Application
REST connection. Server Liberty profile:
User name for the J]MX
REST connection.
WebSphere Application
Server Farm: User name
for the SOAP connection.
ibm.worklight.admin. jmx.pwd Optional User password for the WebSphere Application
JMX REST connection. Server Liberty profile:
User password for the
JMX REST connection.
WebSphere Application
Server Farm: User
password for the SOAP
connection.
ibm.worklight.admin.rmi.registryPort Optional RMI registry port for the | Tomcat only.
JMX connection through a
firewall.
ibm.worklight.admin.rmi.serverPort Optional RMI server port for the Tomcat only.
JMX connection through a
firewall.
ibm.worklight.admin.jmx.dmgr.host Mandatory Deployment manager host | WebSphere Application
name. Server Network
Deployment only.
ibm.worklight.admin. jmx.dmgr.port Mandatory Deployment manager RMI | WebSphere Application

or SOAP port.

Server Network
Deployment only.

Table 6-25. JNDI properties for Administration Services: time out

Property

Optional or
mandatory

Description

ibm.worklight.admin.actions.prepareTimeout

Optional

Timeout in milliseconds to transfer data
from the management service to the
runtime during a deployment transaction. If
the runtime cannot be reached within this
time, an error is raised and the deployment
transaction ends.

Default value: 1800000 ms (30 min)

Installing and configuring

6-87

Table 6-25. JNDI properties for Administration Services: time out (continued)

Property

Optional or
mandatory

Description

ibm.worklight.admin.actions.commitRejectTimeout

Optional

Timeout in milliseconds, when a runtime is
contacted, to commit or reject a deployment
transaction. If the runtime cannot be
reached within this time, an error is raised
and the deployment transaction ends.

Default value: 120000 ms (2 min)

ibm.worklight.admin.lockTimeoutInMillis

Optional

Timeout in milliseconds for obtaining the
transaction lock. Because deployment
transactions run sequentially, they use a
lock. Therefore, a transaction must wait
until a previous transaction is finished. This
timeout is the maximal time during which a
transaction waits.

Default value: 1200000 ms (20 min)

ibm.worklight.admin.maxLockTimeInMillis

Optional

The maximal time during which a process
can take the transaction lock. Because
deployment transactions run sequentially,
they use a lock. If the application server
fails while a lock is taken, it can happen in
rare situations that the lock is not released
at the next restart of the application server.
In this case, the lock is released
automatically after the maximum lock time
so that the server is not blocked forever. Set
a time that is longer than a normal
transaction.

Default value: 1800000 (30 min)

Table 6-26. JNDI properties for Administration Services: logging

Property

Optional or
mandatory

Description

ibm.worklight.admin.logging.formatjson

Optional

Set this property to true to enable pretty
formatting (extra blank space) of JSON
objects in responses and log messages.
Setting this property is helpful when you
debug the server.

Default value: false.

ibm.worklight.admin.logging.tosystemerror

Optional

Specifies whether all logging messages are
also directed to System.Error. Setting this
property is helpful when you debug the
server.

6-88 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-27. JNDI properties for Administration Services: proxies

Property

Optional or
mandatory

Description

ibm.worklight.admin.proxy.port

Optional

If the MobileFirst Administration server is behind a firewall
or reverse proxy, this property specifies the address of the
host. Set this property to enable a user outside the firewall
to reach the MobileFirst Administration server. Typically,
this property is the port of the proxy, for example 443. It is
necessary only if the protocol of the external and internal
URIs are different.

ibm.worklight.admin.proxy.protocol

Optional

If the MobileFirst Administration server is behind a firewall
or reverse proxy, this property specifies the protocol (HTTP
or HTTPS). Set this property to enable a user outside the
firewall to reach the MobileFirst Administration server.
Typically, this property is set to the protocol of the proxy.
For example, wl.net. This property is necessary only if the
protocol of the external and internal URIs are different.

ibm.worklight.admin.proxy.scheme

Optional

This property is just an alternative name for
ibm.worklight.admin.proxy.protocol.

ibm.worklight.admin.proxy.host

Optional

If the MobileFirst Administration server is behind a firewall
or reverse proxy, this property specifies the address of the
host. Set this property to enable a user outside the firewall
to reach the MobileFirst Administration server. Typically,
this property is the address of the proxy.

Table 6-28. JNDI properties for Administration Services: topologies

Property

Optional or

mandatory Description

ibm.worklight.admin.audit

Set this property to false to disable the
audit feature of the MobileFirst
Operations Console. The default value
is true.

Optional.

ibm.worklight.admin.environmentid

Environment identifier for the
registration of the MBeans.

Optional.

Use this identifier when different
instances of the MobileFirst Server are
installed on the same application
server. The identifier determines which
Administration Services, which console,
and which runtimes belong to the same
installation. The Administration
Services manage only the runtimes that
have the same environment identifier.

ibm.worklight.admin.serverid

Server identifier. Must be different for
each server in the farm. For server
farms only.

Optional.

ibm.worklight.admin.hsts

Set to true to enable HTTP Strict
Transport Security according to RFC
6797.

Optional.

6-89

Installing and configuring

Table 6-28. JNDI properties for Administration Services: topologies (continued)

Optional or

Property mandatory Description
ibm.worklight.topology.platform Mandatory Server type. Valid values:

e Liberty

* WAS

* Tomcat

If you do not set the value, the

application tries to guess the server

type.
ibm.work1ight.topology.clustermode Mandatory In addition to the server type, specify

here the server topology. Valid values:

» Standalone

* Cluster

* Farm

The default value is Standalone.
ibm.worklight.admin.lock.master Optional In cluster and farm topologies, this

property determines which server is the
lock master when the Cloudant
database is used.

For synchronization, the system
requires a locking mechanism that
works across all servers in the farm or
cluster.

SQL data bases have native locking
facilities, but Cloudant has none.
Therefore, with Cloudant only one of
the servers in the farm or cluster
provides the locking mechanism. This
server is called the lock master.

Alternative ways of using this property
are available:

* You set this property to auto on all
servers. The locking master is chosen
and updated dynamically, depending
on server availability.

* You set this property to true on one
server only and to false on all the
other servers. In this configuration,
the server where the property has
the value true is the lock master.

In WebSphere Application Server
Network Deployment topologies,
setting the property to true must be
done through a JVM property of the
server.

Note: This use creates a single point
of failure. When the lock master is
unavailable, MobileFirst
Administration does not function.

The default value is auto.

6-90 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-28. JNDI properties for Administration Services: topologies (continued)

Property

Optional or
mandatory

Description

ibm.worklight.admin.lock.master.detection.delay

Optional

This property determines the time in
milliseconds to wait on startup until
Cloudant is ready, before any locking
operation can take place. This property
is only needed in cluster or farm
topology when the database is
Cloudant. For synchronization, the
system requires a locking mechanism
that works across all servers in the
farm or cluster.

SQL databases have native locking
facilities, but Cloudant has none.
Therefore, with Cloudant one of the
servers in the farm or cluster provides
the locking mechanism.

This lock master server can be selected
automatically with the help of the
database. This automatic selection
requires a small delay, similar to the
setting of
mfp.db.cloudant.afterWrite.delay, to
ensure that the Cloudant database is in
a consistent state. This delay occurs
only once when the server starts.
Reasonable values are between 1 and
10 seconds. Negative values are
ignored. The default value is 3000
(three seconds).

ibm.worklight.admin.lock.master.detection.timeout

Optional

This property determines the timeout
in seconds for the detection of the lock
master. This property is only needed in
cluster or farm topology when the
database is Cloudant. For
synchronization, the system requires a
locking mechanism that works across
all servers in the farm or cluster.

SQL databases have native locking
facilities, but Cloudant has none.
Therefore, with Cloudant one of the
servers in the farm or cluster provides
the locking mechanism.

During startup, the lock master server
must come alive before all the other
servers. Therefore, the other servers
wait for this server before they
complete their startup.

This timeout value specifies the
maximum time another server waits for
the lock master to come alive. Negative
values are ignored. The default value is
120 (two minutes).

Installing and configuring 6-91

Table 6-28. JNDI properties for Administration Services: topologies (continued)

Property

Optional or
mandatory

Description

ibm.worklight.admin.lock.master.connect.timeout

Optional

This property determines the timeout
in seconds for the connection to the
lock master. This property is only
needed in cluster or farm topology
when the database is Cloudant. For
synchronization, the system requires a
locking mechanism that works across
all servers in the farm or cluster.

SQL databases have native locking
facilities, but Cloudant has none.
Therefore, with Cloudant one of the
servers in the farm or cluster provides
the locking mechanism. That server is
called the lock master.

The timeout value specifies the
maximum time another server waits for
the lock master to respond to requests
to take a lock. Negative values are
ignored. The default value is 10
(seconds).

ibm.worklight.admin.farm.heartbeat

Optional

This property enables you to set in
minutes the heartbeat rate that is used
in server farm topologies.

The default value is 2 minutes.

In a server farm, all members must use
the same heartbeat rate. If you set or
change this JNDI value on one server
in the farm, you must also set the same
value on every other server in the farm.

For more information, see |”Lifecycle oﬂ
la server farm node” on page 6-103

ibm.worklight.admin.farm.missed.heartbeats.timeout

Optional

This property enables you to set the
number of missed heartbeats of a farm
member before the status of the farm
member is considered to be failed or
down.

The default value is 2.

In a server farm all members must use
the same missed heartbeat value. If you
set or change this JNDI value on one
server in the farm, you must also set
the same value on every other server in
the farm.

For more information, see |”Lifecyc1e oﬂ
|a server farm node” on page 6-103

6-92 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-28. JNDI properties for Administration Services: topologies (continued)

Property

Optional or
mandatory

Description

ibm.worklight.admin.cloudant.dashboard.url Optional

This property defines the URL of the
Cloudant dashboard, such as the
dashboard of the Cloudant account that
you use for the MobileFirst data proxy.
If this property is set, a link will be
displayed in the header of MobileFirst
Operations Console.

Table 6-29. JNDI properties for Administration Services: relational database

Property

Optional or mandatory

Description

ibm.worklight.admin.db.jndi.name

Optional

The JNDI name of the database. This
parameter is the normal mechanism
to specify the database. The default
value is java:comp/env/jdbc/
WorklightAdminDS.

ibm.worklight.admin.db.openjpa.
ConnectionDriverName

Optional

Conditionally mandatory

The fully qualified name of the
database connection driver class.
Mandatory only when the data
source that is specified by the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.
ConnectionURL

Optional

Conditionally mandatory

The URL for the database connection.
Mandatory only when the data
source that is specified by the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.
ConnectionUserName

Optional

Conditionally mandatory

The Ouser name for the database
connection. Mandatory only when
the data source that is specified by
the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.
ConnectionPassword

Optional

Conditionally mandatory

The password for the database
connection. Mandatory only when
the data source that is specified by
the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.Log

Optional

This property is passed to Open]JPA
and enables JPA logging. For more
information, see the Apache Open]JPA|

|[}ser's Guidel

ibm.worklight.admin.db.type

Optional

This property defines the type of
database. The default value is
inferred from the connection URL.

Installing and configuring 6-93

http://openjpa.apache.org/docs/openjpa-0.9.0-incubating/manual/manual.html
http://openjpa.apache.org/docs/openjpa-0.9.0-incubating/manual/manual.html

Table 6-30. JNDI properties for Administration Services: IBM Cloudant database

Conditionally mandatory

Property Optional or mandatory Description

mfp.db.cloudant.url Optional This property defines the URL of the
Cloudant account used to store the
database. The default value is
https:/ /username.cloudant.com.

mfp.db.cloudant.username Optional This property defines the user name

of the Cloudant account used to store
the database.

If this property is not defined, a
relational database is used.

mfp.db.cloudant.password

Optional

Conditionally mandatory

This property defines the password
of the Cloudant account used to store
the database.

This property must be set when
mfp.db.cloudant.username is set.

mfp.db.cloudant.ss1.authentication

Optional

This property specifies whether the
SSL certificate chain validation and
host name verification are enabled for
HTTPS connections to the Cloudant
database. The value is a Boolean
value (true or false). The default
value is true.

Note: Setting this property to false
creates security risks.

mfp.db.cloudant.ss1.configuration

Optional

This property applies to WebSphere
Application Server full profile only.
For HTTPS connections to the
Cloudant database, it specifies the
name of an SSL configuration in the
WebSphere Application Server
configuration to use when no
configuration is specified for the host
and port.

mfp.db.cloudant.proxyHost

Optional

This property defines the host name
of an HTTP proxy for the connection
to the Cloudant database server.

mfp.db.cloudant.proxyPort

Optional

This property defines the port of an
HTTP proxy for the connection to the
Cloudant database server.

mfp.db.cloudant.adminDbName

Optional

This property defines the name of the
database for MobileFirst
Administration Services in the
Cloudant account. The name must
start with a lowercase letter and
contain only lowercase letters and
any of the following characters:

0'9r$__

The default name is mfp_admin_db.

6-94 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-30. JNDI properties for Administration Services: IBM Cloudant database (continued)

Property

Optional or mandatory

Description

mfp.db.cloudant.connectTimeout

Optional

This property defines the timeout in
milliseconds for establishing a
network connection for Cloudant. A
value of zero means an infinite
timeout. A negative value means the
default value (no override).

mfp.db.cloudant.socketTimeout

Optional

This property defines the timeout in
milliseconds for detecting the loss of
a network connection for Cloudant. A
value of zero means an infinite
timeout. A negative value means the
default value (no override).

mfp.db.cloudant.maxConnections

Optional

This property defines the maximum
number of simultaneous connections
to the Cloudant database.

mfp.db.cloudant.afterWrite.
fullCommit

Optional

This property specifies whether an
"ensure full commit" operation is
used after every write operation to
the Cloudant database. The possible
values are: true, false. The default
value is false.

mfp.db.cloudant.afterWrite.delay

Optional

This property specifies in
milliseconds how long to wait after
every write operation to the
Cloudant database. A value of zero
means no wait. The default value is
0.

mfp.db.cloudant.retry.count

Optional

This property specifies the number of
times to retry a Cloudant database
query operation until it satisfies the
expectations known from the context.
The default value is 2.

mfp.db.cloudant.retry.delay

Optional

This property specifies in
milliseconds how long to wait before
retrying a Cloudant database query
operation. A value of 0 means no
wait. The default value is 0.

mfp.db.cloudant.documentOperation.
timeout

Optional

This property specifies in seconds the
timeout for the completion of
operations on Cloudant documents.
A value of zero means an infinite
timeout. A negative value means the
default value (no override). The
default value is 30 seconds.

mfp.db.cloudant.attachmentOperation
timeout

Optional

This property specifies in seconds the
timeout for the completion of
operations on Cloudant attachments.
A value of zero means an infinite
timeout. A negative value means the
default value (no override). The
default value is 600 seconds (10
minutes).

Installing and configuring 6-95

JNDI properties for MobileFirst Operations Console

The following properties can be set on the web application (worklightconsole.war)
of MobileFirst Operations Console.

Table 6-31. JNDI properties for the MobileFirst Operations Console

Optional or
Property mandatory Description

ibm.worklight.admin.endpoint Optional Enables the MobileFirst Operations Console to locate the
MobileFirst Server Administration REST services. Specify
the external address and context root of the
worklightadmin.war web application. In a scenario with a
firewall or a secured reverse proxy, this URI must be the
external URI and not the internal URI inside the local LAN.
For example, https://wl.net:443/worklightadmin.

ibm.worklight.admin.global.logout | Optional Clears the WebSphere user authentication cache during the
console logout. This property is useful only for WebSphere
Application Server V7.

The default value is false.

ibm.worklight.admin.hsts Optional Set this property to true to enable HTTP Strict Transport
Security according to RFC 6797. For more information, see
the W3C [Strict Transport Security]| page.

The default value is false.

ibm.worklight.admin.ui.cors Optional The default value is true.

For more information, see the W3C [Cross-Origin Resource]

page.
ibm.worklight.admin.ui.cors. Optional Set to false to allow CORS situations where the MobileFirst
strictss] Operations Console is secured with SSL (HTTPS protocol)

while the MobileFirst Server Administration services are
not, or conversely. This property takes effect only if the
ibm.worklight.admin.ui.cors property is enabled.

Configuring the JNDI properties

For more information about how to configure the JNDI properties, see the topic
“Configuring a MobileFirst project in production by using JNDI environment]
entries” on page 10-60.

To configure the properties with Ant tasks, you must use the Ant task
installworklightadmin, instead of configureapplicationserver.

For the console, the property element should be under the console element.

For more information, see [“Ant tasks for installation of MobileFirst Operations|
[Console and Administration Services” on page 14-10

Related tasks:

[INDI environment entries for MobileFirst projects in production|

When you deploy a MobileFirst project to a MobileFirst Server, you can configure
the project’s WAR file with JNDI environment entries to set product environment
properties.

6-96 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.w3.org/Security/wiki/Strict_Transport_Security
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

Verifying the installation of MobileFirst Server administration
You must log in to the MobileFirst Operations Console to verify that the
installation was successful.

Procedure
1. Open a web browser.

2. Enter the following URL in the address bar: http://hostname:9083/
worklightconsole/.

Note:

* In this URL, hostname is the host name of the computer that runs your
application server.

* You must replace 9083 by the HTTP port of your application server.
3. Log in with a worklightadmin user role.

4. The console displays the following message: No runtime can be found.. To
install a MobileFirst runtime environment that you can manage with the
MobileFirst Of erations Console, see [“Installing the MobileFirst runtime|

environment.”

Note: If the Application Center and MobileFirst Operations Console are
installed in the same Tomcat instance, you cannot log in to the Application
Center console and to the MobileFirst Operations Console at the same time in
the same browser. If you try to log in at the same time, you get a 404 Page Not
Found error message.

For example, you get this error message if you open your browser, successfully
log in to the Application Center console, open a new tab in the browser, and
log in to the MobileFirst Operations Console.

This is a technical limitation of Tomcat. The implementation of single sign-on in
Tomcat does not allow to use the same browser to log in to the Application
Center console and to the MobileFirst Operations Console at the same time. But
the Application Center and MobileFirst Server require single sign-on. You must
exit the browser after your work is done in the Application Center console and
restart the browser to log in to the MobileFirst Operations Console. You can
then successfully log in to the MobileFirst Operations Console.

Installing the MobileFirst runtime environment
About this task

For more information about the MobileFirst runtime environment, see
[the project WAR file” on page 10-5.

Installing a server farm

MobileFirst Server provides a specific plug-in so that instances of application
servers can become server farm nodes. After you have prepared the installation
depending on your work environment, you can install your server farm manually
or by running Ant tasks.

Planning the configuration of a server farm
To plan the configuration of a server farm, choose the application server, write the
configuration file, and deploy the WAR files.

Installing and configuring 6-97

6-98

When you intend to plan a server farm installation, you should first see |”Planning|
[deployment of administration components and runtimes” on page 6-7,|and in
particular see [‘Server farm topology” on page 6-11

In IBM MobileFirst Platform Foundation for iOS, a server farm is composed of
multiple stand-alone application servers that are not federated or administered by
a managing component of an application server. MobileFirst Server internally
provides a farm plug-in as the means to enhance an application server so that it
can be part of a server farm.

When to declare a server farm

Declare a server farm in the following cases:
* MobileFirst Server is installed on multiple Tomcat application servers.

* MobileFirst Server is installed on multiple WebSphere Application Server
servers but not on WebSphere Application Server Network Deployer.

* MobileFirst Server is installed on multiple WebSphere Application Server
Liberty servers.

Do not declare a server farm in the following cases:
* Your application server is stand-alone.

* Multiple application servers are federated by WebSphere Application
Server Network Deployment.

Why it is mandatory to declare a farm

Each time a management operation is performed through the MobileFirst
Operations Console or through the MobileFirst Administration Services application,
the operation needs to be replicated to all instances of a runtime environment.
Examples of such management operations are the uploading of a new version of a
wlapp or of an adapter. The replication is done via JMX calls performed by the
MobileFirst Administration Services application instance that handles the
operation. The Administration Service needs to contact all runtime instances in the
cluster. In environments listed under [“When to declare a server farm,”| the runtime
can be contacted through JMX only if a farm is configured. If a server is added to a
cluster without proper configuration of the farm, the runtime in that server will be
in an inconsistent state after each management operation, and until it is restarted
again.

Configuring a server farm
You must configure each server in the farm according to the requirements of the
single type of application server used for each member of the server farm.

About this task

When you plan a server farm, first create stand-alone servers that communicate
with the same database instance. Then modify the configuration of these servers to
make them members of a server farm.

Procedure

1. Choose the type of application server to use to configure the members of the
server farm. IBM MobileFirst Platform Foundation for iOS supports these
application servers in server farms:

* WebSphere Application Server full profile.

IBM MobileFirst Platform Foundation for iOS V7.0.0

Note: In a farm topology, you cannot use the RMI JMX connector. In this
topology, IBM MobileFirst Platform Foundation for iOS supports only the
SOAP connector.

* WebSphere Application Server Liberty profile.
* Apache Tomcat.

To know which versions of application servers are supported, see
[requirements” on page 2-7.)

Note: IBM MobileFirst Platform Foundation for iOS supports only
homogeneous server farms. A server farm is homogeneous when it connects
application servers of the same type. Attempting to associate different types of
application servers could lead to unpredictable behavior at run time. For
example, a farm with a mix of Apache Tomcat servers and WebSphere
Application Server full profile servers is an invalid configuration.

. Decide which database that you want to use. You can choose from:
* DB2

* MySQL

* Oracle

MobileFirst databases are shared between the application servers in a farm,
which means:

* You create the database only once, whatever the number of servers in the
farm.

* You cannot use the Derby database in a farm topology, because the Derby
database allows only a single connection at a time.

For more information about databases, see [“Planning the creation of the]
[databases” on page 6-19.|

. Set up as many stand-alone servers as the number of members that you want
in the farm. Each of these stand-alone servers must communicate with the same
database. You must make sure that any port used by any of these servers is not
also used by another server configured on the same machine. This constraint
applies to the ports used by http, https, REST, SOAP, and RMI protocols.

To set up the servers, you can choose one of the following methods of
installation:

* Install them by using the Server Configuration Tool.
* Install them by using configuration Ant scripts.
* Install them manually.

Each of these servers must have the MobileFirst Administration Services and
one or more MobileFirst runtime environments deployed on it.

For more information about setting up a server, see [“Planning the installation|
[of MobileFirst Server” on page 6-3|

When each of these servers is working properly in a stand-alone topology, you
can transform them into nodes of a server farm.

. Stop all the servers intended to become members of the farm.

. Configure each server appropriately for the type of application server. You
must set some JNDI properties correctly. For Apache Tomcat, you must also
check that the JVM arguments are properly defined.

* WebSphere Application Server Liberty profile

In the server.xml file, set the JNDI properties shown in the following sample
code.

Installing and configuring 6-99

<jndiEntry jndiName="ibm.worklight.topology.clustermode" value="Farm"/>

<jndiEntry jndiName="ibm.worklight.admin.serverid" value="farm_member 1"/>

<jndiEntry jndiName="1ibm.worklight.admin.jmx.user" value="myRESTConnectorUser"/>
<jndiEntry jndiName="1ibm.worklight.admin.jmx.pwd" value="password-of-rest-connector-user"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.host" value="93.12.0.12"/>

These properties must be set with appropriate values:

— ibm.worklight.admin.serverid: The identifier that you defined for this
farm member. This identifier must be unique across all farm members.

— ibm.worklight.admin.jmx.user and ibm.worklight.admin. jmx.pwd: These
values must match the credentials of a user as declared in the
<administrator-role/> element.

— ibm.worklight.admin.jmx.host: Set this parameter to the IP or the host
name that is used by remote members to access this server. Therefore, do
not set it to Tocalhost. This host name is used by the other members of
the farm and must be accessible to all farm members.

— ibm.worklight.admin.jmx.port: Set this parameter to the server HTTPS
port that is used for the JMX REST connection. You can find the value in
the <httpEndpoint> element of the server.xml file.

* Apache Tomcat

Modify the conf/server.xml file to set the following JNDI properties in the
MobileFirst administration context and in every MobileFirst runtime context.

<Environment name="ibm.worklight.topology.clustermode" value="Farm" type="java.lang.String" ove
<Environment name="ibm.worklight.admin.serverid" value="farm_member_I" type="java.lang.String"

The ibm.worklight.admin.serverid property must be set to the identifier that
you have chosen for this farm member. This identifier must be unique across
all farm members.

You must make sure that the -Djava.rmi.server.hostname JVM argument is
set to the IP or the host name used by remote members to access this server.
Therefore, it must not be set to “Tocalhost”. This argument is set in the
CATALINA_OPTS environment variable.

* WebSphere Application Server full profile

You must declare the following environment variables in the MobileFirst
Administration Services and in every MobileFirst runtime application
deployed on the server.

— "ibm.worklight.topology.clustermode"
- "ibm.worklight.admin.serverid"

a. In the WebSphere Application Server console, select Applications >
Application Types > WebSphere Enterprise applications.

Select the MobileFirst Administration Service application.

