
IBM MobileFirst Platform Foundation
for iOS V7.0.0

IBM

Note
Before you use this information and the product it supports, read the information in “Notices” on page A-1.

IBM MobileFirst Platform Foundation for iOS V7.0.0

This edition applies to version V7.0.0 of IBM MobileFirst Platform Foundation for iOS and to all subsequent releases
and modifications until otherwise indicated in new editions.

This edition was updated last on 16 June 2016.

This PDF document is made available for convenience and on an "as is" basis only. The master and controlling
document can be found in Knowledge Center at http://ibm.biz/knowctr#SSHSCD_7.0.0/wl_welcome.html. This
PDF document may contain uncontrollable formatting errors or differences from the master version in Knowledge
Center.

© Copyright IBM Corporation 2006, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://ibm.biz/knowctr#SSHSCD_7.0.0/wl_welcome.html

Contents

IBM MobileFirst Platform Foundation
for iOS V7.0.0 documentation 1-1

Product overview 2-1
Introduction to mobile application development . . 2-1
Product main capabilities 2-1
Product components 2-4
Product editions 2-7
System requirements 2-7
Matrix of features and platforms 2-8

Release notes 3-1
What's new 3-1

Efficient and scalable app data storage 3-1
Standards-based integration and authentication 3-2
Core value features 3-3
Improved MobileFirst API 3-5
Tutorials and samples. 3-6

What's new in V7.0.0 interim fixes 3-6
iOS 9 support 3-7
Exporting and importing custom chart definitions
for analytics 3-8
Deprecated and removed features. 3-8

Deprecated features and API elements 3-8
Removed features 3-9

Known issues 3-10
Known limitations 3-10

Troubleshooting 4-1

Tutorials, samples, and additional
resources 5-1

Installing and configuring 6-1
Installation overview 6-1
Installing command-line tools for developers . . . 6-2
Uninstalling command-line tools for developers . . 6-2
Installing MobileFirst Server 6-2

Planning the installation of MobileFirst Server 6-3
Tutorial for a basic installation of MobileFirst
Server 6-23
Running IBM Installation Manager 6-29
Installing the MobileFirst Server administration 6-43
Installing a server farm 6-97

Configuring MobileFirst Server 6-105
Backup and recovery 6-105
Optimization and tuning of MobileFirst Server 6-105
Optimization of MobileFirst Server project
databases 6-108
Testing MobileFirst Server performance . . . 6-111
Security configuration 6-117
Protecting your mobile application traffic by
using IBM WebSphere DataPower as a
security gateway 6-122

Configuring MobileFirst Server to enable TLS
V1.2 6-133
Configuring SSL between MobileFirst adapters
and back-end servers by using self-signed
certificates 6-135
Configuring SSL by using untrusted
certificates 6-136
Handling MySQL stale connections 6-144
Managing the DB2 transaction log size . . . 6-145

Installing the IBM MobileFirst Platform
Operational Analytics 6-146

Installing IBM MobileFirst Platform
Operational Analytics for WebSphere
Application Server Liberty 6-146
Installing IBM MobileFirst Platform
Operational Analytics for WebSphere
Application Server 6-147
IBM MobileFirst Platform Operational
Analytics installation for Tomcat 6-151
Configuring the MobileFirst Server for the
IBM MobileFirst Platform Operational
Analytics 6-151

Installing the MobileFirst Data Proxy 6-152
Planning the installation of MobileFirst Data
Proxy 6-152
Installing and configuring the MobileFirst
Data Proxy 6-153

Installing and configuring the Application Center 6-162
Installing Application Center with IBM
Installation Manager 6-162
Manual installation of Application Center 6-167
Configuring the Application Center after
installation 6-188
Configuring WebSphere Application Server
full profile 6-189
Configuring WebSphere Application Server
Liberty profile 6-191
Configuring Apache Tomcat 6-192
Configuring properties of DB2 JDBC driver in
WebSphere Application Server 6-192
Configuring WebSphere Application Server to
support applications in public app stores . . 6-193
Managing users with LDAP 6-194
Defining the endpoint of the application
resources 6-214
Configuring Secure Sockets Layer (SSL) . . . 6-219
Managing the DB2 transaction log size . . . 6-222
List of JNDI properties for the Application
Center 6-223

Predefining MobileFirst Server configuration for
several deployment environments 6-227

Creating the property file 6-228
Using a property file in the file system . . . 6-229
Using property files injected into a web
archive file 6-232
Using a shared library of JNDI properties 6-235

© Copyright IBM Corp. 2006, 2016 iii

Typical topologies of a MobileFirst instance in an
extranet infrastructure 6-239

Setting up IBM MobileFirst Platform
Foundation for iOS in WebSphere Application
Server cluster environment 6-241
Setting up an IBM HTTP Server in an IBM
WebSphere Application Server Liberty profile
farm 6-252
Integrating IBM WebSphere DataPower with a
cluster of instances of MobileFirst Server . . 6-260

Endpoints of the IBM MobileFirst Platform
Server production server 6-272

HTTP Interface of the production server . . . 6-275
Troubleshooting IBM MobileFirst Platform Server 6-280

Troubleshooting to find the cause of
installation failure 6-280
Troubleshooting failure to create the DB2
database 6-280
Troubleshooting a MobileFirst Server upgrade
with Derby as the database 6-281
Troubleshooting failure to authenticate to
Application Center and applications that use
the basic registry element. 6-281
Troubleshooting server farm configuration
issues 6-282

Upgrading to IBM MobileFirst Platform
Foundation for iOS V7.0.0 7-1
Version compatibility 7-1
Migrating projects to V7.0.0 using MobileFirst
Platform Command Line Interface for iOS 7-3
Migrating IBM SmartCloud Analytics Embedded to
IBM MobileFirst Platform Operational Analytics . . 7-3
Upgrading to MobileFirst Server V7.0.0 in a
production environment 7-4

Overview of the upgrade to MobileFirst Server
V7.0.0 process 7-5
Preparation for upgrades to MobileFirst Server 7-7
Starting the MobileFirst Server V7.0.0 upgrade
process 7-20
Running IBM Installation Manager and
completing the Application Center upgrade . . 7-25
Upgrading the MobileFirst runtime
environment for MobileFirst Server V7.0.0 . . 7-31
Additional MobileFirst Server V7.0.0 upgrade
information 7-43
Updating deployment scripts 7-52

Rolling upgrade procedure to apply a fix pack to
IBM MobileFirst Platform Foundation for iOS
V7.0.0. 7-53

Planning the rolling upgrade procedure . . . 7-54
Overview of the rolling upgrade procedure 7-55
Performing a rolling upgrade to install a fix
pack 7-55

Applying a fix pack to the MobileFirst Data Proxy 7-62

Developing MobileFirst applications 8-1
Artifacts produced during development cycle. . . 8-1

MobileFirst projects 8-2
Integrating with source control systems 8-2

Developing applications for iOS 8-4
Developing native applications for iOS 8-4

Updating mobile apps with IBM MobileFirst
Platform Foundation for iOS and the Application
Center 8-14
MobileFirst Platform Command Line Interface for
iOS 8-15

CLI commands usage 8-16
Commands 8-16

Developing the server side of a MobileFirst
application 8-85

MobileFirst Java adapters 8-85
MobileFirst JavaScript adapters 8-94
USSD Support 8-151
Deploying adapters. 8-156
Testing adapters 8-157
Client access to adapters 8-158

JSONStore 8-161
JSONStore overview 8-161
General JSONStore terminology 8-162
JSONStore API concepts 8-165
Troubleshooting JSONStore 8-168
JSONStore examples 8-174
JSONStore advanced topics 8-178
JSONStore security utilities 8-184

Storing mobile data in Cloudant 8-186
Configuring access to Cloudant. 8-188
Obtaining the IMFData SDK. 8-190
Creating databases 8-191
Setting user permissions 8-192
Modeling data 8-193
Performing CRUD operations 8-196
Creating indexes. 8-199
Querying data 8-200
Supporting offline storage and
synchronization 8-201

Push notification 8-203
Possible MobileFirst push notification
architectures 8-204
Setting up push notifications 8-206
Broadcast notifications. 8-207
Event source-based notifications 8-208
Interactive notifications 8-209
Tag-based notification 8-210
Silent notifications 8-211
Unicast notifications 8-212
Web-based SMS subscription 8-212
Sending push notifications 8-214
Sending SMS push notifications 8-215
Sending push notifications from WebSphere
Application Server – IBM DB2 8-216
Configuring a polling event source to send
push notifications 8-216
Using two-way SMS communication 8-219
Troubleshooting push notification problems 8-220

MobileFirst security framework. 8-221
OAuth-based security model 8-221
Classic security model 8-242

Simple data sharing 8-253
Simple data sharing overview 8-253
Simple data sharing general terminology 8-254

iv IBM MobileFirst Platform Foundation for iOS V7.0.0

Enabling the Simple Data Sharing feature 8-254
Simple data sharing API concepts 8-255
Troubleshooting simple data sharing 8-256
Simple data sharing limitations and special
considerations 8-256

Authenticators and login modules 8-257
Mobile device authentication 8-257
The authentication configuration file 8-260
Configuring authenticators and realms 8-262

Implementing basic authenticators. 8-263
Implementing form-based authenticators . . 8-265
Implementing custom authenticators 8-269
Header authenticator 8-274
Persistent cookie authenticator 8-274
Implementing adapter-based authenticators 8-274
LTPA authenticator 8-281

Configuring login modules 8-282
Non-validating login module 8-283
Single identity login module. 8-284
Header login module 8-284
WASLTPAModule login module 8-285
LDAP login module 8-285

Configuring device auto provisioning 8-288
Configuring and implementing custom device
provisioning 8-289

Device single sign-on (SSO) 8-294
Configuring device single sign-on 8-295

Developing accessible applications. 8-300
Client-side log capture. 8-300

Server preparation for uploaded log data 8-304
Client-side log capture configuration from
MobileFirst Operations Console 8-305

MobileFirst Filtered Export 8-306

API reference 9-1
MobileFirst client-side API 9-1

Objective-C client-side API for iOS apps . . . 9-2
MobileFirst server-side API 9-2

JavaScript server-side API 9-3
Java server-side API 9-4

MobileFirst OAuth TAI API. 9-4
REST Services API 9-4

Adapter Binary (GET, HEAD) 9-4
Adapter (DELETE). 9-5
Adapter (GET) 9-8
Adapter (POST) 9-12
Adapters (GET) 9-15
Adobe Air Application Binary (GET) 9-19
APNS Credentials (DELETE) 9-21
APNS Credentials (GET) 9-23
APNS Credentials (PUT) 9-24
App Version Access Rule (PUT) 9-27
App Version (DELETE) 9-31
App Version Lock (PUT) 9-35
Application Binary (GET, HEAD) 9-37
Application (DELETE) 9-38
Application (GET) 9-41
Application (POST) 9-45
Applications (GET) 9-49
Associate beacons and triggers (DELETE). . . 9-53
Associate beacons and triggers (GET) 9-57

Associate beacons and triggers (PUT) 9-59
Beacon Trigger (DELETE) 9-64
Beacon Trigger (GET) 9-67
Beacon Triggers (GET) 9-69
Beacon Triggers (POST) 9-71
Beacon Triggers (PUT) 9-76
Beacons (DELETE) 9-80
Beacons (GET) 9-83
Beacons (PUT) 9-86
Device Application Status (PUT) 9-90
Device (DELETE) 9-94
Device Status (PUT) 9-97
Devices (GET) 9-100
Event Source (GET). 9-104
Event Sources (GET) 9-105
Farm topology members (GET) 9-107
Farm topology members (DELETE) 9-109
GCM Credentials (DELETE) 9-111
GCM Credentials (GET) 9-113
GCM Credentials (PUT) 9-114
Mediator (GET) 9-117
Mediators (GET) 9-118
MPNS Credentials (DELETE) 9-120
MPNS Credentials (GET) 9-122
MPNS Credentials (PUT) 9-124
Push Device Registration (DELETE) 9-126
Push Device Registration (GET) 9-128
Push Device Subscription (DELETE) 9-130
Push Device Subscription (GET) 9-132
Push Devices Registration (GET) 9-134
Push Enabled Applications (GET) 9-136
Push Tags (DELETE) 9-138
Push Tags (GET). 9-140
Push Tags (POST) 9-142
Push Tags (PUT). 9-144
Runtime (DELETE) 9-146
Runtime (GET) 9-147
Runtime Lock (DELETE) 9-155
Runtime Lock (GET) 9-156
Runtimes (GET) 9-158
Send Bulk Messages (POST) 9-160
Send Message (POST) 9-165
Transaction (GET) 9-170
Transactions (GET) 9-172
Unsubscribe SMS (POST) 9-175
WNS Credentials (DELETE) 9-177
WNS Credentials (GET) 9-179
WNS Credentials (PUT) 9-181

MobileFirst Cloudant API reference 9-183
Objective-C API for MobileFirst Cloudant
extensions 9-183

Deploying MobileFirst projects . . . 10-1
Deploying MobileFirst applications to test and
production environments 10-1

Deploying an application from development to
a test or production environment 10-1
Building a project WAR file with Ant 10-4
Deploying the project WAR file 10-5
Configuration of MobileFirst applications on
the server 10-48

Contents v

Ant tasks for building and deploying
applications and adapters 10-69
Deploying applications and adapters to
MobileFirst Server 10-76
Administering adapters and apps in
MobileFirst Operations Console 10-77
MobileFirst security overview 10-79
High availability. 10-95
Updating MobileFirst apps in production 10-97

Administering MobileFirst
applications. 11-1
Administering MobileFirst applications with
MobileFirst Operations Console 11-2

Locking an application 11-3
Remotely disabling application connectivity 11-3
Displaying a notification message on
application startup 11-5
Defining administrator messages from
MobileFirst Operations Console in multiple
languages 11-5
Error log of operations on runtime
environments 11-8
Audit log of administration operations. . . . 11-9

Administering MobileFirst applications through
Ant 11-11

Calling the wladm Ant task 11-12
Commands for adapters 11-15
Commands for apps 11-18
Commands for beacons 11-23
Commands for devices 11-29
Commands for troubleshooting 11-32
A complex example of a wladm Ant task . . . 11-35

Administering MobileFirst applications through
the command line 11-36

Calling the wladm program 11-37
Commands for adapters 11-42
Commands for apps 11-44
Commands for beacons 11-50
Commands for devices 11-57
Commands for troubleshooting 11-59

Administering push notifications with the
MobileFirst Operations Console. 11-63
Application Center 11-65

Concept of the Application Center 11-65
Specific platform requirements 11-66
General architecture 11-66
Preliminary information 11-68
Preparations for using the mobile client . . . 11-69
Push notifications of application updates . . 11-72
The Application Center console 11-76
Command-line tool for uploading or deleting
an application 11-98
The mobile client 11-104

Federal standards support in IBM MobileFirst
Platform Foundation for iOS 11-122

FDCC and USGCB support 11-122
FIPS 140-2 support 11-123

Monitoring and mobile operations 12-1
Logging and monitoring mechanisms 12-1

Vitality queries for checking server health . . 12-2
Setting logging and tracing for Application
Center on the application server 12-4

Analytics 12-6
Comparison of operational analytics and
reports features 12-7
Operational analytics 12-8
Reports database 12-74

Mobile application management 12-95
User to device mapping and control 12-96
Device access management in the MobileFirst
Operations Console. 12-96
Enabling the device access management
features. 12-98
Performance implications for the server . . . 12-99

User certificate authentication 12-100
User certificate authentication overview 12-100
User certificate authentication on the server 12-102
User certificate authentication on the client 12-112
Troubleshooting the User Certificate
Authentication feature 12-114

License tracking 12-115
Configuring your license tracking details 12-115
License Tracking report 12-116
Integration with IBM License Metric Tool 12-117

Integrating with other IBM products 13-1
Introduction to MobileFirst integration capabilities 13-1
Integration with Cast Iron 13-2
Integration and authentication with a reverse
proxy 13-3
Integration with IBM Endpoint Manager 13-5

IBM Endpoint Manager for Mobile Devices 13-5
End-point management with IBM Endpoint
Manager 13-7

Integration with IBM Tealeaf 13-8
IBM Tealeaf client-side integration 13-8
IBM Tealeaf server-side integration 13-9

Integration with IBM Trusteer 13-9
Integrating IBM Trusteer for iOS. 13-9

Using WebSphere DataPower as a push
notification proxy 13-10
More about integration 13-11

Reference 14-1
Ant configuredatabase task reference 14-1
Customizing the database connection with JDBC
properties 14-8
Encrypting database password with Ant tasks for
Liberty 14-9
Ant tasks for installation of MobileFirst
Operations Console and Administration Services . 14-10
Ant tasks for installation of MobileFirst runtime
environments 14-16
Ant tasks for installation of MobileFirst Data
Proxy 14-27
Internal runtime database tables 14-32
Sample configuration files 14-35

vi IBM MobileFirst Platform Foundation for iOS V7.0.0

Glossary 15-1
A 15-1
B 15-2
C 15-2
D 15-4
E 15-4
F 15-4
G 15-5
H 15-5
I 15-5
J 15-5
K 15-6
L 15-6
M 15-7
N 15-7
O 15-8
P 15-8

R 15-9
S 15-9
T 15-10
U 15-11
V 15-11
W 15-11
X 15-11

Support and comments. 16-1

Notices A-1
Trademarks A-3
Terms and conditions for product documentation A-3
IBM Online Privacy Statement A-4

Index X-1

Contents vii

viii IBM MobileFirst Platform Foundation for iOS V7.0.0

IBM MobileFirst Platform Foundation for iOS V7.0.0
documentation

Welcome to the IBM MobileFirst™ Platform Foundation for iOS V7.0.0
documentation, where you can find information about how to install, maintain,
and use the IBM MobileFirst Platform Foundation for iOS.

Getting started

“Product overview” on page 2-1
IBM MobileFirst Platform Foundation for iOS is an integrated platform that
helps you extend your business to mobile devices.
“Notices” on page A-1
“Release notes” on page 3-1
You can identify the latest information about this product release and all its fix
packs.
“Tutorials, samples, and additional resources” on page 5-1
Tutorials and samples help you get started with and learn about IBM
MobileFirst Platform Foundation for iOS. Use them to evaluate what the
product can do for you.
“Installation overview” on page 6-1
IBM MobileFirst Platform Foundation for iOS provides the following installable
components: MobileFirst Platform Command Line Interface for iOS, and
MobileFirst Server. This section gives an overview of the installation process.
“Configuring MobileFirst Server” on page 6-105
Consider your backup and recovery policy, optimize your MobileFirst Server
configuration, and apply access restrictions and security options.
“System requirements” on page 2-7
System requirements for IBM MobileFirst Platform Foundation for iOS include
operating systems, SDKs, and other software.
Common tasks

“Developing MobileFirst applications” on page 8-1
You use IBM MobileFirst Platform Command Line Interface for iOS, the
MobileFirst client, and the server-side API to develop iOS applications.
“Deploying MobileFirst projects” on page 10-1
“Administering MobileFirst applications” on page 11-1
Run and maintain MobileFirst applications in production.
“Application Center” on page 11-65
Learn about the Application Center: what it is for, the different components and
features, and how to use the console and the client.
Troubleshooting and support

“Troubleshooting” on page 4-1
You can find advice on how to troubleshoot problems, and more information
about known limitations and technotes (Troubleshooting).
“Known issues” on page 3-10
You can identify the latest known issues and their resolutions, for this product
release and all its fix packs, by browsing this dynamic list of documents.

IBM Software Support home page
More information

© Copyright IBM Corp. 2006, 2016 1-1

http://www.ibm.com/support/entry/portal/overview/software/software_support_(general)

Latest PDF file for this documentation

Mobile Application Developer skills

IBM MobileFirst Platform blogs

developerWorks blogs and articles

IBM Redbooks

1-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mobilefirst_platform_foundation_ios_doc.pdf
http://www-304.ibm.com/services/learning/ites.wss/zz/en/?pageType=page&c=J179530Z42409M36
https://developer.ibm.com/mobilefirstplatform/blogs/
http://www.ibm.com/search/csass/search/?q=MobileFirst+Platform&dws=dw&ibm-search.x=0&ibm-search.y=0&sn=dw&cc=US&ddr=&en=utf&lo=en&hpp=20
http://www.redbooks.ibm.com/

Product overview

IBM MobileFirst Platform Foundation for iOS is an integrated platform that helps
you extend your business to mobile devices.

IBM MobileFirst Platform Foundation for iOS includes a comprehensive
development environment, mobile-optimized runtime middleware, a private
enterprise application store, and an integrated management and analytics console,
all supported by various security mechanisms.

With IBM MobileFirst Platform Foundation for iOS, your organization can
efficiently develop, connect, run, and manage rich mobile applications (apps) that
can access the full capabilities of your target mobile devices. IBM MobileFirst
Platform Foundation for iOS can help reduce time-to-market, cost, and complexity
of development, and enables an optimized customer and employee user experience
across multiple environments.

As part of this comprehensive mobile solution, IBM MobileFirst Platform
Foundation for iOS can be integrated with application lifecycle, security,
management, and analytics capabilities to help you address the unique mobile
needs of your business.

Introduction to mobile application development
With IBM MobileFirst Platform Foundation for iOS, you can develop mobile
applications by using native development.

IBM MobileFirst Platform Foundation for iOS provides capabilities to help you
respond to the fast-paced development of mobile devices.

Pure native development

With the pure native development approach, you can create applications that are
written for a specific platform and run on that platform only. Your applications
achieve great performance and can fully leverage all platform functions such as
accessing the camera or contact list, enabling gestures, or interacting with other
applications on the device.

Product main capabilities
With IBM MobileFirst Platform Foundation for iOS, you can use capabilities such
as development, testing, back-end connections, push notifications, offline mode,
update, security, analytics, monitoring, and application publishing.

Development

IBM MobileFirst Platform Foundation for iOS provides a framework that enables
the development, integration, and management of secure mobile applications
(apps). IBM MobileFirst Platform Foundation for iOS does not introduce a
proprietary programming language or model that users must learn.

© Copyright IBM Corp. 2006, 2016 2-1

You can write native code (Objective-C and Swift). IBM MobileFirst Platform
Foundation for iOS provides an SDK that includes libraries that you can access
from native code.

Back-end connections

Some mobile applications run strictly offline with no connection to a back-end
system, but most mobile applications connect to existing enterprise services to
provide the critical user-related functions. For example, customers can use a mobile
application to shop anywhere, at any time, independent of the operating hours of
the store. Their orders must still be processed by using the existing e-commerce
platform of the store. To integrate a mobile application with enterprise services,
you must use middleware such as a mobile gateway. IBM MobileFirst Platform
Foundation for iOS can act as this middleware solution and make communication
with back-end services easier.

Push notifications

With push notifications, enterprise applications can send information to mobile
devices, even when the application is not being used. IBM MobileFirst Platform
Foundation for iOS includes a unified notification framework that provides a
consistent mechanism for such push notifications.

Offline mode

In terms of connectivity, mobile applications can operate offline, online, or in a
mixed mode. IBM MobileFirst Platform Foundation for iOS uses a client/server
architecture that can detect whether a device has network connectivity, and the
quality of the connection. Acting as a client, mobile applications periodically
attempt to connect to the server and to assess the strength of the connection. An
offline-enabled mobile application can be used when a mobile device lacks
connectivity but some functions can be limited. When you create an offline-enabled
mobile application, it is useful to store information about the mobile device that
can help preserve its functionality in offline mode. This information typically
comes from a back-end system, and you must consider data synchronization with
the back end as part of the application architecture. IBM MobileFirst Platform
Foundation for iOS includes a feature that is called JSONStore for data exchange
and storage. With this feature, you can create, read, update, and delete data
records from a data source. Each operation is queued when operating offline.
When a connection is available, the operation is transferred to the server and each
operation is then performed against the source data.

Update

IBM MobileFirst Platform Foundation for iOS simplifies version management and
mobile application compatibility. Whenever a user starts a mobile application, the
application communicates with a server. By using this server, IBM MobileFirst
Platform Foundation for iOS can determine whether a newer version of the
application is available, and if so, give information to the user about it. The server
can also force an upgrade to the latest version of an application to prevent
continued use of an outdated version.

Security

Protecting confidential and private information is critical for all applications within
an enterprise, including mobile applications. Mobile security applies at various

2-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

levels, such as mobile application, mobile application services, or back-end service.
You must ensure customer privacy and protect confidential data from being
accessed by unauthorized users. Dealing with privately owned mobile devices
means giving up control on certain lower levels of security, such as the mobile
operating system.

IBM MobileFirst Platform Foundation for iOS provides secure, end-to-end
communication by positioning a server that oversees the flow of data between the
mobile application and your back-end systems. With IBM MobileFirst Platform
Foundation for iOS, you can define custom security handlers for any access to this
flow of data. Because any access to data of a mobile application has to go through
this server instance, you can define different security handlers for mobile
applications, web applications, and back-end access. With this kind of granular
security, you can define separate levels of authentication for different functions of
your mobile application. You can also prevent mobile applications from accessing
sensitive information.

Analytics

The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage, or to detect problems.

In addition to reports that summarize app activity, IBM MobileFirst Platform
Foundation for iOS includes a scalable operational analytics platform accessible in
the MobileFirst Operations Console. The analytics feature enables enterprises to
search across logs and events that are collected from devices, apps, and servers for
patterns, problems, and platform usage statistics. You can enable analytics, reports,
or both, depending on your needs.

Monitoring

IBM MobileFirst Platform Foundation for iOS includes a range of operational
analytics and reporting mechanisms for collecting, viewing, and analyzing data
from your IBM MobileFirst Platform Foundation for iOS applications and servers,
and for monitoring server health.

Application publishing

IBM MobileFirst Platform Foundation for iOS Application Center is an enterprise
application store. With the Application Center, you can install, configure, and
administer a repository of mobile applications for use by individuals and groups
across your enterprise. You can control who in your organization can access the
Application Center and upload applications to the Application Center repository,
and who can download and install these applications onto a mobile device. You
can also use the Application Center to collect feedback from users and access
information about devices on which applications are installed.

The concept of the Application Center is similar to the concept of the Apple public
App Store , except that it targets the development process.

The Application Center provides a repository for storing the mobile application
files and a web-based console for managing that repository. The Application Center
also provides a mobile client application to allow users to browse the catalog of
applications that are stored by the Application Center, install applications, leave
feedback for the development team, and expose production applications to IBM®

Endpoint Manager. Access to download and install applications from the

Product overview 2-3

Application Center is controlled by using access control lists (ACLs).

Product components
IBM MobileFirst Platform Foundation for iOS consists of the following
components: MobileFirst Platform Command Line Interface for iOS, MobileFirst
Server, client-side runtime components, MobileFirst Operations Console,
MobileFirst Platform Cloudant® Local, and Application Center.

Component overview

The following figure shows the components of IBM MobileFirst Platform
Foundation for iOS:

MobileFirst Server

The MobileFirst Server is a runtime container for the mobile applications you
develop by using MobileFirst tooling. It is not an application server in the Java™

Platform, Enterprise Edition (Java EE) sense. It acts as a container for IBM
MobileFirst Platform Foundation for iOS application packages, and is in fact a
collection of web applications, optionally packaged as an EAR (enterprise archive)
file that run on top of traditional application servers.

Figure 2-1. IBM MobileFirst Platform Foundation for iOS architecture

2-4 IBM MobileFirst Platform Foundation for iOS V7.0.0

MobileFirst Server integrates into your enterprise environment and uses existing
resources and infrastructure. This integration is based on adapters that are
server-side software components responsible for channeling back-end enterprise
systems and cloud-based services to the user device. You can use adapters to
retrieve and update data from information sources, and to allow users to perform
transactions and start other services and applications.

You can use MobileFirst Server for the following tasks:
v Empower hundreds of thousands of users with transactional capabilities and

enable their direct access to back-end systems and cloud-based services.
v Configure, test, and deploy descriptive XML files to connect to various back-end

systems by using standard MobileFirst tools.
v Automatically convert hierarchical data to JSON format for optimal delivery and

consumption.
v Enhance user interaction with a uniform push notification architecture.
v Define complex mashups of multiple data sources to reduce overall traffic.
v Integrate with the existing security and authentication mechanisms of your

organization.

MobileFirst Platform Cloudant Local

MobileFirst Platform Cloudant Local is an advanced NoSQL database that is
capable of handling a wide variety of data types, such as JSON, full-text, and
geospatial data.

As a JSON document store, MobileFirst Platform Cloudant Local is ideal for
managing multi-structured or unstructured data. With advanced indexing, you can
enrich applications with location-based, geospatial services, full-text search, and
real-time analytics.

MobileFirst Cloudant extensions include an SDK and proxy.

The SDK extends the Cloudant APIs with support for native language objects for
iOS developers, offline access, and online remote access. For more information, see
“Storing mobile data in Cloudant” on page 8-186.

Authentication with OAuth is available through integration with the MobileFirst
Data Proxy. For more information, see “Installing the MobileFirst Data Proxy” on
page 6-152.

Client-side runtime components

IBM MobileFirst Platform Foundation for iOS provides client-side runtime code
that embeds server functionality within the target environment of deployed apps.
These runtime client APIs are libraries that are integrated into the locally stored
app code. They complement MobileFirst Server by defining a predefined interface
for apps to access native device functions.

The client-side runtime components provide the following functions:
v Mobile data integration: connectivity and authentication APIs
v Security features: on-device encryption, offline authentication, and remote

disablement of the ability to connect to MobileFirst Server
v Mobile client functionality: access to device APIs and push notification

registration

Product overview 2-5

MobileFirst Operations Console

The MobileFirst Operations Console is used for the control and management of the
mobile applications.

You can use the MobileFirst Operations Console for the following tasks:
v Monitor all deployed applications, adapters, and push notification rules from a

centralized, web-based console.
v Assign device-specific identifiers (IDs) to ensure secure application provisioning.
v Remotely disable the ability to connect to MobileFirst Server by using

preconfigured rules of app version and device type.
v Customize messages that are sent to users on application launch.
v Collect user statistics from all running applications.
v Generate built-in, pre-configured reports about user adoption and usage

(number and frequency of users that are engaging with the server through the
applications).

v Configure data collection rules for application-specific events.
v Export raw reporting data to be analyzed by the business intelligence systems of

your organization.

IBM MobileFirst Platform Operational Analytics

IBM MobileFirst Platform Foundation for iOS includes a scalable operational
analytics feature that is accessible from the MobileFirst Operations Console. The
analytics feature enables enterprises to search across logs and events that are
collected from devices, apps, and servers for patterns, problems, and platform
usage statistics.

The data for operational analytics includes the following sources:
v Crash events of an application on iOS devices (crash events for native code

errors).
v Interactions of any application-to-server activity (anything that is supported by

the MobileFirst client/server protocol, including push notification).
v Server-side logs that are captured in traditional MobileFirst log files.

Application Center

With the Application Center, you can share mobile applications that are under
development within your organization in a single repository of mobile
applications. Development team members can use the Application Center to share
applications with members of the team. This process facilitates collaboration
between all the people who are involved in the development of an application.

Your company can typically use the Application Center as follows:
1. The development team creates a version of an application.
2. The development team uploads the application to the Application Center,

enters its description, and asks the extended team to review and test it.
3. When the new version of the application is available, a tester runs the

Application Center installer application, which is the mobile client. Then, the
tester locates this new version of the application, installs it on their mobile
device, and tests it.

2-6 IBM MobileFirst Platform Foundation for iOS V7.0.0

4. After the tests, the tester rates the application and submits feedback, which is
visible to the developer from the Application Center console.

The Application Center is aimed for private use within a company, and you can
target some mobile applications to specific groups of users. You can use the
Application Center as an enterprise application store.

MobileFirst Platform Command Line Interface for iOS

To help you get a better tools experience, IBM MobileFirst Platform Foundation for
iOS provides a command-line interface (CLI) tool to easily create and manage
apps. The CLI lets you use your preferred text editors or alternative IDEs to create
mobile applications.

The commands support tasks such as creating, adding, and configuring with the
API library, adding the client-side properties file and performing the build and
deploy of the application. From the command-line, you can create and deploy
adapters, and test them locally. You can administer your project from CLI or REST
services, or the Console, where you can control the local server and observe the
logs.

Product editions
IBM MobileFirst Platform Foundation for iOS is available in one edition.

This edition contains the following components:
v IBM MobileFirst Platform Command Line Interface for iOS, which is available as

an installable download.
v IBM MobileFirst Platform Server component, which is available as an IBM

Installation Manager package.

System requirements
System requirements for IBM MobileFirst Platform Foundation for iOS include
operating systems, SDKs, and other software.

IBM MobileFirst Platform Foundation for iOS has a number of system
requirements that must be met for you to install and configure the product
successfully. The system requirements include the following items:
v Operating systems that support IBM MobileFirst Platform Foundation for iOS,

including mobile device operating systems
v Required hardware configuration
v Supported software development kits (SDKs)
v Application servers, database management systems, and other software that are

required or supported by IBM MobileFirst Platform Foundation for iOS

System requirements by type (high-level)

The requirements in the following links are organized by high-level categories:
v Operating systems
v Software
v Hardware

Product overview 2-7

https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/osForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/prereqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/hardwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807

System requirements by platform (detail)

The requirements in the following links are organized by installation target
platform:
v AIX®

v Linux
v Mac OS
v Mobile OS
v Solaris
v Windows

System requirements by component (detail)

The requirements in the following links are organized by product component:
v IBM MobileFirst Platform Application Center
v IBM MobileFirst Platform Cloudant Data Layer Local Edition
v IBM MobileFirst Platform Foundation Application Patterns
v IBM MobileFirst Platform Operational Analytics
v IBM MobileFirst Platform Server
v IBM MobileFirst Platform Command Line Interface for iOS
v IBM MobileFirst Platform Studio
v IBM MobileFirst Platform Test Workbench
v IBM MobileFirst Platform Device Runtime

Matrix of features and platforms
IBM MobileFirst Platform Foundation for iOS provides many features and supports
many platforms.

The Mobile OS feature mapping for IBM MobileFirst Platform Foundation for iOS
technote on the IBM Support Portal lists the features that are available on each of
the platforms that IBM MobileFirst Platform Foundation for iOS supports.

Consider compatibility with prior releases before you decide what version of each
product component to install. For more information, see “Version compatibility” on
page 7-1.

2-8 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=AIX
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=Linux
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=Mac%20OS
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=Mobile%20OS
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=Solaris
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatform=Windows
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=S005
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=S010
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=S009
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=S004
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=S003
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=D008
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=D001
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=D002
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=4DB072503A2F11E396F9FC10E99BE807&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CSolaris%7CWindows&duComponentIds=M007
http://www.ibm.com/support/docview.wss?uid=swg27039422

Release notes

You can identify the latest information about this product release and all its fix
packs.

What's new
Discover the new features and changes in IBM MobileFirst Platform Foundation for
iOS V7.0.0 compared to the previous version of this product.

Efficient and scalable app data storage
Store your app data with a simplified programming model that supports offline
access, scalable storage, and enterprise integration. Choose to store your data on
premises or in the cloud.

IBM MobileFirst Platform Cloudant Data Layer Local Edition
overview

The IBM MobileFirst Platform Cloudant Data Layer Local Edition, powered by
Cloudant Local, provides an advanced NoSQL database with easy-to-use
administration and management capabilities, rich developer support, and powerful
mobile and web capabilities.

As a JSON document store, Cloudant Local is ideal for managing multi-structured
or unstructured data. With indexing, you can enrich applications with
location-based, geospatial services, full-text search, and real-time analytics.

Native APIs

The MobileFirst Cloudant extensions extend the Cloudant Local APIs with support
for native language objects for iOS developers, offline access, and online remote
access.

For more information about the APIs, see “Storing mobile data in Cloudant” on
page 8-186.

Security

OAuth authentication is available through integration with the MobileFirst Data
Proxy. For more information, see “Installing the MobileFirst Data Proxy” on page
6-152.

Licensing options

Single node license
A single node license is included with MobileFirst Platform Cloudant
Local. This single node enables development and test with full API support
and tools. This license can be used for production with appropriate
planning for availability, performance, and backup.

IBM Cloudant Data Layer Local Edition V1.0
Upgrade to Cloudant Data Layer Local Edition to support clustered nodes
and gain horizontal and geographic scalability, fault tolerance, and

© Copyright IBM Corp. 2006, 2016 3-1

continuous availability. Cloudant Data Layer Local Edition is designed
with applications in mind that require the availability, elasticity, and reach
of possibly massive amounts of mobile data and devices. It is best suited
for apps that require an operational data store to handle a massively
concurrent mix of low-latency reads and writes.

Off premises
If you do not want to manage local installations, you can use off-premises
options, including the Cloudant.com database instance or the Cloudant
NoSQL DB service on IBM Bluemix®. Both services have separate charging
and licensing.

JSONStore and Cloudant comparison

Use the Cloudant Toolkit when you are storing data on a device that needs to be
synchronized to a Cloudant database. The Cloudant Toolkit provides the most
efficient means for synchronizing data to and from a Cloudant database. The
Cloudant Toolkit is available for native mobile applications for iOS in Swift or
Objective-C.

You can also access Cloudant data through the Cloudant REST APIs by configuring
a MobileFirst HTTP adapter. With this approach, you can synchronize data from a
Cloudant database to an encrypted JSONStore database on the device. However,
you add the performance expense of introducing the adapter layer in the middle.

You might consider using JSONStore instead of Cloudant in the following
scenarios:
v When you are storing data on the mobile device that needs to be encrypted.

JSONStore can also be enabled for FIPS 140-2 encryption.
v When you need to synchronize data between the device and the enterprise.

JSONStore can be connected to the MobileFirst adapter layer to synchronize data
to or from an enterprise source.

For more information about JSONStore, see “JSONStore” on page 8-161.

Standards-based integration and authentication
New features enable app developers with back end domain-specific knowledge to
securely integrate a mobile app with any enterprise system by using industry
standard technologies such as REST and OAuth.

Authentication and SSO using standard-based authentication
(OAuth)

Prior to V7.0.0, MobileFirst security was based entirely on a proprietary model.
Starting with V7.0,0, a new security model has been added to support the standard
OAuth 2.0 specification.

To support backward compatibility, the classic (pre-V7.0.0) security model can be
used in the flows that are based on the existing MobileFirst APIs (for example,
invokeProcedure) in Java. MobileFirst V7.0.0 provides seamless integration between
the two security models. The platform allows you to combine classic and new APIs
in the same application, while keeping a consistent security context on the server
side.

In addition, the protected resources can report analytic events to IBM MobileFirst
Platform Operational Analytics such as authentication successes and failures.

3-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

For more information, see “OAuth-based security model” on page 8-221.

With the new security model, you can enforce MobileFirst security on external
resources written in Java, Node.js, or any other language. For more information,
see “Protecting external resources” on page 8-230.

Adapters

Starting with V7.0.0, the following new adapter features were introduced to IBM
MobileFirst Platform Foundation for iOS:

Java adapters
Java adapters are based on the JAX-RS specification and expose a full REST
API to the client. For more information, see “MobileFirst Java adapters” on
page 8-85.

RESTful access to JavaScript adapters
It is possible to call existing JavaScript adapter procedures over HTTP via
REST URLs from the /adapters endpoint. For more information, see
“RESTful access to JavaScript adapters” on page 8-159.

Service discovery for IBM BPM

You can now use IBM MobileFirst Platform Foundation for iOS V7.0.0 to discover
IBM BPM back-end services.

Service discovery with REST

You can describe a RESTful resource to access your back-end service. You can
describe URL segments that are dynamic parameters to generate MobileFirst
adapters.

SAP JCo adapters

Starting with V7.0.0, you can use the SAP Java Connector (SAP JCo) adapters to
develop SAP-compatible components and applications in Java. For more
information, see “SAP JCo adapters” on page 8-147.

CLI commands

Starting with V7.0.0, there are new CLI commands.
v The adapter call command: call an adapter's procedure on the MobileFirst

Server. For more information, see adapter call.
v The adapter add and add adapter commands: both create a new adapter. For

more information, see “Commands” on page 8-16.

Core value features
IBM MobileFirst Platform Foundation for iOS enables enterprise application
developers to use the latest supported mobile OS software and tools, strengthens
the security of apps against hacking and tampering and makes reverse engineering
more difficult, and provides an enhanced and more efficient user experience of
operations and deployment.

Release notes 3-3

Mobile operating system currency

Upgraded version of Liberty
IBM MobileFirst Platform Foundation for iOS V7.0.0 uses an upgraded
version of Liberty. With V7.0.0, Liberty 8.5.5.4 is bundled with MobileFirst
Platform Command Line Interface for iOS.

Versions of Apache Cordova components
The version of Apache Cordova included in IBM MobileFirst Platform
Foundation for iOS V7.0.0 is composed of the following components:

Platforms

v cordova-android: 3.6.4
v cordova-blackberry10: 3.6.3
v cordova-ios: 3.7.0
v cordova-windows: 3.7.1
v cordova-wp8: 3.7.0

Plugins

v org.apache.cordova.battery-status: 0.2.12
v org.apache.cordova.camera: 0.3.4
v org.apache.cordova.console: 0.2.12
v org.apache.cordova.contacts: 0.2.15
v org.apache.cordova.device-motion: 0.2.11
v org.apache.cordova.device-orientation: 0.3.10
v org.apache.cordova.device: 0.2.13
v org.apache.cordova.dialogs: 0.2.11
v org.apache.cordova.file: 1.3.2
v org.apache.cordova.file-transfer: 0.4.8
v org.apache.cordova.geolocation: 0.3.11
v org.apache.cordova.globalization: 0.3.3
v org.apache.cordova.inappbrowser: 0.5.4
v org.apache.cordova.media-capture: 0.3.5
v org.apache.cordova.media: 0.2.15
v org.apache.cordova.network-information: 0.2.14
v org.apache.cordova.splashscreen: 0.3.5
v org.apache.cordova.statusbar: 0.1.9
v org.apache.cordova.vibration: 0.3.12

Secure integration and app security

Continuous delivery (operations and deployment)

New design of MobileFirst Operations Console
The redesigned MobileFirst Operations Console provides an enhanced user
experience, is compatible with tablets, and is accessible. For examples of
the new design and to follow enhanced interactions with MobileFirst
Operations Console, see, for example:
v “Administering push notifications with the MobileFirst Operations

Console” on page 11-63
v “Device access management in the MobileFirst Operations Console” on

page 12-96

3-4 IBM MobileFirst Platform Foundation for iOS V7.0.0

v “Error log of operations on runtime environments” on page 11-8

Scalable deployment of MobileFirst applications by using a server farm
IBM MobileFirst Platform Foundation for iOS now offers an easy way to
deploy applications by replicating management operations to all instances
of a runtime configured in a server farm. You can automatically add or
remove servers to scale the capacity of the farm up or down. This
capability is available on WebSphere® Application Server Liberty profile,
WebSphere Application Server full profile, and Apache Tomcat.

For more information about this topology, see “Installing a server farm” on
page 6-97.

Miscellaneous improvements

Application Center: self-signed CA certificates
You can use self-signed certificate authority (CA) certificates in test
environments, when the administrator might not have a real Secure Sockets
Layer (SSL) certificate available, to install applications with Application
Center on a mobile device from a secured server. Such certificates work if
they get installed on the device as root certificate. For more information,
see “Managing and installing self-signed CA certificates in an Application
Center test environment” on page 6-221.

New debug option for CLI
Starting with V7.0.0, you can use the new debug option to produce verbose
log output. For more information, see “CLI commands usage” on page
8-16.

Database password encryption for WebSphere Application Server Liberty
profile

Starting with V7.0.0, the Ant tasks, the server installer, and the Server
Configuration Tool encrypt database passwords by default for WebSphere
Application Server Liberty profile. For more information, see “Encrypting
database password with Ant tasks for Liberty” on page 14-9.

New internal database tables
The following database tables are new in V7.0.0:

CLIENT_INSTANCES
Stores instances of client applications that have registered with the
OAuth server.

FARM_CONFIG
Stores the configuration of farm nodes if a server farm is used.

For more information, see “Internal runtime database tables” on page
14-32.

Improved MobileFirst API
New features improve and extend the APIs that you can use to develop mobile
applications.

Updated Objective-C client-side API for iOS

IBM MobileFirst Platform Foundation for iOS V7.0.0 includes updates in its
Objective-C client-side API to develop native apps on iOS, as follows:

New API classes:

Release notes 3-5

WLAuthorizationManager
The WLAuthorizationManager class manages the entire OAuth flow, from
client registration to token generation.

For more information, see the WLAuthorizationManager class.

WLResourceRequest
The WLResourceRequest class encapsulates a resource request and provides
several send methods with different inputs for the body of a request.

WLResourceRequest can also be used to access the Java adapters with a
relative URL.

For more information, see the WLResourceRequest class.

Updated API classes:

WLResponse
The WLResponse class now provides access to the server JSON response
through a property. The getResponseJson method is deprecated.

For more information, see the WLResponse class.

WLClient
The HTTPCookieStorage method has been added to enhance cookie
management.

MobileFirst Cloudant extensions APIs

You can store data for your mobile application in a Cloudant database, which is an
advanced NoSQL database that is capable of handling a wide variety of data types,
such as JSON, full-text, and geospatial data. The SDK is available for Objective-C.

For more information about the Objective-C APIs, see “MobileFirst Cloudant API
reference” on page 9-183.

Tutorials and samples
New and updated tutorials, and their associated sample files, are available, on the
Developer Center web site.

For more information, see the Mobile First Platform Developer Center web site.

What's new in V7.0.0 interim fixes
Interim fixes provide patches and updates to correct problems and keep IBM
MobileFirst Platform Foundation for iOS current for new releases of mobile
operating systems.

Interim fixes are cumulative. When you download the latest V7.0.0 interim fix, you
get all of the fixes from earlier interim fixes.

Download and install the latest interim fix to obtain all of the fixes that are
described in the following sections. If you install earlier fixes, you might not get all
of the fixes described here.

3-6 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-all-tutorials-7-0/

iOS 9 support
If you use Xcode 7 to compile your apps, or if you use extended authenticity
protection for your apps, install the latest interim fix and review the following
sections to ensure that your apps continue to work on iOS 9.

If you build your apps with Xcode 6.4 and do not use extended authenticity
protection, you can rebuild your apps with iOS 9 support without installing the
latest IBM MobileFirst Platform Foundation for iOS interim fix.

Extended authenticity checking for apps that undergo app
thinning

App thinning was introduced by Apple in iOS 9 for apps that are compiled with
Xcode 7. App thinning reduces the size of files that are downloaded from the App
Store. The feature might affect the extended authenticity features of IBM
MobileFirst Platform Foundation for iOS apps because the binary file in the App
Store might differ from the one that is downloaded to the client device.

After you apply latest interim fix, the app thinning feature is available for any app
that uses iOS 9 and later and Xcode 7 and later and that was created by using IBM
MobileFirst Platform Foundation for iOS V7.0.0 and later.

For more information, see “Enabling extended authenticity checking for apps that
undergo app thinning” on page 10-52.

Disabling bitcode-enabled Xcode builds

Starting with Xcode 7, bitcode is a default, but optional option for iOS apps. The
bitcode option is not currently supported in IBM MobileFirst Platform Foundation
for iOS. To use the MobileFirst SDK in any project that uses Xcode 7, you must
disable bitcode.

Applications that are based on Apple watchOS 2 require the bitcode to be enabled
and are currently not supported in IBM MobileFirst Platform Foundation for iOS.

For more information, see “Disabling bitcode in Xcode builds” on page 8-14.

Support for dynamic .tbd libraries in Xcode 7

Xcode 7 replaces dynamic .dylib libraries with more lightweight .tbd files. Up to
now, IBM MobileFirst Platform Foundation for iOS projects link with .dylib
libraries such as: libc++.dylib, libstdc.dylib, and libz.dylib. These libraries
must be replaced with the corresponding .tbd libraries.

For guidelines, see the following topics:
v “Copying files of iOS applications” on page 8-7
v Adding Mobilefirst web capabilities to an existing native app

Enforcing TLS-secure connections in iOS apps

Apple's App Transport Security (ATS) is a new feature of iOS 9 that enforces best
practices for connections between the app and the server. By default, this feature
enforces some connection requirements that improve security. These include

Release notes 3-7

https://developer.apple.com/library/prerelease/watchos/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html

client-side HTTPS requests and server-side certificates and connection ciphers that
conform to Transport Layer Security (TLS) version 1.2 using forward secrecy.

For development purposes, you can override the default behavior by specifying an
exception in the Info.plist file in your app. However, in a full production
environment, all iOS apps must enforce TLS-secure connections for them to work
properly.

By applying the latest interim fix, the apps that you develop in IBM MobileFirst
Platform Foundation for iOS V6.0.0 and later automatically turn off transport
security to allow all non-secure connections to the IBM MobileFirst Platform
Foundation for iOS development server.

For more information, see “Enforcing TLS-secure connections in iOS apps” on page
8-13.

Exporting and importing custom chart definitions for analytics
If you are using the latest interim fix of IBM MobileFirst Platform Foundation for
iOS, you can export and import your custom chart definitions programmatically or
in the IBM MobileFirst Platform Operational Analytics Console.

For more information, see “Exporting and importing custom chart definitions” on
page 12-47.

Deprecated and removed features
If you are migrating from an earlier release of the product, be aware of the various
features that have been deprecated or removed in this and earlier releases.

Deprecated features

Definition: Pertaining to an entity, such as a programming element or
feature, that is supported but no longer recommended and that might
become obsolete.

For a list of deprecated features, see “Deprecated features and API
elements”

Removed features

Definition: Pertaining to a feature that is no longer included in a product.

For a list of removed features, see “Removed features” on page 3-9

Deprecated features and API elements
The following API elements are deprecated from this release.

3-8 IBM MobileFirst Platform Foundation for iOS V7.0.0

Features deprecated in V7.0.0

Table 3-1. Features deprecated in V7.0.0.

Category Deprecation Recommended Action

Analytics Reports database The Reports database, often
referenced as WLREPORT in the
documentation, is deprecated
in IBM MobileFirst Platform
Foundation for iOS V7.0.0.

Use IBM MobileFirst
Platform Operational
Analytics instead. Note that
setting up the Reports
database is optional in this
release and prior releases.
Also note that the use of the
Reports database is
redundant with MobileFirst
Operational Analytics in this
release and recent prior
releases.

Analytics BIRT predefined
reports

The predefined BIRT reports
are deprecated.

Use IBM MobileFirst
Platform Operational
Analytics console and
custom chart support
instead.

The JAR files and JavaScript
libraries that enable SSO
between IBM MobileFirst
Platform Foundation for iOS
and other external services

The external-server-
libraries directory and its
contents are deprecated. The
following API URLs are also
deprecated:

<application root
context>/oauth/*

Use the MobileFirst
OAuth-based security model
instead. For more
information about this
model, see “OAuth-based
security model” on page
8-221.

API elements deprecated in V7.0.0

Table 3-2. API elements deprecated in V7.0.0.

Category Deprecation Recommended Action

WLClient [WLCLient lastAccessToken] Use [WLAuthorizationManager
cachedAuthorizationHeader] instead.

[WLCLient lastAccessTokenForScope] Use [WLAuthorizationManager
cachedAuthorizationHeader] instead.

[WLCLient
obtainAccessTokenForScope]

Use [WLAuthorizationManager
obtainAuthorizationHeaderForScope]
instead.

WLResponse [WLResponse getResponseJson] Use the responseJson property
instead.

Removed features
The following features are removed from this and earlier releases of this product.

Release notes 3-9

Features removed in V7.0.0

Table 3-3. Features removed in V7.0.0.

Feature

The JAR files and JavaScript libraries that enable SSO between IBM MobileFirst Platform
Foundation for iOS and other external services are removed. Use the MobileFirst
OAuth-based security model instead.

For more information about the OAuth-based security model, see “OAuth-based security
model” on page 8-221.

The "shake to refresh" feature is removed in IBM MobileFirst Platform Foundation for iOS
V7.0.0.

Known issues
You can identify the latest known issues and their resolutions, for this product
release and all its fix packs, by browsing this dynamic list of documents.

Click the following link to receive a dynamically generated list of documents for
this specific release and all its fix packs, including known issues and their
resolutions, and relevant downloads: http://www.ibm.com/support/
search.wss?tc=SSHSCD&atrn=SWVersion&atrv=7.0

The following websites provide helpful community resources:
v Developer Center for IBM MobileFirst Platform (Help page), where you can post

questions to Stack Overflow website, and get answers, by using the following
tags:
– mobilefirst
– worklight for past releases

v dW Answers website, where you can post questions and get answers, by using
the following tags:
– mobilefirst
– worklight for past releases

Known limitations
General limitations apply to IBM MobileFirst Platform Foundation for iOS as
detailed here. Limitations that apply to specific features are explained in the topics
that describe these features.

In this documentation, you can find the description of IBM MobileFirst Platform
Foundation for iOS known limitations in different locations:
v When the known limitation applies to a specific feature, you can find its

description in the topic that explains this specific feature. You can then
immediately identify how it affects the feature.

v When the known limitation is general, that is, applies to different and possibly
not directly related topics, you can find its description here.

Note: For more information about product known limitations or issues, see
“Known issues.”

3-10 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/search.wss?tc=SSHSCD&atrn=SWVersion&atrv=7.0
http://www.ibm.com/support/search.wss?tc=SSHSCD&atrn=SWVersion&atrv=7.0
https://developer.ibm.com/mobilefirstplatform/help/
http://stackoverflow.com/questions/tagged/mobilefirst
http://stackoverflow.com/questions/tagged/worklight
https://developer.ibm.com/answers
https://developer.ibm.com/answers/search.html?f=&type=question&redirect=search_search&sort=relevance&q=mobilefirst
https://developer.ibm.com/answers/search.html?f=&type=question&redirect=search_search&sort=relevance&q=worklight

Globalization

If you are developing globalized apps, notice the following restrictions:
v Part of the product IBM MobileFirst Platform Foundation for iOS V7.0.0,

including its documentation, is translated in the following languages: Simplified
Chinese, Traditional Chinese, French, German, Italian, Japanese, Korean,
Portuguese (Brazil), Russian, and Spanish. Only user-facing text is translated.

v The MobileFirst Platform Command Line Interface for iOS and MobileFirst
Operations Console provide only partial support for bidirectional languages.

v The applications that are generated by IBM MobileFirst Platform Foundation for
iOS are not fully bidirectional enabled. Mirroring of the graphic user interface
(GUI) elements and the control of the text direction are not provided by default.
However, there is no hard dependency from the generated applications on this
limitation. It is possible for the developers to achieve full bidi compliance by
manual adjustments in the generated code.

v Although translation into Hebrew is provided for IBM MobileFirst Platform
Foundation for iOS core functionality, some GUI elements are not mirrored.

v In MobileFirst Platform Command Line Interface for iOS and MobileFirst
Operations Console, dates and numbers might not be formatted according to the
locale.

v Names of projects, apps, and adapters must be composed only of the following
characters:
– Uppercase and lowercase letters (A-Z and a-z)
– Digits (0-9)
– Underscore (_)

v There is no support for Unicode characters outside the Basic Multilingual Plane.

The Server Configuration Tool has the following restrictions:
v The descriptive name of a server configuration can contain only characters that

are in the system character set. On Windows, it is the ANSI character set.
v Passwords that contain single quotation mark or double quotation mark

characters might not work correctly.
v The console of the Server Configuration Tool has the same globalization

limitation as the Windows console to display strings that are out of the default
code page.

IBM MobileFirst Platform Operational Analytics has the following limitations in
terms of globalization:
v In reports, the format for dates and times do not follow the International

Components for Unicode (ICU) rules.
v In reports, searching for Chinese, Japanese, and Korean characters (CJK) returns

no results.
v In Analytics Console, the format for numbers does not follow the International

Components for Unicode (ICU) rules.
v In Analytics Console, the numbers do not use the user's preferred number script.
v When you create a custom filter for a custom chart, the numerical data must be

in base 10, Western, or European numerals, such as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
v The numbers that represent the page numbers in the pagination elements of the

MobileFirst Operations Console are limited to Western or European numerals.
v The Analytics page of the MobileFirst Operations Console does not work in the

following browsers:

Release notes 3-11

– Microsoft Internet Explorer version 8 or earlier
– Apple Safari on iOS version 4.3 or earlier

You might also experience restrictions or anomalies in various aspects of
globalization because of limitations in other products, such as browsers, database
management systems, or software development kits in use. For example:
v You must define the user name and password of the Application Center with

ASCII characters only. This limitation exists because IBM WebSphere Application
Server (full or Liberty profiles) does not support non-ASCII passwords and user
names. See Characters that are valid for user IDs and passwords.

v In Java 7.0 Service Refresh 4-FP2 and previous versions, you cannot paste
Unicode characters that are not part of the Basic Multilingual Plane into the
input field. To avoid this issue, create the path folder manually and choose that
folder during the installation.

v Custom title and button names for the alert, confirm, and prompt methods must
be kept short to avoid truncation at the edge of the screen.

v The applications that are developed with MobileFirst Application Framework
running in Portuguese (Portugal) will see runtime messages in Portuguese
(Brazil).

v JSONStore does not handle normalization. The Find functions for the JSONStore
API do not take account of language sensitivity such as accent insensitive, case
insensitive, and 1 to 2 mapping.

v The sorted results of JSONStore Find API are not language-specific and not
compliant with Common Locale Data Repository (CLDR) rules.

Application Center mobile client

The Application Center mobile client follows the cultural conventions of the
running device, such as the date formatting. It does not always follow the stricter
International Components for Unicode (ICU) rules.

Application Center requires MobileFirst Studio for importing and
building the IBMAppCenter project

MobileFirst Studio is not part of IBM MobileFirst Platform Foundation for iOS, but
if you purchased this product, you are entitled to the full cross-platform version of
the product as well. You can install MobileFirst Studio from the Eclipse
Marketplace, or download the full MobileFirst Platform Command Line Interface
for iOS from IBM MobileFirst Developer Center to perform the build of the
Application Center mobile client for iOS.

JSONStore resources for iPhone and iPad

When you develop apps for iPhone and iPad, the JSONStore resources are always
packaged in the application, regardless of whether you enabled JSONStore or not
in the application descriptor. The application size is not reduced even if JSONStore
is not enabled.

Analytics page of the MobileFirst Operations Console

Response times in the Analytics page of the MobileFirst Operations Console
depend on several factors, such as hardware (RAM, CPUs), quantity of
accumulated analytics data, and IBM MobileFirst Platform Operational Analytics

3-12 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/csec_chars.html
https://developer.ibm.com/mobilefirstplatform/

clustering. Consider testing your load before integrating IBM MobileFirst Platform
Operational Analytics into production.

Installation on a cluster of IBM WebSphere Application Servers
Liberty profile that you administer with a collective controller

The following limitations apply if you install MobileFirst Server on a cluster of
IBM WebSphere Application Servers, Liberty profile, that you administer with a
collective controller:
v The Application Center installation with the MobileFirst Server installer does not

use the collective controller. You must install MobileFirst Server on each server
separately.

v The MobileFirst Operations Console installation with the
<configureApplicationServer> Ant task does not use the collective controller.
You must run the <configureApplicationServer> Ant task for each server
separately.

No white space with Eclipse workspace path

The MobileFirst Development Server (an instance of the WebSphere Application
Server Liberty profile server) cannot handle an Eclipse workspace path with white
space. As a result, a simple app cannot be deployed or previewed. In MobileFirst
Operations Console, an error message is displayed:
Server error. Contact the server administrator.

In the log file, the following error messages are logged:
[12/11/14 10:27:57:376 IST]
0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W:
The manifest class path jaxb-api.jar can not be found in jar file
wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wlp/usr/servers/
worklight/apps/worklightconsole.war!/
WEB-INF/lib/jaxb-impl-2.1.12.osgi.jar or its parent.
[12/11/14 10:27:57:376 IST]
0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W:
The manifest class path activation.jar can not be found in jar file
wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wlp/usr/servers/
worklight/apps/worklightconsole.war!/
WEB-INF/lib/jaxb-impl-2.1.12.osgi.jar or its parent.
[12/11/14 10:27:57:376 IST]
0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W:
The manifest class path jsr173_1.0_api.jar can not be found in jar file
wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wlp/usr/servers/
worklight/apps/worklightconsole.war!
/WEB-INF/lib/jaxb-impl-2.1.12.osgi.jar or its parent.
[12/11/14 10:27:57:377 IST]
0000002f m.ibm.ws.container.service.app.deploy.ManifestClassPathUtils W SRVE9967W:
The manifest class path jaxb1-impl.jar can not be found in jar file
wsjar:file:/home/administrator/.ibm/mobilefirst/6.3.0/server/wlp/usr/servers/
worklight/apps/worklightconsole.war!
/WEB-INF/lib/jaxb-impl-2.1.12.osgi.jar or its parent.
[12/11/14 10:27:57:637 IST]
00000029 com.ibm.ws.webcontainer.osgi.webapp.WebGroup I SRVE0169I:
Loading Web Module: IBMJMXConnectorREST.

Do not use an Eclipse workspace path with white space.

Release notes 3-13

Installation of a fix pack or interim fix to the Application Center
or the MobileFirst Server

When you apply a fix pack or an interim fix to Application Center or MobileFirst
Server, manual operations are required, and you might have to shut down your
applications for some time. For more information, see “Upgrading to IBM
MobileFirst Platform Foundation for iOS V7.0.0” on page 7-1 or “Upgrading to
MobileFirst Server V7.0.0 in a production environment” on page 7-4.

FIPS 140-2 feature limitations

The following known limitations apply when you use the FIPS 140-2 feature in
IBM MobileFirst Platform Foundation for iOS:
v This FIPS 140-2 validated mode applies only to the protection (encryption) of

local data that is stored by the JSONStore feature and protection of HTTPS
communications between the MobileFirst client and the MobileFirst Server.
– For HTTPS communications, only the communications between the

MobileFirst client and the MobileFirst Server use the FIPS 140-2 libraries on
the client. Direct connections to other servers or services do not use the FIPS
140-2 libraries.

v On iOS, this feature is supported on i386, armv7, and armv7s architectures. FIPS
is not yet supported on 64-bit architecture even though MobileFirst library does
support 64-bit architecture. Therefore, FIPS must not be enabled on 64-bit target
platform when XCode Build Setting (Architecture) is also set to 64 bit.

v This feature works with hybrid applications only (not native).
v The use of the user enrollment feature on the client is not supported by the FIPS

140-2 feature.
v The Application Center client does not support the FIPS 140-2 feature.

For more information about this feature, see “FIPS 140-2 support” on page 11-123.

LTPA token limitations

An SESN0008E exception occurs when an LTPA token expires before the user session
expires.

An LTPA token is associated with the current user session. If the session expires
before an LTPA token expires, a new session is created automatically. However,
when an LTPA token expires before a user session expires, the following exception
occurs:
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException: SESN0008E:
A user authenticated as anonymous has attempted to access a session owned by {user name}

To resolve this limitation, you must force the user session to expire when the LTPA
token expires.
v On WebSphere Application Server Liberty, set the httpSession attribute

invalidateOnUnauthorizedSessionRequestException to true in the server.xml
file.

v On WebSphere Application Server, add the session management custom
property InvalidateOnUnauthorizedSessionRequestException with the value
true to fix the issue.

Note: On certain versions of WebSphere Application Server or WebSphere
Application Server Liberty, the exception is still logged, but the session is correctly
invalidated. For more information, see APAR PM85141.

3-14 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg1PM85141

Support of Oracle 12c by MobileFirst Server

The installation tools of the MobileFirst Server (Installation Manager, Server
Configuration Tool, and Ant tasks) support installation with Oracle 12c as a
database.

The users and tables can be created by the installation tools but the database, or
databases, must exist before you run the installation tools.

Liberty server limitations

If you use the Liberty studio server on a 32-bit JDK 7, Eclipse might not start, and
you might receive the following error: Error occurred during initialization of
VM. Could not reserve enough space for object heap. Error: Could not create
the Java Virtual Machine. Error: A fatal exception has occurred. Program
will exit.

To fix this issue, use the 64-bit JDK with the 64-bit Eclipse and 64-bit Windows. If
you use the 32-bit JDK on a 64-bit machine, you might configure JVM preferences
to mx512m and -Xms216m.

Application servers restrictions for MobileFirst Data Proxy

You cannot install MobileFirst Data Proxy on the following application servers:
v Apache Tomcat
v Versions of WebSphere Application Server Liberty profile earlier than V8.5.5.0.

Physical iOS device required for testing extended app
authenticity

The testing of the extended app authenticity feature requires a physical iOS device,
because an IPA cannot be installed on an iOS simulator.

Release notes 3-15

3-16 IBM MobileFirst Platform Foundation for iOS V7.0.0

Troubleshooting

You can find advice on how to troubleshoot problems, and more information about
known limitations and technotes (Troubleshooting).

The following links point to troubleshooting topics in other parts of this user
documentation. To navigate from there back to this topic, click Back in your Web
browser.
v “Troubleshooting IBM MobileFirst Platform Server” on page 6-280
v “Troubleshooting IBM HTTP Server startup” on page 6-259
v “Troubleshooting to find the cause of installation failure” on page 6-280
v “Troubleshooting a Cast Iron adapter – connectivity issues” on page 8-149
v “Troubleshooting JSONStore” on page 8-168
v “Troubleshooting simple data sharing” on page 8-256.
v “Troubleshooting a corrupt login page (Apache Tomcat)” on page 11-77
v “Troubleshooting failure to authenticate to Application Center and applications

that use the basic registry element” on page 6-281
v “Troubleshooting push notification problems” on page 8-220
v “Troubleshooting JMX configuration for Liberty profile” on page 6-49

For more information about known limitations or issues in the product, and
removed or deprecated features, see “Release notes” on page 3-1.

Important: If you have to contact IBM Support for help, see the information in
Collect troubleshooting data. This document details how to gather the necessary
information about your environment so that IBM Support can help diagnose and
resolve your problem.

© Copyright IBM Corp. 2006, 2016 4-1

http://www.ibm.com/support/docview.wss?uid=swg21598161

4-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

Tutorials, samples, and additional resources

Tutorials and samples help you get started with and learn about IBM MobileFirst
Platform Foundation for iOS. Use them to evaluate what the product can do for
you.

Tutorials and associated samples

For you to learn the most important features of IBM MobileFirst Platform
Foundation for iOS, tutorials are available on the Getting Started page of the
Developer Center for IBM MobileFirst Platform Foundation for iOS.

Tutorials are organized in categories.

Each tutorial is composed of web pages to learn the steps and one or two
companion samples to practice and reuse. The samples are provided as compressed
files and contain pieces of code or script files that support the step-by-step
instructions. When a tutorial includes some exercises, a companion sample
provides the solutions to these exercises.

The same page provides links for you to download compressed files that contain
the materials for the tutorials and samples.

Sample applications

Demonstrations are available from the Starter application samples page of the
Developer Center for a collection of features.

Additional documentation

The Additional documentation page of the Developer Center provides more useful
links, including a guide to scalability and hardware sizing.

Terms and conditions

Before you use the IBM MobileFirst Platform Foundation for iOS Getting Started
modules, exercises, and code samples that are available from Getting Started pages,
you must agree on the terms and conditions that are set forth here:

This information contains sample code provided in source code form. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample code is written. Notwithstanding anything to the
contrary, IBM PROVIDES THE SAMPLE SOURCE CODE ON AN “AS IS” BASIS
AND IBM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE, AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM SHALL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY OR ECONOMIC
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR OPERATION OF
THE SAMPLE SOURCE CODE. IBM SHALL NOT BE LIABLE FOR LOSS OF, OR

© Copyright IBM Corp. 2006, 2016 5-1

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-native-ios-development-7-0/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/starter-application-samples/
https://developer.ibm.com/mobilefirstplatform/additional-documentation/

DAMAGE TO, DATA, OR FOR LOST PROFITS, BUSINESS REVENUE,
GOODWILL, OR ANTICIPATED SAVINGS. IBM HAS NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS OR
MODIFICATIONS TO THE SAMPLE SOURCE CODE.

The resources might include applicable third-party licenses. Review the third-party
licenses before you use any of the resources. You can find the third-party licenses
that apply to each sample in the notices.txt file that is included with each
sample.

5-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

Installing and configuring

This topic is intended for IT developers and administrators who want to install
and configure IBM MobileFirst Platform Foundation for iOS.

This topic describes the tasks required to install and configure the different
components of IBM MobileFirst Platform Foundation for iOS. It also contains
information about installing and configuring database and application server
software that you need to support the runtime database.

For more information about how to size your system, see the Scalability and
Hardware Sizing document and the hardware calculator spreadsheet at the
Developer Center website for IBM MobileFirst Platform Foundation.

Consider compatibility with prior releases before you decide what version of each
product component to install. For more information, see “Version compatibility” on
page 7-1.

Installation overview
IBM MobileFirst Platform Foundation for iOS provides the following installable
components: MobileFirst Platform Command Line Interface for iOS, and
MobileFirst Server. This section gives an overview of the installation process.

Installing MobileFirst Server with IBM Installation Manager

To ensure the correct installation of MobileFirst Server, see “Installation
prerequisites” on page 6-4.

You must install IBM Installation Manager 1.6.3 or later separately before installing
IBM MobileFirst Platform Foundation for iOS. For more information, see “Running
IBM Installation Manager” on page 6-29.

Note: IBM Installation Manager is sometimes referred to as IBM Rational®

Enterprise Deployment on the eXtreme Leverage, Passport Advantage® sites, and on
the distribution disks. The file names for the images take the form IBM Rational
Enterprise Deployment <version number><hardware platform> <language>; for
example, IBM Rational Enterprise Deployment V1.6.3.1Windows Multilingual.

You then use IBM Installation Manager to install MobileFirst server-side
components on your application server, and to create databases on your database
management system. Some application server and database configuration is
required. For actual instructions, see “Installing MobileFirst Server” on page 6-2.

Upgrading from earlier versions

The preceding sections provide an overview of IBM MobileFirst Platform
Foundation for iOS "first time" installations. For information about upgrading
existing installations of MobileFirst Server to a newer version, see “Upgrading to
IBM MobileFirst Platform Foundation for iOS V7.0.0” on page 7-1.

Consider compatibility with prior releases before you decide what version of each
product component to install. For more information about compatibility between

© Copyright IBM Corp. 2006, 2016 6-1

https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

releases, see “Version compatibility” on page 7-1.

Installing command-line tools for developers
Follow these instructions to install IBM MobileFirst Platform Command Line
Interface for iOS (CLI).

Procedure
1. Download the IBM MobileFirst Platform Command Line Interface for iOS with

the rest of IBM MobileFirst Platform Foundation for iOS from IBM Passport
Advantage.

2. In the Finder, double-click the mobilefirst_ios_cli_installer_7.0.0.zip
package. The CLI is packaged as a single compressed file, which contains
installation executable files for each platform, as listed:
v Readme file
v install_mac.app

v resources/

3. From the Finder, right-click the install_mac.app file and select Open. A GUI
appears which guides you through the installation of IBM MobileFirst Platform
Command Line Interface for iOS. Follow the instructions to complete your
installation.

4. On completion of your installation, log out and then log back in. This action
ensures that the mobilefirst and mfp commands are on your system path.

Uninstalling command-line tools for developers
Follow these instructions to uninstall the IBM MobileFirst Platform Command Line
Interface for iOS.

Before you begin

Open your command-line terminal to the path where you installed the IBM
MobileFirst Platform Command Line Interface for iOS, and change the directory to
the Uninstaller folder.

Procedure

GUI Uninstallation: Select and run the uninstall. A GUI appears which guides you
through the uninstallation of the IBM MobileFirst Platform Command Line
Interface for iOS. Follow the instructions to complete your uninstallation.

Installing MobileFirst Server
IBM installations are based on an IBM product called IBM Installation Manager.
Install IBM Installation Manager 1.6.3.1 or later separately before you install IBM
MobileFirst Platform Foundation for iOS.

Important: Ensure that you use IBM Installation Manager 1.6.3.1 or later. This
version contains an important fix for an issue identified in IBM Installation
Manager 1.6.3. See http://www.ibm.com/support/docview.wss?uid=swg24035049.

6-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg24035049

The MobileFirst Server installer copies onto your computer all the tools and
libraries that are required for deploying a MobileFirst project or the IBM
MobileFirst Platform Application Center in production, and IBM SmartCloud®

Analytics Embedded.

MobileFirst Server can also automatically deploy the Application Center at
installation time. In this case, a database management system and an application
server are required as prerequisites and must be installed before you start the
MobileFirst Server installer.

The installer can also help with upgrading an existing installation of MobileFirst
Server to the current version. See “Upgrading to IBM MobileFirst Platform
Foundation for iOS V7.0.0” on page 7-1.

Before you install, take the time to consider the server topology in which you will
deploy the administration components and the runtimes. The supported topologies
are introduced in “Planning deployment of administration components and
runtimes” on page 6-7.

The following topics describe the installation of MobileFirst Server, installation
prerequisites, and the procedures for a manual installation and configuration of
Application Center. After MobileFirst Server is installed, a MobileFirst project must
be deployed to an application server. This deployment installs a IBM MobileFirst
Platform Operations Console that can be used to upload applications and adapters.
The instructions in “Tutorial for a basic installation of MobileFirst Server” on page
6-23 are based on a simple installation scenario. For a complete description of the
process of deploying a MobileFirst project, see “Deploying MobileFirst projects” on
page 10-1.

Planning the installation of MobileFirst Server
You must plan your installation and choose one installation scenario. You must
also plan the creation of your databases and the topology of the application server.

To install the MobileFirst Server, you can choose one of the following scenarios:
v With the Server Configuration Tool.

The Server Configuration Tool is a graphical tool and is available for Windows,
Linux on x86, and Mac OS. With this tool, you get easily started, but expect
some limitations when you maintain an application in production, in particular
for some upgrade scenarios. This tool can export Ant files.

Restriction:

– The Server Configuration Tool does not support server farms. Therefore, you
cannot use it to define, install, upgrade, or uninstall server farms. For server
farms, use the provided Ant script or follow manual steps in your application
server. For more information, see “Installing a server farm” on page 6-97.

– The Server Configuration Tool for Mac OS is available for development and
test purposes only.

v Ant tasks: Ant command-line files automate the process of creating or upgrading
a database, either automatically or as a complement of a database preparation by
a database administrator. The Ant tasks also automate the process of installing
or upgrading the Administration Services and the MobileFirst Operations
Console in an application server. Ant tasks provide a high level of control for
individual operations on the database or on the application server.

v Manual installation.

Installing and configuring 6-3

Installation prerequisites
For smooth installation of MobileFirst Server, ensure that you fulfill all required
environment setup and software prerequisites before you attempt installation.

You can find a complete list of supported hardware together with prerequisite
software in “System requirements” on page 2-7.

Important: If a version of MobileFirst Server is already installed, review
“Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0” on page 7-1
before you install MobileFirst Server and deploy a MobileFirst project on the same
application server or databases. Failure to do so can result in an incomplete
installation and a non-functional MobileFirst Server.

Download the IBM MobileFirst Platform Foundation for iOS package from IBM
Passport Advantage.

Ensure that you have the latest fix packs for the IBM MobileFirst Platform
Foundation for iOS product. If you are connected to the Internet during the
installation, IBM Installation Manager can download the latest fix packs for you.

The package contains an Install Wizard that guides you through the MobileFirst
Server installation.

MobileFirst Server requires an application server and relies on a database
management system.

You can use any of the following application servers:
v WebSphere Application Server Liberty Core
v WebSphere Application Server
v Apache Tomcat

You can use any of the following database management systems:
v IBM DB2®

v MySQL
v Oracle
v Apache Derby in embedded mode. Included in the installation image.

Verify that the application server you selected provides support for your database.

Note: Apache Derby is supplied for evaluation and testing purposes only and is
not supported for production-grade MobileFirst Server.

The MobileFirst installer can install the IBM MobileFirst Platform Application
Center and deploy it to your application server. In this case, the application server
and the database management system (if different from Apache Derby) must be
installed before you start the MobileFirst Server installer. If you do not need the
Application Center or decide to install it manually, you do not need to install the
application server and database management system before you start the
MobileFirst Server installer. However, you need them before you deploy IBM
MobileFirst Platform Foundation for iOS projects.

The IBM MobileFirst Platform Foundation for iOS packages include the following
installers:
v IBM DB2 Workgroup Server Edition

6-4 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/software/passportadvantage/pao_customers.htm
http://www.ibm.com/software/passportadvantage/pao_customers.htm

v IBM DB2 Enterprise Server Edition (on Linux for System z® only)
v IBM WebSphere Application Server Liberty Core

File system prerequisites
To install IBM MobileFirst Platform Foundation for iOS to an application server,
the MobileFirst installation tools must be run by a user that has specific file system
privileges.

The installation tools include:
v IBM Installation Manager
v The Server Configuration Tool
v The Ant tasks to deploy the MobileFirst Server

For WebSphere Application Server Liberty profile, you must have the right to
perform the following actions:
v Read the files in the Liberty installation directory.
v Create files in the configuration directory of the Liberty server, which is typically

usr/servers/<servername>, to create backup copies and modify server.xml and
jvm.options.

v Create files and directories in the Liberty shared resource directory, which is
typically usr/shared.

v Create files in the Liberty server apps directory, which is typically
usr/servers/<servername>/apps.

For WebSphere Application Server full profile and WebSphere Application Server
Network Deployment, you must have the right to perform the following actions:
v Read the files in the WebSphere Application Server installation directory.
v Read the configuration file of the selected WebSphere Application Server full

profile or of the Deployment Manager profile.
v Run the wsadmin command.
v Create files in the profiles configuration directory. The installation tools put

resources such as shared libraries or JDBC drivers in that directory.

For Apache Tomcat, you must have the right to perform the following actions:
v Read the configuration directory.
v Create backup files and modify files in the configuration directory, such as

server.xml, and tomcat-users.xml.
v Create backup files and modify files in the bin directory, such as setenv.bat.
v Create files in the lib directory.
v Create files in the webapps directory.

For all these application servers, the user who runs the application server must be
able to read the files that were created by the user who ran the MobileFirst
installation tools.

Introduction to the MobileFirst Server components
The MobileFirst Server is composed of one or more runtime environments, an
administration console and administration services, an enterprise application store,
and an operational analytics feature.

Installing and configuring 6-5

MobileFirst Server components run as web applications on an application server.
To set up MobileFirst Server, you must first choose which of the following
supported application servers you want to use:
v WebSphere Application Server
v WebSphere Application Server Liberty
v Apache Tomcat

For implementations that require several servers, you might want to set up one of
the following topologies:
v A server cluster that is defined by using the WebSphere Application Server

Network Deployment solution. (Use the hardware-sizing tool on
developerWorks® to decide on the number of servers and the size of the
database.)

v A farm of individual application servers. Specific installation steps must be
taken. See “Installing a server farm” on page 6-97.

The following sections describe each of the following MobileFirst Server
components:
v “MobileFirst runtime environments.”
v “IBM MobileFirst Platform Operations Console and Administration Services”
v “IBM MobileFirst Platform Application Center” on page 6-7
v “MobileFirst Operational Analytics” on page 6-7

MobileFirst runtime environments

The MobileFirst runtime environment is a mobile-optimized server-side component
that runs the server side of your mobile applications (back-end integration, version
management, security, unified push notification).

Each runtime environment is packaged as a web application (WAR file), which is
created by using IBM MobileFirst Platform Command Line Interface for iOS. Each
runtime environment can host one or more MobileFirst applications.

Each runtime environment requires a database to host information such as the list
of devices that connect to it. Different runtime environments (different project WAR
files) cannot share database tables. If you have multiple runtime environments, the
tables must be in different schemas or different databases, depending on your
database management system. Similar runtime environments (project WAR files) that
run in the same cluster of farm must use the same database unless you implement
a disaster recovery topology with replication and conflict management as described
in Active/Active topology for the MobileFirst Platform Foundation Server. You can
also optionally set up a report database to host data for simple usage reports of a
particular runtime environment.

IBM MobileFirst Platform Operations Console and Administration
Services

The MobileFirst Administration component consists of two applications that are
used for the administration of the runtime environments:
v The MobileFirst Operations Console application.
v The MobileFirst Administration Services application.

6-6 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/2015/01/29/activeactive-topology-mobilefirst-platform-foundation-server/

The MobileFirst Operations Console is the web-based interface that an IT
administrator uses to run administration tasks on the mobile application such as
application deployment, management, version enforcement, and management of
push notifications.

The MobileFirst Operations Console is supported by the MobileFirst
Administration Services application. This application acts as host for all the REST
services and administration tasks. Both the MobileFirst Operations Console and the
Administration Services can be secured through standard Java Platform, Enterprise
Edition security. Several administration user roles are available to cover different
administration scenarios.

One MobileFirst Operations Console can be used for the administration of several
runtime environments. The administration tasks are run through standard JMX
(Java Management Extension) calls.

Note: Since V6.2.0, the MobileFirst runtime environment registers an MBean called
com.worklight.core.jmx.ProjectManagementMXBean and exposes the JMX API with
this MBean. This MBean is exposed with all other MBeans that are registered in the
application server. It is used by the runtime environment for such things as the
management of deployed applications and adapters, devices, and push services.
This MBean is intended to be used only by the MobileFirst Administration
Services, so methods in this MBean are private and are not meant to be accessed
directly.

A database is required for the MobileFirst Operations Console and Administration
Services.

IBM MobileFirst Platform Application Center

The Application Center is a private application store that developers can use to get
feedback about their mobile applications from testers and stakeholders. The
Application Center is used to distribute private or public applications to employees
and partners. The Application Center is an optional component that can be
installed separately from the other MobileFirst Server components.

The Application Center consists of two web applications:
v The Application Center console application that provides the user interface.
v The Application Center services application that provides the REST services.

A database is required for the Application Center. For more information, see
“Application Center” on page 11-65.

MobileFirst Operational Analytics

The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage or to detect problems.

The feature is packaged as a web application. To enable the collection of analytics
information, you must configure the runtime environment with the URL of the
analytics platform. For more information, see “Analytics” on page 12-6.

Planning deployment of administration components and
runtimes
Plan the deployment of MobileFirst administration components and runtimes
depending on the server topology that you use.

Installing and configuring 6-7

See “Introduction to the MobileFirst Server components” on page 6-5 for an
introduction to the administration components and runtimes.

You can use the following topologies of application servers:
v Stand-alone server: WebSphere Application Server Liberty profile, Apache

Tomcat, or WebSphere Application Server full profile
v Server farm: WebSphere Application Server Liberty profile, Apache Tomcat, or

WebSphere Application Server full profile
v WebSphere Application Server Network Deployment cell

Depending on the application server topology that you use, you can deploy either
symmetrically or asymmetrically. In symmetrical deployment, you must install
runtimes and administration components on the same application server. In
asymmetric deployment, you can install the runtimes on different application
servers from the administration components.

Modes of deployment

Two modes are available to deploy the MobileFirst administration components and
the runtimes in the application server infrastructure.
v Symmetric deployment: the MobileFirst administration components (MobileFirst

Operations Console and administration service applications) are deployed in the
same Java Virtual Machine (JVM) as the runtimes.

v asymmetric deployment: The administration components are deployed in a
different JVM from the runtimes.

Asymmetric deployment is only supported for WebSphere Application Server
Network Deployment cell topology.

Stand-alone server topology:

You can configure a stand-alone topology for WebSphere Application Server full
profile, WebSphere Application Server Liberty profile, and Apache Tomcat.

In this topology, all the administration components and the runtimes are deployed
in a single Java Virtual Machine (JVM).

6-8 IBM MobileFirst Platform Foundation for iOS V7.0.0

With one JVM, only symmetric deployment is possible with the following
characteristics:
v One or several administration components can be deployed. Each MobileFirst

Operations Console communicates with one administration service.
v One or several runtimes can be deployed.
v One MobileFirst Operations Console can manage several runtimes.
v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema.
v Each runtime uses its own runtime database schema.

Configuration of JNDI properties

Some JNDI properties are required to enable Java Management Extensions (JMX)
communication between the administration service and the runtime, and to define
the administration service that manages a runtime. For details about these
properties, see “List of JNDI properties for MobileFirst Server administration” on
page 6-86 and “Configuring a MobileFirst project in production by using JNDI
environment entries” on page 10-60.

Stand-alone WebSphere Application Server Liberty profile server

The following global JNDI properties are required for the administration
services and for the runtimes.

Figure 6-1. Topology of a stand-alone server

Installing and configuring 6-9

Table 6-1. Global JNDI properties for administration services and runtimes in WebSphere
Application Server Liberty stand-alone topology

JNDI properties Values

ibm.worklight.topology.platform “Liberty”

ibm.worklight.topology.clustermode “Standalone”

ibm.worklight.admin.jmx.host Hostname of the WebSphere Application
Server Liberty profile server

ibm.worklight.admin.jmx.port Port of the REST connector that is the port
of the httpsPort attribute declared in the
<httpEndpoint> element of the server.xml
file of WebSphere Application Server Liberty
profile server. This property has no default
value.

ibm.worklight.admin.jmx.user The user name of the WebSphere
Application Server Liberty administrator,
which must be identical to the name defined
in the <administrator-role> element of the
server.xml file of the WebSphere
Application Server Liberty profile server.

ibm.worklight.admin.jmx.pwd Password of the WebSphere Application
Server Liberty administrator user.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:
v On each administration service, a unique value for the local

ibm.worklight.admin.environmentid JNDI property.
v On each runtime, the same value for the local

ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

Stand-alone Apache Tomcat server

The following local JNDI properties are required for the administration
services and for the runtimes.

Table 6-2. Local JNDI properties for administration services and runtimes in Apache Tomcat
stand-alone topology

JNDI properties Values

ibm.worklight.topology.platform “Tomcat”

ibm.worklight.topology.clustermode “Standalone”

JVM properties are also required to define Java Management Extensions
(JMX) Remote Method Invocation (RMI). For more information, see
“Configuring Apache Tomcat” on page 6-47.

If the Apache Tomcat server is running behind a firewall, the
ibm.worklight.admin.rmi.registryPort and
ibm.worklight.admin.rmi.serverPort JNDI properties are required for the
administration service. See “Configuring Apache Tomcat” on page 6-47.