In “Web Module Properties”, click Environment entries for Web Modules
to display the JNDI properties.

d. Set the values of the following properties.
* Set “ibm.worklight.topology.clustermode” to Farm.

* Set “ibm.worklight.admin.serverid” to the identifier that you chose for
this farm member.

* Set “ibm.worklight.admin.jmx.user” to a user name that has access to
the SOAP connector.

* Set “ibm.worklight.admin.jmx.pwd” to the password of the user declared
in “ibm.worklight.admin. jmx.user”.

e. Verify that “ibm.worklight.admin.jmx.connector” is set to SOAP.
f. Click OK and save the configuration.

6-100 IBM MobileFirst Platform Foundation for iOS V7.0.0

g. Make similar changes for every MobileFirst runtime application deployed
on the server.

6. Exchange the server certificates in their truststores. Exchanging the server
certificates in their truststores is mandatory for farms that use WebSphere
Application Server full profile and WebSphere Application Server Liberty
profile, because in these farms communication between the servers is secured
by SSL.

* WebSphere Application Server Liberty profile

You can configure the truststore by using IBM utilities such as Keytool or

iKeyman.

— For more information about Keytool, see in the IBM SDK, Java
Technology Edition.

— For more information about iKeyman, see in the IBM SDK, Java
Technology Edition.

a. Import the public certificates of the other servers in the farm into the
truststore referenced by the server.xml configuration file of the server. If
the server.xml file does not specify the location of a truststore, it is usually
the OLiberty install _dir/usr/servers/servername/resources/security/
key.jks file. If you are unsure and want to find the location of the
truststore, you can do so by adding Othe following declaration to the
server.xml file:

<logging traceSpecification="SSL=al1:SSLChannel=all"/>

Then, start the server and look for lines containing
Ocom.ibm.ss1.trustStore in the OLiberty install dir/usr/servers/
servername/Togs/trace.log file.

b. Restart each instance of WebSphere Application Server Liberty profile to
make the security configuration take effect.

The following steps are required for single sign on (SSO) to work.

c. Start one member of the farm. In the default LTPA configuration, after the
Liberty server has started successfully, it generates an LTPA keystore as
Liberty install dir/servers/server _name/resources/security/1tpa.keys.

d. Copy the 1tpa.keys file to the Liberty_install_dir/servers/server_name/
resources/security directory of each farm member to replicate the LTPA
keystores across the farm members.

For more information about LTPA configuration, see [Configuring LTPA on|
[the Liberty profile

WebSphere Application Server full profile

Configure the truststore in the WebSphere Application Server administration

console.
a. Log in to the WebSphere Application Server administration console.
b. Select Security > SSL certificate and key management.
c. In “Related Items”, select Keystores and certificates.
d. In the “Keystore usages” field, make sure that SSL keystores is selected.

You can now import the certificates from all the other servers in the farm.
Click NodeDefaultTrustStore.
In “Additional Properties”, select Signer certificates.

~

g. Click Retrieve from port. You can now enter communication and security
details of each of the other servers in the farm. Follow the next steps for
each of the other farm members.

h. In the “Host” field, enter the server host name or IP address.

Installing and configuring 6-101

http://www-01.ibm.com/support/knowledgecenter/?lang=en#!/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/keytoolDocs/keytool_overview.html
http://www-01.ibm.com/support/knowledgecenter/?lang=en#!/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/ikeyman_tool.html
http://www.ibm.com/support/knowledgecenter/#!/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ltpa.html
http://www.ibm.com/support/knowledgecenter/#!/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ltpa.html

6-102

i. In the “Port” field, enter the HTTPS transport (SSL) port.

j. In “SSL configuration for outbound connection”, select
NodeDefaultSSLSettings.

K. In the “Alias” field, enter an alias for this signer certificate,

I. Click Retrieve signer information.

m. Review the information that is retrieved from the remote server and then
click OK.

n. Click Save.
0. Restart the server.

What to do next

If you have created a farm whose members use WebSphere Application Server
Liberty profile, you can now set up an IBM HTTP Server for Liberty. For more
information, see [“Setting up an IBM HTTP Server in an IBM WebSphere]|

[Application Server Liberty profile farm” on page 6-252.

Verifying a farm configuration
To verify a server farm configuration, start all the servers, deploy an application to
one of the servers of the farm, and then check the log files of each server to

confirm that all servers have been updated.

About this task

The purpose of this task is to verify that a farm is configured properly and that
administration operations are propagated on all servers of a farm.

Procedure

1. Start all the servers of the farm.

2. Deploy a MobileFirst application to one of the servers of the farm. You can use
the MobileFirst Operations Console or the wladm program with the deploy app
command. For more information about the deploy app command, see

[“Commands for apps” on page 11-44

3. Once the operation is completed, review the log file of the application server
and search for the entries of class BaseTransaction. Verify that all servers have
been updated.

This is the example of a Liberty log file:

$ grep BaseTransaction messages.log

[9/22/14
[9/22/14
[9/22/14
[9/22/14
[9/22/14
[9/22/14

1
1
1:
1
1
1

:03:17:032 CEST] 0000006d
:03:17:251 CEST] 0000006e
03:19:123 CEST] 00000072
:03:19:123 CEST] 00000072
:03:19:138 CEST] 00000071
:03:19:138 CEST] 00000071

Troubleshooting

com
com
com
com
com
com

.ibm.
.ibm.
.ibm.
.ibm.
.ibm.
.ibm.

worklight.
.admin.
worklight.
worklight.
worklight.
worklight.

worklight

admin.

admin.
admin.
admin.
admin.

actions.
actions.
.BaseTransaction
actions.
actions.
actions.

actions

BaseTransaction
BaseTransaction

BaseTransaction
BaseTransaction
BaseTransaction

+ If you use an environment ID (see [“List of JNDI properties for|
MobileFirst Server administration” on page 6-86/ and |“Configuring a
MobileFirst project in production by using JNDI environment]
entries” on page 10-60), for each server, verify that the environmentId
value for the MobileFirst Administration Service is the same as the
environmentId value for the runtime.

* If you have several servers on the same computer, you must verify
that all servers are using a different JMX port:

IBM MobileFirst Platform Foundation for iOS V7.0.0

— For WebSphere Application Server, the port that is used for JMX is
the SOAP port.

— For WebSphere Application Server Liberty, the port that is used
for JMX is the HTTPS port.

— For Apache Tomcat, the port that is used for JMX is the RMI port,
which is specified in the Ant tasks or in the setenv file for a
manual installation.

If the JMX port is not available for a server, the MobileFirst runtime
environment cannot start.

Lifecycle of a server farm node

You can configure heartbeat rate and timeout values to indicate possible server
problems among farm members by triggering a change in status of an affected
node.

When a server configured as a farm node is started, the Administration Service on
that server automatically registers it as a new farm member.

When a farm member is shut down, it automatically unregisters from the farm.

A heartbeat mechanism exists to keep track of farm members that might become
unresponsive, for example, because of a power outage or a server failure. In this
heartbeat mechanism, MobileFirst runtimes send periodically at a given rate a
heartbeat to MobileFirst administration services. If the MobileFirst administration
services register that too long a time has elapsed since a farm member sent a
heartbeat, then the farm member is considered to be down.

Farm members considered to be down do not serve any more requests to mobile
applications.

Having one or more nodes down does not prevent the other members of the farm
from:

* Serving requests correctly to mobile applications

* Accepting new management operations triggered through MobileFirst
Operations Console

Configuring the heartbeat rate and timeout values

You can configure the heartbeat rate and timeout values by defining the following
JNDI properties:

* ibm.worklight.admin.farm.heartheat
* ibm.worklight.admin.farm.missed.heartbeats.timeout

For more information, see [“List of JNDI properties for MobileFirst Server|
[administration” on page 6-86|

You can check the status of farm members from MobileFirst Operations Console by
clicking Server Farm Nodes.

Installing and configuring 6-103

IBM MobileFirst Platform Operations Console Hallo, demo | Log out | About

Home = helloworld

helloworld runtime environment
Click a link to manage specific areas of this runtime enviroment

/I\ Deploy Application or Adapter SELECT FILE

L] Select a file with the wlapp or adapter extension

Applications (1) Adapters (0)

Devices (0) Push MNotifications

Client Log Profiles Errors Log

License Tracking

Download Audit Log

Figure 6-8. Checking the status of farm nodes

Clicking Server Farm Nodes enables you to access the list of registered farm
members and their status.

IBM MobileFirst Platform Operations Console Hello, admin | Sign out | About |afl=

Home = worklight = Server Farm Nodes

g Server Farm Nodes

List of nodes in the server farm. List is refreshed every 5 minutes

NAME HOST LAST CHECK TIME STATUS
farm_member_1 localhost Jul 22, 2015, 2:54 PM Running
farm_member_2 localhost Jul 22, 2015, 2:49 PM Unresponsive ®

Figure 6-9. List of server farm nodes

The node identified as “farm_member_2” is considered to be down, which
indicates that this server has probably failed and requires some maintenance.

6-104 1BM MobileFirst Platform Foundation for iOS V7.0.0

Configuring MobileFirst Server

Consider your backup and recovery policy, optimize your MobileFirst Server
configuration, and apply access restrictions and security options.

Backup and recovery

You can back up the customization and the content (adapters and applications)
outside the MobileFirst instance, for example in a source control system.

It is advisable to back up the runtime database as-is. When reports are enabled, the
database can become quite large. Consider the benefits of backing them up
separately. Report tables can be configured to be stored on a different database
instance.

Optimization and tuning of MobileFirst Server

Optimize the MobileFirst Server configuration by tuning the allocation of Java
virtual machine (JVM) memory, HTTP connections, back-end connections, and
internal settings.

The MobileFirst Server works with three application servers: Apache Tomcat,
WebSphere Application Server and Liberty profile. For best results, install
MobileFirst Server on a 64-bit operating system, and use only 64-bit software.

JDK
The MobileFirst Server can run on IBM JDK or Oracle JDK.
JVM memory allocation

The Java instance of the application server allocates memory. Consider the
following general guidelines for JVM memory allocations:

* Set the JVM memory to at least 2 GB. This means you can not use less than 2GB,
but that might not be enough and you will have to specify more, based on the
requirements.

* For a production environment, setting the minimum heap size and maximum
heap size to the same value can provide the best performance, as it avoids heap
expansion and contraction.

* Set the required memory size of the application server:

— Liberty: See the jvm.options section in [Customizing the Liberty profilel
You must create this file if it does not exist.

— WebSphere Application Server: proceed as follows.

1. Log in to the administration console.
2. Go to Servers > Server types > WebSphere application servers.

3. Select each server and set Java memory settings under Java Process
definition > JVM arguments.

— Apache Tomcat: find the catalina script and set JAVA_OPTS to inject memory.

For information about how to calculate memory size, see the Scalability and
Hardware Sizing document and the hardware calculator spreadsheet at the
[Developer Center website for IBM MobileFirst Platform Foundation|

Installing and configuring 6-105

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_customvars.html
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_customvars.html
https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

6-106

Tuning HTTP connections

This configuration defines threading and execution settings for the application
server.

Each incoming request requires a thread for the duration of that request. If more
simultaneous requests are received than can be handled by the currently available
request processing threads, then additional threads will be created up to the
configured maximum.

Specific application server configuration:

* Liberty: See the executor section in [Liberty profile: Configuration elements in|
[the server.xml file]

By default, the maximum number of threads is unlimited.
* WebSphere Application Server: Proceed as follows:
1. Log in to the administration console.

2. Go to Servers > Server types > WebSphere application servers >
server_name > Web container.

By default, the maximum number of threads is 50.

« Apache Tomcat: See [The HTTP Connector] page in the Apache Tomcat website.

By default, the maximum number of threads is 200.

Bear in mind the following points when you configure HTTP threads:
* If, for example, the longest call takes 500 milliseconds and you configure a
maximum of 50 threads, you can handle approximately 100 requests per second.

* If your environment includes a back-end system that runs slowly, increase the
number of default threads. In addition, increase the number of back-end
connection threads. For more information, see [“Tuning database connections.”|

* If you expect a high number of concurrent users, increase the number of default
threads.

* Liberty specific: Even though the maximum number of threads is unlimited, the
executor service makes informed choices whether adding another thread will
actually be useful.

Tuning database connections

In tuning database connections, the most important parameter is the number of
connection threads from the server to the database. This configuration is made in
the data source. There are two IBM MobileFirst Platform Foundation for iOS
features that rely heavily on the database: SSO (single sign-on) and reports. When
using these features, you must ensure that you have enough database connection
threads. The only limitation is that each node in the MobileFirst Server cluster can
have no more than MAX_DB_INCOMING_CONNECTIONS/NUM_OF CLUSTER_NODES
connection threads, where MAX_DB_INCOMING_CONNECTIONS is the maximum incoming
connections defined in the database server and NUM_OF_CLUSTER_NODES is the
number of MobileFirst Server nodes in the cluster. A rough rule of thumb is to set
the number of database connections to be the number of HTTP threads in the
application server, as long as you maintain the limitation above.

Each incoming request uses a thread. If more simultaneous requests are received
than can be handled by the currently available request-processing threads, more
threads are created up to the configured maximum.

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
http://tomcat.apache.org/tomcat-7.0-doc/config/http.html

For data source configuration, check the following topics:

* WebSphere Application Server: See [Connection pool settings}
+ Apache Tomcat: See [[NDI Datasource HOW-TO}

* Liberty Server: See the Datasource section in [Liberty profile: Configuration|
felements in the server.xml filel

Tuning back-end connections
maxConcurrentConnectionsPerNode

The maxConcurrentConnectionsPerNode parameter defines the maximum
number of concurrent calls to the back-end service from the MobileFirst
Server node. This maxConcurrentConnectionsPerNode parameter is set in the
<connectionPolicy> element of the adapter XML file.

Starting from IBM MobileFirst Platform Foundation for iOS V6.3, all
requests to the back-end remain on the HTTP thread. The MobileFirst
Server does NOT allocate a new thread for the backend request. The only
use of maxConcurrentConnectionsPerNode is for blocking the number of
connections to the HTTP back-end. The implication is that you can specify
a large value for maxConcurrentConnectionsPerNode (for example, 5000), so
as not to limit the back-end calls.

Handling slow backend servers
If your backend server is slow, increase the values for your server settings,
in particular the following values:

* Number of HTTP threads in the application server: For a backend that
responds in 750 ms, for example, 3000 HTTP threads is recommended.

+ maxConcurrentConnectionsPerNode in the adapter XML file: For a
backend that responds in 750 ms, for example, 3000 is recommended.

* OS settings: Increase the number of open files. 4096 is the recommended
number.

* Clients threads: A good rule of thumb is 2900 JMETER clients threads.
* Backend server: 3000 threads is recommended.

Push Notifications

For push notification information see the Push Notification section in the
Scalability and Hardware Sizing document and the hardware calculator
spreadsheet at the [Developer Center website for IBM MobileFirst Platform|

|Eoundatiogl

Analytics

For Analytics Server configuration see the Analytics section in the Scalability and
Hardware Sizing document and the hardware calculator spreadsheet at the
[Developer Center website for IBM MobileFirst Platform Foundation|

MobileFirst Server internal configuration

Consider the following factors:

* The serverSessionTimeout property defines client inactivity timeout, after which
the session is invalidated. A session is an object stored in the server memory for
each connecting device. Among other data, it stores authentication information.
Active sessions are determined by the number of sessions opened versus the

Installing and configuring 6-107

http://ibm.biz/knowctr#SSAW57_7.0.0/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/udat_conpoolset.html
http://tomcat.apache.org/tomcat-7.0-doc/jndi-datasource-examples-howto.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/
https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/
https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

6-108

sessions timing out due to lack of activity. The default session timeout is 10
minutes, but it can and should be configured. Users typically set the timeout to
anywhere from 5 to 10 minutes. This parameter affects the server memory
consumption.

* In addition, the mobile client has a “heartbeat” property that allows the mobile
client to ping the server while the app is in the foreground, so that the server
session will not time out.

Note:

When a mobile app has moved into the background, it no longer interacts with
the server, nor sends a “heartbeat”. The result is that the server session drops
after the specified server session timeout.

* For example, suppose every minute 1,000 users start a session against the server.
Even if they exit the application after 3 minutes, their sessions will remain active
on the server for 10 minutes, leaving 10 x 1,000 = 10,000 sessions.

Intervals for background tasks

The following worklight.properties parameters control the intervals at which
background tasks. Background tasks perform several actions on the database
and/or file system:

sso.cleanup.taskFrequencyInSeconds
The SSO (single sign-on) mechanism stores session data in a database table.
This parameter is the interval for the SSO cleanup task to check if there are
inactive accounts in the SSO table. If any are found, it deletes them. The
default value is 5 seconds, meaning that every 5 seconds, the database is
checked for inactive accounts. An inactive account is one that has remained
idle for longer than the value of the serverSessionTimeout property.

push.cleanup.taskFrequencyInSeconds
Deletes inactive push notification subscriptions. The default is 60 minutes.
This parameter is currently implemented only for Apple APNS.

Optimization of MobileFirst Server project databases

You can improve the performance of the project databases or schemas that support
MobileFirst Server.

Note: The Reports database and the associated APP_ACTIVITY_REPORT table
described below are deprecated in IBM MobileFirst Platform Foundation for iOS
V7.0.0. Use [“Operational analytics” on page 12-8|instead. Note that setting up the
Reports database is optional in this release and prior releases.

The following sections provide general information about database tuning, and
techniques you can use to optimize your database performance for IBM
MobileFirst Platform Foundation for iOS. In the following sections, the examples
that are provided are for the IBM DB2 database. If you use MySQL or Oracle,
consult that vendor's documentation for the corresponding procedures.

Database disks

You can find some overview information about the MobileFirst Server project
databases in the Database usage and size section of the Scalability and Hardware
Sizing document and its accompanying hardware calculator spreadsheet at the
[Developer Center website for IBM MobileFirst Platform Foundation| The

IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

spreadsheet can aid you in computing the hardware configuration that is best
suited to your planned server environment.

When you compute your hardware needs, consider servers that offer multiple
disks because performance increases significantly if you use disks correctly when
you set up your MobileFirst Server project databases. For example, whether you
use DB2, MySQL, or Oracle, you can almost always speed up database
performance by configuring the database to use separate disks to store database
logs, index, and data. Multidisk configuration results in faster access to your data
with every transaction because there is no contention resulting from the same disk
attempting to write to its log files or access its index at the same time it processes
the data transaction.

Database compression

By using the compression feature set by your database vendor, you can decrease
database size and input/output (I/O) time.

For example, in tests that were performed on IBM DB2, adding COMPRESS YES to
the SQL that creates the APP_ACTIVITY REPORT table decreased the size of that table
on the disk by a factor of 3 and decreased its I/O time by a factor of 2.

CPU time might increase as a result of this compression, but it was not observed in
the tests on the APP_ACTIVITY_REPORT table, possibly because most of the activity
was INSERTs and the aggregation task was not monitored deeply.

On DB2, LOB data size

If your database is DB2, consider using the INLINE_LENGTH option when you create
tables for SSO information. This option is also appropriate for tables that contain
data that is stored as large objects (LOBs), but that are only a few kilobytes in size.
To improve performance of LOB data access, you can constrain the LOB size by
placing the LOB data within the formatted rows on data pages rather than in the
LOB storage object. For more information about this technique, see
improve performance}

Database table partitions

A partition is a division of a logical database table into distinct independent parts.
You can improve performance and the purging accumulated data by mapping each
table partition to a different table space. This suggestion applies only to the
APP_ACTIVITY_REPORT table, which holds most of the row data.

Note: Partitioned tables are different from a partitioned database (DPF)
environment, which is not suggested for use with IBM MobileFirst Platform
Foundation for iOS.

To show how to use database partitions can be used, here is an example from DB2:

* A partition is defined on the ACTIVITY_TIMESTAMP column in the
APP_ACTIVITY_REPORT table.

* Each partition contains the data for one day.

* The number of partitions is the number of days of data that you want to save.
* Each partition is created in a different table space.

* Thus in the SQL example that follows, you create seven partitions in DB2:

Installing and configuring 6-109

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.perf.doc/doc/c0053761.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.perf.doc/doc/c0053761.html

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

CREATE

TABLESPACE
TABLESPACE
TABLESPACE
TABLESPACE
TABLESPACE
TABLESPACE
TABLESPACE

TABLE "APP

I

P
(

)

app_act_rep_1;
app_act_rep_2;
app_act_rep_3;
app_act_rep_4;
app_act_rep_5;
app_act_rep_6;
app_act_rep_7;

_ACTIVITY_REPORT" (

“ID" BIGINT NOT NULL ,

"ACTIVITY" CLOB(1048576) LOGGED NOT COMPACT ,

"ACTIVITY_TIMESTAMP" TIMESTAMP ,

"ADAPTER" VARCHAR(254) ,

"DEVICE_ID" VARCHAR(254) ,

"DEVICE_MODEL" VARCHAR(254) ,

"DEVICE_O0S" VARCHAR(254) ,

"ENVIRONMENT" VARCHAR(254) ,

"GADGET_NAME" VARCHAR(254) ,

"GADGET_VERSION" VARCHAR(254) ,

"IP_ADDRESS" VARCHAR(254) ,

"PROC" VARCHAR(254) ,

"SESSION_ID" VARCHAR(254) ,

"SOURCE" VARCHAR(254) ,

"USER_AGENT" VARCHAR(254))
N app_act_rep_1, app_act_rep_2, app_act_rep_3, app_act_rep_4,

app_act_rep_5, app_act_rep 6, app_act_rep_7
ARTITION BY RANGE (ACTIVITY_TIMESTAMP)
STARTING FROM ('2013-02-25-00.00.00.000000")
ENDING AT ('2013-03-04-00.00.00.000000') EXCLUSIVE
EVERY (1 DAY)

>

Database purge

After high-volume data is allocated to separate table spaces, the task of
periodically purging the data is simplified. This suggestion is also primarily
relevant only to the APP_ACTIVITY_REPORT table that holds most of the row data.
The process in this DB2 example is as follows:

* Aggregate data either with a MobileFirst process or with a client external
process.

* When the data is no longer needed (the aggregation task should successfully
process the data), it can be deleted.

* The most effective way to delete the data is to delete the partition. In DB2, you
purge the data purge by detaching the partition to a temp table, then truncating
that temp table and attaching a new day to the partition. You can implement the
process as a scheduled stored procedure in the database, as in the following
example:

ALTER TABLE "APP_ACTIVITY_REPORT"

DETACH PA
INTO temp

RTITION part0
table;

TRUNCATE TABLE temptable;

ALTER TABLE "APP_ACTIVITY_REPORT"

ATTACH PA
STARTING
ENDING AT
FROM temp

RTITION part0

FROM ('2013-02-25-00.00.00.000000"')
('2013-03-26-00.00.00.000000"') EXCLUSIVE

table;

6-110 IBM MobileFirst Platform Foundation for iOS V7.0.0

Testing MobileFirst Server performance

You can run performance tests on the different features of the MobileFirst Server.
This section describes how to run the Apache jMeter performance test tool, but the
procedure is similar for other tools.

Note: The procedures described in this page apply only to a scenario that involves
a propriety JavaScript adapter that is running in session-dependent mode. It is not
applicable in a scenario that involves the OAuth security framework.

The following features can have an impact on MobileFirst Server performance:
* Authentication flow

* Back-end invocation

* Database reporting

* Single sign-on (SSO)

* Direct update

¢ Push notification

¢ Geolocation

This section focuses on testing the impact of authentication flow and back-end
invocation on MobileFirst Server performance.

Testing authentication flow performance

The following realm, which is part of the default security test for iOS, is tested:

Remote disable realm
Check on every request that the application is not blocked.

AntiXSRF realm
Check on every request that WL-Instance-Id is equal to the one sent in the
init response.

Anonymous User realm
Generate a random user ID that is used for such things as reports and
identifying the user.

Device no provisioning
Check that the token value inside the authorization header is equal to the
one sent in the initialization response.

For more information about the realms, see [“The authentication configuration file”|

on page 8-260.

When you run a performance test, your first step is to complete the authentication
flow. If you do not do so, security challenges are raised and your requests are
rejected with “401” errors. This step involves sending an init request to the
MobileFirst Server and extracting the relevant data from the response. The init
request has the following structure: http://{Host}:{Port}/{Context}/apps/
services/api/{AppName}/{environment}/init

Table 6-32. Initialization parameters

Parameter Description

x-wl-app-version Application version.

x-wl-platform-version Version of the product that built the
application.