6-10 IBM MobileFirst Platform Foundation for iOS V7.0.0

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:
v On each administration service, a unique value for the local

ibm.worklight.admin.environmentid JNDI property.
v On each runtime, the same value for the local

ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

Stand-alone WebSphere Application Server

The following local JNDI properties are required for the administration
services and for the runtimes.

Table 6-3. Local JNDI properties for administration services and runtimes in WebSphere
Application Server stand-alone topology

JNDI properties Values

ibm.worklight.topology.platform “WAS”

ibm.worklight.topology.clustermode “Standalone”

ibm.worklight.admin.jmx.connector The JMX connector type; the value can be
“SOAP”or “RMI”.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:
v On each administration service, a unique value for the local

ibm.worklight.admin.environmentid JNDI property.
v On each runtime, the same value for the local

ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

Server farm topology:

You can configure a farm of WebSphere Application Server full profile, WebSphere
Application Server Liberty profile, or Apache Tomcat application servers.

A farm is a set of individual servers where the same components are deployed and
where the same administration database and runtime database are shared between
the servers. The farm topology enables the load of MobileFirst applications to be
distributed across several servers. Each server in the farm must be a Java Virtual
Machine (JVM) of the same type of application server; that is, a homogeneous
server farm.

In this topology, all the administration components and the runtimes are deployed
on every server in the farm.

Installing and configuring 6-11

This topology supports only symmetric deployment. The runtimes and the
administration components must be deployed on every server in the farm. The
deployment of this topology has the following characteristics:
v One or several administration components can be deployed. Each instance of

MobileFirst Operations Console communicates with one administration service.
v The administration components must be deployed on all servers in the farm.
v One or several runtimes can be deployed.
v The runtimes must be deployed on all servers in the farm.
v One MobileFirst Operations Console can manage several runtimes.
v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema. All

deployed instances of the same administration service share the same
administration database schema.

v Each runtime uses its own runtime database schema. All deployed instances of
the same runtime share the same runtime database schema.

Configuration of JNDI properties

Some JNDI properties are required to enable JMX communication between the
administration service and the runtime of the same server, and to define the
administration service that manages a runtime. For convenience, the tables in this
section list these properties. For instructions about how to install a server farm, see
“Installing a server farm” on page 6-97. For details about the JNDI properties, see
“List of JNDI properties for MobileFirst Server administration” on page 6-86 and
“Configuring a MobileFirst project in production by using JNDI environment
entries” on page 10-60.

Figure 6-2. Topology of a server farm

6-12 IBM MobileFirst Platform Foundation for iOS V7.0.0

WebSphere Application Server Liberty profile server farm

The following global JNDI properties are required in each server of the
farm for the administration services and for the runtimes.

Table 6-4. Global JNDI properties for administration services and runtimes in server farm
topology of WebSphere Application Server Liberty profile

JNDI properties Values

ibm.worklight.topology.platform “Liberty”

ibm.worklight.topology.clustermode “Farm”

ibm.worklight.admin.jmx.host Hostname of the WebSphere Application
Server Liberty profile server

ibm.worklight.admin.jmx.port Port of the REST connector that must be
identical to the value of the httpsPort
attribute declared in the <httpEndpoint>
element of the server.xml file of the
WebSphere Application Server Liberty
profile server.

<httpEndpoint id="defaultHttpEndpoint"
httpPort="9080" httpsPort="9443"
host="*" />

ibm.worklight.admin.jmx.user The user name of the WebSphere
Application Server Liberty administrator
that is defined in the <administrator-role>
element of the server.xml file of the
WebSphere Application Server Liberty
profile server.

<administrator-role>
<user>WorklightRESTUser</user>

</administrator-role>

ibm.worklight.admin.jmx.pwd Password of the WebSphere Application
Server Liberty administrator user.

The ibm.worklight.admin.serverid JNDI property is required for the
administration service to manage the server farm configuration. Its value is
the server identifier, which must be different for each server in the farm.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:
v On each administration service, a unique value for the local

ibm.worklight.admin.environmentid JNDI property.
v On each runtime, the same value for the local

ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

Apache Tomcat server farm

The following global JNDI properties are required in each server of the
farm for the administration services and for the runtimes.

Installing and configuring 6-13

Table 6-5. Global JNDI properties for administration services and runtimes in server farm
topology of Apache Tomcat

JNDI properties Values

ibm.worklight.topology.platform “Tomcat”

ibm.worklight.topology.clustermode “Farm”

JVM properties are also required to define Java Management Extensions
(JMX) Remote Method Invocation (RMI). For more information, see
“Configuring Apache Tomcat” on page 6-47.

The ibm.worklight.admin.serverid JNDI property is required for the
administration service to manage the server farm configuration. Its value is
he server identifier, which must be different for each server in the farm.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:
v On each administration service, a unique value for the local

ibm.worklight.admin.environmentid JNDI property.
v On each runtime, the same value for the local

ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

WebSphere Application Server full profile server farm

The following global JNDI properties are required on each server in the
farm for the administration services and for the runtimes.

Table 6-6. Global JNDI properties for administration services and runtimes in server farm
topology of WebSphere Application Server full profile

JNDI properties Values

ibm.worklight.topology.platform “WAS”

ibm.worklight.topology.clustermode “Farm”

ibm.worklight.admin.jmx.connector “SOAP”

The following JNDI properties are required for the administration service
to manage the server farm configuration.

JNDI properties Values

ibm.worklight.admin.jmx.user The user name of WebSphere Application
Server. This user must be defined in the
WebSphere Application Server user registry.

ibm.worklight.admin.jmx.pwd The password of the WebSphere Application
Server user.

ibm.worklight.admin.serverid The server identifier, which must be
different for each server in the farm and
identical to the value of this property used
for this server in the server farm
configuration file.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

6-14 IBM MobileFirst Platform Foundation for iOS V7.0.0

When you deploy several administration components, you must specify
the following values:
v On each administration service, a unique value for the local

ibm.worklight.admin.environmentid JNDI property.
v On each runtime, the same value for the local

ibm.worklight.admin.environmentid JNDI property as the value defined
for the administration service that manages the runtime.

WebSphere Application Server Network Deployment topologies:

The administration components and the runtimes are deployed in servers or
clusters of the WebSphere Application Server Network Deployment cell.

Examples of these topologies support either asymmetric or symmetric deployment,
or both. You can, for example, deploy the administration components in one
cluster and the runtimes managed by these components in another cluster.

Symmetric deployment in the same server or cluster

Figure 6-3 shows symmetric deployment where the runtimes and the
administration components are deployed in the same server or cluster.

The deployment of this topology has the following characteristics:
v One or several administration components can be deployed in one or several

servers or clusters of the cell. Each instance of MobileFirst Operations Console
communicates with one administration service.

Figure 6-3. Symmetric deployment, same server or cluster

Installing and configuring 6-15

v One or several runtimes can be deployed in the same server or cluster as the
administration components that manage them.

v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema.
v Each runtime uses its own runtime database schema.

Asymmetric deployment with runtimes and administration services in different
server or cluster

Figure 6-4 shows a topology where the runtimes are deployed in a different server
or cluster from the administration services.

The deployment of this topology has the following characteristics:
v One or several administration components can be deployed in one or several

servers or clusters of the cell. Each instance of MobileFirst Operations Console
communicates with one administration service.

v One or several runtimes can be deployed in other servers or clusters of the cell.
v One MobileFirst Operations Console manages several runtimes deployed in the

other servers or clusters of the cell.
v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema.
v Each runtime uses its own runtime database schema.

This topology is advantageous, because it enables the runtimes to be isolated from
the administration components and from other runtimes. It can be used to provide

Figure 6-4. Asymmetric deployment, different server or cluster

6-16 IBM MobileFirst Platform Foundation for iOS V7.0.0

performance isolation, to isolate critical applications, and to enforce Service Level
Agreement (SLA).

Symmetric and asymmetric deployment

Figure 6-5 shows an example of symmetric deployment in Cluster1 and of
asymmetric deployment in Cluster2, where Runtime2 and Runtime3 are deployed
in a different cluster from the administration components. MobileFirst Operations
Console manages the runtimes deployed in Cluster1 and Cluster2.

The deployment of this topology has the following characteristics:
v One or several administration components can be deployed in one or several

servers or clusters of the cell. Each instance of MobileFirst Operations Console
communicates with one administration service.

v One or several runtimes can be deployed in one or several servers or clusters of
the cell.

v One MobileFirst Operations Console can manage several runtimes deployed in
the same or other servers or clusters of the cell.

v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema.
v Each runtime uses its own runtime database schema.

Configuration of JNDI properties

Some JNDI properties are required to enable JMX communication between the
administration service and the runtime, and to define the administration service
that manages a runtime. For details about these properties, see “List of JNDI

Figure 6-5. Symmetric and asymmetric deployment in different clusters of a cell

Installing and configuring 6-17

properties for MobileFirst Server administration” on page 6-86 and “Configuring a
MobileFirst project in production by using JNDI environment entries” on page
10-60.

The following local JNDI properties are required for the administration services
and for the runtimes:

Table 6-7. Local JNDI properties for administration services and runtimes in WebSphere
Application Server Network Deployment topologies

JNDI properties Values

ibm.worklight.topology.platform “WAS”

ibm.worklight.topology.clustermode “Cluster”

ibm.worklight.admin.jmx.connector The JMX connector type to connect with the
Deployment Manager. The value can be
“SOAP”or “RMI”. “SOAP” is the default
and preferred value. “RMI” must be used if
the SOAP port is disabled

ibm.worklight.admin.jmx.dmgr.host The host name of the Deployment Manager.

ibm.worklight.admin.jmx.dmgr.port The RMI or the SOAP port used by the
Deployment Manager, depending on the
value of
ibm.worklight.admin.jmx.connector.

Several administration components can be deployed to enable you to run the same
server or cluster with separate administration components managing each of the
different runtimes.

When several administration components are deployed, you must specify:
v On each administration service, a unique value for the local

ibm.worklight.admin.environmentid JNDI property.
v On each runtime, the same value for the local

ibm.worklight.admin.environmentid as the value defined for the administration
service that manages that runtime.

Using a reverse proxy with server farm and WebSphere Application Server
Network Deployment topologies:

You can use a reverse proxy with distributed topologies. If your topology uses a
reverse proxy, configure the required JNDI properties for the administration
service.

See the Glossary for the definition of a reverse proxy.

You can use a reverse proxy, such as IBM HTTP Server, to front server farm or
WebSphere Application Server Network Deployment topologies. In this case, you
must configure the administration components appropriately.

You can call the reverse proxy from:
v The browser when you access MobileFirst Operations Console.
v The runtime when it calls the administration service.
v The MobileFirst Operations Console component when it calls the Administration

services.

6-18 IBM MobileFirst Platform Foundation for iOS V7.0.0

If the reverse proxy is in a DMZ (a firewall configuration for securing local area
networks) and a firewall is used between the DMZ and the internal network, this
firewall must authorize all incoming requests from the application servers.

When a reverse proxy is used in front of the application server infrastructure, the
following JNDI properties must be defined for the administration service.

Table 6-8. JNDI properties for reverse proxy

JNDI properties Values

ibm.worklight.admin.proxy.protocol The protocol used to communicate with the
reverse proxy, which can be HTTP or
HTTPS.

ibm.worklight.admin.proxy.host The host name of the reverse proxy.

ibm.worklight.admin.proxy.port The port number of the reverse proxy.

The ibm.worklight.admin.endpoint property that references the URL of the reverse
proxy is also required for MobileFirst Operations Console. See “Defining the
endpoint of the MobileFirst Administration services” on page 6-78.

For detailed instructions to configure an IBM HTTP Server or a Data Store, see
“Typical topologies of a MobileFirst instance in an extranet infrastructure” on page
6-239.

Planning the creation of the databases
You must plan the creation of the three databases that are needed for the
Administration Services and the MobileFirst runtime environments.

Note: The Reports database, referenced below as WorklightReports and WLREPORT,
is deprecated in V7.0.0. You should use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

The installation of the MobileFirst Server requires the following three databases:
v For the Administration Services, an administration database.
v For each MobileFirst runtime environment:

– a runtime database
– a reports database

Note: By default, the databases have the following names and kind attributes, as
defined in table 1 of “Ant configuredatabase task reference” on page 14-1:
v The default name of the administration database is WLADMIN, and its kind is

WorklightAdmin.
v The default name of the runtime database is WRKLGHT, and its kind is Worklight.
v The default name of the reports database is WLREPORT, and its kind is

WorklightReports.

Optionally, the Application Center can be installed. The Application Center also
requires a database.

An installation of MobileFirst Server includes at least one MobileFirst runtime
environment, which is the web application that is in contact with the mobile
devices, but might contain more than one MobileFirst runtime environment.

Installing and configuring 6-19

The databases can be instantiated automatically by the Server Configuration Tool
or by the Ant tasks. In these two installation scenarios, it is also possible that a
database administrator creates the database beforehand. For more information
about the creation of these databases, see “Optional creation of the administration
database” on page 6-43. For more information about the MobileFirst runtime
environments, see “Optional creation of databases” on page 10-5.

For DB2, the administration, the runtime database, and the reports database can be
in the same database, but they must be in different schemas.

For Oracle, these databases must be created for a different user.

For each database, it is possible to restrict the privileges of the database user that
uses the data source at run time.

Restricting database user permissions for IBM MobileFirst Platform Server
runtime operations:

When the databases are operational, you can decide to create a database user with
restricted privileges. You use this database user to perform database underlying
operations from the MobileFirst administration and runtime components. The user
credentials appear in the application server configuration.

MobileFirst Server data is stored in three databases, which are described in
“Introduction to the MobileFirst Server components” on page 6-5. The database
administrator might require you to provide specific permissions that you need
when you access those databases at run time. The connection to the MobileFirst
Server databases at run time, which is established in the data source credentials,
and any subsequent requests to the databases, are handled through a single
database user or one distinct user per database. Using different users that can
access only one kind of database, and especially to separate the databases of the
MobileFirst runtime environment from the database of the MobileFirst
administration component, improves security. These database users have no
relation to the standard MobileFirst Server groups. The following table shows the
minimal permissions that the database administrator must define on the
MobileFirst Server databases for these users:

Table 6-9. Minimal permissions defined by the database administrator

Database permission Use MobileFirst Server Operation

ALTER TABLE Not required

CREATE INDEX Not required

CREATE ROLE Not required

CREATE SEQUENCE Not required

CREATE TABLE Not required

CREATE VIEW Not required

DROP INDEX Not required

DROP SEQUENCE Not required

DROP TABLE Not required

DROP VIEW Not required

SELECT TABLE Required

INSERT TABLE Required

6-20 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-9. Minimal permissions defined by the database administrator (continued)

Database permission Use MobileFirst Server Operation

UPDATE TABLE Required

DELETE TABLE Required

SELECT SEQUENCE Required

These minimal permissions also apply to the database user of the (optional)
Application Center database.

Using complex Oracle connection descriptors:

For some topologies of the Oracle DBMS, for example Oracle Real Application
Clusters (RAC), you might have to use complex Oracle Net connection descriptors.
In that case, review the following steps.

Procedure

1. You must create the databases manually for the Application Center, the
MobileFirst Server administration, and the MobileFirst project WAR file. This
step is mandatory and cannot be performed with the Ant tasks or Server
Configuration Tool. See the following links for instructions on how to create
these databases.
v For installing the Application Center, see “Creating the Oracle database for

Application Center” on page 6-164.
v For installing the MobileFirst Server administration, see “Creating the Oracle

database for MobileFirst Server administration” on page 6-45.
v For deploying the MobileFirst project WAR file, see “Creating the Oracle

databases” on page 10-8.
2. In IBM Installation Manager, or in the Server Configuration Tool, you must use

a generic Oracle JDBC URL instead of the host name and port.

3. For Ant tasks, you must use the alternative attributes for the <oracle> element.
For more information, see “Ant configuredatabase task reference” on page
14-1, table 19.

Figure 6-6. Oracle Database Settings window

Installing and configuring 6-21

Note: The example files in “Sample configuration files” on page 14-35 do not
use the alternative attributes for the <oracle> element. If you use an example
file, you must modify the <oracle> elements in the file so that they use the
alternative attributes.

4. The URL must be a URL for the Oracle thin driver. It must not include the user
name and password, for example: jdbc:oracle:thin:@(DESCRIPTION= [Oracle
Net connection descriptor]).

Configuring DB2 HADR seamless failover for MobileFirst Server and
Application Center data sources:

You must enable the seamless failover feature with WebSphere Application Server
Liberty profile and WebSphere Application Server. With this feature, you can
manage an exception when a database fails over and gets rerouted by the DB2
JDBC driver.

Note: DB2 HADR failover is not supported for Apache Tomcat.

By default with DB2 HADR, when the DB2 JDBC driver performs a client reroute
after detecting that a database failed over during the first attempt to reuse an
existing connection, the driver triggers
com.ibm.db2.jcc.am.ClientRerouteException, with ERRORCODE=-4498 and
SQLSTATE=08506. WebSphere Application Server maps this exception to
com.ibm.websphere.ce.cm.StaleConnectionException before it is received by the
application.

In this case, the application would have to catch the exception and execute again
the transaction. The MobileFirst and Application Center runtime environments do
not manage the exception but rely on a feature that is called seamless failover. To
enable this feature, you must set the enableSeamlessFailover JDBC property to "1".

WebSphere Application Server Liberty profile configuration

You must edit the server.xml file, and add the enableSeamlessFailover property
to the properties.db2.jcc element of the MobileFirst and Application Center data
sources. For example:
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLADMIN" currentSchema="WLADMSC"

serverName="db2server" portNumber="50000"
enableSeamlessFailover= "1"
user="worklight" password="worklight"/>

</dataSource>

WebSphere Application Server configuration

From the WebSphere Application Server administrative console for each
MobileFirst and Application Center data source:
1. Go to Resources > JDBC > Data sources > DataSource name.
2. Select New and add the following custom property, or update the values if the

properties already exist:
enableSeamlessFailover : 1

3. Click Apply.
4. Save your configuration.

6-22 IBM MobileFirst Platform Foundation for iOS V7.0.0

For more information about how to configure a connection to an HADR-enabled
DB2 database, see Setting up a connection to an HADR-enabled DB2 database.

Planning the topology of the application server
You must install MobileFirst Server in an application server, and decide which
topology to use.

For more information about the choice of topology, see “Typical topologies of a
MobileFirst instance in an extranet infrastructure” on page 6-239.

Tutorial for a basic installation of MobileFirst Server
Learn about the MobileFirst Server installation process by walking through a
simple configuration that creates a functional MobileFirst Server for demonstration
purposes or tests.

Before you begin
1. Install IBM MobileFirst Platform Command Line Interface for iOS on your

computer, if you have not already done so.
2. Use MobileFirst Platform Command Line Interface for iOS to create a project,

which you can then run on MobileFirst Server.

About this task

This task shows how to install MobileFirst Server, based on a tutorial of a simple
configuration. It is designed as an overview, to show you where to find the
following tools and information:
v Tools to install a MobileFirst Server and the Application Center, and tools to

deploy a MobileFirst project.
v Information about configuring MobileFirst Server and the Application Center.
v Information about manual MobileFirst Server installation.

Note: Manual installation provides greater flexibility, but can make the
diagnosis of issues more complex, and make the subsequent description of your
configuration to IBM Support more difficult.

For this task, install the following components:
v An IBM WebSphere Application Server Liberty Core application server.
v A database management system (DBMS): IBM DB2, Oracle, or MySQL.
v The Application Center.
v A simple MobileFirst project and its console.

Procedure
1. Install WebSphere Application Server Liberty Core. The installer for WebSphere

Application Server Liberty Core is provided as part of the package for IBM
MobileFirst Platform Foundation for iOS.
a. Load the repository for WebSphere Application Server Liberty Core in IBM

Installation Manager and install the product.

Note: IBM Installation Manager is sometimes referred to as IBM Rational
Enterprise Deployment on the eXtreme Leverage, Passport Advantage sites,
and on the distribution disks. The file names for the images take the form

Installing and configuring 6-23

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tdat_db2_hadr.html?cp=SSAW57_8.5.5%2F3-3-6-3-3-0-7-3&lang=en

IBM Rational Enterprise Deployment <version number><hardware
platform> <language>; for example, IBM Rational Enterprise Deployment
V1.6.3.1Windows Multilingual.
For more information about loading repositories with IBM Installation
Manager, see step 4a of this procedure. See also the IBM Installation
Manager user documentation at https://www.ibm.com/support/
knowledgecenter/SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/
helpindex_imic.html.

b. During the installation process, take note of the installation directory of
Liberty.
You need this information later on in the procedure.

2. Create a server for Liberty.
You use this server to install the Application Center and to deploy a
MobileFirst project and its console.
a. Go to the installation directory of Liberty. For example, on Windows, if the

product is installed with administrator rights, it is located by default in
C:\Program Files\IBM\WebSphere\Liberty.

b. Type the command that creates a server.
In this scenario, the server name is simpleServer.

On UNIX and Linux systems:
bin/server create simpleServer

On Windows systems:
bin\server.bat create simpleServer

The server is created with all default settings. For more information about
configuring a Liberty server, read the file README.txt in the Liberty installation
directory. Default settings are sufficient for this tutorial.

3. Install the database management system.
You use this DBMS to install the Application Center and to deploy a
MobileFirst project and its console.
v If you use IBM DB2, the installer for IBM DB2 is provided as part of the

package for IBM MobileFirst Platform Foundation for iOS.
a. Run the installer and follow the instructions.
b. On Windows, when you are asked whether to install the IBM Secure

Shell Server for Windows, say Yes.
c. In the following steps, you must have a Secure Shell server installed and

running so that the MobileFirst tools can create the required databases.
– On Windows, the IBM Secure Shell Server for Windowsor the Cygwin

openssh package, as described at http://docs.oracle.com/cd/
E25178_01/install.1111/e22624/preinstall_req_cygwin_ssh.htm

– On UNIX, the sshd daemon
d. Take note of the user name and password for the DB2 administrator role.

v If you use MySQL:
a. Install MySQL on your computer.
b. Take note of the user name and password for the administrator.

– By default for some installations, the administrator is root and there is
no password.

– If there is no password for the MySQL administrator in your
installation, set a password for the administrator, following the
instructions from the MySQL documentation.

6-24 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
http://docs.oracle.com/cd/E25178_01/install.1111/e22624/preinstall_req_cygwin_ssh.htm
http://docs.oracle.com/cd/E25178_01/install.1111/e22624/preinstall_req_cygwin_ssh.htm

v If you use Oracle:
a. Install the Oracle database on your computer.
b. Install an ssh shell on your computer. On Windows, install cygwin and

the openssh package.
c. Start the ssh server. On Windows, you need administrator rights.
d. In subsequent steps, you must have that Secure Shell server running.

4. Install MobileFirst Server.
a. Add the MobileFirst Server repository in IBM Installation Manager:

1) Download the Installation Manager Repository for IBM MobileFirst
Platform Server from Passport Advantage.

2) Extract the file on your disk.
3) Start IBM Installation Manager.
4) Open the File > Preferences menu.
5) In the Preferences dialog, click Add Repositories.
6) Select the file disk1/diskTag.inf from the repository directory you

extracted.
7) Click OK and close the Preferences dialog.

b. Load the repository for MobileFirst Server in IBM Installation Manager and
install the product.
1) In the Configuration Choice panel, select the first choice. This option

installs Application Center.
2) In the Database Choice panel, select the name of the database

management system you installed.

Restriction: Apache Derby is not supported by the Server Configuration
Tool , which is used later in this tutorial.

3) In the following database panels of the installer:
v If you use IBM DB2:

– In the Database Server Properties panel:
- Enter localhost as the host name.
- Select the db2jcc4.jar JAR file in the JDBC driver directory (in

<DB2InstallDir>/Java).
– In the Database Server Additional Properties panel:

- Select Simple Mode.
- Enter a database user and password. This user must already

exist.
– In the Create Database panel:

- Enter the name and password of a user account on the database
server that has DB2 privilege SYSADM or SYSCTRL.

- The installer creates the database.
v If you use MySQL:

– In the Database Server Properties panel:
- Enter localhost as the host name.
- Enter the name of the JDBC JAR file for MySQL.

– In the Database Server Additional Properties panel:
- Select Simple Mode.

Installing and configuring 6-25

- Enter a database user and password. This user is already created
by the installer.

– In the Create Database panel:
- Enter the name and password of a superuser account in your

MySQL database server. The default superuser account is root.
- The installer creates the database.

v If you use Oracle:
– In the Database Server Properties panel:

- Enter localhost as the host name.
- Enter the name of the JDBC JAR file for Oracle.

– In the Database Server Additional Properties panel:
- Select Simple Mode.
- Enter a password for the user APPCENTER. This user is created by

the installer.
- The installer creates a database if it does not already exist.

– In the Create Database panel:
- For Administrator Login Name and Passwords, enter an

administrator login name and password that can be used to run
an ssh session. The default Oracle Administrator Login name is
oracle.

- If the database already exists, provide the password of the
SYSTEM user that is used to create the user APPCENTER. If the
database does not already exist, enter the passwords for the SYS
and SYSTEM users that are created to manage the database.

4) In the Application Server Selection panel, select WebSphere
Application Server.

5) In the Application Server Configuration panel, select the installation
directory for IBM WebSphere Application Server Liberty Core that is
installed in step 2.

6) Select simpleServer as the server name.
7) Install the product.

The files that are described in “Distribution structure of MobileFirst Server” on
page 6-39 are installed on your computer.

5. Explore Application Center. Application Center is now functional. The artifacts
of the Application Center are deployed into the Liberty server, which now
includes the features that Application Center requires, and a demonstration
user account exists. The required database also exists.
a. To test the Application Center, start the Liberty server.

On UNIX and Linux systems:
bin/server start simpleServer

On Windows systems:
bin\server.bat start simpleServer

b. Open the Application Center by using the program shortcut that the
installer creates: IBM MobileFirst Platform Server > Application Center.
Alternatively, you can enter the URL for the Application Center into a
browser window. When a Liberty server is created with default settings, the
default URL for Application Center is http://localhost:9080/
appcenterconsole/.

6-26 IBM MobileFirst Platform Foundation for iOS V7.0.0

c. Log in to the Application Center with the demonstration account credentials
(login: demo, password: demo)

d. Explore further by using any of the following resources:
v See “Configuring the Application Center after installation” on page 6-188.
v See “Distribution structure of MobileFirst Server” on page 6-39 for a list

of MobileFirst applications that you can compile and upload to the
Application Center. These applications provide access to the Application
Center for mobile devices.

v If you are considering a manual installation of Application Center, see
“Manual installation of Application Center” on page 6-167. In some cases,
manual installations can make the diagnosis of issues more complex, and
can make the description of a configuration to IBM Support more
difficult.

6. Install the MobileFirst Server administration components: Administration
Services and MobileFirst Operations Console.
a. Start the Server Configuration Tool.
v On Linux:

– Click the desktop menu IBM MobileFirst Platform Server > Server
Configuration Tool.

v On Windows:
– Click the Start menu IBM MobileFirst Platform Server > Server

Configuration Tool.
v On Mac OS X:

– In the Finder, double-click the file mf_server_install_dir/shortcuts/
configuration-tool.sh.

Restriction: MobileFirst Server is not supported for production use on
Mac OS X.

mf_server_install_dir is the directory where you install MobileFirst Server.
mf_server is the shortcut for MobileFirst Server.

b. Select Create a MobileFirst Server Configuration.
c. Name the configuration Hello MobileFirst Server.
d. Do not change the default entries in the Configuration Description panel.
e. Do not change the default entries in the Console Settings panel.
f. In the Database Properties panel:

1) Select your database.
2) Proceed as described in the Install MobileFirst Server section when you

entered data to create the database for Application Center.
g. In the Application Server panel:
v Proceed as described in the Install MobileFirst Server section when you

entered data to create the database for Application Center.
v Take note of the default password and login: demo (for both).

h. When all the data is entered, click Deploy.
v The log of the deployment operations appears in the console.
v The Configuration appears in the tree view.
v After the database operation is completed, a log file that is named databases

appears in the tree view, under the Configuration.

Installing and configuring 6-27

v After the deployment to the application server is complete, a log file that is
named install appears in the tree view, under the Configuration.

7. Create a simple MobileFirst project. You create a MobileFirst runtime
environment.
a. Install command-line tools for developers on your computer. See “Installing

command-line tools for developers” on page 6-2.
b. Use the Create command to create a MobileFirst project. Assign the name

simpleProject, and name the application simpleApp.
c. Use the Build command to build the application.

8. Deploy a MobileFirst runtime environment with the Server Configuration Tool.
a. In the Server Configuration Tool, select File/Add MobileFirst runtime

environment

b. In the dialog box, select the Hello MobileFirst Server configuration created
in step 6.

c. In Enter the name of the new runtime, enter First Runtime.
d. In the MobileFirst runtime environment Configuration Description panel:
v Load the WAR file that you created in the previous step.

e. In the Database Properties panel:
1) Select your database.
2) Proceed as described in the Install MobileFirst Server section when you

entered data to create the database for Application Center.
f. When all the data is entered, click Deploy.
v The log of the deployment operations appears in the console.
v The Runtime appears in the tree view.
v After the database operation is completed, a log file that is named databases

appears in the tree view, under the Configuration.
v After the deployment to the application server is complete, a log file that is

named install appears in the tree view, under the Configuration.
9. Restart the Liberty server and open the MobileFirst Operations Console.

a. Go to the Liberty installation directory. Type the following command:
v On Linux and UNIX systems:

bin/server stop simpleServer

v On Windows systems:
bin\server.bat stop simpleServer

b. Restart the server with the following command:
v On Linux and UNIX systems:

bin/server start simpleServer

v On Windows systems:
bin\server.bat start simpleServer

c. In the shortcut directory that you specified in the MobileFirst runtime
environment Configuration Description panel of the Server Configuration
Tool:
v On Linux and UNIX systems:

Run the mobilefirst-console.sh script.
v On Windows systems:

Double-click the file mobilefirst-console.url. (On Windows 7, this
shortcut can appear as mobilefirst-console, with a file type of Internet
Shortcut.)

6-28 IBM MobileFirst Platform Foundation for iOS V7.0.0

You see the MobileFirst Operations Console. You can log in with the default
user login and password that you created in step 6 (by default demo/demo).

What to do next

For more information about the Server Configuration Tool, see “Deploying,
updating, or undeploying MobileFirst Server by using the Server Configuration
Tool” on page 10-9.

If you want to explore the MobileFirst Operations Console further, you can
complete the following tasks:
v Deploy an application as described in “Deploying applications and adapters to

MobileFirst Server” on page 10-76.
v Review “Administering MobileFirst applications” on page 11-1.
v Review “Deploying the project WAR file” on page 10-5.
v Review “Configuration of MobileFirst applications on the server” on page 10-48

and “Configuring a MobileFirst project in production by using JNDI
environment entries” on page 10-60

v Review the options to deploy an IBM MobileFirst Platform Foundation for iOS
project manually. In some cases, manual installations can make the diagnosis of
issues more complex, and can make the description of a configuration to IBM
Support more difficult. See “Deploying a project WAR file and configuring the
application server manually” on page 10-39.

Running IBM Installation Manager
IBM Installation Manager installs the IBM MobileFirst Platform Foundation for iOS
files and tools on your computer.

IBM Installation Manager helps you install, update, modify, and uninstall packages
on your computer. The installer for MobileFirst Server does not support rollback
operations and updates from one version to another cannot be undone.

The way that you use IBM Installation Manager to upgrade from a previous
release depends on your upgrade path.

You can use IBM Installation Manager to install IBM MobileFirst Platform
Foundation for iOS in several different modes, including single-user and multi-user
installation modes.

You can also use silent installations to deploy IBM MobileFirst Platform
Foundation for iOS to multiple systems, or systems without a GUI interface.

For more information about Installation Manager, see the IBM Installation Manager
user documentation.

Note: IBM Installation Manager is sometimes referred to as IBM Rational Enterprise
Deployment on the eXtreme Leverage, Passport Advantage sites, and on the
distribution disks. The file names for the images take the form IBM Rational
Enterprise Deployment <version number><hardware platform> <language>; for
example, IBM Rational Enterprise Deployment V1.6.3.1Windows Multilingual.

Installing and configuring 6-29

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html

Installation of the Application Center with IBM Installation
Manager

Run IBM Installation Manager. If you plan to install the Application Center with
IBM Installation Manager, verify that the user who runs IBM Installation Manager
has the privileges that are described in “File system prerequisites” on page 6-5,
then see “Installing and configuring the Application Center” on page 6-162 and
install the Application Center before you proceed to the installation of MobileFirst
Operations Console. For more information, see “Installing the MobileFirst Server
administration” on page 6-43.

If you do not plan to install the Application Center with IBM Installation Manager,
or if you plan to install the Application Center manually, answer No to the
question Install IBM Application Center.

Single-user versus multi-user installations
You can install MobileFirst Server in two different IBM Installation Manager
modes.

Administrator installation
It is an administrator installation when IBM Installation Manager is
installed through the install command. In this case, it requires
administrator privileges to run, and it produces multi-user installations of
products.

When you have chosen an administrator installation of MobileFirst Server,
it is advisable to run the application server from a non-administrator user
account. Running it from an administrator or root user account is
dangerous in terms of security risks.

Because of this, during an administrator installation of MobileFirst Server,
you can choose an operating system user or an operating system user
group. Each of the users in this group can:
v Run the specified application server (if WebSphere Application Server

Liberty, or Apache Tomcat).
v Modify the Application Center Derby database (if Apache Derby is

chosen as your database management system).

In this case, the MobileFirst Server installer sets restrictive access
permissions on the Liberty or Tomcat configuration files, so as to:
1. Allow the specified users to run the application server.
2. At the same time, protect the database or user passwords that these

files contain.

Nonadministrator (single-user) installation
It is a nonadministrator (single-user) installation when IBM Installation
Manager is installed through the userinst command. In this case, only the
user who installed this copy of IBM Installation Manager can use it.

The following constraints regarding user accounts on UNIX apply:
v If the application server is owned by a non-root user, you can install MobileFirst

Server in either of two ways:
– Through a nonadministrator (single-user) installation of IBM Installation

Manager, as the same non-root user.
– Through an administrator installation of IBM Installation Manager, as root,

and afterward change the owner of all files and directories added or modified
during the installation to that user. The result is a single-user installation.

6-30 IBM MobileFirst Platform Foundation for iOS V7.0.0

v If the application server is owned by root, you can install MobileFirst Server
only through an administrator installation of IBM Installation Manager; a
single-user installation of IBM Installation Manager does not work, because it
lacks the necessary privileges.

Note: MobileFirst Server does not support the group mode of IBM Installation
Manager.

Installing a new version of MobileFirst Server
Create a fresh installation of IBM MobileFirst Platform Server by creating a new
package group in IBM Installation Manager.

Procedure
1. Start IBM Installation Manager.
2. On the IBM Installation Manager main page, click Install.
3. In the panel that prompts for the package group name and the installation

directory, select Create a new package group.
4. Complete the installation by following the instructions that are displayed.

Upgrading MobileFirst Server from a previous release
The way that you use IBM Installation Manager to upgrade to the latest version of
MobileFirst Server depends on your upgrade path.

Before you begin

Before you apply these instructions, see “Upgrading to IBM MobileFirst Platform
Foundation for iOS V7.0.0” on page 7-1. It describes important steps to upgrade
MobileFirst applications, or to upgrade a production server in a production
environment.

Procedure
1. Start the IBM Installation Manager.
2. Depending on your upgrade path, take one of the following actions:
v To upgrade from Worklight® Server to MobileFirst Server:

a. Click Install.
b. In the panel that prompts for the package group name and the

installation directory, select Use the existing package group. In this
situation, installation MobileFirst Server automatically removes a
Worklight Server installation that was installed in the same directory.

v To upgrade from MobileFirst Server to a newer version, click Update.

Command-line installation with XML response files (silent
installation)
With IBM Installation Manager, you can complete a command-line installation of
MobileFirst Server with XML response files, on multiple computers, or on
computers where a GUI interface is not available. In the following documentation,
this installation is referred to as silent installation.

About this task

Silent installation uses predetermined answers to wizard questions, rather than
presenting a GUI that asks the questions and records the answers. Silent
installation is useful when:

Installing and configuring 6-31

v You want to install MobileFirst Server on a set of computers that are configured
in the same way.

v You want to install MobileFirst Server on a computer where a GUI is not readily
available. For example, a GUI might not be available on a production server
behind a firewall that prevents the use of VNC, RDP, remote X11, and ssh -X.

Silent installations are defined by an XML file that is called a response file. This file
contains the necessary data to complete installation operations silently. Silent
installations are started from the command line or a batch file.

You can use IBM Installation Manager to record preferences and installation actions
for your response file in user interface mode. Alternatively, you can create a
response file manually by using the documented list of response file commands
and preferences.

You can use one response file to install, update, or uninstall multiple products.

You can use a response file to do almost anything that is possible by using IBM
Installation Manager in wizard mode. For example, with a response file you can
specify the location of the repository that contains the package, the package to
install, and the features to install for that package. You can also use a response file
to apply updates or interim fixes or to uninstall a package.

Silent installation is described in the IBM Installation Manager user documentation,
see Working in silent mode.

There are two ways to create a suitable response file:
v Working with sample response files provided in the MobileFirst user

documentation.
v Working with a response file recorded on a different computer.

Both of these methods are documented in the following sections.

In addition, for a list of the parameters that are created in the response file by the
IBM Installation Manager wizard, see “Command-line (silent installation)
parameters” on page 6-35.

Working with sample response files for IBM Installation Manager:

Instructions for working with sample response files for IBM Installation Manager
to facilitate creating a silent MobileFirst Server installation.

Procedure

Sample response files for IBM Installation Manager are provided in the
Silent_Install_Sample_Files.zip compressed file. The following procedures
describe how to use them.
1. Pick the appropriate sample response file from the compressed file. The

Silent_Install_Sample_Files.zip file contains one subdirectory per release.

Important: For an installation that does not install Application Center on an
application server, use the file named install-no-appcenter.xml.
For an installation that installs Application Center, pick the sample response file
from the following table, depending on your application server and database.

6-32 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silentinstall_overview.html
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/Silent_Install_Sample_Files.zip

Table 6-10. Sample installation response files in the Silent_Install_Sample_Files.zip file
to install the Application Center

Application
server where
you install the
Application
Center Derby IBM DB2 MySQL Oracle

WebSphere
Application
Server Liberty
profile

install-
liberty-
derby.xml

install-
liberty-db2.xml

install-
liberty-
mysql.xml (See
Note)

install-
liberty-
oracle.xml

WebSphere
Application
Server full
profile,
stand-alone
server

install-was-
derby.xml

install-was-
db2.xml

install-was-
mysql.xml (See
Note)

install-was-
oracle.xml

WebSphere
Application
Server Network
Deployment

n/a install-wasnd-
cluster-db2.xml

install-wasnd-
server-db2.xml

install-wasnd-
node-db2.xml

install-wasnd-
cell-db2.xml

install-wasnd-
cluster-
mysql.xml (See
Note)

install-wasnd-
server-
mysql.xml (See
Note)

install-wasnd-
node-mysql.xml

install-wasnd-
cell-mysql.xml
(See Note)

install-wasnd-
cluster-
oracle.xml

install-wasnd-
server-
oracle.xml

install-wasnd-
node-oracle.xml

install-wasnd-
cell-oracle.xml

Apache Tomcat install-tomcat-
derby.xml

install-tomcat-
db2.xml

install-tomcat-
mysql.xml

install-tomcat-
oracle.xml

Note: MySQL in combination with WebSphere Application Server Liberty
profile or WebSphere Application Server full profile is not classified as a
supported configuration. For more information, see WebSphere Application
Server Support Statement. You can use IBM DB2 or another DBMS that is
supported by WebSphere Application Server to benefit from a configuration
that is fully supported by IBM Support.
For uninstallation, use a sample file that depends on the version of MobileFirst
Server or Worklight Server that you initially installed in the particular package
group:
v MobileFirst Server uses the package group IBM MobileFirst Platform

Server.
v Worklight Server V6.x, or later, uses the package group IBM Worklight.
v Worklight Server V5.x uses the package group Worklight.

Table 6-11. Sample uninstallation response files in the Silent_Install_Sample_Files.zip

Initial version of MobileFirst Server Sample file

Worklight Server V5.x uninstall-initially-worklightv5.xml

Installing and configuring 6-33

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

Worklight Server V6.x uninstall-initially-worklightv6.xml

IBM MobileFirst Platform Server V6.x or
later

uninstall-initially-mfpserver.xml

2. Change the file access rights of the sample file to be as restrictive as possible.
Step 4 requires that you supply some passwords. If you must prevent other
users on the same computer from learning these passwords, you must remove
the read permissions of the file for users other than yourself. You can use a
command, such as the following examples:
v On UNIX:

chmod 600 <target-file.xml>

v On Windows:
cacls <target-file.xml> /P Administrators:F %USERDOMAIN%\%USERNAME%:F

3. Similarly, if the server is a WebSphere Application Server Liberty profile or
Apache Tomcat server, and the server is meant to be started only from your
user account, you must also remove the read permissions for users other than
yourself from the following file:
v For WebSphere Application Server Liberty profile: wlp/usr/servers/

<server>/server.xml

v For Apache Tomcat: conf/server.xml
4. Adjust the list of repositories, in the <server> element. For more information

about this step, see section named Information about the repositories in “Become
familiar with IBM Installation Manager before you start” on page 7-18 and the
IBM Installation Manager documentation at Repositories.
In the <profile> element, adjust the values of each key/value pair.
In the <offering> element in the <install> element, set the version attribute to
match the release you want to install, or remove the version attribute if you
want to install the newest version available in the repositories.

5. Type the following command:
<InstallationManagerPath>/eclipse/tools/imcl input <responseFile>
-log /tmp/installwl.log -acceptLicense

Where:
v <InstallationManagerPath> is the installation directory of IBM Installation

Manager.
v <responseFile> is the name of the file that is selected and updated in step 1.

For more information, see the IBM Installation Manager documentation at
Installing a package silently by using a response file.

Working with a response file recorded on a different machine:

Instructions for working with response files for IBM Installation Manager created
on another machine to facilitate creating a silent MobileFirst Server installation.

Procedure

1. Record a response file, by running IBM Installation Manager in wizard mode
and with option -record responseFile on a machine where a GUI is available.
For more details, see Record a response file with Installation Manager.

2. Change the file access rights of the response file to be as restrictive as possible.
Step 4 requires that you supply some passwords. If you must prevent other
users on the same computer from learning these passwords, you must remove

6-34 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/r_repository_types.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_response_file_install.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_create_response_files_IM.html

the read permissions of the file for users other than yourself. You can use a
command, such as the following examples:
v On UNIX:

chmod 600 response-file.xml

v On Windows:
cacls response-file.xml /P Administrators:F %USERDOMAIN%\%USERNAME%:F

3. Similarly, if the server is a WebSphere Application Server Liberty or Apache
Tomcat server, and the server is meant to be started only from your user
account, you must also remove the read permissions for users other than
yourself from the following file:
v For WebSphere Application Server Liberty: wlp/usr/servers/<server>/

server.xml

v For Apache Tomcat: conf/server.xml
4. Modify the response file to take into account differences between the machine

on which the response file was created and the target machine.
5. Install MobileFirst Server by using the response file on the target machine, as

described in Install a package silently by using a response file.

Command-line (silent installation) parameters:

The response file that you create for silent installations by running the IBM
Installation Manager wizard supports a number of parameters.

Table 6-12. Parameters available for silent installation
Key When necessary Description Allowed values

user.appserver.selection2 Always Type of application
server. was means
preinstalled WebSphere
Application Server 7.0,
8.0, or 8.5. tomcat
means Tomcat 7.0 or
newer.

was, tomcat, none

The value none means
that the installer will
not install the
Application Center. If
this value is used,
both user.appserver
.selection2 and
user.database
.selection2 must
take the value none.

user.appserver.was.installdir ${user.appserver.selection2} == was WebSphere Application
Server installation
directory.

An absolute directory
name.

user.appserver.was.profile ${user.appserver.selection2} == was Profile into which to
install the applications.
For WebSphere
Application Server
Network Deployment,
specify the Deployment
Manager profile.
Liberty means the
Liberty profile
(subdirectory wlp).

The name of one of
the WebSphere
Application Server
profiles.

user.appserver.was.cell ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

WebSphere Application
Server cell into which
to install the
applications.

The name of the
WebSphere
Application Server
cell.

user.appserver.was.node ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

WebSphere Application
Server node into which
to install the
applications. This
corresponds to the
current machine.

The name of the
WebSphere
Application Server
node of the current
machine.

Installing and configuring 6-35

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_response_file_install.html

Table 6-12. Parameters available for silent installation (continued)
Key When necessary Description Allowed values

user.appserver.was.scope ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

Type of set of servers
into which to install the
applications. server
means a standalone
server. nd-cell means a
WebSphere Application
Server Network
Deployment cell.
nd-cluster means a
WebSphere Application
Server Network
Deployment cluster.
nd-node means a
WebSphere Application
Server Network
Deployment node
(excluding clusters).
nd-server means a
managed WebSphere
Application Server
Network Deployment
server.

server, nd-cell,
nd-cluster, nd-node,
nd-server

user.appserver.was.serverInstance ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty &&
${user.appserver.was.scope} == server

Name of WebSphere
Application Server
server into which to
install the applications.

The name of a
WebSphere
Application Server
server on the current
machine.

user.appserver.was.nd.cluster ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty &&
${user.appserver.was.scope} == nd-cluster

Name of WebSphere
Application Server
Network Deployment
cluster into which to
install the applications.

The name of a
WebSphere
Application Server
Network Deployment
cluster in the
WebSphere
Application Server
cell.

user.appserver.was.nd.node ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty &&
(${user.appserver.was.scope} == nd-node ||
${user.appserver.was.scope} == nd-server)

Name of WebSphere
Application Server
Network Deployment
node into which to
install the applications.

The name of a
WebSphere
Application Server
Network Deployment
node in the
WebSphere
Application Server
cell.

user.appserver.was.nd.server ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty &&
${user.appserver.was.scope} == nd-server

Name of WebSphere
Application Server
Network Deployment
server into which to
install the applications.

The name of a
WebSphere
Application Server
Network Deployment
server in the given
WebSphere
Application Server
Network Deployment
node.

user.appserver.was.admin.name ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

Name of WebSphere
Application Server
administrator.

user.appserver.was.admin.password2 ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

Password of WebSphere
Application Server
administrator,
optionally encrypted in
a specific way.

user.appserver.was.appcenteradmin.password ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

Password of
appcenteradmin user to
add to the WebSphere
Application Server
users list, optionally
encrypted in a specific
way.

6-36 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-12. Parameters available for silent installation (continued)
Key When necessary Description Allowed values

user.appserver.was.serial ${user.appserver.selection2} == was &&
${user.appserver.was.profile} != Liberty

Suffix that distinguishes
the applications to be
installed from other
installations of
MobileFirst Server.

String of 10 decimal
digits.

user.appserver.was85liberty.serverInstance_ ${user.appserver.selection2} == was &&
${user.appserver.was.profile} == Liberty

Name of WebSphere
Application Server
Liberty server into
which to install the
applications.

user.appserver.tomcat.installdir ${user.appserver.selection2} == tomcat Apache Tomcat
installation directory.
For a Tomcat
installation that is split
between a
CATALINA_HOME directory
and a CATALINA_BASE
directory, here you
need to specify the
value of the
CATALINA_BASE
environment variable.

An absolute directory
name.

user.database.selection2 Always Type of database
management system
used to store the
databases.

derby, db2, mysql,
oracle, none

The value none means
that the installer will
not install the
Application Center. If
this value is used,
both user.appserver
.selection2 and
user.database
.selection2 must
take the value none.

user.database.preinstalled Always true means a
preinstalled database
management system,
false means Apache
Derby to install.

true, false

user.database.derby.datadir ${user.database.selection2} == derby The directory in which
to create or assume the
Derby databases.

An absolute directory
name.

user.database.db2.host ${user.database.selection2} == db2 The host name or IP
address of the DB2
database server.

user.database.db2.port ${user.database.selection2} == db2 The port where the
DB2 database server
listens for JDBC
connections. Usually
50000.

A number between 1
and 65535.

user.database.db2.driver ${user.database.selection2} == db2 The absolute file name
of db2jcc.jar or
db2jcc4.jar.

An absolute file
name.

user.database.db2.appcenter.username ${user.database.selection2} == db2 The user name used to
access the DB2 database
for Application Center.

Non-empty.

user.database.db2.appcenter.password ${user.database.selection2} == db2 The password used to
access the DB2 database
for Application Center,
optionally encrypted in
a specific way.

Non-empty password.

user.database.db2.appcenter.dbname ${user.database.selection2} == db2 The name of the DB2
database for
Application Center.

Non-empty; a valid
DB2 database name.

Installing and configuring 6-37

Table 6-12. Parameters available for silent installation (continued)
Key When necessary Description Allowed values

user.database.oracle.appcenter
.isservicename.jdbc.url

Optional Indicates if
user.database.mysql
.appcenter.dbname is a
Service name or a SID
name. If the parameter
is absent then
user.database.mysql
.appcenter.dbname is
considered to be a SID
name.

true (indicates a
Service name) or
false(indicates a SID
name)

user.database.db2.appcenter.schema ${user.database.selection2} == db2 The name of the
schema for Application
Center in the DB2
database.

user.database.mysql.host ${user.database.selection2} == mysql The host name or IP
address of the MySQL
database server.

user.database.mysql.port ${user.database.selection2} == mysql The port where the
MySQL database server
listens for JDBC
connections. Usually
3306.

A number between 1
and 65535.

user.database.mysql.driver ${user.database.selection2} == mysql The absolute file name
of mysql-connector-
java-5.*-bin.jar.

An absolute file
name.

user.database.mysql.appcenter.username ${user.database.selection2} == mysql The user name used to
access the MySQL
database for
Application Center.

Non-empty.

user.database.mysql.appcenter.password ${user.database.selection2} == mysql The password used to
access the MySQL
database for
Application Center,
optionally encrypted in
a specific way.

user.database.mysql.appcenter.dbname ${user.database.selection2} == mysql The name of the
MySQL database for
Application Center.

Non-empty, a valid
MySQL database
name.

user.database.oracle.host ${user.database.selection2} == oracle, unless
${user.database.oracle.appcenter.jdbc.url} is
specified

The host name or IP
address of the Oracle
database server.

user.database.oracle.port ${user.database.selection2} == oracle, unless
${user.database.oracle.appcenter.jdbc.url} is
specified

The port where the
Oracle database server
listens for JDBC
connections. Usually
1521.

A number between 1
and 65535.

user.database.oracle.driver ${user.database.selection2} == oracle The absolute file name
of ojdbc6.jar.

An absolute file
name.

user.database.oracle.appcenter.username ${user.database.selection2} == oracle The user name used to
access the Oracle
database for
Application Center.

A string consisting of
1 to 30 characters:
ASCII digits, ASCII
uppercase and
lowercase letters, '_',
'#', '$' are allowed.

user.database.oracle.appcenter.username.jdbc ${user.database.selection2} == oracle The user name used to
access the Oracle
database for
Application Center, in a
syntax suitable for
JDBC.

Same as
${user.database.oracle
.appcenter.username}
if it starts with an
alphabetic character
and does not contain
lowercase characters,
otherwise it must be
${user.database.oracle
.appcenter.username}
surrounded by
double quotes.

6-38 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-12. Parameters available for silent installation (continued)
Key When necessary Description Allowed values

user.database.oracle.appcenter.password ${user.database.selection2} == oracle The password used to
access the Oracle
database for
Application Center,
optionally encrypted in
a specific way.

The password must
be a string consisting
of 1 to 30 characters:
ASCII digits, ASCII
uppercase and
lowercase letters, '_',
'#', '$' are allowed.

user.database.oracle.appcenter.dbname ${user.database.selection2} == oracle, unless
${user.database.oracle.appcenter.jdbc.url} is
specified

The name of the Oracle
database for
Application Center.

Non-empty, a valid
Oracle database
name.

user.database.oracle.appcenter.isservicename
.jdbc.url

Optional Indicates if
user.database.oracle
.appcenter.dbname is a
Service name or a SID
name. If the parameter
is absent then
user.database.oracle
.appcenter.dbname is
considered to be a SID
name.

true (indicates a
Service name) or
false(indicates a SID
name)

user.database.oracle.appcenter.jdbc.url ${user.database.selection2} == oracle, unless
${user.database.oracle.host},
${user.database.oracle.port},
${user.database.oracle.appcenter.dbname}
are all specified

The JDBC URL of the
Oracle database for
Application Center.

A valid Oracle JDBC
URL. Starts with
"jdbc:oracle:".

user.writable.data.user Always The operating system
user that is allowed to
run the installed server.

An operating system
user name, or empty.

user.writable.data.group2 Always The operating system
users group that is
allowed to run the
installed server.

An operating system
users group name, or
empty.

Distribution structure of MobileFirst Server
The MobileFirst Server files and tools are installed in the MobileFirst Server
installation directory.

Table 6-13. Files and subdirectories in the MobileFirst Server installation directory

Item Description

shortcuts Launcher scripts for Apache Ant, the
MobileFirst Server Server Configuration
Tool, and the wladm command, which are
supplied with MobileFirst Server.

Table 6-14. Files and subdirectories in the WorklightServer subdirectory

Item Description

worklight-jee-library.jar The MobileFirst Server library for
production. For instructions on deploying a
MobileFirst project and this library to an
Application Server, see “Deploying
MobileFirst projects” on page 10-1. The
deployment is typically performed by using
Ant tasks, but instructions for manual
deployment are also provided.

Installing and configuring 6-39

Table 6-14. Files and subdirectories in the WorklightServer subdirectory (continued)

Item Description

worklight-ant-deployer.jar A set of Ant tasks that help you deploy
projects, applications, and adapters to your
MobileFirst Server. For documentation about
the Ant tasks that are provided in this
library, see “Deploying MobileFirst projects”
on page 10-1.

worklight-ant-builder.jar A set of Ant tasks that help you build
projects, applications, and adapters for use
in MobileFirst Server. For more information
about the Ant tasks that are provided in this
library, see Ant tasks for building and
deploying applications and adapters.

configuration-samples Contains the sample Ant files for
configuring a database for the MobileFirst
Server and deploying a MobileFirst project
to an Application Server. For instructions on
how to use these Ant projects, see “Sample
configuration files” on page 14-35.

databases SQL scripts to be used for the manual
creation of tables for MobileFirst Server and
the Administration Services, instead of using
Ant tasks for the automatic configuration of
these tables. For information about these
scripts, see “Creating and configuring the
databases manually” on page 10-17.

encrypt.bat and encrypt.sh Tools to encrypt confidential properties that
are used to configure a MobileFirst Server,
such as a database password or a certificate.
For information about this tool, see “Storing
properties in encrypted format” on page
10-56.

report-templates Report templates to configure BIRT reports
for your Application Server. For information
about these BIRT reports, see “Manually
configuring BIRT Reports for your
application server” on page 12-90.

wladm-schemas XML schemas that describe the format of
input and output of the <wladm> Ant task.

worklightadmin.war The WAR file for the Administration
Services web application.

worklightconsole.war The WAR file for the MobileFirst Operations
Console user interface web application.

external-server-libraries JAR file and manifest file of the OAuth Trust
Association Interceptor (TAI) that is used to
protect application resources on
WebSphere®Application Server or
WebSphere Application Server Liberty. For
more information, see “Protecting resources
on WebSphere Application Server or
WebSphere Application Server Liberty” on
page 8-232.

6-40 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-15. Files and subdirectories in the ApplicationCenter subdirectory

Item Description

ApplicationCenter/installer/IBMAppCenter Contains the MobileFirst project for the
mobile Client. You must build this project to
create the iOS version of the mobile client.

ApplicationCenter/console/
appcenterconsole.war

The WAR file for the Application
Center console user interface web
application.

applicationcenter.war
The WAR file for the Application
Center REST services web
application.

applicationcenter.ear
The enterprise application archive
(EAR) file to be deployed under
IBM PureApplication® System.

ApplicationCenter/databases
create-appcenter-derby.sql

The SQL script to re-create the
application center database on
derby.

create-appcenter-db2.sql
The SQL script to re-create the
application center database on DB2.

create-appcenter-mysql.sql
The SQL script to re-create the
application center database on
mySQL.

create-appcenter-oracle.sql
The SQL script to re-create the
application center database on
Oracle.

In addition, this directory contains the SQL
scripts to upgrade the database from earlier
versions of IBM MobileFirst Platform
Foundation for iOS.

Installing and configuring 6-41

Table 6-15. Files and subdirectories in the ApplicationCenter subdirectory (continued)

Item Description

ApplicationCenter/tools
applicationcenterdeploytool.jar

The JAR file that contains the Ant
task to deploy an application to the
Application Center.

acdeploytool.bat
The startup script of the
deployment tool for use on
Microsoft Windows systems.

acdeploytool.sh
The startup script of the
deployment tool for use on UNIX
systems.

build.xml
Example of an Ant script to deploy
applications to the Application
Center.

dbconvertertool.sh
The startup script of the database
converter tool for use on UNIX
systems.

dbconvertertool.bat
The startup script of the database
converter tool for use on Microsoft
Windows systems.

dbconvertertool.jar
The main library of the database
converter tool.

lib The directory that contains all Java
Archive (JAR) files that are required
by the database converter tool.

json4j.jar
The required JSON4J Java archive
file.

README.TXT
Readme file that explains how to
use the deployment tool.

Table 6-16. Files and subdirectories in the License subdirectory

Item Description

Text License for IBM MobileFirst Platform
Foundation

Table 6-17. Files and subdirectories in the tools subdirectory

Item Description

tools/apache-ant-<version> A binary installation of Apache Ant that can
be used to run the Ant tasks. For more
information, see “Deploying MobileFirst
projects” on page 10-1.

6-42 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-18. Files and subdirectories in the Analytics subdirectory

Item Description

analytics.ear The IBM MobileFirst Platform Operational
Analytics EAR file. Contains the
analytics-service.war file for deployment
on WebSphere Application Server and
WebSphere Application Server Liberty. For
installation instructions, see “Installing the
IBM MobileFirst Platform Operational
Analytics” on page 6-146.

analytics-ui.war The WAR file for the analytics console user
interface web application.

analytics-service.war The WAR file for the analytics REST services
web application.

Table 6-19. Files and subdirectories in the Datastore subdirectory.

Item Description

imf-data-proxy.war The WAR file for the MobileFirst Data Proxy.

configuration-samples Sample Ant files for deploying a MobileFirst
Data Proxy to an application server.

For more information on how to use these
Ant projects, see “Installing the MobileFirst
Data Proxy with Ant tasks” on page 6-153.

Installing the MobileFirst Server administration
You must install the Administration Services, and optionally the MobileFirst
Operations Console, as part of the MobileFirst Server installation.

Optional creation of the administration database
If you want to activate the option to install the administration database when you
run the Ant tasks or the Server Configuration Tool, you must have certain database
access rights that entitle you to create the databases, or the users, or both, that are
required by the MobileFirst Server administration.

If you have sufficient database administration credentials, and if you enter the
administrator user name and password when prompted, or use Ant files with dba
tags, the installation tools can create the databases for you. Otherwise, you need to
ask your database administrator to create the required database for you. In this
case, the database must be created before you start the installation tools.

The following topics describe the procedure for the supported database
management systems.

Important: This step is optional if you install IBM MobileFirst Platform
Foundation for iOS with the Server Configuration Tool or the Ant tasks because
the Server Configuration Tool and the Ant tasks can create the databases
automatically.

Creating the DB2 database for MobileFirst Server administration:

During the installation of IBM MobileFirst Platform Foundation for iOS, the
installation tools can create the administration database for you.

Installing and configuring 6-43

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the DB2 database manually for the IBM MobileFirst
Platform Server administration” on page 6-56 instead.

About this task

The installation tools can create the administration database for you if you enter
the name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the administration database for
you. For more information, see the DB2 Solution user documentation.

When you create the database manually, you can replace the database name (here
WLADMIN) and the password with a database name and password of your choice.

Important: You can name your database and user differently, or set a different
password, but ensure that you enter the appropriate database name, user name,
and password correctly across the DB2 database setup. DB2 limits:
v Database names: no more than 8 characters on all platforms
v User name and passwords: no more than 8 characters for UNIX and Linux, and

no more than 30 characters for Windows

Procedure

1. Create a system user named, for example, wluser in a DB2 admin group such
as DB2USERS, by using the appropriate commands for your operating system.
Give it a password, for example, wluser.
If you want multiple MobileFirst Server instances to connect to the same
database, use a different user name for each connection. Each database user has
a separate default schema. For more information about database users, see the
DB2 documentation and the documentation for your operating system.

2. Open a DB2 command-line processor, with a user that has SYSADM or SYSCTRL
permissions.
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, navigate to ~/sqllib/bin and enter ./db2.

3. To create the administration database, enter database manager and SQL
statements similar to the following example.
Replace the user name wluser with your own.
CREATE DATABASE WLADMIN COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLADMIN
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT WLADMIN
QUIT

What to do next

The installation tools can create the database tables and objects for MobileFirst
Server administration in a specific schema. You can then use the same database for
MobileFirst Server administration and for a MobileFirst project.
v If the IMPLICIT_SCHEMA authority is granted to the user that you created in

Step 1, no further action is required. This is the default in the database creation
script of Step 2.

6-44 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html

v If the user does not have the IMPLICIT_SCHEMA authority, create a SCHEMA
for the administration database tables and objects.

Creating the MySQL database for MobileFirst Server administration:

During the MobileFirst installation, the installation tools can create the
administration database for you.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the MySQL database manually for the IBM
MobileFirst Platform Server administration” on page 6-64 instead.

About this task

The installation tools can create the database for you if you enter the name and
password of the superuser account. For more information, see Securing the Initial
MySQL Accounts on your MySQL database server. Your database administrator
can also create the databases for you. When you create the database manually, you
can replace the database name (here WLADMIN) and password with a database name
and password of your choice.

Attention: On UNIX, MySQL database names are case-sensitive.

Procedure

1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE WLADMIN CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WLADMIN.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON WLADMIN.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;

Here, you need to replace Worklight-host with the name of the host on which
IBM MobileFirst Platform Foundation for iOS runs.

Creating the Oracle database for MobileFirst Server administration:

During the installation of IBM MobileFirst Platform Foundation for iOS, the
installation tools can create the administration database, except for the Oracle 12c
database type, or the user and schema inside an existing database.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the Oracle database manually for the IBM
MobileFirst Platform Server administration” on page 6-67 instead.

About this task

The installation tools can create the database, except for the Oracle 12c database, or
the user and schema inside an existing database, if you enter the name and
password of the Oracle administrator on the database server, and the account can
be accessed through SSH. Otherwise, the database administrator can create the

Installing and configuring 6-45

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

database or user and schema for you. When you manually create the database or
user, you can use database names, user names, and a password of your choice.

Attention: Lowercase characters in Oracle user names can lead to unwanted
results.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new general-purpose database named ORCL:
a. Use global database name ORCL_your_domain, and system identifier (SID)

ORCL.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts because you must first create a user account.
c. On the Character Sets tab of the step Initialization Parameters, select Use

Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.
2. Create a database user by using either Oracle Database Control or the Oracle

SQLPlus command-line interpreter.
v Using Oracle Database Control.

a. Connect as SYSDBA.
b. Go to the Users page and click Server, then Users in the Security section.
c. Create a user, for example WLADMIN. If you want multiple MobileFirst

Server instances to connect to the general-purpose database that you
created in Step 1, use a different user name for each connection. Each
database user has a separate default schema.

d. Assign the following attributes:
– Profile: DEFAULT
– Authentication: password
– Default tablespace: USERS
– Temporary tablespace: TEMP
– Status: Unlocked
– Add system privilege: CREATE SESSION
– Add system privilege: CREATE SEQUENCE
– Add system privilege: CREATE TABLE
– Add quota: Unlimited for tablespace USERS

v Using the Oracle SQLPlus command-line interpreter.
The commands in the following example create a user named WLADMIN for the
database:
CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER WLADMIN IDENTIFIED BY WLADMIN_password
DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WLADMIN;
DISCONNECT;

Configuration of the application server
IBM MobileFirst Platform Foundation for iOS has some requirements for the
configuration of the application server that are detailed in the following topics.

6-46 IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring WebSphere Application Server Liberty profile:

You must configure a secure JMX connection for WebSphere Application Server
Liberty profile.

Procedure

MobileFirst Server requires the secure JMX connection to be configured.
v The Server Configuration Tool and the Ant tasks can configure a default secure

JMX connection, which includes the generation of a self-signed SSL certificate
with a validity period of 365 days. This configuration is not intended for
production use.

v To configure the secure JMX connection for production use, follow the
instructions from the page Configuring secure JMX connection to the Liberty
profile.

v The rest-connector is available for WebSphere Application Server, Liberty Core,
and other editions of Liberty, but it is possible to package a Liberty Server with
a subset of the available features. To verify that the rest-connector feature is
available in your installation of Liberty, enter the following command:
<libertyInstallDir>/bin/productInfo featureInfo

Note: Verify that the output of this command contains restConnector-1.0.

What to do next

For more information about the optimization of MobileFirst Server, especially the
tuning of the JVM memory allocation, see “Optimization and tuning of MobileFirst
Server” on page 6-105.

Configuring Apache Tomcat:

You must configure a secure JMX connection for Apache Tomcat application server.

About this task

The Server Configuration Tool and the Ant tasks can configure a default secure
JMX connection, which includes the definition of a JMX remote port, and the
definition of authentication properties. They modify <tomcatInstallDir>/bin/
setenv.bat and <tomcatInstallDir>/bin/setenv.sh to add these options to
CATALINA_OPTS:
-Djava.rmi.server.hostname=localhost
-Dcom.sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

Note: 8686 is a default value. The value for this port can be changed if the port is
not available on the computer.
v The setenv.bat file is used if you start Apache Tomcat with

<tomcatInstallDir>/bin/startup.bat, or <tomcatInstallDir>/bin/catalina.bat.
v The setenv.sh file is used if you start Apache Tomcat with

<tomcatInstallDir>/bin/startup.sh, or <tomcatInstallDir>/bin/catalina.sh.

This file might not be used if you start Apache Tomcat with another command. If
you installed the Apache Tomcat Windows Service Installer, the service launcher
does not use setenv.bat.

Installing and configuring 6-47

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1

Important: This configuration is not secure by default. To secure the configuration,
you must manually complete steps 2 and 3 of the following procedure.

Procedure

Manually configuring Apache Tomcat:
1. For a simple configuration, add the following options to CATALINA_OPTS:

-Djava.rmi.server.hostname=localhost
-Dcom.sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

2. To activate authentication, see the Apache Tomcat user documentation SSL
Support - BIO and NIO and SSL Configuration HOW-TO.

3. For a JMX configuration with SSL enabled, add the following options:
-Dcom.sun.management.jmxremote=true
-Dcom.sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.ssl=true
-Dcom.sun.management.jmxremote.authenticate=false
-Djava.rmi.server.hostname=localhost
-Djavax.net.ssl.trustStore=<key store location>
-Djavax.net.ssl.trustStorePassword=<key store password>
-Djavax.net.ssl.trustStoreType=<key store type>
-Djavax.net.ssl.keyStore=<key store location>
-Djavax.net.ssl.keyStorePassword=<key store password>
-Djavax.net.ssl.keyStoreType=<key store type>

Note: The port 8686 can be changed.
4. If the Tomcat instance is running behind a firewall, the JMX Remote Lifecycle

Listener must be configured. See the Apache Tomcat documentation for JMX
Remote Lifecycle Listener.
The following environment properties must also be added to the Context
section of the Administration Services application in the server.xml file, such
as in the following example:

<Context docBase="worklightadmin" path="/worklightadmin ">
<Environment name="ibm.worklight.admin.rmi.registryPort" value="registryPort" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.admin.rmi.serverPort" value="serverPort" type="java.lang.String" override="false"/>

</Context>

In the previous example:
v registryPort must have the same value as the rmiRegistryPortPlatform

attribute of the JMX Remote Lifecycle Listener.
v serverPort must have the same value as the rmiServerPortPlatform attribute

of the JMX Remote Lifecycle Listener.
5. If you installed Apache Tomcat with the Apache Tomcat Windows Service

Installer instead of adding the options to CATALINA_OPTS, run
<TomcatInstallDir>/bin/Tomcat7w.exe, and add the options in the Java tab of
the Properties window.

6-48 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener
http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener

What to do next

For more information about the optimization of MobileFirst Server, especially the
tuning of the JVM memory allocation, see “Optimization and tuning of MobileFirst
Server” on page 6-105.

Troubleshooting JMX configuration for Liberty profile:

When you start the IBM MobileFirst Platform Foundation for iOS Admin Services
and the MobileFirst runtimes, you can encounter several exceptions in the Liberty
profile server logs.

Table 6-20. Configuring JMX for Liberty profile: errors. Table that describes multiple errors that you might receive
when you try to configure the Liberty profile JMX server.

Message title Error Cause Resolution

Invalid administrator user Failed to obtain JMX
connection to access an
MBean. There might be a JMX
configuration error:
CWWKX0215E: There was a
problem with the user name
or password provided. The
server responded with code
401 and message
'Unauthorized'

The value of the
ibm.worklight.admin.jmx.user
JNDI property is not an
administrative Liberty profile
user.

Edit the server.xml file and
make sure that the user
referenced in
ibm.worklight.admin.jmx.user
is defined in the
<administrator-role> element.

Installing and configuring 6-49

Table 6-20. Configuring JMX for Liberty profile: errors (continued). Table that describes multiple errors that you might
receive when you try to configure the Liberty profile JMX server.

Message title Error Cause Resolution

SSL socket factory not found Failed to obtain JMX
connection to access an
MBean. There might be a JMX
configuration error:
java.lang.
ClassNotFoundException:
Cannot find the specified
class com.ibm.websphere.ssl
.protocol.SSLSocketFactory

The IBM JDK cannot be used
with the SSL socket factories of
WebSphere Application Server
Liberty profile.

For information about
resolving this issue, see
“Configuring Liberty profile
when IBM JDK is used” on
page 6-193.

No JMX connector configured Failed to obtain JMX
connection to access an
MBean. There might be a JMX
configuration error: No JMX
connector is configured

The host name or the port
number that is required for the
JMX connection is not
configured.

Edit the server.xml file and
make sure that both the
ibm.worklight.admin.jmx.port
and the
ibm.worklight.admin.jmx.host
JNDI properties are defined.

Read timed out Failed to obtain JMX
connection to access an
MBean. There might be a JMX
configuration error: Read
timed out

The JMX connection times out
before the operation completes.
By default, the JMX connection
times out after one minute.

Edit the Liberty profile
jvm.options file and add the
following property:

-Dcom.ibm.ws.jmx.connector
.client.rest
.readTimeout=time in
milliseconds

The default value is 60000. Use
a greater value. The following
example uses three minutes.

-Dcom.ibm.ws.jmx.connector
.client.rest
.readTimeout=180000

Invalid certification path Failed to obtain JMX
connection to access an
MBean. There might be a JMX
configuration error:
com.ibm.jsse2.util.h: PKIX
path building failed:
java.security.cert
.CertPathBuilderException:
unable to find valid
certification path to
requested target

The SSL configuration of the
Liberty profile server is not
correct.

For instructions about how to
resolve this issue, see
Configuring secure JMX
connection to the Liberty
profile.

Connection exception java.net.ConnectException:
Connection refused: connect

The JMX connection fails. Edit the server.xml file. Make
sure that both the
ibm.worklight.admin.jmx.port
and the
ibm.worklight.admin.jmx.host
JNDI properties reference the
local host, and that the https
port number is defined in the
<httpEndpoint> element.

Configuring WebSphere Application Server and WebSphere Application Server
Network Deployment:

You must configure a secure JMX connection for WebSphere Application Server
and WebSphere Application Server Network Deployment.

Procedure

v IBM MobileFirst Platform Foundation for iOS requires access to the SOAP port,
or the RMI port to perform JMX operations. By default, the SOAP port is active

6-50 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1

on a WebSphere Application Server. IBM MobileFirst Platform Foundation for
iOS uses the SOAP port by default. If both the SOAP and RMI ports are
deactivated, IBM MobileFirst Platform Foundation for iOS does not run.

v RMI is only supported with a WebSphere Application Server Network
Deployment. RMI is not supported with a stand-alone profile, or with a
WebSphere Application Server server farm.

v You must activate Administrative and Application Security.

What to do next

For more information about the optimization of MobileFirst Server, especially the
tuning of the JVM memory allocation, see “Optimization and tuning of MobileFirst
Server” on page 6-105.

Installing MobileFirst Server administration with the Server
Configuration Tool
You can use the Server Configuration Tool to install and configure MobileFirst
Server administration.

Before you begin

Verify that the user who runs the Server Configuration Tool has the privileges that
are described in “File system prerequisites” on page 6-5.

About this task

Restriction:

v The Server Configuration Tool does not support server farms. Therefore, you
cannot use this tool to install, upgrade, or configure a server farm.

v MobileFirst Server is not supported for production use on Mac OS X.

Procedure
1. Start the Server Configuration Tool.
v On Linux: In the desktop menu, click IBM MobileFirst Platform Server >

Server Configuration Tool.
v On Windows: In the Start menu, click IBM MobileFirst Platform Server >

Server Configuration Tool.
v On Mac OS X: In the Finder, double-click the file mf_server_install_dir/

shortcuts/configuration-tool.sh.

Note: The mf_server_install_dir placeholder represents the directory where
you install MobileFirst Server. mf_server is the shortcut for MobileFirst
Server.

2. Select Create a MobileFirst Server Configuration.
3. Name your configuration.
4. In the Configuration Description window:

a. Enter the context root of the MobileFirst Administration REST service.
The context root is used to create the URL to the MobileFirst REST
Administration service. This URL is typically in the form
<URL_TO_APPLICATION_SERVER_HTTPS_PORT>/contextroot or
<URL_TO_APPLICATION_SERVER_HTTP_PORT>/contextroot.

b. Enter an environmentId.

Installing and configuring 6-51

This ID is optional and is used to distinguish between different
deployments of the MobileFirst Server administration components in the
same application server environment, for example in the same cell of
WebSphere Application Server Network Deployment.

Important: Review carefully this environment ID. It must match the
environment ID of all the runtime environments that are managed by this
MobileFirst Server administration component. If you install or upgrade the
MobileFirst runtime environments with separate Ant files, this verification
is particularly important because the environmentId attribute must match.
For a server farm, all installations must also have the same environmentId
attribute.

The environmentId attribute is an attribute of the following Ant tasks:
v installworklightadmin, updateworklightadmin, and

uninstallworklightadmin, which are documented at “Ant tasks for
installation of MobileFirst Operations Console and Administration
Services” on page 14-10.

v configureapplicationserver, updateapplicationserver,
unconfigureapplicationserver, which are documented at “Ant tasks for
installation of MobileFirst runtime environments” on page 14-16.

5. In the Console Settings window, enter the context root of the MobileFirst
Operations Console.

6. In the Database Properties window:
a. Select your database type: IBM DB2, MySQL, or Oracle.
b. In the next window, enter the details to connect to the database instance.
c. In the Database Additional properties window, enter the parameters to

connect to the administration database.
d. If the database administrator did not create the databases in step

“Optional creation of the administration database” on page 6-43, enter
database administration credentials in the database creation request
window.

Note: For IBM DB2 and for Oracle, you must have an SSH access to the
host where the database management system (DBMS) is installed.
The Server Configuration Tool creates the database for you.

7. In the Application Server Choice window:
a. Select your application server type: WebSphere Application Server,

WebSphere Application Server Liberty profile, or Apache Tomcat.
b. In the Application Server window, enter the data so that you can deploy

IBM MobileFirst Platform Foundation for iOS to that application server.
c. Depending on your application server, proceed as follows:
v If the application server is WebSphere Application Server Liberty profile,

or Apache Tomcat, select Create a default user if you want to declare a
user who can log in to the console as administrator to the MobileFirst
Operations Console

v If the application server is WebSphere Application Server, select Declare
the WebSphere Administrator as an administrator of IBM MobileFirst
Platform Operations Console if you want to allow the WebSphere
administrator to log in to the MobileFirst Operations Console.

6-52 IBM MobileFirst Platform Foundation for iOS V7.0.0

For more information about further configuration of security roles, see
“Configuring user authentication for MobileFirst Server administration” on
page 6-82.

8. When all the data is entered, click Deploy.
The following effects take place.
a. If the database administrator did not complete step “Optional creation of

the administration database” on page 6-43, the database for the MobileFirst
Server administration is created and access rights are granted to the user
that is specified in the database additional properties window.

b. If the tables for MobileFirst administration do not exist in the database,
they are created.

c. The MobileFirst administration components are installed in the application
server and are connected to the database.

9. Restart the application server
10. If you are in an environment where you must protect the password of the

user who can log in to the console as administrator to the MobileFirst
Operations Console, follow the steps in “Securing the MobileFirst Server
administration” on page 6-117.

11. Open the console.
If the context root of the console was not changed in the Console Settings
window, you find it at <URL_TO_APPLICATION_SERVER_HTTPS_PORT>/
worklightconsole, or if HTTPS is not supported in your application server, at
the unsecured URL <URL_TO_APPLICATION_SERVER_HTTP_PORT>/
worklightconsole.

What to do next

Install a MobileFirst runtime environment. For more information, see “Deploying,
updating, or undeploying MobileFirst Server by using the Server Configuration
Tool” on page 10-9.

Using Ant tasks to install MobileFirst Server administration
Learn about the Ant tasks that you can use to install MobileFirst Server
administration.

Creating and configuring the database for MobileFirst Server administration
with Ant tasks:

If you did not manually create databases, you can use Ant tasks to create and
configure your database for MobileFirst Server administration.

Before you begin

Make sure that a database management system (DBMS) is installed and running on
a database server, which can be the same computer, or a different computer.

Note: This preliminary step is not required if you plan to use Apache Derby,
which is not supported for production use. You can install an Apache Derby
database with Ant tasks.

If you want to start the Ant task from a computer on which MobileFirst Server is
not installed, you must copy the file mf_server_install_dir/WorklightServer/
worklight-ant-deployer.jar to that computer.

Installing and configuring 6-53

If you did not create your databases manually as described in “Optional creation
of the administration database” on page 6-43, complete the following steps.

Note: The mf_server_install_dir placeholder represents the directory where you
installed MobileFirst Server.

About this task

Procedure

1. Review the sample configuration files in “Sample configuration files” on page
14-35, and copy the Ant file that corresponds to your database.
The files for creating a database are named after the following pattern:
create-database-<database>.xml

For more information, see table 1, Table 14-62 on page 14-35, in “Sample
configuration files” on page 14-35.

2. See step 4 of the page “Sample configuration files” on page 14-35 to edit the
Ant file and replace the placeholder values for the properties at the top of the
file.

3. Run the following commands to create the databases.
ant -f create-database-database.xml admdatabases

You can find the Ant command in mf_server_install_dir/shortcuts.
If the databases are created, and you must create only the database TABLES.
4. Edit the Ant script that you use later to create and configure the databases.
5. Review the sample configuration files in “Sample configuration files” on page

14-35, and copy the Ant file that corresponds to your database. The files for
configuring an existing database are named after this pattern:
configure-appServer-database.xml

For more information, see table 1, Table 14-62 on page 14-35, in “Sample
configuration files” on page 14-35.

6. See step 4 of the page “Sample configuration files” on page 14-35 to edit the
Ant file and replace the placeholder values for the properties at the top of the
file.

7. Run the following commands to create the databases.
ant -f configure-appServer-database.xml admdatabases

You can find the Ant command in mf_server_install_dir/shortcuts.

What to do next

Deploy MobileFirst Operations Console and the Administration Services, see
“Deploying the MobileFirst Operations Console and Administration Services with
Ant tasks” on page 6-55.

See also:
v “Ant configuredatabase task reference” on page 14-1
v “Sample configuration files” on page 14-35

6-54 IBM MobileFirst Platform Foundation for iOS V7.0.0

Deploying the MobileFirst Operations Console and Administration Services
with Ant tasks:

Use Ant tasks to deploy the MobileFirst Operations Console and Administration
Services to an application server, and configure data sources, properties, and
database drivers that are used by IBM MobileFirst Platform Foundation for iOS.

Before you begin

1. Complete the procedure in “Creating and configuring the databases with Ant
tasks” on page 10-13.

2. Run the Ant task on the computer where the application server is installed, or
the Network Deployment Manager for WebSphere Application Server Network
Deployment. If you want to start the Ant task from a computer on which
MobileFirst Server is not installed, you must copy the file
mf_server_install_dir/WorklightServer/worklight-ant-deployer.jar to that
computer.

Note: The mf_server_install_dir placeholder represents the directory where you
installed MobileFirst Server.

Procedure

1. Edit the Ant script that you use later to deploy the project WAR File.
a. Review the sample configuration files in “Sample configuration files” on

page 14-35, and copy the Ant file that corresponds to your database. The
files for deploying a project WAR file are named after the following pattern:
configure-appServer-database.xml

For more information, see table 1, Table 14-62 on page 14-35, in “Sample
configuration files” on page 14-35.

Note: If your file name follows the pattern configure-appServer-
database.xml, you can reuse it for “Creating and configuring the databases
with Ant tasks” on page 10-13.

b. Follow step 4 of the page “Sample configuration files” on page 14-35 to edit
the Ant file and replace the placeholder values for the properties at the top
of the file. For WebSphere Application Server Liberty profile, the
administration services require access to the RESTConnector, which is only
accessible with Liberty administrator credentials. If you do not modify the
<jmx/> tag, a new user named WorklightRESTUser is declared in the basic
registry and is given administrator rights by declaring this user in the
<administrator-role/> tag. You might have to modify the <jmx/> tag to
define the Liberty administrator credentials for example if the Liberty
administrator is identified using LDAP. In the Ant file, replace the
empty <jmx/> tag by the following line.
<jmx libertyAdminUser="demo" libertyAdminPassword="demo" createLibertyAdmin="false"/>

Where:
v libertyAdminUser is the name of the Liberty administrator.
v libertyAdminPassword is the password of the Liberty administrator.
If createLibertyAdmin is set to false, the Ant task does not attempt to add
the user to the basic registry or to declare the user as a Liberty
administrator.

2. To deploy the Administration Services and the MobileFirst Operations Console
WAR files, run the following command:

Installing and configuring 6-55

ant -f configure-appServer-database.xml adminstall

You can find the Ant command in mf_server_install_dir/shortcuts

What to do next

Install a MobileFirst runtime environment. For more information, see “Using Ant
tasks to deploy the project WAR file” on page 10-13.

See also:
v “Ant tasks for installation of MobileFirst Operations Console and Administration

Services” on page 14-10
v “Sample configuration files” on page 14-35
v “Encrypting database password with Ant tasks for Liberty” on page 14-9

Manually installing MobileFirst Server administration
You can install the MobileFirst Server administration manually instead of using the
Ant task or the Server Configuration Tool. You might also want to reconfigure
MobileFirst Server so that it uses a different database or schema from the one that
was specified during the first installation of MobileFirst Server. This
reconfiguration depends on the type of database and the kind of application server.

Configuring the DB2 database manually for the IBM MobileFirst Platform
Server administration:

You configure the DB2 database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in “Creating the DB2 database for
MobileFirst Server administration” on page 6-43.

2. Create the tables in the database. This step is described in “Setting up your
DB2 database manually for the MobileFirst Server administration.”

3. Perform the application server-specific setup as the following list shows.

Setting up your DB2 database manually for the MobileFirst Server administration:

You can set up your DB2 database for the MobileFirst Server administration
manually.

About this task

Set up your DB2 database for the MobileFirst Server administration by creating the
database schema.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password worklight. For more information, see the DB2 documentation and the
documentation for your operating system.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across

6-56 IBM MobileFirst Platform Foundation for iOS V7.0.0

the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called WLADMIN:
CREATE DATABASE WLADMIN COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLADMIN
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

4. Run DB2 with the following commands to create the WLADMIN tables, in a
schema named WLADMSC You can change the name of the schema. This
command can be run on an existing database whose page size is compatible
with the one defined in step 3.
db2 CONNECT TO WLADMIN
db2 SET CURRENT SCHEMA = ’WLADMSC’
db2 -vf product_install_dir/WorklightServer/databases/create-worklightadmin-db2.sql -t

Configuring Liberty profile for DB2 manually for MobileFirst Server administration:

You can set up and configure your DB2 database manually for MobileFirst Server
administration with WebSphere Application Server Liberty profile.

Before you begin

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/db2.
If that directory does not exist, create it. You can retrieve the file in one of two
ways:
v Download it from DB2 JDBC Driver Versions.
v Fetch it from the db2_install_dir/java on the DB2 server directory.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file as follows:
In this path, you can replace worklightServer by the name of your server.
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLADMIN" currentSchema="WLADMSC"

serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>

</dataSource>

The worklight value after user= is the name of the system user with
CONNECT access to the WLADMIN database that you have previously created.
The worklight value after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace

Installing and configuring 6-57

http://www.ibm.com/support/docview.wss?uid=swg21363866

worklight accordingly. Also, replace db2server with the host name of your DB2
server (for example, localhost, if it is on the same computer).
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

Configuring WebSphere Application Server for DB2 manually for MobileFirst Server
administration:

You can set up and configure your DB2 database manually for the MobileFirst
Server administration with WebSphere Application Server.

About this task

Complete the DB2 database setup procedure before continuing.

Note: The was_install_dir and mf_server_install_dir placeholders denote the
directories where you installed WebSphere Application Server and MobileFirst
Server.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/WorklightAdmin/db2.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
WorklightAdmin/db2.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/db2.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/WorklightAdmin/db2.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/WorklightAdmin/db2.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver

Versions, or fetch it from the directory db2_install_dir/java on the DB2
server) to the directory that you determined in step 1.

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database type to DB2.
e. Set Provider type to DB2 Using IBM JCC Driver.
f. Set Implementation Type to Connection pool data source.
g. Set Name to DB2 Using IBM JCC Driver.

6-58 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

h. Click Next.
i. Set the Class path to the set of JAR files in the directory that you

determined in step 1, one per line, replacing WAS_INSTALL_DIR/profiles/
profile-name with the WebSphere Application Server variable reference
${USER_INSTALL_ROOT}.

j. Do not set Native library path.
k. Click Next.
l. Click Finish.
m. The JDBC provider is created.
n. Click Save.