Installing and configuring 6-111

This is an example of a jMeter test:

* | Headers | Preview Response Cookies Timing

Request URL: http://192.165.1.184: 16888/ worklight/apps/services/apl/DunmyApp/ common/init
Request Method: POST
Status Code: @481 Unauthorized
¥ Request Headers view source
Accept: text/javascript, text/html, application/xml, text/xml, =/=
Accept-Encoding: gzip,deflate,sdch
Accept-language: en-US
Cache-Control: max-age=0
Connection: keep-alive
Content-Length: 55
Content-type: application/x-www-form-urlencoded; charset=UTF-§
Cookie: WL_PERSISTENT_COOKIE=0b52c92f-20ee-4c39-b346-F7d2d375e135; ISESSIONID=009036n4211557LbsLSNRSUAYTH: Bc75F830-48c4-476b-87b2-d36dc2b52d58; testco
okie=oreo
Host: 192.165.1.104: 16888
Origin: http://192.168.1.184:100802
Referer: htt
User-Agent: ¥

X R,

/192.168.1.184: 18088/ worklight /apps/services/preview/DummyApp/ common/@/ default/DummyApp . html
i11a/5.@ (Windows NT 6.1; WOWS4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.8.1780.187 Safari/537.36
MiHttpRegyest

v Form Data
skin:
skinloaderChecksum:
isAjaxRequest: true

X 3991412

view URL encoded

The dynamic parameters in the Form Data (skinLoaderChecksum, isAjaxRequest,
and x) are appended to the URL. During performance testing, the skin and
skinLoaderChecksum parameters are not needed because jMeter does not really run
the app: jMeter only simulates the client app. The parameter x aims to prevent
response data from being returned from cache. As a result, you do not need to
append the parameters during performance testing or you can generate a random
value for the dynamic parameter x. A better option is always to clean cookies in
your performance testing tool before you start loading test threads.

Response data from MobileFirst initialization service

The response data from the MobileFirst init request differs depending on the
security test you apply on your MobileFirst application environment. By default, if
you have no additional security test, the response data structure for the common
and iPhone environment are shown in the following figures.

Request Response
URL: hitp://192.168.1.104:10080/worklight/apps/senices/apiDummyApp[cammonnnt | ~ POST on http://192.166.1.104:10080/worklight

. g [apps/sewvices/api/DummyApp/common/init
POST 'H Submi l | SeL || foa “ i I |ME""”E“”"‘"t Dose Req”Et‘ IStatus: 401 Unautharized i View raw transaction
Content to Send | Headers | Parameters |

[-secure-
{"challenges":{"wl_antiXSRFRealm":{"WL-Instance-
Name: ~ Value: Add/Change ld":"1uoa8e67 1cafab942s414.q9pfq T/
MName Value
p-wi-platform-version 6.0.0
-wl-app-version 1.0

Figure 6-10. Response data from common environment

6-112 IBM MobileFirst Platform Foundation for iOS V7.0.0

Request

URL: hitp://192.168.1.104:10080/worklight/apps/services/api/DummyApp|iphone/init |

[POST - | Submit H GET “ FOST “ PUT | lNElequE.tl

Paste Request |

Content to Send | Headers | Parameters |

-

MName: x-wl-app-version ~ Value: 1.0

Add/Change

Name Value

x-wl-platform-version 6.0.0

x-wl-app-version 1.0

Figure 6-11. Response data from iPhone environment

Response

POST on http://192.168.1.104:10080/worklight

/apps/semnices/api/DummyApp/iphone/init
Status: 401 Unauthorized View raw transaction

/*-secure-

{"challenges”:{"wl_antiXSRFRealm":{"WL-Instance-
Id":"rsmr33hadcion2aagnufitn0)1"}, "wl_deviceNoProvisioni
ngRealm":{"token":"fhp24ffriGud4h8 gaelioubdu"J}}*/

The difference between the common and iphone environment data structures is
that the common environment has no wi_deviceNoProvisioningRealm challenge by

default.

Extracting the init response data

You need to extract the WL-Instance-Id and the token from the init response and
send them as headers in all requests to the MobileFirst Server. If you do not do so,
the authentication check fails and the request is rejected. Challenge data is different

for each session, so you need to extract and store the challenge data for each
thread. For more information, see [“Testing back-end invocation”|later in this

section.

Changing the response status to HTTP 200

When the performance testing thread runs the initialization for the first time,
MobileFirst Server responds to challenge data with an HTTP 401 status. This is to
be expected, so the performance tool should treat this HTTP status as a success.
The HTTP status can be changed to HTTP 200 by using the performance testing
tool’s script. In this way, the performance testing tool will record the request as a
success, otherwise the performance testing report might mark this request as
having failed and might record it as an error. This would greatly impact the

performance testing report.

Testing back-end invocation

You should start testing back-end invocation only after you have finished testing
authentication flow. You can choose any type of back end that you want. The
request for the back-end invocation has the following structure:
http://{Host}:{Port}/{Context}/apps/services/api/{AppName}/{environment}/

query.

Table 6-33. Backend invocation parameters

Parameter Description

adapter MobileFirst Adapter name.

procedure MobileFirst procedure name

parameters Procedure parameters should be an array.

The following figure shows an example array of parameters:

Installing and configuring 6-113

Request Response
URL: http:/i192.168.1.104:10080Aworklight/apps/senvices/apiiDummyApp/common/query = POST on hitp//132 168 1.104-10080/worklight/apps/senvices
JapiDummyApp/common
[POST vII Submit] I GET “ POST “ FUT J [Newrequﬁl Faste F!equﬁl] /query?adapter=PerfTestingAdapter&
| Parameters | procedure=geflistOTACCOUNTs¶meters=JooD JaZZname
|Comem to Send | Headers | | 525%2C%2pd%22%5D
Mame: Value: Add/Change Status: 200 OK View raw transaction
/*-secure-
e _Va\ue _ {"isSuccessful"true,"authStatus":"required"}"/
|adapter PerfTestingAdapter
procedure getListOfAccounts
parameters ['name”."pwd"] I

The following figure shows an example of request headers:

Request Response
URL: http:i'f’192.188.1.104:10080|‘w0rklight1'appsfsenficesf’api;’DummyApplcummom’queryfade + POST on http://182.168.1.104-10080/worklight/apps/services
[api/DummyApp/common
[POST - H Submit I | GET H POST ” PUT ‘ Iuemequp_e.t ‘ Paste Request | Iquery?adapter=PerfTestingAdapters
Conloabin Cad | Flaadors | Parameters‘ rocedure=getListOfAccounts¶meters=%58%50D
IStatus: 200 OK I View raw transaction
Name: |[ENEERTaE ~| Value: aBe671cafab942s414q9pfq | Add/Change T-secure-
T = {"isSuccessful":true,"authStatus" "required"}"/
ame alue

x-wi-platform-version 6.0.0
x-wl-app-version 10
VWL-Instance-ld 1u0389671cafab942s414q9;rfq|

By default, the jMeter tool encodes the URL. If your performance testing tool does
not support URL encoding, you must use encoded parameter values.

For the iPhone environment, since it contains w1_deviceNoProvisioningRealm by

default, you need to send the Authorization header.. The format for HTTP

Authorization header is shown as follows. You need to replace ${device-token} with

the token you extracted in the initialization phase.
{"wl_deviceNoProvisioningRealm":{"device":{"id":"1234567890","0s":"5.0",
"model":"testModel","environment":"iphone"},"app":{"id":"testId","version":"1.0"},
"token":"${device-token}","custom":{}}} When the response data "isSuccessful"

is true, this indicates that the response data from the MobileFirst Adapter

procedure was successfully received and now you can continue with your

back-end testing.

Request Response
URL: httpr/i192.168.1.104:10080/worklight/apps/senices/apiDummyApp/iphone/query?adag » FOST on hitpr//192 168 1,104 10080/worklight/apps/senices
= . lapi/DummyAppfiphone/query?adapter=PerfTestingAdapter&
POST v” Submit H Sek H oS || AT] [“E“'EQUES‘HP“‘EREWE‘] procedure=getlistOfAccounts& parameters=%5B6%22name
Content to Send | Headers | Parameters | B B A B
Status: 200 OK View raw transaction
Name: Authorization - Value: lirgdtlkv3kjj1r67124eqppld | Add/Change Tsecure-
{"isSuccessful":true "authStatus": "required"}*/
MName Value

x-wl-platform-version 6.0.0

x-wl-app-version 10
WL-Instance-ld 1uoaBeb71cafabd42s414q9pfq
utharization {"wl_deviceNoProvisioningRealm"-{"device"-{"id"-"1234567890","0_. I

Logging in

When the MobileFirst adapter procedure is protected by a security test or the
connectAs property is set to endUser, you need to log in to the MobileFirst Server
before calling this procedure. To check if the MobileFirst adapter procedure needs a
login, you can call the procedure followed by the steps described earlier, and check
the response data from the MobileFirst Server. If the response data includes
isSuccessful:true and authStatus:required, you should log in to the MobileFirst
Server first, otherwise the requests to this procedure are rejected by MobileFirst

6-114 1BM MobileFirst Platform Foundation for iOS V7.0.0

Server. The way you log in to the MobileFirst Server depends on the authentication
type. If the app is protected by form-based authentication or adapter-based
authentication, you can call the login procedure after successfully completing
initialization. In general, the login procedure should not be protected by a security
test; it can be directly called after initialization is completed. For other
authentication types, you can capture the network traffic on MobileFirst Server by
using network traffic capture tools (for example, Fiddler or Wireshark). The
network traffic data shows the detailed URL and parameters that you can use to
log in to the MobileFirst Server. The following screen image shows an example of a
login function that calls the setActiveUser API with the supplied user ID and
password:

5| HI 1P Request

E" Common environment test

t;\" Timer between requests
48 Cookie persister

48 counter - uid - User D
48 variables used in test

Name: \Ingm

|Comments:User ID must start with ‘wl’

Web Server Timeot

48 HTTP Request Defaults
48 HTTP Header Defaults
¢ & Test fow

v ,5’ init - get whinstance-id chi
/" User Parameters - res
,650 Extract 3{wl-instance-
#% BeanShel PostProces:

Server Name or IP: |

|P0rl Humber: Connec

HTTP Reguest

Implementation: [HttpClientd |+ | Protocol [hitp]: Method: [POST " Contemencoding:[

Path: |${co ntextyappsisenicesiapilf{appname}f${environmentiquery

[v] Redirect Automatically [| Follow Redirects [| Use KeepAlive [| Use multipartform-data for POST [

#%% Extract S{device-token

=
A login
& getlistOfAccounts
Lo f getAccountinfo

Parameters | PostBody

Send Parameters With the Request:

lame Valye
o f’ getListOfCreditCards adapter ${adapter}
o ‘{'getCred'ﬂCard\nfu procedure login — i
& 2 transferMoney parameters ['wlusers{uidy” "wlpass’]

Logging out

The following options are available for logging out of the MobileFirst Server:

Not logging out for each iteration
MobileFirst Server automatically logs the user out when the session times
out. This option consumes more memory than logging out, but is useful if
you want to maximize memory usage during performance testing. To
adopt this option, you need to clean cookies for each iteration in the
performance testing tool.

Logging out after each iteration by using the MobileFirst logout service
It is recommended to clean cookies for each iteration to avoid sharing data
between iterations. The logout request has the following structure:
http://{Host}:{Port}/{Context}/apps/services/api/{AppName}/
{environment}/Togout

For more information about the parameters, see ["HTTP Interface of the production|
[server” on page 6-275]

Database reporting

To activate database reporting, you need to specify reports.exportRowData=true in
your worklight.properties file. You also need to set up the reports database. For
more information, see [“Reports database” on page 12-74.| After you enable database
reporting, you can use the back-end invocation step described earlier. See the
database reporting section in the Scalability and Hardware Sizing document at the
[Developer Center website for IBM MobileFirst Platform Foundation|

6-115

Installing and configuring

https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

6-116

Single sign-on (SSO), direct update, push notification, and

geolocation

See the relevant section in the Scalability and Hardware Sizing document at the

[Developer Center website for IBM MobileFirst Platform Foundation|

General example: Using jMeter as a performance testing tool

HTTP cookie management

Cleaning the cookies on every thread iteration ensures that no data and

user information is being cached during this iteration. If you want to keep
cookie information, you need to clean the user information at the end of
the iteration to avoid unexpected errors during load testing. For example,
if the user does not log out during the previous iteration, the next iteration
might be affected by that user.

& PerformanceTest
LS E‘ Common environment test
tk* Timer between request
0 o |
48# Counter - uid - User ID
4l variables used intest | ;
488 HTTP Request Defautts
4 HTTP Header Defauts |
o= \l,' Test flow

HTTP Header Management

HTTP Cookie Manager

Hame: |Cookie persister

|Comments:

Options

IE Clear cookies each iteration? I

Cookie Policy: [compatibility |+ | Implementation: |HC3CookieHandler | «

The necessary x-wl-platform-version and x-wl-app-version that were
described earlier can be defined here; you can also define the
WL-Instance-Id and WL_deviceNoProvisioningRealm token placeholders.
You can use a jMeter script to extract the real challenge data and replace
the placeholders for each thread iteration as shown in the following image:

- & PerformanceTest
9~ B common environment teg

HTTP Header Manager

185 Timer between requ

Name: [HTTP Header Defaults

i# Cookie persister
i# Counter - uid - User

Comments:

Headers Stored in the Header Manager

48 Varizbles used in te: NG

Value

448 HTTP Reguest Defa user-agent

dozilla/5.0 (Linux, U; Android 0.5 en-us) AppleWebKil’622+ (KHTML, like Gecko) Safarif419.3

44 HTTP Header Defaul Accept

text/javascript, texthtrnl, textixml, **

o @ Test flow WLdnstance-1d

${wlinstance-id}

‘model""HTC One X" " "Android™ "app”{"id""CapO:

w resutts

x-wl-platform-version

6.0.0

~ version""1 07 token""${device token! ‘1"Eu5tum'ﬁq

<] Aggregate Report
coi e [x-wl-app-version

Initialization phase

1.0 1

1. Extract and replace the WL-Instance-Id placeholder:

Ez‘ Commen environment test
t}' Timer between reguests
48§ Cookie persister
48§ Counter - uid - User O
4i# Variables used in test
4 HTTP Request Defaulls
4§ HTTP Header Defautts
¢ @ Test flow

& PerformanceTest
¥

¢ _4/' int - get whinstance-id challange
1;' User Parameters - reset wl value
o
#% BeanShel PostProcessor - approve respor| -
/% Extract S{device-token} value /

A

Regular Expression Extractor

“| |Mame: [Extract S(wi-instance-id} value

Comments:

Apply to:

(® Main sample only (' Sub-samples only Main sample and sub-samples (0 .
Response Field to check

@ Body ‘_ Body(unescaped) (' Headers (' URL (. Response Cc

Reference Name: wi-instance-id

{WL-nstancedd™"(+?)7}

Regular Expression:

Template: 515
i| Match Mo. (0 for Random) 1
Default Value: \WL-Instance-ld_NOT_FOUND

2. Extract and replace the WL_deviceNoProvisioningRealm token

placeholder:

IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

; PerformanceTest

T Ef‘ Common environment test
E_\{ Timer between reguests
488 Cookic persister
488 Counter - uid - User ID
488 variables used in test
$i## HTTP Request Defaults
488 HTTP Header Defaults

¢ 8 Test fow :

L3 ‘(’ init - get whinstance-id challang

: Regular Expression Extractor

Name: IExtraUl ${device-token} value

|Comments:
Apply to:

® Main sample only) Sub-samples only) Main sample and sub-samples

Response Field to check

) Body (' Body (unescaped) () Headers () URL ©

=/* User Parameters - resat w Reference Name: device-token
#% Extract S{whinstance-id} va : Regular Expression: {token™"(+7)}
#% BeanShell PostProcessor - Template: 1%
/% Extract ${device-token} val Match Ho. (0 for Random):4
login .| Default Value: Device_Token_NOT_FOUND

3. Change initialization HTTP status 401 and 403 to HTTP status 200:

BeanShell PostProcessor

Name: |[BeanShell PostProcessar - approve response 401 or 403
Comments:change 401 or 403 to 200 OK

Reset bsh.nterpreter before each call

| Reset Interpreter: ITrue

Parameters to be passed to BeanShell (== String Parameters and String [Jbsh.args)-

| Parameters:|

Script file (overrides script)

File Name:|

Script (variables: ctx vars props prev data log)-

Script:
if ((prev.getResponseCode().equals("401™) ==true) || (prev.getResponseCode().equals("403") == true}) {
prev.setResponseQK); |

Security configuration
Configure the security of the MobileFirst Server as detailed here.

Securing the MobileFirst Server administration

This section helps ensure that no unauthorized person can perform MobileFirst
Server administration operations. This is particularly important in a production
environment.

The security threat is that any person who can install mobile applications in a
production environment is able to modify the behavior of these apps on the mobile
devices. The apps are served to the clients through the MobileFirst runtime
environments, which get these apps from the Administration Services through
JMX. The Administration Services fetch these apps from the administration
database. The Administration Services and the IBM MobileFirst Platform
Operations Console allow any user in the roles of worklightadmin or
worklightdeployer to deploy applications. A similar threat exists for adapters.

Enabling https in the application server
The ability to use https with the application server is a prerequisite.

For WebSphere Application Server Liberty profile:

* Verify that the server.xml file contains either <feature>ss1-1.0</feature> or
<feature>restConnector-1.0</feature>, or both features. The
restConnector-1.0 feature implies that the ss1-1.0 feature is enabled.

Installing and configuring 6-117

6-118

* Verify that the HTTPS port is enabled, by ensuring that the server.xml file does
not have an <httpEndpoint> element with a httpsPort attribute that is negative.
If the HTTPS port is disabled, SSL is also disabled, and the JMX connections that
the MobileFirst Server requires do not work.

* Verify that the server.xml file contains <keyStore id="defaultKeyStore" .../>,
or an equivalent declaration, otherwise the J]MX connections that the MobileFirst
Server requires do not work. For more information, see [Liberty profile: SSI|
[configuration attributes|

For Apache Tomcat:

* Enable an https port as documented in [SSL support|and [SSL Configuration|
-OW—TO

Enabling application security in the application server
Without this step, anyone can connect to the web applications without credentials.

For WebSphere Application Server full profile:
* Verify that Administrative Security is enabled.
* Verify that Application Security is enabled.

For WebSphere Application Server Liberty profile:
* Verify that the server.xml file contains <feature>appSecurity-1.0</feature>.

Protecting the passwords of users in the roles worklightadmin and
worklightdeployer

If the password of any user who is mapped to the roles worklightadmin or
worklightdeployer is compromised, that is, becomes potentially known to an
unauthorized person, unauthorized MobileFirst administration operations are
possible. Here are steps to mitigate this risk.

* Minimize the number of users that you [map to the roles|worklightadmin and
worklightdeployer.

* Map different users to the roles worklightadmin or worklightdeployer in
development and test environments than you do in the production environment.
If the password of the administrator of the development or test environment is
compromised (for example, by use of secure="false"), this helps secure the
password of the administrator of the production environment.

* If these users are authenticated through LDAP, secure the connection to the
LDAP server.

* Never use the MobileFirst Operations Console or the MobileFirst Administration
REST services over http. Always use https. There are two ways to guarantee
this:

— Conlfigure the application server to respond only to an https port, not to an
http port.

- Modify the worklightconsole.war and worklightadmin.war files to activate
the Java EE 6 transport security of type CONFIDENTIAL. This setting performs a
redirect from http to https before the application server requests a user and
password.

1. Unpack worklightconsole.war (as a .zip file).

2. Edit its WEB-INF/web.xml file, changing <transport-guarantee>NONE</
transport-guarantee> to <transport-guarantee>CONFIDENTIAL</
transport-guarantee>.

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html
http://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

3. Repack worklightconsole.war.

4. Unpack worklightadmin.war (as a .zip file).

5. Edit its WEB-INF/web.xm1 file, changing <transport-guarantee>NONE</
transport-guarantee> to <transport-guarantee>CONFIDENTIAL</
transport-guarantee>.

6. Repack worklightadmin.war.

7. Redeploy these WAR files, either manually, or through the Ant task
<installworklightadmin> or <updateworklightadmin>. For more
information, see [“Deploying the MobileFirst Operations Console and|
[Administration Services with Ant tasks” on page 6-55

Never use the <wladm> Ant task with the attribute secure="false", and never
use the wladm command with the option -secure=false. To achieve this, you
must:

— Ensure that your application server uses an SSL certificate signed by a CA,
not a self-signed certificate, and that the host name mentioned in this
certificate matches the host name of the application server machine.

— Ensure that this SSL certificate is contained in the truststore of the JVM that
runs the <wladm> Ant task or the wladm command.

Change the file access permissions of the file that contains the password that is
used by the <wladm> Ant task or the wladm command to be as restrictive as
possible. To do this, you can use a command, such as the following examples:

— On UNIX: chmod 600 adminpassword. txt

— On Windows: cacls adminpassword.txt /P Administrators:F
%USERDOMAIN%\%USERNAME%: F

Additionally, you might want to obfuscate the password, to hide it from an
occasional glimpse. To do so, use the wladm config password command to store
the obfuscated password in a configuration file. Then you can copy and paste
the obfuscated password to the Ant script or to the password file that you want.

In the configuration of the MobileFirst Operations Console web application, set
the JNDI property ibm.worklight.admin.ui.cors.strictssl1 to true. This
property helps rejecting unsecure SSL certificates.

In the configuration of the MobileFirst Operations Console web application, set
the JNDI property ibm.worklight.admin.hsts to true. This property implements
HTTP Strict Transport Security and helps the administrator's browser remember
to access the MobileFirst Operations Console through https instead of http.

Protecting the administration database

If the password of the administration database (or of the user who owns the
corresponding schema of that database) is compromised, that is, becomes
potentially known to an unauthorized person, unauthorized deployments of apps
and adapters are possible. Here are steps to mitigate this risk.

* Do not host other services than the database management system on the
machines that serve this database.

» If you use Ant tasks to configure the MobileFirst Server administration (see
[“Using Ant tasks to install MobileFirst Server administration” on page 6-53), you
must do one of the following actions:

— Change the file access rights of the Ant XML file to be as restrictive as
possible before you store passwords in it. For more information, see step 2 in
[‘Sample configuration files” on page 14-35.|

Installing and configuring 6-119

6-120

— Write ###%%%%%%%%% (12 asterisks) in place of the password, so the Ant XML
file does not contain the password. Instead, the Ant task queries the password
interactively when it is invoked.

* Minimize the number of users who have login access to the machines that run
MobileFirst Server.

* Change the file access rights of the application server configuration files that
contain the jdbc/WorklightAdminDS data source password to be as restrictive as

possible. For more information, see step 3 in [“Sample configuration files” on|
page 14-35.

Protecting the JMX communication

If the J]MX communication between Administration Services and the MobileFirst
runtime environments are not secured, unauthorized persons who have local
access to the MobileFirst Server machines can play man-in-the-middle attacks and
thus activate tampered apps and adapters. Here are steps to mitigate this risk.

* For WebSphere Application Server Liberty, follow the procedure of
lsecure TMX connection to the Liberty profilel

* For Apache Tomcat, use a JMX configuration with SSL, as described in
[‘Configuring Apache Tomcat” on page 6-47.

Protecting the apps and adapters to deploy

If the source from which the MobileFirst administrator receives apps and adapters
is not secured, tampered apps and adapters can be submitted to the MobileFirst
administrator, who then deploys them. Here are steps to mitigate this risk.

* Ensure that the MobileFirst administrator receives apps and adapters only
through channels which guarantee the integrity of the sender and of the sent
artifacts. For example, use emails with digital signature, or web-based tools with
the need to log in through https.

* Ensure that the development teams that create these apps and adapters use a
Version Control System that guarantees the integrity of each modification and
disallows modifications by unauthorized persons. Examples of VCS systems in
this category are RTC/jazz and Git. An example of a VCS not in this category is
CVs.

Protecting against attacks from the internet

Attackers from the internet might attempt to search for security flaws in the
MobileFirst Operations Console and Administration Services and try to circumvent
the security measures. Here is a tip to mitigate this risk. It assumes that mobile
application users connect to MobileFirst Server from the internet, but all legitimate
uses of the MobileFirst Operations Console Console and Administration Services
are from an intranet.

« Configure your internet gateway or firewall (for example, IBM DataPower®) to
block access to URLs under the context roots of the MobileFirst Operations
Console (default: /worklightconsole) and of the Administration Services
(default: /worklightadmin). At the same time, keep the access to the MobileFirst
runtime web applications open.

Database and certificate security passwords
When you configure a MobileFirst Server, you must typically configure database
and certificate passwords for security.

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_admin_restconnector.html
http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_admin_restconnector.html

Configuration of a IBM MobileFirst Platform Server typically includes the
following credentials:

* User name and password to the runtime database
* User name and password to other custom databases

* User name and password to certificates that enable the stamping of apps

All credentials are stored in the in JNDI properties of the application server.
Defaults can be stored in the worklight.properties file. See [“Configuration of
[MobileFirst applications on the server” on page 10-48| for information about
individual properties.

You can encrypt any or all of these passwords. For more information, see
[properties in encrypted format” on page 10-56.

Apache Tomcat security options
An optimal Apache Tomcat security balances ease of use and access with
strengthening of security and hardening of access.

You must harden the Tomcat Server according to your company policy.
Information on how to harden Apache Tomcat is available on the Internet. All
other out-of-the-box services provided by Apache Tomcat are unnecessary and can
be removed.

Running MobileFirst Server in WebSphere Application Server
with Java 2 security enabled

You can run IBM MobileFirst Platform Server in WebSphere Application Server
with Java 2 security enabled.

About this task

To enable Java 2 security in WebSphere Application Server, complete the following
procedure to modify the app.policy file and then restart WebSphere Application
Server for the modification to take effect.

Procedure

1. Install MobileFirst Server on a WebSphere Application Server instance. The
installation contains all the necessary libraries to support WebSphere
Application Server security.

2. Enable Java 2 security in WebSphere Application Server.

a. In the WebSphere Application Server console, click Security > Global
security

b. Select Use Java 2 security to restrict application access to local resources.

3. Modify the app.policy file, <ws.install.root>/profiles/<server_name>/
config/cells/<cell_name>/node/<node name>/app.policy.
The app.policy file is a default policy file that is shared by all of the
WebSphere Application Server enterprise applications. For more information,
see app.policy file permissions in the WebSphere Application Server
documentation.
Add the following content into the app.policy file.

grant codeBase "file:${was.install.root}/worklight-jee-Tibrary-xxx.jar" {
permission java.security.AlTPermission;

bs

// The war file is your WL server war.

Installing and configuring 6-121

grant codeBase "file:worklight.war" {
//permission java.security.Al1Permission;
//You can use all permission for simplicity, however, it might
// cause security problems.
permission java.lang.RuntimePermission "";
permission java.io.FilePermission "${was.install.root}${/}-", "read,write,delete";
// In Linux need to set TEMP folder of Linux.
permission java.io.FilePermission "C:/Windows/TEMP/${/}-", "read,write,delete";
permission java.util.PropertyPermission "*", "read, write";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
permission com.ibm.tools.attach.AttachPermission "createAttachProvider";
permission com.ibm.tools.attach.AttachPermission "attachVirtualMachine";
permission com.sun.tools.attach.AttachPermission "createAttachProvider";
permission com.sun.tools.attach.AttachPermission "attachVirtualMachine";
permission java.net.SocketPermission "*", "accept,resolve";

1

4. Restart WebSphere Application Server for the modification of the app.policy
file to take effect.

Protecting your mobile application traffic by using IBM
WebSphere DataPower as a security gateway

You can use IBM WebSphere DataPower in the Data Management Zone (DMZ) of
your enterprise to protect MobileFirst mobile application traffic.

Before you begin

1. Ensure that IBM MobileFirst Platform Command Line Interface for iOS is
installed.

2. Establish your stand-alone server environment on Liberty or WebSphere
Application Server.

About this task

Protecting mobile application traffic that comes into your network from customer
and employee devices involves preventing data from being altered, authenticating
users, and allowing only authorized users to access applications. To protect mobile
application traffic that is initiated by a client MobileFirst application, you can use
the security gateway features of IBM WebSphere DataPower.

Enterprise topologies are designed to include different zones of protection so that
specific processes can be secured and optimized. You can use IBM WebSphere
DataPower in different ways in the DMZ and in other zones within your network
to protect enterprise resources. When you start to build out MobileFirst
applications to be delivered to the devices of your customers and employees, you
can apply these methods to mobile traffic.

You can use IBM WebSphere DataPower as a front-end reverse proxy and security
gateway. DataPower uses a multiprotocol gateway (MPGW) service to proxy and
secure access to MobileFirst mobile applications. Two authentication options are
demonstrated: HTTP basic authentication and HTML forms-based login between
the mobile client and DataPower.

Consider adopting the following phased approach to establishing IBM WebSphere
DataPower as a security gateway:

1. Install and configure a MobileFirst environment and test the installation with a
simple application without DataPower acting as the reverse proxy.

2. Test that your application logic works.

6-122 IBM MobileFirst Platform Foundation for iOS V7.0.0

3. Configure an MPGW on DataPower to proxy the mobile application or the
MobileFirst Operations Console. Select one of the following authentication
options:

Use basic authentication for end-user authentication with AAA and generate
a single sign-on (SSO) LTPA token for MobileFirst Server running on
WebSphere Application Server if the user successfully authenticates.

Use HTML form-based login with AAA and generate a single sign-on (SSO)
LTPA token for MobileFirst Server, running onWebSphere Application Server
if the user successfully authenticates.

Test the reverse proxy:

Update the MobileFirst configuration on the server with the reverse proxy
configuration (see [Step 1).

Update the mobile security test configuration of each mobile application to
use form-based authentication so that the application requests the user to
authenticate immediately when the application starts. Either HTTP basic
authentication or HTML form-based login is supported before the application
starts. For web widgets, widget resources are accessible to the browser only
after a user authenticates successfully.

Procedure

1. Set up a MobileFirst configuration.

a.

For each app that you are configuring, modify the
authenticationConfig.xml file on the server to include the following
security test, realm, and login module declarations:

<securityTests>
<mobileSecurityTest name="WASTest-securityTest">
<testDeviceld provisioningType="none"/>
<testUser realm="WASLTPARealm"/>
</mobileSecurityTest>
<webSecurityTest name="WASTest-web-securityTest">
<testUser realm="WASLTPARealm"/>
</webSecurityTest>
</securityTests>

<realms>
<!-- For websphere -->
<realm name="WASLTPARealm" ToginModule="WASLTPAModule">
<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>
<parameter name="login-page" value="/login.html"/>
<parameter name="error-page" value="/loginError.html"/>
</realm>
</realms>

<loginModules>
<!-- For websphere -->
<loginModule name="WASLTPAModule">
<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
</ToginModule>
</ToginModules>

By default, the authenticationConfig.xml file is usually available in this
directory: <WAS_INSTALL_DIR>/profiles/<WAS_PROFILE>/installedApps/
<WAS_CELL>/IBM_Worklight_Console.ear/worklight.war/WEB-INF/classes/
conf.

b. Restart the MobileFirst Operations Console enterprise application.
2. Update your client mobile app.
a. In your client mobile app, add the following JavaScript to your HTML

MobileFirst application:

Installing and configuring 6-123

function showLoginScreen() {
$("#index") .hide();
$("#authPage") .show();

1

function showMainScreen() {
$("#authPage").hide();
$("#index").show();

1

var myChallengeHandler = WL.Client.createChallengeHandler("WASLTPARealm");
var TastRequestURL;

myChallengeHandler.isCustomResponse = function(response) {

//A normal login form has been returned
var findError = response.responseText.search("DataPower/Worklight Error");
if(findError >= 0) {

return true;

}

//A normal Togin form has been returned
var findLoginForm = response.responseText.search("DataPower/Worklight Form Login");
if(findLoginForm >= 0) {

lastRequestURL = response.request.url;

return true;

}

//This response is a MobileFirst Server response, handle it normally
return false;

}s

myChallengeHandler.handleChallenge = function(response) {
showLoginScreen();

bs

challengeHandlerl.handleFailure = function(response) {
console.log("Error during WL authentication.");
}s

myChallengeHandler.submitLoginFormCallback = function(response) {
var isCustom = myChallengeHandler.isCustomResponse(response);
if(isCustom) {
myChallengeHandler.handleChallenge(response);
}
else {
//hide the Togin screen, you are logged in
showMainScreen();

myChallengeHandler.submitSuccess();

}
s

//When the login button is pressed, submit a Togin form
$("#1oginButton").click(function() {

var reqURL = "/j_security check";

alert(lastRequestURL);

var options = {method: "POST"};

options.parameters = {

j_username: $("#username").val(),

J_password: $("#password").val(),

originalUrl : lastRequestURL,

login: "Login"

s

6-124 1BM MobileFirst Platform Foundation for iOS V7.0.0

options.headers = {};

myChallengeHandler.submitLoginForm(reqURL, options, myChallengeHandler.submitLoginFormCallback);

1)

b. To add the authentication test to an application or device, add a
securityTest attribute to the environment tag in the project

application-descriptor.xml file.

Set the value of this attribute to the name of the security test that you
declared in the authenticationConfig.xml file in [substep 1a|. Here is an

iPad example:

<ipad bundleld="com.Datapower" securityTest="WASTest-securityTest" version="1.0">

<worklightSettings include="false"/>
<security>
<encryptWebResources enabled="false"/>

<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>

</security>
</ipad>

3. Define a multiprotocol gateway:.

a. In the IBM DataPower WebGUI, in the search box under Control Panel,
enter Multi-Protocol and click New Multi-Protocol Gateway.

b. On the General Configuration page, pdefine the following settings.

Table 6-34. General Configuration

Field

Description

Multi-Protocol Gateway Name

Provide a name for your gateway.

Response Type

Select Non-XML. With this value, HTTP web
application traffic (including JSON,
JavaScript, and CSS) passes through the
appliance.

Request Type

Select Non-XML. With this value, HTTP web
application requests are handled by the
appliance.

Front Side Protocol

Select HTTPS (SSL). For this type of
interaction in which user credentials are
passed between client and server, HTTPS is
appropriate. Also provide the following
front-side handler details:

Name Enter a name for the configuration.

Port Number
Enter a number for the listening
port. This port number must match
the port number that you specify if
you define an AAA policy that uses
HTML form-based authentication.
See [Table 6-36 on page 6-126]

Allowed Methods and Versions
Select GET method to enable
support for HTTP Get.

SSL Proxy
Select an SSL Reverse Proxy profile
to identify the SSL server.

Installing and configuring 6-125

Table 6-34. General Configuration (continued)

Field Description

Multi-Protocol Gateway Policy Click +, and then create rules to define the
policies that are listed in the following
topics, depending on the type of
authentication that you decide to use:

* Policy worklight-basicauth for HTTP

basic authentication. See |“Ru1es for HTTPl

|basic authentication” on page 6-127

* Policy mpgw-form for HTML form-based
login authentication. See [“Rules for HTML]
[form-based authentication” on page 6-129)

Backend URL Specify the address and port of the
MobileFirst Server that is hosted on
WebSphere Application Server.

4. Create an AAA policy that supports the HTTP basic authentication or HTML
form-based login policy that you defined in the previous step.

a. In the IBM DataPower WebGUI, in the search box under Control Panel,
enter AAA, and then click Add.

b. Depending on the type of authentication that you want to use, define the
following settings.
* For HTTP basic authentication, specify the settings as listed in the
following table.

Table 6-35. AAA policy for HTTP basic authentication

Phase Description

Extract Identity In the Methods field, select HTTP
Authentication Header.

Authenticate Choose the authentication method. If
WebSphere Application Server is using
LDAP, configure LDAP here.

Extract Resource Select URL Sent by Client.

Post processing Generate an LTPA token. Specify LTPA
Token Expiry, LTPA Key File, and LTPA
Key File Password.

* For HTML form-based login, specify the settings as listed in the following
table.

Table 6-36. AAA policy for HTML forms-based authentication

Phase Description

Extract Identity In the Methods field, select HTML
Forms-based Authentication. Select or create
an HTML forms-based policy that has the
Use SSL for Login option enabled, assigns
SSL Port to the port number on which the
MPGW is listening (that was specified in
step 3), and has the Enable Session
Migration option disabled.

Authenticate Choose the authentication method. If
WebSphere Application Server is using
LDAP, configure LDAP here.

6-126 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-36. AAA policy for HTML forms-based authentication (continued)

Phase Description

Extract Resource Select URL Sent by Client.

Post processing Generate an LTPA token. Specify LTPA
Token Expiry, LTPA Key File, and LTPA
Key File Password.

5. On the Advanced page, specify the advanced settings as listed in the following
table.

Table 6-37. Advanced settings

Field Value

Persistent Connections On.

Allow Cache-Control Header Off

Loop Detection Off

Follow Redirects Off. This value prevents the DataPower

back-end user agent from resolving redirects
from the back end. Web applications
typically require a client browser to resolve
redirects so that they can maintain the
context for “directory” along with setting an
LTPA cookie on the client.

Allow Chunked Uploads Off
MIME Back Header Processing Off
MIME Front Header Processing Off
Results

Your MobileFirst mobile application traffic is now protected by an IBM WebSphere
DataPower secure gateway. Authentication is enforced on the DataPower device
and the credentials (header or LTPA token) are forwarded downstream to
MobileFirst Server to establish the user identity as part of the mobile traffic.

Rules for HTTP basic authentication
Add rules to define an HTTP basic authentication policy that is named
worklight-basicauth.

You create the worklight-basicauth policy as part of the process of defining a

multiprotocol gateway. See [“Protecting your mobile application traffic by using]
IBM WebSphere DataPower as a security gateway” on page 6-122 |[Table 6-34 on|
page 6-125

Table 6-38. HTTP Basic Authentication properties

Property Value

Policy Name worklight-basicauth

Installing and configuring 6-127

Table 6-38. HTTP Basic Authentication properties (continued)

Property Value
Order of configured rules 1. worklight-basicauth_rule_0: see
Table 6-39

2. worklight-basicauth rule_3: see
[Table 6-42 on page 6-129|

3. worklight-basicauth_rule_1: see
Table 6-40

4. worklight-basicauth_rule_2: see

Table 6-41

Table 6-39. Properties of worklight-basicauth_rule_0. When processing HTML content,
skip processing with the icon that is associated with the website or the web page.

Property Value
Direction Client to Server or Both Directions.
Match * Type = URL
* Pattern = /favicon.ico
Advanced "Set Variable" -> var://service/mpgw/skip-
backside =1
Result Not applicable.

Table 6-40. Properties of worklight-basicauth_rule_I1. Handle end-user authentication if
an LTPA token does not exist.

Property Value
Direction Client to Server.
Match * Type = URL
* Pattern = =
AAA BasicAuth2LTPA
e Output: NULL
Result Not applicable.

Table 6-41. Properties of worklight-basicauth_rule_2. Handle both the redirect and
content-type reset on the response side.

Property Value
Direction Server to Client.
Match » Type = URL

e Pattern = *

Filter Provide a custom stylesheet that handles
redirect and content-type rewrite. For a
sample redirect stylesheet, see |“Samp15|
[redirect stylesheet” on page 6-132.

* Output: NULL

Result Not applicable.

6-128 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-42. Properties of worklight-basicauth_rule_ 3. Because the policy is applied to
each request, the rules must be ordered such as to ensure that an LTPA token is verified if
it exists in the HTTP request. If no token is available, proceed to the next rule and

authenticate the user.

Property Value
Direction Client to Server.
Match » Type = HTTP
* HTTP header tag = Cookie
e HTTP value match = *LtpaToken*
AAA VerifyLTPA
e Output: NULL
Result Not applicable.

Rules for HTML form-based authentication
Add rules to define an HTML form-based authentication policy named mpgw-form.

You create the mpgw-form policy as part of the process of defining a multi-protocol

gateway. See [“Protecting your mobile application traffic by using IBM WebSphere|

[DataPower as a security gateway” on page 6-122 |[Table 6-34 on page 6-125|

Table 6-43. HTTP Form-Based Login properties

Property Value
Policy Name mpgw-form
Order of configured rules 1. mpgw-form_rule 0: see
2. mpgw-form_rule_1: see
3. mpgw-form_rule 2: see[Table 6-46 on page|
f6-139
4. mpgw-form rule_3: see [Table 6-47 on page|
f6-139
5. %form_rul e_6: see [Table 6-48 on page|
6-130

Table 6-44. Properties of mpgw-form_rule_0. This rule skips processing with the icon that is

associated with the web site or the web page.

Property Value

Direction Client to Server or Both Directions.

Match * Type = URL
* Pattern = /favicon.ico

Advanced “Set Variable” -> var://service/mpgw/skip-
backside =1

Result Not applicable.

Table 6-45. Properties of mpgw-form_rule_1. This rule verifies an LTPA token if it exists in

the HTTP request.

Property

Value

Direction

Client to Server.

6-129

Installing and configuring

6-130

Table 6-45. Properties of mpgw-form_rule 1 (continued). This rule verifies an LTPA token if

it exists in the HTTP request.

Property Value

Match * Type = HTTP
* HTTP header tag = Cookie
e HTTP value match = *LtpaToken*

AAA VerifyLTPA
* Output: NULL

Result Not applicable.

Table 6-46. Properties of mpgw-form_rule_2. This rule generates the HTML form login page.

Property Value

Direction Client to Server.

Match * Match with PCRE = on
* Type = URL
+ Pattern = /(Login|Error)Page\.htm(1)?(\

2originalUrl=.*)?

Transform Provide a custom stylesheet that builds
either a Login or Error HTML page. For a
sample stylesheet, see [“Sample form login|
|stylesheet” on page 6-131)

Note: The HTML Login Form policy allows
you to specify whether you retrieve the
login and error pages from DataPower or
from the back-end application server.

Advanced Select the set-var action and specify the
service variable: var://service/routing-url
and value with the endpoint of your login
page.

Result Not applicable.

Table 6-47. Properties of mpgw-form_rule_3. This rule handles end-user authentication if an

LTPA token does not exist.

Property Value

Direction Client to Server.

Match » Type = URL
e Pattern = *

Advanced “Convert Query Parameter to XML"”. Accept
default values for other selections.

AAA Form2LTPA

Table 6-48. Properties of mpgw-form_rule_6. This rule handles both the redirect and

content-type reset on the response side.

Property Value
Direction Server to Client.
Match

* Type = URL

¢ Pattern = *

IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-48. Properties of mpgw-form_rule 6 (continued). This rule handles both the redirect
and content-type reset on the response side.

Property Value

Filter Provide a custom stylesheet that handles
redirect and content-type rewrite. For a
sample redirect stylesheet, see |"Samp15|
[redirect stylesheet” on page 6-132]

* Output: NULL

Result Not applicable.

Sample form login stylesheet
You can use this sample stylesheet to generate the HTML form login page or error
page when creating rules to define an HTML forms-based authentication policy.

You provide a custom stylesheet when defining rule mpgw-form rule 2. See |”Ru1es|
[for HTML form-based authentication” on page 6-129 |[Table 6-46 on page 6-130]

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0"
xmins:dp="http://www.datapower.com/extensions"
xmins:re="http://exs1t.org/regular-expressions"
extension-element-prefixes="dp re"
exclude-result-prefixes="dp re">
<xs1:output method="htm1" omit-xml-declaration="yes" />
<xsl:template match="/">
<xs1:choose>
<xs1:when test="contains(dp:variable('var://service/URI'), 'LoginPage.htm')">
<xsl:variable name="uri_temp" select="dp:decode(dp:variable('var://service/URI'), 'url')" />
<xsl:variable name="uri">
<xs1:choose>
<xs1:when test="contains($uri_temp, 'originalUrl')">
<xs1:value-of select="$uri_temp" />
</xs1:when>
<xs1:otherwise>
<xsl:value-of select="dp:decode(dp:http-request-header('Cookie'), 'url')" />
</xs1:otherwise>
</xs1:choose>
</xsl:variable>
<xsl:variable name="redirect_uri_preprocess">
<xsl:for-each select="re:match($uri, '(.*)originalUrl=(.%)"')">
<xs1:if test="position()=3">
<xsl:value-of select="." />
</xsl:if>
</xs1:for-each>
</xsl:variable>
<xsl:variable name="redirect_uri">
<xs1:choose>
<xsl:when test="contains($redirect_uri_preprocess, ';')">
<xsl:value-of select="substring-before($redirect_uri_preprocess, ';')" />
</xs1:when>
<xsl:otherwise>
<xsl:value-of select="$redirect uri_preprocess" />
</xs1:otherwise>
</xs1:choose>
</xsl:variable>
<html>
<head>
<meta http-equiv="Pragma" content="no-cache" />
<title>Login Page</title>
</head>
<body>

Installing and configuring 6-131

<h2>DataPower/Worklight Form Login</h2>
<form name="LoginForm" method="post" action="j_security_check">
<p>
Please enter your user ID and password.

If you have forgotten your user ID or password, please contact
the server administrator.
</p>
<p>
<table>
<tr>
<td>User ID:</td>
<td>
<input type="text" size="20" name="j_username" />
</td>
</tr>
<tr>
<td>Password:</td>
<td>
<input type="password" size="20" name="j password" />
</td>
</tr>
</table>
</p>
<p>
<input type="hidden" name="originalUrl">
<xsl:attribute name="value">
<xsl:value-of select="$redirect_uri" />
</xsl:attribute>
</input>
<input type="submit" name="1login" value="Login" />
</p>
</form>
</body>
</html>
</xs1:when>
<xs1:otherwise>
<!l-- error -->
<htm1>
<head>
<meta http-equiv="Pragma" content="no-cache" />
<title>Error Page</title>
</head>
<body>
<h2>DataPower/Worklight Error</h2>
You must provide a valid user identity.
</body>
</html>
</xs1:otherwise>
</xs1:choose>
<dp:set-response-header name=""'Content-Type'" value=""'text/htm1'" />
<dp:set-variable name="'var://service/mpgw/skip-backside'" value="true()" />
</xs1:template>
</xs1:stylesheet>

Sample redirect stylesheet

You can use this sample stylesheet to handle redirection and content-type
rewriting. You refer to the stylesheet when you create rules to define an HTTP
basic authentication policy or an HTML forms-based authentication policy.

You provide a custom stylesheet when you define rule mpgw-form rule 6 (see
“Rules for HTML form-based authentication” on page 6-129 |[Table 6-48 on page
6-130), and when you define rule work1light-basicauth rule 2 (see[“Rules for|
HTTP basic authentication” on page 6-127)[Table 6-41 on page 6-128).

6-132 IBM MobileFirst Platform Foundation for iOS V7.0.0

<xsl:stylesheet version="1.0"
xmins:xs1="http://www.w3.0rg/1999/XSL/Transform"
xmins:dp="http://www.datapower.com/extensions"
xmins:re="http://exs1t.org/regular-expressions"
extension-element-prefixes="dp re"
exclude-result-prefixes="dp">

<xsl:template match="/">
<xs1:choose>
<xs1:when test="dp:responding()">
<xsl:variable name="code">
<xs1:choose>
<xs1:when test="dp:http-response-header('x-dp-response-code') != ''">
<xs1:value-of select="substring(dp:http-response-header('x-dp-response-code'), 1, 3)"/>
</xs1:when>
<xsl:otherwise>
<xsl:value-of select="substring(dp:variable('var://service/error-headers'), 10, 3)" />
</xs1:otherwise>
</xs1:choose>
</xsl:variable>

<xs1:choose>
<xs1:when test="$code = '302'">
<xsl:variable name="dphost" select="dp:http-request-header('Host')"/>
<xsl:variable name="host" select="$dphost"/>
<xsl:variable name="location" select="dp:http-response-header('Location')"/>
<xsl:variable name="location_host">
<xs1:for-each select="re:match($location, '(\w+):\/\/([*/1+)')">
<xs1:if test="position()=3">
<xsl:value-of select="." />
</xsl:if>
</xs1:for-each>
</xsl:variable>
<xsl:variable name="location_final">
<xsl:value-of select="re:replace($location, $location_host, 'g', $host)" />
</xsl:variable>
<dp:set-http-response-header name=""'Location'" value="$location_final" />
</xs1:when>
<xsl:otherwise>
<xsl:variable name="orig-content" select="dp:variable('var://service/original-response-content-type')"/>

<xs1:if test="$orig-content != ''">
<dp:set-http-response-header name="'Content-Type'" value='$orig-content'/>
</xsl:if>

</xsl:otherwise>
</xs1:choose>

<l-- the following prevent DataPower from overriding the
response code coming back from WorkLight Server
-

<dp:set-response-header name=

x-dp-response-code'" value="'-1"'"/>

</xs1:when>
<xsl:otherwise/>
</xs1:choose>
</xsl:template>
</xs1:stylesheet>

Configuring MobileFirst Server to enable TLS V1.2

For MobileFirst Server to communicate with devices that support only TLS V1.2,
among the SSL protocols, you must complete the following instructions.

About this task

The steps to configure MobileFirst Server to enable Transport Layer Security (TLS)
V1.2 depend on how MobileFirst Server connects to devices.

Installing and configuring 6-133

6-134

If MobileFirst Server is behind a reverse proxy that decrypts SSL-encoded packets
from devices before passing the packets to the application server, you must enable
TLS V1.2 support on your reverse proxy. If you are using IBM HTTP Server as
your reverse proxy, see [Securing IBM HTTP Server| for instructions.

If MobileFirst Server communicates directly with devices, the steps to configure
MobileFirst Server to enable TLS V1.2 depend on the application server that you
use. The following sections provide you with the specific instructions for Apache
Tomcat, WebSphere Application Server Liberty profile, and WebSphere Application
Server full profile.

Apache Tomcat
Procedure

1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.

Ensure that you have one of the following JRE versions, depending on your
version of IBM MobileFirst Platform Foundation for iOS.

For MobileFirst Server V7.0 or earlier:
Use Oracle JRE 1.7.0_75 or later.

2. Edit the conf/server.xml file and modify the <Connector> element that declares

the HTTPS port so that the ssTEnabledProtocols attribute has the following
value:

ssTEnabledProtocols="TLSv1.2,TLSv1.1,TLSv1,SSLv2Hel10"

WebSphere Application Server Liberty profile
Procedure
1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.

* If you use an IBM Java SDK, ensure that your IBM Java SDK is patched for
the POODLE vulnerability. You can find the minimum IBM Java SDK
versions that contain the patch for your version of WebSphere Application
Server in [Security Bulletin: Vulnerability in SSLv3 affects IBM WebSphere|
[Application Server (CVE-2014-3566)|

Note: You can use the versions that are listed in the security bulletin or later
versions.

* If you use an Oracle Java SDK, ensure that you have one of the following
versions, depending on your version of IBM MobileFirst Platform
Foundation for iOS.