4. Create a data source for the administration database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Set the Data source name to administration database.
e. Set JNDI Name to jdbc/WorklightAdminDS.
f. Click Next.
g. Enter properties for the data source, for example:
v Driver type: 4
v Database Name: WLADMIN
v Server name: localhost
v Port number: 50000 (default)
Leave Use this data source in (CMP) selected.

h. Click Next.
i. Create JAAS-J2C authentication data, specifying the DB2 user name and

password as its properties. If necessary, go back to the data source creation
wizard, by repeating steps 4a to 4h.

j. Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

k. Click Next and Finish.
l. Click Save.
m. In Resources > JDBC > Data sources, select the new data source.
n. Click WebSphere Application Server data source properties.
o. Select the Non-transactional data source check box.
p. Click OK.
q. Click Save.
r. Click Custom properties for the data source, select property currentSchema,

and set the value to the schema used to create the MobileFirst Server
administration tables (WLADMSC in this example).

5. Test the data source connection by selecting Data Source and clicking Test
Connection.

6. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Installing and configuring 6-59

Configuring Apache Tomcat for DB2 manually for MobileFirst Server administration:

You can set up and configure your DB2 database manually for IBM MobileFirst
Platform Server administration with the Apache Tomcat application server.

About this task

Before you continue, complete the DB2 database setup procedure.

Procedure

1. Add the DB2 JDBC driver JAR file.
You can retrieve this JAR file in one of the following ways:
v Download it from DB2 JDBC Driver Versions.
v Or fetch it from the directory db2_install_dir/java on the DB2 server) to

$TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example.
<Resource auth="Container"

driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/WorklightAdminDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/WLADMIN:currentSchema=WLADMSC;"/>

The worklight parameter after username= is the name of the system user with
"CONNECT" access to the WLADMIN database that you previously created. The
password parametere after password= is this user's password. If you defined
either a different user name, or a different password, or both, replace these
entries accordingly.
DB2 enforces limits on the length of user names and passwords.
v For UNIX and Linux systems: 8 characters
v For Windows: 30 characters

3. Insert this statement in the server.xml file, as indicated in “Configuring
Apache Tomcat for MobileFirst Server administration manually” on page 6-77.

Configuring the Apache Derby database manually for the IBM MobileFirst
Platform Server administration:

You configure the Apache Derby database manually by creating the database and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database and the tables within them. This step is described in
“Setting up your Apache Derby database manually for the MobileFirst Server
administration” on page 6-61.

2. Configure the application server to use this database setup. Go to one of the
following topics:
v “Configuring Liberty profile for Derby manually for MobileFirst Server

administration” on page 6-61
v “Configuring WebSphere Application Server for Derby manually for

MobileFirst Server administration” on page 6-62

6-60 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

v “Configuring Apache Tomcat for Derby manually for the MobileFirst Server
administration” on page 6-63

Setting up your Apache Derby database manually for the MobileFirst Server
administration:

You can set up your Apache Derby database for the MobileFirst Server
administration manually.

About this task

Set up your Apache Derby database for the MobileFirst Server administration by
creating the database schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from Apache Derby: Downloads.

For supported versions of Apache Derby, see “System requirements” on page
2-7.
The script displays ij version number.

2. At the command prompt, enter the following commands:
connect ’jdbc:derby:WLADMIN;user=WLADMIN;create=true’;
run ’product_install_dir/WorklightServer/databases/create-worklightadmin-derby.sql’;
quit;

Configuring Liberty profile for Derby manually for MobileFirst Server administration:

If you want to manually set up and configure your Apache Derby database for
MobileFirst Server administration with WebSphere Application Server Liberty
profile, use the following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:

<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/WLADMIN" user="WLADMIN"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"

Installing and configuring 6-61

http://db.apache.org/derby/derby_downloads

maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool"/>

</dataSource>

Configuring WebSphere Application Server for Derby manually for MobileFirst Server
administration:

You can set up and configure your Apache Derby database manually for the
MobileFirst Server administration with WebSphere Application Server.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/WorklightAdmin/derby.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
WorklightAdmin/derby.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/derby.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/WorklightAdmin/derby.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/WorklightAdmin/derby.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/

lib/derby.jar to the directory that you determined in step 1.
3. Set up the JDBC provider.

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database Type to User-defined.
e. Set class Implementation name to

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40.
f. Set Name to Worklight - Derby JDBC Provider.
g. Set Description to Derby JDBC provider for Worklight.
h. Click Next.
i. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

j. Click Finish.
4. Create the data source for the administration database.

6-62 IBM MobileFirst Platform Foundation for iOS V7.0.0

a. In the WebSphere Application Server, click Resources > JDBC > Data
sources.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source Name to administration database.
e. Set JNDI name to jdbc/WorklightAdminDS.
f. Click Next.
g. Select the existing JDBC Provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the administration Database data source that you created.
m. Under Additional Properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the WLADMIN database that is created in “Setting up

your Apache Derby database manually for the MobileFirst Server
administration” on page 6-61.

p. Click OK.
q. Click Save.
r. At the top of the page, click administration atabase.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.
u. Click OK.
v. Click Save.
w. In the table, select the administration Database data source that you

created.
x. Optional: Only if you are not on the console of a WebSphere Application

Server Deployment Manager, click test connection.
5. For WebSphere Application Server Network Deployment, click System

administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for Derby manually for the MobileFirst Server
administration:

If you want to manually set up and configure your Apache Derby database for the
IBM MobileFirst Platform Server administration with the Apache Tomcat server,
use the following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from product_install_dir/WorklightServer/tools/lib/
derby.jar to the directory $TOMCAT_HOME/lib.

Installing and configuring 6-63

2. Prepare an XML statement that defines the data source, as shown in the
following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for MobileFirst Server administration
manually” on page 6-77

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/WorklightAdminDS"
username="WLADMIN"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WLADMIN"/>

Configuring the MySQL database manually for the IBM MobileFirst Platform
Server administration:

You configure the MySQL database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in “Creating the MySQL database
for MobileFirst Server administration” on page 6-45.

2. Create the tables in the database. This step is described in “Setting up your
MySQL database manually for the MobileFirst Server administration.”

3. Perform the application server-specific setup as the following list shows.

Setting up your MySQL database manually for the MobileFirst Server administration:

You can set up your MySQL database for the MobileFirst Server administration
manually.

About this task

Complete the following procedure to set up your MySQL database.

Procedure

1. Create the database schema.
a. Run a MySQL command line client with the option -u root.
b. Enter the following commands:

CREATE DATABASE WLADMIN CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WLADMIN.* TO ’worklight’@’Worklight-host’IDENTIFIED BY ’worklight’;
GRANT ALL PRIVILEGES ON WLADMIN.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
FLUSH PRIVILEGES;

USE WLADMIN;
SOURCE product_install_dir/WorklightServer/databases/create-worklightadmin-mysql.sql;

Where worklight before the "at" sign (@) is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM MobileFirst Platform Foundation for iOS runs.

2. Add the following property to your MySQL option file:
max_allowed_packet=256M

For more information about option files, see the MySQL documentation at
MySQL.

6-64 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://dev.mysql.com

Configuring Liberty profile for MySQL manually for MobileFirst Server administration:

If you want to manually set up and configure your MySQL database for
MobileFirst Server administration with WebSphere Application Server Liberty
profile, use the following procedure.

Before you begin

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:
<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="WLADMIN"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>

</dataSource>

where worklight after user= is the user name, worklight after password= is this
user's password, and mysqlserver is the host name of your MySQL server (for
example, localhost, if it is on the same machine).

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

Configuring WebSphere Application Server for MySQL manually for MobileFirst Server
administration:

If you want to manually set up and configure your MySQL database for
MobileFirst Server administration with WebSphere Application Server, use the
following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.

Installing and configuring 6-65

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

v For a standalone server, you can use a directory such as
WAS_INSTALL_DIR/optionalLibraries/IBM/WorklightAdmin/mysql.

v For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
WorklightAdmin/mysql.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/mysql.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/WorklightAdmin/mysql.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/WorklightAdmin/mysql.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the MySQL JDBC driver JAR file that you downloaded from Download

Connector/J to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Create a JDBC provider named MySQL.
e. Set Database type to User defined.
f. Set Scope to Cell.
g. Set Implementation class to

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.
h. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

i. Save your changes.
4. Create a data source for the administration database:

a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Type any name (for example, Worklight administration Database).
e. Set JNDI Name to jdbc/WorklightAdminDS.
f. Use the existing JDBC Provider MySQL, defined in the previous step.
g. Set Scope to New.
h. On the Configuration tab, select Non-transactional data source.
i. Click Next a number of times, leaving all other settings as defaults.
j. Save your changes.

5. Set the custom properties of the new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

6-66 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

portNumber = 3306
relaxAutoCommit=true
databaseName = WLADMIN
serverName = the host name of the MySQL server
user = the user name of the MySQL server
password = the password associated with the user name

6. Set the WebSphere Application Server custom properties of the new data
source.
a. In Resources > JDBC > Data sources, select the new data source.
b. Click WebSphere Application Server data source properties.
c. Select Non-transactional data source.
d. Click OK.
e. Click Save.

7. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for MySQL manually for MobileFirst Server administration:

If you want to manually set up and configure your MySQL database for IBM
MobileFirst Platform Server administration with the Apache Tomcat server, use the
following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/lib directory.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for MobileFirst Server administration
manually” on page 6-77.

<Resource name="jdbc/WorklightAdminDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/WLADMIN"/>

Configuring the Oracle database manually for the IBM MobileFirst Platform
Server administration:

You configure the Oracle database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the database. This step is described in “Creating the Oracle database for
MobileFirst Server administration” on page 6-45.

2. Create the tables in the database. This step is described in “Setting up your
Oracle database manually for the MobileFirst Server administration” on page
6-68.

Installing and configuring 6-67

3. Perform the application server-specific setup as the following list shows.

Setting up your Oracle database manually for the MobileFirst Server administration:

You can set up your Oracle database for the MobileFirst Server administration
manually.

About this task

Complete the following procedure to set up your Oracle database.

Procedure

1. Ensure that you have at least one Oracle database.
In many Oracle installations, the default database has the SID (name) ORCL. For
best results, specify Unicode (AL32UTF8) as the character set of the database.
If the Oracle installation is on a UNIX or Linux computer, make sure that the
database is started next time the Oracle installation is restarted. To this effect,
make sure that the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create the user WLADMIN, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.
v Create the user for the runtime database/schema, by using Oracle Database

Control, proceed as follows:
a. Connect as SYSDBA.
b. Go to the Users page.
c. Click Server, then Users in the Security section.
d. Create a user, named WLADMIN with the following attributes:

Profile: DEFAULT
Authentication: password
Default tablespace: USERS
Temporary tablespace: TEMP
Status: Unlocked
Add system privilege: CREATE SESSION
Add system privilege: CREATE SEQUENCE
Add system privilege: CREATE TABLE
Add quota: Unlimited for tablespace USERS

v To create the user by using Oracle SQLPlus, enter the following commands:
CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER WLADMIN IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WLADMIN;
DISCONNECT;

3. Create the database tables for the runtime database and reports database:
a. Using the Oracle SQLPlus command-line interpreter, create the tables for

the IBM administration database by running the create-worklightadmin-
oracle.sql file:
CONNECT WLADMIN/WLADMIN_password@ORCL
@product_install_dir/WorklightServer/databases/create-worklightadmin-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:
a. Download the JDBC driver from the Oracle website at Oracle: JDBC, SQLJ,

Oracle JPublisher and Universal Connection Pool (UCP):
b. Ensure that the Oracle JDBC driver is in the system path. The driver file is

ojdbc6.jar.

6-68 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Configuring Liberty profile for Oracle manually for MobileFirst Server administration:

If you want to manually set up and configure your Oracle database for MobileFirst
Server administration with WebSphere Application Server Liberty profile, use the
following procedure.

Before you begin

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC Driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/oracle. If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/wlp/usr/
servers/worklightServer/server.xml file (worklightServer may be replaced in
this path by the name of your server) as shown in the following JNDI code
example:
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

<!-- Declare the administration database. -->
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin"

serverName="oserver" portNumber="1521"
databaseName="ORCL"
user="WLADMIN" password="WLADMIN_password"/>

</dataSource>

where WLADMIN after user= is the user name, WLADMIN_password after password=
is this user's password, and oserver is the host name of your Oracle server (for
example, localhost, if it is on the same machine).

Note: For more information on how to connect the Liberty server to the Oracle
database with a service name, or with a URL, see the WebSphere Application
Server Liberty Core 8.5.5 documentation, section properties.oracle.

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

Configuring WebSphere Application Server for Oracle manually for the MobileFirst Server
administration:

If you want to manually set up and configure your Oracle database for the
MobileFirst Server administration with WebSphere Application Server, use the
following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/WorklightAdmin/oracle.

Installing and configuring 6-69

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0

v For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
WorklightAdmin/oracle.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/WorklightAdmin/oracle.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/WorklightAdmin/oracle.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/WorklightAdmin/oracle.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the Oracle ⌂ojdbc6.jar file downloaded from JDBC and Universal

Connection Pool (UCP) to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Complete the JDBC Provider fields as indicated in the following table:

Table 6-21. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver

Implementation type Connection pool data source

Name Oracle JDBC Driver

e. Click Next.
f. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

g. Click Next.
The JDBC provider is created.

4. Create a data source for the administration database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source name to Oracle JDBC Driver DataSource.
e. Set JNDI name to jdbc/WorklightAdminDS.
f. Click Next.
g. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.
h. Click Next.
i. Set the URL value to jdbc:oracle:thin:@oserver:1521:ORCL, where oserver is

the host name of your Oracle server (for example, localhost, if it is on the
same machine).

j. Click Next twice.

6-70 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

k. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource
> Custom properties.

l. Set oracleLogPackageName to oracle.jdbc.driver.
m. Set user = WLADMIN.
n. Set password = WLADMIN_password.
o. Click OK and save the changes.
p. In Resources > JDBC > Data sources, select the new data source.
q. Click WebSphere Application Server data source properties.
r. Select the Non-transactional data source check box.
s. Click OK.
t. Click Save.

5. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for Oracle manually for MobileFirst Server administration:

If you want to manually set up and configure your Oracle database for IBM
MobileFirst Platform Server administration with the Apache Tomcat server, use the
following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for MobileFirst Server administration
manually” on page 6-77

<Resource name="jdbc/WorklightAdminDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521:ORCL"
username="WLADMIN"
password="WLADMIN_password"/>

Where WLADMIN after username= is the name of the system user with
"CONNECT" access to the WLADMIN database that you have previously created,
and WLADMIN_password after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these values accordingly.

Deploying the Administration Services and MobileFirst Operations Console and
configuring the application server manually:

The procedure to deploy the Administration services and IBM MobileFirst Platform
Operations Console manually to an application server depends on your application
server.

These manual instructions assume that you are familiar with your application
server.

Installing and configuring 6-71

Note: Using the MobileFirst Server installer to install MobileFirst Server
administration is more reliable than installing manually and should be used
whenever possible.

If you prefer to use the manual process, follow these steps to configure your
application server for MobileFirst Server administration. You must deploy the
worklightconsole.war and worklightadmin.war files to your MobileFirst Server
administration. The files are located in product_install_dir/WorklightServer.

Configuring WebSphere Application Server Liberty profile for MobileFirst Server
administration manually:

To configure WebSphere Application Server Liberty profile for MobileFirst Server
administration manually, you must modify the server.xml file.

About this task

In addition to modifications for the databases, which are described in “Manually
installing MobileFirst Server administration” on page 6-56, you must make the
following modifications to the server.xml file.

Note: In the following procedure, when the example uses the worklight.war file
name, use the name of your MobileFirst project, for example, myProject.war.

Procedure

1. Ensure that the <featureManager> element contains at least the following
<feature> elements:
v For WebSphere Application Server Liberty profile V8.5.0.x:

<feature>ssl-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>jndi-1.0</feature>
<feature>restConnector-1.0</feature>
<feature>appSecurity-1.0</feature>

v For WebSphere Application Server Liberty profile V8.5.5.0 and later:
<feature>jdbc-4.0</feature>
<feature>appSecurity-2.0</feature>
<feature>restConnector-1.0</feature>

2. Follow the instructions from the IBM WebSphere Application Server Liberty
Core user documentation to configure the secure JMX connection.

3. Add the following global JNDI entries in the server.xml file:
<jndiEntry jndiName="ibm.worklight.admin.jmx.host" value="localhost"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.port" value="9443"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.user" value="WorklightRESTUser"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.pwd" value="WorklighRESTUserPassword"/>
<jndiEntry jndiName="ibm.worklight.topology.platform" value="Liberty"/>
<jndiEntry jndiName="ibm.worklight.topology.clustermode" value="Standalone"/>

Where:
v ibm.worklight.admin.jmx.host is the host name for the JMX REST

connection.
v ibm.worklight.admin.jmx.port is the HTTPS port. You can find its value in

the httpEndpoint element of the server.xml file.
v ibm.worklight.admin.jmx.user is a user with the <administrator-role> that

you created in step 2.

6-72 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html

v ibm.worklight.admin.jmx.pwd is the password of that user.
4. Modify the web container definition with the following values:

<webContainer invokeFlushAfterService="false" deferServletLoad="false"/>

5. Declare a thread pool: Add the following <executor> declaration, or if the
server.xml file has an <executor> declaration already, modify its coreThreads
and maxThreads values accordingly.
<!-- Thread pool -->
<executor name="LargeThreadPool" id="default"

coreThreads="200" maxThreads="400" keepAlive="60s"
stealPolicy="STRICT" rejectedWorkPolicy="CALLER_RUNS"/>

6. Copy the following WAR files to the apps directory of the liberty server:
product_install_dir/WorklightServer/worklightadmin.war and
product_install_dir/WorklightServer/worklightconsole.war.

Note: the apps directory is in the same directory as the server.xml file.
7. Declare the Administration Services and MobileFirst Operations Console

applications:
<!-- Declare the Administration Services application. -->
<application id="worklightadmin" name="worklightadmin" location="worklightadmin.war" type="war">

<application-bnd>
<security-role name="worklightadmin">
<!-- This example adds a user to the worklightadmin security-role <user name="worklightUser"/> -->
</security-role>
<security-role name="worklightdeployer">
</security-role>
<security-role name="worklightmonitor">
</security-role>
<security-role name="worklightoperator">
</security-role>

</application-bnd>
<classloader delegation="parentLast">

<commonLibrary>
<!-- Important: the version number of the following cryptographic JAR file might change

according to the version of WebSphere Application Server Liberty profile, or its fix packs -->
<fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_*.jar"/>

</commonLibrary>
</classloader>

</application>

<!-- Declare the MobileFirst Operations
Console application. -->
<application id="worklightconsole" name="worklightconsole" location="worklightconsole.war" type="war">

<application-bnd>
<security-role name="worklightadmin">
<!-- This example adds a user to the worklightadmin security-role <user name="worklightUser"/> -->
</security-role>
<security-role name="worklightdeployer">
</security-role>
<security-role name="worklightmonitor">
</security-role>
<security-role name="worklightoperator">
</security-role>

</application-bnd>
</application>

<jndiEntry jndiName="worklightconsole/ibm.worklight.admin.endpoint" value=’"*://*:*/worklightadmin"’/>

Note: For more information about how to configure a user registry for Liberty
profile, see Configuring a user registry for the Liberty profile.

Installing and configuring 6-73

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_sec_registries.html

The JNDI property worklightconsole/ibm.worklight.admin.endpoint is
prefixed by the context root of the MobileFirst Operations Console application,
in this example worklightconsole. The value of this property is the end point
to the MobileFirst administration.
The syntax "*://*:*/worklightadmin" means that the URL is the same as the
one that is used to contact the MobileFirst Operations Console. However, the
context root of the MobileFirst Operations Console is replaced by
worklightadmin.
You might also specify the full endpoint, for example: http://
myhostname.mydomain.com:9080/worklightadmin.

8. If the database is Oracle, add the commonLibraryRef attribute to the class loader
of the worklightadmin application.
...
<classloader delegation="parentLast" commonLibraryRef="OracleLib">

<commonLibrary>
...

The name of the library reference (OracleLib in this example) must be the ID of
the library that contains the JDBC JAR file. This ID is declared in the procedure
that is documented in “Configuring Liberty profile for Oracle manually for
MobileFirst Server administration” on page 6-69.

Configuring WebSphere Application Server for MobileFirst Server administration
manually:

To configure WebSphere Application Server for IBM MobileFirst Platform Server
administration manually, you must configure variables, custom properties, and
class loader policies.

Before you begin

These instructions assume that a stand-alone profile exists with an application
server named “Worklight” and that the server is using the default ports.

Procedure

1. Log on to the WebSphere Application Server administration console for your
MobileFirst Server.
The address is of the form http://server.com:9060/ibm/console, where server
is the name of the server.

2. Enable application security.
a. Click Security > Global Security.
b. Ensure that Enable administrative security is selected. Application security

can be enabled only if administrative security is enabled.
c. Ensure that Enable application security is selected.
d. Click OK.
e. Save the changes.

For more information, see Enabling security in WebSphere Application Server
user documentation.

3. Review the server class loader policy: Click Servers > Server Types >
WebSphere application servers, and select the server used for IBM MobileFirst
Platform Foundation for iOS.
v If the class loader policy is set to Multiple, do nothing.

6-74 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_csec2.html

v If the class loader policy is set to Single and the class loading mode is set to
parent-last, do nothing.

v If the class loader policy is set to Single and the class loading mode is set to
parent-first, change the class loader policy to Multiple, and set the class
loader order of all applications other than MobileFirst applications to
parent-first.

4. Create the MobileFirst Server administration JDBC data source and provider.
See the instructions in the appropriate subsection in “Manually installing
MobileFirst Server administration” on page 6-56.

5. If you install on WebSphere Application Server Network Deployment, find the
SOAP port of the deployment manager by clicking System
Administration/Deployment manager.
a. In Additional properties, open Ports.
b. Take note of the value SOAP_CONNECTOR_ADDRESS, because you need it to set

the value of the ibm.worklight.admin.jmx.dmgr.port environment entry for
the Administration Services.

6. Install the Administration Services WAR file:
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Go to the MobileFirst Server installation directory product_install_dir/
WorklightServer.

c. Select worklightadmin.war, and then click Next.
d. On the How do you want to install the application? page, click Detailed,

and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the Map resource references to resources page,

and enter the JNDI name of the data source that you created in step 4.
g. Click Next until you reach the Map context roots for web modules page.
h. In the Context Root field, type /worklightadmin.
i. Click Next.
j. In Map environment entries for web modules:
v If you install by using the Deployment Manager in the WebSphere

Application Server Network Deployment product, enter the following
values:
– For the entry ibm.worklight.admin.jmx.dmgr.host, enter the host name

of the deployment manager.
– For the entry ibm.worklight.admin.jmx.dmgr.port, enter the SOAP port

of the deployment manager that you noted in step 5.b.
– For the entry ibm.worklight.topology.platform, enter WAS.
– For the entry ibm.worklight.topology.clustermode, enter Cluster.

v If you install on a stand-alone server:
– For the entry ibm.worklight.topology.platform, enter WAS.
– For the entry ibm.worklight.topology.clustermode, enter Standalone.

k. Click Next until you reach the last step, and click Finish.
l. Click Save.

7. Configure the class loader policies for the Administration Services and then
start the application:

Installing and configuring 6-75

a. Click the Manage Applications link, or click Applications > Applications
Types > WebSphere enterprise applications.

b. From the list of applications, click worklightadmin_war.
c. In the Detail Properties section, click the Class loading and update

detection link.
d. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
e. Click OK.
f. In the Detail Properties section, click the Startup behavior link.
g. In Startup Order, enter 1, and click OK.
h. In the Modules section, click Manage Modules.
i. From the list of modules, click the Worklight Administration Services

module.
j. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
k. Click OK twice.
l. Click Save.
m. Select worklightadmin_war and click Start.

8. Install the IBM MobileFirst Platform Operations Console WAR file.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Go to the MobileFirst Server installation directory product_install_dir/
WorklightServer.

c. Select worklightconsole.war, and then click Next.
d. On the How do you want to install the application? page, click Detailed,

and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the Map context roots for web modules page.
g. In the Context Root field, type /worklightconsole.
h. Click Next.
i. In Map environment entries for web modules, enter the value

://:*/worklightadmin for the entry ibm.worklight.admin.endpoint.
j. Click Next until you reach the last step, and click Finish.
k. Click Save.

9. Configure the class loader policies for the MobileFirst Operations Console and
start the application:
a. Click the Manage Applications link, or click Applications > Application

Types > WebSphere enterprise applications.
b. From the list of applications, click worklightconsole_war.
c. In the Detail Properties section, click the Class loading and update

detection link.
d. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
e. Click OK.
f. In the Detail Properties section, click the Startup behavior link.

6-76 IBM MobileFirst Platform Foundation for iOS V7.0.0

g. In Startup Order, enter 1, and click OK.
h. In the Modules section, click Manage Modules.
i. From the list of modules, click the Worklight Console module.
j. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
k. Click OK twice.
l. Click Save.
m. Click Applications > Application Types > WebSphere enterprise

applications.
n. Select Select for worklightconsole_war and click Start.

Results

You can now access the MobileFirst Server administration at http://
<server>:<port>/worklightconsole, where server is the host name of your server
and port is the port number (by default 9080).

What to do next

For more steps to configure MobileFirst Server administration, see “Configuring
WebSphere Application Server full profile for MobileFirst Server administration”
on page 6-84.

Configuring Apache Tomcat for MobileFirst Server administration manually:

To configure Apache Tomcat for the MobileFirst Server administration manually,
you must copy JAR and WAR files to Tomcat, add database drivers, edit the
server.xml file, and then start Tomcat.

Before you begin

Prerequisites:
v Configure the database for MobileFirst Server administration. For more

information about various databases configuration, see “Manually installing
MobileFirst Server administration” on page 6-56.

v Define the CATALINA_OPTS options to enable Java Management Extensions (JMX)
as described in “Configuring Apache Tomcat” on page 6-47.

Procedure

1. Edit tomcat_install_dir/conf/server.xml file.
a. Uncomment the following element, which is initially commented out:

<Valve className="org.apache.catalina.authenticator.SingleSignOn" />.
b. Declare the MobileFirst Operations Console and Administration Services

applications and a user registry:
<!-- Declare the Administration Services application. -->
<Context docBase="worklightadmin" path="/worklightadmin">

<!-- Declare the JNDI environment entries for the Administration Services. -->
<Environment name="ibm.worklight.topology.platform" value="Tomcat" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.topology.clusterMode" value="Standalone" type="java.lang.String" override="false"/>

<!-- Declare the administration database. -->
<!-- <Resource name="jdbc/WorklightAdminDS" type="javax.sql.DataSource" ... /> -->

</Context>

Installing and configuring 6-77

<!-- Declare the MobileFirst Platform Operations Console application. -->
<Context docBase="worklightconsole" path="/worklightconsole">

<!-- Declare the JNDI environment entries for the Operations Console. -->
<Environment name="ibm.worklight.admin.endpoint" value="*://*:*/worklightadmin" type="java.lang.String" override="false"/>

</Context>

<!-- Declare the user registry for the MobileFirst Server administration.
The MemoryRealm recognizes the users defined in conf/tomcat-users.xml.
For other choices, see Apache Tomcat "Realm Configuration HOW-TO"
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html . -->

<Realm className="org.apache.catalina.realm.MemoryRealm"/>

where you must uncomment and complete the <Resource> element to
declare the administration database as described in one of the following
sections:
v “Configuring Apache Tomcat for DB2 manually for MobileFirst Server

administration” on page 6-60
v “Configuring Apache Tomcat for Derby manually for the MobileFirst

Server administration” on page 6-63
v “Configuring Apache Tomcat for MySQL manually for MobileFirst Server

administration” on page 6-67
v “Configuring Apache Tomcat for Oracle manually for MobileFirst Server

administration” on page 6-71
2. Copy the MobileFirst Server administration WAR files to Tomcat.
v On UNIX and Linux systems:

cp product_install_dir/WorklightServer/*.war tomcat_install_dir/webapps

v On Windows systems:
copy /B product_install_dir\WorklightServer\worklightconsole.war tomcat_install_dir\webapps\worklightconsole.war
copy /B product_install_dir\WorklightServer\worklightadmin.war tomcat_install_dir\webapps\worklightadmin.war

3. Start Tomcat.

What to do next

For more steps to configure the MobileFirst Server administration, see
“Configuring Apache Tomcat for MobileFirst Server administration” on page 6-86.

Defining the endpoint of the MobileFirst Administration services
If circumstances require the parameters of the endpoint definition to be changed,
you must configure properties of the web application server appropriately.

MobileFirst Operations Console must be able to locate the MobileFirst
Administration REST services and must be able to generate various URI for the
entry points of web applications or for the download of audit log files.

By default, the URI protocol, host name, and port are the same as those defined in
the web application server used to access MobileFirst Operations Console; the
context root of the MobileFirst Administration REST services is worklightadmin.
When the context root of the MobileFirst Administration REST services is changed
or when the internal URI of the web application server is different from the
external URI, and the external URI is used to access MobileFirst Operations
Console, the externally accessible endpoint (protocol, host name, and port) must be
defined by configuring the web application server. Reasons for separating internal
and external URI could be, for example, a firewall or a secured reverse proxy that
uses HTTP redirection.

6-78 IBM MobileFirst Platform Foundation for iOS V7.0.0

The following figure shows a configuration with a secured reverse proxy that hides
the internal address (192.168...) when MobileFirst Operations Console is accessed
with the external address (wrklght.net).

Table 6-22. The endpoint properties

Property name Purpose Example

ibm.worklight.admin.endpoint This property enables MobileFirst
Operations Console to locate the
MobileFirst Administration REST
services. The value of this property
must be specified as the external
address and context root of the
worklightadmin.war web application.
You can use the asterisk (*) character
as wildcard for specifying that the
MobileFirst Administration services
use the same value as MobileFirst
Operations Console. For example:
://:*/wladmin means use the same
protocol, host, and port as
MobileFirst Operations Console, but
use wladmin as context root. This
property must be specified for the
MobileFirst Operations Console
application.

https://wrklght.net:443/
worklightadmin

ibm.worklight.admin.proxy.protocol If external access is required, this
property specifies the protocol for
external browsers to access the
MobileFirst Administration services.
This property must be specified for
the MobileFirst Administration
services application.

https

ibm.worklight.admin.proxy.host If external access is required, this
property specifies the host name for
external browsers to access the
MobileFirst Administration services.
This property must be specified for
the MobileFirst Administration
services application.

wrklght.net

Figure 6-7. Configuration with secured reverse proxy

Installing and configuring 6-79

Table 6-22. The endpoint properties (continued)

Property name Purpose Example

ibm.worklight.admin.proxy.port If external access is required, this
property specifies the port for
external browsers to access the
MobileFirst Administration services.
This property must be specified for
the MobileFirst Administration
services application.

443

Configuring the endpoint (WebSphere Application Server full profile):

Configure the endpoint of the application resources in the environment entries of
MobileFirst Operations Console and the MobileFirst Administration services
application.

About this task

Follow this procedure when you must change the endpoint of the MobileFirst
Administration services.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Applications > Application Types > WebSphere enterprise

applications.
3. Click Worklight Administration Services.
4. In the “Web Module Properties” section, select “Environment entries for Web

modules”.
5. Assign the appropriate values for the following environment entries:

a. For ibm.worklight.admin.proxy.host, assign the host name.
b. For ibm.worklight.admin.proxy.port, assign the port number.
c. For ibm.worklight.admin.proxy.protocol, assign the external protocol.

6. Click OK and save the configuration.
7. Select Applications > Application Types > WebSphere enterprise

applications.
8. Click Worklight Console.
9. In the “Web Module Properties” section, select “Environment entries for Web

modules”.
10. For ibm.worklight.admin.endpoint, assign the full URI of the MobileFirst

Administration services; That is, the URI of the worklightadmin.war file.
v In a scenario with a firewall or a secured reverse proxy, this URI must be

the external URI and not the internal URI inside the local LAN.
v You can use the asterisk (*) character as wildcard for specifying that the

MobileFirst Administration services use the same value as MobileFirst
Operations Console. For example, *://*:*/wladmin means use the same
protocol, host, and port as MobileFirst Operations Console, but use wladmin
as context root.

11. Click OK and save the configuration. For a complete list of JNDI properties
that you can set, see “List of JNDI properties for MobileFirst Server
administration” on page 6-86.

6-80 IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring the endpoint (Liberty profile):

For the Liberty profile, configure the endpoint of the application resources through
the JNDI environment.

About this task

Follow this procedure when you must change the endpoint of MobileFirst
Administration services. The appropriate entries in the server.xml file must be
correctly defined.

Procedure

1. Ensure that the <feature> element in the server.xml file is correctly defined to
be able to define JNDI entries.
<feature>jndi-1.0</feature>

2. In the <server> section of the server.xml file, add an entry for each required
property. Each such entry should have the following syntax:
<jndiEntry jndiName="JNDI_property_name" value="property_value"/>

Where:
v JNDI_property_name is the name of the property that you are adding.
v property_value is the value of the property that you are adding.

For a complete list of JNDI properties that you can set, see “List of JNDI
properties for MobileFirst Server administration” on page 6-86.

Example of setting properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file that are
required for configuring the endpoint of the application resources.
<jndiEntry jndiName="worklightconsole/ibm.worklight.admin.endpoint"

value="https://wrklght.net:443/worklightadmin" />
<jndiEntry jndiName="worklightadmin/ibm.worklight.admin.proxy.protocol"

value="https" />
<jndiEntry jndiName="worklightadmin/ibm.worklight.admin.proxy.host"

value="wrklght.net" />
<jndiEntry jndiName="worklightadmin/ibm.worklight.admin.proxy.port"

value="443" />

In this example, assume that the context root of MobileFirst Operations Console is
worklightconsole and that the context root of the Administration Services is
worklightadmin. You can prefix the JNDI properties with the context root of the
corresponding web application. If multiple instances of MobileFirst Server are
running in the same web application server, this technique is particularly useful. If
you have only one instance of MobileFirst Server, you can omit the context root
prefix; for example:
<jndiEntry jndiName="ibm.worklight.admin.endpoint"

value="https://wrklght.net:443/worklightadmin" />
<jndiEntry jndiName="ibm.worklight.admin.proxy.protocol"

value="https" />
<jndiEntry jndiName="ibm.worklight.admin.proxy.host"

value="wrklght.net" />
<jndiEntry jndiName="ibm.worklight.admin.proxy.port"
value="443"/>

For ibm.worklight.admin.endpoint, you can use the asterisk (*) character as
wildcard for specifying that the MobileFirst Administration services use the same
value as MobileFirst Operations Console. For example, *://*:*/wladmin means use

Installing and configuring 6-81

the same protocol, host, and port as MobileFirst Operations Console, but use
wladmin as context root.

Configuring the endpoint (Apache Tomcat):

For the Apache Tomcat server, configure the endpoint of the application resources
in the server.xml file.

About this task

Follow this procedure when you must change the endpoint of the MobileFirst
Administration services. You must edit the server.xml file in the conf directory of
your Apache Tomcat installation.

Procedure

In the server.xml file in the conf directory of your Apache Tomcat installation, add
an entry for each property in the <context> section of the corresponding
application. Each entry should have the following syntax:

<Environment name="JNDI_property_name" value="property_value" type="property_type" override="false"/>

Where:
v JNDI_property_name is the name of the property that you are adding.
v property_value is the value of the property that you are adding.
v property_type is the value of the type of property that you are adding.

For a complete list of JNDI properties that you can set, see “List of JNDI properties
for MobileFirst Server administration” on page 6-86.

Example of setting server.xml properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file that are
required for configuring the endpoint of the application resources.

In the context section of the MobileFirst Operations Console application:
<Environment name="ibm.worklight.admin.endpoint" value="https://wrklght.net:443/worklightadmin"

type="java.lang.String" override="false"/></p>

For ibm.worklight.admin.endpoint, you can use the asterisk (*) character as
wildcard for specifying that the MobileFirst Administration services use the same
value as MobileFirst Operations Console. For example, *://*:*/wladmin means use
the same protocol, host, and port as MobileFirst Operations Console, but use
wladmin as context root.

In the <context> section of the MobileFirst Administration Services application,
you can write:

<Environment name="ibm.worklight.admin.proxy.protocol" value="https" type="java.lang.String"
override="false"/>

<Environment name="ibm.worklight.admin.proxy.host" value="wrklght.net" type="java.lang.String"
override="false"/>

<Environment name="ibm.worklight.admin.proxy.port" value="443" type="java.lang.Integer" override="false"/>

Configuring user authentication for MobileFirst Server
administration
You configure user authentication and choose an authentication method.
Configuration procedure depends on the web application server that you use.

6-82 IBM MobileFirst Platform Foundation for iOS V7.0.0

The MobileFirst Server administration requires user authentication.

You must perform configuration after the installer deploys the MobileFirst Server
administration web applications in the web application server.

The MobileFirst Server administration has the following Java Platform, Enterprise
Edition (Java EE) security roles defined:

worklightadmin

worklightdeployer

worklightoperator

worklightmonitor

You must map the roles to the corresponding sets of users. The worklightmonitor
role can view data but cannot change any data. The purpose of the roles is
illustrated by the following table.

Table 6-23. MobileFirst Roles and Functionality - Production Server

Administrator Deployer Operator Monitor

Java EE security role. worklightadmin worklightdeployer worklightoperator worklightmonitor

Deployment

Deploy an
application.

Y Y

Deploy an adapter. Y Y

MobileFirst Server
Management

Configure runtime
settings.

Y Y

Application
Management

Upload new
MobileFirst
application.

Y Y

Remove MobileFirst
application.

Y Y

Upload new
MobileFirst adapter.

Y Y

Remove MobileFirst
adapter.

Y Y

Turn on or off
application
authenticity testing
for an application.

Y Y

Change properties on
MobileFirst
application status:
Active, Active
Notifying, and
Disabled.

Y Y Y

Installing and configuring 6-83

Table 6-23. MobileFirst Roles and Functionality - Production Server (continued)

Administrator Deployer Operator Monitor

Lock an application
so the new artifacts
cannot be used for a
version.

Y Y Y

Notifications

Unsubscribe a device
from SMS
notification.

Y Y

Configure Push. Y Y

Logging

Enable and disable
device logging
remotely.

Y Y Y

Configure log levels. Y Y Y

Disable the specific
device, marking the
state as lost or stolen
so that access from
any of the
applications on that
device is blocked.

Y Y Y

Disable a specific
application, marking
the state as disabled
so that access from
the specific
application on that
device is blocked.

Y Y

If you choose to use an authentication method through a user repository such as
LDAP, you can configure the MobileFirst Server administration so that you can use
users and groups with the user repository to define the Access Control List (ACL)
of the MobileFirst Server administration. This procedure is conditioned by the type
and version of the web application server that you use.

Configuring WebSphere Application Server full profile for MobileFirst Server
administration:

Configure security by mapping the MobileFirst Server administration Java EE roles
to a set of users for both web applications.

Procedure

You define the basics of user configuration in the WebSphere Application Server
console. Access to the console is usually by this address:
https://localhost:9043/ibm/console/

1. Select Security > Global Security.
2. Select Security Configuration Wizard to configure users.

You can manage individual user accounts by selecting Users and Groups >
Manage Users.

6-84 IBM MobileFirst Platform Foundation for iOS V7.0.0

3. Map the roles worklightadmin, worklightdeployer, worklightmonitor, and
worklightoperator to a set of users.
a. Select Servers > Server Types > WebSphere application servers.
b. Select the server.
c. In the Configuration tab, select Applications > Enterprise applications.
d. Select IBM_Worklight_Administration_Services.
e. In the Configuration tab, select Details > Security role to user/group

mapping.
f. Perform the necessary customization.
g. Click OK.
h. Repeat steps c to g to map the roles for the console web application. In step

d, select IBM_Worklight_Console.
i. Click Save to save the changes.

Configuring WebSphere Application Server Liberty profile for MobileFirst
Server administration:

Configure the Java EE security roles of the MobileFirst Server administration and
the data source in the server.xml file.

Before you begin

In WebSphere Application Server Liberty profile, you configure the roles of
worklightadmin, worklightdeployer, worklightmonitor, and worklightoperator in
the server.xml configuration file of the server.

About this task

To configure the security roles, you must edit the server.xml file. In the
<application-bnd> element of each <application> element, create <security-role>
elements. Each <security-role> element is for each roles: worklightadmin,
worklightdeployer, worklightmonitor, and worklightoperator. Map the roles to
the appropriate user group name, in this example: worklightadmingroup,
worklightdeployergroup, worklightmonitorgroup, or worklightoperatorgroup.
These groups are defined through the <basicRegistry> element. You can customize
this element or replace it entirely with an <ldapRegistry> element or a
<safRegistry> element.

Then, to maintain good response times with a large number of installed
applications, for example with 80 applications, you should configure a connection
pool for the administration database.

Procedure

1. Edit the server.xml file.
For example:
<security-role name="worklightadmin">

<group name="worklightadmingroup"/>
</security-role>
<security-role name="worklightdeployer">

<group name="worklightdeployergroup"/>
</security-role>
<security-role name="worklightmonitor">

<group name="worklightmonitorgroup"/>
</security-role>
<security-role name="worklightoperator>

Installing and configuring 6-85

<group name="worklightoperatorgroup"/>
</security-role>

<basicRegistry id="worklightadmin">
<user name="admin" password="admin"/>
<user name="guest" password="guest"/>
<user name="demo" password="demo"/>
<group name="worklightadmingroup">
<member name="guest"/>
<member name="demo"/>

</group>
<group name="worklightdeployergroup">
<member name="admin" id="admin"/>

</group>
<group name="worklightmonitorgroup"/>
<group name="worklightoperatorgroup"/>

</basicRegistry>

2. Edit the server.xml file to define the AppCenterPool size.
<connectionManager id="AppCenterPool" minPoolSize="10" maxPoolSize="40"/>

3. In the <dataSource> element, define a reference to the connection manager:
<dataSource id="WLADMIN" jndiName="jdbc/WorklightAdminDS" connectionManagerRef="AppCenterPool">
...

</dataSource>

Configuring Apache Tomcat for MobileFirst Server administration:

You must configure the Java EE security roles for the MobileFirst Server
administration on the Apache Tomcat web application server.

Procedure

1. If you installed the MobileFirst Server administration manually, declare the
following roles in the conf/tomcat-users.xml file.
<role rolename="worklightadmin"/>
<role rolename="worklightmonitor"/>
<role rolename="worklightdeployer"/>
<role rolename="worklightoperator"/>

2. Add roles to the selected users, for example:
<user name="demo" password="demo" roles="worklightadmin"/>

3. You can define the set of users as described in the Apache Tomcat
documentation, Realm Configuration HOW-TO.

List of JNDI properties for MobileFirst Server administration
When you configure MobileFirst Server Administration Services and MobileFirst
Operations Console for your application server, you set optional or mandatory
JNDI properties, in particular for Java Management Extensions (JMX).

JNDI properties for MobileFirst Administration Services

The following properties can be set on the Administration Services web application
worklightadmin.war.

6-86 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

Table 6-24. JNDI properties for Administration Services: JMX

Property
Optional or
mandatory Description Restrictions

ibm.worklight.admin.jmx.connector Optional The Java Management
Extensions (JMX)
connector type.

The possible values are
SOAP and RMI. The default
value is SOAP.

WebSphere Application
Server only.

ibm.worklight.admin.jmx.host Optional Host name for the JMX
REST connection.

Liberty profile only.

ibm.worklight.admin.jmx.port Optional Port for the JMX REST
connection.

Liberty profile only.

ibm.worklight.admin.jmx.user Optional User name for the JMX
REST connection.

WebSphere Application
Server Liberty profile:
User name for the JMX
REST connection.

WebSphere Application
Server Farm: User name
for the SOAP connection.

ibm.worklight.admin.jmx.pwd Optional User password for the
JMX REST connection.

WebSphere Application
Server Liberty profile:
User password for the
JMX REST connection.

WebSphere Application
Server Farm: User
password for the SOAP
connection.

ibm.worklight.admin.rmi.registryPort Optional RMI registry port for the
JMX connection through a
firewall.

Tomcat only.

ibm.worklight.admin.rmi.serverPort Optional RMI server port for the
JMX connection through a
firewall.

Tomcat only.

ibm.worklight.admin.jmx.dmgr.host Mandatory Deployment manager host
name.

WebSphere Application
Server Network
Deployment only.

ibm.worklight.admin.jmx.dmgr.port Mandatory Deployment manager RMI
or SOAP port.

WebSphere Application
Server Network
Deployment only.

Table 6-25. JNDI properties for Administration Services: time out

Property
Optional or
mandatory Description

ibm.worklight.admin.actions.prepareTimeout Optional Timeout in milliseconds to transfer data
from the management service to the
runtime during a deployment transaction. If
the runtime cannot be reached within this
time, an error is raised and the deployment
transaction ends.

Default value: 1800000 ms (30 min)

Installing and configuring 6-87

Table 6-25. JNDI properties for Administration Services: time out (continued)

Property
Optional or
mandatory Description

ibm.worklight.admin.actions.commitRejectTimeout Optional Timeout in milliseconds, when a runtime is
contacted, to commit or reject a deployment
transaction. If the runtime cannot be
reached within this time, an error is raised
and the deployment transaction ends.

Default value: 120000 ms (2 min)

ibm.worklight.admin.lockTimeoutInMillis Optional Timeout in milliseconds for obtaining the
transaction lock. Because deployment
transactions run sequentially, they use a
lock. Therefore, a transaction must wait
until a previous transaction is finished. This
timeout is the maximal time during which a
transaction waits.

Default value: 1200000 ms (20 min)

ibm.worklight.admin.maxLockTimeInMillis Optional The maximal time during which a process
can take the transaction lock. Because
deployment transactions run sequentially,
they use a lock. If the application server
fails while a lock is taken, it can happen in
rare situations that the lock is not released
at the next restart of the application server.
In this case, the lock is released
automatically after the maximum lock time
so that the server is not blocked forever. Set
a time that is longer than a normal
transaction.

Default value: 1800000 (30 min)

Table 6-26. JNDI properties for Administration Services: logging

Property
Optional or
mandatory Description

ibm.worklight.admin.logging.formatjson Optional Set this property to true to enable pretty
formatting (extra blank space) of JSON
objects in responses and log messages.
Setting this property is helpful when you
debug the server.

Default value: false.

ibm.worklight.admin.logging.tosystemerror Optional Specifies whether all logging messages are
also directed to System.Error. Setting this
property is helpful when you debug the
server.

6-88 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-27. JNDI properties for Administration Services: proxies

Property
Optional or
mandatory Description

ibm.worklight.admin.proxy.port Optional If the MobileFirst Administration server is behind a firewall
or reverse proxy, this property specifies the address of the
host. Set this property to enable a user outside the firewall
to reach the MobileFirst Administration server. Typically,
this property is the port of the proxy, for example 443. It is
necessary only if the protocol of the external and internal
URIs are different.

ibm.worklight.admin.proxy.protocol Optional If the MobileFirst Administration server is behind a firewall
or reverse proxy, this property specifies the protocol (HTTP
or HTTPS). Set this property to enable a user outside the
firewall to reach the MobileFirst Administration server.
Typically, this property is set to the protocol of the proxy.
For example, wl.net. This property is necessary only if the
protocol of the external and internal URIs are different.

ibm.worklight.admin.proxy.scheme Optional This property is just an alternative name for
ibm.worklight.admin.proxy.protocol.

ibm.worklight.admin.proxy.host Optional If the MobileFirst Administration server is behind a firewall
or reverse proxy, this property specifies the address of the
host. Set this property to enable a user outside the firewall
to reach the MobileFirst Administration server. Typically,
this property is the address of the proxy.

Table 6-28. JNDI properties for Administration Services: topologies

Property
Optional or
mandatory Description

ibm.worklight.admin.audit Optional. Set this property to false to disable the
audit feature of the MobileFirst
Operations Console. The default value
is true.

ibm.worklight.admin.environmentid Optional. Environment identifier for the
registration of the MBeans.

Use this identifier when different
instances of the MobileFirst Server are
installed on the same application
server. The identifier determines which
Administration Services, which console,
and which runtimes belong to the same
installation. The Administration
Services manage only the runtimes that
have the same environment identifier.

ibm.worklight.admin.serverid Optional. Server identifier. Must be different for
each server in the farm. For server
farms only.

ibm.worklight.admin.hsts Optional. Set to true to enable HTTP Strict
Transport Security according to RFC
6797.

Installing and configuring 6-89

Table 6-28. JNDI properties for Administration Services: topologies (continued)

Property
Optional or
mandatory Description

ibm.worklight.topology.platform Mandatory Server type. Valid values:

v Liberty

v WAS

v Tomcat

If you do not set the value, the
application tries to guess the server
type.

ibm.worklight.topology.clustermode Mandatory In addition to the server type, specify
here the server topology. Valid values:

v Standalone

v Cluster

v Farm

The default value is Standalone.

ibm.worklight.admin.lock.master Optional In cluster and farm topologies, this
property determines which server is the
lock master when the Cloudant
database is used.

For synchronization, the system
requires a locking mechanism that
works across all servers in the farm or
cluster.

SQL data bases have native locking
facilities, but Cloudant has none.
Therefore, with Cloudant only one of
the servers in the farm or cluster
provides the locking mechanism. This
server is called the lock master.

Alternative ways of using this property
are available:

v You set this property to auto on all
servers. The locking master is chosen
and updated dynamically, depending
on server availability.

v You set this property to true on one
server only and to false on all the
other servers. In this configuration,
the server where the property has
the value true is the lock master.

In WebSphere Application Server
Network Deployment topologies,
setting the property to true must be
done through a JVM property of the
server.
Note: This use creates a single point
of failure. When the lock master is
unavailable, MobileFirst
Administration does not function.

The default value is auto.

6-90 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-28. JNDI properties for Administration Services: topologies (continued)

Property
Optional or
mandatory Description

ibm.worklight.admin.lock.master.detection.delay Optional This property determines the time in
milliseconds to wait on startup until
Cloudant is ready, before any locking
operation can take place. This property
is only needed in cluster or farm
topology when the database is
Cloudant. For synchronization, the
system requires a locking mechanism
that works across all servers in the
farm or cluster.

SQL databases have native locking
facilities, but Cloudant has none.
Therefore, with Cloudant one of the
servers in the farm or cluster provides
the locking mechanism.

This lock master server can be selected
automatically with the help of the
database. This automatic selection
requires a small delay, similar to the
setting of
mfp.db.cloudant.afterWrite.delay, to
ensure that the Cloudant database is in
a consistent state. This delay occurs
only once when the server starts.
Reasonable values are between 1 and
10 seconds. Negative values are
ignored. The default value is 3000
(three seconds).

ibm.worklight.admin.lock.master.detection.timeout Optional This property determines the timeout
in seconds for the detection of the lock
master. This property is only needed in
cluster or farm topology when the
database is Cloudant. For
synchronization, the system requires a
locking mechanism that works across
all servers in the farm or cluster.

SQL databases have native locking
facilities, but Cloudant has none.
Therefore, with Cloudant one of the
servers in the farm or cluster provides
the locking mechanism.

During startup, the lock master server
must come alive before all the other
servers. Therefore, the other servers
wait for this server before they
complete their startup.

This timeout value specifies the
maximum time another server waits for
the lock master to come alive. Negative
values are ignored. The default value is
120 (two minutes).

Installing and configuring 6-91

Table 6-28. JNDI properties for Administration Services: topologies (continued)

Property
Optional or
mandatory Description

ibm.worklight.admin.lock.master.connect.timeout Optional This property determines the timeout
in seconds for the connection to the
lock master. This property is only
needed in cluster or farm topology
when the database is Cloudant. For
synchronization, the system requires a
locking mechanism that works across
all servers in the farm or cluster.

SQL databases have native locking
facilities, but Cloudant has none.
Therefore, with Cloudant one of the
servers in the farm or cluster provides
the locking mechanism. That server is
called the lock master.

The timeout value specifies the
maximum time another server waits for
the lock master to respond to requests
to take a lock. Negative values are
ignored. The default value is 10
(seconds).

ibm.worklight.admin.farm.heartbeat Optional This property enables you to set in
minutes the heartbeat rate that is used
in server farm topologies.

The default value is 2 minutes.

In a server farm, all members must use
the same heartbeat rate. If you set or
change this JNDI value on one server
in the farm, you must also set the same
value on every other server in the farm.

For more information, see “Lifecycle of
a server farm node” on page 6-103.

ibm.worklight.admin.farm.missed.heartbeats.timeout Optional This property enables you to set the
number of missed heartbeats of a farm
member before the status of the farm
member is considered to be failed or
down.

The default value is 2.

In a server farm all members must use
the same missed heartbeat value. If you
set or change this JNDI value on one
server in the farm, you must also set
the same value on every other server in
the farm.

For more information, see “Lifecycle of
a server farm node” on page 6-103.

6-92 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-28. JNDI properties for Administration Services: topologies (continued)

Property
Optional or
mandatory Description

ibm.worklight.admin.cloudant.dashboard.url Optional This property defines the URL of the
Cloudant dashboard, such as the
dashboard of the Cloudant account that
you use for the MobileFirst data proxy.
If this property is set, a link will be
displayed in the header of MobileFirst
Operations Console.

Table 6-29. JNDI properties for Administration Services: relational database

Property Optional or mandatory Description

ibm.worklight.admin.db.jndi.name Optional The JNDI name of the database. This
parameter is the normal mechanism
to specify the database. The default
value is java:comp/env/jdbc/
WorklightAdminDS.

ibm.worklight.admin.db.openjpa.
ConnectionDriverName

Optional

Conditionally mandatory

The fully qualified name of the
database connection driver class.
Mandatory only when the data
source that is specified by the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.
ConnectionURL

Optional

Conditionally mandatory

The URL for the database connection.
Mandatory only when the data
source that is specified by the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.
ConnectionUserName

Optional

Conditionally mandatory

The ⌂user name for the database
connection. Mandatory only when
the data source that is specified by
the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.
ConnectionPassword

Optional

Conditionally mandatory

The password for the database
connection. Mandatory only when
the data source that is specified by
the
ibm.worklight.admin.db.jndi.name
property is not defined in the
application server configuration.

ibm.worklight.admin.db.openjpa.Log Optional This property is passed to OpenJPA
and enables JPA logging. For more
information, see the Apache OpenJPA
User's Guide.

ibm.worklight.admin.db.type Optional This property defines the type of
database. The default value is
inferred from the connection URL.

Installing and configuring 6-93

http://openjpa.apache.org/docs/openjpa-0.9.0-incubating/manual/manual.html
http://openjpa.apache.org/docs/openjpa-0.9.0-incubating/manual/manual.html

Table 6-30. JNDI properties for Administration Services: IBM Cloudant database

Property Optional or mandatory Description

mfp.db.cloudant.url Optional This property defines the URL of the
Cloudant account used to store the
database. The default value is
https://username.cloudant.com.

mfp.db.cloudant.username Optional

Conditionally mandatory

This property defines the user name
of the Cloudant account used to store
the database.

If this property is not defined, a
relational database is used.

mfp.db.cloudant.password Optional

Conditionally mandatory

This property defines the password
of the Cloudant account used to store
the database.

This property must be set when
mfp.db.cloudant.username is set.

mfp.db.cloudant.ssl.authentication Optional This property specifies whether the
SSL certificate chain validation and
host name verification are enabled for
HTTPS connections to the Cloudant
database. The value is a Boolean
value (true or false). The default
value is true.
Note: Setting this property to false
creates security risks.

mfp.db.cloudant.ssl.configuration Optional This property applies to WebSphere
Application Server full profile only.
For HTTPS connections to the
Cloudant database, it specifies the
name of an SSL configuration in the
WebSphere Application Server
configuration to use when no
configuration is specified for the host
and port.

mfp.db.cloudant.proxyHost Optional This property defines the host name
of an HTTP proxy for the connection
to the Cloudant database server.

mfp.db.cloudant.proxyPort Optional This property defines the port of an
HTTP proxy for the connection to the
Cloudant database server.

mfp.db.cloudant.adminDbName Optional This property defines the name of the
database for MobileFirst
Administration Services in the
Cloudant account. The name must
start with a lowercase letter and
contain only lowercase letters and
any of the following characters:

0-9 , $ - _

The default name is mfp_admin_db.

6-94 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-30. JNDI properties for Administration Services: IBM Cloudant database (continued)

Property Optional or mandatory Description

mfp.db.cloudant.connectTimeout Optional This property defines the timeout in
milliseconds for establishing a
network connection for Cloudant. A
value of zero means an infinite
timeout. A negative value means the
default value (no override).

mfp.db.cloudant.socketTimeout Optional This property defines the timeout in
milliseconds for detecting the loss of
a network connection for Cloudant. A
value of zero means an infinite
timeout. A negative value means the
default value (no override).

mfp.db.cloudant.maxConnections Optional This property defines the maximum
number of simultaneous connections
to the Cloudant database.

mfp.db.cloudant.afterWrite.
fullCommit

Optional This property specifies whether an
"ensure full commit" operation is
used after every write operation to
the Cloudant database. The possible
values are: true, false. The default
value is false.

mfp.db.cloudant.afterWrite.delay Optional This property specifies in
milliseconds how long to wait after
every write operation to the
Cloudant database. A value of zero
means no wait. The default value is
0.

mfp.db.cloudant.retry.count Optional This property specifies the number of
times to retry a Cloudant database
query operation until it satisfies the
expectations known from the context.
The default value is 2.

mfp.db.cloudant.retry.delay Optional This property specifies in
milliseconds how long to wait before
retrying a Cloudant database query
operation. A value of 0 means no
wait. The default value is 0.

mfp.db.cloudant.documentOperation.
timeout

Optional This property specifies in seconds the
timeout for the completion of
operations on Cloudant documents.
A value of zero means an infinite
timeout. A negative value means the
default value (no override). The
default value is 30 seconds.

mfp.db.cloudant.attachmentOperation.
timeout

Optional This property specifies in seconds the
timeout for the completion of
operations on Cloudant attachments.
A value of zero means an infinite
timeout. A negative value means the
default value (no override). The
default value is 600 seconds (10
minutes).

Installing and configuring 6-95

JNDI properties for MobileFirst Operations Console

The following properties can be set on the web application (worklightconsole.war)
of MobileFirst Operations Console.

Table 6-31. JNDI properties for the MobileFirst Operations Console

Property
Optional or
mandatory Description

ibm.worklight.admin.endpoint Optional Enables the MobileFirst Operations Console to locate the
MobileFirst Server Administration REST services. Specify
the external address and context root of the
worklightadmin.war web application. In a scenario with a
firewall or a secured reverse proxy, this URI must be the
external URI and not the internal URI inside the local LAN.
For example, https://wl.net:443/worklightadmin.

ibm.worklight.admin.global.logout Optional Clears the WebSphere user authentication cache during the
console logout. This property is useful only for WebSphere
Application Server V7.

The default value is false.

ibm.worklight.admin.hsts Optional Set this property to true to enable HTTP Strict Transport
Security according to RFC 6797. For more information, see
the W3C Strict Transport Security page.

The default value is false.

ibm.worklight.admin.ui.cors Optional The default value is true.

For more information, see the W3C Cross-Origin Resource
Sharing page.

ibm.worklight.admin.ui.cors.
strictssl

Optional Set to false to allow CORS situations where the MobileFirst
Operations Console is secured with SSL (HTTPS protocol)
while the MobileFirst Server Administration services are
not, or conversely. This property takes effect only if the
ibm.worklight.admin.ui.cors property is enabled.

Configuring the JNDI properties

For more information about how to configure the JNDI properties, see the topic
“Configuring a MobileFirst project in production by using JNDI environment
entries” on page 10-60.

To configure the properties with Ant tasks, you must use the Ant task
installworklightadmin, instead of configureapplicationserver.

For the console, the property element should be under the console element.

For more information, see “Ant tasks for installation of MobileFirst Operations
Console and Administration Services” on page 14-10.
Related tasks:
JNDI environment entries for MobileFirst projects in production
When you deploy a MobileFirst project to a MobileFirst Server, you can configure
the project’s WAR file with JNDI environment entries to set product environment
properties.

6-96 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.w3.org/Security/wiki/Strict_Transport_Security
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

Verifying the installation of MobileFirst Server administration
You must log in to the MobileFirst Operations Console to verify that the
installation was successful.

Procedure
1. Open a web browser.
2. Enter the following URL in the address bar: http://hostname:9083/

worklightconsole/.

Note:

v In this URL, hostname is the host name of the computer that runs your
application server.

v You must replace 9083 by the HTTP port of your application server.
3. Log in with a worklightadmin user role.
4. The console displays the following message: No runtime can be found.. To

install a MobileFirst runtime environment that you can manage with the
MobileFirst Operations Console, see “Installing the MobileFirst runtime
environment.”

Note: If the Application Center and MobileFirst Operations Console are
installed in the same Tomcat instance, you cannot log in to the Application
Center console and to the MobileFirst Operations Console at the same time in
the same browser. If you try to log in at the same time, you get a 404 Page Not
Found error message.

For example, you get this error message if you open your browser, successfully
log in to the Application Center console, open a new tab in the browser, and
log in to the MobileFirst Operations Console.

This is a technical limitation of Tomcat. The implementation of single sign-on in
Tomcat does not allow to use the same browser to log in to the Application
Center console and to the MobileFirst Operations Console at the same time. But
the Application Center and MobileFirst Server require single sign-on. You must
exit the browser after your work is done in the Application Center console and
restart the browser to log in to the MobileFirst Operations Console. You can
then successfully log in to the MobileFirst Operations Console.

Installing the MobileFirst runtime environment

About this task

For more information about the MobileFirst runtime environment, see “Deploying
the project WAR file” on page 10-5.

Installing a server farm
MobileFirst Server provides a specific plug-in so that instances of application
servers can become server farm nodes. After you have prepared the installation
depending on your work environment, you can install your server farm manually
or by running Ant tasks.

Planning the configuration of a server farm
To plan the configuration of a server farm, choose the application server, write the
configuration file, and deploy the WAR files.

Installing and configuring 6-97

When you intend to plan a server farm installation, you should first see “Planning
deployment of administration components and runtimes” on page 6-7, and in
particular see “Server farm topology” on page 6-11.

In IBM MobileFirst Platform Foundation for iOS, a server farm is composed of
multiple stand-alone application servers that are not federated or administered by
a managing component of an application server. MobileFirst Server internally
provides a farm plug-in as the means to enhance an application server so that it
can be part of a server farm.

When to declare a server farm

Declare a server farm in the following cases:

v MobileFirst Server is installed on multiple Tomcat application servers.
v MobileFirst Server is installed on multiple WebSphere Application Server

servers but not on WebSphere Application Server Network Deployer.
v MobileFirst Server is installed on multiple WebSphere Application Server

Liberty servers.

Do not declare a server farm in the following cases:

v Your application server is stand-alone.
v Multiple application servers are federated by WebSphere Application

Server Network Deployment.

Why it is mandatory to declare a farm

Each time a management operation is performed through the MobileFirst
Operations Console or through the MobileFirst Administration Services application,
the operation needs to be replicated to all instances of a runtime environment.
Examples of such management operations are the uploading of a new version of a
wlapp or of an adapter. The replication is done via JMX calls performed by the
MobileFirst Administration Services application instance that handles the
operation. The Administration Service needs to contact all runtime instances in the
cluster. In environments listed under “When to declare a server farm,” the runtime
can be contacted through JMX only if a farm is configured. If a server is added to a
cluster without proper configuration of the farm, the runtime in that server will be
in an inconsistent state after each management operation, and until it is restarted
again.

Configuring a server farm
You must configure each server in the farm according to the requirements of the
single type of application server used for each member of the server farm.

About this task

When you plan a server farm, first create stand-alone servers that communicate
with the same database instance. Then modify the configuration of these servers to
make them members of a server farm.

Procedure
1. Choose the type of application server to use to configure the members of the

server farm. IBM MobileFirst Platform Foundation for iOS supports these
application servers in server farms:
v WebSphere Application Server full profile.

6-98 IBM MobileFirst Platform Foundation for iOS V7.0.0

Note: In a farm topology, you cannot use the RMI JMX connector. In this
topology, IBM MobileFirst Platform Foundation for iOS supports only the
SOAP connector.

v WebSphere Application Server Liberty profile.
v Apache Tomcat.
To know which versions of application servers are supported, see “System
requirements” on page 2-7.

Note: IBM MobileFirst Platform Foundation for iOS supports only
homogeneous server farms. A server farm is homogeneous when it connects
application servers of the same type. Attempting to associate different types of
application servers could lead to unpredictable behavior at run time. For
example, a farm with a mix of Apache Tomcat servers and WebSphere
Application Server full profile servers is an invalid configuration.

2. Decide which database that you want to use. You can choose from:
v DB2
v MySQL
v Oracle
MobileFirst databases are shared between the application servers in a farm,
which means:
v You create the database only once, whatever the number of servers in the

farm.
v You cannot use the Derby database in a farm topology, because the Derby

database allows only a single connection at a time.
For more information about databases, see “Planning the creation of the
databases” on page 6-19.

3. Set up as many stand-alone servers as the number of members that you want
in the farm. Each of these stand-alone servers must communicate with the same
database. You must make sure that any port used by any of these servers is not
also used by another server configured on the same machine. This constraint
applies to the ports used by http, https, REST, SOAP, and RMI protocols.
To set up the servers, you can choose one of the following methods of
installation:
v Install them by using the Server Configuration Tool.
v Install them by using configuration Ant scripts.
v Install them manually.
Each of these servers must have the MobileFirst Administration Services and
one or more MobileFirst runtime environments deployed on it.
For more information about setting up a server, see “Planning the installation
of MobileFirst Server” on page 6-3.
When each of these servers is working properly in a stand-alone topology, you
can transform them into nodes of a server farm.

4. Stop all the servers intended to become members of the farm.
5. Configure each server appropriately for the type of application server. You

must set some JNDI properties correctly. For Apache Tomcat, you must also
check that the JVM arguments are properly defined.
v WebSphere Application Server Liberty profile

In the server.xml file, set the JNDI properties shown in the following sample
code.

Installing and configuring 6-99

<jndiEntry jndiName="ibm.worklight.topology.clustermode" value="Farm"/>
<jndiEntry jndiName="ibm.worklight.admin.serverid" value="farm_member_1"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.user" value="myRESTConnectorUser"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.pwd" value="password-of-rest-connector-user"/>
<jndiEntry jndiName="ibm.worklight.admin.jmx.host" value="93.12.0.12"/>

These properties must be set with appropriate values:
– ibm.worklight.admin.serverid: The identifier that you defined for this

farm member. This identifier must be unique across all farm members.
– ibm.worklight.admin.jmx.user and ibm.worklight.admin.jmx.pwd: These

values must match the credentials of a user as declared in the
<administrator-role/> element.

– ibm.worklight.admin.jmx.host: Set this parameter to the IP or the host
name that is used by remote members to access this server. Therefore, do
not set it to localhost. This host name is used by the other members of
the farm and must be accessible to all farm members.

– ibm.worklight.admin.jmx.port: Set this parameter to the server HTTPS
port that is used for the JMX REST connection. You can find the value in
the <httpEndpoint> element of the server.xml file.

v Apache Tomcat

Modify the conf/server.xml file to set the following JNDI properties in the
MobileFirst administration context and in every MobileFirst runtime context.
<Environment name="ibm.worklight.topology.clustermode" value="Farm" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.admin.serverid" value="farm_member_1" type="java.lang.String" override="false"/>

The ibm.worklight.admin.serverid property must be set to the identifier that
you have chosen for this farm member. This identifier must be unique across
all farm members.
You must make sure that the -Djava.rmi.server.hostname JVM argument is
set to the IP or the host name used by remote members to access this server.
Therefore, it must not be set to “localhost”. This argument is set in the
CATALINA_OPTS environment variable.

v WebSphere Application Server full profile

You must declare the following environment variables in the MobileFirst
Administration Services and in every MobileFirst runtime application
deployed on the server.
– "ibm.worklight.topology.clustermode"
– "ibm.worklight.admin.serverid"

a. In the WebSphere Application Server console, select Applications >
Application Types > WebSphere Enterprise applications.

b. Select the MobileFirst Administration Service application.
c. In “Web Module Properties”, click Environment entries for Web Modules

to display the JNDI properties.
d. Set the values of the following properties.
v Set “ibm.worklight.topology.clustermode” to Farm.
v Set “ibm.worklight.admin.serverid” to the identifier that you chose for

this farm member.
v Set “ibm.worklight.admin.jmx.user” to a user name that has access to

the SOAP connector.
v Set “ibm.worklight.admin.jmx.pwd” to the password of the user declared

in “ibm.worklight.admin.jmx.user”.
e. Verify that “ibm.worklight.admin.jmx.connector” is set to SOAP.
f. Click OK and save the configuration.

6-100 IBM MobileFirst Platform Foundation for iOS V7.0.0

g. Make similar changes for every MobileFirst runtime application deployed
on the server.

6. Exchange the server certificates in their truststores. Exchanging the server
certificates in their truststores is mandatory for farms that use WebSphere
Application Server full profile and WebSphere Application Server Liberty
profile, because in these farms communication between the servers is secured
by SSL.
v WebSphere Application Server Liberty profile

You can configure the truststore by using IBM utilities such as Keytool or
iKeyman.
– For more information about Keytool, see Keytool in the IBM SDK, Java

Technology Edition.
– For more information about iKeyman, see iKeyman in the IBM SDK, Java

Technology Edition.
a. Import the public certificates of the other servers in the farm into the

truststore referenced by the server.xml configuration file of the server. If
the server.xml file does not specify the location of a truststore, it is usually
the ⌂Liberty_install_dir/usr/servers/servername/resources/security/
key.jks file. If you are unsure and want to find the location of the
truststore, you can do so by adding ⌂the following declaration to the
server.xml file:
<logging traceSpecification="SSL=all:SSLChannel=all"/>

Then, start the server and look for lines containing
⌂com.ibm.ssl.trustStore in the ⌂Liberty_install_dir/usr/servers/
servername/logs/trace.log file.

b. Restart each instance of WebSphere Application Server Liberty profile to
make the security configuration take effect.
The following steps are required for single sign on (SSO) to work.

c. Start one member of the farm. In the default LTPA configuration, after the
Liberty server has started successfully, it generates an LTPA keystore as
Liberty_install_dir/servers/server_name/resources/security/ltpa.keys.

d. Copy the ltpa.keys file to the Liberty_install_dir/servers/server_name/
resources/security directory of each farm member to replicate the LTPA
keystores across the farm members.
For more information about LTPA configuration, see Configuring LTPA on
the Liberty profile.

v WebSphere Application Server full profile

Configure the truststore in the WebSphere Application Server administration
console.

a. Log in to the WebSphere Application Server administration console.
b. Select Security > SSL certificate and key management.
c. In “Related Items”, select Keystores and certificates.
d. In the “Keystore usages” field, make sure that SSL keystores is selected.

You can now import the certificates from all the other servers in the farm.
e. Click NodeDefaultTrustStore.
f. In “Additional Properties”, select Signer certificates.
g. Click Retrieve from port. You can now enter communication and security

details of each of the other servers in the farm. Follow the next steps for
each of the other farm members.

h. In the “Host” field, enter the server host name or IP address.

Installing and configuring 6-101

http://www-01.ibm.com/support/knowledgecenter/?lang=en#!/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/keytoolDocs/keytool_overview.html
http://www-01.ibm.com/support/knowledgecenter/?lang=en#!/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/ikeyman_tool.html
http://www.ibm.com/support/knowledgecenter/#!/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ltpa.html
http://www.ibm.com/support/knowledgecenter/#!/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ltpa.html

i. In the “Port” field, enter the HTTPS transport (SSL) port.
j. In “SSL configuration for outbound connection”, select

NodeDefaultSSLSettings.
k. In the “Alias” field, enter an alias for this signer certificate,
l. Click Retrieve signer information.
m. Review the information that is retrieved from the remote server and then

click OK.
n. Click Save.
o. Restart the server.

What to do next

If you have created a farm whose members use WebSphere Application Server
Liberty profile, you can now set up an IBM HTTP Server for Liberty. For more
information, see “Setting up an IBM HTTP Server in an IBM WebSphere
Application Server Liberty profile farm” on page 6-252.

Verifying a farm configuration
To verify a server farm configuration, start all the servers, deploy an application to
one of the servers of the farm, and then check the log files of each server to
confirm that all servers have been updated.

About this task

The purpose of this task is to verify that a farm is configured properly and that
administration operations are propagated on all servers of a farm.

Procedure
1. Start all the servers of the farm.
2. Deploy a MobileFirst application to one of the servers of the farm. You can use

the MobileFirst Operations Console or the wladm program with the deploy app
command. For more information about the deploy app command, see
“Commands for apps” on page 11-44.

3. Once the operation is completed, review the log file of the application server
and search for the entries of class BaseTransaction. Verify that all servers have
been updated.
This is the example of a Liberty log file:
$ grep BaseTransaction messages.log

[9/22/14 1:03:17:032 CEST] 0000006d com.ibm.worklight.admin.actions.BaseTransaction I Result: worklight: farm2///169.254.19.0: Preparation to deploy ’Hello’ finished
[9/22/14 1:03:17:251 CEST] 0000006e com.ibm.worklight.admin.actions.BaseTransaction I Result: worklight: farm1///169.254.19.0: Preparation to deploy ’Hello’ finished
[9/22/14 1:03:19:123 CEST] 00000072 com.ibm.worklight.admin.actions.BaseTransaction I Result: worklight: farm1///169.254.19.0: Commit
[9/22/14 1:03:19:123 CEST] 00000072 com.ibm.worklight.admin.actions.BaseTransaction I worklight: farm1///169.254.19.0: 2014-09-20T23:03:18.608Z: Application ’Hello’ was updated
[9/22/14 1:03:19:138 CEST] 00000071 com.ibm.worklight.admin.actions.BaseTransaction I Result: worklight: farm2///169.254.19.0: Commit
[9/22/14 1:03:19:138 CEST] 00000071 com.ibm.worklight.admin.actions.BaseTransaction I worklight: farm2///169.254.19.0: 2014-09-20T23:03:18.608Z: Application ’Hello’ was updated

Troubleshooting

v If you use an environment ID (see “List of JNDI properties for
MobileFirst Server administration” on page 6-86 and “Configuring a
MobileFirst project in production by using JNDI environment
entries” on page 10-60), for each server, verify that the environmentId
value for the MobileFirst Administration Service is the same as the
environmentId value for the runtime.

v If you have several servers on the same computer, you must verify
that all servers are using a different JMX port:

6-102 IBM MobileFirst Platform Foundation for iOS V7.0.0

– For WebSphere Application Server, the port that is used for JMX is
the SOAP port.

– For WebSphere Application Server Liberty, the port that is used
for JMX is the HTTPS port.

– For Apache Tomcat, the port that is used for JMX is the RMI port,
which is specified in the Ant tasks or in the setenv file for a
manual installation.

If the JMX port is not available for a server, the MobileFirst runtime
environment cannot start.

Lifecycle of a server farm node
You can configure heartbeat rate and timeout values to indicate possible server
problems among farm members by triggering a change in status of an affected
node.

When a server configured as a farm node is started, the Administration Service on
that server automatically registers it as a new farm member.

When a farm member is shut down, it automatically unregisters from the farm.

A heartbeat mechanism exists to keep track of farm members that might become
unresponsive, for example, because of a power outage or a server failure. In this
heartbeat mechanism, MobileFirst runtimes send periodically at a given rate a
heartbeat to MobileFirst administration services. If the MobileFirst administration
services register that too long a time has elapsed since a farm member sent a
heartbeat, then the farm member is considered to be down.

Farm members considered to be down do not serve any more requests to mobile
applications.

Having one or more nodes down does not prevent the other members of the farm
from:
v Serving requests correctly to mobile applications
v Accepting new management operations triggered through MobileFirst

Operations Console

Configuring the heartbeat rate and timeout values

You can configure the heartbeat rate and timeout values by defining the following
JNDI properties:
v ibm.worklight.admin.farm.heartbeat

v ibm.worklight.admin.farm.missed.heartbeats.timeout

For more information, see “List of JNDI properties for MobileFirst Server
administration” on page 6-86

You can check the status of farm members from MobileFirst Operations Console by
clicking Server Farm Nodes.

Installing and configuring 6-103

Clicking Server Farm Nodes enables you to access the list of registered farm
members and their status.

The node identified as “farm_member_2” is considered to be down, which
indicates that this server has probably failed and requires some maintenance.

Figure 6-8. Checking the status of farm nodes

Figure 6-9. List of server farm nodes

6-104 IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring MobileFirst Server
Consider your backup and recovery policy, optimize your MobileFirst Server
configuration, and apply access restrictions and security options.

Backup and recovery
You can back up the customization and the content (adapters and applications)
outside the MobileFirst instance, for example in a source control system.

It is advisable to back up the runtime database as-is. When reports are enabled, the
database can become quite large. Consider the benefits of backing them up
separately. Report tables can be configured to be stored on a different database
instance.

Optimization and tuning of MobileFirst Server
Optimize the MobileFirst Server configuration by tuning the allocation of Java
virtual machine (JVM) memory, HTTP connections, back-end connections, and
internal settings.

The MobileFirst Server works with three application servers: Apache Tomcat,
WebSphere Application Server and Liberty profile. For best results, install
MobileFirst Server on a 64-bit operating system, and use only 64-bit software.

JDK

The MobileFirst Server can run on IBM JDK or Oracle JDK.

JVM memory allocation

The Java instance of the application server allocates memory. Consider the
following general guidelines for JVM memory allocations:
v Set the JVM memory to at least 2 GB. This means you can not use less than 2GB,

but that might not be enough and you will have to specify more, based on the
requirements.

v For a production environment, setting the minimum heap size and maximum
heap size to the same value can provide the best performance, as it avoids heap
expansion and contraction.

v Set the required memory size of the application server:
– Liberty: See the jvm.options section in Customizing the Liberty profile

environment. You must create this file if it does not exist.
– WebSphere Application Server: proceed as follows.

1. Log in to the administration console.
2. Go to Servers > Server types > WebSphere application servers.
3. Select each server and set Java memory settings under Java Process

definition > JVM arguments.
– Apache Tomcat: find the catalina script and set JAVA_OPTS to inject memory.

For information about how to calculate memory size, see the Scalability and
Hardware Sizing document and the hardware calculator spreadsheet at the
Developer Center website for IBM MobileFirst Platform Foundation.

Installing and configuring 6-105

http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_customvars.html
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_customvars.html
https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

Tuning HTTP connections

This configuration defines threading and execution settings for the application
server.

Each incoming request requires a thread for the duration of that request. If more
simultaneous requests are received than can be handled by the currently available
request processing threads, then additional threads will be created up to the
configured maximum.

Specific application server configuration:
v Liberty: See the executor section in Liberty profile: Configuration elements in

the server.xml file.
By default, the maximum number of threads is unlimited.

v WebSphere Application Server: Proceed as follows:
1. Log in to the administration console.
2. Go to Servers > Server types > WebSphere application servers >

server_name > Web container.
By default, the maximum number of threads is 50.

v Apache Tomcat: See The HTTP Connector page in the Apache Tomcat website.
By default, the maximum number of threads is 200.

Bear in mind the following points when you configure HTTP threads:
v If, for example, the longest call takes 500 milliseconds and you configure a

maximum of 50 threads, you can handle approximately 100 requests per second.
v If your environment includes a back-end system that runs slowly, increase the

number of default threads. In addition, increase the number of back-end
connection threads. For more information, see “Tuning database connections.”

v If you expect a high number of concurrent users, increase the number of default
threads.

v Liberty specific: Even though the maximum number of threads is unlimited, the
executor service makes informed choices whether adding another thread will
actually be useful.

Tuning database connections

In tuning database connections, the most important parameter is the number of
connection threads from the server to the database. This configuration is made in
the data source. There are two IBM MobileFirst Platform Foundation for iOS
features that rely heavily on the database: SSO (single sign-on) and reports. When
using these features, you must ensure that you have enough database connection
threads. The only limitation is that each node in the MobileFirst Server cluster can
have no more than MAX_DB_INCOMING_CONNECTIONS/NUM_OF_CLUSTER_NODES
connection threads, where MAX_DB_INCOMING_CONNECTIONS is the maximum incoming
connections defined in the database server and NUM_OF_CLUSTER_NODES is the
number of MobileFirst Server nodes in the cluster. A rough rule of thumb is to set
the number of database connections to be the number of HTTP threads in the
application server, as long as you maintain the limitation above.

Each incoming request uses a thread. If more simultaneous requests are received
than can be handled by the currently available request-processing threads, more
threads are created up to the configured maximum.

6-106 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
http://tomcat.apache.org/tomcat-7.0-doc/config/http.html

For data source configuration, check the following topics:
v WebSphere Application Server: See Connection pool settings.
v Apache Tomcat: See JNDI Datasource HOW-TO.
v Liberty Server: See the Datasource section in Liberty profile: Configuration

elements in the server.xml file.

Tuning back-end connections

maxConcurrentConnectionsPerNode

The maxConcurrentConnectionsPerNode parameter defines the maximum
number of concurrent calls to the back-end service from the MobileFirst
Server node. This maxConcurrentConnectionsPerNode parameter is set in the
<connectionPolicy> element of the adapter XML file.

Starting from IBM MobileFirst Platform Foundation for iOS V6.3, all
requests to the back-end remain on the HTTP thread. The MobileFirst
Server does NOT allocate a new thread for the backend request. The only
use of maxConcurrentConnectionsPerNode is for blocking the number of
connections to the HTTP back-end. The implication is that you can specify
a large value for maxConcurrentConnectionsPerNode (for example, 5000), so
as not to limit the back-end calls.

Handling slow backend servers

If your backend server is slow, increase the values for your server settings,
in particular the following values:
v Number of HTTP threads in the application server: For a backend that

responds in 750 ms, for example, 3000 HTTP threads is recommended.
v maxConcurrentConnectionsPerNode in the adapter XML file: For a

backend that responds in 750 ms, for example, 3000 is recommended.
v OS settings: Increase the number of open files. 4096 is the recommended

number.
v Clients threads: A good rule of thumb is 2900 JMETER clients threads.
v Backend server: 3000 threads is recommended.

Push Notifications

For push notification information see the Push Notification section in the
Scalability and Hardware Sizing document and the hardware calculator
spreadsheet at the Developer Center website for IBM MobileFirst Platform
Foundation.

Analytics

For Analytics Server configuration see the Analytics section in the Scalability and
Hardware Sizing document and the hardware calculator spreadsheet at the
Developer Center website for IBM MobileFirst Platform Foundation.

MobileFirst Server internal configuration

Consider the following factors:
v The serverSessionTimeout property defines client inactivity timeout, after which

the session is invalidated. A session is an object stored in the server memory for
each connecting device. Among other data, it stores authentication information.
Active sessions are determined by the number of sessions opened versus the

Installing and configuring 6-107

http://ibm.biz/knowctr#SSAW57_7.0.0/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/udat_conpoolset.html
http://tomcat.apache.org/tomcat-7.0-doc/jndi-datasource-examples-howto.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F3-0-2-1-0
https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/
https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/
https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

sessions timing out due to lack of activity. The default session timeout is 10
minutes, but it can and should be configured. Users typically set the timeout to
anywhere from 5 to 10 minutes. This parameter affects the server memory
consumption.

v In addition, the mobile client has a “heartbeat” property that allows the mobile
client to ping the server while the app is in the foreground, so that the server
session will not time out.

Note:
When a mobile app has moved into the background, it no longer interacts with
the server, nor sends a “heartbeat”. The result is that the server session drops
after the specified server session timeout.

v For example, suppose every minute 1,000 users start a session against the server.
Even if they exit the application after 3 minutes, their sessions will remain active
on the server for 10 minutes, leaving 10 x 1,000 = 10,000 sessions.

Intervals for background tasks

The following worklight.properties parameters control the intervals at which
background tasks. Background tasks perform several actions on the database
and/or file system:

sso.cleanup.taskFrequencyInSeconds
The SSO (single sign-on) mechanism stores session data in a database table.
This parameter is the interval for the SSO cleanup task to check if there are
inactive accounts in the SSO table. If any are found, it deletes them. The
default value is 5 seconds, meaning that every 5 seconds, the database is
checked for inactive accounts. An inactive account is one that has remained
idle for longer than the value of the serverSessionTimeout property.

push.cleanup.taskFrequencyInSeconds
Deletes inactive push notification subscriptions. The default is 60 minutes.
This parameter is currently implemented only for Apple APNS.

Optimization of MobileFirst Server project databases
You can improve the performance of the project databases or schemas that support
MobileFirst Server.

Note: The Reports database and the associated APP_ACTIVITY_REPORT table
described below are deprecated in IBM MobileFirst Platform Foundation for iOS
V7.0.0. Use “Operational analytics” on page 12-8 instead. Note that setting up the
Reports database is optional in this release and prior releases.

The following sections provide general information about database tuning, and
techniques you can use to optimize your database performance for IBM
MobileFirst Platform Foundation for iOS. In the following sections, the examples
that are provided are for the IBM DB2 database. If you use MySQL or Oracle,
consult that vendor's documentation for the corresponding procedures.

Database disks

You can find some overview information about the MobileFirst Server project
databases in the Database usage and size section of the Scalability and Hardware
Sizing document and its accompanying hardware calculator spreadsheet at the
Developer Center website for IBM MobileFirst Platform Foundation. The

6-108 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

spreadsheet can aid you in computing the hardware configuration that is best
suited to your planned server environment.

When you compute your hardware needs, consider servers that offer multiple
disks because performance increases significantly if you use disks correctly when
you set up your MobileFirst Server project databases. For example, whether you
use DB2, MySQL, or Oracle, you can almost always speed up database
performance by configuring the database to use separate disks to store database
logs, index, and data. Multidisk configuration results in faster access to your data
with every transaction because there is no contention resulting from the same disk
attempting to write to its log files or access its index at the same time it processes
the data transaction.

Database compression

By using the compression feature set by your database vendor, you can decrease
database size and input/output (I/O) time.