For MobileFirst Server V7.0 or earlier:
Use Oracle JRE 1.7.0_75 or later.
2. If you use an IBM Java SDK, edit the server.xml file.
a. Add the following line:
<ss1 id="defaultSSLConfig" keyStoreRef="defaultKeyStore" ss1Protocol="SSL TLSv2"/>
b. Add the ss1Protocol="SSL_TLSv2" attribute to all existing <ss1> elements.

WebSphere Application Server full profile

Procedure

1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.
Ensure that your IBM Java SDK is patched for the POODLE vulnerability. You
can find the minimum IBM Java SDK versions that contain the patch for your

version of WebSphere Application Server in [Security Bulletin: Vulnerability in|
[SSLv3 affects IBM WebSphere Application Server (CVE-2014-3566)

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_securing_ihs_container.html
http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173

Note: You can use the versions that are listed in the security bulletin or later
versions.

2. Log in to WebSphere Application Server administrative console, and click
Security > SSL certificate and key management > SSL configurations.

3. For each SSL configuration listed, modify the configuration to enable TLS V1.2.

a. Select an SSL configuration and then, under Additional Properties, click
Quality of protections (QoP) settings.

b. From the Protocol list, select SSL_TLSv2.
c. Click Apply and then save the changes.

Configuring SSL between MobileFirst adapters and back-end
servers by using self-signed certificates

You can configure SSL between MobileFirst adapters and back-end servers by
importing the server self-signed SSL certificate to the MobileFirst keystore.

Procedure
1. Check the configuration in the worklight.properties file. The configuration
might look like this example (the password will be different for each project):

i ssdddddssaddddddssadiadddddsstadddddtsasdddddsdadddddsssdadiddsassadddddsssdsdddddsssdddddddssasdddiddasatisddd
MobiTeFirst SSL keystore
i zadddddaddaddddssatdaddddtsstadddddtsaadddddtssiadddddssssddddsassadddddssisdddddssddaddddtsasdddddddaiisddd
#SSL certificate keystore location.
ss1.keystore.path=conf/mfp-default.keystore
#SSL certificate keystore type (jks or PKCS12)
ss1.keystore.type=jks
#SSL certificate keystore password.
ss1.keystore.password=oW523Mes0b241qAXc5F7
2. Make sure that the keystore file exists in the server/conf folder of the

MobileFirst project.

3. Export the server public certificate from the back-end server keystore.

Note: Export back-end public certificates from the back-end keystore by using
keytool or openss1 1ib. Do not use the export feature in a web browser.

4. Import the back-end server certificate into the MobileFirst keystore.
5. Restart the MobileFirst Server.

Example

The CN name of the back-end certificate must match what is configured in the
adapter.xml file. For example, consider an adapter.xml file that is configured as
follows:

<protocol>https</protocol>

<domain>mybackend. com</domain>
The back-end certificate must be generated with CN=mybackend.com.
As another example, consider the following adapter configuration:
<protocol>https</protocol>
<domain>123.124.125.126</domain>
The back-end certificate must be generated with CN=123.124.125.126.

The following example demonstrates how you complete the configuration by using
the Keytool program.

Installing and configuring 6-135

1. Create a back-end server keystore with a private certificate for 365 days.

keytool -genkey -alias backend -keyalg RSA -validity 365 -keystore backend.keystore -storetype JKS

<connectivity>

Note: The First and Last Name field contains your server URL, which you use
in theadapter.xml configuration file, for example mydomain.com or lTocalhost.

2. Configure your back-end server to work with the keystore. For example, in
Apache Tomcat, you change the server.xml file:

<Connector port="443" SSLEnabled="true" maxHttpHeaderSize="8192"
maxThreads="150" minSpareThreads="25" maxSpareThreads="200"
enablelLookups="false" disableUploadTimeout="true"
acceptCount="100" scheme="https" secure="true"
clientAuth="false" ss1Protocol="TLS"
keystoreFile="backend.keystore" keystorePass="password" keystoreType="JKS"
keyAlias="backend"/>

3. Check the connectivity configuration in the adapter.xml file:

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>https</protocol>
<domain>mydomain.com</domain>

<port>443</port>

<!-- The following properties are used by adapter's key manager for choosing
a specific certificate from the key store

<ss1CertificateAlias></ss1CertificateAlias>

<ssl1CertificatePassword></ss1CertificatePassword>

-
</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="2"/>

</connectivity>

4. Export the public certificate from the created back-end server keystore:
keytool -export -alias backend -keystore backend.keystore -rfc -file backend.crt

5. Import the exported certificate into your MobileFirst Server
mfp-default.keystore file in the server/conf directory of the MobileFirst
project:

keytool -import -alias backend -file backend.crt -storetype JKS -keystore mfp-default.keystore

6-136

6. Check that the certificate is correctly imported in the keystore:
keytool -1ist -keystore mfp-default.keystore

Configuring SSL by using untrusted certificates

Making SSL work between instances of IBM MobileFirst Platform Server and
clients with certificates that are not signed by a known public certificate authority
(CA) can be challenging. Each mobile platform has its own peculiarities and
enforces different portions of the transport layer security (TLS) standard at
different times.

Support for X.509 certificates comes from the individual platforms, not from IBM
MobileFirst Platform Foundation for iOS. For more information about specific
requirements for X.509 certificates, see the documentation of each mobile platform.

If you have difficulties with getting your application to access a MobileFirst Server
because of SSL-related issues, the likely cause is a bad server certificate. Another
likely cause is a client that is not properly configured to trust your server. Many
other reasons can cause an SSL handshake to fail, so not all possibilities are
covered. Some hints and tips are provided to troubleshoot the most basic issues
that are sometimes forgotten or overlooked. These issues are important when you
deal with the mobile world and X.509 certificates.

IBM MobileFirst Platform Foundation for iOS V7.0.0

Basic concepts

Certificate authority (CA)
An entity that issues certificates. A CA can issue (sign) other certificates or
other CA certificates (intermediate CA certificates).

In a public key infrastructure (PKI), certificates are verified by a
hierarchical chain of trust. The topmost certificate in this tree is the root
CA certificate.

You can purchase your certificates from a public Internet CA or operate
your own private (local) CA to issue private certificates for your users and
applications. A CA is meant to be an authority that is well-trusted by your
clients. Most commercial CAs issue certificates that are automatically
trusted by most web browsers and mobile platforms. Using private CAs
means that you must take certain actions to ensure that the client trusts
certificates that are signed by your root CA.

A certificate can be signed (issued) by one of the many public CAs that are
known by your mobile platforms, a private CA, or by itself.

Self-signed certificate
A certificate that is signed by itself and has no CA that attests to its
validity.

Using self-signed certificates is not recommended because most mobile
platforms do not support their use.

Self-signed CA
A CA that is signed by itself. It is both a certificate and a CA. Because it is
the topmost certificate in a tree, it is also the root CA.

Using certificates that are signed by private CAs is not recommended for
production use on external Internet-facing servers because of security
concerns. However, they might be the preferred option for development
and testing environments due to their low cost. They are also often
appropriate for internal (intranet) servers as they can be deployed quickly
and easily.

Self-signed certificates versus self-signed CAs

When you are dealing with mobile clients, the use of self-signed certificates is not
recommended because mobile platforms do not allow the installation of these
types of certificates onto the device truststore. This restriction makes it impossible
for the client to ever trust the server’s certificate. Although self-signed certificates
are often recommended for development and testing purposes, they will not work
when the client is a mobile device.

The alternative is to use self-signed CA certificates instead of self-signed
certificates. Self-signed CA certificates are as easy to acquire and are also as
cost-effective of a solution.

You can create a self-signed CA with most tools. For example, the following
command uses the openssT tool to create a self-signed CA:

openss1 req -x509 -nodes -days 365 -newkey rsa:2048 -keyout privateKey.key
-out certificate.crt -regexts v3_req -extensions v3_ca

Note: X.509 version 1 certificates are not allowed by some mobile platforms. You
must use X.509 version 3 certificates instead. If you are generating self-signed CA

certificates, ensure that they are of the type X.509 version 3, and have the following

Installing and configuring 6-137

extension defined: basicConstraints = CA:TRUE. See the appropriate tool’s
documentation for how to specify the required version and certificate extensions.
For openss1 commands, you can specify the -reqexts v3_req flag to indicate
version 3 X.509 certificates, and the -extensions v3_ca flag to indicate that the
certificate is also a CA.

You can check the certificate version and extensions by running the following
openss1 command:

openss1 x509 -in certificate.crt -text -noout
Establishing trust on the client

When you open a web page on your mobile browser or connect directly to your
MobileFirst Server on an HTTPS port, a client receives a server certificate in the
SSL handshake. The client then evaluates the server certificate against its list of
known and trusted CAs to establish trust. Each mobile platform includes a set of
trusted CAs that are deemed trustworthy for issuing SSL certificates. Trust is
established if your server certificate is signed by a CA that is already trusted by
the device. After trust is established, the SSL handshake is successful and you are
allowed to open the web page on a browser or connect directly to your server.

However, if your server uses a certificate that is signed by a CA that is unknown
to the client, the trust cannot be established, and your SSL handshake fails. To
ensure your client device trusts your server’s certificate, you must install the trust
anchor certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) needs to be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

For iOS, see [“Installing the root CA on iOS” on page 6-141 |

Handling the certificate chain

If you are using a server certificate that is not signed by itself, you must ensure
that the server sends the full certificate chain to the client.

For the client to validate the certificate path, it must have access to the full
certificate chain. To ensure that the client has access to the full certificate chain,
including intermediate certificates, ensure that all the certificates in the chain are in
the server-side keystore file.

For the WebSphere Application Server Liberty, see [“Updating your keystore and|
[Liberty profile configuration to use a certificate chain” on page 6-143 |

Handling certificate extensions

RFC 5280 (and its predecessors) defines a number of certificate extensions that
provide extra information about the certificate. Certificate extensions provide a
means of expanding the original X.509 certificate information standards.

When an extension is specified in an X.509 certificate, the extension must specify
whether it is a critical or non-critical extension. A client that is processing a
certificate with a critical extension that the client does not recognize, or which the
client cannot process, must reject the certificate. A non-critical extension can be
ignored if it is not recognized.

6-138 IBM MobileFirst Platform Foundation for iOS V7.0.0

Not all mobile platforms recognize or process certain certificate extensions in the
same manner. For this reason, you must follow the RFC as closely as possible.
Avoid certificate extensions unless you know that all of your targeted mobile
platforms can handle them as you expect.

CRL support

If your certificate supports certificate revocation lists (CRLs), ensure that the CRL
URL is valid and accessible. Otherwise, certificate chain validation fails.

Tools to use to verify the server certificate

To debug certificate path validation problems, try the openss1 s_client command
line tool. This tool generates good diagnostic information that is helpful in
debugging SSL issues.

The following example shows how to use the openss1 s_client command line
tool:

openss1 s_client -CApath $HOME/CAdir -connect hostname:port

The following example shows how to inspect a certificate:
openss] x509 -in certificate.crt -text -noout

Troubleshooting problems with server certificates that are not
signed by a trusted certificate authority

Table 6-49. Troubleshoot problems with server certificates

Problem

Actions to take

Unable to install the root CA on iOS. The certificate is not identified as a certificate authority.

Certificate installs, but after installation, iOS shows the
certificate as not trusted.

Ensure that the certificate specifies a certificate extension:
basicaConstraints = CA:TRUE

For more information, see [“Self-signed certificates versus|
[self-signed CAs” on page 6-137)

Ensure that the certificate is in PEM format.

Ensure that the certificate has a .crt file extension.

Installing and configuring 6-139

Table 6-49. Troubleshoot problems with server certificates (continued)

Problem

Actions to take

"errorCode":"UNRESPONSIVE _HOST","errorMsg":"The
service is currently not available."

This error usually indicates an SSL handshake failure.

The client cannot establish trust for the server certificate.

1. Ensure that you installed the server’s root CA on the
client device. For more information, see |“Establishin§|
[trust on the client” on page 6-138

2. Ensure that the server sends the complete certificate
chain and in the right order. For more information,
see [“Handling the certificate chain” on page 6-138.

The server certificate is invalid.

1. Check the validity of the server certificate. For more
information, see [“Tools to use to verify the server|
[certificate” on page 6-139)

2. Ensure that the CRL URL is valid and reachable. For
more information, see [“CRL support” on page 6-139)

3. The server certificate contains a critical certificate
extension that is not recognized by the client
platform. For more information, see |“Hand1ing|
[certificate extensions” on page 6-138

After installation, the certificate does not show up in the
system’s trusted credentials or truststore.

Ensure that you did not install the server certificate by
accessing the protected resource directly from your
browser. This action imports the certificate only into the
browser space and not into the device system truststore.
The only requirement is that you install the root CA.

For more information about how to properly install the
root CA on the device, see the following topics.

For iOS, see [“Installing the root CA on iOS” on pagel|

|6-l41.|

SCRIPT7002: XMLHttpRequest: Network Error Ox2ee4,
Could not complete the operation due to error
00002eed

Ensure that you installed the server's root CA on the
client device. For more information, see |”Establishina
[trust on the client” on page 6-138)

Ensure that the server sends the complete certificate
chain and in the right order. For more information, see
[“Handling the certificate chain” on page 6-138

Related tasks:

[“Configuring SSL for Liberty profile” on page 6-220]

Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
server.xml file to configure SSL on Liberty profile.

Related information:

[** Gecurity with HTTPS and SS1J

[[HTTPS Server Trust Evaluation|

[[The Transport Layer Security (TLS) Protocol Version 1.2|

[[REC 5280 - Internet X.509 Public Key Infrastructure Certificate and Certificate]

[Revocation List (CRL) Profile]

6-140 1BM MobileFirst Platform Foundation for iOS V7.0.0

http://developer.android.com/training/articles/security-ssl.html
https://developer.apple.com/library/ios/technotes/tn2232/_index.html
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280

Installing the root CA on iOS
The root CA must be installed on the client device to ensure that the client trusts
server certificates that are signed by your private CAs.

About this task

To establish trust for your server certificate, you must install the trust anchor
certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) must be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

Procedure

1.

2.

Mo Service = 359 PM

Ensure that the root CA is in PEM file format and has a .crt file extension.
Convert as needed.

Run the following command to view the certificate details.
openss1 x509 -in certificate.crt -text -noout

Ensure that the certificate is of version X.509 v3. The certificate details must
show Version 3.

Note: The following openss] flag generates X.509 v3 certificates:
-regexts v3_req

Ensure that the certificate is a certificate authority. The certificate details must
show X509v3 Basic Constraints: CA:TRUE

Note: The following openss1 flag generates the CA extension:
-extensions v3_ca

To download the certificate file on the device, send it as an email attachment or
host it on a secure website.

Note: Do not install the server certificate by accessing the protected resource
directly from your browser. This action imports the certificate only into the
browser space and not into the device system truststore.

After you have the certificate file on the device, click the file to allow the iOS
system to install the certificate.

Cancel Install Profile

Mot Trusted

sample.test.com

Signed sample.test.com

Received Mov 13, 2013

Contains Certificate

Maore Details

Installing and configuring 6-141

No Service = 3:59 PM 5 [

Cancel Warning Install

LUNVERIFIED PROFILE
The authenticity of "sample.test.com”
cannot be verified. Installing this profile
will change settings on your iPhone.
ROOT CERTIFICATE

Installing the certificate
“sample.test.com” will add it to the list
of trusted certificates on your iPhone.

7. Check that the certificate was properly installed under Settings > General >
Profiles > Configuration Profiles.

Mo Service 3:50 PM Y)+

£ General Profiles
CONFIGURATION PROFILES

@ sample.test.com

PROVISIONING PROFILES
@ i0S Team Provisioning Pr...

Expires on Mar 6, 2014

8. Ensure that the iOS device lists the CA as a trusted certificate authority.

6-142 1BM MobileFirst Platform Foundation for iOS V7.0.0

No Service ¥ 358 PM 4

Profile Installed Done

sample.test.com
; B @ Trusted

signed sampletest.com

Recelved Nov 13, 2013

Contains Certificata

More Details

Updating your keystore and Liberty profile configuration to use a
certificate chain

You must ensure that your server sends the whole certificate chain to client devices
on an SSL handshake.

About this task

For the client to validate the certificate path, it must have access to the full
certificate chain. To ensure that the client has access to the full certificate chain
(including intermediate certificates), ensure that all the certificates in the chain are
in the server-side keystore file.

Assuming that you have a root CA certificate, intermediate certificates, and a
server certificate, the whole chain must be sent on the HTTPS connection. These
certificates must be concatenated in one file, by concatenating in the following
order: server certificate, intermediate CA certificates (if any exist, and if so, in the
order in which they were signed), and finally the root CA.

The following example assumes that you have a server certificate
(SERVER_IDENTITY CERT_NAME), one intermediate CA certificate
(INTERMEDIATE_CA_CERT NAME), and a root CA (ROOT_CA_CERT_NAME).

Procedure
1. Open a terminal and navigate to a temporary working directory.
2. Concatenate your certificates to form the certificate chain.
a. Concatenate the intermediate and the root CA certificates.
cat INTERMEDIATE CA CERT NAME ROOT CA CERT NAME > INTERMEDIATE CA_CHAIN CERT NAME
b. Add the server certificate to the chain.
cat .SERVER_IDENTITY_CERT_NAME INTERMEDIATE CA_CHAIN_CERT_NAME > server_chain.crt
3. Export the private key and certificate chain into a .p12 keystore.

openss1 pkcsl2 -export -in server_chain.crt -inkey server/server_key.pem -out server/server.pl2 -passout pass:passServerP12 -passin pass:passServer

4. Update your Liberty profile server.xml file.
a. Enable the SSL feature.

Installing and configuring 6-143

<featureManager>
<feature>ss1-1.0</feature>

</featureManager>
b. Create an SSL configuration.

<ss1 id="mySSLSettings" keyStoreRef="myKeyStore" />
<keyStore id="myKeyStore"
location="server/server.pl2"
type="PKCS12"
password="passServerl2" />
c. Configure your HTTP endpoint to use this SSL configuration or set the
configuration as the default.

<ss1Default ss1Ref="mySSLSettings" />

What to do next

For more information, see [Enabling SSL communication for the Liberty profile}

Handling MySQL stale connections

Instructions for how to configure your application server to avoid MySQL timeout
issues.

The MySQL database closes its connections after a period of non-activity on a
connection. This timeout is defined by the system variable called wait_timeout.
The default is 28000 seconds (8 hours).

When an application tries to connect to the database after MySQL closes the
connection, the following exception is generated:

com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: No operations allowed after statement closed.

The following sections provide the configuration elements specific to each
application server you can use to avoid this exception if you use the MySQL
database.

Apache Tomcat configuration

Edit the server.xml and context.xml files, and for every <Resource> element add
the following properties:

* testOnBorrow="true"
e validationQuery="select 1"

For example:

<Resource name="jdbc/AppCenterDS"
type="javax.sql.DataSource"
driverClassName="com.mysql.jdbc.Driver"

testOnBorrow="true"
validationQuery="select 1"
/>

WebSphere Application Server Liberty profile configuration
Note: MySQL in combination with WebSphere Application Server Liberty profile

or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see [WebSphere Application Server Support]

6-144 1BM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://www.ibm.com/support/docview.wss?uid=swg27004311

We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Edit the server.xml file and for every <dataSource> element (runtime and
Application Center databases) add a <connectionManager> element with the
agedTimeout property:

<connectionManager agedTimeout="timeout"/>

For example:

<dataSource jndiName="jdbc/AppCenterDS" transactional="false">
<connectionManager agedTimeout="7h30m"/>
<jdbcDriver libraryRef="MySQLLib"/>

</t'ié£aSource>
WebSphere Application Server full profile configuration

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see [WebSphere Application Server Support|
We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

1. Log in to the WebSphere Application Server console.
2. Select Resources > JDBC > Data sources.
3. For each MySQL data source:
a. Click the data source.
b. Select Connection pool properties under Additional Properties.

€. Modify the value of the Aged timeout property. The value must be lower
that the MySQL wait_timeout system variable to have the connections
purged prior to the time that MySQL closes these connections.

d. Click OK.

Managing the DB2 transaction log size

When you deploy an application that is at least 40 MB with IBM MobileFirst
Platform Operations Console, you might receive a transaction log full error.

About this task

The following system output is an example of the transaction Tog full error
code.

DB2 SQL Error: SQLCODE=-964, SQLSTATE=57011

The content of each application is stored in the MobileFirst administration
database.

The active log files are defined in number by the LOGPRIMARY and LOGSECOND
database configuration parameters, and in size by the LOGFILSIZ database
configuration parameter. A single transaction cannot use more log space than
LOGFILSZ * (LOGPRIMARY + LOGSECOND) * 4096 KB.

Installing and configuring 6-145

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

The DB2 GET DATABASE CONFIGURATION command includes information about the log
file size, and the number of primary and secondary log files.

Depending on the largest size of the MobileFirst application that is deployed, you
might need to increase the DB2 log space.

Procedure
Using the DB2 update db cfg command, increase the LOGSECOND parameter. Space is

not allocated when the database is activated. Instead, the space is allocated only as
needed.

Installing the IBM MobileFirst Platform Operational Analytics

6-146

The IBM MobileFirst Platform Operational Analytics is delivered as two separate
WAR files. For convenience in deploying on WebSphere Application Server or
WebSphere Application Server Liberty, the IBM MobileFirst Platform Operational
Analytics is also delivered as an EAR file that contains the two WAR files.

When you develop within MobileFirst Platform Command Line Interface for iOS,
the WAR files that contain the IBM MobileFirst Platform Operational Analytics are
automatically deployed. The MobileFirst Server forwards data to the MobileFirst
tools with no additional required configurations.

The analytics WAR and EAR files are included with the MobileFirst Server
installation. For more information, see [“Distribution structure of MobileFirst]
[Server” on page 6-39.|

The following sections describe the required steps for successfully deploying the
WAR file to the application server.

When you deploy the WAR file, the analytics console is available at:
http://<hostname>:<port>/<context-root>/console

Example:
http://localhost:9080/analytics/console

Installing IBM MobileFirst Platform Operational Analytics for
WebSphere Application Server Liberty

You can install the IBM MobileFirst Platform Operational Analytics for WebSphere
Application Server Liberty.

About this task

The following steps describe how to install and run the Analytics EAR file on
WebSphere Application Server Liberty.

The IBM MobileFirst Platform Operational Analytics is protected with role-based
security, so you must bind the security roles to the application to be able to access
the console.

Procedure

1. Add the Analytics EAR file to the apps folder of your WebSphere Application
Server Liberty application server.

IBM MobileFirst Platform Foundation for iOS V7.0.0

2. Modify the server.xml file to set the class loading delegation and bind the
security roles.

<basicRegistry id="worklight" realm="worklightRealm">
<user name="demo" password="demo"/>
<user name="monitor" password="demo"/>
<user name="deployer" password="demo"/>
<user name="operator" password="demo"/>
<user name="admin" password="admin"/>
</basicRegistry>

<application location="analytics.ear"
name="analytics-ear"
type="ear">
<application-bnd>
<security-role name="worklightadmin">
<user name="admin"/>
</security-role>
<security-role name="worklightdeployer">
<user name="deployer"/>
</security-role>
<security-role name="worklightmonitor">
<user name="monitor"/>
</security-role>
<security-role name="worklightoperator">
<user name="operator"/>
</security-role>
</application-bnd>
</application>
3. Add the following features to the WebSphere Application Server Liberty server
in the feature manager.
<feature>jsp-2.2</feature>
<feature>jndi-1.0</feature>
<feature>appSecurity-1.0</feature>

4. Start the application server and view the console in the browser.
http://Tocalhost:9080/analytics/console

Results

The analytics console is deployed and can now be viewed in the browser.

Installing IBM MobileFirst Platform Operational Analytics for
WebSphere Application Server

You can install the IBM MobileFirst Platform Operational Analytics for WebSphere
Application Server.

About this task

The following steps describe how to install and run the Analytics EAR file on
WebSphere Application Server. If you are installing the individual WAR files on
WebSphere Application Server, follow only steps 2 - 6 on the analytics-service
WAR file after you deploy both WAR files. The class loading order must not be
altered on the analytics-ui WAR file.

Procedure

1. Deploy the EAR file to the application server, but do not start it. For more
information about the analytics files, see [“Distribution structure of MobileFirst]

Installing and configuring 6-147

[Server” on page 6-39.| For more information about how to install an EAR file on
WebSi here Application Server, see [Installing enterprise application files with|

he console]

2. Select the IMF Operational Analytics application from the Enterprise
Applications list.

Enterprise Applications ?

Enterprise Applications

Use this page to manage Installed applications. A single application can be deployed onto multiple servers.
Preferences

| start || Stop || Install | | Uninstall | | Update || Rollout Update || Remove File | | Export || Expart DDL || Export File |

Select | Name 2 |Appl|catlun Status ¢

You can administer the resources:

Tl | DefaultApplication

= ||1MF Ugeratlonal A.'lal;tlcs I

Total 2

3. Click Class loading and update detection.

Enterprise Applications ? -

Enterprise Applications > IMF Operational Analytics

Use this page to configure an enterprise application. Click the links to access pages for further configuring of the application or its modules.

Configuration

General Properties Modules

4 Name

| Manage Modules

|IMF Operational Analytics Metadata for modules

Application reference validation Display module build Ids
Issue warnings

Web Module Properties

Detail Properties

Session management

Target specific application status Context Root For Web Modules
Startup behavior Environment entries for Web modules
Application binaries Initialize parameters for servlets

[7 Class loading and update detection | JSP and JSF options
Request dispatcher properties Virtual hosts

Security role to user/group mapping
JASPT provider
Custom properties Default messaging provider references

Enterprise Java Bean Properties

View Deployment Descriptor

Client Module Properties

Last participant support extension

Client module deployment mode
References

Database Profiles

Shared library references

SQUJ profiles and pureQuery bind files
Shared library relationships ol p pureQuery

Apply | OK || Reset H Cancel

4. Set the class loading order to parent last.

6-148 1BM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_instwiz.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_instwiz.html

General Properties

Class reloading options
[] Owverride class reloading settings for Web and EJB modules

Polling interval for updated files
[| Secongs

Class loader order

@ Classes loaded with local class loader first (parent last)

WAR class loader policy
@ Class loader for each WAR file in application

l;;;l Single class loader for application

S e e e

i Apply] | DK] I.Fl'.es-et.] i Cancel]

5. Click Security role to user/group mapping to map the admin user.

Enterprise Applications

Enterprise Applications > IMF Operational Analytics > Security role to user/group mapping

Security role to userigroup mapping

Each role that is defined in the application or module must map to a user or group from the domain user registry. accesslds: The accesslds are required only when using
cross realm communication in a multi domain scenario. For all other scenarios the accessld will be determined during the application start based on the useror group
name. The accesslds represent the user and group information that is used for Java Platform, Enterprise Edition authorization when using the WebSphere default
authorization engine. The format for the accesslds is userrealm/unigueUserlD, group:realm/unique GrouplD. Entering wrong information in these fields will cause
authorization to fail. AllAuthenticatedInTrustedRealms: This indicates that any valid user in the trusted realms be given the access. AllAuthenticated: This indicates that
any valid user in the current realm be given the access.

| Map Users... || Map Groups.. || Map Special Subjects - |

Select| Role Special subjects _| Mapped users Mapped groups
O worklightadmin MNone wasadmin

[| worklightdeployer None

[| worklightmonitor None

L] worklightoperator None

6. Click Manage Modules.

Installing and configuring ~ 6-149

Enterprise Applications

Enterprise Applications > IMF Operational Analytics

Use this page to configure an enterprise application. Click the links to access pages for further configuring of the application or its modules.

Configuration

General Properties Modules

+ Name

|IMF Operational Analytics |

Metadata for modules

Application reference validation Display module build Ids
Issue warnings

Web Module Properties

Detail Properties Session management

Target specific application status Context Root For Web Modules
Startup behavior Environment entries for Web modules
Application binaries Initialize parameters for servlets
Class loading and update detection JSP and JSF options

Request dispatcher properties Virtual hosts

Security role to user/group mapping

JASPI provider
Custom properties Default messaging provider references

Enterprise Java Bean Properties

View Deployment Descriptor

Client Module Properties

Last participant support extension

Client module deployment mode

References

Database Profiles

Shared library references

SoU fil d bind fil
Shared library relationships QU profiles and pureQuery bin =

| Apply || Reset H Cancel

7. Select the worklight-analytics-service module and change the class loading
order to parent last.

Enterprise Applications

Enterprise Applications > IMF Operational Analytics > Manage Modules > worklight-analytics-service.war

Use this page to configure an instance of a deployed web module in the application. This page contains deployment-specific information for a web module and
session management settings.

Configuration

General Properties Additional Properties

+ URI

View Module Class | oader
Custom properties

Alternate deployment descriptor Target specific application status
| | View Deployment Descriptor

|workllght-analytlcs-sewlce‘war |

Session Management
Starting weight

[10000

Class loader order
| Classes loaded with local class loader first (parent last) IZ|

_Apply ‘| Reset || Cancel |

8. Start the IMF Operational Analytics application and go to the link in the
browser.

6-150 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://<hostname>:<port>/<context-root>/data
Results

The analytics EAR file is now ready to accept incoming analytics data.

IBM MobileFirst Platform Operational Analytics installation for
Tomcat

The individual WAR files that come packaged within the Analytics EAR file are
also provided when IBM MobileFirst Platform Foundation for iOS is installed.

analytics-ui.war
analytics-service.war

For more information, see [“Distribution structure of MobileFirst Server” on page]

Follow the normal procedures for deploying WAR files. No special configurations
need to be made for Tomcat.

Configuring the MobileFirst Server for the IBM MobileFirst
Platform Operational Analytics

You must configure the MobileFirst Server for the IBM MobileFirst Platform
Operational Analytics.

About this task

The following steps describe how to configure the MobileFirst Server for the IBM
MobileFirst Platform Operational Analytics.

Procedure

1. In the worklight.properties file, set the wl.analytics.url property to point to
the deployed WAR file.

wl.analytics.url=http://<hostname>:<port>/analytics-service/data

For example, if the Liberty server is at host.ibm.com on port 8080, then the
wl.analytics.url property is as follows:

wl.analytics.url=http://host.ibm.com:8080/analytics-service/data

2. In the worklight.properties file, set the wl.analytics.username and the
wl.analytics.password properties.

3. Optional: If you want to access the Analytics console from the MobileFirst
Operations Console, set the wl.analytics.console.url property in the
worklight.properties file.

wl.analytics.console.url=http://<hostname>:<port>/analytics/console

For example, if the Liberty server is at host.ibm.com on port 8080, then the
wl.analytics.console.url property is as follows:

wl.analytics.console.url=http://host.ibm.com:8080/analytics/console
Results

The MobileFirst Server now forwards data to the IBM MobileFirst Platform
Operational Analytics.

Installing and configuring 6-151

Note: All properties in the worklight.properties file can also be set by using
JNDI. For more information about JNDI settings, see [“Configuration of MobileFirst]
lapplications on the server” on page 10-48 |

Installing the MobileFirst Data Proxy

6-152

You install the MobileFirst Data Proxy to serve as a proxy between your
MobileFirst Server and your Cloudant database.

Planning the installation of MobileFirst Data Proxy

Before you install the MobileFirst Data Proxy, you must plan your installations and
verify the prerequisites for your system.

Installation overview of the MobileFirst Data Proxy
With the MobileFirst Data Proxy, the data from your mobile applications can be
saved on the server side.

To develop applications with this feature, use the MobileFirst Data Proxy SDK that
is documented at [“Storing mobile data in Cloudant” on page 8-186)

The MobileFirst Data Proxy service requires an installed IBM MobileFirst Platform
runtime, and access to a Cloudant database.

IBM MobileFirst Platform Foundation for iOS bundles a limited-use Virtual Server
entitlement to IBM MobileFirst Platform Cloudant Data Layer Local Edition. This
Virtual Server, or node, provides development and test with full API support, and
tools. This node can be used for production with appropriate planning for
availability, performance, and backup. For more information about the use
limitation, see the IBM MobileFirst Platform Foundation for iOS license. By
purchasing additional entitlements to IBM MobileFirst Platform Cloudant Data
Layer Local Edition, customers can cluster multiple nodes together and gain
horizontal and geographic scalability, fault tolerance, and continuous availability.
You might want to deploy in a clustered topology for applications that require the
availability, elasticity, and reach of possibly massive amounts of mobile data and
devices. It is best suited for applications that require an operational data store to
handle a massively concurrent mix of low-latency reads and writes.

Attention: You can install only one instance of an MobileFirst Data Proxy in an
application server. That instance can authenticate incoming requests with only one
MobileFirst project runtime.

Installation prerequisites for the MobileFirst Data Proxy

Review the system requirements, and perform the required installations of
MobileFirst Server and the Cloudant database before installing the MobileFirst
Data Proxy. Some restrictions apply about the type of application server that you
can use.

For more information about the supported hardware and pre-required software,
see [“System requirements” on page 2-7/

Before installing the MobileFirst Data Proxy, you must perform the following
actions:

* Install an instance of MobileFirst Server. For more information about the
installation process, see [“Installing MobileFirst Server” on page 6-2.|

IBM MobileFirst Platform Foundation for iOS V7.0.0

* Deploy a project WAR file. For more information about the deployment process,
see [“Deploying the project WAR file” on page 10-5|

* Install IBM MobileFirst Platform Cloudant Data Layer Local Edition, or get
access to the Cloudant database. For more information about the installation
process, see the [[BM MobileFirst Platform Cloudant Data Layer Local Edition|
[user documentation]

Application server restrictions

You can install the MobileFirst Data Proxy on the following application servers:
* WebSphere Application Server Liberty profile V8.5.5.0 and later

* WebSphere Application Server full profile

* WebSphere Application Server Network Deployment

You cannot install MobileFirst Data Proxy on the following application server:
* Apache Tomcat
* WebSphere Application Server Liberty profile V8.5.0.x

File System prerequisites for MobileFirst Data Proxy

Review the file system privileges and the specific rights for WebSphere Application
Server and WebSphere Application Server Network Deployment that you must
have before you install the MobileFirst Data Proxy.

The file system prerequisites are the same as for installing the MobileFirst Server,
which are described in [“File system prerequisites” on page 6-5

In addition, to install on WebSphere Application Server or WebSphere Application
Server Network Deployment, you must have the right to create files in the
WebSphere Application Server installation directory: <was_install_dir>/1ib/ext.

For WebSphere Application Server Network Deployment, you must do this
operation on every node of the WebSphere Application Server Network
Deployment cell, even if they do not run the MobileFirst Data Proxy service. This
is required to install a Trust Association Interceptor (TAI) that is declared at the cell
level.

Installing and configuring the MobileFirst Data Proxy

You can choose to install the MobileFirst Data Proxy with Ant tasks, or manually.
For more information about the procedures to follow for each case, see the
appropriate topics in this section.

Installing the MobileFirst Data Proxy with Ant tasks
Learn about the Ant tasks that you can use to install the MobileFirst Data Proxy.

Before you begin
Make sure that Cloudant is installed and running. It can be on the same computer,

or a different computer. The Ant task verifies the connectivity to Cloudant before
proceeding with the installation.

To deactivate that verification, see [“Ant tasks for installation of MobileFirst Datal
[Proxy” on page 14-27

Installing and configuring 6-153

http://www.ibm.com/support/knowledgecenter/SSTPQH_1.0.0/com.ibm.cloudant.local.doc/SSTPQH_1.0.0_welcome.html
http://www.ibm.com/support/knowledgecenter/SSTPQH_1.0.0/com.ibm.cloudant.local.doc/SSTPQH_1.0.0_welcome.html

6-154

You must install the MobileFirst Server, as described in [“Installing MobileFirst|

Server” on page 6-2,|and deploy a project WAR file, as described in |”De]210zing the|

project WAR file” on page 10-5.|

You must have the URL of the deployed project WAR file to complete the
installation of the MobileFirst Data Proxy. If you want to start the Ant task from a
computer on which MobileFirst Server is not installed, you must copy the
following files on that computer:

» mf_server_install_dir/WorklightServer/worklight-ant-deployer.jar

* mf server_install dir/Datastore/imf-data-proxy.jar

* mf_server_install_dir/WorklightServer/external-server-libraries/*

About this task

Procedure

1. On WebSphere Application Server Network Deployment, you must install the
Trust Association Interceptor (TAI) manually on every node of the WebSphere
Application Server Network Deployment cell. For more information on the
installation instructions, see [“Installing the MobileFirst OAuth Trust Association|
[[nterceptor (TAI)” on page 6-157]

2. Review the sample configuration files in [‘Sample configuration files” on page|
14-35)and copy the Ant file that corresponds to your application server.

The following list of sample configuration files are in product_install_dir/
Datastore/configuration-samples:

» configure-Tiberty.xml: to install on a Liberty server.

+ configure-was.xml: to install on a WebSphere Application Server stand-alone
server.

— configure-wasnd-cluster.xml: to install on WebSphere Application Server
Network Deployment, on a cluster.

— configure-wasnd-server.xml: to install on WebSphere Application Server
Network Deployment, on a managed server.

3. Edit the Ant file and replace the placeholder values for the properties at the top
of the file.

4. Run the following command to install the MobileFirst Data Proxy:
ant -f configure-<appserver>.xml install
You can find the Ant command in mf_server_install_dir/shortcuts.

Note: With these Ant files, you can also:
* Uninstall a MobileFirst Data Proxy, with the target uninstall.

* Update a MobileFirst Data Proxy with the target minimal-update to apply a
fix pack.

Manually installing the MobileFirst Data Proxy
You can install the MobileFirst Data Proxy manually, and configure your
application server accordingly.

Configuring WebSphere Application Server Liberty profile for MobileFirst Data
Proxy manually:

To configure WebSphere Application Server Liberty profile for MobileFirst Data
Proxy manually, you must modify the server.xml file. You must also install a
feature in the usr/extension directory that is shared between servers, and add an

IBM MobileFirst Platform Foundation for iOS V7.0.0

environment variable in a server.env file that specifies the MobileFirst runtime,
which provides the authentication service for the MobileFirst Data Proxy.

Procedure

1.

Install the OAuthTai feature that implements the Trust Association Interceptor
(TAI) for IBM MobileFirst Platform Foundation for iOS.

a.

Ensure that the Liberty usr directory (see contains a subdirectory
extension/1ib. If this subdirectory does not exist, you must create it.

Copy the file product_install_dir/WorklightServer/external-server-
Tibraries/com.ibm.worklight.ocauth.tai_1.0.0.jar to usr/extension/1ib/.

Copy the file product_install_dir/WorklightServer/external-server-
Tibraries/0OAuthTai-1.0.mf to usr/extension/1ib/.

Note:

Where usr is the usr directory for WebSphere Application Server Liberty
profile. For more information, see the [Directory locations and properties|
page in the WebSphere Application Server Liberty Core user documentation.
It is typically in liberty_install_dir/usr but its location can be redefined
with a variable in liberty install dir/etc/server.env.

product_install_dir is the installation directory for MobileFirst Server.

Install the MobileFirst Data Proxy WAR file.

a.

Copy the following WAR file to the apps directory of the Liberty server:
product_install_dir/Datastore/imf-data-proxy.war.

Note: the apps directory is in the same directory as the server.xml file.

Edit the server.xml file.

a.

e.

Ensure that the <featureManager> element contains at least the following
<feature> elements:

<feature>jaxrs-1.1</feature>

<feature>restConnector-1.0</feature>

<feature>jndi-1.0</feature>

<feature>appSecurity-2.0</feature>

<feature>usr:0AuthTai-1.0</feature>

Modify the web container definition with the following values:
<webContainer invokeFlushAfterService="false" deferServietLoad="false"/>
Configure the Trust Association Interceptor:

<usr_OAuthTAI id="myOAuthTAI" cacheSize="1000">
<securityConstraint securedURLs="/datastore/"
scope="cloudant"
httpMethods="A11"/>
</usr_OAuthTAI>
If your server is not configured with a basicRegistry or an 1dapRegistry,
add an empty basicRegistry:

<basicRegistry> </basicRegistry>

Note: There can be only one basicRegistry per server.xml file. You must
perform this step only if there is no other basicRegistry or 1dapRegistry
defined in your server.

Declare the MobileFirst Data Proxy application:

<application id="datastore" name="datastore" location="imf-data-proxy.war" type="war">

<application-bnd>

<security-role name="TAIUserRole">

Installing and configuring 6-155

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_dirs.html?lang=en

<special-subject type="ALL AUTHENTICATED USERS" />
</security-role>
</application-bnd>
<classloader delegation="parentlLast">
<commonLibrary id="worklightlib_datastore">
<fileset dir="${wlp.install.dir}/1ib" includes="com.ibm.ws.crypto.passwordutil *.jar"/>
</commonLibrary>
</classloader>
</application>

<l-- Declare the JNDI properties for the MobileFirst Data Proxy. -->

<jndiEntry jndiName="datastore/CloudantProxyDbAccount" value='"hostname"'/>

<jndiEntry jndiName="datastore/CloudantProtocol" value='"http"'/>

<jndiEntry jndiName="datastore/CloudantPort" value='"80""'/>

<jndiEntry jndiName="datastore/CloudantProxyDbAccountUser" value='"cloudantuser"'/>
<jndiEntry jndiName="datastore/CloudantProxyDbAccountPassword" value='"cloudantpassword"'/>

Where:

+ datastore is the context root for the application. datastore is used in the
application name and ID, and as a prefix for the jndiName values, and in
the securityConstraint of the MobileFirst Data Proxy.

* The values for the following parameters correspond to:

— CloudantProxyDbAccount is the Cloudant database account or host
name of the Cloudant Local server.

— CloudantProtocol is the protocol to connect to the Cloudant HAProxy
(http or https).

— CloudantPort is the port number to connect to the Cloudant HAProxy.

— CloudantProxyDbAccountUser is the login of the Cloudant user.

— CloudantProxyDbAccountPassword is the password of the Cloudant user.

This password can be encrypted with the securityUtility feature of
WebSphere Application Server Liberty profile.

4. Edit or create a file server.env in the Liberty server directory, and add this
content:
publicKeyServerUri=http://hostname:9080/worklight
Where the value of the publicKeyServerUrl environment variable is the URL to

the MobileFirst runtime that runs the mobile apps which use the MobileFirst
Data Proxy.

Configuring WebSphere Application Server full profile and WebSphere
Application Server Network Deployment for MobileFirst Data Proxy manually:

To configure WebSphere Application Server full profile or WebSphere Application
Server Network Deployment for MobileFirst Data Proxy manually, you must
follow these steps.

About this task

First, you must select a context root for the MobileFirst Data Proxy application. In
the following topics, the context root is referred to as /datastore.

Then you must install the MobileFirst OAuth Trust Association Interceptor (TAI).
To install this component, you have two choices, which are described in the section
“Installing the MobileFirst OAuth Trust Association Interceptor (TAI)” on page]

6-157]

Finally, you must install the MobileFirst Data Proxy application, as described in the
section |“Installing the MobileFirst Data Proxy application” on page 6-159

6-156 IBM MobileFirst Platform Foundation for iOS V7.0.0

Installing the MobileFirst OAuth Trust Association Interceptor (TAI):

It is mandatory to install the MobileFirst OAuth Trust Association Interceptor to
run the MobileFirst Data Proxy. You can either install the TAI on the default
security domain of a cell, or on a specific security domain.

About this task

There are two options to install MobileFirst OAuth Trust Association Interceptor.
Review the following topics to learn about the procedures for each option.

Installing the MobileFirst OAuth Trust Association Interceptor on the default security
domain:

You can choose to install the TAI on the default security domain of a cell. This is
convenient for a standalone web server, but on WebSphere Application Server
Network Deployment, this means that the TAI is active on all servers and clusters
of the cell. It must also be installed, and maintained for fix packs, on all nodes of
the cell.

Procedure

1. Copy the file product_install_dir/WorklightServer/external-server-
Tibraries/com.ibm.worklight.oauth.tai 1.0.0.jar to ${WAS_INSTALL ROOT}/
1ib/ext.

Note: On WebSphere Application Server Network Deployment, you must
perform this operation on every node of the WebSphere Application Server cell.

2. Create a configuration file with this content:
<?xml version="1.0" encoding="UTF-8"?>

<0AuthTAI >
<!-- Security constraint. -->
<securityConstraint securedURLs="/datastore/*" scope="cloudant" httpMethods="A11"/>
</0AuthTAI>
Where datastore is the context root of the application, as defined in the section
About this task of the topic [“Configuring WebSphere Application Server fulll
profile and WebSphere Application Server Network Deployment for MobileFirst]
Data Proxy manually” on page 6-156.|

3. Copy this configuration file in the config directory of the WebSphere
Application Server profile, or the WebSphere Application Server Deployment
Manager profile for WebSphere Application Server Network Deployment (this
directory is synchronized with the nodes). For example:

${USER_INSTALL_ROOT}/config/cells/<cellName>/com.worklight.oauth.tai.0AuthTAI.conf

Where USER_INSTALL_ROOT is the profile directory, and <cel1Name> must be
replaced by the actual name of the WebSphere Application Server cell. The
directory should already exist.

4. Open the WebSphere Application Server Console.
Go to Security > Global Security > Authentication, and select Enable LTPA.
6. Go to Security > Global Security > Web and SIP security > Trust association.

o

a. Enable trust association.
b. In the Interceptors tab, create a new interceptor by clicking New.
c. Set the following settings for this interceptor:

* Interceptor class name: com.worklight.oauth.tai.0AuthTAIL

Installing and configuring 6-157

6-158

* Custom properties:
— Name: configFileLocation

— Value: ${USER_INSTALL ROOT}/config/cells/<cellName>/
com.worklight.oauth.tai.0AuthTAI.conf

Note: Keep ${USER_INSTALL_ROOT} as a variable, especially if you install on
WebSphere Application Server Network Deployment. The
${USER_INSTALL_ROOT} variable is defined in WebSphere Application Server.

You must replace <cellName> by the actual cell name.

7. From the WebSphere Application Server console, define an environment
variable for each server of the cell that points to the MobileFirst project runtime
which provides the authentication service.

a. From the WebSphere Application Server Console, go to Servers > Server
Types > WebSphere application servers > your_server > Java and Process
Management > Process Definition > Environment Entries > New.

b. Create an environment with the following settings:
publicKeyServerUri=url_to_mfp_server
Where url_to_mfp_server is the URL to the MobileFirst project runtime that
provides the public key for decrypting MFP OAuth tokens. For example, it
can be http://localhost:9080/worklight if a project runtime is installed on
the same server, the port is 9080, and the context root is /worklight.

The TAI will not be active before you restart the application server. For
WebSphere Application Server Network Deployment, the nodes must also
be synchronized.

What to do next

Follow the steps in [“Installing the MobileFirst Data Proxy application” on page|
6-159

Installing the MobileFirst OAuth Trust Association Interceptor on a specific security
domain:

You can choose to install the TAI on a specific security domain. In this case, only
servers or clusters that use that security domain can run the MobileFirst Data
Proxy.

Procedure
1. Open the WebSphere Application Server Console.

a. Create a security domain by clicking Security > Global Security > Security
domains > New.

b. Configure the security domain as follows:
* Name: MobileFirstOAuthDomain

* Description: Security Domain with MobileFirst Platform Foundation TAI
Enabled

c. Click the security domain that you created.

d. Go to Security Attributes > Trust Association, and select Enable Trust
Association.

e. Go to Security Attributes > Trust Association > Interceptors and set the
properties as follows:

* Interceptor class name: com.worklight.oauth.tai.0AuthTAL

IBM MobileFirst Platform Foundation for iOS V7.0.0

* Custom properties:
— Name: configFilelLocation

— Value: ${USER_INSTALL_R00T}/config/cells/<cellName>/
com.worklight.oauth.tai.0AuthTAI.conf

Note: Keep ${USER_INSTALL_ROOT} as a variable, especially if you install on
WebSphere Application Server Network Deployment. The
${USER_INSTALL_ROOT} variable is defined in WebSphere Application Server.

You must replace <cellName> by the actual cell name.

f. In Assigned Scopes, assign the security domain to the server or cluster that

runs the MobileFirst Data Proxy.

2. Copy the file product_install_dir/WorklightServer/external-server-
Tibraries/com.ibm.worklight.oauth.tai 1.0.0.jar to ${WAS_INSTALL ROOT}/
Tib/ext.

Note: You must perform this operation on every node that hosts a server with
the MobiTeFirstOAuthDomain security domain.

3. Create the TAI configuration file and copy it in the config directory of the
WebSphere Application Server profile. For more information, see steps [1 on]

page 6-157|and [2 on page 6-157] of [“Installing the MobileFirst OAuth Trust|

Association Interceptor on the default security domain” on page 6-157

4. From the WebSphere Application Server console, define an environment
variable for each server with the MobileFirstOAuthDomain security domain.

a.

Go to Servers > Server Types > WebSphere application servers >
your_server > Java and Process Management > Process Definition >
Environment Entries > New.

Create an environment with the following settings:
publicKeyServerUrl=url_to _mfp_server

Where url_to_mfp_server is the URL to the MobileFirst project runtime that
provides the public key for decrypting MFP OAuth tokens. For example, it
can be http://localhost:9080/work1ight if a project runtime is installed on
the same server, the port is 9080, and the context root is /worklight.

The TAI will not be active before you restart the application server. For
WebSphere Application Server Network Deployment, the nodes must also
be synchronized.

What to do next

Follow the steps in [“Installing the MobileFirst Data Proxy application”

Installing the MobileFirst Data Proxy application:

When the previous configuration steps of your application server are done, you
must install, then start the MobileFirst Data Proxy application.

Procedure

1. Enable application security.

a.
b.

Click Security > Global Security.

Ensure that Enable administrative security is selected. Application security
can be enabled only if administrative security is enabled.

Click OK.

Installing and configuring 6-159

6-160

d.

Save the changes.

For more information, see [Enabling security|in WebSphere Application
Server user documentation.