For example, in tests that were performed on IBM DB2, adding COMPRESS YES to
the SQL that creates the APP_ACTIVITY_REPORT table decreased the size of that table
on the disk by a factor of 3 and decreased its I/O time by a factor of 2.

CPU time might increase as a result of this compression, but it was not observed in
the tests on the APP_ACTIVITY_REPORT table, possibly because most of the activity
was INSERTs and the aggregation task was not monitored deeply.

On DB2, LOB data size

If your database is DB2, consider using the INLINE_LENGTH option when you create
tables for SSO information. This option is also appropriate for tables that contain
data that is stored as large objects (LOBs), but that are only a few kilobytes in size.
To improve performance of LOB data access, you can constrain the LOB size by
placing the LOB data within the formatted rows on data pages rather than in the
LOB storage object. For more information about this technique, see Inline LOBs
improve performance.

Database table partitions

A partition is a division of a logical database table into distinct independent parts.
You can improve performance and the purging accumulated data by mapping each
table partition to a different table space. This suggestion applies only to the
APP_ACTIVITY_REPORT table, which holds most of the row data.

Note: Partitioned tables are different from a partitioned database (DPF)
environment, which is not suggested for use with IBM MobileFirst Platform
Foundation for iOS.

To show how to use database partitions can be used, here is an example from DB2:
v A partition is defined on the ACTIVITY_TIMESTAMP column in the

APP_ACTIVITY_REPORT table.
v Each partition contains the data for one day.
v The number of partitions is the number of days of data that you want to save.
v Each partition is created in a different table space.
v Thus in the SQL example that follows, you create seven partitions in DB2:

Installing and configuring 6-109

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.perf.doc/doc/c0053761.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.perf.doc/doc/c0053761.html

CREATE TABLESPACE app_act_rep_1;
CREATE TABLESPACE app_act_rep_2;
CREATE TABLESPACE app_act_rep_3;
CREATE TABLESPACE app_act_rep_4;
CREATE TABLESPACE app_act_rep_5;
CREATE TABLESPACE app_act_rep_6;
CREATE TABLESPACE app_act_rep_7;

CREATE TABLE "APP_ACTIVITY_REPORT" (
"ID" BIGINT NOT NULL ,
"ACTIVITY" CLOB(1048576) LOGGED NOT COMPACT ,
"ACTIVITY_TIMESTAMP" TIMESTAMP ,
"ADAPTER" VARCHAR(254) ,
"DEVICE_ID" VARCHAR(254) ,
"DEVICE_MODEL" VARCHAR(254) ,
"DEVICE_OS" VARCHAR(254) ,
"ENVIRONMENT" VARCHAR(254) ,
"GADGET_NAME" VARCHAR(254) ,
"GADGET_VERSION" VARCHAR(254) ,
"IP_ADDRESS" VARCHAR(254) ,
"PROC" VARCHAR(254) ,
"SESSION_ID" VARCHAR(254) ,
"SOURCE" VARCHAR(254) ,
"USER_AGENT" VARCHAR(254))

IN app_act_rep_1, app_act_rep_2, app_act_rep_3, app_act_rep_4,
app_act_rep_5, app_act_rep_6, app_act_rep_7

PARTITION BY RANGE (ACTIVITY_TIMESTAMP)
(STARTING FROM (’2013-02-25-00.00.00.000000’)
ENDING AT (’2013-03-04-00.00.00.000000’) EXCLUSIVE
EVERY (1 DAY)
);

Database purge

After high-volume data is allocated to separate table spaces, the task of
periodically purging the data is simplified. This suggestion is also primarily
relevant only to the APP_ACTIVITY_REPORT table that holds most of the row data.
The process in this DB2 example is as follows:
v Aggregate data either with a MobileFirst process or with a client external

process.
v When the data is no longer needed (the aggregation task should successfully

process the data), it can be deleted.
v The most effective way to delete the data is to delete the partition. In DB2, you

purge the data purge by detaching the partition to a temp table, then truncating
that temp table and attaching a new day to the partition. You can implement the
process as a scheduled stored procedure in the database, as in the following
example:

ALTER TABLE "APP_ACTIVITY_REPORT"
DETACH PARTITION part0
INTO temptable;

TRUNCATE TABLE temptable;

ALTER TABLE "APP_ACTIVITY_REPORT"
ATTACH PARTITION part0
STARTING FROM (’2013-02-25-00.00.00.000000’)
ENDING AT (’2013-03-26-00.00.00.000000’) EXCLUSIVE
FROM temptable;

6-110 IBM MobileFirst Platform Foundation for iOS V7.0.0

Testing MobileFirst Server performance
You can run performance tests on the different features of the MobileFirst Server.
This section describes how to run the Apache jMeter performance test tool, but the
procedure is similar for other tools.

Note: The procedures described in this page apply only to a scenario that involves
a propriety JavaScript adapter that is running in session-dependent mode. It is not
applicable in a scenario that involves the OAuth security framework.

The following features can have an impact on MobileFirst Server performance:
v Authentication flow
v Back-end invocation
v Database reporting
v Single sign-on (SSO)
v Direct update
v Push notification
v Geolocation

This section focuses on testing the impact of authentication flow and back-end
invocation on MobileFirst Server performance.

Testing authentication flow performance

The following realm, which is part of the default security test for iOS, is tested:

Remote disable realm
Check on every request that the application is not blocked.

AntiXSRF realm
Check on every request that WL-Instance-Id is equal to the one sent in the
init response.

Anonymous User realm
Generate a random user ID that is used for such things as reports and
identifying the user.

Device no provisioning
Check that the token value inside the authorization header is equal to the
one sent in the initialization response.

For more information about the realms, see “The authentication configuration file”
on page 8-260.

When you run a performance test, your first step is to complete the authentication
flow. If you do not do so, security challenges are raised and your requests are
rejected with “401” errors. This step involves sending an init request to the
MobileFirst Server and extracting the relevant data from the response. The init
request has the following structure: http://{Host}:{Port}/{Context}/apps/
services/api/{AppName}/{environment}/init

Table 6-32. Initialization parameters

Parameter Description

x-wl-app-version Application version.

x-wl-platform-version Version of the product that built the
application.

Installing and configuring 6-111

This is an example of a jMeter test:

The dynamic parameters in the Form Data (skinLoaderChecksum, isAjaxRequest,
and x) are appended to the URL. During performance testing, the skin and
skinLoaderChecksum parameters are not needed because jMeter does not really run
the app: jMeter only simulates the client app. The parameter x aims to prevent
response data from being returned from cache. As a result, you do not need to
append the parameters during performance testing or you can generate a random
value for the dynamic parameter x. A better option is always to clean cookies in
your performance testing tool before you start loading test threads.

Response data from MobileFirst initialization service

The response data from the MobileFirst init request differs depending on the
security test you apply on your MobileFirst application environment. By default, if
you have no additional security test, the response data structure for the common
and iPhone environment are shown in the following figures.

Figure 6-10. Response data from common environment

6-112 IBM MobileFirst Platform Foundation for iOS V7.0.0

The difference between the common and iphone environment data structures is
that the common environment has no wl_deviceNoProvisioningRealm challenge by
default.

Extracting the init response data

You need to extract the WL-Instance-Id and the token from the init response and
send them as headers in all requests to the MobileFirst Server. If you do not do so,
the authentication check fails and the request is rejected. Challenge data is different
for each session, so you need to extract and store the challenge data for each
thread. For more information, see “Testing back-end invocation” later in this
section.

Changing the response status to HTTP 200

When the performance testing thread runs the initialization for the first time,
MobileFirst Server responds to challenge data with an HTTP 401 status. This is to
be expected, so the performance tool should treat this HTTP status as a success.
The HTTP status can be changed to HTTP 200 by using the performance testing
tool’s script. In this way, the performance testing tool will record the request as a
success, otherwise the performance testing report might mark this request as
having failed and might record it as an error. This would greatly impact the
performance testing report.

Testing back-end invocation

You should start testing back-end invocation only after you have finished testing
authentication flow. You can choose any type of back end that you want. The
request for the back-end invocation has the following structure:
http://{Host}:{Port}/{Context}/apps/services/api/{AppName}/{environment}/
query.

Table 6-33. Backend invocation parameters

Parameter Description

adapter MobileFirst Adapter name.

procedure MobileFirst procedure name

parameters Procedure parameters should be an array.

The following figure shows an example array of parameters:

Figure 6-11. Response data from iPhone environment

Installing and configuring 6-113

The following figure shows an example of request headers:

By default, the jMeter tool encodes the URL. If your performance testing tool does
not support URL encoding, you must use encoded parameter values.

For the iPhone environment, since it contains wl_deviceNoProvisioningRealm by
default, you need to send the Authorization header.. The format for HTTP
Authorization header is shown as follows. You need to replace ${device-token} with
the token you extracted in the initialization phase.
{"wl_deviceNoProvisioningRealm":{"device":{"id":"1234567890","os":"5.0",
"model":"testModel","environment":"iphone"},"app":{"id":"testId","version":"1.0"},
"token":"${device-token}","custom":{}}} When the response data "isSuccessful"
is true, this indicates that the response data from the MobileFirst Adapter
procedure was successfully received and now you can continue with your
back-end testing.

Logging in

When the MobileFirst adapter procedure is protected by a security test or the
connectAs property is set to endUser, you need to log in to the MobileFirst Server
before calling this procedure. To check if the MobileFirst adapter procedure needs a
login, you can call the procedure followed by the steps described earlier, and check
the response data from the MobileFirst Server. If the response data includes
isSuccessful:true and authStatus:required, you should log in to the MobileFirst
Server first, otherwise the requests to this procedure are rejected by MobileFirst

6-114 IBM MobileFirst Platform Foundation for iOS V7.0.0

Server. The way you log in to the MobileFirst Server depends on the authentication
type. If the app is protected by form-based authentication or adapter-based
authentication, you can call the login procedure after successfully completing
initialization. In general, the login procedure should not be protected by a security
test; it can be directly called after initialization is completed. For other
authentication types, you can capture the network traffic on MobileFirst Server by
using network traffic capture tools (for example, Fiddler or Wireshark). The
network traffic data shows the detailed URL and parameters that you can use to
log in to the MobileFirst Server. The following screen image shows an example of a
login function that calls the setActiveUser API with the supplied user ID and
password:

Logging out

The following options are available for logging out of the MobileFirst Server:

Not logging out for each iteration
MobileFirst Server automatically logs the user out when the session times
out. This option consumes more memory than logging out, but is useful if
you want to maximize memory usage during performance testing. To
adopt this option, you need to clean cookies for each iteration in the
performance testing tool.

Logging out after each iteration by using the MobileFirst logout service
It is recommended to clean cookies for each iteration to avoid sharing data
between iterations. The logout request has the following structure:
http://{Host}:{Port}/{Context}/apps/services/api/{AppName}/
{environment}/logout

For more information about the parameters, see “HTTP Interface of the production
server” on page 6-275.

Database reporting

To activate database reporting, you need to specify reports.exportRowData=true in
your worklight.properties file. You also need to set up the reports database. For
more information, see “Reports database” on page 12-74. After you enable database
reporting, you can use the back-end invocation step described earlier. See the
database reporting section in the Scalability and Hardware Sizing document at the
Developer Center website for IBM MobileFirst Platform Foundation.

Installing and configuring 6-115

https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

Single sign-on (SSO), direct update, push notification, and
geolocation

See the relevant section in the Scalability and Hardware Sizing document at the
Developer Center website for IBM MobileFirst Platform Foundation.

General example: Using jMeter as a performance testing tool

HTTP cookie management

Cleaning the cookies on every thread iteration ensures that no data and
user information is being cached during this iteration. If you want to keep
cookie information, you need to clean the user information at the end of
the iteration to avoid unexpected errors during load testing. For example,
if the user does not log out during the previous iteration, the next iteration
might be affected by that user.

HTTP Header Management

The necessary x-wl-platform-version and x-wl-app-version that were
described earlier can be defined here; you can also define the
WL-Instance-Id and WL_deviceNoProvisioningRealm token placeholders.
You can use a jMeter script to extract the real challenge data and replace
the placeholders for each thread iteration as shown in the following image:

Initialization phase

1. Extract and replace the WL-Instance-Id placeholder:

2. Extract and replace the WL_deviceNoProvisioningRealm token
placeholder:

6-116 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

3. Change initialization HTTP status 401 and 403 to HTTP status 200:

Security configuration
Configure the security of the MobileFirst Server as detailed here.

Securing the MobileFirst Server administration
This section helps ensure that no unauthorized person can perform MobileFirst
Server administration operations. This is particularly important in a production
environment.

The security threat is that any person who can install mobile applications in a
production environment is able to modify the behavior of these apps on the mobile
devices. The apps are served to the clients through the MobileFirst runtime
environments, which get these apps from the Administration Services through
JMX. The Administration Services fetch these apps from the administration
database. The Administration Services and the IBM MobileFirst Platform
Operations Console allow any user in the roles of worklightadmin or
worklightdeployer to deploy applications. A similar threat exists for adapters.

Enabling https in the application server

The ability to use https with the application server is a prerequisite.

For WebSphere Application Server Liberty profile:
v Verify that the server.xml file contains either <feature>ssl-1.0</feature> or

<feature>restConnector-1.0</feature>, or both features. The
restConnector-1.0 feature implies that the ssl-1.0 feature is enabled.

Installing and configuring 6-117

v Verify that the HTTPS port is enabled, by ensuring that the server.xml file does
not have an <httpEndpoint> element with a httpsPort attribute that is negative.
If the HTTPS port is disabled, SSL is also disabled, and the JMX connections that
the MobileFirst Server requires do not work.

v Verify that the server.xml file contains <keyStore id="defaultKeyStore" .../>,
or an equivalent declaration, otherwise the JMX connections that the MobileFirst
Server requires do not work. For more information, see Liberty profile: SSL
configuration attributes.

For Apache Tomcat:
v Enable an https port as documented in SSL support and SSL Configuration

HOW-TO.

Enabling application security in the application server

Without this step, anyone can connect to the web applications without credentials.

For WebSphere Application Server full profile:
v Verify that Administrative Security is enabled.
v Verify that Application Security is enabled.

For WebSphere Application Server Liberty profile:
v Verify that the server.xml file contains <feature>appSecurity-1.0</feature>.

Protecting the passwords of users in the roles worklightadmin and
worklightdeployer

If the password of any user who is mapped to the roles worklightadmin or
worklightdeployer is compromised, that is, becomes potentially known to an
unauthorized person, unauthorized MobileFirst administration operations are
possible. Here are steps to mitigate this risk.
v Minimize the number of users that you map to the roles worklightadmin and

worklightdeployer.
v Map different users to the roles worklightadmin or worklightdeployer in

development and test environments than you do in the production environment.
If the password of the administrator of the development or test environment is
compromised (for example, by use of secure="false"), this helps secure the
password of the administrator of the production environment.

v If these users are authenticated through LDAP, secure the connection to the
LDAP server.

v Never use the MobileFirst Operations Console or the MobileFirst Administration
REST services over http. Always use https. There are two ways to guarantee
this:
– Configure the application server to respond only to an https port, not to an

http port.
– Modify the worklightconsole.war and worklightadmin.war files to activate

the Java EE 6 transport security of type CONFIDENTIAL. This setting performs a
redirect from http to https before the application server requests a user and
password.
1. Unpack worklightconsole.war (as a .zip file).
2. Edit its WEB-INF/web.xml file, changing <transport-guarantee>NONE</

transport-guarantee> to <transport-guarantee>CONFIDENTIAL</
transport-guarantee>.

6-118 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html
http://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

3. Repack worklightconsole.war.
4. Unpack worklightadmin.war (as a .zip file).
5. Edit its WEB-INF/web.xml file, changing <transport-guarantee>NONE</

transport-guarantee> to <transport-guarantee>CONFIDENTIAL</
transport-guarantee>.

6. Repack worklightadmin.war.
7. Redeploy these WAR files, either manually, or through the Ant task

<installworklightadmin> or <updateworklightadmin>. For more
information, see “Deploying the MobileFirst Operations Console and
Administration Services with Ant tasks” on page 6-55.

v Never use the <wladm> Ant task with the attribute secure="false", and never
use the wladm command with the option -secure=false. To achieve this, you
must:
– Ensure that your application server uses an SSL certificate signed by a CA,

not a self-signed certificate, and that the host name mentioned in this
certificate matches the host name of the application server machine.

– Ensure that this SSL certificate is contained in the truststore of the JVM that
runs the <wladm> Ant task or the wladm command.

v Change the file access permissions of the file that contains the password that is
used by the <wladm> Ant task or the wladm command to be as restrictive as
possible. To do this, you can use a command, such as the following examples:
– On UNIX: chmod 600 adminpassword.txt
– On Windows: cacls adminpassword.txt /P Administrators:F

%USERDOMAIN%\%USERNAME%:F

v Additionally, you might want to obfuscate the password, to hide it from an
occasional glimpse. To do so, use the wladm config password command to store
the obfuscated password in a configuration file. Then you can copy and paste
the obfuscated password to the Ant script or to the password file that you want.

v In the configuration of the MobileFirst Operations Console web application, set
the JNDI property ibm.worklight.admin.ui.cors.strictssl to true. This
property helps rejecting unsecure SSL certificates.

v In the configuration of the MobileFirst Operations Console web application, set
the JNDI property ibm.worklight.admin.hsts to true. This property implements
HTTP Strict Transport Security and helps the administrator's browser remember
to access the MobileFirst Operations Console through https instead of http.

Protecting the administration database

If the password of the administration database (or of the user who owns the
corresponding schema of that database) is compromised, that is, becomes
potentially known to an unauthorized person, unauthorized deployments of apps
and adapters are possible. Here are steps to mitigate this risk.
v Do not host other services than the database management system on the

machines that serve this database.
v If you use Ant tasks to configure the MobileFirst Server administration (see

“Using Ant tasks to install MobileFirst Server administration” on page 6-53), you
must do one of the following actions:
– Change the file access rights of the Ant XML file to be as restrictive as

possible before you store passwords in it. For more information, see step 2 in
“Sample configuration files” on page 14-35.

Installing and configuring 6-119

– Write ************ (12 asterisks) in place of the password, so the Ant XML
file does not contain the password. Instead, the Ant task queries the password
interactively when it is invoked.

v Minimize the number of users who have login access to the machines that run
MobileFirst Server.

v Change the file access rights of the application server configuration files that
contain the jdbc/WorklightAdminDS data source password to be as restrictive as
possible. For more information, see step 3 in “Sample configuration files” on
page 14-35.

Protecting the JMX communication

If the JMX communication between Administration Services and the MobileFirst
runtime environments are not secured, unauthorized persons who have local
access to the MobileFirst Server machines can play man-in-the-middle attacks and
thus activate tampered apps and adapters. Here are steps to mitigate this risk.
v For WebSphere Application Server Liberty, follow the procedure of Configuring

secure JMX connection to the Liberty profile.
v For Apache Tomcat, use a JMX configuration with SSL, as described in

“Configuring Apache Tomcat” on page 6-47.

Protecting the apps and adapters to deploy

If the source from which the MobileFirst administrator receives apps and adapters
is not secured, tampered apps and adapters can be submitted to the MobileFirst
administrator, who then deploys them. Here are steps to mitigate this risk.
v Ensure that the MobileFirst administrator receives apps and adapters only

through channels which guarantee the integrity of the sender and of the sent
artifacts. For example, use emails with digital signature, or web-based tools with
the need to log in through https.

v Ensure that the development teams that create these apps and adapters use a
Version Control System that guarantees the integrity of each modification and
disallows modifications by unauthorized persons. Examples of VCS systems in
this category are RTC/jazz and Git. An example of a VCS not in this category is
CVS.

Protecting against attacks from the internet

Attackers from the internet might attempt to search for security flaws in the
MobileFirst Operations Console and Administration Services and try to circumvent
the security measures. Here is a tip to mitigate this risk. It assumes that mobile
application users connect to MobileFirst Server from the internet, but all legitimate
uses of the MobileFirst Operations Console Console and Administration Services
are from an intranet.
v Configure your internet gateway or firewall (for example, IBM DataPower®) to

block access to URLs under the context roots of the MobileFirst Operations
Console (default: /worklightconsole) and of the Administration Services
(default: /worklightadmin). At the same time, keep the access to the MobileFirst
runtime web applications open.

Database and certificate security passwords
When you configure a MobileFirst Server, you must typically configure database
and certificate passwords for security.

6-120 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_admin_restconnector.html
http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_admin_restconnector.html

Configuration of a IBM MobileFirst Platform Server typically includes the
following credentials:
v User name and password to the runtime database
v User name and password to other custom databases
v User name and password to certificates that enable the stamping of apps

All credentials are stored in the in JNDI properties of the application server.
Defaults can be stored in the worklight.properties file. See “Configuration of
MobileFirst applications on the server” on page 10-48 for information about
individual properties.

You can encrypt any or all of these passwords. For more information, see “Storing
properties in encrypted format” on page 10-56.

Apache Tomcat security options
An optimal Apache Tomcat security balances ease of use and access with
strengthening of security and hardening of access.

You must harden the Tomcat Server according to your company policy.
Information on how to harden Apache Tomcat is available on the Internet. All
other out-of-the-box services provided by Apache Tomcat are unnecessary and can
be removed.

Running MobileFirst Server in WebSphere Application Server
with Java 2 security enabled
You can run IBM MobileFirst Platform Server in WebSphere Application Server
with Java 2 security enabled.

About this task

To enable Java 2 security in WebSphere Application Server, complete the following
procedure to modify the app.policy file and then restart WebSphere Application
Server for the modification to take effect.

Procedure
1. Install MobileFirst Server on a WebSphere Application Server instance. The

installation contains all the necessary libraries to support WebSphere
Application Server security.

2. Enable Java 2 security in WebSphere Application Server.
a. In the WebSphere Application Server console, click Security > Global

security

b. Select Use Java 2 security to restrict application access to local resources.
3. Modify the app.policy file, <ws.install.root>/profiles/<server_name>/

config/cells/<cell_name>/node/<node_name>/app.policy.
The app.policy file is a default policy file that is shared by all of the
WebSphere Application Server enterprise applications. For more information,
see app.policy file permissions in the WebSphere Application Server
documentation.
Add the following content into the app.policy file.
grant codeBase "file:${was.install.root}/worklight-jee-library-xxx.jar" {

permission java.security.AllPermission;
};

// The war file is your WL server war.

Installing and configuring 6-121

grant codeBase "file:worklight.war" {
//permission java.security.AllPermission;
//You can use all permission for simplicity, however, it might
// cause security problems.
permission java.lang.RuntimePermission "*";
permission java.io.FilePermission "${was.install.root}${/}-", "read,write,delete";
// In Linux need to set TEMP folder of Linux.
permission java.io.FilePermission "C:/Windows/TEMP/${/}-", "read,write,delete";
permission java.util.PropertyPermission "*", "read, write";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
permission com.ibm.tools.attach.AttachPermission "createAttachProvider";
permission com.ibm.tools.attach.AttachPermission "attachVirtualMachine";
permission com.sun.tools.attach.AttachPermission "createAttachProvider";
permission com.sun.tools.attach.AttachPermission "attachVirtualMachine";
permission java.net.SocketPermission "*", "accept,resolve";

};

4. Restart WebSphere Application Server for the modification of the app.policy
file to take effect.

Protecting your mobile application traffic by using IBM
WebSphere DataPower as a security gateway

You can use IBM WebSphere DataPower in the Data Management Zone (DMZ) of
your enterprise to protect MobileFirst mobile application traffic.

Before you begin
1. Ensure that IBM MobileFirst Platform Command Line Interface for iOS is

installed.
2. Establish your stand-alone server environment on Liberty or WebSphere

Application Server.

About this task

Protecting mobile application traffic that comes into your network from customer
and employee devices involves preventing data from being altered, authenticating
users, and allowing only authorized users to access applications. To protect mobile
application traffic that is initiated by a client MobileFirst application, you can use
the security gateway features of IBM WebSphere DataPower.

Enterprise topologies are designed to include different zones of protection so that
specific processes can be secured and optimized. You can use IBM WebSphere
DataPower in different ways in the DMZ and in other zones within your network
to protect enterprise resources. When you start to build out MobileFirst
applications to be delivered to the devices of your customers and employees, you
can apply these methods to mobile traffic.

You can use IBM WebSphere DataPower as a front-end reverse proxy and security
gateway. DataPower uses a multiprotocol gateway (MPGW) service to proxy and
secure access to MobileFirst mobile applications. Two authentication options are
demonstrated: HTTP basic authentication and HTML forms-based login between
the mobile client and DataPower.

Consider adopting the following phased approach to establishing IBM WebSphere
DataPower as a security gateway:
1. Install and configure a MobileFirst environment and test the installation with a

simple application without DataPower acting as the reverse proxy.
2. Test that your application logic works.

6-122 IBM MobileFirst Platform Foundation for iOS V7.0.0

3. Configure an MPGW on DataPower to proxy the mobile application or the
MobileFirst Operations Console. Select one of the following authentication
options:
v Use basic authentication for end-user authentication with AAA and generate

a single sign-on (SSO) LTPA token for MobileFirst Server running on
WebSphere Application Server if the user successfully authenticates.

v Use HTML form-based login with AAA and generate a single sign-on (SSO)
LTPA token for MobileFirst Server, running onWebSphere Application Server
if the user successfully authenticates.

4. Test the reverse proxy:
v Update the MobileFirst configuration on the server with the reverse proxy

configuration (see Step 1).
v Update the mobile security test configuration of each mobile application to

use form-based authentication so that the application requests the user to
authenticate immediately when the application starts. Either HTTP basic
authentication or HTML form-based login is supported before the application
starts. For web widgets, widget resources are accessible to the browser only
after a user authenticates successfully.

Procedure
1. Set up a MobileFirst configuration.

a. For each app that you are configuring, modify the
authenticationConfig.xml file on the server to include the following
security test, realm, and login module declarations:
<securityTests>
<mobileSecurityTest name="WASTest-securityTest">

<testDeviceId provisioningType="none"/>
<testUser realm="WASLTPARealm"/>

</mobileSecurityTest>
<webSecurityTest name="WASTest-web-securityTest">

<testUser realm="WASLTPARealm"/>
</webSecurityTest>

</securityTests>

<realms>
<!-- For websphere -->
<realm name="WASLTPARealm" loginModule="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>
<parameter name="login-page" value="/login.html"/>
<parameter name="error-page" value="/loginError.html"/>

</realm>
</realms>

<loginModules>
<!-- For websphere -->
<loginModule name="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
</loginModule>

</loginModules>

By default, the authenticationConfig.xml file is usually available in this
directory: <WAS_INSTALL_DIR>/profiles/<WAS_PROFILE>/installedApps/
<WAS_CELL>/IBM_Worklight_Console.ear/worklight.war/WEB-INF/classes/
conf.

b. Restart the MobileFirst Operations Console enterprise application.
2. Update your client mobile app.

a. In your client mobile app, add the following JavaScript to your HTML
MobileFirst application:

Installing and configuring 6-123

function showLoginScreen() {
$("#index").hide();
$("#authPage").show();

}

function showMainScreen() {
$("#authPage").hide();
$("#index").show();

}

var myChallengeHandler = WL.Client.createChallengeHandler("WASLTPARealm");
var lastRequestURL;

myChallengeHandler.isCustomResponse = function(response) {

//A normal login form has been returned
var findError = response.responseText.search("DataPower/Worklight Error");
if(findError >= 0) {

return true;
}

//A normal login form has been returned
var findLoginForm = response.responseText.search("DataPower/Worklight Form Login");
if(findLoginForm >= 0) {

lastRequestURL = response.request.url;
return true;

}

//This response is a MobileFirst Server response, handle it normally
return false;

};

myChallengeHandler.handleChallenge = function(response) {
showLoginScreen();

};

challengeHandler1.handleFailure = function(response) {
console.log("Error during WL authentication.");

};

myChallengeHandler.submitLoginFormCallback = function(response) {
var isCustom = myChallengeHandler.isCustomResponse(response);
if(isCustom) {

myChallengeHandler.handleChallenge(response);
}
else {

//hide the login screen, you are logged in
showMainScreen();

myChallengeHandler.submitSuccess();

}
};

//When the login button is pressed, submit a login form
$("#loginButton").click(function() {

var reqURL = "/j_security_check";
alert(lastRequestURL);
var options = {method: "POST"};
options.parameters = {
j_username: $("#username").val(),
j_password: $("#password").val(),
originalUrl : lastRequestURL,
login: "Login"

};

6-124 IBM MobileFirst Platform Foundation for iOS V7.0.0

options.headers = {};
myChallengeHandler.submitLoginForm(reqURL, options, myChallengeHandler.submitLoginFormCallback);

});

b. To add the authentication test to an application or device, add a
securityTest attribute to the environment tag in the project
application-descriptor.xml file.
Set the value of this attribute to the name of the security test that you
declared in the authenticationConfig.xml file in substep 1a.. Here is an
iPad example:

<ipad bundleId="com.Datapower" securityTest="WASTest-securityTest" version="1.0">
<worklightSettings include="false"/>
<security>

<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>

</security>
</ipad>

3. Define a multiprotocol gateway.
a. In the IBM DataPower WebGUI, in the search box under Control Panel,

enter Multi-Protocol and click New Multi-Protocol Gateway.
b. On the General Configuration page, pdefine the following settings.

Table 6-34. General Configuration

Field Description

Multi-Protocol Gateway Name Provide a name for your gateway.

Response Type Select Non-XML. With this value, HTTP web
application traffic (including JSON,
JavaScript, and CSS) passes through the
appliance.

Request Type Select Non-XML. With this value, HTTP web
application requests are handled by the
appliance.

Front Side Protocol Select HTTPS (SSL). For this type of
interaction in which user credentials are
passed between client and server, HTTPS is
appropriate. Also provide the following
front-side handler details:

Name Enter a name for the configuration.

Port Number
Enter a number for the listening
port. This port number must match
the port number that you specify if
you define an AAA policy that uses
HTML form-based authentication.
See Table 6-36 on page 6-126.

Allowed Methods and Versions
Select GET method to enable
support for HTTP Get.

SSL Proxy
Select an SSL Reverse Proxy profile
to identify the SSL server.

Installing and configuring 6-125

Table 6-34. General Configuration (continued)

Field Description

Multi-Protocol Gateway Policy Click +, and then create rules to define the
policies that are listed in the following
topics, depending on the type of
authentication that you decide to use:

v Policy worklight-basicauth for HTTP
basic authentication. See “Rules for HTTP
basic authentication” on page 6-127.

v Policy mpgw-form for HTML form-based
login authentication. See “Rules for HTML
form-based authentication” on page 6-129.

Backend URL Specify the address and port of the
MobileFirst Server that is hosted on
WebSphere Application Server.

4. Create an AAA policy that supports the HTTP basic authentication or HTML
form-based login policy that you defined in the previous step.
a. In the IBM DataPower WebGUI, in the search box under Control Panel,

enter AAA, and then click Add.
b. Depending on the type of authentication that you want to use, define the

following settings.
v For HTTP basic authentication, specify the settings as listed in the

following table.

Table 6-35. AAA policy for HTTP basic authentication

Phase Description

Extract Identity In the Methods field, select HTTP
Authentication Header.

Authenticate Choose the authentication method. If
WebSphere Application Server is using
LDAP, configure LDAP here.

Extract Resource Select URL Sent by Client.

Post processing Generate an LTPA token. Specify LTPA
Token Expiry, LTPA Key File, and LTPA
Key File Password.

v For HTML form-based login, specify the settings as listed in the following
table.

Table 6-36. AAA policy for HTML forms-based authentication

Phase Description

Extract Identity In the Methods field, select HTML
Forms-based Authentication. Select or create
an HTML forms-based policy that has the
Use SSL for Login option enabled, assigns
SSL Port to the port number on which the
MPGW is listening (that was specified in
step 3), and has the Enable Session
Migration option disabled.

Authenticate Choose the authentication method. If
WebSphere Application Server is using
LDAP, configure LDAP here.

6-126 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-36. AAA policy for HTML forms-based authentication (continued)

Phase Description

Extract Resource Select URL Sent by Client.

Post processing Generate an LTPA token. Specify LTPA
Token Expiry, LTPA Key File, and LTPA
Key File Password.

5. On the Advanced page, specify the advanced settings as listed in the following
table.

Table 6-37. Advanced settings

Field Value

Persistent Connections On.

Allow Cache-Control Header Off

Loop Detection Off

Follow Redirects Off. This value prevents the DataPower
back-end user agent from resolving redirects
from the back end. Web applications
typically require a client browser to resolve
redirects so that they can maintain the
context for “directory” along with setting an
LTPA cookie on the client.

Allow Chunked Uploads Off

MIME Back Header Processing Off

MIME Front Header Processing Off

Results

Your MobileFirst mobile application traffic is now protected by an IBM WebSphere
DataPower secure gateway. Authentication is enforced on the DataPower device
and the credentials (header or LTPA token) are forwarded downstream to
MobileFirst Server to establish the user identity as part of the mobile traffic.

Rules for HTTP basic authentication
Add rules to define an HTTP basic authentication policy that is named
worklight-basicauth.

You create the worklight-basicauth policy as part of the process of defining a
multiprotocol gateway. See “Protecting your mobile application traffic by using
IBM WebSphere DataPower as a security gateway” on page 6-122, Table 6-34 on
page 6-125.

Table 6-38. HTTP Basic Authentication properties

Property Value

Policy Name worklight-basicauth

Installing and configuring 6-127

Table 6-38. HTTP Basic Authentication properties (continued)

Property Value

Order of configured rules 1. worklight-basicauth_rule_0: see
Table 6-39

2. worklight-basicauth_rule_3: see
Table 6-42 on page 6-129

3. worklight-basicauth_rule_1: see
Table 6-40

4. worklight-basicauth_rule_2: see
Table 6-41

Table 6-39. Properties of worklight-basicauth_rule_0. When processing HTML content,
skip processing with the icon that is associated with the website or the web page.

Property Value

Direction Client to Server or Both Directions.

Match v Type = URL

v Pattern = /favicon.ico

Advanced "Set Variable" -> var://service/mpgw/skip-
backside = 1

Result Not applicable.

Table 6-40. Properties of worklight-basicauth_rule_1. Handle end-user authentication if
an LTPA token does not exist.

Property Value

Direction Client to Server.

Match v Type = URL

v Pattern = *

AAA BasicAuth2LTPA

v Output: NULL

Result Not applicable.

Table 6-41. Properties of worklight-basicauth_rule_2. Handle both the redirect and
content-type reset on the response side.

Property Value

Direction Server to Client.

Match v Type = URL

v Pattern = *

Filter Provide a custom stylesheet that handles
redirect and content-type rewrite. For a
sample redirect stylesheet, see “Sample
redirect stylesheet” on page 6-132.

v Output: NULL

Result Not applicable.

6-128 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-42. Properties of worklight-basicauth_rule_3. Because the policy is applied to
each request, the rules must be ordered such as to ensure that an LTPA token is verified if
it exists in the HTTP request. If no token is available, proceed to the next rule and
authenticate the user.

Property Value

Direction Client to Server.

Match v Type = HTTP

v HTTP header tag = Cookie

v HTTP value match = *LtpaToken*

AAA VerifyLTPA

v Output: NULL

Result Not applicable.

Rules for HTML form-based authentication
Add rules to define an HTML form-based authentication policy named mpgw-form.

You create the mpgw-form policy as part of the process of defining a multi-protocol
gateway. See “Protecting your mobile application traffic by using IBM WebSphere
DataPower as a security gateway” on page 6-122, Table 6-34 on page 6-125.

Table 6-43. HTTP Form-Based Login properties

Property Value

Policy Name mpgw-form

Order of configured rules 1. mpgw-form_rule_0: see Table 6-44

2. mpgw-form_rule_1: see Table 6-45

3. mpgw-form_rule_2: see Table 6-46 on page
6-130

4. mpgw-form_rule_3: see Table 6-47 on page
6-130

5. mpgw-form_rule_6: see Table 6-48 on page
6-130

Table 6-44. Properties of mpgw-form_rule_0. This rule skips processing with the icon that is
associated with the web site or the web page.

Property Value

Direction Client to Server or Both Directions.

Match v Type = URL

v Pattern = /favicon.ico

Advanced “Set Variable” -> var://service/mpgw/skip-
backside = 1

Result Not applicable.

Table 6-45. Properties of mpgw-form_rule_1. This rule verifies an LTPA token if it exists in
the HTTP request.

Property Value

Direction Client to Server.

Installing and configuring 6-129

Table 6-45. Properties of mpgw-form_rule_1 (continued). This rule verifies an LTPA token if
it exists in the HTTP request.

Property Value

Match v Type = HTTP

v HTTP header tag = Cookie

v HTTP value match = *LtpaToken*

AAA VerifyLTPA

v Output: NULL

Result Not applicable.

Table 6-46. Properties of mpgw-form_rule_2. This rule generates the HTML form login page.

Property Value

Direction Client to Server.

Match v Match with PCRE = on

v Type = URL

v Pattern = /(Login|Error)Page\.htm(l)?(\
?originalUrl=.*)?

Transform Provide a custom stylesheet that builds
either a Login or Error HTML page. For a
sample stylesheet, see “Sample form login
stylesheet” on page 6-131.
Note: The HTML Login Form policy allows
you to specify whether you retrieve the
login and error pages from DataPower or
from the back-end application server.

Advanced Select the set-var action and specify the
service variable: var://service/routing-url
and value with the endpoint of your login
page.

Result Not applicable.

Table 6-47. Properties of mpgw-form_rule_3. This rule handles end-user authentication if an
LTPA token does not exist.

Property Value

Direction Client to Server.

Match v Type = URL

v Pattern = *

Advanced “Convert Query Parameter to XML”. Accept
default values for other selections.

AAA Form2LTPA

Table 6-48. Properties of mpgw-form_rule_6. This rule handles both the redirect and
content-type reset on the response side.

Property Value

Direction Server to Client.

Match v Type = URL

v Pattern = *

6-130 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-48. Properties of mpgw-form_rule_6 (continued). This rule handles both the redirect
and content-type reset on the response side.

Property Value

Filter Provide a custom stylesheet that handles
redirect and content-type rewrite. For a
sample redirect stylesheet, see “Sample
redirect stylesheet” on page 6-132.

v Output: NULL

Result Not applicable.

Sample form login stylesheet
You can use this sample stylesheet to generate the HTML form login page or error
page when creating rules to define an HTML forms-based authentication policy.

You provide a custom stylesheet when defining rule mpgw-form_rule_2. See “Rules
for HTML form-based authentication” on page 6-129, Table 6-46 on page 6-130.

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"
xmlns:dp="http://www.datapower.com/extensions"
xmlns:re="http://exslt.org/regular-expressions"
extension-element-prefixes="dp re"
exclude-result-prefixes="dp re">
<xsl:output method="html" omit-xml-declaration="yes" />
<xsl:template match="/">

<xsl:choose>
<xsl:when test="contains(dp:variable(’var://service/URI’), ’LoginPage.htm’)">

<xsl:variable name="uri_temp" select="dp:decode(dp:variable(’var://service/URI’), ’url’)" />
<xsl:variable name="uri">

<xsl:choose>
<xsl:when test="contains($uri_temp, ’originalUrl’)">

<xsl:value-of select="$uri_temp" />
</xsl:when>

<xsl:otherwise>
<xsl:value-of select="dp:decode(dp:http-request-header(’Cookie’), ’url’)" />

</xsl:otherwise>
</xsl:choose>

</xsl:variable>
<xsl:variable name="redirect_uri_preprocess">

<xsl:for-each select="re:match($uri, ’(.*)originalUrl=(.*)’)">
<xsl:if test="position()=3">

<xsl:value-of select="." />
</xsl:if>

</xsl:for-each>
</xsl:variable>
<xsl:variable name="redirect_uri">

<xsl:choose>
<xsl:when test="contains($redirect_uri_preprocess, ’;’)">

<xsl:value-of select="substring-before($redirect_uri_preprocess, ’;’)" />
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="$redirect_uri_preprocess" />
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<html>

<head>
<meta http-equiv="Pragma" content="no-cache" />
<title>Login Page</title>

</head>
<body>

Installing and configuring 6-131

<h2>DataPower/Worklight Form Login</h2>
<form name="LoginForm" method="post" action="j_security_check">

<p>
Please enter your user ID and password.

If you have forgotten your user ID or password, please contact

the server administrator.
</p>
<p>

<table>
<tr>

<td>User ID:</td>
<td>

<input type="text" size="20" name="j_username" />
</td>

</tr>
<tr>

<td>Password:</td>
<td>

<input type="password" size="20" name="j_password" />
</td>

</tr>
</table>

</p>
<p>

<input type="hidden" name="originalUrl">
<xsl:attribute name="value">

<xsl:value-of select="$redirect_uri" />
</xsl:attribute>

</input>
<input type="submit" name="login" value="Login" />

</p>
</form>

</body>
</html>

</xsl:when>
<xsl:otherwise>

<!-- error -->
<html>

<head>
<meta http-equiv="Pragma" content="no-cache" />
<title>Error Page</title>

</head>
<body>

<h2>DataPower/Worklight Error</h2>
You must provide a valid user identity.

</body>
</html>

</xsl:otherwise>
</xsl:choose>
<dp:set-response-header name="’Content-Type’" value="’text/html’" />
<dp:set-variable name="’var://service/mpgw/skip-backside’" value="true()" />

</xsl:template>
</xsl:stylesheet>

Sample redirect stylesheet
You can use this sample stylesheet to handle redirection and content-type
rewriting. You refer to the stylesheet when you create rules to define an HTTP
basic authentication policy or an HTML forms-based authentication policy.

You provide a custom stylesheet when you define rule mpgw-form_rule_6 (see
“Rules for HTML form-based authentication” on page 6-129, Table 6-48 on page
6-130), and when you define rule worklight-basicauth_rule_2 (see “Rules for
HTTP basic authentication” on page 6-127, Table 6-41 on page 6-128).

6-132 IBM MobileFirst Platform Foundation for iOS V7.0.0

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dp="http://www.datapower.com/extensions"
xmlns:re="http://exslt.org/regular-expressions"
extension-element-prefixes="dp re"
exclude-result-prefixes="dp">

<xsl:template match="/">
<xsl:choose>

<xsl:when test="dp:responding()">
<xsl:variable name="code">

<xsl:choose>
<xsl:when test="dp:http-response-header(’x-dp-response-code’) != ’’">

<xsl:value-of select="substring(dp:http-response-header(’x-dp-response-code’), 1, 3)"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="substring(dp:variable(’var://service/error-headers’), 10, 3)" />
</xsl:otherwise>

</xsl:choose>
</xsl:variable>

<xsl:choose>
<xsl:when test="$code = ’302’">

<xsl:variable name="dphost" select="dp:http-request-header(’Host’)"/>
<xsl:variable name="host" select="$dphost"/>
<xsl:variable name="location" select="dp:http-response-header(’Location’)"/>
<xsl:variable name="location_host">

<xsl:for-each select="re:match($location, ’(\w+):\/\/([^/]+)’)">
<xsl:if test="position()=3">

<xsl:value-of select="." />
</xsl:if>

</xsl:for-each>
</xsl:variable>
<xsl:variable name="location_final">

<xsl:value-of select="re:replace($location, $location_host, ’g’, $host)" />
</xsl:variable>
<dp:set-http-response-header name="’Location’" value="$location_final" />

</xsl:when>
<xsl:otherwise>

<xsl:variable name="orig-content" select="dp:variable(’var://service/original-response-content-type’)"/>
<xsl:if test="$orig-content != ’’">

<dp:set-http-response-header name="’Content-Type’" value=’$orig-content’/>
</xsl:if>

</xsl:otherwise>
</xsl:choose>

<!-- the following prevent DataPower from overriding the
response code coming back from WorkLight Server

-->
<dp:set-response-header name="’x-dp-response-code’" value="’-1’"/>

</xsl:when>
<xsl:otherwise/>

</xsl:choose>
</xsl:template>

</xsl:stylesheet>

Configuring MobileFirst Server to enable TLS V1.2
For MobileFirst Server to communicate with devices that support only TLS V1.2,
among the SSL protocols, you must complete the following instructions.

About this task

The steps to configure MobileFirst Server to enable Transport Layer Security (TLS)
V1.2 depend on how MobileFirst Server connects to devices.

Installing and configuring 6-133

If MobileFirst Server is behind a reverse proxy that decrypts SSL-encoded packets
from devices before passing the packets to the application server, you must enable
TLS V1.2 support on your reverse proxy. If you are using IBM HTTP Server as
your reverse proxy, see Securing IBM HTTP Server for instructions.

If MobileFirst Server communicates directly with devices, the steps to configure
MobileFirst Server to enable TLS V1.2 depend on the application server that you
use. The following sections provide you with the specific instructions for Apache
Tomcat, WebSphere Application Server Liberty profile, and WebSphere Application
Server full profile.

Apache Tomcat
Procedure
1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.

Ensure that you have one of the following JRE versions, depending on your
version of IBM MobileFirst Platform Foundation for iOS.

For MobileFirst Server V7.0 or earlier:
Use Oracle JRE 1.7.0_75 or later.

2. Edit the conf/server.xml file and modify the <Connector> element that declares
the HTTPS port so that the sslEnabledProtocols attribute has the following
value:
sslEnabledProtocols="TLSv1.2,TLSv1.1,TLSv1,SSLv2Hello"

WebSphere Application Server Liberty profile
Procedure
1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.
v If you use an IBM Java SDK, ensure that your IBM Java SDK is patched for

the POODLE vulnerability. You can find the minimum IBM Java SDK
versions that contain the patch for your version of WebSphere Application
Server in Security Bulletin: Vulnerability in SSLv3 affects IBM WebSphere
Application Server (CVE-2014-3566).

Note: You can use the versions that are listed in the security bulletin or later
versions.

v If you use an Oracle Java SDK, ensure that you have one of the following
versions, depending on your version of IBM MobileFirst Platform
Foundation for iOS.

For MobileFirst Server V7.0 or earlier:
Use Oracle JRE 1.7.0_75 or later.

2. If you use an IBM Java SDK, edit the server.xml file.
a. Add the following line:

<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore" sslProtocol="SSL_TLSv2"/>

b. Add the sslProtocol="SSL_TLSv2" attribute to all existing <ssl> elements.

WebSphere Application Server full profile
Procedure
1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.

Ensure that your IBM Java SDK is patched for the POODLE vulnerability. You
can find the minimum IBM Java SDK versions that contain the patch for your
version of WebSphere Application Server in Security Bulletin: Vulnerability in
SSLv3 affects IBM WebSphere Application Server (CVE-2014-3566).

6-134 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_securing_ihs_container.html
http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173

Note: You can use the versions that are listed in the security bulletin or later
versions.

2. Log in to WebSphere Application Server administrative console, and click
Security > SSL certificate and key management > SSL configurations.

3. For each SSL configuration listed, modify the configuration to enable TLS V1.2.
a. Select an SSL configuration and then, under Additional Properties, click

Quality of protections (QoP) settings.
b. From the Protocol list, select SSL_TLSv2.
c. Click Apply and then save the changes.

Configuring SSL between MobileFirst adapters and back-end
servers by using self-signed certificates

You can configure SSL between MobileFirst adapters and back-end servers by
importing the server self-signed SSL certificate to the MobileFirst keystore.

Procedure
1. Check the configuration in the worklight.properties file. The configuration

might look like this example (the password will be different for each project):
###
MobileFirst SSL keystore
###
#SSL certificate keystore location.
ssl.keystore.path=conf/mfp-default.keystore
#SSL certificate keystore type (jks or PKCS12)
ssl.keystore.type=jks
#SSL certificate keystore password.
ssl.keystore.password=oW523Mes0b24lqAXc5F7

2. Make sure that the keystore file exists in the server/conf folder of the
MobileFirst project.

3. Export the server public certificate from the back-end server keystore.

Note: Export back-end public certificates from the back-end keystore by using
keytool or openssl lib. Do not use the export feature in a web browser.

4. Import the back-end server certificate into the MobileFirst keystore.
5. Restart the MobileFirst Server.

Example

The CN name of the back-end certificate must match what is configured in the
adapter.xml file. For example, consider an adapter.xml file that is configured as
follows:
<protocol>https</protocol>
<domain>mybackend.com</domain>

The back-end certificate must be generated with CN=mybackend.com.

As another example, consider the following adapter configuration:
<protocol>https</protocol>
<domain>123.124.125.126</domain>

The back-end certificate must be generated with CN=123.124.125.126.

The following example demonstrates how you complete the configuration by using
the Keytool program.

Installing and configuring 6-135

1. Create a back-end server keystore with a private certificate for 365 days.
keytool -genkey -alias backend -keyalg RSA -validity 365 -keystore backend.keystore -storetype JKS

Note: The First and Last Name field contains your server URL, which you use
in theadapter.xml configuration file, for example mydomain.com or localhost.

2. Configure your back-end server to work with the keystore. For example, in
Apache Tomcat, you change the server.xml file:
<Connector port="443" SSLEnabled="true" maxHttpHeaderSize="8192"

maxThreads="150" minSpareThreads="25" maxSpareThreads="200"
enableLookups="false" disableUploadTimeout="true"
acceptCount="100" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="backend.keystore" keystorePass="password" keystoreType="JKS"
keyAlias="backend"/>

3. Check the connectivity configuration in the adapter.xml file:
<connectivity>

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>https</protocol>
<domain>mydomain.com</domain>
<port>443</port>
<!-- The following properties are used by adapter’s key manager for choosing

a specific certificate from the key store
<sslCertificateAlias></sslCertificateAlias>
<sslCertificatePassword></sslCertificatePassword>
-->

</connectionPolicy>
<loadConstraints maxConcurrentConnectionsPerNode="2"/>

</connectivity>

4. Export the public certificate from the created back-end server keystore:
keytool -export -alias backend -keystore backend.keystore -rfc -file backend.crt

5. Import the exported certificate into your MobileFirst Server
mfp-default.keystore file in the server/conf directory of the MobileFirst
project:

keytool -import -alias backend -file backend.crt -storetype JKS -keystore mfp-default.keystore

6. Check that the certificate is correctly imported in the keystore:
keytool -list -keystore mfp-default.keystore

Configuring SSL by using untrusted certificates
Making SSL work between instances of IBM MobileFirst Platform Server and
clients with certificates that are not signed by a known public certificate authority
(CA) can be challenging. Each mobile platform has its own peculiarities and
enforces different portions of the transport layer security (TLS) standard at
different times.

Support for X.509 certificates comes from the individual platforms, not from IBM
MobileFirst Platform Foundation for iOS. For more information about specific
requirements for X.509 certificates, see the documentation of each mobile platform.

If you have difficulties with getting your application to access a MobileFirst Server
because of SSL-related issues, the likely cause is a bad server certificate. Another
likely cause is a client that is not properly configured to trust your server. Many
other reasons can cause an SSL handshake to fail, so not all possibilities are
covered. Some hints and tips are provided to troubleshoot the most basic issues
that are sometimes forgotten or overlooked. These issues are important when you
deal with the mobile world and X.509 certificates.

6-136 IBM MobileFirst Platform Foundation for iOS V7.0.0

Basic concepts

Certificate authority (CA)
An entity that issues certificates. A CA can issue (sign) other certificates or
other CA certificates (intermediate CA certificates).

In a public key infrastructure (PKI), certificates are verified by a
hierarchical chain of trust. The topmost certificate in this tree is the root
CA certificate.

You can purchase your certificates from a public Internet CA or operate
your own private (local) CA to issue private certificates for your users and
applications. A CA is meant to be an authority that is well-trusted by your
clients. Most commercial CAs issue certificates that are automatically
trusted by most web browsers and mobile platforms. Using private CAs
means that you must take certain actions to ensure that the client trusts
certificates that are signed by your root CA.

A certificate can be signed (issued) by one of the many public CAs that are
known by your mobile platforms, a private CA, or by itself.

Self-signed certificate
A certificate that is signed by itself and has no CA that attests to its
validity.

Using self-signed certificates is not recommended because most mobile
platforms do not support their use.

Self-signed CA
A CA that is signed by itself. It is both a certificate and a CA. Because it is
the topmost certificate in a tree, it is also the root CA.

Using certificates that are signed by private CAs is not recommended for
production use on external Internet-facing servers because of security
concerns. However, they might be the preferred option for development
and testing environments due to their low cost. They are also often
appropriate for internal (intranet) servers as they can be deployed quickly
and easily.

Self-signed certificates versus self-signed CAs

When you are dealing with mobile clients, the use of self-signed certificates is not
recommended because mobile platforms do not allow the installation of these
types of certificates onto the device truststore. This restriction makes it impossible
for the client to ever trust the server’s certificate. Although self-signed certificates
are often recommended for development and testing purposes, they will not work
when the client is a mobile device.

The alternative is to use self-signed CA certificates instead of self-signed
certificates. Self-signed CA certificates are as easy to acquire and are also as
cost-effective of a solution.

You can create a self-signed CA with most tools. For example, the following
command uses the openssl tool to create a self-signed CA:
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout privateKey.key
-out certificate.crt -reqexts v3_req -extensions v3_ca

Note: X.509 version 1 certificates are not allowed by some mobile platforms. You
must use X.509 version 3 certificates instead. If you are generating self-signed CA
certificates, ensure that they are of the type X.509 version 3, and have the following

Installing and configuring 6-137

extension defined: basicConstraints = CA:TRUE. See the appropriate tool’s
documentation for how to specify the required version and certificate extensions.
For openssl commands, you can specify the -reqexts v3_req flag to indicate
version 3 X.509 certificates, and the -extensions v3_ca flag to indicate that the
certificate is also a CA.

You can check the certificate version and extensions by running the following
openssl command:
openssl x509 -in certificate.crt -text -noout

Establishing trust on the client

When you open a web page on your mobile browser or connect directly to your
MobileFirst Server on an HTTPS port, a client receives a server certificate in the
SSL handshake. The client then evaluates the server certificate against its list of
known and trusted CAs to establish trust. Each mobile platform includes a set of
trusted CAs that are deemed trustworthy for issuing SSL certificates. Trust is
established if your server certificate is signed by a CA that is already trusted by
the device. After trust is established, the SSL handshake is successful and you are
allowed to open the web page on a browser or connect directly to your server.

However, if your server uses a certificate that is signed by a CA that is unknown
to the client, the trust cannot be established, and your SSL handshake fails. To
ensure your client device trusts your server’s certificate, you must install the trust
anchor certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) needs to be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

For iOS, see “Installing the root CA on iOS” on page 6-141.

Handling the certificate chain

If you are using a server certificate that is not signed by itself, you must ensure
that the server sends the full certificate chain to the client.

For the client to validate the certificate path, it must have access to the full
certificate chain. To ensure that the client has access to the full certificate chain,
including intermediate certificates, ensure that all the certificates in the chain are in
the server-side keystore file.

For the WebSphere Application Server Liberty, see “Updating your keystore and
Liberty profile configuration to use a certificate chain” on page 6-143.

Handling certificate extensions

RFC 5280 (and its predecessors) defines a number of certificate extensions that
provide extra information about the certificate. Certificate extensions provide a
means of expanding the original X.509 certificate information standards.

When an extension is specified in an X.509 certificate, the extension must specify
whether it is a critical or non-critical extension. A client that is processing a
certificate with a critical extension that the client does not recognize, or which the
client cannot process, must reject the certificate. A non-critical extension can be
ignored if it is not recognized.

6-138 IBM MobileFirst Platform Foundation for iOS V7.0.0

Not all mobile platforms recognize or process certain certificate extensions in the
same manner. For this reason, you must follow the RFC as closely as possible.
Avoid certificate extensions unless you know that all of your targeted mobile
platforms can handle them as you expect.

CRL support

If your certificate supports certificate revocation lists (CRLs), ensure that the CRL
URL is valid and accessible. Otherwise, certificate chain validation fails.

Tools to use to verify the server certificate

To debug certificate path validation problems, try the openssl s_client command
line tool. This tool generates good diagnostic information that is helpful in
debugging SSL issues.

The following example shows how to use the openssl s_client command line
tool:
openssl s_client -CApath $HOME/CAdir -connect hostname:port

The following example shows how to inspect a certificate:
openssl x509 -in certificate.crt -text -noout

Troubleshooting problems with server certificates that are not
signed by a trusted certificate authority

Table 6-49. Troubleshoot problems with server certificates

Problem Actions to take

Unable to install the root CA on iOS.

Certificate installs, but after installation, iOS shows the
certificate as not trusted.

The certificate is not identified as a certificate authority.
Ensure that the certificate specifies a certificate extension:

basicaConstraints = CA:TRUE

For more information, see “Self-signed certificates versus
self-signed CAs” on page 6-137.

Ensure that the certificate is in PEM format.

Ensure that the certificate has a .crt file extension.

Installing and configuring 6-139

Table 6-49. Troubleshoot problems with server certificates (continued)

Problem Actions to take

"errorCode":"UNRESPONSIVE_HOST","errorMsg":"The
service is currently not available."

This error usually indicates an SSL handshake failure.

The client cannot establish trust for the server certificate.

1. Ensure that you installed the server’s root CA on the
client device. For more information, see “Establishing
trust on the client” on page 6-138.

2. Ensure that the server sends the complete certificate
chain and in the right order. For more information,
see “Handling the certificate chain” on page 6-138.

The server certificate is invalid.

1. Check the validity of the server certificate. For more
information, see “Tools to use to verify the server
certificate” on page 6-139.

2. Ensure that the CRL URL is valid and reachable. For
more information, see “CRL support” on page 6-139.

3. The server certificate contains a critical certificate
extension that is not recognized by the client
platform. For more information, see “Handling
certificate extensions” on page 6-138.

After installation, the certificate does not show up in the
system’s trusted credentials or truststore.

Ensure that you did not install the server certificate by
accessing the protected resource directly from your
browser. This action imports the certificate only into the
browser space and not into the device system truststore.
The only requirement is that you install the root CA.

For more information about how to properly install the
root CA on the device, see the following topics.

For iOS, see “Installing the root CA on iOS” on page
6-141.

SCRIPT7002: XMLHttpRequest: Network Error 0x2ee4,
Could not complete the operation due to error
00002ee4

Ensure that you installed the server's root CA on the
client device. For more information, see “Establishing
trust on the client” on page 6-138.

Ensure that the server sends the complete certificate
chain and in the right order. For more information, see
“Handling the certificate chain” on page 6-138.

Related tasks:
“Configuring SSL for Liberty profile” on page 6-220
Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
server.xml file to configure SSL on Liberty profile.
Related information:

Security with HTTPS and SSL

HTTPS Server Trust Evaluation

The Transport Layer Security (TLS) Protocol Version 1.2

RFC 5280 - Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile

6-140 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://developer.android.com/training/articles/security-ssl.html
https://developer.apple.com/library/ios/technotes/tn2232/_index.html
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280

Installing the root CA on iOS
The root CA must be installed on the client device to ensure that the client trusts
server certificates that are signed by your private CAs.

About this task

To establish trust for your server certificate, you must install the trust anchor
certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) must be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

Procedure
1. Ensure that the root CA is in PEM file format and has a .crt file extension.

Convert as needed.
2. Run the following command to view the certificate details.

openssl x509 -in certificate.crt -text -noout

3. Ensure that the certificate is of version X.509 v3. The certificate details must
show Version 3.

Note: The following openssl flag generates X.509 v3 certificates:
-reqexts v3_req

4. Ensure that the certificate is a certificate authority. The certificate details must
show X509v3 Basic Constraints: CA:TRUE

Note: The following openssl flag generates the CA extension:
-extensions v3_ca

5. To download the certificate file on the device, send it as an email attachment or
host it on a secure website.

Note: Do not install the server certificate by accessing the protected resource
directly from your browser. This action imports the certificate only into the
browser space and not into the device system truststore.

6. After you have the certificate file on the device, click the file to allow the iOS
system to install the certificate.

Installing and configuring 6-141

7. Check that the certificate was properly installed under Settings > General >
Profiles > Configuration Profiles.

8. Ensure that the iOS device lists the CA as a trusted certificate authority.

6-142 IBM MobileFirst Platform Foundation for iOS V7.0.0

Updating your keystore and Liberty profile configuration to use a
certificate chain
You must ensure that your server sends the whole certificate chain to client devices
on an SSL handshake.

About this task

For the client to validate the certificate path, it must have access to the full
certificate chain. To ensure that the client has access to the full certificate chain
(including intermediate certificates), ensure that all the certificates in the chain are
in the server-side keystore file.

Assuming that you have a root CA certificate, intermediate certificates, and a
server certificate, the whole chain must be sent on the HTTPS connection. These
certificates must be concatenated in one file, by concatenating in the following
order: server certificate, intermediate CA certificates (if any exist, and if so, in the
order in which they were signed), and finally the root CA.

The following example assumes that you have a server certificate
(SERVER_IDENTITY_CERT_NAME), one intermediate CA certificate
(INTERMEDIATE_CA_CERT_NAME), and a root CA (ROOT_CA_CERT_NAME).

Procedure
1. Open a terminal and navigate to a temporary working directory.
2. Concatenate your certificates to form the certificate chain.

a. Concatenate the intermediate and the root CA certificates.
cat INTERMEDIATE_CA_CERT_NAME ROOT_CA_CERT_NAME > INTERMEDIATE_CA_CHAIN_CERT_NAME

b. Add the server certificate to the chain.
cat .SERVER_IDENTITY_CERT_NAME INTERMEDIATE_CA_CHAIN_CERT_NAME > server_chain.crt

3. Export the private key and certificate chain into a .p12 keystore.
openssl pkcs12 -export -in server_chain.crt -inkey server/server_key.pem -out server/server.p12 -passout pass:passServerP12 -passin pass:passServer

4. Update your Liberty profile server.xml file.
a. Enable the SSL feature.

Installing and configuring 6-143

<featureManager>
...
<feature>ssl-1.0</feature>

...
</featureManager>

b. Create an SSL configuration.
<ssl id="mySSLSettings" keyStoreRef="myKeyStore" />
<keyStore id="myKeyStore"

location="server/server.p12"
type="PKCS12"
password="passServer12" />

c. Configure your HTTP endpoint to use this SSL configuration or set the
configuration as the default.
<sslDefault sslRef="mySSLSettings" />

What to do next

For more information, see Enabling SSL communication for the Liberty profile.

Handling MySQL stale connections
Instructions for how to configure your application server to avoid MySQL timeout
issues.

The MySQL database closes its connections after a period of non-activity on a
connection. This timeout is defined by the system variable called wait_timeout.
The default is 28000 seconds (8 hours).

When an application tries to connect to the database after MySQL closes the
connection, the following exception is generated:

com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: No operations allowed after statement closed.

The following sections provide the configuration elements specific to each
application server you can use to avoid this exception if you use the MySQL
database.

Apache Tomcat configuration

Edit the server.xml and context.xml files, and for every <Resource> element add
the following properties:
v testOnBorrow="true"

v validationQuery="select 1"

For example:
<Resource name="jdbc/AppCenterDS"

type="javax.sql.DataSource"
driverClassName="com.mysql.jdbc.Driver"
...
testOnBorrow="true"
validationQuery="select 1"

/>

WebSphere Application Server Liberty profile configuration

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support

6-144 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://www.ibm.com/support/docview.wss?uid=swg27004311

Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Edit the server.xml file and for every <dataSource> element (runtime and
Application Center databases) add a <connectionManager> element with the
agedTimeout property:
<connectionManager agedTimeout="timeout"/>

For example:
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<connectionManager agedTimeout="7h30m"/>
<jdbcDriver libraryRef="MySQLLib"/>
...

</dataSource>

WebSphere Application Server full profile configuration

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.
1. Log in to the WebSphere Application Server console.
2. Select Resources > JDBC > Data sources.
3. For each MySQL data source:

a. Click the data source.
b. Select Connection pool properties under Additional Properties.
c. Modify the value of the Aged timeout property. The value must be lower

that the MySQL wait_timeout system variable to have the connections
purged prior to the time that MySQL closes these connections.

d. Click OK.

Managing the DB2 transaction log size
When you deploy an application that is at least 40 MB with IBM MobileFirst
Platform Operations Console, you might receive a transaction log full error.

About this task

The following system output is an example of the transaction log full error
code.

DB2 SQL Error: SQLCODE=-964, SQLSTATE=57011

The content of each application is stored in the MobileFirst administration
database.

The active log files are defined in number by the LOGPRIMARY and LOGSECOND
database configuration parameters, and in size by the LOGFILSIZ database
configuration parameter. A single transaction cannot use more log space than
LOGFILSZ * (LOGPRIMARY + LOGSECOND) * 4096 KB.

Installing and configuring 6-145

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

The DB2 GET DATABASE CONFIGURATION command includes information about the log
file size, and the number of primary and secondary log files.

Depending on the largest size of the MobileFirst application that is deployed, you
might need to increase the DB2 log space.

Procedure

Using the DB2 update db cfg command, increase the LOGSECOND parameter. Space is
not allocated when the database is activated. Instead, the space is allocated only as
needed.

Installing the IBM MobileFirst Platform Operational Analytics
The IBM MobileFirst Platform Operational Analytics is delivered as two separate
WAR files. For convenience in deploying on WebSphere Application Server or
WebSphere Application Server Liberty, the IBM MobileFirst Platform Operational
Analytics is also delivered as an EAR file that contains the two WAR files.

When you develop within MobileFirst Platform Command Line Interface for iOS,
the WAR files that contain the IBM MobileFirst Platform Operational Analytics are
automatically deployed. The MobileFirst Server forwards data to the MobileFirst
tools with no additional required configurations.

The analytics WAR and EAR files are included with the MobileFirst Server
installation. For more information, see “Distribution structure of MobileFirst
Server” on page 6-39.

The following sections describe the required steps for successfully deploying the
WAR file to the application server.

When you deploy the WAR file, the analytics console is available at:
http://<hostname>:<port>/<context-root>/console

Example:
http://localhost:9080/analytics/console

Installing IBM MobileFirst Platform Operational Analytics for
WebSphere Application Server Liberty

You can install the IBM MobileFirst Platform Operational Analytics for WebSphere
Application Server Liberty.

About this task

The following steps describe how to install and run the Analytics EAR file on
WebSphere Application Server Liberty.

The IBM MobileFirst Platform Operational Analytics is protected with role-based
security, so you must bind the security roles to the application to be able to access
the console.

Procedure
1. Add the Analytics EAR file to the apps folder of your WebSphere Application

Server Liberty application server.

6-146 IBM MobileFirst Platform Foundation for iOS V7.0.0

2. Modify the server.xml file to set the class loading delegation and bind the
security roles.
<basicRegistry id="worklight" realm="worklightRealm">

<user name="demo" password="demo"/>
<user name="monitor" password="demo"/>
<user name="deployer" password="demo"/>
<user name="operator" password="demo"/>
<user name="admin" password="admin"/>

</basicRegistry>

<application location="analytics.ear"
name="analytics-ear"
type="ear">

<application-bnd>
<security-role name="worklightadmin">

<user name="admin"/>
</security-role>
<security-role name="worklightdeployer">

<user name="deployer"/>
</security-role>
<security-role name="worklightmonitor">

<user name="monitor"/>
</security-role>
<security-role name="worklightoperator">

<user name="operator"/>
</security-role>
</application-bnd>

</application>

3. Add the following features to the WebSphere Application Server Liberty server
in the feature manager.
<feature>jsp-2.2</feature>
<feature>jndi-1.0</feature>
<feature>appSecurity-1.0</feature>

4. Start the application server and view the console in the browser.
http://localhost:9080/analytics/console

Results

The analytics console is deployed and can now be viewed in the browser.

Installing IBM MobileFirst Platform Operational Analytics for
WebSphere Application Server

You can install the IBM MobileFirst Platform Operational Analytics for WebSphere
Application Server.

About this task

The following steps describe how to install and run the Analytics EAR file on
WebSphere Application Server. If you are installing the individual WAR files on
WebSphere Application Server, follow only steps 2 - 6 on the analytics-service
WAR file after you deploy both WAR files. The class loading order must not be
altered on the analytics-ui WAR file.

Procedure
1. Deploy the EAR file to the application server, but do not start it. For more

information about the analytics files, see “Distribution structure of MobileFirst

Installing and configuring 6-147

Server” on page 6-39. For more information about how to install an EAR file on
WebSphere Application Server, see Installing enterprise application files with
the console.

2. Select the IMF Operational Analytics application from the Enterprise
Applications list.

3. Click Class loading and update detection.

4. Set the class loading order to parent last.

6-148 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_instwiz.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_instwiz.html

5. Click Security role to user/group mapping to map the admin user.

6. Click Manage Modules.

Installing and configuring 6-149

7. Select the worklight-analytics-service module and change the class loading
order to parent last.

8. Start the IMF Operational Analytics application and go to the link in the
browser.

6-150 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://<hostname>:<port>/<context-root>/data

Results

The analytics EAR file is now ready to accept incoming analytics data.

IBM MobileFirst Platform Operational Analytics installation for
Tomcat

The individual WAR files that come packaged within the Analytics EAR file are
also provided when IBM MobileFirst Platform Foundation for iOS is installed.
analytics-ui.war
analytics-service.war

For more information, see “Distribution structure of MobileFirst Server” on page
6-39.

Follow the normal procedures for deploying WAR files. No special configurations
need to be made for Tomcat.

Configuring the MobileFirst Server for the IBM MobileFirst
Platform Operational Analytics

You must configure the MobileFirst Server for the IBM MobileFirst Platform
Operational Analytics.

About this task

The following steps describe how to configure the MobileFirst Server for the IBM
MobileFirst Platform Operational Analytics.

Procedure
1. In the worklight.properties file, set the wl.analytics.url property to point to

the deployed WAR file.
wl.analytics.url=http://<hostname>:<port>/analytics-service/data

For example, if the Liberty server is at host.ibm.com on port 8080, then the
wl.analytics.url property is as follows:
wl.analytics.url=http://host.ibm.com:8080/analytics-service/data

2. In the worklight.properties file, set the wl.analytics.username and the
wl.analytics.password properties.

3. Optional: If you want to access the Analytics console from the MobileFirst
Operations Console, set the wl.analytics.console.url property in the
worklight.properties file.
wl.analytics.console.url=http://<hostname>:<port>/analytics/console

For example, if the Liberty server is at host.ibm.com on port 8080, then the
wl.analytics.console.url property is as follows:
wl.analytics.console.url=http://host.ibm.com:8080/analytics/console

Results

The MobileFirst Server now forwards data to the IBM MobileFirst Platform
Operational Analytics.

Installing and configuring 6-151

Note: All properties in the worklight.properties file can also be set by using
JNDI. For more information about JNDI settings, see “Configuration of MobileFirst
applications on the server” on page 10-48.

Installing the MobileFirst Data Proxy
You install the MobileFirst Data Proxy to serve as a proxy between your
MobileFirst Server and your Cloudant database.

Planning the installation of MobileFirst Data Proxy
Before you install the MobileFirst Data Proxy, you must plan your installations and
verify the prerequisites for your system.

Installation overview of the MobileFirst Data Proxy
With the MobileFirst Data Proxy, the data from your mobile applications can be
saved on the server side.

To develop applications with this feature, use the MobileFirst Data Proxy SDK that
is documented at “Storing mobile data in Cloudant” on page 8-186.

The MobileFirst Data Proxy service requires an installed IBM MobileFirst Platform
runtime, and access to a Cloudant database.

IBM MobileFirst Platform Foundation for iOS bundles a limited-use Virtual Server
entitlement to IBM MobileFirst Platform Cloudant Data Layer Local Edition. This
Virtual Server, or node, provides development and test with full API support, and
tools. This node can be used for production with appropriate planning for
availability, performance, and backup. For more information about the use
limitation, see the IBM MobileFirst Platform Foundation for iOS license. By
purchasing additional entitlements to IBM MobileFirst Platform Cloudant Data
Layer Local Edition, customers can cluster multiple nodes together and gain
horizontal and geographic scalability, fault tolerance, and continuous availability.
You might want to deploy in a clustered topology for applications that require the
availability, elasticity, and reach of possibly massive amounts of mobile data and
devices. It is best suited for applications that require an operational data store to
handle a massively concurrent mix of low-latency reads and writes.

Attention: You can install only one instance of an MobileFirst Data Proxy in an
application server. That instance can authenticate incoming requests with only one
MobileFirst project runtime.

Installation prerequisites for the MobileFirst Data Proxy
Review the system requirements, and perform the required installations of
MobileFirst Server and the Cloudant database before installing the MobileFirst
Data Proxy. Some restrictions apply about the type of application server that you
can use.

For more information about the supported hardware and pre-required software,
see “System requirements” on page 2-7.

Before installing the MobileFirst Data Proxy, you must perform the following
actions:
v Install an instance of MobileFirst Server. For more information about the

installation process, see “Installing MobileFirst Server” on page 6-2.

6-152 IBM MobileFirst Platform Foundation for iOS V7.0.0

v Deploy a project WAR file. For more information about the deployment process,
see “Deploying the project WAR file” on page 10-5.

v Install IBM MobileFirst Platform Cloudant Data Layer Local Edition, or get
access to the Cloudant database. For more information about the installation
process, see the IBM MobileFirst Platform Cloudant Data Layer Local Edition
user documentation.

Application server restrictions

You can install the MobileFirst Data Proxy on the following application servers:
v WebSphere Application Server Liberty profile V8.5.5.0 and later
v WebSphere Application Server full profile
v WebSphere Application Server Network Deployment

You cannot install MobileFirst Data Proxy on the following application server:
v Apache Tomcat
v WebSphere Application Server Liberty profile V8.5.0.x

File System prerequisites for MobileFirst Data Proxy
Review the file system privileges and the specific rights for WebSphere Application
Server and WebSphere Application Server Network Deployment that you must
have before you install the MobileFirst Data Proxy.

The file system prerequisites are the same as for installing the MobileFirst Server,
which are described in “File system prerequisites” on page 6-5.

In addition, to install on WebSphere Application Server or WebSphere Application
Server Network Deployment, you must have the right to create files in the
WebSphere Application Server installation directory: <was_install_dir>/lib/ext.

For WebSphere Application Server Network Deployment, you must do this
operation on every node of the WebSphere Application Server Network
Deployment cell, even if they do not run the MobileFirst Data Proxy service. This
is required to install a Trust Association Interceptor (TAI) that is declared at the cell
level.

Installing and configuring the MobileFirst Data Proxy
You can choose to install the MobileFirst Data Proxy with Ant tasks, or manually.
For more information about the procedures to follow for each case, see the
appropriate topics in this section.

Installing the MobileFirst Data Proxy with Ant tasks
Learn about the Ant tasks that you can use to install the MobileFirst Data Proxy.

Before you begin

Make sure that Cloudant is installed and running. It can be on the same computer,
or a different computer. The Ant task verifies the connectivity to Cloudant before
proceeding with the installation.

To deactivate that verification, see “Ant tasks for installation of MobileFirst Data
Proxy” on page 14-27.

Installing and configuring 6-153

http://www.ibm.com/support/knowledgecenter/SSTPQH_1.0.0/com.ibm.cloudant.local.doc/SSTPQH_1.0.0_welcome.html
http://www.ibm.com/support/knowledgecenter/SSTPQH_1.0.0/com.ibm.cloudant.local.doc/SSTPQH_1.0.0_welcome.html

You must install the MobileFirst Server, as described in “Installing MobileFirst
Server” on page 6-2, and deploy a project WAR file, as described in “Deploying the
project WAR file” on page 10-5.

You must have the URL of the deployed project WAR file to complete the
installation of the MobileFirst Data Proxy. If you want to start the Ant task from a
computer on which MobileFirst Server is not installed, you must copy the
following files on that computer:
v mf_server_install_dir/WorklightServer/worklight-ant-deployer.jar

v mf_server_install_dir/Datastore/imf-data-proxy.jar

v mf_server_install_dir/WorklightServer/external-server-libraries/*

About this task

Procedure
1. On WebSphere Application Server Network Deployment, you must install the

Trust Association Interceptor (TAI) manually on every node of the WebSphere
Application Server Network Deployment cell. For more information on the
installation instructions, see “Installing the MobileFirst OAuth Trust Association
Interceptor (TAI)” on page 6-157.

2. Review the sample configuration files in “Sample configuration files” on page
14-35, and copy the Ant file that corresponds to your application server.
The following list of sample configuration files are in product_install_dir/
Datastore/configuration-samples:
v configure-liberty.xml: to install on a Liberty server.
v configure-was.xml: to install on a WebSphere Application Server stand-alone

server.
– configure-wasnd-cluster.xml: to install on WebSphere Application Server

Network Deployment, on a cluster.
– configure-wasnd-server.xml: to install on WebSphere Application Server

Network Deployment, on a managed server.
3. Edit the Ant file and replace the placeholder values for the properties at the top

of the file.
4. Run the following command to install the MobileFirst Data Proxy:

ant -f configure-<appserver>.xml install

You can find the Ant command in mf_server_install_dir/shortcuts.

Note: With these Ant files, you can also:
v Uninstall a MobileFirst Data Proxy, with the target uninstall.
v Update a MobileFirst Data Proxy with the target minimal-update to apply a

fix pack.

Manually installing the MobileFirst Data Proxy
You can install the MobileFirst Data Proxy manually, and configure your
application server accordingly.

Configuring WebSphere Application Server Liberty profile for MobileFirst Data
Proxy manually:

To configure WebSphere Application Server Liberty profile for MobileFirst Data
Proxy manually, you must modify the server.xml file. You must also install a
feature in the usr/extension directory that is shared between servers, and add an

6-154 IBM MobileFirst Platform Foundation for iOS V7.0.0

environment variable in a server.env file that specifies the MobileFirst runtime,
which provides the authentication service for the MobileFirst Data Proxy.

Procedure

1. Install the OAuthTai feature that implements the Trust Association Interceptor
(TAI) for IBM MobileFirst Platform Foundation for iOS.
a. Ensure that the Liberty usr directory (see note) contains a subdirectory

extension/lib. If this subdirectory does not exist, you must create it.
b. Copy the file product_install_dir/WorklightServer/external-server-

libraries/com.ibm.worklight.oauth.tai_1.0.0.jar to usr/extension/lib/.
c. Copy the file product_install_dir/WorklightServer/external-server-

libraries/OAuthTai-1.0.mf to usr/extension/lib/.

Note:

Where usr is the usr directory for WebSphere Application Server Liberty
profile. For more information, see the Directory locations and properties
page in the WebSphere Application Server Liberty Core user documentation.
It is typically in liberty_install_dir/usr but its location can be redefined
with a variable in liberty_install_dir/etc/server.env.

product_install_dir is the installation directory for MobileFirst Server.
2. Install the MobileFirst Data Proxy WAR file.

a. Copy the following WAR file to the apps directory of the Liberty server:
product_install_dir/Datastore/imf-data-proxy.war.

Note: the apps directory is in the same directory as the server.xml file.
3. Edit the server.xml file.

a. Ensure that the <featureManager> element contains at least the following
<feature> elements:
<feature>jaxrs-1.1</feature>
<feature>restConnector-1.0</feature>
<feature>jndi-1.0</feature>
<feature>appSecurity-2.0</feature>
<feature>usr:OAuthTai-1.0</feature>

b. Modify the web container definition with the following values:
<webContainer invokeFlushAfterService="false" deferServletLoad="false"/>

c. Configure the Trust Association Interceptor:
<usr_OAuthTAI id="myOAuthTAI" cacheSize="1000">

<securityConstraint securedURLs="/datastore/*"
scope="cloudant"
httpMethods="All"/>

</usr_OAuthTAI>

d. If your server is not configured with a basicRegistry or an ldapRegistry,
add an empty basicRegistry:
<basicRegistry> </basicRegistry>

Note: There can be only one basicRegistry per server.xml file. You must
perform this step only if there is no other basicRegistry or ldapRegistry
defined in your server.

e. Declare the MobileFirst Data Proxy application:
<application id="datastore" name="datastore" location="imf-data-proxy.war" type="war">

<application-bnd>
<security-role name="TAIUserRole">

Installing and configuring 6-155

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_dirs.html?lang=en

<special-subject type="ALL_AUTHENTICATED_USERS" />
</security-role>

</application-bnd>
<classloader delegation="parentLast">

<commonLibrary id="worklightlib_datastore">
<fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_*.jar"/>

</commonLibrary>
</classloader>

</application>

<!-- Declare the JNDI properties for the MobileFirst Data Proxy. -->
<jndiEntry jndiName="datastore/CloudantProxyDbAccount" value=’"hostname"’/>
<jndiEntry jndiName="datastore/CloudantProtocol" value=’"http"’/>
<jndiEntry jndiName="datastore/CloudantPort" value=’"80"’/>
<jndiEntry jndiName="datastore/CloudantProxyDbAccountUser" value=’"cloudantuser"’/>
<jndiEntry jndiName="datastore/CloudantProxyDbAccountPassword" value=’"cloudantpassword"’/>

Where:
v datastore is the context root for the application. datastore is used in the

application name and ID, and as a prefix for the jndiName values, and in
the securityConstraint of the MobileFirst Data Proxy.

v The values for the following parameters correspond to:
– CloudantProxyDbAccount is the Cloudant database account or host

name of the Cloudant Local server.
– CloudantProtocol is the protocol to connect to the Cloudant HAProxy

(http or https).
– CloudantPort is the port number to connect to the Cloudant HAProxy.
– CloudantProxyDbAccountUser is the login of the Cloudant user.
– CloudantProxyDbAccountPassword is the password of the Cloudant user.

This password can be encrypted with the securityUtility feature of
WebSphere Application Server Liberty profile.

4. Edit or create a file server.env in the Liberty server directory, and add this
content:
publicKeyServerUrl=http://hostname:9080/worklight

Where the value of the publicKeyServerUrl environment variable is the URL to
the MobileFirst runtime that runs the mobile apps which use the MobileFirst
Data Proxy.

Configuring WebSphere Application Server full profile and WebSphere
Application Server Network Deployment for MobileFirst Data Proxy manually:

To configure WebSphere Application Server full profile or WebSphere Application
Server Network Deployment for MobileFirst Data Proxy manually, you must
follow these steps.

About this task

First, you must select a context root for the MobileFirst Data Proxy application. In
the following topics, the context root is referred to as /datastore.

Then you must install the MobileFirst OAuth Trust Association Interceptor (TAI).
To install this component, you have two choices, which are described in the section
“Installing the MobileFirst OAuth Trust Association Interceptor (TAI)” on page
6-157.

Finally, you must install the MobileFirst Data Proxy application, as described in the
section “Installing the MobileFirst Data Proxy application” on page 6-159.

6-156 IBM MobileFirst Platform Foundation for iOS V7.0.0

Installing the MobileFirst OAuth Trust Association Interceptor (TAI):

It is mandatory to install the MobileFirst OAuth Trust Association Interceptor to
run the MobileFirst Data Proxy. You can either install the TAI on the default
security domain of a cell, or on a specific security domain.

About this task

There are two options to install MobileFirst OAuth Trust Association Interceptor.
Review the following topics to learn about the procedures for each option.

Installing the MobileFirst OAuth Trust Association Interceptor on the default security
domain:

You can choose to install the TAI on the default security domain of a cell. This is
convenient for a standalone web server, but on WebSphere Application Server
Network Deployment, this means that the TAI is active on all servers and clusters
of the cell. It must also be installed, and maintained for fix packs, on all nodes of
the cell.

Procedure

1. Copy the file product_install_dir/WorklightServer/external-server-
libraries/com.ibm.worklight.oauth.tai_1.0.0.jar to ${WAS_INSTALL_ROOT}/
lib/ext.

Note: On WebSphere Application Server Network Deployment, you must
perform this operation on every node of the WebSphere Application Server cell.

2. Create a configuration file with this content:
<?xml version="1.0" encoding="UTF-8"?>

<OAuthTAI >
<!-- Security constraint. -->
<securityConstraint securedURLs="/datastore/*" scope="cloudant" httpMethods="All"/>

</OAuthTAI>

Where datastore is the context root of the application, as defined in the section
About this task of the topic “Configuring WebSphere Application Server full
profile and WebSphere Application Server Network Deployment for MobileFirst
Data Proxy manually” on page 6-156.

3. Copy this configuration file in the config directory of the WebSphere
Application Server profile, or the WebSphere Application Server Deployment
Manager profile for WebSphere Application Server Network Deployment (this
directory is synchronized with the nodes). For example:
${USER_INSTALL_ROOT}/config/cells/<cellName>/com.worklight.oauth.tai.OAuthTAI.conf

Where USER_INSTALL_ROOT is the profile directory, and <cellName> must be
replaced by the actual name of the WebSphere Application Server cell. The
directory should already exist.

4. Open the WebSphere Application Server Console.
5. Go to Security > Global Security > Authentication, and select Enable LTPA.
6. Go to Security > Global Security > Web and SIP security > Trust association.

a. Enable trust association.
b. In the Interceptors tab, create a new interceptor by clicking New.
c. Set the following settings for this interceptor:
v Interceptor class name: com.worklight.oauth.tai.OAuthTAI.

Installing and configuring 6-157

v Custom properties:
– Name: configFileLocation
– Value: ${USER_INSTALL_ROOT}/config/cells/<cellName>/

com.worklight.oauth.tai.OAuthTAI.conf

Note: Keep ${USER_INSTALL_ROOT} as a variable, especially if you install on
WebSphere Application Server Network Deployment. The
${USER_INSTALL_ROOT} variable is defined in WebSphere Application Server.

You must replace <cellName> by the actual cell name.
7. From the WebSphere Application Server console, define an environment

variable for each server of the cell that points to the MobileFirst project runtime
which provides the authentication service.
a. From the WebSphere Application Server Console, go to Servers > Server

Types > WebSphere application servers > your_server > Java and Process
Management > Process Definition > Environment Entries > New.

b. Create an environment with the following settings:
publicKeyServerUrl=url_to_mfp_server

Where url_to_mfp_server is the URL to the MobileFirst project runtime that
provides the public key for decrypting MFP OAuth tokens. For example, it
can be http://localhost:9080/worklight if a project runtime is installed on
the same server, the port is 9080, and the context root is /worklight.
The TAI will not be active before you restart the application server. For
WebSphere Application Server Network Deployment, the nodes must also
be synchronized.

What to do next

Follow the steps in “Installing the MobileFirst Data Proxy application” on page
6-159

Installing the MobileFirst OAuth Trust Association Interceptor on a specific security
domain:

You can choose to install the TAI on a specific security domain. In this case, only
servers or clusters that use that security domain can run the MobileFirst Data
Proxy.