2. Review the server class loader policy:

a.
b.

Click Servers > Server Types > WebSphere application servers.
Select the server that is used for the MobileFirst Data Proxy.
* If the class loader policy is set to Multiple, do nothing.

* If the class loader policy is set to Single and the class loading mode is set
to parent-last, do nothing.

* If the class loader policy is set to Single and the class loading mode is set
to parent-first, change the class loader policy to Multiple, and set the
class loader order of all applications other than MobileFirst applications
to parent-first.

3. Install the Administration Services WAR file:

a.

Depending on your version of WebSphere Application Server, click one of
the following options:

* Applications > New > New Enterprise Application
* Applications > New Application > New Enterprise Application

Go to the MobileFirst Server installation directory: product_install_dir/
Datastore.

Select imf-data-proxy.war, and click Next.

On the How do you want to install the application? page, click Detailed,
and then click Next.

On the Application Security Warnings page, click Continue.
Click Next until you reach the Map context roots for web modules page.

In the Context Root field, type /datastore. This is defined in the section
About this task of the topic [“Configuring WebSphere Application Server fulll
profile and WebSphere Application Server Network Deployment for|
MobileFirst Data Proxy manually” on page 6-156|

Click Next.
In Map environment entries for web modules, enter the following values:

* for the CloudantProxyDbAccount entry, enter the host name of the Cloudant
database.

* for the CloudantProtocol entry, enter the protocol used to connect to
Cloudant. The possible values are http or https.

* for the CloudantPort entry, enter the port of the Cloudant database, which
is by default 80 for http and 443 for https.

* for the CloudantProxyDbAccountUser entry, enter the Cloudant user that
can log to Cloudant.

+ for the CloudantProxyDbAccountPassword entry, enter the Cloudant user's
password.

Click Next.

. In Map security roles to users or groups, select TAIUserRole.

Select Map Special Subjects > All Authenticated Users in Application's
Realm.

m. Click Next until you reach the last step, and click Finish.

n.

Click Save.

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_csec2.html

4. Configure the class loader policies for the Administration Services and then
start the application:

a. Click the Manage Applications link, or click Applications > Applications
Types > WebSphere enterprise applications.

b. From the list of applications, click imf-data-proxy_war.

C. In the Detail Properties section, click the Class loading and update
detection link.

d. In the Class loader order pane, click Classes loaded with local class loader
first (parent last).

Click OK.

In the Detail Properties section, click the Startup behavior link.
. In Startup Order, enter 1, and click OK.

. In the Modules section, click Manage Modules.

SQ —~ o

From the list of modules, click the imfdata module.

j. In the Class loader order pane, click Classes loaded with local class loader
first (parent last).

k. Click OK twice.
I. Click Save.
m. Select imf-data-proxy war and click Start.

Configuring the application server to access the Cloudant
database through HTTPS

Whether you installed the MobileFirst Data Proxy manually or with Ant tasks, if
you access the Cloudant database through HTTPS, and your application server is
WebSphere Application Server full profile, you must configure your certificates. If
your application server is WebSphere Application Server Liberty profile, and a
self-signed certificate is used to access the Cloudant database, an extra
configuration step is required.

Procedure

For WebSphere Application Server full profile, you must import the Cloudant
signer certificate in the WebSphere Application Server truststore to access the
Cloudant database through HTTPS. If you connect to Cloudant through the HTTPS
protocol, follow steps [1] to [7}

Open the WebSphere Application Server console.

Go to Security > SSL Certificates and Key Management.
In Related Items, click Key stores and certificates.

Select NodeDefaultTrustStore.

Select Additional Properties > Signer certificates.

I

Click Retrieve from port.

a. Enter the Cloudant host name and the port, which is by default 443.
b. Select an alias, for example Cloudant trust store.

c. Click Retrieve signer information.

d. Click OK.

7. Click Save.

For WebSphere Application Server Liberty profile, if you access the Cloudant
database through HTTPS with a self-signed certificate, you must import this
certificate in the cacerts truststore of the JVM that is used by your Liberty server,
which you find in: JAVA_INSTALL_DIR\jre\lib\security\cacerts.

Installing and configuring 6-161

8. Use the keytool command that is available in both IBM JRE and Oracle JRE, as
of Java 6.

9. For more information, see [the Keytool section of the IBM SDK, Java Technology]|
[Edition user documentation|

Note: The password to access this truststore is changeit.

Installing and configuring the Application Center

6-162

You install the Application Center as part of the MobileFirst Server installation.

The Application Center is part of MobileFirst Server. To install the Application
Center, see the following topics. Optionally, you can install the database of your
choice before you install MobileFirst Server with the Application Center.

When you install an IBM MobileFirst Platform Foundation for iOS edition through
IBM Installation Manager, the Application Center is installed in the web
application server that you designate. You have minimal additional configuration
to do. For more information, see [‘Configuring the Application Center after]
finstallation” on page 6-188

If you chose a manual setup in the installer, see the documentation of the server of
your choice.

If you intend to install applications on iOS devices through the Application Center,
you must first configure the Application Center server with SSL.

For a list of installed files and tools, see [“Distribution structure of MobileFirst|
[Server” on page 6-39.

Installing Application Center with IBM Installation Manager

With IBM Installation Manager, you can install Application Center, create its
database, and deploy it on an Application Server.

Before you begin

Verify that the user who runs IBM Installation Manager has the privileges that are
described in |“File system prerequisites” on page 6-5.

Procedure

To install IBM Application Center with IBM Installation Manager, complete the
followings steps.

1. Optional: You can manually create databases for Application Center, as
described in [“Optional creation of databases.”| IBM Installation Manager can
create the Application Center databases for you with default settings.

2. Run IBM Installation Manager, as described in [‘Running IBM Installation|
[Manager” on page 6-29.

3. Select Yes to the question Install IBM Application Center.

Optional creation of databases

If you want to activate the option to install the Application Center when you run
the MobileFirst Server installer, you need to have certain database access rights
that entitle you to create the tables that are required by the Application Center.

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/keytoolDocs/keytool_overview.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/keytoolDocs/keytool_overview.html

If you have sufficient database administration credentials, and if you enter the
administrator user name and password in the installer when prompted, the
installer can create the databases for you. Otherwise, you need to ask your
database administrator to create the required database for you. The database needs
to be created before you start the MobileFirst Server installer.

The following topics describe the procedure for the supported database
management systems.

Creating the DB2 database for Application Center:

During IBM MobileFirst Platform Foundation for iOS installation, the installer can
create the Application Center database for you.

About this task

The installer can create the Application Center database for you if you enter the
name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the Application Center database

for you. For more information, see the [DB2 Solution| user documentation.

When you manually create the database, you can replace the database name (here
APPCNTR) and the password with a database name and password of your
choosing.

Important: You can name your database and user differently, or set a different
password, but ensure that you enter the appropriate database name, user name,
and password correctly across the DB2 database setup. DB2 has a database name
limit of 8 characters on all platforms, and has a user name and password length
limit of 8 characters for UNIX and Linux systems, and 30 characters for Windows.

Procedure

1. Create a system user, for example, named wluser in a DB2 admin group such
as DB2USERS, using the appropriate commands for your operating system. Give
it a password, for example, wluser. If you want multiple instances of IBM
MobileFirst Platform Server to connect to the same database, use a different
user name for each connection. Each database user has a separate default
schema. For more information about database users, see the DB2
documentation and the documentation for your operating system.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:

* On Windows systems, click Start > IBM DB2 > Command Line Processor
* On Linux or UNIX systems, navigate to ¥/sq11ib/bin and enter ./db2.

* Enter database manager and SQL statements similar to the following
example to create the Application Center database, replacing the user name
wluser with your chosen user names:

CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT APPCNTR
QUIT
3. The installer can create the database tables and objects for Application Center
in a specific schema. This allows you to use the same database for Application
Center and for a MobileFirst project. If the IMPLICIT_SCHEMA authority is

Installing and configuring 6-163

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html

granted to the user created in step 1 (the default in the database creation script
in step 2), no further action is required. If the user does not have the
IMPLICIT_SCHEMA authority, you need to create a SCHEMA for the
Application Center database tables and objects.

Creating the MySQL database for Application Center:

During the MobileFirst installation, the installer can create the Application Center
database for you.

About this task

The installer can create the database for you if you enter the name and password
of the superuser account. For more information, see [Securing the Initial MySQL}
on your MySQL database server. Your database administrator can also
create the databases for you. When you manually create the database, you can
replace the database name (here APPCNTR) and password with a database name
and password of your choosing. Note that MySQL database names are
case-sensitive on Unix.

Procedure
1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general ci;

GRANT ALL PRIVILEGES ON APPCNTR.* TO 'worklight'@'Worklight-host' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON APPCNTR.* TO 'worklight'@'localhost' IDENTIFIED BY 'password';
FLUSH PRIVILEGES;

Here, you need to replace Worklight-host with the name of the host on which
IBM MobileFirst Platform Foundation for iOS runs.

Creating the Oracle database for Application Center:

During the installation, the installer can create the Application Center database,
except for the Oracle 12c database type, or the user and schema inside an existing
database for you.

About this task

The installer can create the database, except for the Oracle 12¢ database type, or
the user and schema inside an existing database if you enter the name and
password of the Oracle administrator on the database server, and the account can
be accessed through SSH. Otherwise, the database administrator can create the
database or user and schema for you. When you manually create the database or
user, you can use database names, user names, and a password of your choosing.
Note that lowercase characters in Oracle user names can lead to trouble.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new general-purpose database named ORCL:

a. Use global database name ORCL_your_domain, and system identifier (SID)
ORCL.

b. On the Custom Scripts tab of the step Database Content, do not run the
SQL scripts, because you must first create a user account.

6-164 1BM MobileFirst Platform Foundation for iOS V7.0.0

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

€. On the Character Sets tab of the step Initialization Parameters, select Use
Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.

2. Create a database user either by using Oracle Database Control, or by using

the Oracle SQLPTus command-line interpreter.
* Using Oracle Database Control.
a. Connect as SYSDBA.
b. Go to the Users page: click Server, then Users in the Security section.

c. Create a user, for example, named APPCENTER. If you want multiple
instances of IBM MobileFirst Platform Server to connect to the same
general-purpose database you created in step 1, use a different user name
for each connection. Each database user has a separate default schema.

d. Assign the following attributes:
— Profile: DEFAULT
— Authentication: password
— Default tablespace: USERS
— Temporary tablespace: TEMP
— Status: Unlocked
— Add system privilege: CREATE SESSION
— Add system privilege: CREATE SEQUENCE
— Add system privilege: CREATE TABLE
— Add quota: Unlimited for tablespace USERS
* Using the Oracle SQLP1us command-line interpreter.

The commands in the following example create a user named APPCENTER for
the database:

CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER APPCENTER IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO APPCENTER;

DISCONNECT;

Installing Application Center in WebSphere Application Server
Network Deployment

To install Application Center in a set of WebSphere Application Server Network
Deployment servers, run IBM Installation Manager on the machine where the
deployment manager is running.

Procedure

1.

When IBM Installation Manager prompts you to specify the database type,
select any option other than Apache Derby. IBM MobileFirst Platform
Foundation for iOS supports Apache Derby only in embedded mode, and this
choice is incompatible with deployment through WebSphere Application Server
Network Deployment.

In the installer panel in which you specify the WebSphere Application Server
installation directory, select the deployment manager profile.

Attention: Do not select an application server profile and then a single
managed server: doing so causes the deployment manager to overwrite the
configuration of the server regardless of whether you install on the machine on
which the deployment manager is running or on a different machine.

Select the required scope depending on where you want Application Center to
be installed. The following table lists the available scopes:

Installing and configuring 6-165

6-166

Table 6-50. Selecting the required scope.

Scope Explanation

Cell Installs Application Center in all application
servers of the cell.

Cluster Installs Application Center in all application
servers of the specified cluster.

Node (excluding clusters) Installs Application Center in all application
servers of the specified node that are not in
a cluster.

Server Installs Application Center in the specified

server, which is not in a cluster.

4. Restart the target servers by following the procedure in |[“Completing the

installation.”]

Results

The installation has no effect outside the set of servers in the specified scope. The
JDBC providers and JDBC data sources are defined with the specified scope. The
entities that have a cell-wide scope (the applications and, for DB2, the
authentication alias) have a suffix in their name that makes them unique. So, you
can install Application Center in different configurations or even different versions
of Application Center, in different clusters of the same cell.

Note: Because the JDBC driver is installed only in the specified set of application
servers, the Test connection button for the JDBC data sources in the WebSphere
Application Server administration console of the deployment manager might not
work.

What to do next

You need to complete the following additional configuration:
* If you use a front-end HTTP server, you need to configure the public URL

Completing the installation
When installation is complete, you must restart the web application server in
certain cases.

You must restart the web application server in the following circumstances:
* When you are using WebSphere Application Server with DB2 as database type.

* When you are using WebSphere Application Server and have opened it without
the application security enabled before you installed IBM MobileFirst Platform
Application Center or MobileFirst Server.

The MobileFirst installer must activate the application security of WebSphere
Application Server (if not active yet) to install Application Center. Then, for this
activation to take place, restart the application server after the installation of
MobileFirst Server completed.

* When you are using WebSphere Application Server Liberty or Apache Tomcat.

* After you upgraded from a previous version of MobileFirst Server.

If you are using WebSphere Application Server Network Deployment and chose an
installation through the deployment manager:

IBM MobileFirst Platform Foundation for iOS V7.0.0

* You must restart the servers that were running during the installation and on
which the MobileFirst Server web applications are installed.

To restart these servers with the deployment manager console, select
Applications > Application Types > WebSphere enterprise applications >
IBM_Application_Center_Services > Target specific application status.

* You do not have to restart the deployment manager or the node agents.

Note: Only the Application Center is installed in the application server. A
MobileFirst Operations Console is not installed by default. To install a MobileFirst
Operations Console, you need to follow the steps in [“Deploying MobileFirst]
[projects” on page 10-1]

Default logins and passwords created by IBM Installation
Manager for the Application Center

IBM Installation Manager creates the logins by default for the Application Center,
according to your application server. You can use these logins to test the
Application Center.

WebSphere Application Server full profile

The login appcenteradmin is created with a password that is generated and
displayed during the installation.

All users authenticated in the application realm are also authorized to access the
appcenteradmin role. This is not meant for a production environment, especially if
WebSphere Application Server is configured with a single security domain.

For more information about how to modify these logins, see |"Configuring|
[WebSphere Application Server full profile” on page 6-189.|

WebSphere Application Server Liberty profile
* The login demo is created in the basicRegistry with the password demo.

* The login appcenteradmin is created in the basicRegistry with the password
admin.

For more information about how to modify these logins, see [‘Configuring]
[WebSphere Application Server Liberty profile” on page 6-191.

Apache Tomcat

* The login demo is created with the password demo.

* The login guest is created with the password guest.

* The login appcenteradmin is created with the password admin.

For more information about how to modify these logins, see |“Configuring Apache
[Tomcat” on page 6-192

Manual installation of Application Center

A reconfiguration is necessary for the MobileFirst Server to use a database or
schema that is different from the one that was specified during its installation. This
reconfiguration depends on the type of database and on the kind of application
server.

Restriction: Whether you install Application Center with IBM Installation Manager
as part of the MobileFirst Server installation or manually, remember that "rolling

Installing and configuring 6-167

6-168

updates" of Application Center are not supported. That is, you cannot install two
versions of Application Center (for example, V5.0.6 and V6.0.0) that operate on the
same database. See [“In-place upgrade or rolling upgrade to MobileFirst Server|
[V7.0.0” on page 7-16

Configuring the DB2 database manually for IBM MobileFirst
Platform Application Center

You configure the DB2 database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in [‘Creating the DB2 database for|
[Application Center” on page 6-163 |

2. Create the tables in the database. This step is described in [“Setting up your|
[DB2 database manually for Application Center.”|

3. Perform the application server-specific setup as the following list shows.
Setting up your DB2 database manually for Application Center:

You can set up your DB2 database for Application Center manually.

About this task

Set up your DB2 database for Application Center by creating the database schema.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password worklight. For more information, see the DB2 documentation and the
documentation for your operating system.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across
the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:

* On Windows systems, click Start > IBM DB2 > Command Line Processor.
* On Linux or UNIX systems, go to “/sql11ib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called APPCNTR:
CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER worklight
QuUIT

4. Run DB2 with the following commands to create the APPCNTR tables, in a
schema named APPSCHM (the name of the schema can be changed). This
command can be run on an existing database that has a page size compatible
with the one defined in step 3.

db2 CONNECT TO APPCNTR
db2 SET CURRENT SCHEMA = 'APPSCHM'

db2 -vf product_install_dir/ApplicationCenter/databases/create-appcenter-db2.sql -t

IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring Liberty profile for DB2 manually for Application Center:

You can set up and configure your DB2 database manually for Application Center
with WebSphere Application Server Liberty profile.

Before you begin

Complete the DB2 Database Setup procedure before continuing.

Procedure
1. Add the DB2 JDBC driver JAR file to $LIBERTY _HOME/wlp/usr/shared/
resources/db2.

If that directory does not exist, create it. You can retrieve the file in one of two
ways:

+ Download it from [DB2 JDBC Driver Versions]

* Fetch it from the db2_install_dir/java on the DB2 server directory.

2. Configure the data source in the $LIBERTY_HOME/w1p/usr/servers/
worklightServer/server.xml file as follows:

In this path, you can replace worklightServer by the name of your server.

<library id="DB2Lib">
<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">
<jdbcDriver libraryRef="DB2Lib"/>
<properties.dbh2.jcc databaseName="APPCNTR" currentSchema="APPSCHM"
serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>
</dataSource>
Theworklight placeholder after user= is the name of the system user with
CONNECT access to the APPCNTR database that you have previously created.
The worklight placeholder after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
workTlight accordingly. Also, replace db2server with the host name of your DB2
server (for example, Tocalhost, if it is on the same computer).

DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

3. You can encrypt the database password with the securityUtility program in
<liberty install_dir>/bin.

Configuring WebSphere Application Server for DB2 manually for Application
Center:

You can set up and configure your DB2 database manually for Application Center
with WebSphere Application Server.

About this task
Complete the DB2 database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.

Installing and configuring 6-169

http://www.ibm.com/support/docview.wss?uid=swg21363866

For a stand-alone server, you can use a directory such as
was_install_dir/optionallLibraries/IBM/Worklight/db2.

For deployment to a WebSphere Application Server ND cell, use
was_install_dir/profiles/profile-name/config/cells/cell-name/
Worklight/db2.

For deployment to a WebSphere Application Server ND cluster, use
was_install_dir/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/db2.

For deployment to a WebSphere Application Server ND node, use
was_install dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Work1ight/db2.

For deployment to a WebSphere Application Server ND server, use
was_install dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/db2.

If this directory does not exist, create it.

2. Add the DB2 JDBC driver JAR file and its associated license files, if any, to the
directory that you determined in step 1.

You can retrieve the driver file in one of two ways:

Download it from [DB2 JDBC Driver Versions|
Fetch it from the db2_install_dir/java directory on the DB2 server.

3. Set up the JDBC provider:

a.

j-

k.

Se@ "0 ao0CT

In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

Select the appropriate scope from the Scope combination box.
Click New.

Set Database type to DB2.

Set Provider type to DB2 Using IBM JCC Driver.

Set Implementation Type to Connection pool data source.

. Set Name to DB2 Using IBM JCC Driver.
. Click Next.

Set the class path to the set of JAR files in the directory that you determined
in step 1, replacing was_install_dir/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

Do not set Native library path.
Click Next.
Click Finish.

m. The JDBC provider is created.

n.

Click Save.

4. Create a data source for the Application Center database:

. Click Resources > JDBC > Data sources.
. Select the appropriate scope from the Scope combination box.

a
b
c. Click New to create a data source.
d.
e
f.
g

Set the Data source name to Application Center Database.

. Set JNDI Name to jdbc/AppCenterDS.

Click Next.

. Enter properties for the data source, for example:

* Driver type: 4

6-170 1BM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

5.

* Database Name: APPCNTR

* Server name: localhost

* Port number: 50000 (default)

Leave Use this data source in (CMP) selected.
h. Click Next.

i. Create JAAS-J2C authentication data, specifying the DB2 user name and
password as its properties. If necessary, go back to the data source creation
wizard, by repeating steps |4a on page 6-170|to @

j. Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

Click Next and Finish.
Click Save.

-~

m. In Resources > JDBC > Data sources, select the new data source.
n. Click WebSphere Application Server data source properties.

0. Select the Non-transactional data source check box.

p. Click OK.

g. Click Save.

r.

Click Custom properties for the data source, select property currentSchema,
and set the value to the schema used to create the Application Center tables
(APPSCHM in this example).

Test the data source connection by selecting Data Source and clicking Test
Connection.

Configuring Apache Tomcat for DB2 manually for Application Center:

If you want to manually set up and configure your DB2 database for Application
Center with Apache Tomcat server, use the following procedure.

About this task

Before you contiue, complete the DB2 database setup procedure.

Procedure

1.

Add the DB2 JDBC driver JAR file.
You can retrieve this JAR file in one of the following ways:
+ Download it from [DB2 JDBC Driver Versions}

* Or fetch it from the directory db2_install_dir/java on the DB2 server) to
$TOMCAT_HOME/1 ib.

Prepare an XML statement that defines the data source, as shown in the
following code example.

<Resource auth="Container"
driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/AppCenterDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/APPCNTR: currentSchema=APPSCHM;" />

The worklight parameter after username= is the name of the system user with
"CONNECT" access to the APPCNTR database that you have previously created.

Installing and configuring 6-171

http://www.ibm.com/support/docview.wss?uid=swg21363866

6-172

The password parameter after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these entries accordingly.

DB2 enforces limits on the length of user names and passwords.
* For UNIX and Linux systems: 8 characters
* For Windows: 30 characters

3. Insert this statement in the server.xml file, as indicated in |”Conﬁgurina
[Apache Tomcat for Application Center manually” on page 6-187.

Configuring the Apache Derby database manually for Application
Center

You configure the Apache Derby database manually by creating the database and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database and the tables within them. This step is described in
[‘Setting up your Apache Derby database manually for Application Center.”|

2. Configure the application server to use this database setup. Go to one of the
following topics:

+ |“Configuring Liberty profile for Derby manually for Application Center” on|
page 6—173|

* [“Configuring WebSphere Application Server for Derby manually for|
Application Center” on page 6-173]

* |“Configuring Apache Tomcat for Derby manually for Application Center” on|

page 6-175|

Setting up your Apache Derby database manually for Application Center:

You can set up your Apache Derby database for Application Center manually.
About this task

Set up your Apache Derby database for Application Center by creating the database
schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from [Apache Derby: Downloads|

For supported versions of Apache Derby, see [“System requirements” on page]

The script displays ij version number.

2. At the command prompt, enter the following commands:

connect 'jdbc:derby:APPCNTR;user=APPCENTER;create=true';
run '<product_install_dir>/ApplicationCenter/databases/create-appcenter-derby.sql';
quit;

IBM MobileFirst Platform Foundation for iOS V7.0.0

http://db.apache.org/derby/derby_downloads

Configuring Liberty profile for Derby manually for Application Center:

If you want to manually set up and configure your Apache Derby database for
Application Center with WebSphere Application Server Liberty profile, use the
following procedure.

Before you begin
Complete the Apache Derby database setup procedure before continuing.
Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:
<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">
<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false" statementCacheSize="10">
<jdbcDriver TibraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>
<properties.derby.embedded databaseName="DERBY_ DATABASES DIR/APPCNTR" user="APPCENTER"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>
<connectionManager connectionTimeout="180"
maxPoo1Size="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool"/>
</dataSource>

Configuring WebSphere Application Server for Derby manually for Application
Center:

You can set up and configure your Apache Derby database manually for
Application Center with WebSphere Application Server.

About this task
Complete the Apache Derby database setup procedure before continuing.

Procedure
1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere

Application Server installation directory.

If this directory does not exist, create it.

* For a standalone server, you can use a directory such as
was_install_dir/optionallLibraries/IBM/Worklight/derby.

* For deployment to a WebSphere Application Server ND cell, use
was_install _dir/profiles/profile-name/config/cells/cell-name/
Worklight/derby.

* For deployment to a WebSphere Application Server ND cluster, use

was_install_dir/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/derby.

* For deployment to a WebSphere Application Server ND node, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name /Work1ight/derby.

Installing and configuring 6-173

6-174

* For deployment to a WebSphere Application Server ND server, use

was_install _dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/derby.

2. Add the Derby JAR file from product _install _dir/ApplicationCenter/tools/
Tib/derby.jar to the directory determined in step 1.

3. Set up the JDBC provider.

a.

® oo o

o«

j-

In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

Select the appropriate scope from the Scope combination box.
Click New.
Set Database Type to User-defined.

Set class Implementation name to
org.apache.derby. jdbc.EmbeddedConnectionPoolDataSource40.

Set Name to Worklight - Derby JDBC Provider.

. Set Description to Derby JDBC provider for Worklight.
. Click Next.

Set the Class path to the JAR file in the directory determined in step 1,
replacing was_install_dir/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

Click Finish.