Procedure

1. Open the WebSphere Application Server Console.
a. Create a security domain by clicking Security > Global Security > Security

domains > New.
b. Configure the security domain as follows:
v Name: MobileFirstOAuthDomain
v Description: Security Domain with MobileFirst Platform Foundation TAI

Enabled
c. Click the security domain that you created.
d. Go to Security Attributes > Trust Association, and select Enable Trust

Association.
e. Go to Security Attributes > Trust Association > Interceptors and set the

properties as follows:
v Interceptor class name: com.worklight.oauth.tai.OAuthTAI.

6-158 IBM MobileFirst Platform Foundation for iOS V7.0.0

v Custom properties:
– Name: configFileLocation
– Value: ${USER_INSTALL_ROOT}/config/cells/<cellName>/

com.worklight.oauth.tai.OAuthTAI.conf

Note: Keep ${USER_INSTALL_ROOT} as a variable, especially if you install on
WebSphere Application Server Network Deployment. The
${USER_INSTALL_ROOT} variable is defined in WebSphere Application Server.

You must replace <cellName> by the actual cell name.
f. In Assigned Scopes, assign the security domain to the server or cluster that

runs the MobileFirst Data Proxy.
2. Copy the file product_install_dir/WorklightServer/external-server-

libraries/com.ibm.worklight.oauth.tai_1.0.0.jar to ${WAS_INSTALL_ROOT}/
lib/ext.

Note: You must perform this operation on every node that hosts a server with
the MobileFirstOAuthDomain security domain.

3. Create the TAI configuration file and copy it in the config directory of the
WebSphere Application Server profile. For more information, see steps 1 on
page 6-157 and 2 on page 6-157 of “Installing the MobileFirst OAuth Trust
Association Interceptor on the default security domain” on page 6-157.

4. From the WebSphere Application Server console, define an environment
variable for each server with the MobileFirstOAuthDomain security domain.
a. Go to Servers > Server Types > WebSphere application servers >

your_server > Java and Process Management > Process Definition >
Environment Entries > New.

b. Create an environment with the following settings:
publicKeyServerUrl=url_to_mfp_server

Where url_to_mfp_server is the URL to the MobileFirst project runtime that
provides the public key for decrypting MFP OAuth tokens. For example, it
can be http://localhost:9080/worklight if a project runtime is installed on
the same server, the port is 9080, and the context root is /worklight.
The TAI will not be active before you restart the application server. For
WebSphere Application Server Network Deployment, the nodes must also
be synchronized.

What to do next

Follow the steps in “Installing the MobileFirst Data Proxy application”

Installing the MobileFirst Data Proxy application:

When the previous configuration steps of your application server are done, you
must install, then start the MobileFirst Data Proxy application.

Procedure

1. Enable application security.
a. Click Security > Global Security.
b. Ensure that Enable administrative security is selected. Application security

can be enabled only if administrative security is enabled.
c. Click OK.

Installing and configuring 6-159

d. Save the changes.
For more information, see Enabling security in WebSphere Application
Server user documentation.

2. Review the server class loader policy:
a. Click Servers > Server Types > WebSphere application servers.
b. Select the server that is used for the MobileFirst Data Proxy.
v If the class loader policy is set to Multiple, do nothing.
v If the class loader policy is set to Single and the class loading mode is set

to parent-last, do nothing.
v If the class loader policy is set to Single and the class loading mode is set

to parent-first, change the class loader policy to Multiple, and set the
class loader order of all applications other than MobileFirst applications
to parent-first.

3. Install the Administration Services WAR file:
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Go to the MobileFirst Server installation directory: product_install_dir/
Datastore.

c. Select imf-data-proxy.war, and click Next.
d. On the How do you want to install the application? page, click Detailed,

and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the Map context roots for web modules page.
g. In the Context Root field, type /datastore. This is defined in the section

About this task of the topic “Configuring WebSphere Application Server full
profile and WebSphere Application Server Network Deployment for
MobileFirst Data Proxy manually” on page 6-156

h. Click Next.
i. In Map environment entries for web modules, enter the following values:
v for the CloudantProxyDbAccount entry, enter the host name of the Cloudant

database.
v for the CloudantProtocol entry, enter the protocol used to connect to

Cloudant. The possible values are http or https.
v for the CloudantPort entry, enter the port of the Cloudant database, which

is by default 80 for http and 443 for https.
v for the CloudantProxyDbAccountUser entry, enter the Cloudant user that

can log to Cloudant.
v for the CloudantProxyDbAccountPassword entry, enter the Cloudant user's

password.
j. Click Next.
k. In Map security roles to users or groups, select TAIUserRole.
l. Select Map Special Subjects > All Authenticated Users in Application's

Realm.
m. Click Next until you reach the last step, and click Finish.
n. Click Save.

6-160 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_csec2.html

4. Configure the class loader policies for the Administration Services and then
start the application:
a. Click the Manage Applications link, or click Applications > Applications

Types > WebSphere enterprise applications.
b. From the list of applications, click imf-data-proxy_war.
c. In the Detail Properties section, click the Class loading and update

detection link.
d. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
e. Click OK.
f. In the Detail Properties section, click the Startup behavior link.
g. In Startup Order, enter 1, and click OK.
h. In the Modules section, click Manage Modules.
i. From the list of modules, click the imfdata module.
j. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
k. Click OK twice.
l. Click Save.
m. Select imf-data-proxy_war and click Start.

Configuring the application server to access the Cloudant
database through HTTPS
Whether you installed the MobileFirst Data Proxy manually or with Ant tasks, if
you access the Cloudant database through HTTPS, and your application server is
WebSphere Application Server full profile, you must configure your certificates. If
your application server is WebSphere Application Server Liberty profile, and a
self-signed certificate is used to access the Cloudant database, an extra
configuration step is required.

Procedure

For WebSphere Application Server full profile, you must import the Cloudant
signer certificate in the WebSphere Application Server truststore to access the
Cloudant database through HTTPS. If you connect to Cloudant through the HTTPS
protocol, follow steps 1 to 7.
1. Open the WebSphere Application Server console.
2. Go to Security > SSL Certificates and Key Management.
3. In Related Items, click Key stores and certificates.
4. Select NodeDefaultTrustStore.
5. Select Additional Properties > Signer certificates.
6. Click Retrieve from port.

a. Enter the Cloudant host name and the port, which is by default 443.
b. Select an alias, for example Cloudant trust store.
c. Click Retrieve signer information.
d. Click OK.

7. Click Save.
For WebSphere Application Server Liberty profile, if you access the Cloudant
database through HTTPS with a self-signed certificate, you must import this
certificate in the cacerts truststore of the JVM that is used by your Liberty server,
which you find in: JAVA_INSTALL_DIR\jre\lib\security\cacerts.

Installing and configuring 6-161

8. Use the keytool command that is available in both IBM JRE and Oracle JRE, as
of Java 6.

9. For more information, see the Keytool section of the IBM SDK, Java Technology
Edition user documentation.

Note: The password to access this truststore is changeit.

Installing and configuring the Application Center
You install the Application Center as part of the MobileFirst Server installation.

The Application Center is part of MobileFirst Server. To install the Application
Center, see the following topics. Optionally, you can install the database of your
choice before you install MobileFirst Server with the Application Center.

When you install an IBM MobileFirst Platform Foundation for iOS edition through
IBM Installation Manager, the Application Center is installed in the web
application server that you designate. You have minimal additional configuration
to do. For more information, see “Configuring the Application Center after
installation” on page 6-188.

If you chose a manual setup in the installer, see the documentation of the server of
your choice.

If you intend to install applications on iOS devices through the Application Center,
you must first configure the Application Center server with SSL.

For a list of installed files and tools, see “Distribution structure of MobileFirst
Server” on page 6-39.

Installing Application Center with IBM Installation Manager
With IBM Installation Manager, you can install Application Center, create its
database, and deploy it on an Application Server.

Before you begin

Verify that the user who runs IBM Installation Manager has the privileges that are
described in “File system prerequisites” on page 6-5.

Procedure

To install IBM Application Center with IBM Installation Manager, complete the
followings steps.
1. Optional: You can manually create databases for Application Center, as

described in “Optional creation of databases.” IBM Installation Manager can
create the Application Center databases for you with default settings.

2. Run IBM Installation Manager, as described in “Running IBM Installation
Manager” on page 6-29.

3. Select Yes to the question Install IBM Application Center.

Optional creation of databases
If you want to activate the option to install the Application Center when you run
the MobileFirst Server installer, you need to have certain database access rights
that entitle you to create the tables that are required by the Application Center.

6-162 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/keytoolDocs/keytool_overview.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/keytoolDocs/keytool_overview.html

If you have sufficient database administration credentials, and if you enter the
administrator user name and password in the installer when prompted, the
installer can create the databases for you. Otherwise, you need to ask your
database administrator to create the required database for you. The database needs
to be created before you start the MobileFirst Server installer.

The following topics describe the procedure for the supported database
management systems.

Creating the DB2 database for Application Center:

During IBM MobileFirst Platform Foundation for iOS installation, the installer can
create the Application Center database for you.

About this task

The installer can create the Application Center database for you if you enter the
name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the Application Center database
for you. For more information, see the DB2 Solution user documentation.

When you manually create the database, you can replace the database name (here
APPCNTR) and the password with a database name and password of your
choosing.

Important: You can name your database and user differently, or set a different
password, but ensure that you enter the appropriate database name, user name,
and password correctly across the DB2 database setup. DB2 has a database name
limit of 8 characters on all platforms, and has a user name and password length
limit of 8 characters for UNIX and Linux systems, and 30 characters for Windows.

Procedure

1. Create a system user, for example, named wluser in a DB2 admin group such
as DB2USERS, using the appropriate commands for your operating system. Give
it a password, for example, wluser. If you want multiple instances of IBM
MobileFirst Platform Server to connect to the same database, use a different
user name for each connection. Each database user has a separate default
schema. For more information about database users, see the DB2
documentation and the documentation for your operating system.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor

v On Linux or UNIX systems, navigate to ~/sqllib/bin and enter ./db2.
v Enter database manager and SQL statements similar to the following

example to create the Application Center database, replacing the user name
wluser with your chosen user names:
CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT APPCNTR
QUIT

3. The installer can create the database tables and objects for Application Center
in a specific schema. This allows you to use the same database for Application
Center and for a MobileFirst project. If the IMPLICIT_SCHEMA authority is

Installing and configuring 6-163

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html

granted to the user created in step 1 (the default in the database creation script
in step 2), no further action is required. If the user does not have the
IMPLICIT_SCHEMA authority, you need to create a SCHEMA for the
Application Center database tables and objects.

Creating the MySQL database for Application Center:

During the MobileFirst installation, the installer can create the Application Center
database for you.

About this task

The installer can create the database for you if you enter the name and password
of the superuser account. For more information, see Securing the Initial MySQL
Accounts on your MySQL database server. Your database administrator can also
create the databases for you. When you manually create the database, you can
replace the database name (here APPCNTR) and password with a database name
and password of your choosing. Note that MySQL database names are
case-sensitive on Unix.

Procedure

1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;

Here, you need to replace Worklight-host with the name of the host on which
IBM MobileFirst Platform Foundation for iOS runs.

Creating the Oracle database for Application Center:

During the installation, the installer can create the Application Center database,
except for the Oracle 12c database type, or the user and schema inside an existing
database for you.

About this task

The installer can create the database, except for the Oracle 12c database type, or
the user and schema inside an existing database if you enter the name and
password of the Oracle administrator on the database server, and the account can
be accessed through SSH. Otherwise, the database administrator can create the
database or user and schema for you. When you manually create the database or
user, you can use database names, user names, and a password of your choosing.
Note that lowercase characters in Oracle user names can lead to trouble.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new general-purpose database named ORCL:
a. Use global database name ORCL_your_domain, and system identifier (SID)

ORCL.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts, because you must first create a user account.

6-164 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

c. On the Character Sets tab of the step Initialization Parameters, select Use
Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.
2. Create a database user either by using Oracle Database Control, or by using

the Oracle SQLPlus command-line interpreter.
v Using Oracle Database Control.

a. Connect as SYSDBA.
b. Go to the Users page: click Server, then Users in the Security section.
c. Create a user, for example, named APPCENTER. If you want multiple

instances of IBM MobileFirst Platform Server to connect to the same
general-purpose database you created in step 1, use a different user name
for each connection. Each database user has a separate default schema.

d. Assign the following attributes:
– Profile: DEFAULT
– Authentication: password
– Default tablespace: USERS
– Temporary tablespace: TEMP
– Status: Unlocked
– Add system privilege: CREATE SESSION
– Add system privilege: CREATE SEQUENCE
– Add system privilege: CREATE TABLE
– Add quota: Unlimited for tablespace USERS

v Using the Oracle SQLPlus command-line interpreter.
The commands in the following example create a user named APPCENTER for
the database:

CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER APPCENTER IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO APPCENTER;
DISCONNECT;

Installing Application Center in WebSphere Application Server
Network Deployment
To install Application Center in a set of WebSphere Application Server Network
Deployment servers, run IBM Installation Manager on the machine where the
deployment manager is running.

Procedure
1. When IBM Installation Manager prompts you to specify the database type,

select any option other than Apache Derby. IBM MobileFirst Platform
Foundation for iOS supports Apache Derby only in embedded mode, and this
choice is incompatible with deployment through WebSphere Application Server
Network Deployment.

2. In the installer panel in which you specify the WebSphere Application Server
installation directory, select the deployment manager profile.
Attention: Do not select an application server profile and then a single
managed server: doing so causes the deployment manager to overwrite the
configuration of the server regardless of whether you install on the machine on
which the deployment manager is running or on a different machine.

3. Select the required scope depending on where you want Application Center to
be installed. The following table lists the available scopes:

Installing and configuring 6-165

Table 6-50. Selecting the required scope.

Scope Explanation

Cell Installs Application Center in all application
servers of the cell.

Cluster Installs Application Center in all application
servers of the specified cluster.

Node (excluding clusters) Installs Application Center in all application
servers of the specified node that are not in
a cluster.

Server Installs Application Center in the specified
server, which is not in a cluster.

4. Restart the target servers by following the procedure in “Completing the
installation.”

Results

The installation has no effect outside the set of servers in the specified scope. The
JDBC providers and JDBC data sources are defined with the specified scope. The
entities that have a cell-wide scope (the applications and, for DB2, the
authentication alias) have a suffix in their name that makes them unique. So, you
can install Application Center in different configurations or even different versions
of Application Center, in different clusters of the same cell.

Note: Because the JDBC driver is installed only in the specified set of application
servers, the Test connection button for the JDBC data sources in the WebSphere
Application Server administration console of the deployment manager might not
work.

What to do next

You need to complete the following additional configuration:
v If you use a front-end HTTP server, you need to configure the public URL

Completing the installation
When installation is complete, you must restart the web application server in
certain cases.

You must restart the web application server in the following circumstances:
v When you are using WebSphere Application Server with DB2 as database type.
v When you are using WebSphere Application Server and have opened it without

the application security enabled before you installed IBM MobileFirst Platform
Application Center or MobileFirst Server.
The MobileFirst installer must activate the application security of WebSphere
Application Server (if not active yet) to install Application Center. Then, for this
activation to take place, restart the application server after the installation of
MobileFirst Server completed.

v When you are using WebSphere Application Server Liberty or Apache Tomcat.
v After you upgraded from a previous version of MobileFirst Server.

If you are using WebSphere Application Server Network Deployment and chose an
installation through the deployment manager:

6-166 IBM MobileFirst Platform Foundation for iOS V7.0.0

v You must restart the servers that were running during the installation and on
which the MobileFirst Server web applications are installed.
To restart these servers with the deployment manager console, select
Applications > Application Types > WebSphere enterprise applications >
IBM_Application_Center_Services > Target specific application status.

v You do not have to restart the deployment manager or the node agents.

Note: Only the Application Center is installed in the application server. A
MobileFirst Operations Console is not installed by default. To install a MobileFirst
Operations Console, you need to follow the steps in “Deploying MobileFirst
projects” on page 10-1.

Default logins and passwords created by IBM Installation
Manager for the Application Center
IBM Installation Manager creates the logins by default for the Application Center,
according to your application server. You can use these logins to test the
Application Center.

WebSphere Application Server full profile

The login appcenteradmin is created with a password that is generated and
displayed during the installation.

All users authenticated in the application realm are also authorized to access the
appcenteradmin role. This is not meant for a production environment, especially if
WebSphere Application Server is configured with a single security domain.

For more information about how to modify these logins, see “Configuring
WebSphere Application Server full profile” on page 6-189.

WebSphere Application Server Liberty profile
v The login demo is created in the basicRegistry with the password demo.
v The login appcenteradmin is created in the basicRegistry with the password

admin.

For more information about how to modify these logins, see “Configuring
WebSphere Application Server Liberty profile” on page 6-191.

Apache Tomcat
v The login demo is created with the password demo.
v The login guest is created with the password guest.
v The login appcenteradmin is created with the password admin.

For more information about how to modify these logins, see “Configuring Apache
Tomcat” on page 6-192.

Manual installation of Application Center
A reconfiguration is necessary for the MobileFirst Server to use a database or
schema that is different from the one that was specified during its installation. This
reconfiguration depends on the type of database and on the kind of application
server.

Restriction: Whether you install Application Center with IBM Installation Manager
as part of the MobileFirst Server installation or manually, remember that "rolling

Installing and configuring 6-167

updates" of Application Center are not supported. That is, you cannot install two
versions of Application Center (for example, V5.0.6 and V6.0.0) that operate on the
same database. See “In-place upgrade or rolling upgrade to MobileFirst Server
V7.0.0” on page 7-16.

Configuring the DB2 database manually for IBM MobileFirst
Platform Application Center
You configure the DB2 database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the DB2 database for

Application Center” on page 6-163.
2. Create the tables in the database. This step is described in “Setting up your

DB2 database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your DB2 database manually for Application Center:

You can set up your DB2 database for Application Center manually.

About this task

Set up your DB2 database for Application Center by creating the database schema.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password worklight. For more information, see the DB2 documentation and the
documentation for your operating system.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across
the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called APPCNTR:
CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

4. Run DB2 with the following commands to create the APPCNTR tables, in a
schema named APPSCHM (the name of the schema can be changed). This
command can be run on an existing database that has a page size compatible
with the one defined in step 3.
db2 CONNECT TO APPCNTR
db2 SET CURRENT SCHEMA = ’APPSCHM’
db2 -vf product_install_dir/ApplicationCenter/databases/create-appcenter-db2.sql -t

6-168 IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring Liberty profile for DB2 manually for Application Center:

You can set up and configure your DB2 database manually for Application Center
with WebSphere Application Server Liberty profile.

Before you begin

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/db2.
If that directory does not exist, create it. You can retrieve the file in one of two
ways:
v Download it from DB2 JDBC Driver Versions.
v Fetch it from the db2_install_dir/java on the DB2 server directory.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file as follows:
In this path, you can replace worklightServer by the name of your server.
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="APPCNTR" currentSchema="APPSCHM"

serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>

</dataSource>

Theworklight placeholder after user= is the name of the system user with
CONNECT access to the APPCNTR database that you have previously created.
The worklight placeholder after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
worklight accordingly. Also, replace db2server with the host name of your DB2
server (for example, localhost, if it is on the same computer).
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

Configuring WebSphere Application Server for DB2 manually for Application
Center:

You can set up and configure your DB2 database manually for Application Center
with WebSphere Application Server.

About this task

Complete the DB2 database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.

Installing and configuring 6-169

http://www.ibm.com/support/docview.wss?uid=swg21363866

v For a stand-alone server, you can use a directory such as
was_install_dir/optionalLibraries/IBM/Worklight/db2.

v For deployment to a WebSphere Application Server ND cell, use
was_install_dir/profiles/profile-name/config/cells/cell-name/
Worklight/db2.

v For deployment to a WebSphere Application Server ND cluster, use
was_install_dir/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/db2.

v For deployment to a WebSphere Application Server ND node, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/db2.

v For deployment to a WebSphere Application Server ND server, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/db2.

If this directory does not exist, create it.
2. Add the DB2 JDBC driver JAR file and its associated license files, if any, to the

directory that you determined in step 1.
You can retrieve the driver file in one of two ways:
v Download it from DB2 JDBC Driver Versions.
v Fetch it from the db2_install_dir/java directory on the DB2 server.

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database type to DB2.
e. Set Provider type to DB2 Using IBM JCC Driver.
f. Set Implementation Type to Connection pool data source.
g. Set Name to DB2 Using IBM JCC Driver.
h. Click Next.
i. Set the class path to the set of JAR files in the directory that you determined

in step 1, replacing was_install_dir/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

j. Do not set Native library path.
k. Click Next.
l. Click Finish.
m. The JDBC provider is created.
n. Click Save.

4. Create a data source for the Application Center database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Set the Data source name to Application Center Database.
e. Set JNDI Name to jdbc/AppCenterDS.
f. Click Next.
g. Enter properties for the data source, for example:
v Driver type: 4

6-170 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

v Database Name: APPCNTR
v Server name: localhost
v Port number: 50000 (default)
Leave Use this data source in (CMP) selected.

h. Click Next.
i. Create JAAS-J2C authentication data, specifying the DB2 user name and

password as its properties. If necessary, go back to the data source creation
wizard, by repeating steps 4a on page 6-170 to 4h.

j. Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

k. Click Next and Finish.
l. Click Save.
m. In Resources > JDBC > Data sources, select the new data source.
n. Click WebSphere Application Server data source properties.
o. Select the Non-transactional data source check box.
p. Click OK.
q. Click Save.
r. Click Custom properties for the data source, select property currentSchema,

and set the value to the schema used to create the Application Center tables
(APPSCHM in this example).

5. Test the data source connection by selecting Data Source and clicking Test
Connection.

Configuring Apache Tomcat for DB2 manually for Application Center:

If you want to manually set up and configure your DB2 database for Application
Center with Apache Tomcat server, use the following procedure.

About this task

Before you contiue, complete the DB2 database setup procedure.

Procedure

1. Add the DB2 JDBC driver JAR file.
You can retrieve this JAR file in one of the following ways:
v Download it from DB2 JDBC Driver Versions.
v Or fetch it from the directory db2_install_dir/java on the DB2 server) to

$TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example.
<Resource auth="Container"

driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/AppCenterDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/APPCNTR:currentSchema=APPSCHM;"/>

The worklight parameter after username= is the name of the system user with
"CONNECT" access to the APPCNTR database that you have previously created.

Installing and configuring 6-171

http://www.ibm.com/support/docview.wss?uid=swg21363866

The password parameter after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these entries accordingly.
DB2 enforces limits on the length of user names and passwords.
v For UNIX and Linux systems: 8 characters
v For Windows: 30 characters

3. Insert this statement in the server.xml file, as indicated in “Configuring
Apache Tomcat for Application Center manually” on page 6-187.

Configuring the Apache Derby database manually for Application
Center
You configure the Apache Derby database manually by creating the database and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database and the tables within them. This step is described in

“Setting up your Apache Derby database manually for Application Center.”
2. Configure the application server to use this database setup. Go to one of the

following topics:
v “Configuring Liberty profile for Derby manually for Application Center” on

page 6-173
v “Configuring WebSphere Application Server for Derby manually for

Application Center” on page 6-173
v “Configuring Apache Tomcat for Derby manually for Application Center” on

page 6-175

Setting up your Apache Derby database manually for Application Center:

You can set up your Apache Derby database for Application Center manually.

About this task

Set up your Apache Derby database for Application Center by creating the database
schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from Apache Derby: Downloads.

For supported versions of Apache Derby, see “System requirements” on page
2-7.
The script displays ij version number.

2. At the command prompt, enter the following commands:
connect ’jdbc:derby:APPCNTR;user=APPCENTER;create=true’;
run ’<product_install_dir>/ApplicationCenter/databases/create-appcenter-derby.sql’;
quit;

6-172 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://db.apache.org/derby/derby_downloads

Configuring Liberty profile for Derby manually for Application Center:

If you want to manually set up and configure your Apache Derby database for
Application Center with WebSphere Application Server Liberty profile, use the
following procedure.

Before you begin

Complete the Apache Derby database setup procedure before continuing.

Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:

<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/APPCNTR" user="APPCENTER"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool"/>

</dataSource>

Configuring WebSphere Application Server for Derby manually for Application
Center:

You can set up and configure your Apache Derby database manually for
Application Center with WebSphere Application Server.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
If this directory does not exist, create it.
v For a standalone server, you can use a directory such as

was_install_dir/optionalLibraries/IBM/Worklight/derby.
v For deployment to a WebSphere Application Server ND cell, use

was_install_dir/profiles/profile-name/config/cells/cell-name/
Worklight/derby.

v For deployment to a WebSphere Application Server ND cluster, use
was_install_dir/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/derby.

v For deployment to a WebSphere Application Server ND node, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/derby.

Installing and configuring 6-173

v For deployment to a WebSphere Application Server ND server, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/derby.

2. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/
lib/derby.jar to the directory determined in step 1.

3. Set up the JDBC provider.
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database Type to User-defined.
e. Set class Implementation name to

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40.
f. Set Name to Worklight - Derby JDBC Provider.
g. Set Description to Derby JDBC provider for Worklight.
h. Click Next.
i. Set the Class path to the JAR file in the directory determined in step 1,

replacing was_install_dir/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

j. Click Finish.
4. Create the data source for the Worklight database.

a. In the WebSphere Application Server console, click Resources > JDBC >
Data sources.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source Name to Application Center Database.
e. Set JNDI name to jdbc/AppCenterDS.
f. Click Next.
g. Select the existing JDBC Provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the Application Center Database data source that you

created.
m. Under Additional Properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the APPCNTR database that is created in “Setting up

your Apache Derby database manually for Application Center” on page
6-172.

p. Click OK.
q. Click Save.
r. At the top of the page, click Application Center Database.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.

6-174 IBM MobileFirst Platform Foundation for iOS V7.0.0

u. Click OK.
v. Click Save.
w. In the table, select the Application Center Database data source that you

created.
x. Optional: Only if you are not on the console of a WebSphere Application

Server Deployment Manager, click test connection.

Configuring Apache Tomcat for Derby manually for Application Center:

You can set up and configure your Apache Derby database manually for
Application Center with the Apache Tomcat application server.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/
lib/derby.jar to the directory $TOMCAT_HOME/lib.

2. Prepare an XML statement that defines the data source, as shown in the
following code example.

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/AppCenterDS"
username="APPCENTER"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/APPCNTR"/>

3. Insert this statement in the server.xml file, as indicated in “Configuring
Apache Tomcat for Application Center manually” on page 6-187.

Configuring the MySQL database manually for Application Center
You configure the MySQL database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the MySQL database

for Application Center” on page 6-164.
2. Create the tables in the database. This step is described in “Setting up your

MySQL database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your MySQL database manually for Application Center:

You can set up your MySQL database for Application Center manually.

About this task

Complete the following procedure to set up your MySQL database.

Procedure

1. Create the database schema.
a. Run a MySQL command line client with the option -u root.

Installing and configuring 6-175

b. Enter the following commands:
CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’Worklight-host’IDENTIFIED BY ’worklight’;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
FLUSH PRIVILEGES;

USE APPCNTR;
SOURCE product_install_dir/ApplicationCenter/databases/create-appcenter-mysql.sql;

Where worklight before the "at" sign (@) is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM MobileFirst Platform Foundation for iOS runs.

2. Add the following property to your MySQL option file:
max_allowed_packet=256M

For more information about option files, see the MySQL documentation at
MySQL.

3. Add the following property to your MySQL option file: innodb_log_file_size
= 250M

For more information about the innodb_log_file_size property, see the MySQL
documentation, section innodb_log_file_size.

Configuring Liberty profile for MySQL manually for Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server Liberty profile, use the
following procedure.

Before you begin

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. You can use IBM DB2 or another database supported by WebSphere
Application Server to benefit from a configuration that is fully supported by IBM
Support.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:
<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="APPCNTR"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>

</dataSource>

6-176 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://dev.mysql.com
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

where worklight after user= is the user name, worklight after password= is this
user's password, and mysqlserver is the host name of your MySQL server (for
example, localhost, if it is on the same machine).

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

Configuring WebSphere Application Server for MySQL manually for
Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server, use the following
procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/mysql.
v For deployment to a WebSphere Application Server ND cell, use

WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight/mysql.

v For deployment to a WebSphere Application Serverr ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/mysql.

v For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/mysql.

v For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/mysql.

If this directory does not exist, create it.
2. Add the MySQL JDBC driver JAR file downloaded from Download

Connector/J to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Create a JDBC provider named MySQL.
e. Set Database type to User defined.
f. Set Scope to Cell.

Installing and configuring 6-177

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

g. Set Implementation class to
com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.

h. Set Database classpath to the JAR file in the directory determined in step 1,
replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

i. Save your changes.
4. Create a data source for the IBM Application Center database:

a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Type any name (for example, Application Center Database).
e. Set JNDI Name to jdbc/AppCenterDS.
f. Use the existing JDBC Provider MySQL, defined in the previous step.
g. Set Scope to New.
h. On the Configuration tab, select Non-transactional data source.
i. Click Next a number of times, leaving all other settings as defaults.
j. Save your changes.

5. Set the custom properties of the new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

portNumber = 3306
relaxAutoCommit=true
databaseName = APPCNTR
serverName = the host name of the MySQL server
user = the user name of the MySQL server
password = the password associated with the user name

6. Set the WebSphere Application Server custom properties of the new data
source.
a. In Resources > JDBC > Data sources, select the new data source.
b. Click WebSphere Application Server data source properties.
c. Select Non-transactional data source.
d. Click OK.
e. Click Save.

Configuring Apache Tomcat for MySQL manually for Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with the Apache Tomcat server, use the following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/lib directory.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for Application Center manually” on
page 6-187.

6-178 IBM MobileFirst Platform Foundation for iOS V7.0.0

<Resource name="jdbc/AppCenterDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/APPCNTR"/>

Configuring the Oracle database manually for IBM MobileFirst
Platform Application Center
You configure the Oracle database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the Oracle database for

Application Center” on page 6-164.
2. Create the tables in the database. This step is described in “Setting up your

Oracle database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your Oracle database manually for Application Center:

You can set up your Oracle database for Application Center manually.

About this task

Complete the following procedure to set up your Oracle database.

Procedure

1. Ensure that you have at least one Oracle database.
In many Oracle installations, the default database has the SID (name) ORCL. For
best results, specify Unicode (AL32UTF8) as the character set of the database.
If the Oracle installation is on a UNIX or Linux computer, make sure that the
database is started next time the Oracle installation is restarted. To this effect,
make sure that the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create the user APPCENTER, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.
v To create the user for the Application Center database/schema, by using

Oracle Database Control, proceed as follows:
a. Connect as SYSDBA.
b. Go to the Users page.
c. Click Server, then Users in the Security section.
d. Create a user, named APPCENTER with the following attributes:

Profile: DEFAULT
Authentication: password
Default tablespace: USERS
Temporary tablespace: TEMP
Status: Unlocked
Add system privilege: CREATE SESSION

Installing and configuring 6-179

Add system privilege: CREATE SEQUENCE
Add system privilege: CREATE TABLE
Add quota: Unlimited for tablespace USERS

v To create the user by using Oracle SQLPlus, enter the following commands:
CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER APPCENTER IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO APPCENTER;
DISCONNECT;

3. Create the tables for the Application Center database:
a. Using the Oracle SQLPlus command-line interpreter, create the tables for

the Application Center database by running the create-appcenter-
oracle.sql file:
CONNECT APPCENTER/APPCENTER_password@ORCL
@product_install_dir/ApplicationCenter/databases/create-appcenter-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:
a. Download the JDBC driver from the Oracle website at Oracle: JDBC, SQLJ,

Oracle JPublisher and Universal Connection Pool (UCP):
b. Ensure that the Oracle JDBC driver is in the system path. The driver file is

ojdbc6.jar.

Configuring Liberty profile for Oracle manually for Application Center:

You can set up and configure your Oracle database manually for Application
Center with WebSphere Application Server Liberty profile by adding the JAR file
of the Oracle JDBC driver.

Before you begin

Before continuing, set up the Oracle database.

Procedure

1. Add the JAR file of the Oracle JDBC driver to $LIBERTY_HOME/wlp/usr/shared/
resources/oracle.
If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/wlp/
usr/servers/mobileFirstServer/server.xml file as shown in the following
JNDI code example:

Note: In this path, you can replace mobileFirstServer with the name of your
server.
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin"

serverName="oserver" portNumber="1521"
databaseName="ORCL"
user="APPCENTER" password="APPCENTER_password"/>

</dataSource>

where
v APPCENTER after user= is the user name,

6-180 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

v APPCENTER_password after password= is this user's password, and
v oserver is the host name of your Oracle server (for example, localhost if it

is on the same machine).

Note: For more information on how to connect the Liberty server to the Oracle
database with a service name, or with a URL, see the WebSphere Application
Server Liberty Core 8.5.5 documentation, section properties.oracle.

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

What to do next

For more steps to configure Application Center, see “Deploying the Application
Center WAR files and configuring the application server manually” on page 6-183.

Configuring WebSphere Application Server for Oracle manually for Application
Center:

If you want to manually set up and configure your Oracle database for Application
Center with WebSphere Application Server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/oracle.
v For deployment to a WebSphere Application Server ND cell, use

WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight/oracle.

v For deployment to a WebSphere Application Server ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/oracle.

v For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/oracle.

v For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/oracle.

If this directory does not exist, create it.
2. Add the Oracle ⌂ojdbc6.jar file downloaded from JDBC and Universal

Connection Pool (UCP) to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Complete the JDBC Provider fields as indicated in the following table:

Installing and configuring 6-181

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Table 6-51. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver

Implementation type Connection pool data source

Name Oracle JDBC Driver

e. Click Next.
f. Set the class path to the JAR file in the directory determined in step 1,

replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}

g. Click Next.
The JDBC provider is created.

4. Create a data source for the Worklight database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source name to Oracle JDBC Driver DataSource.
e. Set JNDI name to jdbc/AppCenterDS.
f. Click Next.
g. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.
h. Click Next.
i. Set the URL value to jdbc:oracle:thin:@oserver:1521:ORCL, where oserver is

the host name of your Oracle server (for example, localhost, if it is on the
same machine).

j. Click Next twice.
k. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource

> Custom properties.
l. Set oracleLogPackageName to oracle.jdbc.driver.
m. Set user = APPCENTER.
n. Set password = APPCENTER_password.
o. Click OK and save the changes.
p. In Resources > JDBC > Data sources, select the new data source.
q. Click WebSphere Application Server data source properties.
r. Select the Non-transactional data source check box.
s. Click OK.
t. Click Save.

Configuring Apache Tomcat for Oracle manually for Application Center:

If you want to manually set up and configure your Oracle database for Application
Center with the Apache Tomcat server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

6-182 IBM MobileFirst Platform Foundation for iOS V7.0.0

Procedure

1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for Application Center manually” on
page 6-187

<Resource name="jdbc/AppCenterDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521:ORCL"
username="APPCENTER"
password="APPCENTER_password"/>

Where APPCENTER after username= is the name of the system user with
"CONNECT" access to the APPCNTR database that you have previously created,
and APPCENTER_password after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these values accordingly.

Deploying the Application Center WAR files and configuring the
application server manually
The procedure to manually deploy the Application Center WAR files manually to
an application server depends on the type of application server being configured.

These manual instructions assume that you are familiar with your application
server.

Note: Using the MobileFirst Server installer to install Application Center is more
reliable than installing manually, and should be used whenever possible.

If you prefer to use the manual process, follow these steps to configure your
application server for Application Center. You must deploy the
appcenterconsole.war and applicationcenter.war files to your Application Center.
The files are located in product_install_dir/ApplicationCenter/console.

Configuring the Liberty profile for Application Center manually:

To configure WebSphere Application Server Liberty profile manually for
Application Center, you must modify the server.xml file.

About this task

In addition to modifications for the databases that are described in “Manual
installation of Application Center” on page 6-167, you must make the following
modifications to the server.xml file.

Procedure

1. Ensure that the <featureManager> element contains at least the following
<feature> elements:
v For WebSphere Application Server Libertyprofile V8.5.0.x:

<feature>ssl-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>appSecurity-1.0</feature>
<feature>jndi-1.0</feature>

v For WebSphere Application Server Liberty profile V8.5.5.0 and later:

Installing and configuring 6-183

<feature>jdbc-4.0</feature>
<feature>appSecurity-2.0</feature>
<feature>servlet-3.0</feature>

2. Add the following declarations for Application Center:
<!-- Declare the IBM Application Center Console application. -->
<application id="appcenterconsole"

name="appcenterconsole"
location="appcenterconsole.war"
type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
<classloader delegation="parentLast">

<commonLibrary>
<fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_*.jar"/>

</commonLibrary>
</classloader>

</application>

<!-- Declare the IBM Application Center Services application. -->
<application id="applicationcenter"

name="applicationcenter"
location="applicationcenter.war"
type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
<classloader delegation="parentLast">

<commonLibrary>
<fileset dir="${wlp.install.dir}/lib"

includes="com.ibm.ws.crypto.passwordutil_*.jar"/>
</commonLibrary>

</classloader>
</application>

<!-- Declare the user registry for the IBM Application Center. -->
<basicRegistry id="applicationcenter-registry"

realm="ApplicationCenter">
<!-- The users defined here are members of group "appcentergroup",

thus have role "appcenteradmin", and can therefore perform
administrative tasks through the Application Center Console. -->

<user name="appcenteradmin" password="admin"/>
<user name="demo" password="demo"/>
<group name="appcentergroup">

<member name="appcenteradmin"/>
<member name="demo"/>

</group>
</basicRegistry>

The groups and users that are defined in the basicRegistry are example logins
that you can use to test Application Center. Similarly, the groups that are
defined in the <security-role name="appcenteradmin"> for the Application
Center console and the Application Center service are examples. For more
information about how to modify these groups, see “Configuring WebSphere
Application Server Liberty profile” on page 6-191.

3. If the database is Oracle, add the commonLibraryRef attribute to the class loader
of the Application Center application.
...
<classloader delegation="parentLast" commonLibraryRef="OracleLib">

<commonLibrary>
...

6-184 IBM MobileFirst Platform Foundation for iOS V7.0.0

The name of the library reference (OracleLib in this example) must be the ID of
the library that contains the JDBC JAR file. This ID is declared in the procedure
that is documented in “Configuring Liberty profile for Oracle manually for
MobileFirst Server administration” on page 6-69.

4. Copy the Application Center WAR files to your Liberty server.
v On UNIX and Linux systems:

mkdir -p $LIBERTY_HOME/wlp/usr/servers/<server_name>/apps
cp product_install_dir/ApplicationCenter/console/*.war

v On Windows systems:
mkdir LIBERTY_HOME\wlp\usr\servers\<server_name>\apps

copy /B product_install_dir\ApplicationCenter\console\appcenterconsole.war LIBERTY_HOME\
wlp\usr\servers\<server_name>\apps\appcenterconsole.war

copy /B product_install_dir\ApplicationCenter\console\applicationcenter.war LIBERTY_HOME\
wlp\usr\servers\<server_name>\apps\applicationcenter.war

5. Start the Liberty server.

What to do next

For more steps to configure Application Center, see “Configuring WebSphere
Application Server Liberty profile” on page 6-191.

Configuring WebSphere Application Server for Application Center manually:

To configure WebSphere Application Server for Application Center manually, you
must configure variables, custom properties, and class loader policies.

Before you begin

These instructions assume that a stand-alone profile exists and that the application
server is using the default ports.

Procedure

1. Log on to the WebSphere Application Server administration console for your
IBM MobileFirst Platform Server.
The address is of the form http://server.com:9060/ibm/console, where server
is the name of the server.

2. Enable application security.
a. Click Security > Global Security.
b. Ensure that Enable administrative security is selected. Application security

can be enabled only if administrative security is enabled.
c. Ensure that Enable application security is selected.
d. Click OK.
e. Save the changes.

For more information, see Enabling security.
3. Create the Application Center JDBC data source and provider.

See the instructions in the appropriate subsection in “Manual installation of
Application Center” on page 6-167.

4. Install the Application Center console WAR file.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

Installing and configuring 6-185

http://ibm.biz/knowctr#SSEQTP_7.0.0/com.ibm.websphere.base.doc/info/aes/ae/tsec_csec2.html

b. Navigate to the MobileFirst Server installation directory
product_install_dir/ApplicationCenter/console.

c. Select appcenterconsole.war, and then click Next.
d. On the How do you want to install the application? page, click Detailed,

and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the "Map context roots for web modules" page.
g. In the Context Root field, type /appcenterconsole.
h. Click Next.
i. Click Finish.

5. Configure the class loader policies and then start the application:
a. Click the Manage Applications link, or click Applications > WebSphere

Enterprise Applications.
b. From the list of applications, click appcenterconsole_war.
c. In the Detail Properties section, click the Class loading and update

detection link.
d. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
e. Click OK.
f. In the Modules section, click Manage Modules.
g. From the list of modules, click ApplicationCenterConsole.
h. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
i. Click OK twice.
j. Click Save.
k. Click Select for appcenterconsole_war and click Start.

6. Repeat step 4, selecting applicationcenter.war in substep c, and using a Context
Root of /applicationcenter in substep g.

7. Repeat step 5, selecting applicationcenter.war from the list of applications in
substep b.

8. Review the server class loader policy: Click Servers > Server Types >
Application Servers and then select the server.
v If the class loader policy is set to Multiple, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-last, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-first, change the class loader policy to Multiple, and set the class
loader order of all applications other than MobileFirst applications to
parent-first.

Results

You can now access the Application Center at http://<server>:<port>/
appcenterconsole, where server is the host name of your server and port is the port
number (by default 9080).

What to do next

For more steps to configure the Application Center, see “Configuring WebSphere
Application Server full profile” on page 6-189.

6-186 IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring Apache Tomcat for Application Center manually:

To configure Apache Tomcat for Application Center manually, you must copy JAR
and WAR files to Tomcat, add database drivers, edit the server.xml file, and then
start Tomcat.

Procedure

1. Add the database drivers to the Tomcat lib directory. See the instructions for
the appropriate DBMS in “Manual installation of Application Center” on page
6-167.

2. Edit tomcat_install_dir/conf/server.xml.
a. Uncomment the following element, which is initially commented out:

<Valve className="org.apache.catalina.authenticator.SingleSignOn" />.
b. Declare the Application Center console and services applications and a user

registry:
<!-- Declare the IBM Application Center Console application. -->
<Context path="/appcenterconsole" docBase="appcenterconsole">

<!-- Define the AppCenter services endpoint in order for the AppCenter
console to be able to invoke the REST service.
You need to enable this property if the server is behind a reverse
proxy or if the context root of the Application Center Services
application is different from ’/applicationcenter’. -->

<!-- <Environment name="ibm.appcenter.services.endpoint"
value="http://proxy-host:proxy-port/applicationcenter"
type="java.lang.String" override="false"/>

-->

</Context>

<!-- Declare the IBM Application Center Services application. -->
<Context path="/applicationcenter" docBase="applicationcenter">

<!-- The protocol of the application resources URI.
This property is optional. It is only needed if the protocol
of the external and internal URI are different. -->

<!-- <Environment name="ibm.appcenter.proxy.protocol"
value="http" type="java.lang.String" override="false"/>

-->

<!-- The host name of the application resources URI. -->
<!-- <Environment name="ibm.appcenter.proxy.host"

value="proxy-host"
type="java.lang.String" override="false"/>

-->

<!-- The port of the application resources URI.
This property is optional. -->

<!-- <Environment name="ibm.appcenter.proxy.port"
value="proxy-port"
type="java.lang.Integer" override="false"/> -->

<!-- Declare the IBM Application Center Services database. -->
<!-- <Resource name="jdbc/AppCenterDS" type="javax.sql.DataSource" ... -->

</Context>

<!-- Declare the user registry for the IBM Application Center.
The MemoryRealm recognizes the users defined in conf/tomcat-users.xml.
For other choices, see Apache Tomcat’s "Realm Configuration HOW-TO"
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html . -->

<Realm className="org.apache.catalina.realm.MemoryRealm"/>

Installing and configuring 6-187

where you fill in the <Resource> element as described in one of the sections:
v “Configuring Apache Tomcat for DB2 manually for Application Center”

on page 6-171
v “Configuring Apache Tomcat for Derby manually for Application Center”

on page 6-175
v “Configuring Apache Tomcat for MySQL manually for Application

Center” on page 6-178
v “Configuring Apache Tomcat for Oracle manually for Application Center”

on page 6-182
3. Copy the Application Center WAR files to Tomcat.
v On UNIX and Linux systems: cp product_install_dir/ApplicationCenter/

console/*.war TOMCAT_HOME/webapps

v On Windows systems:
copy /B product_install_dir\ApplicationCenter\console\appcenterconsole.war
tomcat_install_dir\webapps\appcenterconsole.war
copy /B product_install_dir\ApplicationCenter\console\applicationcenter.war
tomcat_install_dir\webapps\applicationcenter.war

4. Start Tomcat.

What to do next

For more steps to configure the Application Center, see “Configuring Apache
Tomcat” on page 6-192.

Configuring the Application Center after installation
You configure user authentication and choose an authentication method;
configuration procedure depends on the web application server that you use.

The Application Center requires user authentication.

You must perform some configuration after the installer deploys the Application
Center web applications in the web application server.

The Application Center has two Java Platform, Enterprise Edition (Java EE)
security roles defined:
v The appcenteruser role that represents an ordinary user of the Application

Center who can install mobile applications from the catalog to a mobile device
belonging to that user.

v The appcenteradmin role that represents a user who can perform administrative
tasks through the Application Center console.

You must map the roles to the corresponding sets of users.

6-188 IBM MobileFirst Platform Foundation for iOS V7.0.0

If you choose to use an authentication method through a user repository such as
LDAP, you can configure the Application Center so that you can use users and
groups with the user repository to define the Access Control List (ACL) of the
Application Center. This procedure is conditioned by the type and version of the
web application server that you use. See “Managing users with LDAP” on page
6-194 for information about LDAP used with the Application Center.

After you configure authentication of the users of the Application Center, which
includes configuring LDAP if you plan to use it, you can, if necessary, define the
endpoint of the application resources. You must then build the Application Center
mobile client. The mobile client is used to install applications on mobile devices.
See “Preparations for using the mobile client” on page 11-69 for how to build the
Application Center mobile client.
Related concepts:
“Managing users with LDAP” on page 6-194
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.
Related reference:
Preparations for using the mobile client
To use the mobile client to install apps on mobile devices, you must first import
the IBMAppCenter project into the Eclipse environment, build the project, and
deploy the mobile client in the Application Center.

Configuring WebSphere Application Server full profile
Configure security by mapping the Application Center Java EE roles to a set of
users for both web applications.

Before you begin

Review the definition of roles at “Configuring the Application Center after
installation” on page 6-188.

Procedure

You define the basics of user configuration in the WebSphere Application Server
console. Access to the console is usually by this address:
https://localhost:9043/ibm/console/

1. Select Security > Global Security.
2. Select Security Configuration Wizard to configure users.

Figure 6-12. Java EE security roles of the Application Center and the components that they influence

Installing and configuring 6-189

You can manage individual user accounts by selecting Users and Groups >
Manage Users.

3. Map the roles appcenteruser and appcenteradmin to a set of users.
a. Select Servers > Server Types > WebSphere application servers.
b. Select the server.
c. In the Configuration tab, select Applications > Enterprise applications.

d. Select IBM_Application_Center_Services.
e. In the Configuration tab, select Details > Security role to user/group

mapping.

f. Perform the necessary customization.
g. Click OK.
h. Repeat steps c to g to map the roles for the console web application; in step

d, select IBM_Application_Center_Console.

Figure 6-13. Mapping the Application Center roles

Figure 6-14. Mapping the appcenteruser and appcenteradmin roles: user groups

6-190 IBM MobileFirst Platform Foundation for iOS V7.0.0

i. Click Save to save the changes.

Configuring WebSphere Application Server Liberty profile
Configure the Java EE security roles of the Application Center and the data source
in the server.xml file.

Before you begin

Review the definition of roles at “Configuring the Application Center after
installation” on page 6-188.

In WebSphere Application Server Liberty profile, you configure the roles of
appcenteruser and appcenteradmin in the server.xml configuration file of the
server.

About this task

To configure the security roles, you must edit the server.xml file. In the
<application-bnd> element of each <application> element, create two
<security-role> elements. One <security-role> element is for the appcenteruser
role and the other is for the appcenteradmin role. Map the roles to the appropriate
user group name appcenterusergroup or appcenteradmingroup. These groups are
defined through the <basicRegistry> element. You can customize this element or
replace it entirely with an <ldapRegistry> element or a <safRegistry> element.

Then, to maintain good response times with a large number of installed
applications, for example with 80 applications, you should configure a connection
pool for the Application Center database.

Procedure
1. Edit the server.xml file.

For example:
<security-role name="appcenteradmin">

<group name="appcenteradmingroup"/>
</security-role>
<security-role name="appcenteruser">

<group name="appcenterusergroup"/>
</security-role>

You must include this example in the <application-bnd> element of each
<application> element: the appcenterconsole and applicationcenter
applications.
Replace the <security-role> elements that have been created during
installation for test purposes.
<basicRegistry id="appcenter">

<user name="admin" password="admin"/>
<user name="guest" password="guest"/>
<user name="demo" password="demo"/>
<group name="appcenterusergroup">
<member name="guest"/>
<member name="demo"/>

</group>
<group name="appcenteradmingroup">
<member name="admin" id="admin"/>

</group>
</basicRegistry>

This example shows a definition of users and groups in the basicRegistry of
WebSphere Application Server Liberty. For more information about configuring

Installing and configuring 6-191

a user registry for WebSphere Application Server Liberty profile, see
Configuring a user registry for the Liberty profile.

2. Edit the server.xml file to define the AppCenterPool size.
<connectionManager id="AppCenterPool" minPoolSize="10" maxPoolSize="40"/>

3. In the <dataSource> element, define a reference to the connection manager:
<dataSource id="APPCNTR" jndiName="jdbc/AppCenterDS" connectionManagerRef="AppCenterPool"
...

</dataSource>

Configuring Apache Tomcat
You must configure the Java EE security roles for the Application Center on the
Apache Tomcat web application server.

Before you begin

Review the definition of roles at “Configuring the Application Center after
installation” on page 6-188.

Procedure
1. In the Apache Tomcat web application server, you configure the roles of

appcenteruser and appcenteradmin in the conf/tomcat-users.xml file. The
installation creates the following users:
<user username="appcenteradmin" password="admin" roles="appcenteradmin"/>
<user username="demo" password="demo" roles="appcenteradmin"/>
<user username="guest" password="guest" roles="appcenteradmin"/>

2. You can define the set of users as described in the Apache Tomcat
documentation, Realm Configuration HOW-TO.

Configuring properties of DB2 JDBC driver in WebSphere
Application Server

Add some JDBC custom properties to avoid DB2 exceptions from a WebSphere
Application Server that uses the IBM DB2 database.

About this task

When you use WebSphere Application Server with an IBM DB2 database, this
exception could occur:
Invalid operation: result set is closed. ERRORCODE=-4470, SQLSTATE=null

To avoid such exceptions, you must add custom properties in WebSphere
Application Server at the Application Center data source level.

Procedure
1. 1. Log in to the WebSphere Application Server administration console.
2. Select Resources > JDBC > Data sources > Application Center DataSource

name > Custom properties and click New.
3. In the Name field, enter allowNextOnExhaustedResultSet.
4. In the Value field, type 1.
5. Change the type to java.lang.Integer.
6. Click OK.
7. Click New.
8. In the Name field, enter resultSetHoldability.

6-192 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_sec_registries.html
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

9. In the Value field, type 1.
10. Change the type to java.lang.Integer.
11. Click OK and save your changes.

Configuring WebSphere Application Server to support
applications in public app stores

Configure WebSphere Application Server full profile and Liberty profile before
access to public app stores through application links, because of the use of SSL
connections.

The constraint imposed by the use of SSL connections requires the root certificates
of public app stores to exist in the WebSphere truststore before you can use
application links to access these public stores. The configuration requirement
applies to both WebSphere Application Server full profile and Liberty profile.

The root certificate of Apple iTunes must be imported into the WebSphere
truststore before you can use application links to iTunes.

To use application links to Apple iTunes, see “Configuring WebSphere Application
Server to support applications in Apple iTunes.”

Configuring WebSphere Application Server to support
applications in Apple iTunes
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Apple iTunes.

About this task

Follow this procedure to import the root certificate of Apple iTunes into the
WebSphere truststore. You must import this certificate before the Application
Center can support links to applications stored in iTunes.

Procedure
1. Log in to the WebSphere Application Server console and navigate to Security >

SSL certificate and key management > Key stores and certificates >
NodeDefaultTrustStore > Signer certificates.

2. Click Retrieve from port.
3. In the Host field, enter itunes.apple.com.
4. In the Port field, enter 443.
5. In the Alias field, enter itunes.apple.com.
6. Click Retrieve signer information.
7. Click OK and save the configuration.

Configuring Liberty profile when IBM JDK is used
Configure Liberty profile to use default JSSE socket factories instead of SSL socket
factories of WebSphere Application Server when IBM JDK is used.

Purpose

The purpose is to configure the IBM JDK SSL factories to be compatible with
Liberty profile. This configuration is required only when IBM JDK is used. The
configuration does not apply for use of Oracle JDK. By default, IBM JDK uses the

Installing and configuring 6-193

SSL socket factories of WebSphere Application Server. These factories are not
supported by Liberty profile.

Exception when WebSphere Application Server SSL socket factories
are used

If you use the IBM JDK of WebSphere Application Server, this exception could
occur because this JDK uses SSL socket factories that are not supported by the
Liberty profile. In this case, follow the requirements documented in
Troubleshooting tips.

java.net.SocketException: java.lang.ClassNotFoundException:
Cannot find the specified class com.ibm.websphere.ssl.protocol.SSLSocketFactory

at javax.net.ssl.DefaultSSLSocketFactory.a(SSLSocketFactory.java:11)
at javax.net.ssl.DefaultSSLSocketFactory.createSocket(SSLSocketFactory.java:6)
at com.ibm.net.ssl.www2.protocol.https.c.afterConnect(c.java:161)
at com.ibm.net.ssl.www2.protocol.https.d.connect(d.java:36)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1184)
at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:390)
at com.ibm.net.ssl.www2.protocol.https.b.getResponseCode(b.java:75)
at com.ibm.ws.jmx.connector.client.rest.internal.RESTMBeanServerConnection.loadJMXServerInfo

(RESTMBeanServerConnection.java:142)
at com.ibm.ws.jmx.connector.client.rest.internal.RESTMBeanServerConnection.<init>

(RESTMBeanServerConnection.java:114)
at com.ibm.ws.jmx.connector.client.rest.internal.Connector.connect(Connector.java:315)
at com.ibm.ws.jmx.connector.client.rest.internal.Connector.connect(Connector.java:103)

Managing users with LDAP
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.

LDAP is a way to centralize the user management for multiple web applications in
an LDAP Server that maintains a user registry. It can be used instead of specifying
one by one the users for the security roles appcenteradmin and appcenteruser.

If you plan to use an LDAP registry with the Application Center, you must
configure your WebSphere Application Server or your Apache Tomcat server to use
an LDAP registry to authenticate users.

In addition to authentication of users, configuring the Application Center for
LDAP also enables you to use LDAP to define the users and groups who can
install mobile applications through the Application Center. The means of defining
these users and groups is the Access Control List (ACL).

Since IBM Worklight V6.0, use the JNDI environment entries for defining LDAP
configuration properties.

Expert users could configure the application servers to use LDAP authentication by
using the methods that were documented in releases before IBM Worklight V6.0.

LDAP with WebSphere Application Server V7
Use LDAP to authenticate users and define the users and groups who can install
mobile applications with the Application Center; you can use the JNDI
environment or the VMM API to define the LDAP mapping

You use LDAP to define the roles appcenteradmin and appcenteruser. Then, you
have two ways of defining LDAP mapping for WebSphere Application Server V7:
v By using the JNDI environment with a stand-alone LDAP configuration
v By using federated repositories with the Virtual Member Manager (VMM) API

6-194 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_trouble.html

Configuring LDAP authentication (WebSphere Application Server V7):

Define the users who can access the Application Center console and the users who
can log in to the client by configuring LDAP as a stand-alone LDAP server or as a
federated repository.

About this task

This procedure shows you how to use LDAP to define the roles appcenteradmin
and appcenteruser in WebSphere Application Server V7.

Procedure

1. Log in to the WebSphere Application Server console.
2. In Security > Global Security, verify that administrative security and

application security are enabled.
3. Select Federated repositories or Standalone LDAP registry.
4. Click Configure. For federated repositories, follow step 5. For stand-alone

LDAP registry, follow step 6
5. Option for federated repositories: add the new repository and configure the

required additional properties.
a. To add a new repository, click Add Base entry to Realm.
b. Specify the value of “Distinguished name of a base entry that uniquely

identifies entries in the realm” and click Add Repository.
c. Select LDAP Repository.
d. Give this repository a name and enter the values required to connect to

your LDAP server.
e. Under Additional Properties, click LDAP entity types.
f. Configure the Group, OrgContainer, and PersonAccount properties. These

configuration details depend on your LDAP server.
6. Option for stand-alone LDAP registry: Configure access control (ACL)

management. You can use JNDI properties for this configuration, but you
cannot use VMM.
a. Enter the values of General Properties. These values depend on your

LDAP server.
b. Under Additional Properties, click Advanced Lightweight Directory

Access Protocol (LDAP) and configure the user and group filters and
maps. These configuration details depend on your LDAP server.

7. Save the configuration, log out, and restart the server.
8. In the WebSphere Application Server console, map the security roles to users

and groups.
a. In the Configuration tab, select Applications > WebSphere Enterprise

applications.
b. Select “IBM_Application_Center_Services”.
c. In the Configuration tab, select Details > Security role to user/group

mapping.
d. For appcenteradmin and appcenteruser roles, select Map groups. This

selection enables you to select users and groups inside the WebSphere user
repository, including LDAP users and groups. The selected users can
access the Application Center as appcenteradmin or appcenteruser. You
can also map the roles to Special Subjects “All authenticated in

Installing and configuring 6-195

application realm” to give everyone in the WebSphere user repository,
including everyone registered in the LDAP registry, access to the
Application Center.

9. Repeat the procedure described in step 8 on page 6-195 for
IBM_Application_Center_Console. (Make sure that you select
“IBM_Application_Center_Console” in step 8.b instead of
“IBM_Application_Center_Services”).

10. Click Save to save your changes.

Configuring LDAP ACL management with JNDI (WebSphere Application Server
V7):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center by using the JNDI environment.

About this task

Since IBM Worklight V6.0, two configuration approaches are available: the JNDI
API or the Virtual Member Manager (VMM) API. This procedure shows you how
to use the JNDI API to configure LDAP based on the federated repository
configuration or with the stand-alone LDAP registry. Only the simple type of
LDAP authentication is supported.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Applications > Application Types > WebSphere enterprise applications.
3. Click IBM_Application_Center_Services.
4. In the Web Module Properties section, select “Environment entries for Web

modules”.
a. For the ibm.appcenter.ldap.vmm.active entry, assign the value “false”.
b. For the ibm.appcenter.ldap.active entry, assign the value “true”.

5. Continue to configure the remaining entries:
v ibm.appcenter.ldap.connectionURL: LDAP connection URL.
v ibm.appcenter.ldap.user.base: search base for users.
v ibm.appcenter.ldap.user.loginName: LDAP login attribute.
v ibm.appcenter.ldap.user.displayName: LDAP attribute for the user name to

be displayed, for example, a person's full name.
v ibm.appcenter.ldap.group.base: search base for groups.
v ibm.appcenter.ldap.group.name: LDAP attribute for the group name.
v ibm.appcenter.ldap.group.uniquemember: LDAP attribute that identifies the

members of a group.
v ibm.appcenter.ldap.user.groupmembership: LDAP attribute that identifies

the groups that a user belongs to.
v ibm.appcenter.ldap.group.nesting: management of nested groups. If nested

groups are not managed, set the value to false.
v ibm.appcenter.ldap.cache.expiration.seconds: delay in seconds before the

LDAP cache expires. If no value is entered, the default value is 86400, which
is equal to 24 hours.
Changes to users and groups on the LDAP server become visible to the
Application Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The Application Center

6-196 IBM MobileFirst Platform Foundation for iOS V7.0.0

maintains a cache of LDAP data and the changes only become visible after
the cache expires. By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or groups, you can call
this command to clear the cache of LDAP data:
acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.
a. Enter the value of each property.
b. Click OK and save the configuration.

6. Option: If the LDAP external SASL authentication mechanism is required to bind to
the LDAP server, configure the ibm.appcenter.ldap.security.sasl property,
which defines the value of the security authentication mechanism. The value
depends on the LDAP server; usually, it is set to “EXTERNAL”.

7. Option: If security binding is required, follow this step. Configure the following
entries:
v ibm.appcenter.ldap.security.binddn: the distinguished name of the user

permitted to search the LDAP directory.
v ibm.appcenter.ldap.security.bindpwd: the password of the user permitted

to search the LDAP directory. The password can be encoded with the
“WebSphere PropFilePasswordEncoder” utility. Run the utility before you
configure the ibm.appcenter.ldap.security.bindpwd custom property.

a. Enter the value of each optional property and click OK. Set the value of the
ibm.appcenter.ldap.security.bindpwd property to the encoded password
generated by the “WebSphere PropFilePasswordEncoder” utility.

b. Save the configuration.
8. Option: If LDAP referrals must be handled, follow this step. Configure

ibm.appcenter.ldap.referral: support of referrals by the JNDI API. v If no
value is given, the JNDI API will not handle LDAP referrals. Possible values
are:
v ignore: ignores referrals found in the LDAP server.
v follow: automatically follows any referrals found in the LDAP server.
v throw: causes an exception to occur for each referral found in the LDAP

server.
a. Enter the value of the property and click OK.
b. Save the configuration.

9. Option: If users and groups are defined in the same subtree (the properties
ibm.appcenter.ldap.user.base and ibm.appcenter.ldap.group.base have the
same value), follow this step. Configure the following entries:
v ibm.appcenter.ldap.user.filter: LDAP user search filter for the attribute of

user login name. Use %v as the placeholder for the login name attribute.
v ibm.appcenter.ldap.group.filter: LDAP group search filter. Use %v as the

placeholder for the group attribute.
v ibm.appcenter.ldap.user.displayName.filter: LDAP user search filter for

the attribute of user display name. Use %v as the placeholder for the user
display name attribute.

a. Enter the value of each optional property and click OK.
b. Save the configuration.

Results

The following figure shows the values to assign to each property.

Installing and configuring 6-197

See “List of JNDI properties for the Application Center” on page 6-223 for a
complete list of properties that you can set.

Configuring LDAP ACL management with VMM (WebSphere Application
Server V7):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center with the Virtual Member Manager (VMM) API.

About this task

Since IBM Worklight V6.0, two configuration approaches are available: the JNDI
API or the VMM API. This procedure shows you how to use the VMM API to
configure LDAP based on the federated repository configuration.

You must configure LDAP based on the federated repository configuration. The
stand-alone LDAP registry is not supported.

Several different repositories, LDAP and non-LDAP, can be configured in the
federated repository.

Procedure

1. Configure the attribute mapping. For users, the Application Center refers to
these VMM attributes:

Figure 6-15. Environment entries and their values (LDAP and WebSphere Application Server V7)

6-198 IBM MobileFirst Platform Foundation for iOS V7.0.0

v uid: represents the user login name.
v sn: represents the full name of the user.
For groups, the Application Center refers only to the VMM attribute cn.
If VMM attributes are not identical to LDAP attributes, you must map the
VMM attributes to the corresponding LDAP attributes.
In WebShere Application Server V7, you cannot configure this mapping with
the WebSphere Application Server console.
a. Find in the file {WAS_HOME/profiles/{profileName/config/cells/{cellName/

wim/config/wimconfig.xml the section that contains the LDAP repository
configuration with id="your LDAP id":
<config:repositories xsi:type="config:LdapRepositoryType"
adapterClassName="com.ibm.ws.wim.adapter.ldap.LdapAdapter"

id="your LDAP id"....

Where your LDAP id is the user ID configured for you in the LDAP
repository.

b. In this section, after the element <config:attributeConfiguration>, add
these entries:

<config:attributes name="your LDAP attribute for the user full name" propertyName="sn">
<config:entityTypes>PersonAccount</config:entityTypes>

</config:attributes>
<config:attributes name="your LDAP attribute for the user login name " propertyName="uid">

<config:entityTypes>PersonAccount</config:entityTypes>
</config:attributes>

c. Save the file and restart the server.
2. Configure the Application Center for ACL management with LDAP. In

WebSphere Application Server V7, only a WebSphere administrator user can
run VMM access. (VMM roles are only supported by WebSphere Application
Server V8.)
You must define these properties:
v ibm.appcenter.ldap.active = true.
v ibm.appcenter.ldap.vmm.active = true.
v ibm.appcenter.ldap.vmm.adminuser = WebSphere administrator user.
v ibm.appcenter.ldap.vmm.adminpwd = WebSphere administrator password.

The password can be encoded or not.
v ibm.appcenter.ldap.cache.expiration.seconds = : the delay in seconds

before the LDAP cache expires. If no value is entered, the default value is
86400, which is equal to 24 hours.

Note: See “List of JNDI properties for the Application Center” on page 6-223
for a complete list of properties that you can set
Changes to users and groups on the LDAP server become visible to the
Application Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The Application Center
maintains a cache of LDAP data and the changes only become visible after
the cache expires. By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or groups, you can call
this command to clear the cache of LDAP data:
acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.
See “List of JNDI properties for the Application Center” on page 6-223 for a
complete list of properties that you can set.
a. Log in to the WebSphere Application Server console.

Installing and configuring 6-199

b. Select Applications > Application Types > WebSphere enterprise
applications.

c. In the “Web Module Properties” section, select
IBM_Application_Center_Services and then select Environment entries for
Web modules.

d. Set the values for the properties.
e. Click OK and save the configuration. The application is automatically

restarted.
3. Optional: Encode the password with the PropFilePasswordEncoder utility.

a. Create a file pwd.txt that contains the entry adminpwd=your clear password,
where your clear password is the unencoded administrator password.

b. Run this command:
{WAS_HOME}/profiles/profile name/bin/PropFilePasswordEncoder "file path/ pwd.txt" adminpwd

c. Open the pwd.txt file and copy the encoded password into the value of the
ibm.appcenter.ldap.vmm.adminpwd property.

LDAP with WebSphere Application Server V8.x
LDAP authentication is achieved based on the federated repository configuration.
ACL management configuration of the Application Center uses the Virtual Member
Manager API.

You must configure LDAP based on the federated repository configuration. The
stand-alone LDAP registry is not supported.

Several different repositories, LDAP and non-LDAP, can be configured in the
federated repository.

For information about configuring federated repositories, see the WebSphere
Application Server V8.0 user documentation or the WebSphere Application Server
V8.5 user documentation, depending on your version.

Configuration of the Application Center for ACL management with
LDAP

Some configuration details of ACL management are specific to the Application
Center, because it uses the Virtual Member Manager (VMM) API.

The Application Center refers to these VMM attributes for users:
uid represents the user login name.
sn represents the full name of the user.

For groups, the Application Center refers only to the VMM attribute cn.

If VMM attributes are not identical in LDAP, you must map the VMM attributes to
the corresponding LDAP attributes.

Configuring LDAP authentication (WebSphere Application Server V8.x):

Use LDAP to define users who can access the Application Center console and
users who can log in to the client.

6-200 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#/SSEQTP_8.0.0/as_ditamaps/welcome_base.html
http://ibm.biz/knowctr#/SSEQTP_8.0.0/as_ditamaps/welcome_base.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html

About this task

You can configure LDAP based on the federated repository configuration only. This
procedure shows you how to use LDAP to define the roles appcenteradmin and
appcenteruser in WebSphere Application Server V8.x.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Security > Global security and verify that administrative security and

application security are enabled.
3. In the “User account repository” section, select Federated repositories.
4. Click Configure.
5. Add a new repository and configure the required repository.

a. Click Add Base entry to Realm.
b. Specify the value of “Distinguished name of a base entry that uniquely

identifies entries in the realm” and click Add Repository.
c. Select LDAP Repository.
d. Give this repository a name and enter the values required to connect to

your LDAP server.
e. Under Additional Properties, click LDAP entity types.
f. Configure the Group, OrgContainer, and PersonAccount properties. These

configuration details depend on your LDAP server.
6. Save the configuration, log out, and restart the server.
7. In the WebSphere Application Server console, map the security roles to users

and groups.
a. In the Configuration tab, select Applications > WebSphere Enterprise

applications.
b. Select “IBM_Application_Center_Services”.
c. In the Configuration tab, select Details > Security role to user/group

mapping.
d. For appcenteradmin and appcenteruser roles, select Map groups. This

selection enables you to select users and groups inside the WebSphere user
repository, including LDAP users and groups. The selected users can access
the Application Center as appcenteradmin or appcenteruser. You can also
map the roles to Special Subjects “All authenticated in application realm”
to give everyone in the WebSphere user repository, including everyone
registered in the LDAP registry, access to the Application Center.

8. Repeat the procedure described in step 7 for IBM_Application_Center_Console.
(Make sure that you select “IBM_Application_Center_Console” in step 7.b
instead of “IBM_Application_Center_Services”.)

9. Click Save to save your changes.

What to do next

You must enable ACL management with LDAP. See “Configuring LDAP ACL
management (WebSphere Application Server V8.x).”

Configuring LDAP ACL management (WebSphere Application Server V8.x):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center with the Virtual Member Manager (VMM) API.

Installing and configuring 6-201

About this task

To configure ACL with LDAP, you should define three properties: uid, sn, and cn.
These properties enable the login name and the full name of users and the name of
user groups to be identified in the Application Center.

Then you should enable ACL management with VMM. You can configure LDAP
based on the federated repository configuration only.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Security > Global security.
3. In the “User account repository” section, select Configure.
4. Select your LDAP repository entry.
5. Under Additional Properties, select LDAP attributes (WebSphere Application

Server V8.0) or Federated repositories property names to LDAP attributes
mapping (WebSphere Application Server V8.5).

6. Select Add > Supported.
7. Enter these property values:

a. For Name enter your LDAP login attribute.
b. For Property name enter uid.
c. For Entity types enter the LDAP entity type.
d. Click OK.

8. Select Add > Supported.
a. For Name enter your LDAP attribute for full user name.
b. For Property name enter sn.
c. For Entity types enter the LDAP entity type.
d. Click OK.

9. Select Add > Supported to configure a group name:

Figure 6-16. Associating LDAP login with uid property (WebSphere Application Server V8.0)

Figure 6-17. Associating LDAP full user name with sn property (WebSphere Application Server V8.0)

6-202 IBM MobileFirst Platform Foundation for iOS V7.0.0

a. For Name enter the LDAP attribute for your group name.
b. For Property name enter cn.
c. For Entity types enter the LDAP entity type.
d. Click OK.

10. Enable ACL management with LDAP:
a. Select Servers > Server Types > WebSphere application servers.
b. Select the appropriate application server.

In a clustered environment you must configure all the servers in the
cluster in the same way.

c. In the Configuration tab, under “Server Infrastructure”, click the Java and
Process Management tab and select Process definition.

d. In the Configuration tab, under “Additional Properties”, select Java
Virtual Machine,

e. In the Configuration tab, under “Additional Properties”, select Custom
properties.

f. Enter the required property-value pairs in the form. To enter each pair,
click New, enter the property and its value, and click OK.
Property-value pairs:
v ibm.appcenter.ldap.vmm.active = true

v ibm.appcenter.ldap.active = true

v ibm.appcenter.ldap.cache.expiration.seconds = delay_in_seconds

Enter the delay in seconds before the LDAP cache expires. If you do not
enter a value, the default value is 86400, which is equal to 24 hours.
Changes to users and groups on the LDAP server become visible to the
Application Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The Application Center
maintains a cache of LDAP data and the changes only become visible
after the cache expires. By default, the delay is 24 hours. If you do not
want to wait for this delay to expire after changes to users or groups,
you can call this command to clear the cache of LDAP data:
acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.

Results

The following figure shows an example of custom properties with the correct
settings.

What to do next

Save the configuration and restart the server.

Figure 6-18. ACL management for Application Center with LDAP on WebSphere Application Server V8

Installing and configuring 6-203

To use the VMM API, you must assign the “IdMgrReader” role to the users who
run the VMM code, or to the group owners of these users. You must assign this
role to all users and groups who have the roles of “appcenteruser” or
“appcenteradmin”.

In the <was_home>\bin directory, where <was_home> is the home directory of your
WebSphere Application Server, run the wsadmin command.

After connecting with the WebSphere Application Server administrative user, run
the following command:
$AdminTask mapIdMgrGroupToRole {-roleName IdMgrReader -groupId your_LDAP_group_id}

Run the same command for all the groups mapped to the roles of “appcenteruser”
and “appcenteradmin”.

For individual users who are not members of groups, run the following command:
$AdminTask mapIdMgrUserToRole {-roleName IdMgrReader -userId your_LDAP_user_id}

You can assign the special subject “All Authenticated in Application's Realm” as
roles for appcenteruser and appcenteradmin. If you choose to assign this special
subject, IdMgrReader must be configured in the following way:
$AdminTask mapIdMgrGroupToRole {-roleName IdMgrReader -groupId ALLAUTHENTICATED}

Enter exit to end wsadmin.

LDAP with Liberty profile
Use LDAP to authenticate users and to define the users and groups who can install
mobile applications with the Application Center by using the JNDI environment.

Using LDAP with Liberty profile requires you to configure LDAP authentication
and LDAP ACL management.

Configuring LDAP authentication (Liberty profile):

You configure LDAP authentication by defining one or more LDAP registries in the
server.xml file and you map LDAP users and groups to Application Center roles.

About this task

You can configure LDAP authentication of users and groups in the server.xml file
by defining an LDAP registry or, since WebSphere Application Server Liberty
profile V8.5.5, a federated registry that uses several LDAP registries. Then you map
users and groups to Application Center roles. The mapping configuration is the
same for LDAP authentication and basic authentication.

Procedure

1. To open the server.xml descriptor file, enter {server.config.dir}/server.xml
2. Insert one or several LDAP registry definitions after the <httpEndpoint>

element.
Example for the LDAP registry:
<ldapRegistry baseDN="o=ibm.com" host="employees.com" id="Employees"

ldapType="IBM Tivoli Directory Server" port="389" realm="AppCenterLdap"
recursiveSearch="true">

<idsFilters
groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

" id="Employees"

6-204 IBM MobileFirst Platform Foundation for iOS V7.0.0

userFilter="(&(emailAddress=%v)(objectclass=ibmPerson))"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember"
userIdMap="*:emailAddress"/>

</ldapRegistry>

For information about the parameters used in this example, see the WebSphere
Application Server V8.5 user documentation.

3. Insert a security role definition after each Application Center application
definition (applicationcenter and appcenterconsole).
Example for security role definition: this example includes two sets of sample
code that show how to code when the group names are unique within LDAP
and how to code when the group names are not unique within LDAP.

Group names unique within LDAP
This sample code shows how to use the group names
ldapGroupForAppcenteruser and ldapGroupForAppcenteradmin when
they exist and are unique within LDAP.

<application-bnd>
<security-role name="appcenteruser" id="appcenteruser">

<group name="ldapGroupForAppcenteruser" />
</security-role>
<security-role name="appcenteradmin" id="appcenteradmin">

<group name="ldapGroupForAppcenteradmin" />
</security-role>

</application-bnd>

Group names not unique within LDAP
This sample code shows how to code the mapping when the group
names are not unique within LDAP. The groups must be specified with
the access-id attribute.

<application-bnd>
<security-role name="appcenteruser" id="appcenteruser">

<group name="ldapGroup"
id="ldapGroup"
access-id="group:AppCenterLdap/CN=ldapGroup,OU=myorg,

DC=mydomain,DC=AD,DC=myco,DC=com"/>
</security-role>
...

</application-bnd>

The access-id attribute must refer to the realm name used to specify
the LDAP realm. In this sample code, the realm name is AppCenterLdap.
The remainder of the access-id attribute specifies one of the LDAP
groups named ldapGroup in a way that makes it unique.

If required, use similar code to map the appcenteradmin role.

Configuring LDAP ACL management (Liberty profile):

Use LDAP to define the users and groups who can install mobile applications
through the Application Center. The means of defining these users and groups is
the Access Control List (ACL).

Purpose

To enable ACL management with LDAP. You enable ACL management after you
configure LDAP and map users and groups to Application Center roles. Only the
simple type of LDAP authentication is supported.

Installing and configuring 6-205

http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html

Properties

To be able to define JNDI entries, the following feature must be defined in the
server.xml file:
<feature>jndi-1.0</feature>

Add an entry for each property in the <server> section of the server.xml file. This
entry should have the following syntax:
<jndiEntry jndiName="JNDI_property_name" value="property_value"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

Table 6-52. JNDI properties for configuring ACL management with LDAP in the server.xml file

Property Description

ibm.appcenter.ldap.active Set to true to enable LDAP; set to false to disable LDAP.

ibm.appcenter.ldap.federated.active Since WebSphere Application Server Liberty profile
V8.5.5: set to true to enable use of the federated registry;
set to false to disable use of the federated registry, which
is the default setting.

ibm.appcenter.ldap.connectionURL LDAP connection URL.

ibm.appcenter.ldap.user.base Search base of users.

ibm.appcenter.ldap.user.loginName LDAP login attribute.

ibm.appcenter.ldap.user.displayName LDAP attribute for the user name to be displayed, for
example, a person's full name.

ibm.appcenter.ldap.group.base Search base of groups.

ibm.appcenter.ldap.group.name LDAP attribute for the group name.

ibm.appcenter.ldap.group.uniquemember LDAP attribute that identifies the members of a group.

ibm.appcenter.ldap.user.groupmembership LDAP attribute that identifies the groups to which a user
belongs.

ibm.appcenter.ldap.group.nesting Management of nested groups: if nested groups are not
managed, set the value to false.

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of user login
name. Use %v as the placeholder for the login name
attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.displayName.filter LDAP user search filter for the attribute of user display
name. Use %v as the placeholder for the display name
attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

6-206 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-52. JNDI properties for configuring ACL management with LDAP in the server.xml file (continued)

Property Description

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the placeholder for
the group attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.security.sasl The value of the security authentication mechanism when
the LDAP external SASL authentication mechanism is
required to bind to the LDAP server. The value depends
on the LDAP server; usually, it is set to “EXTERNAL”.

ibm.appcenter.ldap.security.binddn Property that identifies the distinguished name of the
user permitted to search the LDAP directory. Use this
property only if security binding is required.

ibm.appcenter.ldap.security.bindpwd Property that identifies the password of the user
permitted to search the LDAP directory. Use this property
only if security binding is required.

The password can be encoded with the “Liberty profile
securityUtility” tool. Run the tool and then set the value
of this property to the encoded password generated by
the tool. The supported encoding types are xor and aes.

Edit the Liberty profile server.xml file to check whether
the classloader is enabled to load the JAR file that decodes
the password.

ibm.appcenter.ldap.cache.expiration.seconds Delay in seconds before the LDAP cache expires. If no
value is entered, the default value is 86400, which is
equal to 24 hours.

Changes to users and groups on the LDAP server become
visible to the Application Center after a delay, which is
specified by
ibm.appcenter.ldap.cache.expiration.seconds. The
Application Center maintains a cache of LDAP data and
the changes only become visible after the cache expires.
By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or
groups, you can call this command to clear the cache of
LDAP data:

acdeploytool.sh -clearLdapCache -s serverurl
-c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache
for details.

ibm.appcenter.ldap.referral Property that indicates whether referrals are supported by
the JNDI API. If no value is given, the JNDI API will not
handle LDAP referrals. Possible values are:

v ignore: ignores referrals found in the LDAP server.

v follow: automatically follows any referrals found in the
LDAP server.

v throw: causes an exception to occur for each referral
found in the LDAP server.

Installing and configuring 6-207

See “List of JNDI properties for the Application Center” on page 6-223 for a
complete list of LAPD properties that you can set.

Example of setting properties for ACL management with LDAP

This example shows the settings of the properties in the server.xml file required
for ACL management with LDAP.

<jndiEntry jndiName="ibm.appcenter.ldap.active" value="true"/>
<jndiEntry jndiName="ibm.appcenter.ldap.connectionURL" value="ldap://employees.com:636"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.loginName" value="uid"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.base" value="dc=ibm,dc=com"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.base" value="dc=ibm,dc=com"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.displayName" value="sn"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.name" value="cn"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.uniquemember" value="uniqueMember"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.groupmembership" value=ibm-allGroups"/>
<jndiEntry jndiName="ibm.appcenter.ldap.cache.expiration.seconds" value=43200"/>
<jndiEntry jndiName="ibm.appcenter.ldap.security.sasl" value=’"EXTERNAL"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.referral" value=’"follow"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.filter" value=’"(&(uid=%v)(objectclass=inetOrgPerson))"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.displayName.filter" value=’"(&(cn=%v)(objectclass=inetOrgPerson))"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.filter" value=’"(&(cn=%v)(|(objectclass=groupOfNames)
(objectclass=groupOfUniqueNames)))"’/>

LDAP with Apache Tomcat
Configure the Apache Tomcat server for LDAP authentication and configure
security (Java™ Platform, Enterprise Edition) in the web.xml file of the Application
Center.

To configure ACL management of the Application Center; configure LDAP for user
authentication, map the Java Platform, Enterprise Edition (Java EE) roles of the
Application Center to the LDAP roles, and configure the Application Center
properties for LDAP authentication. Only the simple type of LDAP authentication
is supported.

Configuring LDAP authentication (Apache Tomcat):

Define the users who can access the Application Center console and the users who
can log in with the mobile client by mapping Java Platform, Enterprise Edition
roles to LDAP roles.

Purpose

To configure ACL management of the Application Center; configure LDAP for user
authentication, map the Java Platform, Enterprise Edition (Java EE) roles of the
Application Center to the LDAP roles, and configure the Application Center
properties for LDAP authentication. Only the simple type of LDAP authentication
is supported.

You configure the Apache Tomcat server for LDAP authentication and configure
security (Java™ Platform, Enterprise Edition) in the web.xml file of the Application
Center Services web application (applicationcenter.war) and of the Application
Center Console web application (appcenterconsole.war).

6-208 IBM MobileFirst Platform Foundation for iOS V7.0.0

LDAP user authentication

You must configure a JNDIRealm in the server.xml file in the <Host> element. See
the Realm Component on the Apache Tomcat website for more information about
configuring a realm.

Example of configuration on Apache Tomcat to authenticate against an LDAP
server

This example shows how to configure user authentication on an Apache Tomcat
server by comparing with the authorization of these users on a server enabled for
LDAP authentication.
<Host appBase="webapps" autoDeploy="true" name="localhost" unpackWARs="true">
...
<Realm className="org.apache.catalina.realm.JNDIRealm"

connectionURL="ldap://bluepages.ibm.com:389"
userSubtree="true"
userBase="ou=bluepages,o=ibm.com"
userSearch="(emailAddress={0})"
roleBase="ou=ibmgroups,o=ibm.com"
roleName="cn"
roleSubtree="true"
roleSearch="(uniqueMember={0})"
allRolesMode="authOnly"
commonRole="appcenter"/>

...
</Host>

The value of connectionURL is the LDAP URL of your LDAP server.

The userSubtree, userBase, and userSearch attributes define how to use the name
given to the Application Center in login form (in the browser message box) to
match an LDAP user entry.

In the example, the definition of userSearch specifies that the user name is used to
match the email address of an LDAP user entry.

The basis or scope of the search is defined by the value of the userBase attribute.
In LDAP, an information tree is defined; the user base indicates a node in that tree.

The value of userSubtree should be set to true; if it is false, the search is
performed only on the direct child nodes of the user base. It is important that the
search penetrates the subtree and does not stop at the first level.

For authentication, you define only the userSubtree, userBase, and userSearch
attributes. The Application Center also uses Java EE security roles. Therefore, you
must map LDAP attributes to some Java EE roles. These attributes are used for
mapping LDAP attributes to security roles:
v roleBase

v roleName

v roleSubtree

v roleSearch

In this example, the value of the roleSearch attribute matches all LDAP entries
with a uniqueMember attribute whose value is the Distinguished Name (DN) of the
authenticated user.

Installing and configuring 6-209

http://tomcat.apache.org/tomcat-7.0-doc/config/realm.html

The roleBase attribute specifies a node in the LDAP tree below which the roles are
defined.

The roleSubtree attribute indicates whether the LDAP search should search the
entire subtree, whose root is defined by the value of roleBase, or only the direct
child nodes.

The roleName attribute defines the name of the LDAP attribute.

The allRolesMode attribute specifies that you can use the asterisk (*) character as
the value of role-name in the web.xml file. This attribute is optional.

The commonRole attribute adds a role shared by all authenticated users. This
attribute is optional.

Mapping the Java EE roles of the Application Center to LDAP roles

After you define the LDAP request for the Java EE roles, you must change the
web.xml file of the Application Center Services web application
(applicationcenter.war) and of the Application Center Console web application
(appcenterconsole.war) to map the Java EE roles of "appcenteradmin" and
"appcenteruser" to the LDAP roles.

These examples, where LDAP users have LDAP roles called "MyLdapAdmin" and
"MyLdapUser", show where and how to change the web.xml file.

The security-role-ref element in the JAX_RS servlet
<servlet>

<servlet-name>MobileServicesServlet</servlet-name>
<servlet-class>org.apache.wink.server.internal.servlet.RestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.puremeap.services.MobileServicesServlet</param-value>

</init-param>
<load-on-startup>1</load-on-startup>
<security-role-ref>

<role-name>appcenteradmin</role-name>
<role-link>MyLdapAdmin</role-link>

</security-role-ref>
<security-role-ref>

<role-name>appcenteruser</role-name>
<role-link>MyLdapUser</role-link>

</security-role-ref>
</servlet>

The security-role element
<security-role>

<role-name>MyLdapAdmin</role-name>
</security-role>

The auth-constraint element

After you edit the security-role-ref and the security-role elements, you can use
the roles defined in the auth-constraint elements to protect the web resources. See
the appcenteradminConstraint element and the appcenteruserConstraint element
in this example for definition of the web resource collection to be protected by the
role defined in the auth-constraint element.

6-210 IBM MobileFirst Platform Foundation for iOS V7.0.0

<security-constraint>
<display-name>appcenteruserConstraint</display-name>
<web-resource-collection>

<web-resource-name>appcenteruser</web-resource-name>
<url-pattern>/installers.html</url-pattern>
<url-pattern>/service/device/*</url-pattern>
<url-pattern>/service/directory/*</url-pattern>
<url-pattern>/service/plist/*</url-pattern>
<url-pattern>/service/auth/*</url-pattern>
<url-pattern>/service/application/*</url-pattern>
<url-pattern>/service/desktop/*</url-pattern>
<url-pattern>/service/principal/*</url-pattern>
<url-pattern>/service/acl/*</url-pattern>
<url-pattern>/service/userAndConfigInfo</url-pattern>
<http-method>DELETE</http-method>
<http-method>GET</http-method>
<http-method>POST</http-method>
<http-method>PUT</http-method>
<http-method>HEAD</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>MyLdapUser</role-name>
</auth-constraint>
<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>

Configuring LDAP ACL management (Apache Tomcat):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center by defining the Application Center LDAP properties
through JNDI.

Purpose

To configure LDAP ACL management of the Application Center; add an entry for
each property in the <context> section of the IBM Application Center Services
application in the server.xml file. This entry should have the following syntax:
<Environment name="JNDI_property_name" value="property_value" type="java.lang.String"
override="false"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

Table 6-53. Properties for configuring ACL management for LDAP in the server.xml file on Apache Tomcat

Property Description

ibm.appcenter.ldap.active Set to true to enable LDAP; set to false to disable
LDAP.

ibm.appcenter.ldap.connectionURL LDAP connection URL.

ibm.appcenter.ldap.user.base Search base of users.

ibm.appcenter.ldap.user.loginName LDAP login attribute.

ibm.appcenter.ldap.user.displayName LDAP attribute for the user name to be displayed, for
example, a person's full name.

ibm.appcenter.ldap.group.base Search base of groups.

Installing and configuring 6-211

Table 6-53. Properties for configuring ACL management for LDAP in the server.xml file on Apache
Tomcat (continued)

Property Description

ibm.appcenter.ldap.group.name LDAP attribute for the group name.

ibm.appcenter.ldap.group.uniquemember LDAP attribute that identifies the members of a group.

ibm.appcenter.ldap.user.groupmembership LDAP attribute that identifies the groups to which a user
belongs.

ibm.appcenter.ldap.group.nesting Management of nested groups: if nested groups are not
managed, set the value to false.

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of user login
name. Use %v as the placeholder for the login name
attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.displayName.filter LDAP user search filter for the attribute of user display
name. Use %v as the placeholder for the display name
attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the placeholder for
the group attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.security.sasl The value of the security authentication mechanism
when the LDAP external SASL authentication mechanism
is required to bind to the LDAP server. The value
depends on the LDAP server; usually, it is set to
"EXTERNAL".

ibm.appcenter.ldap.security.binddn Property that identifies the distinguished name of the
user permitted to search the LDAP directory. Use this
property only if security binding is required.

ibm.appcenter.ldap.security.bindpwd Property that identifies the password of the user
permitted to search the LDAP directory. Use this
property only if security binding is required.

6-212 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-53. Properties for configuring ACL management for LDAP in the server.xml file on Apache
Tomcat (continued)

Property Description

ibm.appcenter.ldap.cache.expiration.seconds Delay in seconds before the LDAP cache expires. If no
value is entered, the default value is 86400, which is
equal to 24 hours.

Changes to users and groups on the LDAP server
become visible to the Application Center after a delay,
which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The
Application Center maintains a cache of LDAP data and
the changes only become visible after the cache expires.
By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or
groups, you can call this command to clear the cache of
LDAP data:

acdeploytool.sh -clearLdapCache -s serverurl
-c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache
for details.

ibm.appcenter.ldap.referral Property that indicates whether referrals are supported
by the JNDI API. If no value is given, the JNDI API will
not handle LDAP referrals. Possible values are:

v ignore: ignores referrals found in the LDAP server.

v follow: automatically follows any referrals found in
the LDAP server.

v throw: causes an exception to occur for each referral
found in the LDAP server.

See “List of JNDI properties for the Application Center” on page 6-223 for a
complete list of LAPD properties that you can set.

The example shows properties defined in the server.xml file.
<Environment name="ibm.appcenter.ldap.active" value="true"
type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.connectionURL" value="ldaps://employees.com:636" type="java.lang.String"
override="false"/>
<Environment name="ibm.appcenter.ldap.user.base" value="dc=ibm,dc=com" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.loginName" value="uid" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.displayName" value="cn" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.groupmembership" value="ibm-allGroups" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.base" value="dc=ibm,dc=com" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.name" value="cn" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.uniquemember" value="uniquemember" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.cache.expiration.seconds" value="43200" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.security.sasl" value="EXTERNAL" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.security.referral" value="follow" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.filter" value="(&(uid=%v)(objectclass=inetOrgPerson))"
type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.displayName.filter" value="(&(cn=%v)(objectclass=inetOrgPerson))"
type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.filter" value="(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))"
type="java.lang.String" override="false"/>

Installing and configuring 6-213

Defining the endpoint of the application resources
When you add a mobile application from the Application Center console, the
server-side component creates Uniform Resource Identifiers (URI) for the
application resources (package and icons). The mobile client uses these URI to
manage the applications on your device.

Purpose

To manage the applications on your device, the Application Center console must
be able to locate the Application Center REST services and to generate the required
number of URI that enable the mobile client to find the Application Center REST
services.

By default, the URI protocol, host name, and port are the same as those defined in
the web application server used to access the Application Center console; the
context root of the Application Center REST services is applicationcenter. When
the context root of the Application Center REST services is changed or when the
internal URI of the web application server is different from the external URI that
can be used by the mobile client, the externally accessible endpoint (protocol, host
name, and port) of the application resources must be defined by configuring the
web application server. (Reasons for separating internal and external URI could be,
for example, a firewall or a secured reverse proxy that uses HTTP redirection.)

The following figure shows a configuration with a secured reverse proxy that hides
the internal address (192.168...). The mobile client must use the external address
(appcntr.net).

Figure 6-19. Configuration with secured reverse proxy

6-214 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-54. The endpoint properties

Property name Purpose Example

ibm.appcenter.services.endpoint This property enables the Application
Center console to locate the
Application Center REST services.
The value of this property must be
specified as the external address and
context root of the
applicationcenter.war web
application. You can use the asterisk
(*) character as wildcard to specify
that the Application Center REST
services use the same value as the
Application Center console. For
example: *://*:*/appcenter means
use the same protocol, host, and port
as the Application Center console,
but use appcenter as context root.

This property must be specified for
the Application Center console
application.

https://appcntr.net:443/
applicationcenter

ibm.appcenter.proxy.protocol This property specifies the protocol
required for external applications to
connect to the Application Center.

https

ibm.appcenter.proxy.host This property specifies the host name
required for external applications to
connect to the Application Center.

appcntr.net

ibm.appcenter.proxy.port This property specifies the port
required for external applications to
connect to the Application Center.

443

See “List of JNDI properties for the Application Center” on page 6-223 for a
complete list of endpoint properties that you can set.

Configuring the endpoint of the application resources (full
profile)
For the WebSphere Application Server full profile, configure the endpoint of the
application resources in the environment entries of the Application Center services
and the Application Center console applications.

About this task

Follow this procedure when you must change the URI protocol, host name, and
port used by the mobile client to manage the applications on your device. Since
IBM Worklight V6.0, you use the JNDI environment entries.

Procedure
1. Log in to the WebSphere Application Server console.
2. Select Applications > Application Types > WebSphere enterprise

applications.
3. Click IBM Application Center Services.
4. In the “Web Module Properties” section, select Environment entries for Web

modules.

Installing and configuring 6-215

5. Assign the appropriate values for the following environment entries:
a. For ibm.appcenter.proxy.host, assign the host name.
b. For ibm.appcenter.proxy.port, assign the port number.
c. For ibm.appcenter.proxy.protocol, assign the external protocol.
d. Click OK and save the configuration.

6. Select Applications > Application Types > WebSphere enterprise
applications.

7. Click IBM Application Center Console.
8. In the “Web Module Properties” section, select Environment entries for Web

modules.
9. For ibm.appcenter.services.endpoint, assign the full URI of the Application

Center REST services (the URI of the applicationcenter.war file).
v In a scenario with a firewall or a secured reverse proxy, this URI must be

the external URI and not the internal URI inside the local LAN.
v You can use the asterisk (*) character as wildcard to specify that the

Application Center REST services use the same value as the Application
Center console. For example: *://*:*/appcenter means use the same
protocol, host, and port as the Application Center console, but use
appcenter as context root.

10. Click OK and save the configuration. For a complete list of JNDI properties
that you can set, see “List of JNDI properties for the Application Center” on
page 6-223.

Configuring the endpoint of the application resources (Liberty
profile)
For the Liberty profile, configure the endpoint of the application resources through
the JNDI environment.

Purpose

Since IBM Worklight V6.0, follow this procedure when you must change the URI
protocol, host name, and port used by the Application Center client to manage the
applications on your device.

Properties

Edit the server.xml file. To be able to define JNDI entries, the <feature> element
must be defined correctly in the server.xml file:
<feature>jndi-1.0</feature>

Add an entry for each property in the <server> section of the server.xml file. This
entry should have the following syntax:
<jndiEntry jndiName="JNDI_property_name" value="property_value"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

6-216 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-55. Properties in the server.xml file for configuring the endpoint of the application
resources

Property Description

ibm.appcenter.services.endpoint The URI of the Application Center REST
services (applicationcenter.war). In a
scenario with a firewall or a secured reverse
proxy, this URI must be the external URI
and not the internal URI inside the local
LAN.

ibm.appcenter.proxy.protocol The protocol of the application resources
URI. This property is optional. It is only
needed if the protocol of the external and of
the internal URI are different.

ibm.appcenter.proxy.host The host name of the application resources
URI.

ibm.appcenter.proxy.port The port of the application resources URI.
This property is optional. It is only needed if
the protocol of the external and of the
internal URI are different.

For a complete list of LAPD properties that you can set, see “List of JNDI
properties for the Application Center” on page 6-223.

Example of setting properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file required
for configuring the endpoint of the application resources.

<jndiEntry jndiName="ibm.appcenter.services.endpoint" value=" https://appcntr.net:443/applicationcenter" />
<jndiEntry jndiName="ibm.appcenter.proxy.protocol" value="https" />
<jndiEntry jndiName="ibm.appcenter.proxy.host" value="appcntr.net" />
<jndiEntry jndiName="ibm.appcenter.proxy.port" value=" 443"/>

You can use the asterisk (*) character as wildcard to specify that the Application
Center REST services use the same value as the Application Center console. For
example: *://*:*/appcenter means use the same protocol, host, and port as the
Application Center console, but use appcenter as context root.

Configuring the endpoint of the application resources (Apache
Tomcat)
For the Apache Tomcat server, configure the endpoint of the application resources
in the server.xml file.

Purpose

Since IBM Worklight V6.0, follow this procedure when you must change the URI
protocol, host name, and port used by the Application Center client to manage the
applications on your device.

Properties

Edit the server.xml file in the conf directory of your Apache Tomcat installation.

Add an entry for each property in the <context> section of the corresponding
application. This entry should have the following syntax:

<Environment name="JNDI_property_name" value="property_value" type="property_type" override="false"/>

Installing and configuring 6-217

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

property_type is the type of the property you are adding.

Table 6-56. Properties in the server.xml file for configuring the endpoint of the application resources

Property Type Description

ibm.appcenter.services.endpoint java.lang.String The URI of the Application Center REST
services (applicationcenter.war). In a
scenario with a firewall or a secured
reverse proxy, this URI must be the
external URI and not the internal URI
inside the local LAN.

ibm.appcenter.proxy.protocol java.lang.String The protocol of the application resources
URI. This property is optional. It is only
needed if the protocol of the external and
of the internal URI are different.

ibm.appcenter.proxy.host java.lang.String The host name of the application
resources URI.

ibm.appcenter.proxy.port java.lang.Integer The port of the application resources URI.
This property is optional. It is only
needed if the protocol of the external and
of the internal URI are different.

For a complete list of JNDI properties that you can set, see “List of JNDI properties
for the Application Center” on page 6-223.

Example of setting server.xml properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file required
for configuring the endpoint of the application resources.

In the <context> section of the Application Center console application:
<Environment name="ibm.appcenter.services.endpoint" value="https://appcntr.net:443/applicationcenter"
type="java.lang.String" override="false"/>

You can use the asterisk (*) character as wildcard to specify that the Application
Center REST services use the same value as the Application Center console. For
example: *://*:*/appcenter means use the same protocol, host, and port as the
Application Center console, but use appcenter as context root.

In the <context> section of the Application Center services application:
<Environment name="ibm.appcenter.services.endpoint" value="https://appcntr.net:443/applicationcenter"
type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.proxy.protocol" value="https" type="java.lang.String"
override="false"/>
<Environment name="ibm.appcenter.proxy.host" value="appcntr.net" type="java.lang.String"
override="false"/>
<Environment name="ibm.appcenter.proxy.port" value="443" type="java.lang.Integer"
override="false"/>

6-218 IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring Secure Sockets Layer (SSL)
Learn about configuring SSL for the Application Center on supported application
servers and the limitations of certificate verification on mobile operating systems.

For iOS applications, you must configure the Application Center server with SSL.

SSL transmits data over the network in a secured channel. You must purchase an
official SSL certificate from an SSL certificate authority. Self-signed certificates do
not work with the Application Center.

When the client accesses the server through SSL, the client verifies the server
through the SSL certificate. If the server address matches the address filed in the
SSL certificate, the client accepts the connection. For the verification to be
successful, the client must know the root certificate of the certificate authority.
Many root certificates are preinstalled on iOS devices. The exact list of preinstalled
root certificates varies between versions of mobile operating systems.

You should consult the SSL certificate authority for information about the mobile
operating system versions that support its certificates.

If the SSL certificate verification fails, a normal web browser requests confirmation
to contact an untrusted site. The same behavior occurs when you use a self-signed
certificate that was not purchased from a certificate authority. When mobile
applications are installed, this control is not performed by a normal web browser,
but by operating system calls.

Some versions of the iOS operating systems do not support this confirmation
dialog in system calls. This limitation is a reason to avoid self-signed certificates or
SSL certificates that are not suited to mobile operating systems. On the iOS
operating system, you can install a self-signed CA certificate on the device to
enable the device to handle system calls with respect to this self-signed certificate.
This practice is not appropriate for Application Center in a production
environment, but it may be suitable during the testing period. For details, see
“Configuring SSL by using untrusted certificates” on page 6-136 and “Managing
and installing self-signed CA certificates in an Application Center test
environment” on page 6-221.

Configuring SSL for WebSphere Application Server full profile
Request a Secure Sockets Layer (SSL) certificate and process the received
documents to import them into the keystore.

About this task

This procedure indicates how to request an SSL certificate and import it and the
chain certificate into your keystore.

Procedure
1. Create a request to a certificate authority; in the WebSphere administrative

console, select Security > SSL certificate and key management > Key stores
and certificates > keystore > Personal certificate requests > New.
Where keystore identifies your keystore.
The request is sent to the certificate authority.

2. When you receive the SSL certificate, import it and the corresponding chain
certificate into your keystore by following the instructions provided by the
certificate authority. In the WebSphere administrative console, you can find the

Installing and configuring 6-219

corresponding option in Security > SSL certificate and key management >
Manage endpoint security configurations > node SSL settings > Key stores
and certificates > keystore > Personal certificates > certificate > Receive a
certificate from a certificate authority.
Where:
v node SSL settings shows the SSL settings of the nodes in your configuration.
v keystore identifies your keystore.
v certificate identifies the certificate that you received.

3. Create an SSL configuration. See the instructions in the user documentation that
corresponds to the version of the WebSphere Application Server full profile that
supports your applications.
You can find configuration details in the WebSphere administrative console at
Security > SSL certificate and key management > Manage endpoint security
configurations > SSL Configurations.

Configuring SSL for Liberty profile
Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
server.xml file to configure SSL on Liberty profile.

About this task

Follow the steps in this procedure to configure SSL on Liberty profile.

Procedure
1. Create a keystore for your web server; use the securityUtility with the

createSSLCertificate option. See Enabling SSL communication for the Liberty
profile for more information.

2. Import the SSL certificate and the corresponding chain certificate into your
keystore by following the instructions provided by the certificate authority.

3. Enable the ssl-1.0 Liberty feature in the server.xml file.
<featureManager>

<feature>ssl-1.0</feature>
</featureManager>

4. Add the keystore service object entry to the server.xml file. The keyStore
element is called defaultKeyStore and contains the keystore password. For
example:
<keyStore id="defaultKeyStore" location="/path/to/myKeyStore.p12"

password="myPassword" type="PKCS12"/>

5. Make sure that the value of the httpEndpoint element in the server.xml file
defines the httpsPort attribute. For example:
<httpEndpoint id="defaultHttpEndpoint” host="*" httpPort="9080” httpsPort="9443" >

6. Restart the web server. Now you can access the web server by
https://myserver:9443/...

Configuring SSL for Apache Tomcat
Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
conf/server.xml file to define a connector for SSL on Apache Tomcat.

About this task

Follow the steps in this procedure to configure SSL on Apache Tomcat. See SSL
Configuration HOW-TO for more details and examples of configuring SSL for
Apache Tomcat.

6-220 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

Procedure
1. Create a keystore for your web server. You can use the Java keytool command

to create a keystore.
keytool -genkey -alias tomcat -keyalg RSA -keystore /path/to/keystore.jks

2. Import the SSL certificate and the corresponding chain certificate into your
keystore by following the instructions provided by the certificate authority.

3. Edit the conf/server.xml file to define a connector to use SSL. This connector
must point to your keystore.
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"

maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="/path/to/keystore.jks"
keystorePass="mypassword" />

4. Restart the web server. Now you can access the web server by
https://myserver:8443/...

Managing and installing self-signed CA certificates in an
Application Center test environment
Use self-signed certificate authority (CA) certificates in test environments to install
applications with Application Center on a mobile device from a secured server.

Uploading or deleting a certificate:
Before you begin

When you install the Application Center mobile client from OTA (the bootstrap
page), the device user must upload and install the self-signed CA file before the
Application Center mobile client is installed.

About this task

When you use Application Center for a test installation, the administrator might
not have a real Secure Sockets Layer (SSL) certificate available. You might want to
use a self-signed CA certificate. Such certificates work if they get installed on the
device as root certificate. For the basic concepts of CA certificates and further
details about such certificates, see “Configuring SSL by using untrusted
certificates” on page 6-136.

As an administrator, you can easily distribute self-signed CA certificates to devices.

Support for X.509 certificates comes from the iOS platform, not from IBM
MobileFirst Platform Foundation for iOS. For more information about specific
requirements for X.509 certificates, see iOS documentation.

Procedure

Managing self-signed certificates: in your role of administrator of Application
Center, you can access the list of registered self-signed CA certificates to upload or
delete certificates.
1. To display Application Center settings, click the gear icon .
2. To display the list of registered certificates, select Self Signed Certificates.
3. Upload or delete a certificate.
v To upload a self-signed CA certificate, in the Application Center console,

click Upload a certificate and select a certificate file.

Installing and configuring 6-221

Note: The certificate file must be in PEM file format. Typical file name
suffixes for this type of file are .pem, .key, .cer, .cert. The certificate must
be a self-signed one, that is, the values of the Issuer and Subject fields must
be the same. And the certificate must be a CA certificate, that is, it must have
the X509 extension named BasicConstraint set to CA:TRUE.

v To delete a certificate, click the trash can icon on the right of the certificate
file name in the list.

Installing a self-signed CA certificate on a device:
About this task

Registered self-signed CA certificates are available through the bootstrap page at
http://hostname:portnumber/appcenterconsole/installers.html

Where:
v hostname is the name of the server that hosts the Application Center console.
v portnumber is the corresponding port number.

Procedure

1. Click the SSL Certificates tab.
2. To display the details of a certificate, select the appropriate registered

certificate.
3. To download and install the certificate on the device, click Install.

Managing the DB2 transaction log size
When you upload an application that is at least 40 MB with IBM MobileFirst
Platform Application Center console, you might receive a transaction log full
error.

About this task

The following system output is an example of the transaction log full error
code.

DB2 SQL Error: SQLCODE=-964, SQLSTATE=57011

The content of each application is stored in the Application Center database.

The active log files are defined in number by the LOGPRIMARY and LOGSECOND
database configuration parameters, and in size by the LOGFILSIZ database
configuration parameter. A single transaction cannot use more log space than
LOGFILSZ * (LOGPRIMARY + LOGSECOND) * 4096 KB.

The DB2 GET DATABASE CONFIGURATION command includes information about the log
file size, and the number of primary and secondary log files.

Depending on the largest size of the MobileFirst application that is deployed, you
might need to increase the DB2 log space.

Procedure

Using the DB2 update db cfg command, increase the LOGSECOND parameter. Space is
not allocated when the database is activated. Instead, the space is allocated only as
needed.

6-222 IBM MobileFirst Platform Foundation for iOS V7.0.0

List of JNDI properties for the Application Center
Here is a list of the JNDI properties that can be configured for the Application
Center.

Table 6-57. List of the JNDI properties for the Application Center

Property Description

appcenter.database.type The database type, which is only required when the database is not
specified in appcenter.jndi.name.

appcenter.jndi.name The JNDI name of the database. This parameter is the normal
mechanism to specify the database. The default value is
java:comp/env/jdbc/AppCenterDS.

appcenter.openjpa.ConnectionDriverName The fully qualified class name of the database connection driver
class. This property is only needed when the database is not
specified in appcenter.jndi.name.

appcenter.openjpa.ConnectionPassword The password for the database connection. This property is only
needed when the database is not specified in appcenter.jndi.name.

appcenter.openjpa.ConnectionURL The URL specific to the database connection driver class. This
property is only needed when the database is not specified in
appcenter.jndi.name.

appcenter.openjpa.ConnectionUserName The user name or the database connection. This property is only
needed when the database is not specified in appcenter.jndi.name.

ibm.appcenter.apns.p12.certificate
.isDevelopmentCertificate

Specifies whether the certificate that enables Application Center to
send push notifications about updates of iOS applications is a
development certificate. Set to true to enable or false to disable.
See “Configuring the Application Center server for connection to
Apple Push Notification Services” on page 11-74.

ibm.appcenter.apns.p12.certificate
.location

The path to the file of the development certificate that enables
Application Center to send push notifications about updates of iOS
applications. For example, /Users/someUser/someDirectory/apache-
tomcat/conf/AppCenter_apns_dev_cert.p12. See “Configuring the
Application Center server for connection to Apple Push Notification
Services” on page 11-74.

ibm.appcenter.apns.p12.certificate
.password

The password of the certificate that enables Application Center to
send push notifications about updates of iOS applications is a
development certificate. See “Configuring the Application Center
server for connection to Apple Push Notification Services” on page
11-74.

ibm.appcenter.forceUpgradeDBTo60 The database design was changed starting from IBM Worklight
version 6.0. The database is automatically updated when the
Application Center web application starts. If you want to repeat this
update, you can set this parameter to true and start the web
application again. Later you can set this parameter to false.

ibm.appcenter.ios.plist.onetimeurl Specifies whether URLs stored in iOS plist manifests use the
one-time URL mechanism without credentials. If you set this
property to true, the security level is medium since the one-time
URLs are generated with a cryptographic mechanism so that
nobody can guess the URL. However, they do not require the user
to log in when you use these URLs. Setting this property to false is
maximally secure, since the user is then required to log in for each
URL. However, requesting the user to log in multiple times when
you install an iOS application can degrade the user experience. See
“Installing the client on an iOS mobile device” on page 11-104.

Installing and configuring 6-223

Table 6-57. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.ldap.active Specifies whether Application Center is configured for LDAP. Set to
true to enable LDAP; set to false to disable LDAP. See “Managing
users with LDAP” on page 6-194.

ibm.appcenter.ldap.cache.expiration
.seconds

The Application Center maintains a cache of LDAP data and the
changes become visible only after the cache expires. Specify the
amount of time in seconds an entry in the LDAP cache is valid. Set
this property to a value larger than 3600 (1 hour) to reduce the
amount of LDAP requests. If no value is entered, the default value
is 86400, which is equal to 24 hours.

If you need to manually clear the cache of LDAP data, enter this
command:

acdeploytool.sh -clearLdapCache -s serverurl
-c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.

ibm.appcenter.ldap.connectionURL The URL to access the LDAP server when no VMM is used. See
“Configuring LDAP ACL management (Liberty profile)” on page
6-205 and “Configuring LDAP ACL management (Apache Tomcat)”
on page 6-211.

ibm.appcenter.ldap.federated.active Specifies whether Application Center is configured for LDAP with
federated repositories. Since WebSphere Application Server Liberty
Profile V8.5.5. set this property to true to enable use of the
federated registry. Set this property to false to disable use of the
federated registry, which is the default setting. See “Managing users
with LDAP” on page 6-194.

ibm.appcenter.ldap.group.base The search base to find groups when you use LDAP without VMM.
See “Configuring LDAP ACL management (Liberty profile)” on
page 6-205 and “Configuring LDAP ACL management (Apache
Tomcat)” on page 6-211.

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the placeholder for the group
attribute.

This property is only required when LDAP users and groups are
defined in the same subtree; that is, when the properties
ibm.appcenter.ldap.user.base and ibm.appcenter.ldap.group.base
have the same value.

ibm.appcenter.ldap.group.name The group name attribute when you use LDAP without VMM. See
“Configuring LDAP ACL management (Liberty profile)” on page
6-205 and “Configuring LDAP ACL management (Apache Tomcat)”
on page 6-211.

ibm.appcenter.ldap.group.nesting Specifies whether the LDAP contains nested groups (that is, groups
in groups) when you use LDAP without VMM. Setting this
property to false speeds up the LDAP access since the groups are
then not searched recursively. See “Configuring LDAP ACL
management (Liberty profile)” on page 6-205 and “Configuring
LDAP ACL management (Apache Tomcat)” on page 6-211.

ibm.appcenter.ldap.group.uniquemember Specifies the members of a group when you use LDAP without
VMM. This property is the inverse of
ibm.appcenter.ldap.user.groupmembership. See “Configuring LDAP
ACL management (Liberty profile)” on page 6-205 and
“Configuring LDAP ACL management (Apache Tomcat)” on page
6-211.

6-224 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-57. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.ldap.referral Specifies whether referrals are supported by the JNDI API. If no
value is given, the JNDI API does not handle LDAP referrals. Here
are the possible values:

v ignore: ignores referrals that are found in the LDAP server.

v follow: automatically follows any referrals that are found in the
LDAP server.

v throw: causes an exception to occur for each referral found in the
LDAP server.

ibm.appcenter.ldap.security.binddn The distinguished name of the user that is allowed to search the
LDAP directory. Use this property only if security binding is
required.

The password can be encoded with the “Liberty Profile
securityUtility” tool. Run the tool and then set the value of this
property to the encoded password generated by the tool. The
supported encoding types are xor and aes.

Edit the Liberty Profile server.xml file to check whether the
classloader is enabled to load the JAR file that decodes the
password.See “Configuring LDAP ACL management (Apache
Tomcat)” on page 6-211.

ibm.appcenter.ldap.security.bindpwd The password of the user that is permitted to search the LDAP
directory. Use this property only if security binding is required. See
“Configuring LDAP ACL management (Apache Tomcat)” on page
6-211.

ibm.appcenter.ldap.security.sasl Specifies the security authentication mechanism when the LDAP
external SASL authentication mechanism is required to bind to the
LDAP server. The value depends on the LDAP server and it is
typically set to EXTERNAL. If set, security authentication is used when
you connect to LDAP without VMM. See “Configuring LDAP ACL
management (Liberty profile)” on page 6-205 and “Configuring
LDAP ACL management (Apache Tomcat)” on page 6-211.

ibm.appcenter.ldap.user.base The search base to find users when you use LDAP without VMM.
See “Configuring LDAP ACL management (Liberty profile)” on
page 6-205 and “Configuring LDAP ACL management (Apache
Tomcat)” on page 6-211.

ibm.appcenter.ldap.user.displayName The display name attribute, such as the user's real name, when you
use LDAP without VMM. See “Configuring LDAP ACL
management (Liberty profile)” on page 6-205 and “Configuring
LDAP ACL management (Apache Tomcat)” on page 6-211.

ibm.appcenter.ldap.displayName.filter LDAP user search filter for the attribute of
ibm.appcenter.ldap.user.displayName. Use %v as the placeholder
for the display name attribute.

This property is only required when LDAP users and groups are
defined in the same subtree; that is, when the properties
ibm.appcenter.ldap.user.base and ibm.appcenter.ldap.group.base
have the same value.

Installing and configuring 6-225

Table 6-57. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of
ibm.appcenter.ldap.user.loginName. Use %v as the placeholder for
the login name attribute.

This property is only required when LDAP users and groups are
defined in the same subtree; that is, when the properties
ibm.appcenter.ldap.user.base and ibm.appcenter.ldap.group.base
have the same value.

ibm.appcenter.ldap.user.groupmembership Specifies the groups of a member when you use LDAP without
VMM. This property is the inverse of
ibm.appcenter.ldap.group.uniquemember. This property is optional,
but if it is specified, the LDAP access is faster. See “Configuring
LDAP ACL management (Liberty profile)” on page 6-205 and
“Configuring LDAP ACL management (Apache Tomcat)” on page
6-211.

ibm.appcenter.ldap.user.loginName The login name attribute when you use LDAP without VMM. See
“Configuring LDAP ACL management (Liberty profile)” on page
6-205 and “Configuring LDAP ACL management (Apache Tomcat)”
on page 6-211.

ibm.appcenter.ldap.vmm.active Specifies whether LDAP is done through VMM. Set to true to
enable or false to disable. See “Configuring LDAP ACL
management (WebSphere Application Server V8.x)” on page 6-201
and “Configuring LDAP ACL management with VMM (WebSphere
Application Server V7)” on page 6-198.

ibm.appcenter.ldap.vmm.adminpwd The password when LDAP is done through VMM. See “Configuring
LDAP ACL management (WebSphere Application Server V8.x)” on
page 6-201 and “Configuring LDAP ACL management with VMM
(WebSphere Application Server V7)” on page 6-198.

ibm.appcenter.ldap.vmm.adminuser The user when LDAP is done through VMM. See “Configuring
LDAP ACL management (WebSphere Application Server V8.x)” on
page 6-201 and “Configuring LDAP ACL management with VMM
(WebSphere Application Server V7)” on page 6-198.

ibm.appcenter.logging.formatjson This property has only an effect when
ibm.appcenter.logging.tosystemerror is set to true. If enabled, it
formats JSON responses in logging messages that are directed to
System.Error. Setting this property is helpful when you debug the
server.

ibm.appcenter.logging.tosystemerror Specifies whether all logging messages are also directed to
System.Error. Setting this property is helpful when you debug the
server.

ibm.appcenter.openjpa.Log This property is passed to OpenJPA and enables JPA logging. For
details, see the Apache OpenJPA User's Guide.

ibm.appcenter.proxy.host If the Application Center server is behind a firewall or reverse
proxy, this property specifies the address of the host. Setting this
property allows a user outside the firewall to reach the Application
Center server. Typically, this property is the address of the proxy.
See “Defining the endpoint of the application resources” on page
6-214.

6-226 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://openjpa.apache.org/builds/1.2.2/apache-openjpa-1.2.2/docs/manual/manual.html

Table 6-57. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.proxy.port If the Application Center server is behind a firewall or reverse
proxy, this property specifies the address of the host. Setting this
property allows a user outside the firewall to reach the Application
Center server. Typically, this property is the port of the proxy, for
example 443. It is only needed if the protocol of the external and of
the internal URI are different. See “Defining the endpoint of the
application resources” on page 6-214.

ibm.appcenter.proxy.protocol If the Application Center server is behind a firewall or reverse
proxy, this property specifies the protocol (http or https). Setting
this property allows a user outside the firewall to reach the
Application Center server. Typically, this property is set to the
protocol of the proxy. For example, appcntr.net. This property is
only needed if the protocol of the external and of the internal URI
are different. See “Defining the endpoint of the application
resources” on page 6-214.

ibm.appcenter.proxy.scheme This property is just an alternative name for
ibm.appcenter.proxy.protocol.

ibm.appcenter.push.schedule.period.amount Specifies the time schedule when you send push notifications of
application updates. When applications are frequently changed on
the server, set this property to send batches of notifications. For
example, send all notifications that happened within the past hour,
instead of sending each individual notification.

ibm.appcenter.push.schedule.period.unit Specifies the unit for the time schedule when you send push
notifications of application updates.

ibm.appcenter.services.endpoint Enables the Application Center console to locate the Application
Center REST services. Specify the external address and context root
of the applicationcenter.war web application. In a scenario with a
firewall or a secured reverse proxy, this URI must be the external
URI and not the internal URI inside the local LAN. For example,
https://appcntr.net:443/applicationcenter. See “Defining the
endpoint of the application resources” on page 6-214.

ibm.appcenter.services.iconCacheMaxAge Specifies the amount of time in seconds cached icons remain valid
for the Application Center Console and the Client. Application icons
rarely change, therefore they are cached. Specify values larger than
600 (10 min) to reduce the amount of data transfer for the icons.

ibm.worklight.jndi.configuration Optional. If the JNDI configuration is injected into the WAR files or
provided as a shared library, the value of this property is the name
of the JNDI configuration. This value can also be specified as a
system property. See “Predefining MobileFirst Server configuration
for several deployment environments.”

ibm.worklight.jndi.file Optional. If the JNDI configuration is stored as an external file, the
value of this property is the path of a file that describes the JNDI
configuration. This value can also be specified as a system property.
See “Predefining MobileFirst Server configuration for several
deployment environments.”

Predefining MobileFirst Server configuration for several deployment
environments

You can configure JNDI properties in a property file for easy transfer between one
web application server and another; for example, to transfer from test to
production environments.

Installing and configuring 6-227

As part of the installation of administration components of IBM MobileFirst
Platform Foundation for iOS, various JNDI properties must be set. These
components include MobileFirst Operations Console, MobileFirst Administration
Service, and Application Center. Normally, JNDI properties are specified in the
configuration of the web application server and are outside the web archive (WAR)
file that represents the server component.

Instead, you can specify the JNDI properties in a property file. Having JNDI
properties in a property file makes it easier to transfer the entire configuration
from one web application server to another. For example, you can configure a test
web server and, once the configuration is stable, you can transfer the configuration
to the production web server by copying the property file to the production server.

This property file can be made available to the server components in various ways:
v The property file can be placed on the file system.

This solution is particularly useful for a stand-alone test server when you are
experimenting with JNDI properties to determine the final configuration. You
can easily change the file on the file system with a text editor. Then you have
only to restart the web server to enable the changed configuration.

v The property file can be injected into web archive (WAR) files.
This solution is useful when you want to transfer the configuration together
with the web archive file to another web server. You only have to handle the
web archive file, and no other files. The configuration is, in this case, fused into
the web archive file.

v The property file can be installed as a shared library for all server components.
This solution is useful when you intend to exchange the web archive files often,
but want to keep the same configuration all the time.

Creating the property file
Define JNDI properties in a property file by using a text editor. Determine where
to set JNDI properties according to a selective priority.

The property file follows the standard Java property file syntax and can be edited
with any text editor. It has the file extension .properties. You can include all
properties of all web archive (WAR) files in the same property file.

Here is an example of the content of a property file.
publicWorkLightHostname=myworklighthost.net
publicWorkLightPort=9080
publicWorkLightProtocol=https
push.gcm.proxy.enabled=false
push.gcm.proxy.host=myproxyhost.net
push.gcm.proxy.port=-1
push.gcm.proxy.protocol=https
ibm.worklight.admin.environmentid=id123

JNDI properties

You can refer to the details of JNDI properties in the relevant parts of the user
documentation:

Application Center
“List of JNDI properties for the Application Center” on page 6-223

6-228 IBM MobileFirst Platform Foundation for iOS V7.0.0

MobileFirst Application Services
“List of JNDI properties for MobileFirst Server administration” on page
6-86

MobileFirst runtime
“Configuration of MobileFirst applications on the server” on page 10-48

You do not have to specify all the possible JNDI properties in the property file.
You can specify some in the property file and others as JNDI properties that are
explicitly set in the web application server. The following list indicates the priority
by which properties are enacted.
1. If a JNDI property is explicitly set in the web application server, this property

value is taken. Refer to the documentation of your web application server for
how to set JNDI properties.

2. If that is not the case, but the JNDI property is set in the property file injected
into the web archive file or in the property file provided as a shared library, the
property value is taken from this property file.

3. If that is not the case, but the JNDI property is set in the property file provided
on the file system, the property value is taken from this property file.

4. If that is not the case, the default value of the JNDI property is taken.

Using a property file in the file system
You can place the property file directly into the file system of the web application
server.

The property file can be stored directly in the file system. This approach is
particularly useful for a stand-alone test server when you are experimenting with
JNDI properties to determine the final configuration. You can easily change the file
on the file system with a text editor. Then you have only to restart the web server
to enable the changed configuration.

You must define the property ibm.worklight.jndi.file to point to the location of
the property file. This property can be defined as a Java Virtual Machine system
property or explicitly as a JNDI property. This property cannot be defined in the
property file.

WebSphere Application Server full profile

Determine a suitable directory for the JNDI property file in the WebSphere
Application Server installation directory.
v For a stand-alone server, you can use a directory such as:

$WAS_INSTALL_DIR/profiles/profile-name/config/mywlconfig.properties

v For deployment to a WebSphere Application Server ND cell, use for example:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
mywlconfig.properties

v For deployment to a WebSphere Application Server ND cluster, use for example:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/mywlconfig.properties

v For deployment to a WebSphere Application Server ND node, use for example:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/node-
name/mywlconfig.properties

v For deployment to a WebSphere Application Server ND server, use for example:

Installing and configuring 6-229

$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/node-
name/servers/server-name/mywlconfig.properties

Next, add the setting of the ibm.worklight.jndi.file property to the Java Virtual
Machine custom properties in the WebSphere Application Server administration
console. For details of how to add this setting, see “Setting the file pointer property
(WebSphere Application Server full profile)” on page 6-231.

WebSphere Application Server Liberty profile

You must place the property file inside the server directory of the Liberty server;
for example, place it in $LIBERTY_HOME/usr/servers/worklightServer/
mywlconfig.properties.

Edit the $LIBERTY_HOME/usr/servers/worklightServer/bootstrap.properties file
and add the property ibm.worklight.jndi.file to point to the property file; for
example, ibm.worklight.jndi.file=mywlconfig.properties.

Alternatively, instead of editing bootstrap.properties, create or edit the file
$LIBERTY_HOME/usr/servers/worklightServer/jvm.options and add, for example:
-Dibm.worklight.jndi.file=mywlconfig.properties

You can use the normal web archive (WAR) files of the web applications. They can
be installed as described elsewhere in “Installing and configuring” on page 6-1.

Restart the web application server. Whenever the property file changes, the web
application server must be restarted.

Apache Tomcat

You must place the property file inside the conf directory of the Apache Tomcat
server; for example, place it in $TOMCAT_HOME/conf/mywlconfig.properties.

Edit the $TOMCAT_HOME/conf/catalina.properties file and add the property
ibm.worklight.jndi.file to point to the property file; for example,
ibm.worklight.jndi.file=../conf/mywlconfig.properties.

Alternatively, on UNIX systems, instead of editing catalina.properties, create or
edit the $TOMCAT_HOME/bin/setenv.sh file and add, for example:
CATALINA_OPTS="$CATALINA_OPTS
-Dibm.worklight.jndi.file=../conf/mywlconfig.properties"

or on microsoft Windows systems, create or edit the $TOMCAT_HOME/bin/setenv.bat
file and add , for example:
set CATALINA_OPTS=%CATALINA_OPTS%
-Dibm.worklight.jndi.file=../conf/mywlconfig.properties

You can use the normal web archive (WAR) files of the web applications. They can
be installed as described elsewhere in “Installing and configuring” on page 6-1.

Restart the web application server. Whenever the property file changes, the web
application server must be restarted.

6-230 IBM MobileFirst Platform Foundation for iOS V7.0.0

Setting the file pointer property (WebSphere Application Server
full profile)
Define the ibm.worklight.jndi.file property through the administration console
of the WebSphere Application Server full profile.

Before you begin

Determine the location in the file system of the JNDI property file. See “WebSphere
Application Server full profile” on page 6-229.

About this task

When you opt to configure JNDI properties by using a property file located
directly in the file system, you must set a property to point to the property file.
This property is outside the property file and is set through the administration
console.

You must log in to the WebSphere Application Server administration console and
add the setting of the ibm.worklight.jndi.file property to the Java Virtual
Machine custom properties.

Procedure
1. Select Servers > Server types > WebSphere Application Servers.
2. Select the name of your server.
3. Expand “Java and process management” and select “Process Definition”.
4. Select “Java Virtual Machine”.
5. Select “Custom Properties” and click New.
6. Specify the name as ibm.worklight.jndi.file.
7. Specify the value as the path to the property file. The directory

$WAS_INSTALL_DIR/profiles/profile-name can be specified as
${USER_INSTALL_ROOT}; for example, that can be one of the following values:
v ${USER_INSTALL_ROOT}/config/mywlconfig.properties

v ${USER_INSTALL_ROOT}/config/cells/cell-name/mywlconfig.properties

v ${USER_INSTALL_ROOT}/config/cells/cell-name/clusters/cluster-name/
mywlconfig.properties

v ${USER_INSTALL_ROOT}/config/cells/cell-name/nodes/node-name/
mywlconfig.properties

v ${USER_INSTALL_ROOT}/config/cells/cell-name/nodes/node-name/servers/
server-name/mywlconfig.properties

8. Click Apply.
9. Click Save.

What to do next

You can use the normal web archive (WAR) files of the web applications. They can
be installed as described elsewhere in “Installing and configuring” on page 6-1.

To enable the property file, restart all MobileFirst Server components. These
components are displayed in the WebSphere Application Server administration
console under WebSphere enterprise applications.

Installing and configuring 6-231

Using property files injected into a web archive file
You can inject several configuration files into the WAR file of a MobileFirst Server
component.

The property file can be injected into the web archive (WAR) files for MobileFirst
Operations Console, MobileFirst Administration Service, MobileFirst runtime, or
Application Center. This approach is useful when you want to transfer the
configuration together with the web archive file to another web application server.
In this case, you only have to handle the web archive file, and no other files. The
configuration is, in this case, fused into the web archive file.

You can inject several different configurations into the same web archive file and
then select in the web application server which configuration should be used. For
example, you could have a test configuration and a production configuration
injected at the same time. To do so, create multiple property files with different
settings, one named testconf.properties and the other named
prodconf.properties.

Some JNDI properties must have the same value in all MobileFirst Server
components. Therefore, you should inject the same property files into all web
archive files. The following JNDI properties must be the same for MobileFirst
Operations Console, MobileFirst Administration Services, and MobileFirst runtime:
v ibm.worklight.admin.environmentid

v ibm.worklight.topology.clustermode

v ibm.worklight.topology.platform

v ibm.worklight.admin.jmx.connector

v ibm.worklight.admin.jmx.dmgr.host

v ibm.worklight.admin.jmx.dmgr.port

v ibm.worklight.admin.jmx.host

v ibm.worklight.admin.jmx.port

v ibm.worklight.admin.jmx.user

v ibm.worklight.admin.jmx.pword

v ibm.worklight.admin.rmi.registryPort

v ibm.worklight.admin.rmi.serverPort

Injecting property files into a WAR file by using the Command
Line tool

The wljndiinject command line tool is used to inject a set of property files into a
web archive file. To add the property files testconf.properties and
prodconf.properties to a war file, use the following command:
wljndiinject --sourceWarFile source.war testconf.properties prodconf.properties

The resulting web archive file can be found in the folder jndi-injected. It contains
the property files inside the web archive file.

Options of the tool:

--help Shows the help.

--sourceWarFile file
The web archive file that is used to add the property files.

6-232 IBM MobileFirst Platform Foundation for iOS V7.0.0

--destFile file
The destination file name. If not specified, the destination file is placed in
the jndi-injected directory.

--sharedJar
Used to create a shared library; For details, see “Creating a shared library
of JNDI properties” on page 6-236.

Injecting property files into a WAR file by using an Ant task

You can use the com.worklight.ant.jndi.JNDIInjectionTask Ant task to inject a
set of property files into a web archive file.

Here is a sample ant script that shows the use of the ant task:
<?xml version="1.0" encoding="UTF-8"?>
<project name="WLJndiInjectTask" basedir="." default="jndiinject.Sample">

<property name="install.dir" value="/path.to.worklight.installation" />
<path id="classpath.run">
<fileset dir="${install.dir}/WorklightServer/">

<include name="worklight-ant-deployer.jar" />
</fileset>

</path>
<target name="jndiinject.init">
<taskdef name="jndiinject"

classname="com.worklight.ant.jndi.JNDIInjectionTask">
<classpath refid="classpath.run" />

</taskdef>
</target>
<target name="jndiinject.Sample"

description="Injects properties into the Worklight war file"
depends="jndiinject.init">

<!-- This is just an example:
Mandatory parameters are sourceWarFile and the fileset.
All other parameters are optional and could be ommitted.
The source war files are expected in the wars directory.
The property files are expected in the properties directory.

-->
<jndiinject

sourceWarFile="wars/worklightproject.war"
destWarFile="worklightproject-injected.war" >
<fileset dir="." casesensitive="yes">

<include name="properties/*.properties"/>
</fileset>

</jndiinject>
<jndiinject

sourceWarFile="wars/worklightadmin.war"
destWarFile="worklightadmin-injected.war" >
<fileset dir="." casesensitive="yes">

<include name="properties/*.properties"/>
</fileset>

</jndiinject>
<jndiinject

sourceWarFile="wars/worklightconsole.war"
destWarFile="worklightconsole-injected.war" >
<fileset dir="." casesensitive="yes">

<include name="properties/*.properties"/>
</fileset>

</jndiinject>
</target>

</project>

Installing and configuring 6-233

Installing the property-injected WAR files in the web application
server

After injection of the property files into the web archive files, the web archive files
contain the property files and can be installed like any normal web archive file in
the web application server.

For the MobileFirst Administration Services, MobileFirst Operations Console, and
the MobileFirst runtime, you can use the ant task to install the web archive files, or
you can update the web archive files manually.

For details of how to install web archive files for MobileFirst components, see:
v “Using Ant tasks to install MobileFirst Server administration” on page 6-53
v “Deploying a project WAR file and configuring the application server with Ant

tasks” on page 10-14
v “Deploying the Application Center WAR files and configuring the application

server manually” on page 6-183

When the web archive file is deployed, you must define the
ibm.worklight.jndi.configuration property to point to the name of the required
configuration.

Selecting the configuration in a property-injected WAR file

The default configuration is called default.properties. If the configuration of
JNDI properties has a different name, you must define the
ibm.worklight.jndi.configuration property. The value of this property must be
the configuration name without the extension .properties. This property can be
specified as a Java Virtual Machine system property or explicitly as a JNDI
property. This property cannot be defined in the configuration property file.

Selecting the configuration: WebSphere Application Server full
profile

You must log in to the WebSphere Application Server administration console and
add the setting of the ibm.worklight.jndi.configuration property to the Java
Virtual Machine custom properties.

To add this property setting:
1. Select Servers > Server types > WebSphere Application Servers.
2. Select the name of your server.
3. Expand “Java and process management” and select “Process Definition”
4. Select “Java Virtual Machine”.
5. Select “Custom Properties” and click New.
6. Specify the name as ibm.worklight.jndi.configuration.
7. Specify the value as the name of the configuration.
8. Click Apply.
9. Click Save.

When the property is set, to enable the configuration, restart the appropriate
MobileFirst Server components. These components are displayed in the WebSphere
Application Server administration console under WebSphere enterprise
applications.

6-234 IBM MobileFirst Platform Foundation for iOS V7.0.0

Selecting the configuration: WebSphere Application Server
Liberty profile

You must edit the $LIBERTY_HOME/usr/servers/worklightServer/
bootstrap.properties file and set the ibm.worklight.jndi.configuration property
to point to the name of the configuration.

For example:
ibm.worklight.jndi.configuration=testconf

Alternatively, instead of editing the bootstrap.properties file, create or edit the
$LIBERTY_HOME/usr/servers/worklightServer/jvm.options file. For example, add:
-Dibm.ibm.worklight.jndi.configuration=testconf

To enable the configuration, restart the web application server.

Selecting the configuration: Apache Tomcat

You must edit the $TOMCAT_HOME/conf/catalina.properties file and set the
ibm.worklight.jndi.configuration property to point to the name of the
configuration.

For example:
ibm.worklight.jndi.configuration=testconf

Alternatively, instead of editing the catalina.properties file, depending on the
operating system, create or edit one of the following files:
v On UNIX systems: $TOMCAT_HOME/bin/setenv.sh

For example, add:
CATALINA_OPTS="$CATALINA_OPTS -Dibm.worklight.jndi.configuration=testconf"

v On Microsoft Windows systems: $TOMCAT_HOME/bin/setenv.bat
For example, add:
set CATALINA_OPTS=%CATALINA_OPTS% -Dibm.worklight.jndi.configuration=testconf

To enable the configuration, restart the web application server.

Using a shared library of JNDI properties
You can create a shared library to hold different configurations for any MobileFirst
Server component.

If you do not want to inject properties into web archive files, the property file can
be installed as a shared library for all MobileFirst Server components. This
approach is useful when you intend to exchange the web archive files often, but
want to keep the same configuration all the time. The original web archive files
remain unchanged, but you need to install an additional shared library.

You can add several different configurations to the same shared library and then
select in the web application server which configuration to use. For example, you
could have a test configuration and a production configuration injected at the same
time. To do so, create property files with different settings, one named
testconf.properties and the other prodconf.properties.

Installing and configuring 6-235

Creating a shared library of JNDI properties

The wljndiinject command line tool is used to create a shared library for a set of
property files. To create a shared library named jndiprops.jar with the property
files testconf.properties and prodconf.properties, use the following command:
wljndiinject --sharedJar --destFile jndiprops.jar testconf.properties prodconf.properties

Options of the tool:

--help Shows the help.

--sourceWarFile file
This option is not required for creating a shared library. This option is used
when a property file is injected into a web archive file to identify the web
archive file.

--destFile file
The destination file name of the shared library.

--sharedJar
Used to create a shared library instead of injecting a property file into a
web archive file.

Installing a shared library of JNDI configurations

Assume that all web applications are already installed. The shared library is added
to the web applications.

WebSphere Application Server full profile
Determine a suitable directory for the shared library jndiprops.jar in the
WebSphere Application Server installation directory and place the
jndiprops.jar file there.
v For a stand-alone server, you can use a directory such as:

$WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight

v For deployment to a WebSphere Application Server ND cell, use for
example:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight

v For deployment to a WebSphere Application Server ND cluster, use:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
clusters/cluster-name/Worklight

v For deployment to a WebSphere Application Server ND node, use:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
nodes/node-name/Worklight

v For deployment to a WebSphere Application Server ND server, use:
$WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
nodes/node-name/servers/server-name/Worklight

For details about adding the shared library, see “Adding the shared library
(WebSphere Application Server full profile)” on page 6-238.

WebSphere Application Server Liberty profile
Place the jndiprops.jar file in a suitable directory; for
example,$LIBERTY_HOME/usr/shared/resources/lib/jndiprops.jar.

Edit the $LIBERTY_HOME/usr/servers/worklightServer/server.xml file. For
each <application> element, add or update the <classloader> element.

6-236 IBM MobileFirst Platform Foundation for iOS V7.0.0

<application ...>
...
<classloader delegation="parentLast"></p>

...
<privateLibrary>

<fileset dir="${shared.resource.dir}/lib"
includes="jndiprops.jar"/>

</privateLibrary>
</classloader>

</application>

Restart the web application server after these changes.

Apache Tomcat
Place the shared library, jndiprops.jar file, in a suitable directory; for
example, $TOMCAT_HOME/Worklight/jndiprops.jar.

Edit the $TOMCAT_HOME/conf/server.xml file. For each <Context> element,
add or update the <Loader> element.
<Context docBase="worklightconsole" path="/worklightconsole">

<Loader className="org.apache.catalina.loader.VirtualWebappLoader"
virtualClasspath="${catalina.base}/Worklight/jndiprops.jar"
searchVirtualFirst="true"/>

...
</Context>

For the MobileFirst project, which uses additional shared libraries, the
example code is:
<Context docBase="worklightconsole" path="/worklight">

<Loader className="org.apache.catalina.loader.VirtualWebappLoader"
virtualClasspath="${catalina.base}/Worklight/worklight/worklight-jee-library.jar;

${catalina.base}/Worklight/jndiprops.jar"
searchVirtualFirst="true"/>

...
</Context>

Restart the web application server after these changes.

Selecting the configuration in a shared library of JNDI
configurations

The default configuration is called default.properties. If the configuration of
JNDI properties has a different name, you must define the
ibm.worklight.jndi.configuration property. The value of this property must be
the configuration name without the extension .properties. This property can be
specified as a Java Virtual Machine system property or explicitly as a JNDI
property. This property cannot be defined in the configuration property file.

WebSphere Application Server full profile
You must log in to the WebSphere Application Server administration
console and add the setting of the ibm.worklight.jndi.configuration
property to the Java Virtual Machine custom properties.

To add this property setting:
1. Select Servers > Server types > WebSphere Application Servers.
2. Select the name of your server.
3. Expand “Java and process management” and select “Process

Definition”
4. Select “Java Virtual Machine”.
5. Select “Custom Properties” and click New.

Installing and configuring 6-237

6. Specify the name as ibm.worklight.jndi.configuration.
7. Specify the value as the name of the configuration.
8. Click Apply.
9. Click Save.

When the property is set, to enable the configuration, restart the
appropriate MobileFirst Server components. These components are
displayed in the WebSphere Application Server administration console
under WebSphere enterprise applications.

WebSphere Application Server Liberty profile
You must edit the $LIBERTY_HOME/usr/servers/worklightServer/
bootstrap.properties file and set the ibm.worklight.jndi.configuration
property to point to the name of the configuration.

For example:
ibm.worklight.jndi.configuration=testconf

Alternatively, instead of editing the bootstrap.properties file, create or
edit the $LIBERTY_HOME/usr/servers/worklightServer/jvm.options file. For
example, add:
-Dibm.ibm.worklight.jndi.configuration=testconf

To enable the configuration, restart the web application server.

Apache Tomcat
You must edit the $TOMCAT_HOME/conf/catalina.properties file and set the
ibm.worklight.jndi.configuration property to point to the name of the
configuration. For example:
ibm.worklight.jndi.configuration=testconf

Alternatively, instead of editing the catalina.properties file, depending
on the operating system, create or edit one of the following files:
v On UNIX systems: $TOMCAT_HOME/bin/setenv.sh

For example, add:
CATALINA_OPTS="$CATALINA_OPTS -Dibm.worklight.jndi.configuration=testconf"

v On Microsoft Windows systems: $TOMCAT_HOME/bin/setenv.bat
For example, add:
set CATALINA_OPTS=%CATALINA_OPTS% -Dibm.worklight.jndi.configuration=testconf

To enable the configuration, restart the web application server.

Adding the shared library (WebSphere Application Server full
profile)
Define the shared library and specify which web applications use it.

Before you begin

Install the shared library jndiprops.jar in a suitable directory in the WebSphere
Application Server installation directory.

About this task

You can install the property file as a shared library for all MobileFirst Server
components. To do so, you must log in to the WebSphere Application Server
administration console to add the shared library.

6-238 IBM MobileFirst Platform Foundation for iOS V7.0.0

Procedure
1. Select Environment > Shared Libraries.
2. Select your scope in the fields Node= and Server=.
3. Click New.
4. Enter a name, for example, “MobileFirst JNDI Properties”.
5. Enter a description, for example, “IBM MobileFirst JNDI property package”.
6. Enter the classpath of the jndiprops.jar file. The $WAS_INSTALL_DIR/profiles/

profile-name directory can be specified as ${USER_INSTALL_ROOT}.
7. Select the option “Use an isolated class loader for this shared library”.
8. Click Apply.
9. Click Save.

10. Specify which web applications should use the shared library.
a. In the administration console, select Applications > Application Types >

WebSphere enterprise applications. You should stop all applications that
you are going to change, because the operations run faster when the
applications are stopped.

b. Select an application, for example, IBM MobileFirst Administration Service.
c. Select Shared library references.
d. In “Application”, select IBM MobileFirst Administration Service.
e. Click Reference shared libraries.
f. Move the MobileFirst JNDI Properties library from Available to Selected.
g. Click OK.
h. Click Save.

Repeat this procedure for the other required web applications from among
MobileFirst Operations Console, MobileFirst project, Application Center
Service, Application Center Console.

What to do next

Go to Applications > Application Types > WebSphere enterprise applications
and restart all the web applications.

Typical topologies of a MobileFirst instance in an extranet
infrastructure

A MobileFirst instance uses a particular topology that is typical for organizations
with an established extranet infrastructure.

Installing and configuring 6-239

The following figure depicts this topology.

Such a topology is based on the following principles:
v MobileFirst Server is installed in the organization local area network (LAN),

connecting to various enterprise back-end systems.
v MobileFirst Server can be clustered for high availability and scalability.
v MobileFirst Server uses a database for storing push notification information,

statistics for reporting and analytics, and the metadata that the server needs at
run time. All instances of MobileFirst Server share a single instance of the
database.

Figure 6-20. Typical topology of a MobileFirst instance

6-240 IBM MobileFirst Platform Foundation for iOS V7.0.0

v MobileFirst Server is installed behind a web Single Sign-On (SSO) authentication
infrastructure, which acts as a reverse proxy and provides the Security Socket
Layer (SSL).

MobileFirst Server can be installed in different network configurations, which
might include several Data Management Zone (DMZ) layers, reverse proxies,
Network Address Translation (NAT) devices, firewalls, high availability
components such as load balancers, IP sprayers, clustering, and alike. Some of
these components are explained. However, this document assumes a simpler
configuration in which MobileFirst Server is installed in the DMZ.

Setting up IBM MobileFirst Platform Foundation for iOS in
WebSphere Application Server cluster environment

You can set up a MobileFirst cluster environment with IBM WebSphere Application
Server Network Deployment V8.5 and IBM HTTP Server.

About this task

This procedure explains how to set up IBM MobileFirst Platform Foundation for
iOS in the topology shown in Figure 1:

If you install IBM HTTP Server, the administration components require certain
JNDI properties to be configured. For more information, see “Using a reverse
proxy with server farm and WebSphere Application Server Network Deployment
topologies” on page 6-18 and “Defining the endpoint of the MobileFirst
Administration services” on page 6-78.

The instructions are based on the hardware and software that are listed in the
following Table 6-58 on page 6-242 and Table 6-59 on page 6-242 tables.

Figure 6-21. MobileFirst cluster topology with IBM WebSphere Application Server Network Deployment

Installing and configuring 6-241

Table 6-58. Hardware

Host name Operating system Description

Host1 RHEL 6.2 WebSphere Application
Server Deployment Manager
and IBM HTTP Server.

Host2 RHEL 6.2 WebSphere Application
Server cluster node / server
1

Host3 RHEL 6.2 WebSphere Application
Server cluster node / server
2

Host4 RHEL 6.2 DB2 server

Table 6-59. Software

Name Description

IBM Installation Manager 1.8 Install IBM WebSphere Application Server
Network Deployment, IBM HTTP Server,
IBM Web Server Plug-ins for WebSphere
Application Server, and IBM MobileFirst
Platform Foundation for iOS.

IBM WebSphere Application Server 8.5 WebSphere Application Server. You need to
get the installation repository before you
start.

IBM HTTP Server 8.5 IBM HTTP Server. You need to get the
installation repository before you start. It is
also included in the WebSphere Application
Server installation repository.

Web Server Plug-ins 8.5 IBM HTTP Server Plugin. You need to get
the installation repository before you start. It
is also included in the WebSphere
Application Server installation repository.

IBM MobileFirst Platform Foundation for
iOS V7.0.0

IBM MobileFirst Platform Foundation for
iOS runtime. You need to get access to the
installation repository before you start.

IBM DB2 V9.7 or later DB2 Database. Your DB2 server must be
available before you start the IBM
MobileFirst Platform Foundation for iOS
installation.

Ant 1.8.3 Configure IBM MobileFirst Platform
Foundation for iOS with Liberty Profile
Server.

Procedure
1. Install WebSphere Application Server Network Deployment, IBM HTTP

Server, and Web Server Plugins.
a. On the Host1 machine, log on with the “root” user ID and run IBM

Installation Manager to install WebSphere Application Server Network
Deployment, IBM HTTP server and Web Server Plugins. This
documentation assumes that the applications are installed in the following
places:

6-242 IBM MobileFirst Platform Foundation for iOS V7.0.0

WebSphere Application Server Network Deployment home
/opt/WAS85

IBM HTTP Server home
/opt/IBM/HTTPServer

Web Server Plugins home
/opt/IBM/HTTPServer/Plugins

b. Repeat step 1a on Host2 and Host3, but install only WebSphere
Application Server Network Deployment.

2. Create a deployment manager and nodes.
a. To avoid network errors, add the host name and IP mapping to the

/etc/hosts file.

On Windows:
Add the IP-to-host mapping to C:\Windows\System32\drivers\etc\
hosts.

On Linux:
Add the IP-to-host mapping to /etc/hosts.

For example:
9.186.9.75 Host1
9.186.9.73 Host2
9.186.9.76 Host3

b. Create a deployment manager and IBM HTTP Server node on Host1. You
can change the profile name and profile path to suit your environment.
1) Create the deployment manager profile. The following command

creates a profile named “dmgr:”

On Windows:
./manageprofiles.bat -create -profileName dmgr
-profilePath ../profiles/dmgr -templatePath
../profileTemplates/management -severType
DEPLOYMENT_MANAGER

On Linux:
./manageprofiles.sh -create -profileName dmgr
-profilePath ../profiles/dmgr506 -templatePath
../profileTemplates/management -severType
DEPLOYMENT_MANAGER

2) Create an IBM HTTP Server node profile. The following command
creates a profile named "ihs":

On Windows:
./manageprofiles.bat -create -profileName ihs
-profilePath ../profiles/ihs -templatePath
../profileTemplates/managed

On Linux:
./manageprofiles.sh -create -profileName ihs -profilePath
../profiles/ihs506 -templatePath ../profileTemplates/
managed

3) Start the deployment manager:

On Windows:
./startManager.bat

Installing and configuring 6-243

On Linux:
./startManager.sh

4) Add an IBM HTTP Server node to the deployment manager. The
following command adds the node defined by the “ihs” profile to the
deployment manager running on Host1, and assigns port 8879:

On Windows:
./addNode.bat Host1 8879 -profileName ihs

On Linux:
./addNode.sh Host1 8879 -profileName ihs

5) From the WebSphere Application Server administrative console, click
System administration > Nodes and check that the node is added to
the deployment manager.

Note: Node names might be different from the profile names you
specify because WebSphere Application Server automatically generates
a display name for a new node.

c. Create MobileFirst node1 on Host2.
1) Create a profile for the node. The following command creates a profile

named node1:

On Windows:
./manageprofiles.bat -create -profileName node1
-profilePath ../profiles/node1 -templatePath
../profileTemplates/managed

On Linux:
./manageprofiles.sh -create -profileName node1
-profilePath ../profiles/node1 -templatePath
../profileTemplates/managed

2) Add the node to the deployment manager. The following command
adds the node defined by the node1 profile to the deployment manager
running on Host1, and assigns port 8879:

On Windows:
./addNode.bat Host1 8879 -profileName node1

On Linux:
./addNode.sh Host1 8879 -profileName node1

d. Repeat step 2c to create MobileFirst node2 on Host3.
e. From the WebSphere Application Server administrative console, click

System administration > Nodes and check that the nodes you added to
the deployment manager are listed.

6-244 IBM MobileFirst Platform Foundation for iOS V7.0.0

Note: Node names might be different from the profile names you specify
because WebSphere Application Server automatically generates a display
name for a new node.

3. Create a cluster and add MobileFirst nodes as members.
a. From the WebSphere Application Server administrative console, click

Servers > Clusters > WebSphere application server clusters, and then
click New to create a new cluster.

b. For each MobileFirst node, add a member to the cluster: in the fields
provided, enter the required information, and then click Add Member.

Installing and configuring 6-245

c. From the WebSphere Application Server administrative console, click
Servers > Server Types > WebSphere application servers to check that the
cluster member servers are listed.

d. If the status column indicates that nodes are not synchronized, click
System Administration > Nodes, and then click Synchronize to
synchronize your nodes to the deployment manager.

4. Install MobileFirst Server on Host1. Ensure that the WebSphere Application
Server Network Deployment cluster is created without errors before you begin
the installation. For installation instructions, see “Installing MobileFirst
Server” on page 6-2.

5. Configure the databases. For instructions, see “Creating and configuring the
databases with Ant tasks” on page 10-13.

6. In IBM MobileFirst Platform Command Line Interface for iOS, create a project
and build a MobileFirst project WAR file. See “Artifacts produced during
development cycle” on page 8-1.

7. Configure IBM MobileFirst Platform Foundation for iOS with the WebSphere
Application Server Network Deployment cluster. For instructions, see
“Deploying a project WAR file and configuring the application server with
Ant tasks” on page 10-14. Modify the Ant template to match your WebSphere
Application Server cluster and database server.

8. Verify the installation.
a. Restart the WebSphere Application Server cluster.
b. From the WebSphere Application Server administrative console, click

Resources > JDBC > Data sources, and check that the data sources
jdbc/WorklightAdminDS, jdbc/WorklightDS and jdbc/WorklightReportsDS
exist. If Application Center is installed, check that the data source
jdbc/AppCenterDS exists.

6-246 IBM MobileFirst Platform Foundation for iOS V7.0.0

c. Select the data sources and click Test connection to verify the DB2
database connection. Confirmations similar to the ones in the following
messages indicate a successful connection.

d. Go to Applications > Application Types > WebSphere enterprise
applications and check that the MobileFirst Operations Console
application is running.

e. Now that you have deployed IBM MobileFirst Platform Foundation for
iOS on the two node servers, you can access the MobileFirst Operations
Console on each host by browsing to the associated URLs:
v http://Host2:9080/worklightconsole

v http://Host3:9080/worklightconsole

Check that both MobileFirst Operations Console are running.
9. Configure the IBM HTTP Server.

a. From the WebSphere Application Server administrative console, go to
Servers > Server Types > Web servers, and then click New to create a
new IBM HTTP server.

b. Select the "ihs" node you previously created on Host1, then from the Type
list, select IBM HTTP Server, and then click Next.

Installing and configuring 6-247

c. Enter the IBM HTTP Server home and Web Server Plugins home you
previously selected on Host1, and then click Next and save your
configuration.

d. In the administrative console, on the Web servers page, click Generate
Plug-in to generate the plug-in configuration file.

A confirmation message is displayed.

e. Make a note of the plugin-cfg.xml location displayed in the confirmation
message.

6-248 IBM MobileFirst Platform Foundation for iOS V7.0.0

f. In the administrative console, on the Web servers page, click ihs, and then
in the Configuration file name field, click Edit.

g. In the editor, add a was_ap22_module and a WebSpherePluginConfig
configuration to your http.conf file by adding the following text:

On Windows:
LoadModule was_ap22_module {IHS_Plugin_HOME}/bin/{64bits}/mod_was_ap22_http.dll
WebSpherePluginConfig {path to}/plugin-cfg.xml

On Linux:
LoadModule was_ap22_module {IHS_Plugin_HOME}/bin/{64bits}/mod_was_ap22_http.so
WebSpherePluginConfig {path to}/plugin-cfg.xml

h. In the administrative console, on the Web servers page for the "ihs" server,
click Plug-in properties.

i. In the Plug-in Configuration file name field, click View.

Installing and configuring 6-249

j. Search for the cluster node and MobileFirst URI in the plugin-cfg.xml file.
For example:

<ServerCluster CloneSeparatorChange="false"
GetDWLMTable="false"
IgnoreAffinityRequests="true"
LoadBalance="Round Robin"
Name="Worklight"
PostBufferSize="0"
PostSizeLimit="-1"
RemoveSpecialHeaders="true"
RetryInterval="60"
ServerIOTimeoutRetry="-1">
<Server CloneID="17oi9lu2o"

ConnectTimeout="5"
ExtendedHandshake="false"
LoadBalanceWeight="2"
MaxConnections="-1"
Name="topowas1Node01_server1"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="topowas1" Port="9080" Protocol="http"/>
<Transport Hostname="topowas1" Port="9443" Protocol="https">

<Property Name="keyring" Value="/opt/Plugins/config/ihs/plugin-key.kdb"/>
<Property Name="stashfile" Value="/opt/Plugins/config/ihs/plugin-key.sth"/>

</Transport>
</Server>
<Server CloneID="17oi9m7kg"

ConnectTimeout="5"
ExtendedHandshake="false"
LoadBalanceWeight="2"
MaxConnections="-1"
Name="topowas2Node01_server2"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="topowas2" Port="9080" Protocol="http"/>
<Transport Hostname="topowas2" Port="9443" Protocol="https">

<Property Name="keyring" Value="/opt/Plugins/config/ihs/plugin-key.kdb"/>
<Property Name="stashfile" Value="/opt/Plugins/config/ihs/plugin-key.sth"/>

</Transport>
</Server>

<PrimaryServers>
<Server Name="topowas1Node01_server1"/>
<Server Name="topowas2Node01_server2"/>

</PrimaryServers>
</ServerCluster>

6-250 IBM MobileFirst Platform Foundation for iOS V7.0.0

<UriGroup Name="default_host_Worklight_URIs">
<Uri AffinityCookie="JSESSIONID"

AffinityURLIdentifier="jsessionid"
Name="/appcenterconsole/*"/>

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/worklight/*"/>
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/applicationcenter/*"/>

</UriGroup>

If your configuration file does not include cluster servers and URIs, delete
the "ihs" server and create it again.

k. Optional: On the Plug-in properties page for the "ihs" server, click Request
Routing if you want to set a load-balancing policy.

l. Optional: On the Plug-in properties page for the "ihs" server, click Caching
if you want to configure caching.

10. Start the IBM HTTP server and verify that the server is running.
a. In the WebSphere Application Server administrative console, go to Servers

> Server Types > Web servers.
b. Select the IBM HTTP server you created (in this example, named "ihs"),

and then click Start.

Installing and configuring 6-251

c. If the server fails to start, check the log file. To find the location of the log
file:
1) In the administrative console, on the Web servers page for the "ihs"

server, click Log file.
2) On the log file page, click the Configuration tab.
3) The location of the log file is displayed in the Error log file name field.

d. To verify that the IBM HTTP server is running, enter the URL for the
MobileFirst Operations Console in a web browser. For example:
http://Host1:80/worklightconsole.

Results

IBM MobileFirst Platform Foundation for iOS is now installed on an IBM
WebSphere Application Server Network Deployment cluster, and is ready for use.

Setting up an IBM HTTP Server in an IBM WebSphere
Application Server Liberty profile farm

You can set up a MobileFirst cluster environment with Liberty profile.

Before you begin

Install a server farm for Liberty. See “Installing a server farm” on page 6-97. If a
server farm is not configured, the MobileFirst Server installation does not work
properly, and changes made by using the MobileFirst Operations Console or
Administration Service are not replicated to all the servers of the farm, resulting in
inconsistent behavior for client devices that connect to the MobileFirst Server.

6-252 IBM MobileFirst Platform Foundation for iOS V7.0.0

About this task

You can set up IBM MobileFirst Platform Foundation for iOS in the topology
similar to the one shown in Figure 6-22.

If you install IBM HTTP Server, the administration components require certain
JNDI properties to be configured. For more information, see “Using a reverse
proxy with server farm and WebSphere Application Server Network Deployment
topologies” on page 6-18 and “Defining the endpoint of the MobileFirst
Administration services” on page 6-78.

This procedure uses the hardware listed in Table 6-60 and the software listed in
Table 6-61 on page 6-254.

Table 6-60. Hardware

Hostname Operating system Description

Host1 RHEL 6.2 IBM HTTP server with Web
Server plug-in, acting as load
balancer.

Host2 RHEL 6.2 Liberty farm server 1

Host3 RHEL 6.2 Liberty farm server 2

Host4 RHEL 6.2 DB2 server

Figure 6-22. MobileFirst cluster topology with Liberty profile

Installing and configuring 6-253

Table 6-61. Software

Name Description

IBM Installation Manager Install IBM HTTP Server , IBM Liberty
profile, and IBM MobileFirst Platform
Foundation for iOS.

IBM HTTP Server You need to get access to the installation
repository before you start the procedure.
IBM HTTP Server is also included in the
WebSphere Application Server installation
repository.

Web Server Plug-ins You need to get access to the installation
repository before you start the procedure.
IBM HTTP Server Plugin is also included in
the WebSphere Application Server
installation repository.

IBM Liberty profile You need to get access to the installation
repository before you start the procedure.
IBM Liberty profile is also included in the
WebSphere Application Server installation
repository.

IBM MobileFirst Platform Foundation for
iOS

You need to get access to the installation
repository before you start the procedure.

IBM DB2 Your DB2 server must be available before
you start the IBM MobileFirst Platform
Foundation for iOS installation.

Procedure
1. Install IBM HTTP Server and Web Server Plugins.

a. On the Host1 machine. log on with the “root” user ID and run IBM
Installation Manager to install the IBM HTTP server and Web Server
Plugins. This documentation assumes that the applications are installed in
the following places:

IBM HTTP Server home
/opt/HTTPServer

Web Server Plugins home
/opt/Plugins

2. Start the Liberty profile servers to test whether you can access the MobileFirst
Operations Console on Host2 and Host3 by browsing to the associated URLs:
v http://Host2:9080/worklight/console

v http://Host3:9080/worklight/console

Check that both MobileFirst Operations Console are running.
3. Run the following command on Host1 to start the IBM HTTP server.

/opt/HTTPServer/bin/httpd -d /opt/HTTPServer -k start –f /opt/HTTPServer/conf/httpd.conf

If you encounter problems during IBM HTTP server startup, see
“Troubleshooting IBM HTTP Server startup” on page 6-259.

4. Ensure that the IBM HTTP Server can be accessed at the following URL in a
web browser:
http://<hostname>:<port>

6-254 IBM MobileFirst Platform Foundation for iOS V7.0.0

5. For each Liberty server, generate a web server plug-in configuration file named
plugin-cfg.xml. The web server plug-in is used to forward HTTP requests from
the web server to the application server.
a. Start the server that hosts your applications and ensure that the

localConnector-1.0 feature and other required features are included in the
server configuration. Use the pluginConfiguration element in the server
configuration file to specify the webserverPort and webserverSecurePort
attributes for requests that are forwarded from the web server. By default,
the value of webserverPort is 80 and the value of webserverSecurePort is
443. Assign the value * to the host attribute to ensure that applications on
the Liberty server can be accessed from a remote browser. Here is an
example of a server.xml server configuration file:
<server description="new server">
<featureManager>

<feature>localConnector-1.0</feature>
<feature>jsp-2.2</feature>

</featureManager>
<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9080">

<tcpOptions soReuseAddr="true" />
</httpEndpoint>
<pluginConfiguration webserverPort="80" webserverSecurePort="443"/>

</server>

b. Use one of the following methods to generate the plugin-cfg.xml file for
the Liberty server running your application.
v jConsole:

1) Using the same JDK as the server, run the jConsole Java utility from a
command prompt. For example, run the following command:
C:\java\bin\jconsole

2) In the jConsole window, click Local Process, click the server process
in the list of local processes, and then click Connect.

3) In the Java Monitoring & Management Console, click the MBeans tab.

Installing and configuring 6-255

4) Select and invoke the defaultPluginConfig generation MBean
operation to generate the plugin-cfg.xml file.

You can find the generated file in the \wlp\usr\servers\
<server_name> directory. Here is an example:

<?xml version="1.0" encoding="UTF-8"?>
<Config ASDisableNagle="false"

AcceptAllContent="false"
AppServerPortPreference="HostHeader"
ChunkedResponse="false"
FIPSEnable="false"
IISDisableNagle="false"
IISPluginPriority="High"
IgnoreDNSFailures="false"
RefreshInterval="60"
ResponseChunkSize="64"

6-256 IBM MobileFirst Platform Foundation for iOS V7.0.0

SSLConsolidate="false"
SSLPKCSDriver="REPLACE"
SSLPKCSPassword="REPLACE"
TrustedProxyEnable="false"
VHostMatchingCompat="false">
<Log LogLevel="Error" Name="String\logs\String\http_plugin.log"/>
<Property Name="ESIEnable" Value="true"/>
<Property Name="ESIMaxCacheSize" Value="1024"/>
<Property Name="ESIInvalidationMonitor" Value="false"/>
<Property Name="ESIEnableToPassCookies" Value="false"/>
<Property Name="PluginInstallRoot" Value="String"/>
<VirtualHostGroup Name="default_host">

<VirtualHost Name="*:443"/>
<VirtualHost Name="*:80"/>
<VirtualHost Name="*:9080"/>

</VirtualHostGroup>
<ServerCluster CloneSeparatorChange="false"

GetDWLMTable="false"
IgnoreAffinityRequests="true"
LoadBalance="Round Robin"
Name="String_default_node_Cluster"
PostBufferSize="64"
PostSizeLimit="-1"
RemoveSpecialHeaders="true"
RetryInterval="60">
<Server CloneID="s56"

ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String0"
ServerIOTimeout="900"
WaitForContinue="false">

<Transport Hostname="wasvm56" Port="9080" Protocol="http"/>
</Server>
<PrimaryServers>

<Server Name="default_node_String0"/>
</PrimaryServers>

</ServerCluster>
<UriGroup Name="default_host_String_default_node_Cluster_URIs">

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/tri-web/*"/>
</UriGroup>
<Route ServerCluster="String_default_node_Cluster"

UriGroup="default_host_String_default_node_Cluster_URIs"
VirtualHostGroup="default_host"/>

</Config>

v Eclipse:
1) Make sure your Liberty server is started.
2) In Eclipse, in the servers panel, right-click the Liberty server, and then

click Utilities > Generate Plugin Config.
c. Copy the plugin-cfg.xml file to the machine that hosts the IBM HTTP

Server web server, and then restart the web server to activate the settings in
the file. Typically, you must enable the plug-in within the httpd.conf file of
the web server by using the LoadModule phrase, and you must specify the
location of the plugin-cfg.xml file using the WebSpherePluginConfig
phrase.

On Windows:
LoadModule was_ap22_module "path\to\mod_was_ap22_http.dll"
WebSpherePluginConfig "path\to\plugin-cfg.xml"

On other distributed systems:
LoadModule was_ap22_module "path\to\mod_was_ap22_http.so"
WebSpherePluginConfig "path\to\plugin-cfg.xml"

Installing and configuring 6-257

6. Use one of the following methods to merge the plugin-cfg.xml files for all the
Liberty servers in the cluster.
v Manually merge the files using a text editor.
v Use the job manager to submit a Generate merged plugin configuration for

Liberty servers job.
For more information about the job manager, see Generating a merged
plug-in configuration for Liberty profile servers using the job manager.

7. Verify that workloads are distributed to multiple Liberty servers via the IBM
HTTP Server and Web Server Plugins.
a. Ensure that session affinity is enabled.

To do so, check that a CloneID attribute is included for each server in the
plugin-cfg.xml file of the IBM HTTP Server and Web Server Plugins.
Although you can generate CloneID values automatically, in production
environments, you must specify particular strings in the Liberty Profile
server.xml file. See Configuring session persistence for the Liberty profile.
If you do not specify particular strings, the value of the CloneID might
change under some circumstances and session affinity would stop working.
Automatically generated CloneID should not be used in a production
environment. In WebSphere Application Server Liberty profile, the CloneID
is generated when you start a server for the first time; it is regenerated if
you start the server with the --clean option.
In production use, manually assigning a clone ID ensures that the CloneID
is stable and that request affinity is correctly maintained. The CloneID must
be unique for each server and can be 8 to 9 alphanumeric characters in
length.
The following example shows CloneID attributes specified for three servers:
<ServerCluster CloneSeparatorChange="false"
GetDWLMTable="false"
IgnoreAffinityRequests="true"
LoadBalance="Round Robin"
Name="String_default_node_Cluster1"
PostBufferSize="64"
PostSizeLimit="-1"
RemoveSpecialHeaders="true"
RetryInterval="60">
<Server CloneID="s59"
ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String1"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="wasvm59.example.com" Port="9080" Protocol="http"/>

</Server>
<Server CloneID="s56"
ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String2"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="wasvm56.example.com" Port="9080" Protocol="http"/>

</Server>
<Server CloneID="vm28"
ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String3"
ServerIOTimeout="900"

6-258 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tagt_jobmgr_liberty_plugin_merge.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tagt_jobmgr_liberty_plugin_merge.html
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_session_persistence.html?lang=en

WaitForContinue="false">
<Transport Hostname="wasvm28.example.com" Port="9080" Protocol="http"/>

</Server>
<PrimaryServers>

<Server Name="default_node_String1"/>
<Server Name="default_node_String2"/>
<Server Name="default_node_String3"/>

</PrimaryServers>
</ServerCluster>

b. Ensure that each Liberty server is started.
c. Verify that round-robin load-balancing is successfully routing application

requests to each of the backend Liberty servers.

Troubleshooting IBM HTTP Server startup
Problems to start the IBM HTTP Server during deployment of a IBM MobileFirst
Platform Server on a WebSphere Application Server Liberty profile farm might be
caused by an exception in the runtime library.

About this task

When you set up IBM MobileFirst Platform Foundation for iOS on a WebSphere
Application Server Liberty profile farm, you are instructed to start the IBM HTTP
Server by running the following command:
/opt/HTTPServer/bin/httpd -d /opt/HTTPServer -k start -f /opt/HTTPServer/conf/httpd.conf

If the attempt fails with the following message, the problem might be caused by an
attempt to start IBM HTTP Server outside a WebSphere Application Server
environment in which certain libraries cannot be found.
/opt/HTTPServer/bin/httpd: error while loading shared libraries: libexpat.so.0:
cannot open shared object file: No such file or directory

If a similar message is displayed, you can make the required libraries available as
follows.

Procedure
1. Check the IBM HTTP Server libraries:

ldd /opt/HTTPServer/bin/httpd

The output shows that libexpat.so.0 cannot be found:
linux-vdso.so.1 => (0x00007fff8c9d3000)
libm.so.6 => /lib64/libm.so.6 (0x00000039fb000000)
libaprutil-1.so.0 => /usr/lib64/libaprutil-1.so.0 (0x00007fc371a7d000)
librt.so.1 => /lib64/librt.so.1 (0x00000039fac00000)
libcrypt.so.1 => /lib64/libcrypt.so.1 (0x0000003a07c00000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00000039fa800000)
libdl.so.2 => /lib64/libdl.so.2 (0x00000039fa000000)
libexpat.so.0 => not found
libapr-1.so.0 => /usr/lib64/libapr-1.so.0 (0x00007fc37184f000)
libc.so.6 => /lib64/libc.so.6 (0x00000039fa400000)
libuuid.so.1 => /lib64/libuuid.so.1 (0x0000003a04c00000)
libexpat.so.1 => /lib64/libexpat.so.1 (0x00000039ff400000)
libdb-4.7.so => /lib64/libdb-4.7.so (0x00000039fd800000)
/lib64/ld-linux-x86-64.so.2 (0x00000039f9c00000)
libfreebl3.so => /lib64/libfreebl3.so (0x0000003a08000000)

2. Find the library on the file system.
ls -l `locate libexpat.so.0`

Installing and configuring 6-259

3. Check /etc/ld.so.conf.
cat /etc/ld.so.conf

The output shows that it includes all conf files under /etc/ld.so.conf.d/.
include ld.so.conf.d/*.conf

4. Add the IBM HTTP Server library to the configuration.
a. cd /etc/ld.so.conf.d/

b. Add the http library to the system configuration. The location of the IBM
HTTP Server lib is shown in Step 1.
echo /opt/HTTPServer/lib > httpd-lib.conf

c. Remove the ldd cache.
rm /etc/ld.so.cache

d. Reload the ldd configuration.
/sbin/ldconfig

5. Check the IBM HTTP Server libraries again:
ldd /opt/HTTPServer/bin/httpd

The output shows that libexpat.so.0 is available:
linux-vdso.so.1 => (0x00007fffd594a000)
libm.so.6 => /lib64/libm.so.6 (0x00000039fb000000)
libaprutil-1.so.0 => /opt/HTTPServer/lib/libaprutil-1.so.0 (0x00007f20474bf000)
librt.so.1 => /lib64/librt.so.1 (0x00000039fac00000)
libcrypt.so.1 => /lib64/libcrypt.so.1 (0x0000003a07c00000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00000039fa800000)
libdl.so.2 => /lib64/libdl.so.2 (0x00000039fa000000)
libexpat.so.0 => /opt/HTTPServer/lib/libexpat.so.0 (0x00007f204739c000)
libapr-1.so.0 => /opt/HTTPServer/lib/libapr-1.so.0 (0x00007f2047271000)
libc.so.6 => /lib64/libc.so.6 (0x00000039fa400000)
/lib64/ld-linux-x86-64.so.2 (0x00000039f9c00000)
libfreebl3.so => /lib64/libfreebl3.so (0x0000003a08000000)

6. Start the IBM HTTP Server.

Integrating IBM WebSphere DataPower with a cluster of
instances of MobileFirst Server

You can use IBM WebSphere DataPower as a gateway for all incoming connections
for IBM MobileFirst Platform Foundation for iOS and Application Center, and IBM
HTTP Server (IHS) for load-balancing MobileFirst Server that are deployed on an
IBM WebSphere Application Server 8.5 cluster or a Liberty profile server farm.