4. Create the data source for the Worklight database.

a.

@ "o ao0CT

In the WebSphere Application Server console, click Resources > JDBC >
Data sources.

Select the appropriate scope from the Scope combination box.
Click New.

Set Data source Name to Application Center Database.

Set JNDI name to jdbc/AppCenterDS.

Click Next.

. Select the existing JDBC Provider that is named Worklight - Derby JDBC

Provider.

. Click Next.

Click Next.
Click Finish.

. Click Save.

In the table, click the Application Center Database data source that you
created.

. Under Additional Properties, click Custom properties.

Click databaseName.

0. Set Value to the path to the APPCNTR database that is created in |”Setting upl

your Apache Derby database manually for Application Center” on page]

6-172.|

Click OK.
Click Save.
At the top of the page, click Application Center Database.

. Under Additional Properties, click WebSphere Application Server data

source properties.
Select Non-transactional datasource.

IBM MobileFirst Platform Foundation for iOS V7.0.0

u. Click OK.

v. Click Save.

w. In the table, select the Application Center Database data source that you
created.

X. Optional: Only if you are not on the console of a WebSphere Application
Server Deployment Manager, click test connection.

Configuring Apache Tomcat for Derby manually for Application Center:

You can set up and configure your Apache Derby database manually for
Application Center with the Apache Tomcat application server.

About this task
Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from product_install dir/ApplicationCenter/tools/
Tib/derby.jar to the directory $TOMCAT_HOME/11ib.

2. Prepare an XML statement that defines the data source, as shown in the
following code example.

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/AppCenterDS"
username="APPCENTER"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES DIR/APPCNTR"/>

3. Insert this statement in the server.xml file, as indicated in |”C0nfigurina
[Apache Tomcat for Application Center manually” on page 6-187.

Configuring the MySQL database manually for Application Center
You configure the MySQL database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in [“Creating the MySQL database|
[for Application Center” on page 6-164.

2. Create the tables in the database. This step is described in [“Setting up your|
[MySQL database manually for Application Center.”|

3. Perform the application server-specific setup as the following list shows.
Setting up your MySQL database manually for Application Center:

You can set up your MySQL database for Application Center manually.
About this task

Complete the following procedure to set up your MySQL database.

Procedure
1. Create the database schema.
a. Run a MySQL command line client with the option -u root.

Installing and configuring 6-175

b. Enter the following commands:

CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general ci;

GRANT ALL PRIVILEGES ON APPCNTR.* TO 'worklight'@'Worklight-host'IDENTIFIED BY 'worklight';
GRANT ALL PRIVILEGES ON APPCNTR.* TO 'worklight'@'localhost' IDENTIFIED BY 'worklight';
FLUSH PRIVILEGES;

USE APPCNTR;
SOURCE product_install_dir/ApplicationCenter/databases/create-appcenter-mysql.sql;
Where worklight before the "at" sign (@) is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM MobileFirst Platform Foundation for iOS runs.

2. Add the following property to your MySQL option file:
max_allowed packet=256M

For more information about option files, see the MySQL documentation at
3. Add the following property to your MySQL option file: innodb_log_file_size
= 250M

For more information about the innodb_log file_size property, see the MySQL
documentation, section Iinnodb_log_file_sizel

Configuring Liberty profile for MySQL manually for Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server Liberty profile, use the
following procedure.

Before you begin
Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see [WebSphere Application Server Supportf
You can use IBM DB2 or another database supported by WebSphere
Application Server to benefit from a configuration that is fully supported by IBM
Support.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:

<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</Tibrary>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">
<jdbcDriver TibraryRef="MySQLLib"/>
<properties databaseName="APPCNTR"
serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>
</dataSource>

6-176 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://dev.mysql.com
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

where worklight after user= is the user name, worklight after password= is this
user's password, and mysqlserver is the host name of your MySQL server (for
example, localhost, if it is on the same machine).

3. You can encrypt the database password with the securityUtility program in
<liberty install_dir>/bin.

Configuring WebSphere Application Server for MySQL manually for
Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server, use the following
procedure.

About this task
Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see [WebSphere Application Server Support|
We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.

* For a standalone server, you can use a directory such as
WAS_INSTALL DIR/optionalLibraries/IBM/Worklight/mysql.

* For deployment to a WebSphere Application Server ND cell, use
WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-name/
Worklight/mysql.

* For deployment to a WebSphere Application Serverr ND cluster, use
WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/mysql.

* For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name /Worklight/mysql.

* For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/mysql.

If this directory does not exist, create it.

2. Add the MySQL JDBC driver JAR file downloaded from [Download|

to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

Select the appropriate scope from the Scope combination box.
Click New.

Create a JDBC provider named MySQL.

Set Database type to User defined.

Set Scope to Cell.

-0 ao00C

Installing and configuring 6-177

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

6-178

g.

h.

Set Implementation class to
com.mysql.jdbc.jdbc2.optional. MysqlConnectionPoolDataSource.

Set Database classpath to the JAR file in the directory determined in step 1,
replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

Save your changes.

4. Create a data source for the IBM Application Center database:

a.

.
j.

Click Resources > JDBC > Data sources.

b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.

d. Type any name (for example, Application Center Database).
e.
f.
g
h

Set JNDI Name to jdbc/AppCenterDS.
Use the existing JDBC Provider MySQL, defined in the previous step.

. Set Scope to New.
. On the Configuration tab, select Non-transactional data source.

Click Next a number of times, leaving all other settings as defaults.
Save your changes.

5. Set the custom properties of the new data source.

a.
b.
c.

Select the new data source.
Click Custom properties.
Set the following properties:

portNumber = 3306

relaxAutoCommit=true

databaseName = APPCNTR

serverName = the host name of the MySQL server

user = the user name of the MySQL server

password = the password associated with the user name

6. Set the WebSphere Application Server custom properties of the new data
source.

a.

® oo o

In Resources > JDBC > Data sources, select the new data source.
Click WebSphere Application Server data source properties.
Select Non-transactional data source.

Click OK.

Click Save.

Configuring Apache Tomcat for MySQL manually for Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with the Apache Tomcat server, use the following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure
1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/1ib directory.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in [“Configuring Apache Tomcat for Application Center manually” on|

|Eage 6-187.|

IBM MobileFirst Platform Foundation for iOS V7.0.0

<Resource name="jdbc/AppCenterDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/APPCNTR"/>

Configuring the Oracle database manually for IBM MobileFirst
Platform Application Center

You configure the Oracle database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in [‘Creating the Oracle database for|
[Application Center” on page 6-164.|

2. Create the tables in the database. This step is described in [“Setting up your|
[Oracle database manually for Application Center.”|

3. Perform the application server-specific setup as the following list shows.
Setting up your Oracle database manually for Application Center:

You can set up your Oracle database for Application Center manually.
About this task

Complete the following procedure to set up your Oracle database.

Procedure
1. Ensure that you have at least one Oracle database.

In many Oracle installations, the default database has the SID (name) ORCL. For
best results, specify Unicode (AL32UTF8) as the character set of the database.

If the Oracle installation is on a UNIX or Linux computer, make sure that the
database is started next time the Oracle installation is restarted. To this effect,
make sure that the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create the user APPCENTER, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.

* To create the user for the Application Center database/schema, by using
Oracle Database Control, proceed as follows:
a. Connect as SYSDBA.
b. Go to the Users page.
c. Click Server, then Users in the Security section.
d. Create a user, named APPCENTER with the following attributes:

Profile: DEFAULT

Authentication: password

Default tablespace: USERS

Temporary tablespace: TEMP

Status: Unlocked

Add system privilege: CREATE SESSION

Installing and configuring 6-179

Add system privilege: CREATE SEQUENCE
Add system privilege: CREATE TABLE
Add quota: Unlimited for tablespace USERS

* To create the user by using Oracle SQLPlus, enter the following commands:

CONNECT SYSTEM/<SYSTEM_password>@0ORCL

CREATE USER APPCENTER IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO APPCENTER;

DISCONNECT;

3. Create the tables for the Application Center database:

a. Using the Oracle SQLPlus command-line interpreter, create the tables for
the Application Center database by running the create-appcenter-
oracle.sql file:

CONNECT APPCENTER/APPCENTER_password@ORCL

@product_install_dir/ApplicationCenter/databases/create-appcenter-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:

a. Download the JDBC driver from the Oracle website at|Oracle: JDBC, SQLJ |
[Oracle JPublisher and Universal Connection Pool (UCP)t

b. Ensure that the Oracle JDBC driver is in the system path. The driver file is
ojdbcb.jar.

Configuring Liberty profile for Oracle manually for Application Center:

You can set up and configure your Oracle database manually for Application
Center with WebSphere Application Server Liberty profile by adding the JAR file
of the Oracle JDBC driver.

Before you begin
Before continuing, set up the Oracle database.

Procedure

1. Add the JAR file of the Oracle JDBC driver to $§LIBERTY HOME/wlp/usr/shared/
resources/oracle.

If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/w1p/
usr/servers/mobileFirstServer/server.xml file as shown in the following
JNDI code example:

Note: In this path, you can replace mobileFirstServer with the name of your
server.

<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OraclelLib">

<fileset dir="§{shared.resource.dir}/oracle" includes="=*.jar"/>
</Tibrary>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">
<jdbcDriver TibraryRef="OraclelLib"/>
<properties.oracle driverType="thin"
serverName="oserver" portNumber="1521"
databaseName="0RCL"
user="APPCENTER" password="APPCENTER_password"/>
</dataSource>

where
e APPCENTER after user= is the user name,

6-180 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

* APPCENTER_password after password= is this user's password, and

* oserver is the host name of your Oracle server (for example, Tocalhost if it
is on the same machine).

Note: For more information on how to connect the Liberty server to the Oracle
database with a service name, or with a URL, see the [WebSphere Application|
[Server Liberty Core 8.5.5 documentation| section properties.oracle.

You can encrypt the database password with the securityUtility program in
<liberty install _dir>/bin.

What to do next

For more steps to configure Application Center, see [“Deploying the Application|

[Center WAR files and configuring the application server manually” on page 6-183

Configuring WebSphere Application Server for Oracle manually for Application
Center:

If you want to manually set up and configure your Oracle database for Application
Center with WebSphere Application Server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1.

2.

3.

Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.

* For a standalone server, you can use a directory such as
WAS_INSTALL_DIR/optionallLibraries/IBM/Worklight/oracle.

* For deployment to a WebSphere Application Server ND cell, use
WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-name/
Worklight/oracle.

* For deployment to a WebSphere Application Server ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/oracle.

* For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/oracle.

* For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/oracle.

If this directory does not exist, create it.

Add the Oracle Oojdbc6. jar file downloaded from [[DBC and Universa1|
[Connection Pool (UCP)| to the directory determined in step 1.

Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Complete the JDBC Provider fields as indicated in the following table:

Installing and configuring 6-181

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

6-182

Table 6-51. JDBC Provider field values

Field Value
Database type Oracle
Provider type Oracle JDBC Driver
Implementation type Connection pool data source
Name Oracle JDBC Driver

e. Click Next.

f.

g.

Set the class path to the JAR file in the directory determined in step 1,
replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}

Click Next.
The JDBC provider is created.

4. Create a data source for the Worklight database:

a.

@ "o o0

~® 9T o 53

Click Resources > JDBC > Data sources.

Select the appropriate scope from the Scope combination box.
Click New.

Set Data source name to Oracle JDBC Driver DataSource.
Set JNDI name to jdbc/AppCenterDS.

Click Next.

. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.

. Click Next.

Set the URL value to jdbc:oracle:thin:@oserver:1521:ORCL, where oserver is
the host name of your Oracle server (for example, localhost, if it is on the
same machine).

Click Next twice.

. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource

> Custom properties.
Set oracleLogPackageName to oracle.jdbc.driver.

. Set user = APPCENTER.

Set password = APPCENTER_password.

Click OK and save the changes.

In Resources > JDBC > Data sources, select the new data source.
Click WebSphere Application Server data source properties.
Select the Non-transactional data source check box.

. Click OK.

Click Save.

Configuring Apache Tomcat for Oracle manually for Application Center:

If you want to manually set up and configure your Oracle database for Application
Center with the Apache Tomcat server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

IBM MobileFirst Platform Foundation for iOS V7.0.0

Procedure
1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/11b.

2. Prepare an XML statement that defines the data source, as shown in the
following code example. Insert this statement in the server.xml file, as
indicated in [“Configuring Apache Tomcat for Application Center manually” onl|

[page 6-187]

<Resource name="jdbc/AppCenterDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521:0RCL"
username="APPCENTER"
password="APPCENTER password"/>

Where APPCENTER after username= is the name of the system user with
"CONNECT" access to the APPCNTR database that you have previously created,
and APPCENTER_password after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these values accordingly.

Deploying the Application Center WAR files and configuring the
application server manually

The procedure to manually deploy the Application Center WAR files manually to
an application server depends on the type of application server being configured.

These manual instructions assume that you are familiar with your application
server.

Note: Using the MobileFirst Server installer to install Application Center is more
reliable than installing manually, and should be used whenever possible.

If you prefer to use the manual process, follow these steps to configure your
application server for Application Center. You must deploy the
appcenterconsole.war and applicationcenter.war files to your Application Center.
The files are located in product_install dir/ApplicationCenter/console.

Configuring the Liberty profile for Application Center manually:

To configure WebSphere Application Server Liberty profile manually for
Application Center, you must modify the server.xml file.

About this task
In addition to modifications for the databases that are described in m

installation of Application Center” on page 6-167) you must make the following
modifications to the server.xml file.

Procedure

1. Ensure that the <featureManager> element contains at least the following
<feature> elements:
* For WebSphere Application Server Libertyprofile V8.5.0.x:

<feature>ss1-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>appSecurity-1.0</feature>
<feature>jndi-1.0</feature>

* For WebSphere Application Server Liberty profile V8.5.5.0 and later:

Installing and configuring 6-183

<feature>jdbc-4.0</feature>
<feature>appSecurity-2.0</feature>
<feature>servlet-3.0</feature>

2. Add the following declarations for Application Center:

<!-- Declare the IBM Application Center Console application. -->
<application id="appcenterconsole"
name="appcenterconsole"
location="appcenterconsole.war"
type="war">
<application-bnd>
<security-role name="appcenteradmin">
<group name="appcentergroup"/>
</security-role>
</application-bnd>
<classloader delegation="parentLast">
<commonLibrary>
<fileset dir="${wlp.install.dir}/1ib" includes="com.ibm.ws.crypto.passwordutil *.jar"/>
</commonLibrary>
</classloader>
</application>

<!-- Declare the IBM Application Center Services application. -->
<application id="applicationcenter"
name="applicationcenter"
location="applicationcenter.war"
type="war">
<application-bnd>
<security-role name="appcenteradmin">
<group name="appcentergroup"/>
</security-role>
</application-bnd>
<classloader delegation="parentlLast">
<commonLibrary>
<fileset dir="${wlp.install.dir}/1ib"
includes="com.ibm.ws.crypto.passwordutil_*.jar"/>
</commonLibrary>
</classloader>
</application>

<l-- Declare the user registry for the IBM Application Center. -->
<basicRegistry id="applicationcenter-registry"
realm="ApplicationCenter">
<!-- The users defined here are members of group "appcentergroup",
thus have role "appcenteradmin", and can therefore perform
administrative tasks through the Application Center Console. -->
<user name="appcenteradmin" password="admin"/>
<user name="demo" password="demo"/>
<group name="appcentergroup">
<member name="appcenteradmin"/>
<member name="demo"/>
</group>
</basicRegistry>

The groups and users that are defined in the basicRegistry are example logins
that you can use to test Application Center. Similarly, the groups that are
defined in the <security-role name="appcenteradmin"> for the Application
Center console and the Application Center service are examples. For more
information about how to modify these groups, see [“Configuring WebSphere]|
[Application Server Liberty profile” on page 6-191.

3. If the database is Oracle, add the commonLibraryRef attribute to the class loader
of the Application Center application.

<classloader delegation="parentLast" commonLibraryRef="0OracleLib">
<commonLibrary>

6-184 1BM MobileFirst Platform Foundation for iOS V7.0.0

The name of the library reference (Oraclelib in this example) must be the ID of
the library that contains the JDBC JAR file. This ID is declared in the procedure
that is documented in [“Configuring Liberty profile for Oracle manually for|
[MobileFirst Server administration” on page 6-69]

Copy the Application Center WAR files to your Liberty server.
* On UNIX and Linux systems:

mkdir -p $LIBERTY HOME/wlp/usr/servers/<server_name>/apps
cp product_install_dir/ApplicationCenter/console/*.war

* On Windows systems:

mkdir LIBERTY HOME\wlp\usr\servers\<server_name>\apps

copy /B product_install_dir\ApplicationCenter\console\appcenterconsole.war LIBERTY_HOME\
wip\usr\servers\<server_name>\apps\appcenterconsole.war

copy /B product_install_dir\ApplicationCenter\console\applicationcenter.war LIBERTY_HOME\
wip\usr\servers\<server name>\apps\applicationcenter.war

5. Start the Liberty server.

What to do next

For more steps to configure Application Center, see [“Configuring WebSphere]

[Application Server Liberty profile” on page 6-191

Configuring WebSphere Application Server for Application Center manually:

To configure WebSphere Application Server for Application Center manually, you
must configure variables, custom properties, and class loader policies.

Before you begin

These instructions assume that a stand-alone profile exists and that the application
server is using the default ports.

Procedure

1.

Log on to the WebSphere Application Server administration console for your
IBM MobileFirst Platform Server.

The address is of the form http://server.com:9060/ibm/console, where server
is the name of the server.

Enable application security.
a. Click Security > Global Security.

b. Ensure that Enable administrative security is selected. Application security
can be enabled only if administrative security is enabled.

c. Ensure that Enable application security is selected.
d. Click OK.
e. Save the changes.

For more information, see [Enabling securityl

Create the Application Center JDBC data source and provider.

See the instructions in the appropriate subsection in [“Manual installation of|
[Application Center” on page 6-167|

4. Install the Application Center console WAR file.

a. Depending on your version of WebSphere Application Server, click one of
the following options:

* Applications > New > New Enterprise Application
* Applications > New Application > New Enterprise Application

Installing and configuring 6-185

http://ibm.biz/knowctr#SSEQTP_7.0.0/com.ibm.websphere.base.doc/info/aes/ae/tsec_csec2.html

6-186

b. Navigate to the MobileFirst Server installation directory
product_install dir/ApplicationCenter/console.

C. Select appcenterconsole.war, and then click Next.

d. On the How do you want to install the application? page, click Detailed,
and then click Next.

e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the "Map context roots for web modules" page.
g. In the Context Root field, type /appcenterconsole.
h. Click Next.
i. Click Finish.
5. Configure the class loader policies and then start the application:

a. Click the Manage Applications link, or click Applications > WebSphere
Enterprise Applications.

b. From the list of applications, click appcenterconsole_war.

C. In the Detail Properties section, click the Class loading and update
detection link.

d. In the Class loader order pane, click Classes loaded with local class loader
first (parent last).

e. Click OK.

f. In the Modules section, click Manage Modules.

g. From the list of modules, click ApplicationCenterConsole.
h

. In the Class loader order pane, click Classes loaded with local class loader
first (parent last).

i. Click OK twice.
j. Click Save.
k. Click Select for appcenterconsole_war and click Start.

6. Repeat selecting applicationcenter.war in substep ¢, and using a Context
Root of /applicationcenter in substep g.

7. Repeat selecting applicationcenter.war from the list of applications in
substep b.

8. Review the server class loader policy: Click Servers > Server Types >
Application Servers and then select the server.
* If the class loader policy is set to Multiple, do nothing.
* If the class loader policy is set to Single and the class loading mode is set to

parent-last, do nothing.

* If the class loader policy is set to Single and the class loading mode is set to
parent-first, change the class loader policy to Multiple, and set the class
loader order of all applications other than MobileFirst applications to
parent-first.

Results
You can now access the Application Center at http://<server>:<port>/
appcenterconsole, where server is the host name of your server and port is the port

number (by default 9080).

What to do next

For more steps to configure the Application Center, see [“Configuring WebSphere]|
[Application Server full profile” on page 6-189.|

IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring Apache Tomcat for Application Center manually:

To configure Apache Tomcat for Application Center manually, you must copy JAR
and WAR files to Tomcat, add database drivers, edit the server.xml file, and then
start Tomcat.

Procedure

1.

2.

Add the database drivers to the Tomcat 1ib directory. See the instructions for
the appropriate DBMS in [“Manual installation of Application Center” on page|
6-167.

Edit tomcat_install _dir/conf/server.xml.

a.

Uncomment the following element, which is initially commented out:
<Valve className="org.apache.catalina.authenticator.SingleSignOn" />.

Declare the Application Center console and services applications and a user
registry:

<!-- Declare the IBM Application Center Console application. -->
<Context path="/appcenterconsole" docBase="appcenterconsole">

<l-- Define the AppCenter services endpoint in order for the AppCenter
console to be able to invoke the REST service.
You need to enable this property if the server is behind a reverse
proxy or if the context root of the Application Center Services
application is different from '/applicationcenter'. -->
<l-- <Environment name="ibm.appcenter.services.endpoint"
value="http://proxy-host:proxy-port/applicationcenter"
type="java.lang.String" override="false"/>
-
</Context>

<!-- Declare the IBM Application Center Services application. -->
<Context path="/applicationcenter" docBase="applicationcenter">

<l-- The protocol of the application resources URI.
This property is optional. It is only needed if the protocol
of the external and internal URI are different. -->
<l-- <Environment name="ibm.appcenter.proxy.protocol"
value="http" type="java.lang.String" override="false"/>
-
<l-- The host name of the application resources URI. -->
<l-- <Environment name="ibm.appcenter.proxy.host"
value="proxy-host"
type="java.lang.String" override="false"/>
-——>>
<l-- The port of the application resources URI.
This property is optional. -->
<l-- <Environment name="ibm.appcenter.proxy.port"
value="proxy-port"
type="java.lang.Integer" override="false"/> -->
<l-- Declare the IBM Application Center Services database. -->
<!-- <Resource name="jdbc/AppCenterDS" type="javax.sql.DataSource" ... -->
</Context>

<!-- Declare the user registry for the IBM Application Center.
The MemoryRealm recognizes the users defined in conf/tomcat-users.xml.
For other choices, see Apache Tomcat's "Realm Configuration HOW-TO"
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html . -->

<Realm className="org.apache.catalina.realm.MemoryRealm"/>

Installing and configuring 6-187

6-188

where you fill in the <Resource> element as described in one of the sections:

+ [“Configuring Apache Tomcat for DB2 manually for Application Center”|

on page 6—171|

+ [“Configuring Apache Tomcat for Derby manually for Application Center”
on page 6-175

+ [“Configuring Apache Tomcat for MySQL manually for Application|
Center” on page 6-178)|

* |[“Configuring Apache Tomcat for Oracle manually for Application Center”|

on page 6-182|

3. Copy the Application Center WAR files to Tomcat.

* On UNIX and Linux systems: cp product_install_dir/ApplicationCenter/
console/*.war TOMCAT_HOME/webapps
* On Windows systems:

copy /B product_install_dir\ApplicationCenter\console\appcenterconsole.war
tomcat_install_dir\webapps\appcenterconsole.war
copy /B product_install_dir\ApplicationCenter\console\applicationcenter.war
tomcat_install_dir\webapps\applicationcenter.war

4. Start Tomcat.

What to do next

For more steps to configure the Application Center, see [“Configuring Apache
[Tomcat” on page 6-192

Configuring the Application Center after installation

You configure user authentication and choose an authentication method;
configuration procedure depends on the web application server that you use.

The Application Center requires user authentication.

You must perform some configuration after the installer deploys the Application
Center web applications in the web application server.

The Application Center has two Java Platform, Enterprise Edition (Java EE)
security roles defined:

* The appcenteruser role that represents an ordinary user of the Application
Center who can install mobile applications from the catalog to a mobile device
belonging to that user.

* The appcenteradmin role that represents a user who can perform administrative
tasks through the Application Center console.

You must map the roles to the corresponding sets of users.

IBM MobileFirst Platform Foundation for iOS V7.0.0

I
appcenteradmin l appcenteruser
|
I
I
I
upload : install
Applicati RS Applicati ki
pplication pplication .
(genttal (Eenter "é?b”?
console server ien

Figure 6-12. Java EE security roles of the Application Center and the components that they influence

If you choose to use an authentication method through a user repository such as
LDAP, you can configure the Application Center so that you can use users and
groups with the user repository to define the Access Control List (ACL) of the
Application Center. This procedure is conditioned by the type and version of the
web application server that you use. See [“Managing users with LDAP” on page]
for information about LDAP used with the Application Center.

After you configure authentication of the users of the Application Center, which
includes configuring LDAP if you plan to use it, you can, if necessary, define the
endpoint of the application resources. You must then build the Application Center
mobile client. The mobile client is used to install applications on mobile devices.
See [“Preparations for using the mobile client” on page 11-69| for how to build the
Application Center mobile client.

Related concepts:

["Managing users with LDAP” on page 6-194|
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.

Related reference:

[Preparations for using the mobile client]

To use the mobile client to install apps on mobile devices, you must fi