Before you begin

Ensure that the following environments are available:
v MobileFirst Server is deployed on an IBM WebSphere Application Server ND

cluster or on a Liberty profile server farm and is configured to use DB2 or any
compatible database. For more information, see “Typical topologies of a
MobileFirst instance in an extranet infrastructure” on page 6-239.

v IBM MobileFirst Platform Foundation for iOS Application Center is set up on an
IBM WebSphere Application Server ND cluster. For more information, see
“Installing and configuring the Application Center” on page 6-162.

6-260 IBM MobileFirst Platform Foundation for iOS V7.0.0

v IBM WebSphere DataPower XI52.
v IBM HTTP Server.
v Any LDAP server with SSL enabled.

About this task

This procedure explains how to set up IBM MobileFirst Platform Foundation for
iOS in the topology similar to the one shown in Figure 6-23.
.

DataPower XI52 acts as the gateway for all IBM MobileFirst Platform Foundation
for iOS and Application Center requests. DataPower validates all incoming user
credentials against an LDAP registry. If the validation is successful, DataPower
generates an LTPA token, which is present as part of a session cookie. This cookie
is only valid for one session and is used for all further requests during that
session. The cookies themselves contain information about the user that has been
authenticated, the realm for which the user was authenticated (such as an LDAP
server) and a timestamp. A request with a valid LTPA cookie can access a server
that is a member of the same authentication domain as the first server. The request
is automatically authenticated, thereby enabling single-sign-on (SSO).

Figure 6-23. IBM MobileFirst Platform Foundation for iOS integration with an IBM WebSphere Application Server 8.5
Cluster or a Liberty profile Server Farm

Installing and configuring 6-261

All requests that reach the MobileFirst cluster or the backend application validate
only the LTPA token. If the LTPA token is valid, the request is authenticated
according to the rules that are set. The LTPA token guarantees that as long as the
token is valid, all requests have SSO capability into all backend servers, including
IBM MobileFirst Platform Foundation for iOS and Application Center.

The following sequence of events takes place when a mobile application makes a
request (see Figure 6-24):
1. The mobile application makes a request to the DataPower gateway.
2. DataPower checks for an LTPA token in the incoming request.
3. If a valid LTPA token is present, the request is sent to the IBM MobileFirst

Platform Foundation for iOS cluster.
v If an LTPA token is not present or if the token is not valid, DataPower

throws an authentication challenge. The mobile application handles the
challenge and then prompts for user credentials.

4. The MobileFirst cluster validates the LTPA token and sends the request to the
backend application server along with the LTPA token.

5. The backend application server validates the LTPA token and sends the
response back to IBM MobileFirst Platform Foundation for iOS.

6. IBM MobileFirst Platform Foundation for iOS forwards the request to
DataPower, and DataPower forwards it to the requesting mobile application.

Figure 6-24. Mobile application request-response flow

6-262 IBM MobileFirst Platform Foundation for iOS V7.0.0

The Application Center request-response flow takes a similar route to the mobile
application flow, except that requests are routed to the Application Center server
instead of to the MobileFirst cluster (see Figure 6-25).

Procedure
1. Configure server security.
v On a WebSphere Application Server cluster:

a. Login to the WebSphere Application Server integrated solutions console.
b. Enable and configure application security.

1) Navigate to Security > Global security, and then click Security
Configuration Wizard.

2) In the "Specify extent of protection" pane, select Enable application
security.

3) In the "Select user repository" pane, click Federated repositories to
integrate with the LDAP server. Several different repositories, both
LDAP and non-LDAP, can be configured in the federated repository.
Enter the LDAP server details. Refer to the WebSphere Application
Server documentation for detailed instructions.

4) Complete the configuration steps and save your changes.
5) On the "Global security" page, confirm that the following settings

apply:
– The Enable administrative security is selected.
– The user account repository is set to LDAP.

Figure 6-25. Application Center request-response flow

Installing and configuring 6-263

c. Enable WebSphere Application Server LTPA SSO between the MobileFirst
Server cluster and backend servers. To support SSO across multiple
WebSphere Application Server domains or cells, you must share the LTPA
keys and the password among the domains. You need to export the LTPA
keys from one of the domains and import them into all other domains in
which you want to enable SSO. For detailed instructions, see Configuring
LTPA and working with keys.

d. Stop and restart the WebSphere Application Server cluster for the
application security changes to take effect.

v On a Liberty profile server farm:
a. Integrate the LDAP server with Liberty profile, For detailed instructions,

see Configuring LDAP user registries with the Liberty profile. You must
configure LDAP user registries on each member of the liberty server
farm. The following file is a sample LDAP configuration for Liberty
server:
<!-- LDAP configuration Start -->
<ldapRegistry id="IBMDirectoryServerLDAP" realm="WASLTPARealm"

host="9.186.9.169" port="389" ignoreCase="true"
baseDN="dc=worklight,dc=com"
bindDN="cn=admin,dc=worklight,dc=com"
bindPassword="passw0rd"
ldapType="IBM Tivoli Directory Server">

<idsFilters userFilter="(&(uid=%v)(objectclass=posixAccount))"
groupFilter="(&(cn=%v)(objectclass=posixGroup))"
userIdMap="*:uid"
groupIdMap="*:cn"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember;

groupOfNames:member;groupOfUniqueNames:uniqueMember" />
</ldapRegistry>

b. Configure SSO for the Liberty server farm. To enable SSO on Liberty, you
must configure an LTPA key file for each Liberty server in the Liberty
farm. See Configuring LTPA on the Liberty profile. The following file is a
sample LTPA configuration for Liberty server:

<ltpa keysFileName="${server.config.dir}/resources/security/ltpa.keystore" keysPassword="passw0rd" expiration="120" />

2. Configure MobileFirst Server.
You can secure IBM MobileFirst Platform Foundation for iOS in a typical
WebSphere Application Server runtime environment in two ways:

Option 1
Securing WebSphere Application Server using application security and
securing the IBM MobileFirst Platform Foundation for iOS WAR file.

Option 2
Securing WebSphere Application Server using application security but
not securing the IBM MobileFirst Platform Foundation for iOS WAR
file.

Option 1 provides greater authentication security. The application server, such
as the IBM WebSphere Application Server Liberty profile (Liberty) protects all
resources and forces users to log in before any other authentication mechanism.
The behavior occurs regardless of the expected authentication order for a
security test. See “Supported configurations for LTPA” on page 10-90 for more
information.
Once the user has been successfully authenticated, an LTPA token is returned.
This LTPA token needs to be present as part of all future requests from the
mobile application, including adapter invocations. On the MobileFirst Server
side, the call to the backend application should be modified to carry this LTPA
token.

6-264 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_ltpa_and_keys.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_ltpa_and_keys.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ldap.html
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_sec_ltpa.html

For the purpose of explaining how this is done, assume that authentication
configuration has a security test that uses a realm called WASLTPARealm, which is
of type WebSphere LTPA. Assume also that there is an HTTP adapter defined on
the server. Assume that the adapter is called SecureAdapter, and that it contains
a procedure called getAccountInfo.
The following code snippet shows how to pass the LTPA token when invoking
an adapter procedure from the mobile application.
function getAccountInfo(){

var ltpaToken
if(WL.Client.isUserAuthenticated(’WASLTPARealm’)){
var attrs = WL.Client.getUserInfo(’WASLTPARealm’, ’attributes’);
if(attrs){

ltpaToken = attrs.LtpaToken;
console.log(’Set ltpaToken again: ’+ltpaToken);

}
}

var token = {’LtpaToken2’ : ltpaToken};
var invocationData = {
adapter: "SecureAdapter",
procedure: "getAccountInfo",
parameters: [token]

};

WL.Client.invokeProcedure(invocationData, {
onSuccess: <on success callback>,
onFailure: <on failure callback>

});
}

On the server side, the adapter procedure needs to get the token, which is
passed as a parameter. This parameter holds the LTPA token information that is
used by the adapter to contact the backend service.
function getAccountInfo(token) {

WL.Logger.info(token);

var input = {
method : ’get’,
returnedContentType : ’xml’,
cookies: token,
path : ’<path to the backend service>’

};

return WL.Server.invokeHttp(input);
}

Since V6.2.0, MobileFirst Server is composed of one or more runtime
environments, an administration console and administration services, an
enterprise application store, and an operational analytics feature. MobileFirst
Server components run as web applications on an application server. For more
information about MobileFirst Server components, see “Introduction to the
MobileFirst Server components” on page 6-5.
The roles associated with the MobileFirst Operations Console and
Administration Services components are different from the role defined in the
WASLTPAModule login module (see “WASLTPAModule login module” on
page 8-285). The MobileFirst Operations Console and Administration services
roles should be mapped to the IT administrator users who are responsible for
running administration tasks on the mobile application such as application
deployment, management, version enforcement, and management of push
notifications.
The roles defined in the WASLTPAModule login module are part of the
MobileFirst runtime environments. These roles should be mapped to the users

Installing and configuring 6-265

or user groups that have been cleared to access the MobileFirst applications.
MobileFirst Operations Console and Administration Services must be set up
and configured before you proceed to deploy the MobileFirst runtime services
See the following instructions depending on your application server, to map the
administration user roles for MobileFirst Operations Console and
Administration Services:
v “Configuring WebSphere Application Server full profile for MobileFirst

Server administration” on page 6-84
v “Configuring WebSphere Application Server Liberty profile for MobileFirst

Server administration” on page 6-85
Once the runtime deployment is completed, you need to map the users against
the roles defined in the WASLTPAModule login module or web.xml. In the
WebSphere Application Server console, open the application configuration tab
of the deployed MobileFirst Server and click Security role to user/group
mapping to map the LDAP user to the MobileFirst roles.

Select your role name and click Map users to map the LDAP user to this
application.
For IBM Worklight V6.0 and earlier, you must edit the web.xml file and add the
user roles. For V6.1.0 and later, the roles can be added as part of the
WASLTPAModule login module. See “WASLTPAModule login module” on page
8-285.

3. Configure Application Center.
a. Complete the following configuration tasks depending on the server being

used:
v “Configuring WebSphere Application Server full profile” on page 6-189
v “Configuring WebSphere Application Server Liberty profile” on page

6-191
b. Manage users with LDAP.

Application Center uses two security roles: appcenteradmin and
appcenteruser. The LDAP users need to be mapped against the security
roles.

Figure 6-26. Mapping the LDAP user to WebSphere Application Server

6-266 IBM MobileFirst Platform Foundation for iOS V7.0.0

Depending on the server that you are using, refer to the "Configuring LDAP
authentication" section under one of the following documentation links:
v “LDAP with WebSphere Application Server V7” on page 6-194
v “LDAP with WebSphere Application Server V8.x” on page 6-200
v “LDAP with Liberty profile” on page 6-204

c. Define the endpoint of the application resources.
In this configuration, Application Center is behind DataPower, which is
acting as a secure reverse proxy. To manage the applications on your device,
the Application Center console must be able to locate the Application Center
REST services and generate the required number of URI that enable the
mobile client to find the Application Center REST services.
By default, the URI protocol, host name, and port are the same as those
defined in the web application server used to access the Application Center
console; the context root of the Application Center REST services is
applicationcenter. When the context root of the Application Center REST
services is changed or when the internal URI of the web application server
is different from the external URI that can be used by the mobile client, the
externally accessible endpoint (protocol, host name, and port) of the
application resources must be defined by configuring the web application
server. (Reasons for separating internal and external URI could be, for
example, a firewall or a secured reverse proxy that uses HTTP redirection.)
The following Application Center JNDI properties must reference the
DataPower gateway's details:
v ibm.appcenter.services.endpoint

v ibm.appcenter.proxy.protocol

v ibm.appcenter.proxy.host

v ibm.appcenter.proxy.port

Depending on the server type, set the Application Center JNDI properties
by completing one of the following procedures:
v “Configuring the endpoint of the application resources (full profile)” on

page 6-215
v “Configuring the endpoint of the application resources (Liberty profile)”

on page 6-216
4. Configure DataPower. DataPower XI52 acts as the gateway for all IBM

MobileFirst Platform Foundation for iOS and Application Center requests.
DataPower validates all incoming user credentials against an LDAP registry.
The following sections show how to configure DataPower.
a. Create a new multi-protocol gateway. Complete the following steps:

1) From the DataPower XI52 control panel, click the Multi-Protocol
Gateway icon to open the Multi-Protocol Gateway main page.

Installing and configuring 6-267

2) Click Add to add a new gateway.
3) Provide a name for the gateway and set Type to dynamic-backend.
4) Make sure that Request Type and Response Type are set to Non-XML.
5) On the Advanced tab page, select Follow Redirects and Process

Backend Errors.
6) On the Stylesheet Params tab page, add the parameters listed in

Table 6-62:

Table 6-62. Stylesheet parameters

Parameter name Value

{http://www.datapower.com/param/
config}applicationcenterBackend

http://<appcenterHostName>:<port>

{http://www.datapower.com/param/
config}worklightBackend

http://<worklightIHSHostName>:<port>

7) On the General tab page, add an HTTPS (SSL) Front Side Handler with
reverse SSL Proxy profile. Ensure that the following methods and
versions are selected:
v HTTP 1.0
v HTTP 1.1
v POST method
v GET method
v PUT method
v HEAD method
v OPTIONS
v DELETE method
v URL with Query Strings
v URL with Fragment Identifiers

8) Click the plus sign (+) to add a new multi-protocol gateway policy.
9) Provide a name for the policy, click Apply Policy, and then click Close

Window. The policy is added to the gateway.
10) Apply your configuration.

Figure 6-27. Accessing the Multi-Protocol Gateway main page

6-268 IBM MobileFirst Platform Foundation for iOS V7.0.0

b. Edit the multi-protocol gateway policy. Add the following rules to provide
form-based authentication, generate an LTPA token and verify the LTPA
token. All the rules are described in the following tables. You must list them
in the same order.
1) worklight-ssl-policy_skipFavicon: see Table 6-63
2) worklight-ssl-policy_verifyLTPA: see Table 6-64
3) worklight-ssl-policy_allowSSLLoginPage: see Table 6-65
4) worklight-ssl-policy_worklightSSLLogin: see Table 6-66 on page 6-270

Table 6-63. Properties of worklight-ssl-policy_skipFavicon

Property Value

Direction Client to Server.

Match v Type = URL

v Pattern = /favicon.ico

Advanced "Set Variable" -> var://service/mpgw/skip-
backside = 1

Result Not applicable.

Table 6-64. Properties of worklight-ssl-policy_verifyLTPA

Property Value

Direction Client to Server.

Match v Type = HTTP

v HTTP tag = Cookie

v Pattern = *LtpaToken*

AAA v Input: INPUT

v Output: NULL

Add a new AAA Policy named VerifyLTPA
with the following configuration:

v Extract Identity: LTPA token

v Method: Accept LTPA Token.

v Acceptable LTPA versions: WebSphere
version 1 and WebSphere version 2

v LTPA key file: upload the LTPA keyfile.

v LTPA key file password: specify the
password for the LTPA keyfile.

v Extract Resource: URL Sent by Client

v Authorization: Allow any authenticated
client.

Transform Upload route.xsl. See “Sample dynamic
routing stylesheet” on page 6-271.

v Input: INPUT

v Output: auth

Result Not applicable.

Table 6-65. Properties of worklight-ssl-policy_allowSSLLoginPage

Property Value

Direction Client to Server.

Installing and configuring 6-269

Table 6-65. Properties of worklight-ssl-policy_allowSSLLoginPage (continued)

Property Value

Match v Type = URL

v Pattern = /(Login|Error)Page\.htm(l)?(\
?originalUrl=.*)?

AAA v Input: INPUT

v Output: NULL

Add a new AAA Policy named
AllowSSLLoginPage with the following
configuration:

v Method: HTML Form-based
Authentication

v HTML Form Policy: Create one with the
default values, but edit these values:

– Use SSL For Login: enabled

– SSL Port: port on which the
multi-protocol gateway is listening.

v Authentication: Pass identity token to
authorization phase

v Resource extraction: URL sent by client

v Authorization: Always allow

Result Not applicable.

Table 6-66. Properties of worklight-ssl-policy_worklightSSLLogin

Property Value

Direction Client to Server.

Match v Boolean Or Combinations: On

v Type = URL

v Pattern: /worklightconsole/*

v Type = URL

v Pattern: /wladmin/*

v Type = URL

v Pattern: /worklight/*

v Type = URL

v Pattern: /j_security_check

v Type = URL

v Pattern: /applicationcenter/*

v Type = URL

v Pattern: /appcenterconsole/*

Advanced “Convert Query Params to XML Action”

6-270 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-66. Properties of worklight-ssl-policy_worklightSSLLogin (continued)

Property Value

AAA Create a new AAA Policy named
worklightSSLFormLogin with the following
configuration:

v Extract Identity:

– Method: HTML Form-based
Authentication

– HTML Form Policy: Select the same
policy created in the previous step.

v Authentication:

– Method: Bind to LDAP server

– Enter the HostName, Port(636)

– Create an SSL Forward proxy profile
with the LDAP server's SSL certificate.

– LDAP Bind DN, in this case would be:
cn=admin,dc=worklight,dc=com

– Enter the LDAP Bind Password.

– LDAP Prefix : uid=

– LDAP Suffix :
ou=people,dc=worklight,dc=com

v Resource extraction: URL sent by client

v Authorization: Allow any authenticated
client.

v Post Processing: Generate LTPA Token ->
on.

– LTPA Token Version: WebSphere
version 2

– LTPA Key File: Select the ltpa key file

– LTPA key file password: Specify the
password for the ltpa keyfile.

Transform Upload route.xsl file. See “Sample dynamic
routing stylesheet.”

v Input: INPUT

v Output: auto

Result Not applicable.

Results

The different pieces of the topology are now configured and provide a seamless
SSO experience for mobile applications as well as for Application Center.

Sample dynamic routing stylesheet
You can use this sample stylesheet to handle the dynamic routing of requests
between IBM MobileFirst Platform Foundation for iOS and IBM MobileFirst
Platform Application Center. You refer to the stylesheet when you create rules to
define a form-based authentication policy that generates and verifies LTPA tokens.

You provide a custom dynamic routing stylesheet when you define rule
worklight-ssl-policy_verifyLTPA (see “Integrating IBM WebSphere DataPower
with a cluster of instances of MobileFirst Server” on page 6-260, Table 6-64 on page
6-269), and when you define rule worklight-ssl-policy_worklightSSLLogin (see

Installing and configuring 6-271

“Integrating IBM WebSphere DataPower with a cluster of instances of MobileFirst
Server” on page 6-260, Table 6-66 on page 6-270).

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dp="http://www.datapower.com/extensions"
xmlns:dpconfig="http://www.datapower.com/param/config"
xmlns:re="http://exslt.org/regular-expressions"
extension-element-prefixes="dp re dpconfig"
exclude-result-prefixes="dp">

<xsl:param name="dpconfig:worklightBackend"/>
<xsl:param name="dpconfig:applicationcenterBackend"/>
<xsl:template match="/">

<xsl:variable name="worklight" select="’worklight’"/>
<xsl:variable name="worklightconsole" select="’worklightconsole’"/>
<xsl:variable name="wladmin" select="’wladmin’"/>
<xsl:variable name="applicationcenter" select="’applicationcenter’"/>
<xsl:variable name="appcenterconsole" select="’appcenterconsole’"/>

<xsl:variable name="worklightBackend" select="$dpconfig:worklightBackend"/>
<xsl:variable name="applicationcenterBackend" select="$dpconfig:applicationcenterBackend"/>

<xsl:variable name="incomingURI" select="dp:variable(’var://service/URI’)"/>
<xsl:variable name="httpContentType" select="dp:http-request-header(’Content-Type’)"/>
<xsl:variable name="accessControlRequestHeaders" select="dp:http-request-header(’Access-Control-Request-Headers’)"/>
<xsl:variable name="accessControlRequestMethod" select="dp:http-request-header(’Access-Control-Request-Method’)"/>

<xsl:choose>
<!-- set the backend server if the url is /worklight -->
<xsl:when test="contains(dp:variable(’var://service/URI’),

$worklight) or contains(dp:variable(’var://service/URI’),
$worklightconsole) or contains(dp:variable(’var://service/URI’), $wladmin)">

<dp:set-http-request-header name="’Content-Type’" value="$httpContentType"/>
<dp:set-variable name="’var://service/routing-url’" value="$worklightBackend"/>
<dp:set-variable name="’var://service/URI’" value="$incomingURI"/>

</xsl:when>

<xsl:when test="contains(dp:variable(’var://service/URI’), $applicationcenter)
or contains(dp:variable(’var://service/URI’), $appcenterconsole)">

<dp:set-http-request-header name="’Content-Type’" value="$httpContentType"/>
<dp:set-http-request-header name="’Access-Control-Request-Headers’" value="$accessControlRequestHeaders"/>
<dp:set-http-request-header name="’Access-Control-Request-Method’" value="$accessControlRequestMethod"/>
<dp:set-variable name="’var://service/routing-url’" value="$applicationcenterBackend"/>
<dp:set-variable name="’var://service/URI’" value="$incomingURI"/>

</xsl:when>

<xsl:when test="contains(dp:variable(’var://service/URI’), ’j_security_check’)">
<dp:set-http-request-header name="’Content-Type’" value="$httpContentType"/>
<dp:set-variable name="’var://service/routing-url’" value="$applicationcenterBackend"/>
<dp:set-variable name="’var://service/URI’" value="’/appcenterconsole/login/j_security_check’"/>

</xsl:when>

<xsl:otherwise>
<xsl:message dp:type="all" dp:priority="error"> No matching url found. </xsl:message>

</xsl:otherwise>
</xsl:choose>

<xsl:value-of select="."/>
</xsl:template>

</xsl:stylesheet>

Endpoints of the IBM MobileFirst Platform Server production server
You can create whitelists and blacklists for the endpoints of the MobileFirst Server.

6-272 IBM MobileFirst Platform Foundation for iOS V7.0.0

Note: Information regarding URLs that are exposed by IBM MobileFirst Platform
Foundation for iOS is provided as a guideline for organizations to make informed
decisions and ensure they are tested in an enterprise infrastructure, based on what
has been enabled for white and black lists.

Table 6-67. MobileFirst Server production endpoints

API URL, under
<application root context>/

Description Suggested for
whitelist?

For more information

MFP Applications

apps/services/api/* Used by client applications for
operations such as init, Direct
Update requests, invocation of
adapter procedures, and more.

Yes “HTTP Interface of the
production server” on page
6-275

apps/services/
random/*

Used for generating a random
number. Used by JSON store
implementation and encrypted
cache on the client side.

Yes, if you plan to
use offline storage
such as JSON store.

“JSONStore overview” on
page 8-161

apps/services/reach Used for the reach API, this
servlet returns status 200 with
OK, letting you verify that the
MobileFirst Server is up and
running.

Yes

apps/services/www/* Used by mobile web or desktop
application to access its resources.

Yes Web application resource
requests

apps/services/
download/*

Deprecated No

apps/services/
preview/*

Used to preview the application. No. Used for
development and
administration
purposes.

Preview application resource
requests

Node Sync

node/integration/* Used to receive notifications from
IBM MobileFirst Platform
Foundation for iOS adapters that
are based on Node.js. Not in use
and can be blocked.

No

Vitality

ws/rest/vitality Used to check server availability.
Returns a list of applications and
adapters. For use of admin
personnel.

No “Vitality queries for checking
server health” on page 12-2

Invoke back end procedure

Installing and configuring 6-273

Table 6-67. MobileFirst Server production endpoints (continued)

API URL, under
<application root context>/

Description Suggested for
whitelist?

For more information

invoke Used to invoke an adapter
procedure.

Yes, if application
uses adapter
authentication
features, or if you
want to access the
adapter directly
and not from the
application. Note
that if this API
passes the firewall,
everyone will be
able to invoke any
adapter procedure
and it will be
protected only by
the adapter
security test and
not by the
application security
test.

“Accessing adapters from the
/invoke endpoint” on page
8-160

subscribeSMS Push subscription service API.
Used by applications.

Yes, if application
uses push
subscription API.

“Web-based SMS
subscription” on page 8-212

receiveSMS SMS subscription service API.
Used by applications.

Yes, if application
uses SMS
subscription API.

“Using two-way SMS
communication” on page
8-219

External Server Security
Deprecated: Staring with V7.0.0, these endpoints are deprecated. Use the OAuth Server endpoints instead. For more
information, see “OAuth-based security model” on page 8-221.

Client side logging

apps/services/
loguploader/*

Used by client applications to
upload their accumulated debug
and analytics logs.

Yes “Client-side log capture” on
page 8-300

apps/services/
configprofile/*

Used by client applications to
GET their log configuration,
which the admin set via the Log
Configuration tab in the IBM
MobileFirst Platform Operations
Console.

Yes “Client-side log capture” on
page 8-300

Dev

dev/* Development service API such as
/invoke, /appdata, /preview, and
others. Used in development
environments only.

No, only for the
development
environment and
not for QA,
pre-production, or
production.

USSD

ussd/* Used for communication with the
USSD (Unstructured
Supplementary Service Data)
gateway.

Yes “USSD Support” on page
8-151

OAuth Server

6-274 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-67. MobileFirst Server production endpoints (continued)

API URL, under
<application root context>/

Description Suggested for
whitelist?

For more information

authorization/v1/
clients/instance

Used by clients applications to
register with the OAuth Server

No “OAuth-based security
model” on page 8-221

authorization/v1/
authorization

Used by client applications to
perform authorization

Yes, if you are
using OAuth

“OAuth-based security
model” on page 8-221

authorization/v1/token Used by client applications to
obtain access tokens

Yes, if you are
using OAuth

“OAuth-based security
model” on page 8-221

authorization/v1/
publickey

Used by external resource filters
to obtain the public key of the
MobileFirst Server

Yes, if you are
using OAuth

“OAuth-based security
model” on page 8-221

authorization/v1/
token/validation

Used for performing online token
validation

Yes, if you are
using OAuth

“OAuth-based security
model” on page 8-221

authorization/v1/
clients/preview

Used for registering applications
in preview mode

No, only for
development

“OAuth-based security
model” on page 8-221

HTTP Interface of the production server
You can use the HTTP interface of the production server to make application API
requests or web application resource requests. Use the following request structures,
headers, and elements.

Application API requests

Use the following request structure to perform an application API request:
{Protocol}://{Worklight Server}/apps/services/api/{Application ID}/{Application Environment}/{Action}

Table 6-68. Application API request headers

Header Name Data Type Description Valid values

x-wl-app-version String Version of the
application

WL-Instance-ID String Protection
mechanism for XSS
attacks.

Table 6-69. Application API request elements

Header Name Data Type Description Valid values

Protocol String HTTP

Worklight Server String Host name or IP
address (and
possibly port)
identifying the
MobileFirst
Server

Installing and configuring 6-275

Table 6-69. Application API request elements (continued)

Header Name Data Type Description Valid values

Application ID String Unique Identifier
of the
application
within the
MobileFirst
Server. Every
application
deployed on the
MobileFirst
Server must have
a unique
identifier

Up to 256
alphanumeric
and underscore
characters

Application Environment String Name of the
environment that
the application
is running on

air,
desktopbrowser,
iOSnative,
ipad, iphone,
JavaMEnative,
mobilewebapp

Action String Requested action Details in
following table

Table 6-70. Actions

Action HTTP Request Parameters

init POST x, isAjaxRequest – see the
following table showing
common parameters.

heartbeat POST x, isAjaxRequest – see the
following table showing
common parameters.

logactivity POST x, isAjaxRequest – see the
following table showing
common parameters.

activity – string.

query POST x, isAjaxRequest – see the
following table showing
common
parameters.filterList –
JSON block

parameterList – JSON block

sorterList – JSON block
Note: When the action is
query, the request URL has
the following structure:
.../query/{Adapter
Name}/{Procedure Name}
where Adapter Name and
Procedure Name are strings.

logout POST x, isAjaxRequest - see the
following table showing
common parameters.

6-276 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-70. Actions (continued)

Action HTTP Request Parameters

login POST x, isAjaxRequest – see the
following table showing
common parameters.

realm – string.

updates POST x, isAjaxRequest – see the
following table showing
common parameters.

skin – current skin name
(string)

checksum – the checksum of
the current skin (string)

skinLoaderChecksum – the
checksum of the skin
selection code (string)

getup POST x, isAjaxRequest - see the
following table showing
common parameters.

deleteup POST x, isAjaxRequest – see the
following table showing
common parameters.

userprefkey – the user
preference to delete.

getuserinfo POST x, isAjaxRequest – see the
following table showing
common parameters.

getgadgetprefs POST x, isAjaxRequest - see the
following table showing
common parameters.

Installing and configuring 6-277

Table 6-70. Actions (continued)

Action HTTP Request Parameters

notifications POST x, isAjaxRequest – see the
following table showing
common parameters.

subscribe – JSON string
containing subscribe options

unsubscribe – when
specified, designates an
unsubscribe action

updateToken – the update
notification token (string)

adapter – the name of the
notification adapter (string)

eventSource – the name of
the notification event source
(string)

alias – notification
subscription alias (string)

tag – the name of the tag
(string)

fbcallback GET or POST x, isAjaxRequest – see the
following table showing
common parameters.

popup – string

composite POST x, isAjaxRequest - see the
following table showing
common parameters.

requests – a JSON string
containing information about
other actions to invoke.

This action is used to
combine several actions in a
single HTTP request.

appversionaccess GET x, isAjaxRequest – see the
following table showing
common parameters.

setup POST x, isAjaxRequest - see the
following table showing
common parameters.

userprefs contains JSON
pairs of preference key and
value

6-278 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 6-70. Actions (continued)

Action HTTP Request Parameters

authentication POST x, isAjaxRequest - see the
following table showing
common parameters.

action values are popup,
test, or test_img

authenticate POST x, isAjaxRequest - see the
following table showing
common parameters.

This is an empty handler
used to allow the client to
respond to authentication
challenges with a
challengeResponse that
cannot fit in a single header
or when all headers
combined are bigger than the
limit for header size.

Table 6-71. Common parameters

Parameter Values Comments

isAjaxRequest true Included with every GET and
POST request only from
Adobe™ AIR application.

_ None Included with every POST
request only from
Webkit-based browsers and
application frameworks:
Safari, Chrome, and Adobe
AIR.

Web application resource requests

Use the following request structure to submit a web application resource request:
{Protocol}://{Worklight Server}/apps/services/www/{Application ID}/
{Application Environment}/{Application Resource Path}

Request elements

See Application API Request Elements for details about the following request
elements: Protocol, Worklight Server, Application ID, and Application
Environment.

Table 6-72. Request elements

Element Data Type Description Valid Values

Application
Resource Path

String HTML, image,
JavaScript, CSS, and
any other
application resource

Example values:
img/bg.png,
myWidget.html,
js/myWidget.js

Installing and configuring 6-279

Preview application resource requests

Use the following request structure to preview application resource requests:
{Protocol}://{Worklight Server}/apps/services/preview/{Application ID}/
{Application Environment}/{Application Version}/{Application Resource Path}

Request elements

See Application API Request Elements for details about the following request
elements: Protocol, Worklight Server, ApplicationID, and Application
Environment.

Table 6-73. Request elements

Element Data Type Description Valid Values

Application
Resource Path

String HTML, image,
JavaScript, CSS,
and any other
application
resource

Example values:
img/bg.png, myWidget.html,
js/myWidget.js

Troubleshooting IBM MobileFirst Platform Server
You can troubleshoot to locate the server and databases on Windows 8, Windows
7, and Windows XP, or to find the cause of installation or database creation failure.

Troubleshooting to find the cause of installation failure
You can troubleshoot to find the cause of installation failure.

About this task

If installation failed but the cause is not obvious, you can troubleshoot by
completing the following procedure:

Procedure

See the failed-install.log file in the installation directory or, if this file does not
exist, the install.log file in the installation directory. On Windows systems, if the
default installation location was chosen, the directory is C:\Program
Files\IBM\Worklight\. This file contains details about the installation process.

What to do next

If you still cannot determine the cause of the installation failure, you can use the
manual installation instructions to investigate the problem more thoroughly. See
“Deploying a project WAR file and configuring the application server manually”
on page 10-39.

Troubleshooting failure to create the DB2 database
An incompatible database connection mode might result in failure to create the
DB2 database.

6-280 IBM MobileFirst Platform Foundation for iOS V7.0.0

About this task

If the following message is displayed when you attempt to create a DB2 database,
proceed as follows:

"Creating database <WL_DB> (this may take 5 minutes) ... failed: Cannot
connect to database <WL_DB> after it was created:
com.ibm.db2.jcc.am.SqlException: DB2 SQL Error: SQLCODE=-1035,
SQLSTATE=57019, SQLERRMC=null, DRIVER=<driver_version>"

Procedure
1. Wait a few minutes for the current DB2 database connections to close, and then

click Back, and then Next to check whether the issue is solved.
2. If the problem persists, contact your database administrator to solve the

database connection issue that is documented on the SQL1035N web page.

Troubleshooting a MobileFirst Server upgrade with Derby as
the database

If IBM MobileFirst Platform Application Center is installed and uses Apache Derby
as a database, stop the application server that runs the application before you run
IBM Installation Manager to upgrade a IBM MobileFirst Platform Server
installation.

About this task

During an upgrade of MobileFirst Server, if Application Center is installed, the
installer migrates the database that is used by Application Center. When Apache
Derby is the database, this operation can fail if the application server that runs
Application Center is not stopped.

The symptom of this problem is that the upgrade fails and the log file contains the
error message Another instance of Derby may have already booted the
database.

Procedure

Before you run IBM Installation Manager to upgrade an installation of MobileFirst
Server and Application Center, stop the application server that runs the
Application Center application.

Troubleshooting failure to authenticate to Application Center
and applications that use the basic registry element

Authentication fails when attempting to log in to the Application Center and other
applications that run on WebSphere Application Server Liberty profile and use the
basicRegistry element.

About this task

When IBM MobileFirst Platform Foundation for iOS is installed with Application
Center on WebSphere Application Server Liberty profile, it adds a basicRegistry
element in the server.xml file of the Liberty server instance, with demo users,
even if a basicRegistry element already exists. Authentication into the Application

Installing and configuring 6-281

http://ibm.biz/knowctr#SSEPGG_10.1.0/com.ibm.db2.luw.messages.sql.doc/doc/msql01035n.html

Center and other applications that use users from the basic registry no longer
works. For example, after an attempt to log in to the Application Center, the
following error message is displayed:
Error 404: java.io.FileNotFoundException: SRVE0190E: File not found: /j_security_check

The liberty server log file contains the following error message:
[ERROR] CWWKS3006E: A configuration exception has occurred. There are multiple
available UserRegistry implementation services; the system cannot determine which to use.

When IBM MobileFirst Platform Foundation for iOS is uninstalled, the basic
registry that was created during the installation by the IBM MobileFirst Platform
Server installer is removed from the server.xml file, even if other users have
been added to that basic registry. If other applications than Application Center use
the basic registry, authentication on these applications is no longer possible. This
issue might include installations of the IBM MobileFirst Platform Operations
Console and Administration Services.

Procedure
1. Move the content of the basic registry that was created by IBM Installation

Manager in the initial basic registry element. For an installation that is not for
test purposes only, do not copy the users demo and appcenteradmin, and remove
them from the appcentergroup. Remove the following code from the
server.xml file:
<!-- Declare the user registry for the Application Center. -->
<basicRegistry id="applicationcenter-registry" realm="ApplicationCenter">

<!-- The users defined here are members of group "appcentergroup",
thus have role "appcenteradmin", and can therefore perform administrative tasks
through the Application Center console. -->

<user name="appcenteradmin" password="admin"/>
<user name="demo" password="demo"/>
<group name="appcentergroup">
<member name="appcenteradmin"/>
<member name="demo"/>

</group>
</basicRegistry>

2. When you uninstall IBM MobileFirst Platform Foundation for iOS, the
uninstaller of MobileFirst Server creates a backup of the server.xml file under
the name server.xml.saved2. Open the server.xml.saved2 file, and copy the
basicRegistry element back in the server.xml file. Remove the users and
groups that were only needed by the Application Center.

Troubleshooting server farm configuration issues
When you start the Administration Services and the MobileFirst runtime
environments, several exception types can be emitted in the application server logs
if the configuration of the server farm is incorrect.

Server ID is not set

MBeanRegistrationException "server id JNDI property is not set".

This is because in the application server configuration, the JNDI property
ibm.worklight.admin.serverid is not set.

You must configure the property ibm.worklight.admin.serverid in the
application server. Restart the application server. For more information, see
“Configuring a MobileFirst project in production by using JNDI
environment entries” on page 10-60.

6-282 IBM MobileFirst Platform Foundation for iOS V7.0.0

Administration Services MBean is already registered

The Administration Services MBean <MBean name> is already registered on
another node of the farm, which means that the JNDI property
ibm.worklight.admin.serverid has the same value on other nodes.

This situation occurs because the Administration Services MBean is already
registered under the same name on another server of the farm. The value
of the JNDI property ibm.worklight.admin.serverid is the same as one
defined in another server of the farm.

You must configure the property ibm.worklight.admin.serverid in the
application server. This property must be unique among the servers of the
farm. Restart the application server.

Installing and configuring 6-283

6-284 IBM MobileFirst Platform Foundation for iOS V7.0.0

Upgrading to IBM MobileFirst Platform Foundation for iOS
V7.0.0

This section contains the procedures for upgrading from IBM Worklight V5.0.6 or
later to V7.0.0 and migrating the applications you created in earlier versions of the
product to work with IBM MobileFirst Platform Foundation for iOS V7.0.0.

About this task

Upgrading from one version of the product to another involves upgrading the
software, upgrading your database, if needed, and sometimes upgrading your
apps. Most of this upgrade is automatically done for you when you use the
installer. However, the upgrade might also involve some manual operations, such
as setting various properties, using special command facilities, and running
supplied Ant tasks. The complete upgrade procedures are detailed in the following
topics.

Those topics cover how to upgrade to V7.0.0 of MobileFirst Server, and how to
migrate your applications for V7.0.0.

Version compatibility
Compatibility among different versions of the IBM MobileFirst Platform
Foundation for iOS client and server depends on several factors.

The following table describes different situations and the compatibility rules that
apply to each.

To understand the compatibility rules, it can be useful to understand the IBM
product release conventions. Each full number of a release is composed of the
following parts, where each part is replaced by a digit from 0 to 9:
version.release.modification.fixpack

Note: Version numbers cited in the table examples are for illustrative purposes
only, and might not correspond to actual releases.

Table 7-1. Version compatibility rules.

Description Compatibility rule Examples

Server and client have same version
and release. (Modification and fix
pack release numbers can be
different.)

Server and client with the same version and
release are fully compatible.

7.0.0.0 server is
compatible with 7.0.0.0
client.

Newer server than client. Compatible. 7.0.0.0 server is
compatible with 6.3.0.0
client

Older server than client. Not compatible. 6.3.0.0 server is not
compatible with 7.0.0.0
client

© Copyright IBM Corp. 2006, 2016 7-1

Table 7-1. Version compatibility rules (continued).

Description Compatibility rule Examples

Server artifacts created with older
version of MobileFirst Studio or the
MobileFirst Platform Command Line
Interface for iOS than the version of
the server.

For complete details of which server, .war file,
and artifacts work together, see Table 2. However,
the following guidelines apply:

For versions prior to 6.1.0, only the same versions
of server, .war file, and application (.wlapp file)
and adapters can work together.

If the initial server version is Worklight Server 6.1
or 6.2, the .war file that was created with the
same version of Worklight Studio or Command
Line Interface for IBM Worklight Developers can
be migrated to a newer server version, but the
newer server can accommodate only artifacts
(.wlapp and adapter files) that were built from
the initial version.

If the initial server version is Worklight Server
6.2.0.1 or later, including MobileFirst Server 6.3 or
later, the .war file that was created with the same
initial version of Studio or the Command Line
Interface can be migrated to the newer server
version. The migrated .war file can accommodate
artifacts that were created with any of the
following versions of Studio or the Command
Line Interface:

v Initial version

v Newer server version that .war file is migrated
to

v Any version prior to the initial version

The artifacts will behave as though they are
running on the older version of the server.

For information about migrating the .war file, see
“Migrating a project WAR file for use with a new
MobileFirst Server” on page 10-39.

Example 1:

Artifacts built with
MobileFirst Studio 6.3.0.0
can run on server 7.0.0.0.
However, the artifacts
will behave as though
they are running on
server version 6.3.0.0.

Example 2:

Initially, a version 6.2.0.1
.war file can run the
artifacts from 6.2.01 and
below on a 6.2.0.1 server.
If this .war file is
migrated to 7.0, then the
migrated .war file can
run 7.0 artifacts.
However, the war file
cannot run MobileFirst
Server 6.3 artifacts.

Server artifacts created with newer
version of MobileFirst Studio or the
MobileFirst Platform Command Line
Interface for iOS than the version of
the server.

Not compatible. Artifacts built with
MobileFirst Studio 7.0.0.0
cannot run on server
6.3.0.0.

Direct Update feature If the version of MobileFirst Studio or the
MobileFirst Platform Command Line Interface for
iOS that was used to build an update package
differs from the version of MobileFirst Studio or
the MobileFirst Platform Command Line Interface
for iOS that was used to build the original
application package then the update will not be
applied.

Original application was
built with MobileFirst
Studio 6.3.0.0; update
was built with
MobileFirst Studio
7.0.0.0. Update will not
occur.

The following table shows which .war file and artifact versions can work with each
server version. Application behavior remains as with the original version of the
application. Version numbers prior to 6.3 apply to Worklight products. Version
numbers of 6.3 and above apply to MobileFirst products.

7-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 7-2. Server, project and artifact compatibility.

Server version Can work with the following project versions
(.war file created with this version of Studio
or Command Line Interface)

Can work with the following artifact versions
(application and adapter files created with this
version of Studio or command line)

7.0.0 7.0.0 5.0.6, 6.0.0, 6.1.0, 6.2.0, 6.3.0, 7.0.0

7.0.0 6.3.0 migrated to 7.0.0 5.0.6, 6.0.0, 6.1.0, 6.2.0, 6.3.0

7.0.0 6.2.0 migrated to 7.0.0 6.2.0

7.0.0 6.10 migrated to 7.0.0 6.1.0

7.0.0 6.0.0 migrated to 7.0.0 6.0.0

7.0.0 5.0.6 migrated to 7.0.0 5.0.6

6.3.0 6.3.0 5.0.6, 6.0.0, 6.1.0, 6.2.0, 6.3.0

6.3.0 6.2.0 migrated to 6.3.0 6.2.0

6.3.0 6.1.0 migrated to 6.3.0 6.1.0

6.3.0 6.0.0 migrated to 6.3.0 6.0.0

6.3.0 5.0.6 migrated to 6.3.0 5.0.6

6.2.0.1 6.2.0.1 5.0.6, 6.0.0, 6.1.0, 6.2.0, 6.2.0.1

6.2.0.1 6.2.0 migrated to 6.2.0.1 6.2.0

6.2.0.1 6.1.0 migrated to 6.2.0.1 6.1.0

6.2.0 6.2.0 6.2.0

6.2.0 6.1.0 migrated to 6.2.0 6.1.0

6.2.0 6.0.0 migrated to 6.2.0 6.0.0

6.2.0 5.0.6 migrated to 6.2.0 5.0.6

6.1.0 6.1.0 6.1.0

6.1.0 6.0.0 migrated to 6.1.0 6.1.0

6.1.0 5.0.6 migrated to 6.1.0 6.0.0

6.0.0 6.0.0 6.0.0

5.0.6 5.0.6 5.0.6

Migrating projects to V7.0.0 using MobileFirst Platform Command Line
Interface for iOS

If you are using IBM MobileFirst Platform Command Line Interface for iOS to
develop an IBM MobileFirst Platform Foundation for iOS project that is from any
release before V7.0.0, your project is automatically migrated to V7.0.0.

When you run the mfp add command or the mfp build command, or when the
MobileFirst Server starts, your MobileFirst project is migrated to V7.0.0.

Migrating IBM SmartCloud Analytics Embedded to IBM MobileFirst
Platform Operational Analytics

If you used IBM SmartCloud Analytics Embedded in previous versions of IBM
MobileFirst Platform Foundation for iOS, you must now migrate to IBM
MobileFirst Platform Operational Analytics.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-3

About this task

In IBM MobileFirst Platform Foundation for iOS V7.0.0, IBM MobileFirst Platform
Operational Analytics replaces IBM SmartCloud Analytics Embedded. Complete
the following steps to migrate to IBM MobileFirst Platform Operational Analytics.
For more information about IBM MobileFirst Platform Operational Analytics, see
“Operational analytics” on page 12-8.

Procedure
1. Install the analytics WAR file on your application server, but do not start the

server. For detailed information about installing the analytics WAR file, see
“Installing the IBM MobileFirst Platform Operational Analytics” on page 6-146.

2. Locate the data folder on your IBM SmartCloud Analytics Embedded server. If
the installation path for IBM SmartCloud Analytics Embedded was not
modified, this folder is located in /opt/IBM/analytics/data.

3. Copy the data folder to the same machine as the machine where the analytics
WAR file is hosted.

Note: The data folder then becomes the location where all analytics data is
stored, so make sure to place this folder in an appropriate location.

4. Modify the datapath JNDI variable on your application server to point to the
data folder that was copied from the IBM SmartCloud Analytics Embedded
server folder in step 3. For example:
<jndiEntry jndiName="analytics/datapath" value="/home/system/data"/>

Important: Make sure the JNDI property points to a copied version of the data
folder. This is to ensure that your data is still backed up in case of data
corruption due to a migration failure.

5. Identify the cluster name that was specified when IBM SmartCloud Analytics
Embedded was installed. This name will be the name of the folder at the root
of the data folder.

6. Modify the clustername JNDI variable on your application server to match the
cluster name that was installed by IBM SmartCloud Analytics Embedded. For
example:
<jndiEntry jndiName="analytics/clustername" value="WLCLUSTER"/>

7. Start the Analytics WAR server and review the console. The migration process
begins automatically. The data is available to view after the migration process is
completed.

Upgrading to MobileFirst Server V7.0.0 in a production environment
Upgrading MobileFirst Server in a production environment is a more exacting
process than in your development environment because you must back up your
data and prepare for the upgrade carefully to minimize production downtime. This
section provides a series of steps to upgrade your production server or servers
efficiently and in the shortest time possible.

When you upgrade from Worklight Server V5.0.6.x or later to V7.0.0 in a
production environment, the process can be more complicated than upgrading to a
new version in your development environment. The upgrade procedure can also
take longer if you have existing MobileFirst applications that run in a production
MobileFirst Server environment. For step-by-step instructions on how to upgrade
your production MobileFirst Server to V7.0.0, see the following topics.

7-4 IBM MobileFirst Platform Foundation for iOS V7.0.0

Note: The documentation in the topics that follow assumes the following facts:
v Your database type is IBM DB2, MySQL, or Oracle (not Apache Derby).
v Your application server type is WebSphere Application Server full profile,

WebSphere Application Server Liberty profile, or Apache Tomcat.

Important: The topics are in a specific order, and must be completed in the order
shown.

The upgrade procedure can take some time, several hours in fact, and so these
activities must be scheduled to create the least disruption and downtime to
production servers and the applications that run on them.

The topics provide essential information about backing up any existing databases
or application server data, migrating your existing MobileFirst projects and
applications to the new version, and performing other preparation tasks that must
be completed before you install the new version of MobileFirst Server. These
preparatory steps are followed by postinstallation, verification, and configuration
tasks that must be completed before you restart the new MobileFirst Server and
finish migrating your MobileFirst applications.

Read through the entire set of topics before you begin the actual upgrade process
to become familiar with the tasks ahead of you, what must be done, and in what
order.

Start with “Overview of the upgrade to MobileFirst Server V7.0.0 process,” and
then read through the steps under each of the major topics that follow.

Overview of the upgrade to MobileFirst Server V7.0.0 process
An overview of the MobileFirst Server V7.0.0 upgrade process, including what is
updated and what is not.

A typical instance of MobileFirst Server includes the following elements:
v A Database Management System (DBMS) that runs databases for the Application

Center and for MobileFirst Server. This DBMS hosts and run the following
databases:
– The Application Center database (if Application Center is installed on that

server).
– The administration database.
– One or more runtime databases. Each runtime environment requires one

runtime database and an optional reports database.
v One or more application servers. These application servers host and run the

following web applications:
– The Application Center application (if Application Center is installed on that

server).
– The MobileFirst Operations Console application. One MobileFirst Operations

Console can be used to administer several MobileFirst runtime environments.
It is defined by a WAR file, which is worklightconsole.war.

– The Administration Services application. This application provides the
necessary services for the MobileFirst Operations Console and hosts all the
services (REST services) and administration tasks. The Administration
Services application is defined by a WAR file, which is worklightadmin.war,
and is connected to the administration database.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-5

– One or more MobileFirst runtime environments. Each MobileFirst runtime
environment:
- Is defined by a WAR file that is created with the MobileFirst Platform

Command Line Interface for iOS development tool.
- Is connected to two databases, one for runtime and one for reports.
- Can run on one or more physical servers, for both workload and service

availability considerations.
v An installation of the MobileFirst Server programs, usually on the same

computer as the application server or deployment manager.

Other items can belong to an IBM MobileFirst Platform Foundation for iOS
configuration, for example, an IBM HTTP Server, IBM DataPower, or an LDAP
system.

The topics in this section focus on the task of upgrading and configuring the
following entities:
v The MobileFirst Server programs.
v The databases, including the creation of the administration database.
v The MobileFirst project runtime applications and Application Center applications

that are deployed in the application server.

Note: The upgrade of the MobileFirst project runtime applications includes the
installation and setup of the MobileFirst Operations Console and administration
services applications.

The actual steps that you must complete for the upgrade can change, depending
on the particular upgrade path you are pursuing. Your upgrade path is determined
by whether you are upgrading:
v From a previous version of Worklight Server or MobileFirst Server to MobileFirst

Server V7.0.0 (for example, from V6.0.0.x to V7.0.0 or from V6.1.0.x to V7.0.0).
v From MobileFirst Server V7.0.0 to a fix pack release or an interim fix (for

example, from V7.0.0 to V7.0.0.x).

The spreadsheet at the following link lists the individual steps for each of these
upgrade paths, and helps you to determine:
v Whether the step is required or not required, depending on your MobileFirst

upgrade path.
v Whether your Application Center and MobileFirst Server (old version),

uninstalled, stopped, or upgraded (and running) during this step as the result of
actions in the current step or previous steps.

The spreadsheet can be downloaded here: MobileFirst Server Upgrade Steps
spreadsheet

To provide further assistance, at the beginning of each topic a shorter version of
this spreadsheet is provided for that step.

7-6 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/MobileFirst_Server_Upgrade_Steps.xls
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/MobileFirst_Server_Upgrade_Steps.xls

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.0 to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Running/
Stopped/

Uninstalled/
Upgraded

Running/
Stopped/

Uninstalled/
Upgraded

Preparation for upgrades to MobileFirst Server
Before you begin the actual upgrade to MobileFirst Server V7.0.0, you must
complete several preparation tasks.

Upgrading to a new version of MobileFirst Server in a development environment
is quick and easy because in most cases no critical data must be preserved in IBM
MobileFirst Platform Foundation for iOS databases. In a production environment,
however, more time and effort are required for the upgrade, to minimize
production downtime and inconvenience to users of existing applications.

Complete the following preparation tasks before you begin upgrading to a new
MobileFirst Server version. You can start any time before the upgrade, but you
must complete these tasks before you move to the next major step, “Starting the
MobileFirst Server V7.0.0 upgrade process” on page 7-20.

Gathering information for MobileFirst Server V7.0.0 upgrades
To avoid having to stop the upgrade process to look up required information,
gather it in advance and have it handy.

About this task

One of the purposes of these instructions is to minimize the time for upgrades to
MobileFirst Server. You do not want to start the procedure and then discover that
you are missing some piece of information that is required by the installer.

To avoid this situation, prepare a list of information that you are likely to be asked
for and keep it handy during the upgrade process.

In addition, it is often necessary to pre-plan certain aspects of the upgrade and
clear them with your application server administrator and your database
administrator. For example, you must know the correct user name. You must also
either have sufficient permissions to create or update databases, or have your
database administrator do it for you.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-7

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Running Running

Procedure

Go through the following checklist.
v Verify that your operating system, application server, and Database Management

System (DBMS) meet the system requirements for MobileFirst Server V7.0.0 at
Detailed System Requirements for IBM MobileFirst Platform Foundation for iOS
and IBM Mobile Foundation.

v Make a list of the host names and IP addresses of all servers that must be
upgraded.

v Make a similar list of all database names and locations.
v Ensure that the correct JDBC drivers for the target databases are available on

your computer. IBM Installation Manager needs access to these drivers to
upgrade the Application Center database. Ant scripts also need access to these
drivers to create the administration database and upgrade the MobileFirst
runtime databases.

v Gather the credentials to the MobileFirst Server administration, the MobileFirst
runtime environments, the MobileFirst reports, and Application Center
databases. If you do not know the correct schemas, user names, and passwords,
ask your database administrator for assistance.

Note: The administration database does not exist for IBM Worklight V6.1.0 or
earlier.

v Stop and restart the application server and verify its configuration. If you do not
know the correct schemas, user names, and passwords, ask your database
administrator for assistance.

v If the URL to the Application Center or the MobileFirst Server applications or
their console changes, identify all the systems that you must update. If you
upgrade from V6.1.0 to V7.0.0, the URLs to the Application Center and the
MobileFirst runtime environment do not change, but a new URL is introduced
for the MobileFirst Operations Console.

Planning installation of the MobileFirst Administration Services
and MobileFirst Operations Console
You must plan the steps that you perform later to upgrade the Administration
Services and the MobileFirst Operations Console. These components were
introduced in V6.2.0, and if you upgrade from an earlier version, you must install
them first.

7-8 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg27024838
http://www.ibm.com/support/docview.wss?uid=swg27024838

Before you begin

Worklight Server V6.2.0 introduced a new architecture for the unified console
based on several core elements that are described in “Introduction to the
MobileFirst Server components” on page 6-5.

If you upgrade from IBM Worklight V6.1.0 or earlier, you must install the
following new components as part of the upgrade process: the Administration
Services, and the MobileFirst Operations Console.

The present topic lists the items that you must plan before you perform that
upgrade process. The actual installation procedure for the Administration Services,
and optionally the MobileFirst Operations Console, is at “Installation or upgrade of
MobileFirst Server Administration Services” on page 7-33.

About this task

The following table lists the upgrade paths for which this step is mandatory.

Table 7-3. Upgrade paths

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes No No No Running Running

If you upgrade from V6.1.0 or earlier, install the Administration Services as part of
the upgrade process.

To minimize downtime or issues while you follow the upgrade procedure, start
with reviewing the installation procedure and configuration options:
1. Review the topic “Planning deployment of administration components and

runtimes” on page 6-7.
2. Define your upgrade strategy if multiple MobileFirst runtimes are installed

(project WAR files).
3. Prepare the configuration of the application.
4. Set up the MobileFirst administration database.
5. Review the configuration of the application server.

The following procedure emphasizes important items that you must prepare before
running an upgrade. You must also review the installation instructions at
“Installing the MobileFirst Server administration” on page 6-43.

The following steps are for planning only, and you do not have to start the
installation of the MobileFirst Server administration at this stage. The actual
installation is described later in the upgrade procedure, at “Installation or upgrade
of MobileFirst Server Administration Services” on page 7-33.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-9

Procedure
1. Review the topic “Planning deployment of administration components and

runtimes” on page 6-7 to define the application server where you can install the
MobileFirst Server administration components.

2. Define your upgrade strategy if multiple MobileFirst runtimes are installed
(project WAR files).

Note: You must perform this step only if you have more than one MobileFirst
runtimes (project WAR files) to upgrade. If you have only one MobileFirst
runtime to upgrade, you can skip this test.
You can either manage all the runtimes with the same MobileFirst
Administration Services and Console runtime environment or install this
environment for each runtime.
v Manage all the runtimes with the same MobileFirst Administration Services

and Console runtime environment: This is the default setting. Carefully
review the context root of each runtime. The context root is used to identify a
runtime in the administration database. After the MobileFirst administration
data is migrated to the administration database, you can no longer change
the context root of a MobileFirst Server runtime. For more information, see
“Upgrade the runtime and reports databases” on page 7-36.

v Install a MobileFirst Administration Services and Console environment for
each runtime: In this case, define the environment IDs as follows:
– If you install by running an Ant file, add an environmentID attribute to the

Ant tasks for installation administration: <installworklightadmin>,
<updateworklightadmin>, <uninstallworklightadmin>,
<configureapplicationserver>, <updateapplicationserver>,
<unconfigureapplicationserver>. For more information, see “Ant tasks
for installation of MobileFirst runtime environments” on page 14-16 and
“Ant tasks for installation of MobileFirst Operations Console and
Administration Services” on page 14-10.

– If you install manually, update the ibm.worklight.admin.environmentid
JNDI property as documented in “List of JNDI properties for MobileFirst
Server administration” on page 6-86 and “Configuring a MobileFirst
project in production by using JNDI environment entries” on page 10-60.

3. Prepare the configuration of the application.
Since IBM Worklight Foundation V6.2.0, the protection of the Administration
Services and the MobileFirst Operations Console is configured by security roles
that are managed in the application server. For more information, see
“Configuring user authentication for MobileFirst Server administration” on
page 6-82. To prepare the installation and configuration of the Administration
Services and the MobileFirst Operations Console, you must identify the users
who need access to the console, and verify that these users are declared in the
application server. This way, you can configure their access to the
Administration Services and MobileFirst Operations Console when the
applications are installed.

4. Set up the MobileFirst administration database.
A MobileFirst administration database is necessary for the Administration
Services. This database can be created at installation time, if you have an
administrator access to the database server. Otherwise, you must contact your
database administrator so that the database is created in advance, and you
must provide your database administrator with the information listed at
“Optional creation of the administration database” on page 6-43.

5. Review the configuration of the application server.

7-10 IBM MobileFirst Platform Foundation for iOS V7.0.0

For IBM MobileFirst Platform Foundation for iOS V7.0.0, you must configure
your application server to enable Java Management Extensions (JMX)
communication between the Administration Services and the MobileFirst Server
runtime. Review the topic “Configuration of the application server” on page
6-46 to see if there is a need to configure your application server to support
JMX for a production environment. For example, in the case of WebSphere
Application Server Liberty profile, the Ant tasks that you use to install the
Administration Services can configure a default secure JMX connection, which
includes the generation of a self-signed SSL certificate with a validity period of
365 days. But this configuration is not intended for production use.

Identify the MobileFirst WAR file and prepare the Ant deployment
script
In this task, you identify the MobileFirst project WAR file that contains numerous
resources and configuration settings for MobileFirst Server and prepare the Ant
script that is used to deploy it.

About this task

The MobileFirst WAR file is a web application archive that contains a MobileFirst
Operations Console, default values for server-specific configuration settings, and
other resources that can be required to run MobileFirst applications and adapters.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Running Running

Procedure

In the upgrade process, the MobileFirst runtime environment must be redeployed
to the application server. It is important to deploy the same WAR file. To ensure
this, you must complete the following steps:
1. Find the WAR file that was previously deployed to the application server.
v If you are upgrading from Worklight Server V6.0.0.x or later, find the JNDI

properties that were set for the deployed Worklight project to override the
default worklight.properties file. If you used an Ant script with the
configureapplicationserver task to deploy the WAR file, you can find in
that script the JNDI properties that were set at installation time. For more
information, see “Configuration of MobileFirst applications on the server” on
page 10-48.
For upgrading from Worklight Server V6.0.0.x or later, the procedure to
deploy the WAR file is described at “Deploying the project WAR file” on
page 10-5.

v When you upgrade from Worklight Server V5.0.6.x, a MobileFirst WAR file is
installed by the installer. If you have not modified this WAR file on your

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-11

production server, you must create a modified file by following the
instructions at “Building a project WAR file with Ant” on page 10-4.
When you modify the WAR file, use Worklight Studio V5.0.6.x or the Ant
tasks (worklight-ant.jar) from an installation of Worklight Studio V5.0.6.x
that was used to build the apps previously deployed to the server. The
version of Worklight Studio that was used to build the project WAR file must
exactly match the version of Worklight Studio that was used to build the
apps previously deployed to the server.
The WAR file is automatically upgraded to MobileFirst Server V7.0.0 format
during the deployment procedure that is described in later steps.

2. Prepare the Ant deployment script that is used to upgrade this WAR file to
MobileFirst Server V7.0.0 and to deploy this WAR file to the application server,
with the upgraded MobileFirst runtime library.
v When you upgrade from Worklight Server V6.0.0.x or later, you can reuse the

script that you used for initial deployment. Make a copy of this file and
modify it as follows:
a. In the Ant file, make sure that the reference to the JAR file is

worklight-ant-deployer.jar, and not worklight-ant.jar. Since IBM
Worklight V6.1.0, this library is named worklight-ant-deployer.jar. For
example, in the V6.0.0 script looks contains these lines:

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<fileset dir="${worklight.server.install.dir}/WorklightServer">
<include name="worklight-ant.jar"/>

</fileset>
</classpath>

</taskdef>

Replace the reference to the JAR file as highlighted:
<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<fileset dir="${worklight.server.install.dir}/WorklightServer">
<include name="worklight-ant-deployer.jar"/>

</fileset>
</classpath>

</taskdef>

b. In the Ant file, you must add the following targets, which are specific to
IBM MobileFirst Platform Foundation for iOS V7.0.0:
– adminstall

– minimal-admupdate

– admuninstall

– admdatabases

– minimal-update

c. Add <adminDatabase> to the <configuredatabase kind ="Worklight">
Ant task. This element upgrades the administration data to the new
administration database.
Those targets are required to install the MobileFirst Operations Console
and Administration Services. You can find examples of such targets in
“Sample configuration files” on page 14-35. If you use the XML extracts
of the sample configuration files, replace the variables ({$...}) by the
corresponding variables of your Ant file. For more information about the
references of the Ant tasks, see:
– “Ant configuredatabase task reference” on page 14-1

7-12 IBM MobileFirst Platform Foundation for iOS V7.0.0

– “Ant tasks for installation of MobileFirst Operations Console and
Administration Services” on page 14-10

– “Ant tasks for installation of MobileFirst runtime environments” on
page 14-16

v If you upgrade from Worklight Server V5.0.6.x:
– Install MobileFirst Server V7.0.0 on your computer, but without installing

Application Center.
– Navigate to directory <WorklightInstallDir>/WorklightServer/

configuration-samples.
– Select the file that corresponds to your combination of application server

and database. The files are named with the convention
redeploy506-<appserver>-<db>.xml.

– Make a copy of this file.
– Edit the copied file and change the values of the properties to match your

installation configuration.
3. Verify that the environmentID attribute for the MobileFirst runtime

environments matches the environmentID attribute that is used to install the
MobileFirst Server administration Ant file.
If you install the MobileFirst Server administration components with a different
Ant file than the one that you used to install the MobileFirst runtime
environment, for example if you install the MobileFirst Server administration
with the Server Configuration Tool, you might have a different environmentId
for the administration and the runtime. In this case, the MobileFirst Server
administration components would not find the MobileFirst runtime
environments.
The environmentID is an attribute of the following Ant tasks:
v installworklightadmin, updateworklightadmin, and

uninstallworklightadmin Ant tasks, which are documented at “Ant tasks for
installation of MobileFirst Operations Console and Administration Services”
on page 14-10.

v configureapplicationserver, updateapplicationserver,
unconfigureapplicationserver Ant tasks, which are documented at “Ant
tasks for installation of MobileFirst runtime environments” on page 14-16.

Review and note the Application Server configuration for
MobileFirst Server and Application Center
In this task, if it is required for your upgrade path, you prepare for the
undeployment and redeployment of applications to the application server to
correct information that can potentially be modified or deleted by IBM Installation
Manager.

About this task

In some upgrade scenarios, the applications that are deployed to the application
server must be undeployed, and then redeployed. As a consequence, the
configurations that were previously made to these applications are erased and
must be reconfigured after the application is deployed again to the application
server.

The applications to review are as follows:
v For Application Center:

– The Application Center Console and Application Center Services

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-13

v For Worklight Server or MobileFirst Server:
– The Administration Console and Administration Services
– Each project runtime

The JDBC data sources to review are as follows:
v For Application Center: the Application Center database
v For Worklight Server or MobileFirst Server:

– The runtime database
– The reports database
– The administration database

If these items were previously configured, note the configuration details so you can
reconfigure them after the applications are reinstalled and redeployed. The
configurations affected can include security settings, lists of users authorized to use
the application, startup behaviors, connection pool settings, JNDI properties, and
other items.

The upgrade paths in which this step is mandatory are listed in the following
table.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes No No See fix pack
or interim fix

installation
instructions

Running Running

Procedure

To review the configuration of the data sources and applications:
v For WebSphere Application Server full profile, use the console.
v For WebSphere Application Server Liberty profile:

– Open the server.xml file. The settings that can be modified or removed by
IBM Installation Manager are between the marker comments, as shown in the
following sample:
<!-- Begin of configuration added by IBM Worklight installer. -->
...
<!-- End of configuration added by IBM Worklight installer. -->

v For Apache Tomcat:
– Open the server.xml and the tomcat-users.xml files. The settings that can be

modified or removed by IBM Installation Manager are between the marker
comments, as shown in the following sample:

7-14 IBM MobileFirst Platform Foundation for iOS V7.0.0

<!-- Begin of Context and Realm configuration added by IBM Worklight installer. -->
...
<!-- End of Context and Realm configuration added by IBM Worklight installer. -->

Verify environments of deployed apps
Before you upgrade to MobileFirst Server V7.0.0, verify that all of the
environments that are targeted in your MobileFirst applications are still supported.

About this task

After the migration is completed, your MobileFirst applications contain only the
environments that are supported by the current version of MobileFirst Server.

In IBM Worklight Foundation V6.2.0, no mobile operating system is dropped or
deprecated. Since IBM Worklight V6.1.0, some of the MobileFirst environments
such as iGoogle, Facebook, Apple OS X Dashboard, Vista that were supported in
IBM Worklight V5.0.6 are no longer supported. If a target mobile device has an
application that is installed on it which requires an environment that is no longer
supported by a version of MobileFirst Server prior to V7.0.0, the application on this
device stops working after an upgrade of MobileFirst Server to V7.0.0.

Therefore, if you upgrade Worklight Server from V6.0.0.x or earlier to MobileFirst
Server V7.0.0, you must pay particular attention to the following procedure.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes No No No No Running Running

Procedure

If your current version of MobileFirst Server includes existing applications that
target environments that are no longer supported by MobileFirst Server V7.0.0:
v For old, no-longer-supported environments, your application developers must

update the MobileFirst application to run with an environment supported by
MobileFirst Server V7.0.0 before you can run it.

v For new environments for which support is added after the release of
MobileFirst Server V7.0.0, check for the availability of a fix pack release that
provides support for this environment.

The following table can help to determine the IBM Worklight versions in which
support for older environments was discontinued, and to suggest possible
replacement environments for those environments.

Environment Support removed in Suggested replacement path

Facebook IBM Worklight V6.0.0 Desktop web app

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-15

Environment Support removed in Suggested replacement path

iGoogle IBM Worklight V6.0.0 Review environments supported by
IBM Worklight V6.1.0

Apple OS X Dashboard IBM Worklight V6.0.0 Review environments supported by
IBM Worklight V6.1.0

Windows 7 and Vista IBM Worklight V6.0.0 Review environments supported by
IBM Worklight V6.1.0

Windows Phone 7.5 IBM Worklight V6.1.0 Review environments supported by
IBM Worklight V6.1.0

Related concepts:
“Version compatibility” on page 7-1
Compatibility among different versions of the IBM MobileFirst Platform
Foundation for iOS client and server depends on several factors.

In-place upgrade or rolling upgrade to MobileFirst Server V7.0.0
You can upgrade to a new version of the product in one of two ways: as an in-place
upgrade or as a rolling upgrade. An in-place upgrade replaces the previous version
while a rolling upgrade does not.

You can replace the previous version by the new one or you can install the new
version alongside the previous one.

In-place upgrade
An upgrade by which the old version of Worklight Server or MobileFirst
Server is no longer installed after the new version of MobileFirst Server is
installed.

In-place upgrades require some downtime of the service.

Rolling upgrade
An upgrade that installs the new version of MobileFirst Server such that it
runs side-by-side with the old version of Worklight Server or MobileFirst
Server in the same application server or in a different application server.

The procedure for a rolling upgrade to apply a fix pack to IBM MobileFirst
Platform Foundation for iOS V7.0.0 is documented in “Rolling upgrade
procedure to apply a fix pack to IBM MobileFirst Platform Foundation for
iOS V7.0.0” on page 7-53.

The following table shows possible upgrade paths.

Table 7-4. Upgrade paths

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Running Running

7-16 IBM MobileFirst Platform Foundation for iOS V7.0.0

Packaging change of WebSphere Application Server Liberty
profile in IBM Worklight V6.x
Important information about how WebSphere Application Server Liberty profile is
delivered since IBM Worklight V6.0.0, and what is the impact on the upgrade of
your production MobileFirst Server.

About this task

Important: The information on this page applies to you if you previously installed
Worklight Server V5.x with the embedded WebSphere Application Server Liberty
profile option.

Since IBM Worklight V6.1.0, WebSphere Application Server Liberty Core is not
embedded in the IBM Installation Manager wizard of MobileFirst Server. Instead, it
is provided as a separate IBM Installation Manager wizard.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes No No No No No Running Running

Procedure

As a result of this packaging, the MobileFirst Server upgrade process does not
upgrade your installed version of WebSphere Application Server Liberty profile,
and will not apply fix packs to it in the future. At the end of the upgrade process,
your Liberty server remains installed in <WorklightServerInstallationDirectory>/
server/wlp, but is considered as an external file from the perspective of upgrades,
uninstall, and updates from the IBM Installation Manager wizard of MobileFirst
Server.

To prevent this existing server from being uninstalled during the upgrade process,
the IBM Installation Manager wizard temporarily renames its directory during the
upgrade process. It is critical to apply the steps that are defined in section Special
steps for WebSphere Application Server Liberty profile before you start the
upgrade process. The result of not completing these steps can be a non-functional
server.

Alternate Method: Move your MobileFirst apps and data to a new
Liberty server

This alternate upgrade method migrates your MobileFirst Operations Console and
Application Center to a new WebSphere Application Server Liberty profile server
installed by IBM Installation Manager. This server can be updated by IBM
Installation Manager when new updates for Liberty are made available.
1. Stop the Liberty server that was installed with the previous version of IBM

MobileFirst Platform Foundation for iOS.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-17

http://ibm.biz/knowctr#SSZH4A_6.0.0/com.ibm.worklight.upgrade.doc/devenv/t_upgrade_srvr_prod_start_steps_for_liberty.html
http://ibm.biz/knowctr#SSZH4A_6.0.0/com.ibm.worklight.upgrade.doc/devenv/t_upgrade_srvr_prod_start_steps_for_liberty.html

2. Install WebSphere Application Server Liberty Core with IBM Installation
Manager. The installer for WebSphere Application Server Liberty Core is part of
the IBM MobileFirst Platform Foundation for iOS package.

3. Create a server in this new WebSphere Application Server Liberty profile
installation. If you are not familiar with the creation of a server for Liberty, see
the “Tutorial for a basic installation of MobileFirst Server” on page 6-23.

4. Configure the Liberty server for your production environment.
5. Modify the Ant files created in section “Identify the MobileFirst WAR file and

prepare the Ant deployment script” on page 7-11 to point to the newly installed
WebSphere Application Server Liberty Core.

6. When you reach the step “Running IBM Installation Manager and completing
the Application Center upgrade” on page 7-25, follow the instructions for
“Upgrading from Worklight Server V5.0.6.x (changing the Liberty server)” on
page 7-29.

Become familiar with IBM Installation Manager before you start
Before you start the actual installation, verify that you have all the products that
you want to install and that you are familiar with IBM Installation Manager
procedures.

About this task

You use IBM Installation Manager to complete the actual upgrade. Before you start,
verify that you have all of the necessary installation components, and that you
understand the installation procedure.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Running Running

Procedure

Before you use IBM Installation Manager to upgrade your production server,
familiarize (or refamiliarize) yourself with how it works:
1. Make sure that you have the appropriate version of IBM Installation Manager

installed on the installation workstation.

Note: IBM Installation Manager is sometimes referred to as IBM Rational
Enterprise Deployment on the eXtreme Leverage, Passport Advantage sites, and
on the distribution disks. The file names for the images take the form IBM
Rational Enterprise Deployment <version number><hardware platform>
<language>; for example, IBM Rational Enterprise Deployment
V1.6.3.1Windows Multilingual.

7-18 IBM MobileFirst Platform Foundation for iOS V7.0.0

Use IBM Installation Manager V1.7.2, especially on Windows. For more
information about IBM Installation Manager procedures, see the IBM
Installation Manager user documentation.

Important: If you are performing an in-place upgrade, and you have IBM
Installation Manager installed on your computer in several different modes, for
example, administrator mode and nonadministrator (single user) mode, you
must use the same mode used to install the previous version of Worklight
Server or MobileFirst Server.

2. Download the repositories that are required for the update from Passport
Advantage, or have them available if they are on physical media.
For more information about the types of upgrade repositories available, see
“Information about the repositories.”

3. Verify that the products that you want to update are contained in the IBM
Installation Manager repositories.

4. If you do not plan to use IBM Installation Manager in graphical mode but in
silent install mode, review the procedures for a silent install as documented in
“Command-line installation with XML response files (silent installation)” on
page 6-31 and “Working with sample response files for IBM Installation
Manager” on page 6-32 and prepare your response file.
To prepare your response file from sample response files, create a response file
based on the following versions of MobileFirst Server, and sample files:

Table 7-5. Sample upgrade response files in the Silent_Install_Sample_Files.zip

Initial version of MobileFirst Server Sample file

Worklight Server V5.x upgrade-initially-worklightv5.xml

Worklight Server V6.x upgrade-initially-worklightv6.xml

IBM MobileFirst Platform Server V6.x upgrade-initially-mfpserverv6.xml

IBM MobileFirst Platform Server V7.x upgrade-initially-mfpserver.xml

In the <offering> element in the <install> element, set the version attribute to
match the release you want to upgrade to, or remove the version attribute if
you want to upgrade to the newest version available in the repositories.

Information about the repositories

There are three types of repositories: base repositories, delta repositories, and
interim fix repositories:
v A base repository is an installation package that is available on Passport

Advantage or on physical media. It is self-contained.
v A delta repository is an installation package that is available from FixCentral and

is labeled as an update pack. It requires a base repository of the previous release
version to be functional.

v An interim fix repository is an installation package that is available from
FixCentral and is labeled as an interim fix, and that is only versioned by a build
number. It requires the repositories of the previous release version to be
functional: either a base repository, or both a base repository and a delta
repository.

To install a major release (for example, MobileFirst Server V7.0.0), you need only:
v The base repository V7.0.0 installation package from Passport Advantage or

physical media.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-19

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html?cp=SSDV2W_1.7.0%2F0
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html?cp=SSDV2W_1.7.0%2F0

To install a fix pack release (for example, MobileFirst Server V7.0.0.1), you need:
v The corresponding base repository (such as MobileFirst Server V7.0.0)

installation package from Passport Advantage or physical media. The
corresponding base repository for V7.0.0.x fix packs is the V7.0.0 release.

v The appropriate V7.0.0.x installation package from FixCentral.

For a fix pack installation, you must add both repositories to the list known to IBM
Installation Manager. Then, in the example given, IBM Installation Manager
recognizes the V7.0.0 release as an Install choice and the V7.0.0.x release (or
interim fix) as an Update choice.

To install an interim fix release, you can need up to three repositories:
v The repositories for the release to which the fix applies.
v The repository for the fix.

For installing an interim fix, you must add all these repositories to the list known
to IBM Installation Manager. Then IBM Installation Manager recognizes the interim
fix as an Update choice.

Review of the basic IBM Installation Manager steps

Attention: The following steps are not the actual installation. They are
preparatory tasks to help you ensure that you have everything that is required for
the upgrade. Be sure to click Cancel in the last step.
1. Start IBM Installation Manager.
2. Click File > Preferences > Repositories to add references to the repositories

that you downloaded and extracted on a local disk, or that you can access
through the internet.
See Repository preferences for details.

3. Click Install.
4. Verify that the products list contains everything that you need.
5. Click Cancel. Do not proceed with the installation.

Starting the MobileFirst Server V7.0.0 upgrade process
In this phase of the upgrade process, you shut down and back up the application
server and MobileFirst databases and perform other pre-installation tasks.

When you finish the tasks that are listed in “Preparation for upgrades to
MobileFirst Server” on page 7-7, you can begin the actual upgrade process.

Note: After you complete this phase of the upgrade process, your MobileFirst
Server, Application Center, databases, and application server(s) are (or can be)
offline. They are no longer available to support existing apps or provide service to
existing users of those apps. The upgrade process itself can take several hours.
Therefore, you must plan the timing of this process for non-critical hours to have
minimal impact on users.

The following topics present the steps, in the order in which they must be
completed.

Verify the ownership of your MobileFirst Server files
Before you begin the actual installation, check the ownership of all MobileFirst
Server files.

7-20 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/topics/t_specifying_repository_locations.html

About this task

The upcoming step “Running IBM Installation Manager and completing the
Application Center upgrade” on page 7-25 attempts to remove and replace many
files in theMobileFirst Server installation directory. This step can fail if the
single-user mode of IBM Installation Manager is used and some of the files or
directories are not owned by that user. Therefore, it is useful to guard against this
case.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Running Running

Procedure

If you previously installed MobileFirst Server with the nonadministrator
(single-user) mode of IBM Installation Manager, check whether all files and
directories in the product_install_dire installation directory are owned by the
current user.

For more information about Installation Manager administrator and
nonadministrator modes, see Administrator, nonadministrator, and group mode.
Group mode is not supported for MobileFirst Server installation.

On UNIX, you can use the following command to list the files and directories that
do not fulfill this condition.

cd product_install_dir
find . ’!’ -user "$USER" -print

This command is expected to return nothing.

What to do next

See also: “File system prerequisites” on page 6-5

Back up your application server
Back up the directory that contains the application server and its configuration.

About this task

Back up your application server so that you can recover in case of an unsuccessful
server upgrade. This strategy covers the rare cases in which the new application
server version fails to work correctly if errors occur in the forthcoming
configuration changes.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-21

http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.cic.agent.ui.doc/topics/c_admin_nonadmin_group.html

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Running Running

Procedure

Back up all the application servers (or network deployment nodes) where the
Application Center and MobileFirst Server administration applications are
installed.

For WebSphere Application Server Liberty profile:
v Back up the usr directory. By default this directory is located in

<LibertyInstallDir>/usr, but its location can be redefined by the WLP_USER_DIR
variable in <LibertyInstallDir>/env/server.env.

For WebSphere Application Server full profile:
v If your original installation was to one or more servers under the control of a

deployment manager, and not a single stand-alone server:
– Either use the WebSphere backupConfig command to back up the

deployment manager node.
– Or back up the config directory inside the deployment manager profile

directory.
v If your original installation was to a stand-alone server:

– Either use the WebSphere backupConfig command to back up the entire node.
– Or back up the application server profile directory.

See the documentation for Apache Tomcat to determine the directories to back up
for this application server.

Shutting down the application server
If you use WebSphere Application Server Liberty profile or Apache Tomcat, you
must shut down the application server during this step.

About this task

You must shut down the application server before running IBM Installation
Manager in the following three cases:
v If your application server is Apache Tomcat.
v If your application server is WebSphere Application Server Liberty Core.
v If your application server is the embedded version of WebSphere Application

Server Liberty profile that is installed by the Worklight Server V5.0.6 or earlier
installer.

7-22 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rxml_backupconfig.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rxml_backupconfig.html

– In this case, you must also shut down all processes that have either their
current working directory inside or opened files inside the MobileFirst
installation directory hierarchy.

– On Windows, you must also shut down all such processes inside the Liberty
MobileFirst Server directory hierarchy, which is in C:\ProgramData\IBM\
Worklight\WAS85liberty-server.

Otherwise, if the application server is running when IBM Installation Manager
starts the upgrade, some upgrade operations might fail, leaving the MobileFirst
Server installation in an inconsistent state.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Stopped
(Liberty and

Tomcat)
Running
(others)

Stopped
(Liberty and

Tomcat)
Running
(others)

Procedure

For Apache Tomcat and WebSphere Application Server Liberty Core, use the
administration commands to shut down the application server as you would
normally.

For the embedded version of WebSphere Application Server Liberty Server, you
can use the following procedure:
1. Ensure that the JAVA_HOME environment variable points to the installation

directory of a Java 6 or 7 implementation (JRE or JDK), or that the PATH
environment variable contains a java program from a Java 6 or 7
implementation.

2. Shut down the server.
a. On UNIX, enter the following commands, changing the installation location

if necessary:
cd /opt/IBM/Worklight
cd server/wlp/bin
./server stop worklightServer

b. On Windows, enter the following commands, changing the installation
location if necessary:
cd C:\Program Files (x86)\IBM\Worklight
cd server\wlp\bin
server.bat stop worklightServer

3. Verify that no other runaway Liberty server processes are running in the same
directory. On Linux and AIX, you can list such processes with the following
command:
ps auxww | grep java | grep /wlp/

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-23

Stop all instances of the Application Center applications
Stop the applications currently running on Application Center.

About this task

If you have installed Application Center on multiple servers, networked or not,
then all instances of the IBM Application Center Console and IBM Application
Center Services must be stopped before you run IBM Installation Manager to
upgrade the MobileFirst Server installation.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes (if
installed on

multiple
servers)

Yes (if
installed on

multiple
servers)

Yes (if
installed on

multiple
servers)

Yes (if
installed on

multiple
servers)

Yes (if
installed on

multiple
servers)

See fix pack
or interim fix

installation
instructions

Stopped (all
instances)

Stopped
(Liberty and

Tomcat)
Running
(others)

Procedure

The reason this step is required is that IBM Installation Manager migrates the
schema of the database so that it can be used with MobileFirst Server V7.0.0. No
instance of Application Center can be running while this operation is performed.

After the database is migrated, only migrated Application Center applications must
be run, because only migrated applications are able to read and write to the new
databases. Otherwise, the Application Center database might be corrupted.

If you installed Application Center only once, this operation is done automatically
by IBM Installation Manager.

Back up the Application Center database
Before you run IBM Installation Manager to install MobileFirst Server V7.0.0, back
up your Application Center database.

About this task

In the upgrade process, the Application Center database is updated and migrated
to a schema compatible with MobileFirst Server V7.0.0. This operation cannot be
undone. If, for any reason, you decide to roll back the upgrade of MobileFirst
Server, you need this backup.

7-24 IBM MobileFirst Platform Foundation for iOS V7.0.0

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes See interim
fix

installation
instructions

Stopped (all
instances)

Stopped
(Liberty and

Tomcat)
Running
(others)

Procedure

Use the standard procedures for your DBMS (IBM DB2, Oracle, or MySQL) to back
up the Application Center database. The default name for the Application Center
database, unless you modified it at install time, is as follows:
v For IBM DB2, MySQL, and Oracle, if you installed IBM Worklight V5.0.6:

APPCNTR

v For IBM DB2 and MySQL if you installed IBM Worklight V6.0.0 or later: APPCNTR
v For Oracle, if you installed IBM Worklight V6.0.0 or later: ORCL

.

The runtime and reports databases are backed up as well, but in a later step of this
procedure. For more information, see step “Back up the runtime and reports
databases” on page 7-35 of this upgrade procedure.

Running IBM Installation Manager and completing the
Application Center upgrade

Use IBM Installation Manager to install the new MobileFirst Server version.

Before you continue, make sure that you completed all of the steps in the
“Preparation for upgrades to MobileFirst Server” on page 7-7 and “Starting the
MobileFirst Server V7.0.0 upgrade process” on page 7-20 sections that preceded
this step.

It is also possible to run IBM Installation Manager in silent install mode, using
response files that are either generated by using it in wizard mode on a machine
where a GUI is available, or by working with sample response files supplied with
IBM MobileFirst Platform Foundation for iOS. For more information, see
“Command-line installation with XML response files (silent installation)” on page
6-31 and “Working with sample response files for IBM Installation Manager” on
page 6-32.

Upgrading from MobileFirst Server V6.3.0, or V7.0.0
In this step, you run IBM Installation Manager to perform the upgrade from
MobileFirst Server V7.0.0.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-25

About this task

IBM Installation Manager completes the following tasks:
v It installs on your disk the files and tools that are required to deploy IBM

MobileFirst Platform Foundation for iOS on your application server.
v If Application Center was installed in the previous version of MobileFirst Server,

the installer also:
– Undeploys the previous version of the Application Center from the

application server.
– Upgrades the databases of Application Center to the format used by the

current version of IBM MobileFirst Platform Foundation for iOS V7.0.0. To see
a copy of the upgrade scripts, you can install MobileFirst Server in a new
package group and review a copy of the upgrade scripts in
<MobileFirstInstallDir>/ApplicationCenter/databases.

– Deploys the new version of Application Center to the application server and
connects it to the upgraded database.

– Configures the application server for running the Application Center.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.0.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.0.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.0.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

No No No No Yes Yes Stopped (all
instances)

Stopped
(Liberty and

Tomcat)
Running
(others)

Procedure

Having prepared for this step by becoming familiar with IBM Installation Manager
and ensuring that you have all the proper repositories for the upgrade, start the
actual installation using the following steps:
1. Start IBM Installation Manager.
2. Click Update.
3. Step through the installation wizard, following the onscreen prompts to

complete the upgrade.

Upgrading from Worklight Server V6.0.0, V6.1.0, or V6.2.0
In this step, you run IBM Installation Manager to perform the actual upgrade from
IBM Worklight V6.x to MobileFirst Server V7.0.0.

About this task

IBM Installation Manager completes the following tasks:

7-26 IBM MobileFirst Platform Foundation for iOS V7.0.0

v It installs on your disk the files and tools that are required to deploy IBM
MobileFirst Platform Foundation for iOS on your application server.

v If Application Center was installed in the previous version of IBM Worklight, the
installer also:
– Undeploys the previous version of the Application Center from the

application server.
– Upgrades the databases of Application Center to the format used by IBM

MobileFirst Platform Foundation for iOS V7.0.0. To see a copy of the upgrade
scripts, you can install MobileFirst Server in a new package group and review
a copy of the upgrade scripts in <MobileFirstInstallDir>/
ApplicationCenter/databases.

– Deploys the new version of Application Center to the application server and
connects it to the upgraded database.

– Configures the application server for running the Application Center.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

No Yes Yes Yes No No Stopped (all
instances)

Stopped
(Liberty and

Tomcat)
Running
(others)

Procedure

Having prepared for this step by becoming familiar with IBM Installation Manager
and ensuring that you have all the proper repositories for the upgrade, start the
actual installation using the following steps:
1. Start IBM Installation Manager.
2. Click Install.

Note: In IBM MobileFirst Platform Foundation for iOS, you must upgrade by
clicking Install, because the package name for Worklight Server changed
between Worklight Server and MobileFirst Server.

3. Select the package group that contains your Worklight Server installation.
4. Step through the installation wizard, following the onscreen prompts to

complete the upgrade.

Upgrading from Worklight Server V5.0.6.x
Use this procedure to upgrade from Worklight Server V5.0.6.x to MobileFirst
Server V7.0.0 in a stand-alone WebSphere Application Server or Apache Tomcat
environment.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-27

About this task

If you originally installed IBM Worklight on:
v A stand-alone WebSphere Application Server Liberty profile server,
v A stand-alone WebSphere Application Server full profile server, or
v A stand-alone Apache Tomcat server,

use the following procedure, with the IBM Installation Manager Install function.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes (unless
Liberty

server was
installed by
Worklight

Server
V5.0.6)

No No No No No Stopped (all
instances)

Uninstalled

Procedure
1. Start IBM Installation Manager.
2. Click Install. The package name for MobileFirst Server has changed between

Worklight Server V5.x and MobileFirst Server V7.0.0, so the upgrade must be
done with the 'Install' process.

3. If you are doing an in-place upgrade (see “In-place upgrade or rolling upgrade
to MobileFirst Server V7.0.0” on page 7-16), select the package group that
contains your Worklight Server installation. If you are doing a rolling upgrade,
select Create a new package group.

4. Step through the installation wizard. If you are doing an in-place upgrade,
most choices are disabled (displayed in gray). But you can change the
passwords for the database or for WebSphere Application Server access if they
are different from the original installation.

5. IBM Installation Manager completes the following tasks:
v It installs on your disk the files and tools that are required to deploy IBM

MobileFirst Platform Foundation for iOS in your application server.
v It undeploys the previous version of IBM Worklight from the Application

Server.
v It removes the application server configurations that were set by the previous

installer of Worklight Server.
v If Application Center was installed in the previous version of Worklight

Server, the installer also:
– Undeploys the previous version of the Application Center from the

application server.

7-28 IBM MobileFirst Platform Foundation for iOS V7.0.0

– Upgrades the databases of Application Center to the format used by the
current version of MobileFirst Server. To see a copy of the upgrade scripts,
you can install MobileFirst Server in a new package group and review a
copy of the upgrade scripts in <MobileFirstInstallDir>/
ApplicationCenter/databases.

– Deploys the new version of Application Center to the application server
and connects it to the upgraded database.

– Configure the application server for running the Application Center.

Upgrading from Worklight Server V5.0.6.x (changing the Liberty
server)
This step contains special instructions if you are migrating to a new instance of
WebSphere Application Server Liberty profile.

About this task

This task is part of the “Alternate Method: Move your MobileFirst apps and data
to a new Liberty server” on page 7-17 section of the “Packaging change of
WebSphere Application Server Liberty profile in IBM Worklight V6.x” on page 7-17
step.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes (if
Liberty

server was
installed by
Worklight

Server
V5.0.6)

No No No No No Stopped (all
instances)

Uninstalled

Procedure

Having prepared for this step by becoming familiar with IBM Installation Manager
and ensuring that you have all the proper repositories for the upgrade, start the
actual installation using the following steps:
1. Start IBM Installation Manager.
2. Click Install.
3. Select a new package group.
4. Step through the installation wizard. Enter the database settings used to install

Application Center for V5.0.6.
5. For the Application Server choice, select the newly installed WebSphere

Application Server Liberty Core.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-29

Restore the Application Center configurations and restart the
application server
In this step, you restore the required configurations of Application Center that you
made note of in a previous step.

About this task

Restore the configurations that you previously identified in step “Review and note
the Application Server configuration for MobileFirst Server and Application
Center” on page 7-13.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes No No No See fix pack
or interim fix

installation
instructions

Upgraded Running (if
upgrading

from V6.0.x
or later),

Stopped (if
upgrading

from
V5.0.6.x)

Procedure
1. The applications to restore are as follows:
v For the applications:

– The Application Center Console
– The Application Center Services

2. The JDBC data sources to restore are as follows:
v The Application Center database

3. When you have restored these configurations, restart the application server that
was upgraded.

Results

At the end of this step, Application Center is upgraded. All applications previously
loaded in Application Center should be available.

However, if this Application Center is running on the same application server as a
MobileFirst Operations Console, that application server is shut down again in a
later step, and is only restarted in subsequent steps.

7-30 IBM MobileFirst Platform Foundation for iOS V7.0.0

Upgrading the MobileFirst runtime environment for MobileFirst
Server V7.0.0

In these postinstallation steps, you set or restore configurations for MobileFirst
Server, its databases, and MobileFirst Operations Console, and restart the
application server.

Since IBM Worklight V6.0.0, it is possible to deploy several MobileFirst runtime
environments to an application server. You must perform these steps for each
MobileFirst runtime environment that you deployed and that you want to upgrade
to V7.0.0. If you migrated a MobileFirst runtime environment and deployed it on
multiple application servers, all instances must be upgraded.

Complete each of the following steps, as required for your particular upgrade path.

Stop all MobileFirst Server instances
Before you complete subsequent upgrade steps, you must shut down all runtime
environments. You must also disable the auto start mode of the Worklight Console
if you upgrade from IBM Worklight V6.0.0.x on WebSphere Application Server full
profile.

About this task

If you installed Worklight Server or MobileFirst Server on multiple servers,
whether networked or not, you must stop all runtime environments before you
move on to the next steps.

Note: You must do so even if you installed only one runtime environment.

This step is mandatory because in step “Upgrade the runtime and reports
databases” on page 7-36, you upgrade the schema of the databases so that it can be
used with MobileFirst Server V7.0.0. No database schema can be upgraded while a
runtime environment is running.

After the database is upgraded, only upgraded runtime environments can run,
because only upgraded applications can read and write to the new databases.
Otherwise, the database might be corrupted.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes See the
installation
instructions
for the fix
pack or
interim fix

Upgraded Stopped (all
instances)

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-31

Important: In addition to stopping all runtime environments, if you upgrade from
IBM Worklight V6.0.0.x on WebSphere Application Server full profile, you must
also disable the auto start mode of the Worklight Console application during the
upgrade before you shut down the Worklight Server. If the auto start mode is not
disabled, the Worklight Console modifies the database when the server is started
in step “Upgrading the MobileFirst runtime environment for MobileFirst Server
V7.0.0” on page 7-31 and prevents the new MobileFirst runtime environment from
starting.

To disable the auto start mode:
1. Log in to the WebSphere Console.
2. Go to the menu Applications > Application Types > WebSphere enterprise

applications, and list the applications.
3. In the table, click Worklight Console application, whose default name is

IBM_Worklight_Console.
4. In Detail Properties click Target Specific Application Status.
5. Select all the target servers, or the cluster where the application is installed.
6. Click Disable Auto Start.
7. Click Save to save the configuration.
8. Verify that the Auto Start property in the table is set to No.

Shutting down the application server to be upgraded
For certain configurations, in this step you shut down the application server before
completing subsequent steps.

About this task

For certain types of application servers (see the following table and “Procedure” on
page 7-33 section), you must shut down the application server before proceeding to
subsequent steps.

Figure 7-1.

7-32 IBM MobileFirst Platform Foundation for iOS V7.0.0

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other cases)

Stopped (all
instances)

Procedure

In the following cases, you must shut down the application server before you
undeploy applications from the MobileFirst Operations Console application:
v If the application server is WebSphere Application Server Liberty profile and the

OS is Windows.
v If the application server is Apache Tomcat, and the OS is Windows or the

database type is Apache Derby.

If these application servers are not shut down, the undeploy operations might fail.

Installation or upgrade of MobileFirst Server Administration
Services
As part of the MobileFirst Server upgrade, you must install the Administration
Services, and optionally the MobileFirst Operations Console.

The following table lists the upgrade paths in which this step is mandatory.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-33

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server V7.0.0

Worklight
Server V6.0.x

to
MobileFirst

Server V7.0.0

Worklight
Server V6.1.x

to
MobileFirst

Server
V7.0.0.x

Worklight
Server V6.2.x

to
MobileFirst

Server V7.0.0

MobileFirst
Server V6.3.x

to
MobileFirst

Server V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Stopped
(embedded
Liberty,
Liberty on
Windows,
Tomcat on
Windows),
upgraded
(other cases)

Stopped (all
instances)

The procedure is different depending on whether you upgrade from a previous
version to V7.0.0, or to a fix pack or interim fix.

For an upgrade from Worklight Server V6.1.0 or earlier to MobileFirst Server
V7.0.0 Follow the steps in “Installing the MobileFirst Server administration” on

page 6-43.

For an upgrade from Worklight Server V6.2.0 or MobileFirst Server V6.3.0 to
MobileFirst Server V7.0.0

1. Back up the administration database
2. Find the Ant file that you created in “Identify the MobileFirst WAR file

and prepare the Ant deployment script” on page 7-11.
3. Make sure that the taskdef for the worklight-ant-deployer.jar file

uses the correct directory. The correct directory is the directory that
contains the upgraded installation of MobileFirst Server V7.0.0.

4. Set the ANT_HOME environment variable to product_install_dir/tools/
apache-ant-1.8.4/.

5. Upgrade the administration database:
product_install_dir/tools/apache-ant-1.8.4/bin/ant -f your_file admdatabases

6. Run the minimal-admupdate target of the Ant file:
product_install_dir/tools/apache-ant-1.8.4/bin/ant -f your_file minimal-admupdate

For an upgrade from MobileFirst Server V7.0.0 to a fix pack or to an interim fix

1. Find the Ant file that you created in “Identify the MobileFirst WAR file
and prepare the Ant deployment script” on page 7-11.

2. Make sure that the taskdef for the worklight-ant-deployer.jar file
uses the correct directory. The correct directory is the directory that
contains the upgraded installation of MobileFirst Server V7.0.0.

3. Set the ANT_HOME environment variable to product_install_dir/tools/
apache-ant-1.8.4/.

4. Run the minimal-admupdate target of the Ant file:
product_install_dir/tools/apache-ant-1.8.4/bin/ant -f your_file minimal-admupdate

7-34 IBM MobileFirst Platform Foundation for iOS V7.0.0

Back up the runtime and reports databases
Back up the contents of your MobileFirst project databases.

About this task

Important: Before performing this step, verify that you have completed step “Stop
all MobileFirst Server instances” on page 7-31, and that no instance of MobileFirst
Server is still running, and thus still using these databases.

During the upgrade process in the steps “Upgrade the runtime and reports
databases” on page 7-36 and “Upgrade the MobileFirst Server runtime
environment” on page 7-38, the data that is specific to administration and runtime
environments are split into distinct databases:
v The MobileFirst data that is related to administration is moved to the

administration database.
v The runtime and reports databases that you previously updated are migrated to

a schema compatible withMobileFirst Server V7.0.0.

The previous operations cannot be undone.

If, for some reason, you decide to roll back the upgrade of MobileFirst Server, you
need this backup.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes See fix pack
or interim fix

installation
instructions

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other cases)

Stopped (all
instances)

Procedure

The default names for the databases, unless you modified them at installation time,
are as follows:
v For IBM DB2, Derby, MySQL, and Oracle, if you installed IBM Worklight

V5.0.6.x: WRKLGHT and WLREPORT
v For IBM DB2, Derby, and MySQL, if you installed IBM Worklight V6.x: WRKLGHT

and WLREPORT
v For Oracle, if you installed IBM Worklight V6.x, for Oracle: ORCL

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-35

Upgrade the runtime and reports databases
You must move the data that is related to administration to the administration
database. You must also upgrade the runtime and the reports databases to a
schema that is compatible with MobileFirst Server V7.0.0.

Before you begin
1. Make sure that you complete step “Stop all MobileFirst Server instances” on

page 7-31, and that no instance of Worklight Server or MobileFirst Server is still
running, and therefore is still using these databases.

2. Make sure that you complete step “Installation or upgrade of MobileFirst
Server Administration Services” on page 7-33 and that the administration
database exists.

Note: This procedure explains how to upgrade the database with Ant tasks. For a
manual upgrade of the databases, see “Manually upgrading the MobileFirst Server
V7.0.0 databases” on page 7-43 instead.

About this task

In this step, you run Ant scripts to perform operations on your MobileFirst Server
databases.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes See fix pack
or interim fix

installation
instructions

Stopped
(embedded
Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded
(Other cases)

Stopped (all
instances)

Procedure
1. If you upgrade from IBM Worklight V6.0.0.x, and the application server is

WebSphere Application Server full profile, make sure that you disabled the
auto start mode for all instances of the Worklight Console application, as
specified in “Stop all MobileFirst Server instances” on page 7-31.

2. Locate the Ant file that you created in section “Identify the MobileFirst WAR
file and prepare the Ant deployment script” on page 7-11.

3. Verify that taskdef for the worklight-ant-deployer.jar uses the directory that
contains the upgraded installation of MobileFirst Server V7.0.0.

7-36 IBM MobileFirst Platform Foundation for iOS V7.0.0

In this example, check the value of the worklight.server.install.dir property
because this property defines the directory of the worklight-ant-deployer.jar
in the taskdef tag:
<property name="worklight.server.install.dir" value="c:/Program File/IBM/Worklight"/>

[...]

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<fileset dir="${worklight.server.install.dir}/WorklightServer">
<include name="worklight-ant-deployer.jar"/>

</fileset>
</classpath>

</taskdef>

Important: This verification step defines the version of IBM MobileFirst
Platform Foundation for iOS that you use to upgrade the databases, to deploy
the WAR file, and to install the MobileFirst runtime library for the MobileFirst
Operations Console.

4. Set the ANT_HOME environment variable to product_install_dir/tools/apache-
ant-1.8.4/.
This version of Apache Ant is the one for which the MobileFirst deployment
scripts are tested. If you do not set this environment variable before you run
the script if and have another installation of Ant on your computer, that
installation might be used.

5. In the Ant file, make sure that the Ant task <configuredatabase kind
="Worklight"> contains an <admindatabase> subelement.

Note: In the following example code, DB2 is the DBMS. The ${contextRoot}
property contains the value of the context root of the MobileFirst project.
<configuredatabase kind="Worklight">

<db2 database="WRKLGHT" server="proddb.example.com"
user="wl6admin" password="wl6pass" schema="WLRT">

<dba user="db2inst1" password="db2IsFun"/>
</db2>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>
<admindatabase runtimeContextRoot=${contextRoot}>

<db2 database="WLADMIN" server="proddb.example.com"
user="wl6admin" password="wl6pass" schema="ADMIN">

</db2>
<driverclasspath>
<fileset dir="/opt/database-drivers/db2-9.7">

<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</admindatabase>
</configuredatabase>

6. Start the databases target of the Ant file with this command:
product_install_dir/tools/apache-ant-1.8.4/bin/ant -f your file databases

Note: If you created an Ant file with your own target names, the Ant task to
start is configuredatabase.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-37

7. If you use push notifications and you want to upgrade from V6.1.0 or earlier,
configure your runtime database manually for push notifications by following
the instructions in “Runtime database configuration for Push notifications” on
page 7-49.

This procedure loads the administration database and upgrades the database
schemas for the runtime and reports databases to V7.0.0.

Upgrade the MobileFirst Server runtime environment
In this step, you run the Ant script to upgrade MobileFirst runtime environment to
V7.0.0. You must repeat this procedure as many times for each runtime
environment to upgrade.

About this task

In this step, you run the same Ant script as in the previous step, but with a
different parameter to indicate the Ant target and the nature of the upgrade.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Stopped
(Embedded
Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded
(other cases)

Stopped
(Embedded
Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Partially
upgraded
(other cases)

Procedure
1. Locate the Ant file that you created in section “Identify the MobileFirst WAR

file and prepare the Ant deployment script” on page 7-11.
2. Verify that the taskdef for the worklight-ant-deployer.jar uses the correct

directory containing the upgraded installation of MobileFirst Server V7.0.0.
In the example shown below, you need to check the value of the property
worklight.server.install.dir because this property is used to define the
directory of the worklight-ant-deployer.jar in the taskdef tag:
<property name="Worklight.server.install.dir" value="c:/Program File/IBM/Worklight"/>

[...]

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<fileset dir="${product_install_dir}/WorklightServer">

7-38 IBM MobileFirst Platform Foundation for iOS V7.0.0

<include name="worklight-ant-deployer.jar"/>
</fileset>

</classpath>
</taskdef>

This verification step is extremely important. It defines the version of IBM
MobileFirst Platform Foundation for iOS that you use to migrate the databases,
to deploy the WAR file, and to install the MobileFirst runtime library for the
MobileFirst Operations Console.

3. Verify that the environmentID attribute for the MobileFirst runtime environment
matches the environmentID attribute that you used to install the MobileFirst
Server administration file. For more information, see “Identify the MobileFirst
WAR file and prepare the Ant deployment script” on page 7-11.

4. Set the environment variable ANT_HOME to product_install_dir/tools/apache-
ant-1.8.4/.
This is the version of Apache Ant for which the MobileFirst deployment scripts
have been tested. If you do not set this environment variable before running
the script, and have another installation of Ant on your computer, that
installation may be used.

5. Select the Ant target.
v To upgrade from V5.0.6.x, use install.
v To upgrade from V6.0.0.x, or V6.1.0.x, use uninstall, then install.
v To upgrade from V6.2.0.x, or V6.3.0.x, use minimal-update.
v To upgrade from V7.0.0 to a fix pack or interim fix, use one of the following

choices:
– Use uninstall, then install or minimal-update.
– Or use minimal-update.

Your choice depends on the nature of the changes in the fix. For more
information, see the installation instructions for the fix pack or interim fix.

6. Run Ant with the selected target:
product_install_dir/tools/apache-ant-1.8.4/bin/ant -f your file target defined in step 4

This script has the following effects:
v It migrates the WAR file to match the runtime environment of the

MobileFirst Server installation.
v It installs the MobileFirst runtime environment to the application server, with

the root context as defined in the Ant file.

Note: The context root of the runtime environment cannot be changed
because the mobile applications that you previously deployed keep pointing
to this context root.

v It connects the runtime environment to the Administration Services through
a Java Management Extensions (JMX) mechanism.

v If you choose to install the MobileFirst Operations Console, it connects the
MobileFirst Operations Console to the Administration Services to manage the
MobileFirst runtime environment.

Upgrading server farms for MobileFirst Server 7.0

About this task

In this step, you upgrade your server farms to be compatible with MobileFirst
Server 7.0. Read from the following tables whether this step is required for your

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-39

upgrade path and what the system status is afterward if both Application Center
and MobileFirst Server are on the same application.

Table 7-6. Is this step required for your upgrade path?.

Worklight® Server V6.0.x to MobileFirst
Server V7.0.0

No

Worklight Server V5.0.6.x to MobileFirst
Server V7.0.0

No

Worklight Server V6.1.x to MobileFirst
Server V7.0.0

No

Worklight Server V6.2.x to MobileFirst
Server V7.0.0

Yes

MobileFirst Server V6.3.x to MobileFirst
Server V7.0.0

Yes

V7.0.0 to V7.0.0.x (fix pack or interim fix) No

Table 7-7. System status after this step.

Module Status

Application Center Stopped (Embedded Liberty, Liberty on
Windows, Tomcat on Windows), Upgraded
(other cases)

MobileFirst Server Stopped (Embedded Liberty, Liberty on
Windows, Tomcat on Windows), Partially
upgraded (other cases)

For more information, see “List of JNDI properties for MobileFirst Server
administration” on page 6-86.

WebSphere Application Server Liberty
Optionally, you can remove some unused JNDI properties and configure
the heartbeat rate and timeout values.
v The following JNDI properties in the server.xml file are not used any

more. You can remove them.
<jndiEntryjndiName="ibm.worklight.farm.type"
value="File"/>
<jndiEntryjndiName="ibm.worklight.farm.definition.location" value="<plugin xml file location>"/>

v You can configure the heartbeat rate and timeout values by defining the
following JNDI properties in the server.xml file.

<jndiEntryjndiName="worklight.admin.farm.heartbeat"
value="<heartbeat rate in minutes>"/>
<jndiEntryjndiName="ibm.worklight.admin.farm.missed.heartbeats.timeout"
value="<number of missed heartbeats before considering the server as being down>"/>

Tomcat
Optionally, you can remove some unused JNDI properties and configure
the heartbeat rate and timeout values.
v The following JNDI properties in the server.xml file are not used any

more. You can remove them.
<Environment name="ibm.worklight.farm.type" value="File" type="java.lang.String"
override="false"/>
<Environment name="ibm.worklight.farm.definition.location"
value="<plugin xml file location>" type="java.lang.String" override="false"/>

v You can configure the heartbeat rate and timeout values by defining the
following JNDI properties in the server.xml file.

7-40 IBM MobileFirst Platform Foundation for iOS V7.0.0

<Environment name="worklight.admin.farm.heartbeat" value="<heartbeat rate in minutes>"
type="java.lang.String" override="false"/>
<Environmentname="ibm.worklight.admin.farm.missed.heartbeats.timeout"
value="<number of missed heartbeats before considering the server as being down>"type="java.lang.String"override="false"/>

WebSphere Application Server

Required modifications

You must set new JNDI properties in MobileFirst Administration
Services applications and every MobileFirst runtime application.
1. Open the WebSphere Application Server administration console.
2. On the navigation pane, select Applications > Application

Types > Websphere enterprise applications.
3. Select the application that you want to configure.
4. In Web Module Properties, click Environment entries for Web

Modules to display the JNDI properties.
5. Set the ibm.worklight.admin.jmx.user property to a user name

that has access to the SOAP connector.
6. Set the ibm.worklight.admin.jmx.pwd property to the password

of the user that you declared in the
ibm.worklight.admin.jmx.user property.

7. Verify that the ibm.worklight.admin.jmx.connector property is
set to SOAP.

Optional modifications
You can configure the heartbeat rate and timeout values by
defining the worklight.admin.farm.heartbeat and
ibm.worklight.admin.farm.missed.heartbeats.timeout JNDI
properties in the MobileFirst Administration Services application.

Restore the MobileFirst Server Configuration
In this step you restore the required configurations of MobileFirst Server that you
made note of in a previous step.

About this task

Restore the configurations that you previously identified in step “Review and note
the Application Server configuration for MobileFirst Server and Application
Center” on page 7-13.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-41

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes No No See fix pack
or interim fix

installation
instructions

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other cases)

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other cases)

Procedure
1. The applications to restore are as follows:
v For the applications:

– The MobileFirst runtime environments.
v For the JDBC data source:

– The runtime and reports database.

Restart the application server
In this final step, you restart the application server.

About this task

Now that the upgrade of MobileFirst Server is completed, restart your application
server.

Is this step required for your upgrade path? System status after this
step, if both Application
Center and MobileFirst
Server are on the same

application server

Worklight
Server

V5.0.6.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.0.x to
MobileFirst

Server
V7.0.0

Worklight
Server

V6.1.x to
MobileFirst

Server
V7.0.0.x

Worklight
Server

V6.2.x to
MobileFirst

Server
V7.0.0

MobileFirst
Server

V6.3.x to
MobileFirst

Server
V7.0.0

V7.0.0 to
V7.0.0.x (fix

pack or
interim fix)

Application
Center
Status

MobileFirst
Server
Status

Yes Yes Yes Yes Yes Yes Upgraded Upgraded

Procedure
1. Use your standard procedures to start the application server, or restart the

application server if it was running in this step, so that all changes are taken
into account.

7-42 IBM MobileFirst Platform Foundation for iOS V7.0.0

At the end of this step, the MobileFirst Server is upgraded. All applications that
you previously deployed are available, along with their environments (those that
are supported by MobileFirst Server V7.0.0).

The URL of the MobileFirst Operations Console changed. If you did not specify a
context root in the Ant file, its context root is /worklightconsole.

Additional MobileFirst Server V7.0.0 upgrade information
This section contains additional information that may be of use if you have
additional test or pre-production databases that must be updated, if you need to
update HTTP redirections on networked servers, if you are manually upgrading
the application server, or in the event of a failed upgrade.

Recovering from an unsuccessful upgrade to MobileFirst Server
V7.0.0
Instructions for how to recover from a failed installation or to revert to the
previous version of Worklight Server or MobileFirst Server.

About this task

If the MobileFirst Server upgrade fails for any reason, use the following procedure
to restore the previous Worklight Server or MobileFirst Server version.

Procedure

The Roll Back button of IBM Installation Manager is not supported for MobileFirst
Server. Therefore, to return to the previous version:
1. Uninstall MobileFirst Server, with IBM Installation Manager.
2. Install the old version of Worklight Server or MobileFirst Server with IBM

Installation Manager, specifying the same installation parameters that you used
previously.

3. Restore the databases. For more information, see “Back up the runtime and
reports databases” on page 7-35.

4. Restore the application server. For more information, see “Back up your
application server” on page 7-21.

5. If the server fails to start and load the applications, delete workarea of the
server before starting it again. For example, for a WebSphere Application Server
Liberty profile backup, the workarea is the directory <LibertyInstallDir>/usr/
servers/<serverName>/workarea.

Manually installing the MobileFirst Server administration during
the upgrade
You can manually install the MobileFirst Server administration as part of the
MobileFirst Server upgrade.

Since IBM Worklight Foundation V6.2.0, you must install the administration
components. To manually set up the MobileFirst Server administration, follow the
steps detailed in “Manually installing MobileFirst Server administration” on page
6-56.

Manually upgrading the MobileFirst Server V7.0.0 databases
Follow these instructions to manually update the MobileFirst project databases.
First set up the MobileFirst Server administration environment.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-43

Note: The reports database, referenced below as WLREPORT, is deprecated in IBM
MobileFirst Platform Foundation for iOS V7.0.0. You should use “Operational
analytics” on page 12-8 instead. Note that setting up the reports database is
optional in this release and prior releases. Also note that the use of the reports
database is redundant with MobileFirst Operational Analytics console in this
release and previous releases, because of the deprecation of the reports database.

If you prefer to update databases manually instead of using the Ant tasks, you
must update their sets of tables and columns manually. For example, if you have
test or preproduction databases as part of your production environment, each
served by a different runtime database or schema, you can use this procedure to
update their schemas.

Updating the reports (by default WLREPORT), and the Application Center (by default
APPCNTR) databases is done by running a sequence of database scripts.

Updating the runtime database (by default WRKLGHT) and administration database
(by default WLADMIN) is done by running a sequence of database scripts, if you
upgrade from IBM Worklight Foundation V6.2.0 or later.

In IBM Worklight Foundation V6.2.0, the process of updating the runtime database
(by default WRKLGHT) is required to move the runtime administrative data to the
administration database. When you upgrade from IBM Worklight V6.1.0 or older,
before you call the script WorklightServer/databases/upgrade-worklight-61-62-
<dbms>.sql, run the data migration tool to update the administration database to
V7.0.0. Then run the sql scripts from V6.2.0 to the current release to update the
WRKLGHT database schema. If you forgot to run the data migration tool before you
run the sql script, WorklightServer/databases/upgrade-worklight-61-62-
<dbms>.sql is likely to fail, and indicates that the data migration was not run. In
that case, the WRKLGHT schema is not updated, or is incorrect.

The data migration tool and the database upgrade scripts are both contained in the
MobileFirst Server directory that you just installed.

Procedure

For the WRKLGHT database, if you upgrade from IBM Worklight V6.1.0 or earlier:
1. Apply the proper sql scripts to upgrade the database to IBM Worklight V6.1.0.
2. Comment the line that refers to the index I_USERPRF_USERID if it was already

created.
3. Run the data migration tool to update the administration database to V7.0.0.
4. Apply the proper sql scripts to upgrade the database from the previous version

to IBM MobileFirst Platform Foundation for iOS V7.0.0.

For the WRKLGHT and WLADMIN databases, if you upgrade from V6.2.0 or later, you
must apply the proper sql scripts to upgrade the databases to IBM MobileFirst
Platform Foundation for iOS V7.0.0.

For the WLREPORT and APPCNTR databases: apply the proper sql scripts to upgrade
the databases to IBM MobileFirst Platform Foundation for iOS V7.0.0.

See the following paragraphs to get information about the index I_USERPRF_USERID,
the data migration tool, and the sql scripts.

7-44 IBM MobileFirst Platform Foundation for iOS V7.0.0

Running the data migration tool

Note: You must run the data migration tool only if you upgrade from V6.1.0 or
earlier.
Before you run the tool in command line, make sure that the library
worklight-ant-deployer.jar is in your current directory, or that your CLASSPATH
variable references the directory it is in. Example on a Unix/Linux machine:

Go to the directory library that worklight-ant-deployer.jar is in
$ cd $product_install_dir/WorklightServer
Print the usage
$ java -cp worklight-ant-deployer.jar com.ibm.worklight.config.dbmigration.MigrationTool usage
Usage:

java -cp worklight-ant-deployer.jar com.ibm.worklight.config.dbmigration.MigrationTool [options]

Options:
-p <project> The name of the project to create.
-sourceurl The path to the source database.
-sourceschema The name of the schema of the source database.
-sourcedriver The fully qualified driver class name of the source

database. This driver must be in the class path.
-sourceuser The user name of the source database.
-sourcepassword The password of the source database.
-sourceproperty <key> <value> Adds additional OpenJPA properties to the connection

of the source database.
-targeturl The path to the target database.
-targetschema The name of the schema of the target database.
-targetdriver The fully qualified driver class name of the target

database. This driver must be in the class path.
-targetuser The user name of the target database.
-targetpassword The password of the target database.
-targetproperty <key> <value> Adds additional OpenJPA properties to the connection

of the target database.

Example with DB2 as DBMS
$ java -cp worklight-ant-deployer.jar com.ibm.worklight.config.dbmigration.MigrationTool

-p worklight
-sourceurl jdbc:db2://proddb.example.com:50000/WRKLGHT
-sourceschema WLRT
-sourcedriver com.ibm.db2.jcc.DB2Driver
-sourceuser wluser1
-sourcepassword wluser1_pswd
-targeturl jdbc:db2://proddb.example.com:50000/WLADMIN
-targetschema ADMIN
-targetdriver com.ibm.db2.jcc.DB2Driver
-targetuser wluser2
-targetpassword wluser2_pswd

To run the data migration tool, you must add the database drivers to the class
path. For example, to migrate a DB2 database, you must add the db2jcc4.jar file
and the license JAR file (for example db2jcc_license_cu.jar), to the class path:
$ java -cp worklight-ant-deployer.jar:/path/to/db2jcc4.jar:/path/to/db2jcc_license_cu.jar
com.ibm.worklight.config.dbmigration.MigrationTool usage

Note:

v The name of the project to create (worklight in the example) must be the context
root where the MobileFirst runtime component (project WAR file) is deployed.
For example, if the runtime component is deployed in the application server
with a context root /worklight, then the project name must be worklight. The
applications will be assigned to this project name. When a runtime component
starts, it contacts the administration service to get the applications and the
adapters it needs to serve. The runtime component uses its project name,
computed by removing the initial / from its context root, to indicate which

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-45

applications it needs. If the project name is not the same as the context root
without the initial slash, then the migrated applications and the adapters are not
visible by the runtime component.

v For MySQL databases, the schema options ’-sourceschema’ and
’-targetschema’ must be left unspecified. The name of the schema to use will
be the name of the database specified in the connection URL.

SQL scripts

Important: Before you apply the sql scripts that upgrade the WRKLGHT database
from the previous version to IBM MobileFirst Platform Foundation for iOS V7.0.0,
you must check whether the index I_USERPRF_USERID, in column USER_ID of the
table GADGET_USER_PREF, exists. If it does, in the WorklightServer/databases/
upgrade-worklight-61-62-<dbms>.sql script, comment the following line that refers
to its creation before running it:
INDEX I_USERPRF_USERID ON GADGET_USER_PREF (USER_ID);

For more information about this index, see the technote IBM Worklight queries on
the GADGET_USER_PREF table might take time.

Scripts for DB2

For an upgrade from IBM Worklight V5.0.6.x to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-db2.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-db2.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-db2.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.0.0.x to V6.1.0:
v WorklightServer/databases/upgrade-worklight-60-61-db2.sql (for WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-60-61-db2.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-60-61-db2.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.1.0.x to IBM Worklight Foundation V6.2.0:
v WorklightServer/databases/upgrade-worklightadmin-61-62-db2.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-61-62-db2.sql (for WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-61-62-db2.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-61-62-db2.sql (for

APPCNTR)

For an upgrade from IBM Worklight Foundation V6.2.0.x to IBM MobileFirst
Platform Foundation for iOS V6.3.0:
v WorklightServer/databases/upgrade-worklightadmin-62-63-db2.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-62-63-db2.sql (for WRKLGHT)

7-46 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg21663021
http://www.ibm.com/support/docview.wss?uid=swg21663021

v WorklightServer/databases/upgrade-worklightreports-62-63-db2.sql (for
REPORTS)

v ApplicationCenter/databases/upgrade-appcenter-62-63-db2.sql (for
APPCNTR)

For an upgrade from IBM MobileFirst Platform Foundation for iOS V6.3.0.x to IBM
MobileFirst Platform Foundation for iOS V 7.0.0:
v WorklightServer/databases/upgrade-worklightadmin-63-70-db2.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-63-70-db2.sql (for WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-63-70-db2.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-63-70-db2.sql (for

APPCNTR)

These scripts are applied similarly to steps 4 and 6 in “Setting up your DB2
databases manually” on page 10-18

Note: If you are using Application Center, the size limit for applications stored on
Application Center with IBM DB2 is 1 GB. If you have applications larger than 1
GB in the Application Center, remove them before starting the upgrade process.

Scripts for MySQL

For an upgrade from IBM Worklight V5.0.6 to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-mysql.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-mysql.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.0.0.x to V6.1.0:
v WorklightServer/databases/upgrade-worklight-60-61-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-60-61-mysql.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-60-61-mysql.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.1.0.x to IBM Worklight Foundation V6.2.0:
v WorklightServer/databases/upgrade-worklightadmin-61-62-mysql.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-61-62-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-61-62-mysql.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-61-62-mysql.sql (for

APPCNTR)

For an upgrade from IBM Worklight Foundation V6.2.0.x to IBM MobileFirst
Platform Foundation for iOS V6.3.0:

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-47

v WorklightServer/databases/upgrade-worklightadmin-62-63-mysql.sql (for
WLADMIN)

v WorklightServer/databases/upgrade-worklight-62-63-mysql.sql (for
WRKLGHT)

v WorklightServer/databases/upgrade-worklightreports-62-63-mysql.sql (for
REPORTS)

v ApplicationCenter/databases/upgrade-appcenter-62-63-mysql.sql (for
APPCNTR)

For an upgrade from IBM MobileFirst Platform Foundation for iOS V6.3.0.x to IBM
MobileFirst Platform Foundation for iOS V7.0.0:
v WorklightServer/databases/upgrade-worklightadmin-63-70-mysql.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-63-70-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-63-70-mysql.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-63-70-mysql.sql (for

APPCNTR)

These scripts are applied similarly to step 1.b in “Setting up your MySQL
databases manually” on page 10-29.

Scripts for Oracle

For an upgrade from IBM Worklight V5.0.6 to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-oracle.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.0.0.x to V6.1.0:
v WorklightServer/databases/upgrade-worklight-60-61-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-60-61-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-60-61-oracle.sql (for

APPCNTR)

For an upgrade from IBM Worklight V6.1.0.x to IBM Worklight Foundation V6.2.0:
v WorklightServer/databases/upgrade-worklightadmin-61-62-oracle.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-61-62-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-61-62-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-61-62-oracle.sql (for

APPCNTR)

7-48 IBM MobileFirst Platform Foundation for iOS V7.0.0

For an upgrade from IBM Worklight Foundation V6.2.0.x to IBM MobileFirst
Platform Foundation for iOS V6.3.0:
v WorklightServer/databases/upgrade-worklightadmin-62-63-oracle.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-62-63-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-62-63-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-62-63-oracle.sql (for

APPCNTR)

For an upgrade from IBM MobileFirst Platform Foundation for iOS V6.3.0.x to IBM
MobileFirst Platform Foundation for iOS V7.0.0:
v WorklightServer/databases/upgrade-worklightadmin-63-70-oracle.sql (for

WLADMIN)
v WorklightServer/databases/upgrade-worklight-63-70-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-63-70-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-63-70-oracle.sql (for

APPCNTR)

These scripts are applied similarly to step 3 in “Setting up your Oracle databases
manually” on page 10-34.

Runtime database configuration for Push notifications

Note: The following section applies if you use push notifications and you upgrade
from V6.1.0 or earlier.

To ensure that push notifications work as expected, you must complete some
additional manual configuration. After your migration to V7.0.0 is complete (this
includes a complete migration of both the runtime database and the runtime
environment) and the application server is restarted, complete the steps based on
your database type. No changes are required if you use MySQL or Derby.

This task requires administrator access privileges.

DB2

1. Change SCHEMANAME instances to actual names.
2. Replace X and Y values based on the given description.

SELECT MAX(ID) FROM SCHEMANAME.PUSH_DEVICES;
SELECT MAX(ID) FROM SCHEMANAME.PUSH_SUBSCRIPTIONS;

--Value of X = Result of the selected query of PUSH_DEVICES + 1. For example, if SELECT MAX(ID) FROM
--SCHEMANAME.PUSH_DEVICES returns 100, then X = 101;
--Value of Y = Result of the selected query of PUSH_SUBSCRIPTIONS + 1. For example, if SELECT MAX(ID) FROM
--SCHEMANAME.PUSH_SUBSCRIPTIONS returns 100, then Y = 101;

ALTER SEQUENCE SCHEMANAME.PUSHDEVICE_SEQ RESTART WITH X ;
ALTER SEQUENCE SCHEMANAME.PUSHSUBSCRIPTION_SEQ RESTART WITH Y ;

VALUES NEXT VALUE FOR SCHEMANAME.PUSHDEVICE_SEQ;
VALUES NEXT VALUE FOR SCHEMANAME.PUSHSUBSCRIPTION_SEQ;

Oracle

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-49

1. Change SCHEMANAME instances to actual names.
2. Replace X and Y values (based on the given description) while running

the query.
SELECT MAX(ID) FROM SCHEMANAME.PUSH_DEVICES;
SELECT MAX(ID) FROM SCHEMANAME.PUSH_SUBSCRIPTIONS;

SELECT LAST_NUMBER FROM ALL_SEQUENCES WHERE SEQUENCE_NAME=’PUSHDEVICE_SEQ’;
SELECT LAST_NUMBER FROM ALL_SEQUENCES WHERE SEQUENCE_NAME=’PUSHSUBSCRIPTION_SEQ’;

--Take note of the resulting value of each query above to use in the following X and Y calculations

--Value of X = (MAX(ID) OF PUSH_DEVICES - LAST_NUMBER OF PUSHDEVICE_SEQ) + 20. For example, if SELECT MAX(ID) FROM
--SCHEMANAME.PUSH_DEVICES returned 100 and SELECT LAST_NUMBER FROM ALL_SEQUENCES
--(where SEQUENCE_NAME=’PUSHDEVICE_SEQ’ is 50), then X=100-50+20 = 70

--Value of Y = (MAX(ID) OF PUSH_SUBSCRIPTIONS - LAST_NUMBER OF PUSHSUBSCRIPTION_SEQ) + 20. For example, if SELECT
--MAX(ID) FROM SCHEMANAME.PUSH_SUBSCRIPTIONS returned 100, then Y = 101 and SELECT --LAST_NUMBER
--FROM ALL_SEQUENCES (where SEQUENCE_NAME=’PUSHSUBSCRIPTION_SEQ’ is 50), then Y=100-50+20 = 70

ALTER SEQUENCE SCHEMANAME.PUSHDEVICE_SEQ INCREMENT BY X ;
SELECT SCHEMANAME.PUSHDEVICE_SEQ.NEXTVAL FROM dual;
ALTER SEQUENCE SCHEMANAME.PUSHDEVICE_SEQ INCREMENT BY 1;

ALTER SEQUENCE SCHEMANAME.PUSHSUBSCRIPTION_SEQ INCREMENT BY Y ;
SELECT SCHEMANAME.PUSHSUBSCRIPTION_SEQ.NEXTVAL FROM dual;
ALTER SEQUENCE SCHEMANAME.PUSHSUBSCRIPTION_SEQ INCREMENT BY 1;

Manually upgrading the application server
Follow these instructions to manually upgrade the application server.

The recommended way to upgrade MobileFirst Server is to use IBM Installation
Manager, either in its graphical mode or in silent mode with a response file, and
the Ant tasks, as described previously.

However, if this is not applicable to your installation and you must update your
application server manually, use a different series of steps.

Instead of completing the tasks “Running IBM Installation Manager and
completing the Application Center upgrade” on page 7-25 and “Upgrade the
MobileFirst Server runtime environment” on page 7-38, use the following
procedure:
v Upgrade the databases manually as specified in section “Manually upgrading

the MobileFirst Server V7.0.0 databases” on page 7-43.
v Review the manual installation procedures at:

– “Manual installation of Application Center” on page 6-167
– “Deploying a project WAR file and configuring the application server

manually” on page 10-39
v Update the items manually. This includes, at a minimum:

– The WAR file for the Application Center console, Application Center services,
and the MobileFirst Operations Console.

– The MobileFirst library worklight-jee-library.jar.
– The MobileFirst runtime environment, which must be migrated to the current

version of the server using the migrate Ant task described at “Migrating a
project WAR file for use with a new MobileFirst Server” on page 10-39.

7-50 IBM MobileFirst Platform Foundation for iOS V7.0.0

Verifying and updating the HTTP redirections for MobileFirst
Server V7.0.0
If you are upgrading to MobileFirst Server on a clustered application server
environment, you should also update IBM HTTP Server after you install IBM
MobileFirst Platform Foundation for iOS V7.0.0.

If your MobileFirst Server upgrade is to be installed on a WebSphere Application
Server Network Deployment clustered environment or a WebSphere Application
Server Liberty profile farm, you might have to update IHS after you install
MobileFirst Server V7.0.0. For general information about installing these types of
application server, see:
v “Setting up IBM MobileFirst Platform Foundation for iOS in WebSphere

Application Server cluster environment” on page 6-241
v “Setting up an IBM HTTP Server in an IBM WebSphere Application Server

Liberty profile farm” on page 6-252

If your application server receives HTTP requests forwarded by an HTTP server,
the HTTP server configuration may require updating.

For IBM HTTP Server, in the IHS plugin file the context root of the applications
must be updated especially for the session affinity configuration section. The
following example is a configuration for Application Center that is deployed with
its default settings, and a project that is deployed with a root context of
/worklight.
<UriGroup Name="default_host_defaultServer_default_node_Cluster_URIs">

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/worklight/*"/>

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/applicationcenter/*"/>

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/appcenterconsole/*"/>

</UriGroup>

Updating DB2 schema names in the case of a manual installation
In this step, you must update the DB2 schema if you are using DB2 for the
runtime database or the reports database.

About this task

For the runtime database and the reports database, IBM MobileFirst Platform
Foundation for iOS V7.0.0 expects the schema name without surrounding double
quotation marks.

Procedure

Perform one of the following steps, based on your installation.
1. WebSphere Application Server Liberty profile:

a. Edit the server.xml file in the usr/servers/serverName directory.
b. Look for the <properties.db2.jcc .../> element in the <dataSource

jndiName="contextroot/jdbc/WorklightDS" ...> and <dataSource
jndiName="contextroot/jdbc/WorklightReportsDS" ...> elements.

c. Optional: If there are double quotation marks around the value of the
currentSchema attribute, you must remove them. For example, change
currentSchema=’"wrkschem"’ or currentSchema=""wrkschem"" to
currentSchema=’wrkschem’.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-51

2. WebSphere Application Server full profile:
a. Sign in to WebSphere Application Server administrative console.
b. Click Resources > JDBC > Data sources

c. For each database with the JNDI name jdbc/WorklightDS or
jdbc/WorklightReportsDS, possibly with a suffix:
1) Select the data source
2) Click Additional properties > Custom properties.
3) Select the currentSchema property.
4) If the value is not empty, remove the double quotation marks around

the value. For example, change the value "wrkschem" to wrkschem.
5) Click OK.
6) Click Save to save the changes.

3. Tomcat:
a. Edit the server.xml file in the conf directory.
b. In the <Resource name="jdbc/WorklightDS" .../> and <Resource

name="jdbc/WorklightReportsDS" .../> elements, remove the double
quotation marks around the value of the currentSchema connection property
in the url attribute, if this property is present. For example, change
url=’jdbc:db2://dbserver.example.com:50000/
WRKLGHT:currentSchema="wrkschem";’ to url=’jdbc:db2://
dbserver.example.com:50000/WRKLGHT:currentSchema=wrkschem;’.

Updating deployment scripts
If you use Ant tasks app-deployer or adapter-deployer to deploy apps or adapters,
you must update the Ant scripts to use the Ant task wladm.

If you have Ant scripts that deploy apps or adapters by using the Ant tasks
app-deployer or adapter-deployer, you must update them to use the Ant task
wladm. The Ant tasks app-deployer or adapter-deployer no longer apply in IBM
MobileFirst Platform Foundation for iOS V7.0.0.

Note: In the following code samples, mf_install_dir is the directory where you
installed MobileFirst Server.
1. In the initialization commands of the Ant script, replace the path as follows:

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>
<pathelement location="mf_install_dir/WorklightServer/worklight-ant-deployer.jar"/>

</classpath>
</taskdef>

With
<taskdef resource="com/worklight/ant/deployers/antlib.xml">

<classpath>
<pathelement location="mf_install_dir/WorklightServer/worklight-ant-deployer.jar"/>

</classpath>
</taskdef>

2. Replace <app-deployer> calls.
<app-deployer deployable="myApp.wlapp"

worklightserverhost="http://server-address:port/project-name"
userName="username" password="password"/>

With

7-52 IBM MobileFirst Platform Foundation for iOS V7.0.0

<wladm url="https://server-address:secure-port/worklightadmin" user="username" password="password">
<deploy-app runtime="project-name" file="myApp.wlapp"/>

</wladm>

Set the placeholders as follows:
v For worklightadmin, substitute the actual context root of the MobileFirst

administration services web application
v For username and password, pick a user that is in the role worklightadmin or

worklightdeployer.
3. Replace <adapter-deployer> calls.

<adapter-deployer deployable="myAdapter.adapter"
worklightserverhost="http://server-address:port/project-name"
userName="username" password="password"/>

With
<wladm url="https://server-address:secure-port/worklightadmin" user="username" password="password">

<deploy-adapter runtime="project-name" file="myAdapter.adapter"/>
</wladm>

Set the placeholders as follows:
v For worklightadmin, substitute the actual context root of the MobileFirst

administration services web application.
v For username and password, you need to pick a user that is in the role

worklightadmin or worklightdeployer.

For more information about the wladm Ant task, see “Administering MobileFirst
applications through Ant” on page 11-11.

Rolling upgrade procedure to apply a fix pack to IBM MobileFirst
Platform Foundation for iOS V7.0.0

You can perform a rolling upgrade to apply a fix pack or an interim fix to an
installation of MobileFirst Server V7.0.0 without downtime of the MobileFirst
runtime environment. Performing this rolling upgrade ensures that there is no
interruption of service for the mobile applications that query the MobileFirst Server
.

To perform this rolling upgrade, you must install the upgraded version of IBM
MobileFirst Platform Foundation for iOS in a different environment, for example a
new cluster in WebSphere Application Server Network Deployment. This
environment must be connected to the same databases as the initial IBM
MobileFirst Platform Foundation for iOS installation. You must then switch HTTP
traffic progressively from the old environment to the new environment.

The procedure for an in-place upgrade, with interruption of service, is documented
at “Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0” on page
7-1.

Important: This procedure applies to a MobileFirst Server installation, including
the Administration Services, the MobileFirst Operations Console, and the
MobileFirst runtime environment, but does not apply to the Application Center.

The following topics explain what you must plan for your production
environment, and the steps of the rolling upgrade procedure for IBM MobileFirst
Platform Foundation for iOS, installed in one cluster in IBM WebSphere

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-53

Application Server, with the HTTP traffic routed by an IBM HTTP Server, and web
server plug-ins for IBM WebSphere Application Server.

Planning the rolling upgrade procedure
You must plan the steps of the rolling upgrade procedure to install a fix pack to
IBM MobileFirst Platform Foundation for iOS without downtime.

You must review, adapt, and test this upgrade procedure for your production
environment. Other components that interact with IBM MobileFirst Platform
Foundation for iOS in your production environment might require extra steps or
changes to that procedure.

The goal of this procedure is to switch HTTP-based traffic from a previous
installation of MobileFirst Server to an upgraded installation of MobileFirst Server.
This is done without losing any data in the former databases, and without visible
impact for users of applications that have an active session while this procedure is
applied.

If other protocols than HTTP are used by some components of your application to
interact with the MobileFirst Server, then you must include in your upgrade plan a
way to route that traffic during a rolling upgrade procedure.

For example, if you use a pull mechanism for push notifications, you must review
the risk of double notification or lost notification in a rolling upgrade procedure.
For more information, see “Possible MobileFirst push notification architectures” on
page 8-204.

You must review, with the development team, the code of all your adapters to
identify extra steps that might be required for a rolling upgrade procedure. This is
the case especially if these adapters require external resources, or use other
communication protocols than HTTP, such as JMS or WebSphere MQ.

During the rolling upgrade, you must also stop management operations, such as
uploading a new application or a new adapter to the console. If a new version of a
MobileFirst application or adapter is uploaded to the MobileFirst Server during the
upgrade procedure, some servers on the clusters might not be notified of this
change and might continue to operate with the old artifact. If a new MobileFirst
application is uploaded to the MobileFirst Server and the runtimes do not all have
the same version, it might trigger arbitrary direct update sessions for the users of
MobileFirst apps, depending on the server to which they were routed. Identify all
MobileFirst administration users that have a privilege to upgrade an application.
Their role is defined as worklightadmin or worklightdeployer. You can then notify
them of the beginning and the end of the rolling upgrade. During that period, they
must not upload any adapter or application.

This procedure requires to temporarily duplicate the environment. You might find
it convenient to apply this procedure at a period of low traffic, so that you can use
existing hardware resources for the servers of the new environment. You must
double the number of instances of WebSphere Application Server during the
rolling upgrade, and the hardware must have enough memory to run these servers
without paging. The CPU requirements must not increase significantly during that
procedure because the use on the servers that are being brought online would
ramp up as new sessions get routed to the new version of the application. The
CPU use on the servers that run the old version of the application must ramp
down as existing sessions end.

7-54 IBM MobileFirst Platform Foundation for iOS V7.0.0

Overview of the rolling upgrade procedure
Learn about the steps of a rolling upgrade procedure.

You must perform the following actions to complete a rolling upgrade procedure.
These steps are detailed in the following topics.
v Stop management operations while you apply the rolling upgrade procedure.

No management operation, such as uploading a new application version or a
new adapter, must be performed during a rolling upgrade.

v Duplicate the application server environment and install the fix pack IBM
MobileFirst Platform Foundation for iOS V7.0.0.x in that duplicated
environment, for example in a new cluster. You must use the existing
administration database, MobileFirst runtime database, and MobileFirst reports
database.

v Start a server in the duplicated environment.
v Direct some of the new HTTP sessions to the new servers and drain the servers

of the previous installation so that they do not receive new HTTP sessions.

Note: IBM MobileFirst Platform Foundation for iOS uses session affinity and
locally stores data about the state of sessions in a server. When routing traffic to
the new cluster, existing sessions must continue to be routed to the old server
with which they started.

v When the old servers are all drained and there is no longer any active session,
and the new MobileFirst Server is confirmed to work correctly, shut down the
old servers. If required, uninstall the old IBM MobileFirst Platform Foundation
for iOS version from those servers.

v When the old environment is shut down, you can authorize management
operations again.

Performing a rolling upgrade to install a fix pack
Learn how to perform a rolling upgrade to install a fix pack to IBM MobileFirst
Platform Foundation for iOS, assuming the following topology: IBM MobileFirst
Platform Foundation for iOS is installed in one cluster in IBM WebSphere
Application Server, and the HTTP traffic is routed by an IBM HTTP Server and
web server plug-ins for IBM WebSphere Application Server.

About this task

The following topics present the steps of the rolling upgrade procedure, in the
order in which they must be completed.

Note: The cluster in which your current installation of the product is installed is
called cluster_WL61 in the following topics.

Stopping management operations
Managements operations must not be performed during a rolling upgrade.

Procedure

You must ensure that all management operations, such as uploading a new
application or a new adapter, are stopped while you perform the rolling upgrade
procedure.

Notify users with the privilege worklightadmin or worklightdeployer that they
cannot deploy any artifact until the upgrade procedure is complete.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-55

Installing the IBM MobileFirst Platform Foundation for iOS fix
pack in a new cluster
You must create a new cluster, in which you install the IBM MobileFirst Platform
Foundation for iOS fix pack. Here, the procedure targets an installation in a
WebSphere Application Server Network Deployment environment, in a single cell,
with IBM HTTP Server and web server plug-ins for IBM WebSphere Application
Server.

Procedure
1. Create a cluster in IBM WebSphere Application Server. In the rest of this

document, this cluster is called cluster_WL61FP1.
2. Create servers in this cluster.
3. For each server, set a weight of 0.
4. Install the IBM MobileFirst Platform Foundation for iOS fix pack in this

cluster. You can install this fix pack with the IBM MobileFirst Platform
Foundation for iOS Ant tasks, or manually.
v To install this fix pack with the IBM MobileFirst Platform Foundation for

iOS Ant tasks, follow the steps 5 - 9 on page 7-57.
v To install this fix pack manually, follow the steps 10 on page 7-57 - 14 on

page 7-58.

Installing the fix pack with the IBM MobileFirst Platform Foundation for iOS Ant
tasks:
5. With IBM Installation Manager, install the IBM MobileFirst Platform

Foundation for iOS fix pack on the computer where the WebSphere
Application Server Deployment Manager is installed.

Note: Do not install the Application Center.
6. Verify that WebSphere Application Server is not set to automatically generate

and propagate the web plug-in. To be sure that the installation of the product
fix-pack does not generate and propagate a new web plug-in that you did not
review, perform the following steps.
a. Open the WebSphere Application Server administration console.
b. Go to Servers > Server Types > Web Servers.
c. In the table, click the web server.
d. Under Additional Properties, click Plug-in properties.
e. Make sure that the check box for Automatically generate the plug-in

configuration file is not selected.
f. Make sure that the check box for Automatically propagate plug-in

configuration file is not selected.
7. Copy the Ant file that you used to install IBM MobileFirst Platform

Foundation for iOS in the cluster cluster_WL61.
a. Modify the cluster name, for example ${was.nd.cluster.name} in the code

example in step 8.
b. Modify the environment ID.

You use this environment ID to distinguish the Administration Services
and MobileFirst runtime environment from the two clusters. The new ID
also generates different application names to avoid name conflicts in the
WebSphere Application Server cell.

c. You must make these modifications for the following Ant tasks. Use the
same environment ID in all the tasks.

7-56 IBM MobileFirst Platform Foundation for iOS V7.0.0

v configureapplicationserver

v updateapplicationserver

v unconfigureapplicationserver

v installworklightadmin

v updateworklightadmin

v uninstallworklightadmin

Important: The environment ID determines which instance of
Administration Services manages the deployed runtime environments. All
runtime environments must have the same environment ID as the
MobileFirst Server administration components.

8. Run the adminstall target of the Ant file.
9. Run the install target of the Ant file that installs the MobileFirst runtime

environment. If you have more than one MobileFirst runtime environment,
repeat this operation for all of them:

Note: Do not change the database settings, the context roots, or the other
parameters of the installation.
<!-- Start of the install target Generated by IBM MobileFirst Platform Foundation -->

<target name="install">
<configureapplicationserver environmentId="${worklight.environment.id}"

contextroot="${worklight.contextroot}"
id="${worklight.deployment.id}">

<project warfile="${worklight.project.war.file}"/>
<applicationserver>

<websphereapplicationserver installdir="${appserver.was.installdir}"
profile="${appserver.was.profile}"
user="${appserver.was.admin.name}"
password="${appserver.was.admin.password}">

<cluster name="${appserver.was.nd.cluster}"/>
</websphereapplicationserver>

</applicationserver>

Installing the fix pack manually:
10. Install the data sources that point to the administration and MobileFirst

runtime databases in the cluster.
v For instructions about the administration database, see the following

documentation:
– “Configuring WebSphere Application Server for DB2 manually for

MobileFirst Server administration” on page 6-58
– “Configuring WebSphere Application Server for Oracle manually for the

MobileFirst Server administration” on page 6-69
v For instructions about the runtime database, see the following

documentation:
– “Configuring WebSphere Application Server for DB2 manually” on page

10-20
– “Configuring WebSphere Application Server for Oracle manually” on

page 10-36
11. Select a name for an environment ID that is used for all the web applications

that you installed in step 12 on page 7-58.
For example, FP1.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-57

Note: You must not have any other installation of IBM MobileFirst Platform
Foundation for iOS in the WebSphere Application Server cell that is using the
same environment ID.

12. Install the Administration Services as documented in “Configuring WebSphere
Application Server for MobileFirst Server administration manually” on page
6-74, with the following change:
In Environment entries for Web modules for the Administration Services, set
the value of ibm.worklight.admin.environmentid to the environment ID that
you selected in step 11 on page 7-57.

13. Install the MobileFirst runtime environment as documented in “Configuring
WebSphere Application Server for MobileFirst Server administration
manually” on page 6-74, with the following change:
In Environment entries for Web modules for the MobileFirst runtime
environment, set the value of ibm.worklight.admin.environmentid to the
environment ID that you selected in step 11 on page 7-57.

14. Use a different name for the WebSphere applications than the one that you
used in the first cluster.

Completing the configuration of the new installation of IBM
MobileFirst Platform Foundation for iOS
You must complete the configuration of the new installation of IBM MobileFirst
Platform Foundation for iOS with security settings, update of the JNDI properties,
and other configuration settings.

About this task

This configuration includes the following parameters for the Administration
Services application, and for the MobileFirst Operations Console application. For
more information, see “Configuring MobileFirst Server” on page 6-105.

Procedure
1. Configure the security settings that define the users for each of the following

roles: worklightadmin, worklightdeployer, worklightmonitor,
worklightoperator.

2. Update the JNDI properties that you modified during the installation in the
WL61FP1 cluster:
v For the Administration Services and the MobileFirst Operations Console.
v For each MobileFirst runtime environment.

Verifying the new installation of IBM MobileFirst Platform
Foundation for iOS
You must make sure that IBM MobileFirst Platform Foundation for iOS is installed
properly.

Procedure
1. Start all the servers in the Worklight61FP1 cluster. This action starts all the

MobileFirst runtime environments. They synchronize with the Administration
Services, and download the application and adapter artifacts they need to be
ready to serve requests.

2. Log to the MobileFirst Operations Console. At this stage, IBM HTTP Server
must not route traffic to that installation, so you must connect directly to the
host name and port of a server. If the MobileFirst Operations Console is

7-58 IBM MobileFirst Platform Foundation for iOS V7.0.0

installed with the default context root, which is worklightconsole, the URL
looks like the following example: http://<hostname>:<httpPortOfServer>:/
worklightconsole/

3. Verify that the MobileFirst runtime environments are present and that they do
not report any error.

4. Optional: You might also perform an additional smoke test of the adapters that
are specific to your IBM MobileFirst Platform Foundation for iOS installation.

Switching progressively the HTTP traffic to the new cluster, with
session affinity
You must modify the HTTP plug-in file to route the HTTP traffic to the new
installation of IBM MobileFirst Platform Foundation for iOS

Before you begin

The following procedure requires modifications of the HTTP plug-in file,
plugin-cfg.xml. Before you perform this procedure in production, you must test it
in a test environment.

Important: If errors occur during these steps, it would result in incorrect traffic
routing and might impact all applications in the cell of the WebSphere Application
Server.

About this task

The procedure to route the traffic is based on the following properties of the web
plug-in:
v The plug-in routes traffic to a server cluster that is based on the definition of the

cluster members in its <ServerCluster> listing. The HTTP plug-in has no other
information about the target servers other than what is defined in the plug-in
configuration file. Even if a collection of servers is defined in a WebSphere cell
as being in two separate clusters, they can be defined in one cluster from the
point of view of the plug-in. With this property, you can use the plug-in to route
traffic between the clusters cluster_WL61 and cluster_WL61FP1.

v The LoadBalanceWeight attribute of the Server element is used to statically
assign a weighting factor that is associated with the round-robin distribution of
new requests among the servers that are in a cluster. When this attribute is set to
zero, this is a signal to the plug-in to stop sending new requests to that
application server. Requests that are associated with existing sessions on that
server continue to flow to it, but as those sessions get terminated, the server
stops having any active sessions.

v The plugin-cfg.xml file is re-read periodically by the plug-in to the HTTP
server, with a default refresh interval of 1 minute.

For more information about updating the plugin-cfg.xml file, see “Setting up IBM
MobileFirst Platform Foundation for iOS in WebSphere Application Server cluster
environment” on page 6-241.

Procedure
1. Progressively, set the weight of a server in the cluster_WL61 to 0.
2. Move a server of the cluster cluster_WL61FP1 to the definition of cluster_WL61,

with a weight of 2.
3. Wait for the server in cluster cluster_WL61 to drain so that most of the session

terminates and that it stops using CPU resources.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-59

4. Repeat the procedure for the next server.

Example

Before you start the procedure:
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61">

<Server CloneID="a8er1kj2" LoadBalanceWeight="2" Name="ServerWL61_1">
<Transport Hostname="test1.ibm.com" Port="9081" Protocol="http"/>

</Server>
<Server CloneID="a8er2kd3" LoadBalanceWeight="2" Name="ServerWL61_2">
<Transport Hostname="test2.ibm.com" Port="9082" Protocol="http"/>

</Server>
<Server CloneID="a8es3as1" LoadBalanceWeight="2" Name="ServerWL61_3">
<Transport Hostname="test3.ibm.com" Port="9083" Protocol="http"/>

</Server>
<PrimaryServers>
<Server Name="ServerWL61_1"/>
<Server Name="ServerWL61_2"/>
<Server Name="ServerWL61_3"/>

</PrimaryServers>
</ServerCluster>
[...]
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61FP1">

<Server CloneID="a8sd1kj2" LoadBalanceWeight="0" Name="ServerWL61FP1_1">
<Transport Hostname="test1.ibm.com" Port="9084" Protocol="http"/>

</Server>
<Server CloneID="a8as2kd3" LoadBalanceWeight="0" Name="ServerWL61FP1_2">
<Transport Hostname="test2.ibm.com" Port="9085" Protocol="http"/>

</Server>
<Server CloneID="a8qa3as1" LoadBalanceWeight="0" Name="ServerWL61FP1_3">
<Transport Hostname="test3.ibm.com" Port="9086" Protocol="http"/>

</Server>
<PrimaryServers>
<Server Name="ServerWL61FP1_1"/>
<Server Name="ServerWL61FP1_2"/>
<Server Name="ServerWL61FP1_3"/>

</PrimaryServers>
</ServerCluster>
[...]
<!-- Example of the UriGroups and Routes. They are not changed while you switch the traffic -->
<UriGroup Name="prod_vhost_cluster_WL61_URIs">

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklightconsole/*"/>

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklightadmin/*"/>

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklight/*"/>

</UriGroup>
<Route ServerCluster="ClusterX"

UriGroup="prod_vhost_cluster_WL61_URIs" VirtualHostGroup="default_host"/>
<UriGroup Name="test_vhost_cluster_WL61FP1_URIs">

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklightconsole/*"/>

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklightadmin/*"/>

<Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid" Name="/worklight/*"/>

</UriGroup>
<Route ServerCluster="ClusterY" UriGroup="test_vhost_cluster_WL61FP1_URIs"

VirtualHostGroup="test_host"/>

Moving a server:
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61">

<!-- Server ServerWL61_1 has a weight of 0 -->
<Server CloneID="a8er1kj2" LoadBalanceWeight="0" Name="ServerWL61_1">

7-60 IBM MobileFirst Platform Foundation for iOS V7.0.0

<Transport Hostname="test1.ibm.com" Port="9081" Protocol="http"/>
</Server>
<Server CloneID="a8er2kd3" LoadBalanceWeight="2" Name="ServerWL61_2">
<Transport Hostname="test2.ibm.com" Port="9082" Protocol="http"/>

</Server>
<Server CloneID="a8es3as1" LoadBalanceWeight="2" Name="ServerWL61_3">
<Transport Hostname="test3.ibm.com" Port="9083" Protocol="http"/>

<!-- Server ServerWL61F1_1 added to the cluster_WL61 in the plugin-cfg file -->
<Server CloneID="a8sd1kj2" LoadBalanceWeight="2" Name="ServerWL61FP1_1">
<Transport Hostname="test1.ibm.com" Port="9084" Protocol="http"/>

</Server>
<PrimaryServers>
<Server Name="ServerWL61_1"/>
<Server Name="ServerWL61_2"/>
<Server Name="ServerWL61_3"/>
<Server Name="ServerWL61FP1_1"/>

</PrimaryServers>
</ServerCluster>
[...]
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61FP1">

<Server CloneID="a8as2kd3" LoadBalanceWeight="0" Name="ServerWL61FP1_2">
<Transport Hostname="test2.ibm.com" Port="9085" Protocol="http"/>

</Server>
</Server>
<Server CloneID="a8qa3as1" LoadBalanceWeight="0" Name="ServerWL61FP1_3">
<Transport Hostname="test3.ibm.com" Port="9086" Protocol="http"/>

</Server>
<PrimaryServers>
<Server Name="ServerWL61FP1_2"/>
<Server Name="ServerWL61FP1_3"/>

</PrimaryServers>
</ServerCluster>

End of the transition:
<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61">

<!-- Server ServerWL61_X have a weight of 0 -->
<Server CloneID="a8er1kj2" LoadBalanceWeight="0" Name="ServerWL61_1">
<Transport Hostname="test1.ibm.com" Port="9081" Protocol="http"/>

</Server>
<Server CloneID="a8er2kd3" LoadBalanceWeight="0" Name="ServerWL61_2">
<Transport Hostname="test2.ibm.com" Port="9082" Protocol="http"/>

</Server>
<Server CloneID="a8es3as1" LoadBalanceWeight="0" Name="ServerWL61_3">
<Transport Hostname="test3.ibm.com" Port="9083" Protocol="http"/>

<!-- Server ServerWL61F1_X added to the cluster_WL61 in the plugin-cfg file -->
<Server CloneID="a8sd1kj2" LoadBalanceWeight="2" Name="ServerWL61FP1_1">
<Transport Hostname="test1.ibm.com" Port="9084" Protocol="http"/>

</Server>
<Server CloneID="a8as2kd3" LoadBalanceWeight="2" Name="ServerWL61FP1_2">
<Transport Hostname="test2.ibm.com" Port="9085" Protocol="http"/>

</Server>
</Server>
<Server CloneID="a8qa3as1" LoadBalanceWeight="2" Name="ServerWL61FP1_3">
<Transport Hostname="test3.ibm.com" Port="9086" Protocol="http"/>

</Server>
<PrimaryServers>
<Server Name="ServerWL61_1"/>
<Server Name="ServerWL61_2"/>
<Server Name="ServerWL61_3"/>
<Server Name="ServerWL61FP1_1"/>
<Server Name="ServerWL61FP1_2"/>
<Server Name="ServerWL61FP1_3"/>

</PrimaryServers>
</ServerCluster>
[...]

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-61

<ServerCluster LoadBalance="Round Robin" Name="cluster_WL61FP1">
<PrimaryServers>
</PrimaryServers>

</ServerCluster>

Performing a rollback procedure
You might want to perform a rollback procedure to restore your initial
configuration if a problem occurs.

Procedure

If a problem is detected while you are switching the traffic, you must restore the
plugin-cfg.xml to its initial state so that the HTTP traffic is routed again to the
initial installation of IBM MobileFirst Platform Foundation for iOS.

Uninstalling IBM MobileFirst Platform Foundation for iOS from
the old cluster
You must uninstall IBM MobileFirst Platform Foundation for iOS from the cluster
that it was previously installed in, and update the appropriate settings accordingly.

Procedure
1. When the migration is complete and the sessions are stopped, shutdown the

cluster_WL61 cluster.
2. You can allow management operations to start again and notify users with

privilege worklightadmin or worklightdeployer that they are allowed to deploy
MobileFirst artifacts because the upgrade procedure is complete.

3. Uninstall IBM MobileFirst Platform Foundation for iOS from the cluster
cluster_WL61.

4. Update the plugin-cfg.xml so that it no longer references the old cluster
cluster_WL61.

5. Verify that the HTTP traffic is routed correctly to the new cluster. For example,
you can activate the log file of the web plug-in, and review the log.

Applying a fix pack to the MobileFirst Data Proxy
Follow these steps to upgrade the MobileFirst Data Proxy and the Trust
Association Interceptor (TAI).

Before you begin

You must run IBM Installation Manager to upgrade the installation directory of
IBM MobileFirst Platform Foundation for iOS. For more information, see “Running
IBM Installation Manager and completing the Application Center upgrade” on
page 7-25.

The following procedure installs the upgraded versions of the MobileFirst Data
Proxy WAR file and the TAI (Trust Association Interceptor) on your disk.

Note: If you installed Application Center, you might want to upgrade or apply a
fix pack only to the MobileFirst Data Proxy, and not to the Application Center. To
do this, you can run IBM Installation Manager to install IBM MobileFirst Platform
Foundation for iOS in a different location, without installing Application Center:
v For a graphic installation, in the window Configuration Choice, select No to the

question Install the IBM MobileFirst Platform Application Center.

7-62 IBM MobileFirst Platform Foundation for iOS V7.0.0

v For a command-line installation, use the silent installation file that is named
install-no-appcenter.xml, which is described in “Working with sample
response files for IBM Installation Manager” on page 6-32.

About this task

If you installed the MobileFirst Data Proxy with Ant tasks, follow the steps 1 to 6.

If you installed the MobileFirst Data Proxy manually, follow the steps 7 to 11.

Procedure

For an installation with Ant tasks:
1. Locate the Ant file that you used to perform the installation.
2. Verify that the taskdef for the worklight-ant-deployer.jar uses the correct

directory, which contains the upgraded installation of MobileFirst Server
V7.0.0.
Review the following example. You must check the value of the property
worklight.server.install.dir, because this property is used to define the
directory of the worklight-ant-deployer.jar file in the taskdef tag:
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<fileset dir="${worklight.server.install.dir}/WorklightServer">

<include name="worklight-ant-deployer.jar"/>
</fileset>

</classpath>
</taskdef>

Important: This verification step must not be overlooked because it defines
the version of IBM MobileFirst Platform Foundation for iOS that you use to
deploy the WAR file and update the TAI.

3. Stop your application server.
4. Run the following command:

product_install_dir/shortcuts/ant -f <your file> update

This command has the following effects:
v It updates the WAR file of the MobileFirst Data Proxy web app.
v On WebSphere Application Server Liberty profile, and WebSphere

Application Server stand-alone server, it updates the TAI.
5. On WebSphere Application Server Network Deployment, replace the TAI JAR

file by the new JAR file, which is in product_install_dir/WorklightServer/
external-server-libraries, on all nodes of your WebSphere Application
Server cell.
For more information, see the instructions to install the MobileFirst Data
Proxy manually.

6. Restart the application server.
For a manual installation:
7. Replace the MobileFirst Data Proxy WAR file in your application server.

You find the WAR file in product_install_dir/Datastore/imf-data-
proxy.war.

8. Stop the application server.
9. Replace the TAI JAR file in your application server.

You find the JAR file in product_install_dir/WorklightServer/external-
server-libraries/com.ibm.worklight.oauth.tai_*.jar.

Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0 7-63

10. On WebSphere Application Server Liberty profile, replace the TAI feature
manifest in your application server.
You find the manifest in product_install_dir/WorklightServer/external-
server-libraries/OAuthTai-1.0.mf.

11. Restart the application server.

7-64 IBM MobileFirst Platform Foundation for iOS V7.0.0

Developing MobileFirst applications

You use IBM MobileFirst Platform Command Line Interface for iOS, the
MobileFirst client, and the server-side API to develop iOS applications.

This information is designed to help users develop applications for various
channels by using IBM MobileFirst Platform Foundation for iOS. It is intended for
developers who are familiar with iOS application development.

This section covers client-side development and server-side development topics,
such as the integration with back-end services, and push notifications.

Development framework features

IBM MobileFirst Platform Foundation for iOS provides a framework that enables
the development, optimization, integration, and management of secure apps. This
framework provides the following features:
v Guidelines and design patterns that promote compatibility across multiple

consumer environments.
v Automatic packaging and provisioning of application resources to multiple

consumer environments.
v A flexible UI optimization and globalization scheme.
v Tools that provide uniform access to back-end enterprise data, processes, and

transactions.
v Uniform persistence.
v A uniform personalization model.
v A flexible authentication model and automatic application protection from web

attacks.

Artifacts produced during development cycle
When you use IBM MobileFirst Platform Foundation for iOS to develop a mobile
application, you produce client and server artifacts.

Client artifacts
A mobile binary file ready for deployment on a mobile device. For
example, an iPhone .ipa file. This is usually uploaded to an “App Store”
such as the Apple Store.

Application metadata and resources (.wlapp)
A .wlapp file. Metadata and web resources of a MobileFirst application
deployed on the MobileFirst Server. Used by the MobileFirst Server to
identify and service mobile applications.

Adapter files (.adapter)
An adapter file (.adapter) contains server-side code written by the
MobileFirst developer (for example, retrieve data from a remote database).
Adapter code is accessed by MobileFirst applications via a simple
invocation API.

.wlapp and .adapter files are referred to in this topic as content. These are
typically identical between the organization’s development, testing, and
production environments.

© Copyright IBM Corp. 2006, 2016 8-1

A project web archive (WAR) file to be deployed on your application server
This file contains the default server-specific configurations such as security
profiles, server properties, and more. .wlapp and .adapter files use these
properties at various stages. Typically, the project WAR file is adapted to
the test and production environment, when you deploy the file to your
application server. For more information, see “Deploying the project WAR
file” on page 10-5.

MobileFirst projects
With MobileFirst Platform Command Line Interface for iOS (CLI), you can develop
mobile applications within projects, build your applications, and create skins for
specific devices.

MobileFirst projects

To develop your mobile applications with IBM MobileFirst Platform Foundation
for iOS, you must first create a project using CLI.

In your project, when you create an application, you have a main application
folder, in which you can find several subfolders and files:
v One folder for the iOS environment in the application, and where you store the

Objective-C code that is specific to this environment.
v A legal folder, for you to store all the license-related documents.
v An application-descriptor.xml file that contains the application metadata.
v A build-settings.xml file, for you to prepare minification and concatenation

configurations for each environment.

Integrating with source control systems
Some source code files should be held in a version control system: others should
not.

There are two types of files and folders in a standard MobileFirst project hierarchy:
v Your own source code files and some source code files that are provided in the

MobileFirst device runtime libraries.
You should commit these files to a version control system.

v Files that are generated from your web source code and some JavaScript files
that are provided with IBM MobileFirst Platform Foundation for iOS (such as
wlclient.js).
These files and folders are added to the file system every build.
You should not commit them to a version control system.
In the next figure, these files and folders are marked with a star (*) after their
names.

8-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

Figure 8-1. Integration of MobileFirst project hierarchy with source control systems

Developing MobileFirst applications 8-3

Note: In iOS environments, the Frameworks folder contains a default .framework
file, sqlcipher.framework, that is automatically generated by the MobileFirst
builder if it is not already in the Frameworks folder. The Frameworks folder should
be committed to your source control system, but the sqlcipher.framework file can
be ignored.

To ensure that your source code is always synchronized with your source control
system, add the (*) files and folders to the ignore list in your source control
system. For Subversion, for example, perform the following steps:
v Step 1: Using the Tortoise extension for Subversion, right-click each file or folder

that is to be ignored and add it to the ignore list.
v Step 2: Go up one level in the file system and commit the change to the SVN

repository. The changes take effect from now on for every developer who
updates the code.

Developing applications for iOS
Whatever the environment, the process for developing iOS applications shares
some common elements: an iOS API application, an application descriptor, and a
client property file.

Developing native applications for iOS
After you have created the native API application in IBM MobileFirst Platform
Command Line Interface for iOS and added the second project from Xcode IDE,
you edit the application descriptor and client property files, and then copy the files
to the appropriate project. If you want to work with Apple Swift language, you
create a Swift project.

Application descriptor of iOS applications
In the application descriptor, you define various aspects of your native iOS
application.

The application descriptor file is a metadata file in which you define various
aspects of the application. It is in the application root directory and its name is
application-descriptor.xml.

The following example shows the format of the application descriptor file of native
API applications for iOS:
<?xml version="1.0" encoding="UTF-8"?>
<nativeIOSApp

id="ios"
platformVersion="7.0.0"
version="1.0"
securityTest="security test name"
bundleId="com.ios"
applicationId="ios"
xmlns="http://www.worklight.com/native-ios-descriptor">
<displayName>application display name</displayName>
<description>application description</description>
<accessTokenExpiration>3600</accessTokenExpiration>
<userIdentityRealms>Realm1, Realm2</userIdentityRealms>
<pushSender password="${push.apns.senderpassword}"/>

</nativeIOSApp>

The content of the application descriptor file is as follows.

8-4 IBM MobileFirst Platform Foundation for iOS V7.0.0

<?xml version="1.0" encoding="UTF-8"?>
<nativeIOSApp

id="ios"
platformVersion="6.0.0"
version="1.0"
securityTest="security test name"
bundleId="com.ios"
applicationId="ios"
xmlns="http://www.worklight.com/native-ios-descriptor">

The <nativeIOSApp> element is the root element of the descriptor. It takes three
mandatory attributes and two optional attributes:

id This attribute specifies the ID of the application. The ID must be identical to
the application folder name. It must be an alphanumeric string that starts with
a letter. It can contain underscore ("_") characters. It must not be a reserved
word in JavaScript.

platformVersion
Contains the version of IBM MobileFirst Platform Foundation for iOS on which
the app was developed.

version
This attribute specifies the version of the application. This version is a string of
the form x.y, where x and y are numbers. It is visible to users who download
the app from the app store or market.

securityTest
This optional attribute specifies a security configuration that is defined in the
authenticationConfig.xml file. When a client attempts to access a protected
resource, IBM MobileFirst Platform Foundation for iOS checks whether the
client is already authenticated according to the security test. If the client is not
yet authenticated, IBM MobileFirst Platform Foundation for iOS starts the
process to obtain the client credentials and to verify them.

bundleId
This optional attribute specifies the bundle ID of the application.

applicationId
This attribute specifies the name of the application, as specified in the
worklight.plist file. The values in the application-descriptor.xml and
worklight.plist must match, and the value of applicationId must be the
same as the value of id. This attribute is required if you use the IBM
MobileFirst Platform Foundation for iOS classic security model. For more
information, see “MobileFirst application authenticity overview” on page 8-247.

<displayName>
This element contains the application name. This name is visible in the
MobileFirst Operations Console and is copied to the descriptor files of various
web and desktop environments.

<displayName>application display name</displayName>

<description>
This element contains the application description. This description is visible in
the MobileFirst Operations Console and is copied to the descriptor files of
various web and desktop environments.

<description>application description</description>

<userIdentityRealms>
This element is a comma-separated ordered list of user identity realms for
OAuth authentication. The realms should be ordered by preference. The first
successfully authenticated realm in this list is selected as the user identity

Developing MobileFirst applications 8-5

realm. If the list is empty, or no realm in the list was authenticated, the ID
token contains no identity information. This element is optional and the
default value is an empty list:
<userIdentityRealms>WASLTPARealm, CustomAuthenticatorRealm</userIdentityRealms>

Note: This attribute is used to set user identity in the OAuth-based flows. For
the classic (pre-V7.0.0) authentication flows, see the documentation for the
customSecurityTest security test.

<accessTokenExpiration>
This element is optional and defines the expiration period (in seconds) of
OAuth access tokens. The default is 3600 seconds (one hour). Client
applications can use the token to access protected resources as long as the
token has not expired. When the token expires, the client application has to
obtain a new access token to access a protected resource. Obtaining a new
access token may happen automatically without user intervention if all the
realms by which the resource is protected have not expired. However, if one of
the realms that is included in the security test of the resource has expired, and
the realm requires user input (such as a form-based authenticator), the user has
to re-authenticate.
<accessTokenExpiration>3600</accessTokenExpiration>

<pushSender>
This element defines the password to the SSL certificate that encrypts the
communication link with the Apple Push Notification Service (APNS).

<pushSender password="${push.apns.senderpassword}"/>

</nativeIOSApp>
This tag closes the content of the application descriptor file.
</nativeIOSApp>

Client property file for iOS
This file defines the client-side properties so that your native app uses the
MobileFirst native API for iOS.

The worklight.plist client property file contains the necessary information for
initializing WLClient instances. Before you use this file in your native application
for iOS, you must define the properties as specified in the following table.

Table 8-1. Properties of the worklight.plist file

Property Description Example values

protocol The communication protocol
with MobileFirst Server.

http or https

host The host name of MobileFirst
Server.

localhost

port The port of MobileFirst Server.
If this value is left blank, the
default port is used. If the
protocol property value is
https, you must leave this
value blank.

10080

8-6 IBM MobileFirst Platform Foundation for iOS V7.0.0

Table 8-1. Properties of the worklight.plist file (continued)

Property Description Example values

wlServerContext The server URL context. /
Note: If you use IBM
MobileFirst Platform
Foundation Developer Edition,
you must set the value of this
property to the name of your
MobileFirst project.

application id The application ID, as defined
in the application-
descriptor.xml file.

myApp

application version The application version, as
defined in the
application-descriptor.xml
file.

1.0

environment This property defines the
MobileFirst environment. The
value of this property must be
iOSnative.
Important: You must not
modify the value of this
property value.

iOSnative

languagePreferences This property defines a
comma-separated list of
preferred languages to be
used byIBM MobileFirst
Platform Foundation for iOS
to display system messages.
This property is optional.

en, fr, de, es

platformVersion This property defines the
version number of the IBM
MobileFirst Platform
Foundation for iOS.

6.3.0.00.20140813-0730

wlUid This property is for internal
usage. You must not modify
the value.

wY/mbnwKTDDYQUvuQCdSgg==

Copying files of iOS applications
To use the MobileFirst native API for iOS in your native application, you must
copy the library and the client property file of your native API application into the
project of your native app for iOS.

Before you begin

About this task

Make sure the MobileFirst project files are accessible from your native iOS project
in the Xcode development environment. Then, by using Xcode, you specify what
frameworks, libraries, and build settings to include.

Developing MobileFirst applications 8-7

Procedure

Setting up the Xcode project to include the MobileFirst API.
1. In your Xcode project add the MobileFirst files to your project:

a. Select the project root icon in the project explorer.
b. From the File menu choose the AddFiles option and add the WorklightAPI

folder and the worklight.plist file from your MobileFirst project.
c. Select Copy items if needed and Create groups for any added folders

options.
d. Click Add.

Note: These steps add the MobileFirst frameworks to the Link Binary with
Libraries list in the Build Phases tab.

2. In the Build Phases tab, make sure these frameworks and libraries have been
linked to your project in the Link Binary with Libraries list.
v SystemConfiguration.framework

v MobileCoreServices.framework

v CoreData.framework

v CoreLocation.framework

v Security.framework

v sqlcipher.framework

Note: Some items may already be linked.
v libstdc++.6.dylib

v libz.dylib

Important: If you are using Xcode 7, link libstdc++.6.tbd, and libz.tbd
instead of the corresponding .dylib files. Using Xcode 7 requires the latest
interim fix.

3. Optional: If the MobileFirst frameworks do not appear in the Build Phases tab:.
a. Open the Build Settings page.
b. Find the Search Paths section.
c. Add the following entry to the Framework Search Paths:

$(PROJECT_DIR)/WorklightAPI/Frameworks. If you did not copy the folder
into the Xcode project, enter the full path of the WorklightAPI folder.

4. In the Other Linker Flags field, enter the following value: -ObjC
5. In the Deployment section, select a value for the iOS Deployment Target field

that is greater than or equal to 6.0.
6. Optional: Set the build options.

Important: If you are using Xcode 7, in the Build Settings tab:
a. Open the Build Options section.
b. Set Enable Bitcode to No.

For more information, see “Disabling bitcode in Xcode builds” on page 8-14.

Creating a Swift project
Because Apple Swift is compatible with Objective-C, you can use the MobileFirst
API from within an iOS Swift project.

8-8 IBM MobileFirst Platform Foundation for iOS V7.0.0

Procedure
1. Create a Swift project and install the native API into an iOS native application.
2. After you follow the steps for an iOS application, select Build Settings > Swift

Compiler - Code Generation.
3. In Objective-C Bridging Header, add this file: $SRCROOT/WorklightAPI/include/

WLSwiftBridgingHeader.h.
If you already have your own Bridging Header for other purposes, include the
MobileFirst Bridging Header inside your own Bridging Header instead.

Results

All the MobileFirst classes are now available from any of your Swift files. The
XCode IDE provides code autocompletion, converted to the Swift style.

What to do next

A tutorial is available on the Getting Started page.

Using Logger in Swift Projects
In order to use OCLogger in Swift projects, you can configure your Swift application
by following the steps described in this section.

Procedure
1. Create a native MobileFirst application for iOS that uses Swift. For more

information, see “Developing native applications for iOS” on page 8-4.
2. In the Xcode IDE, create a Swift file and name it

OCLoggerSwiftExtension.swift.

This screen capture shows File > New > File menu that you use to create a file.

Figure 8-2. New Xcode File

Developing MobileFirst applications 8-9

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/

3. Add the following code to the file:
import Foundation

extension OCLogger {
//Log methods with no metadata

func logTraceWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_TRACE, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

Figure 8-3. Swift File Type

Figure 8-4. Name a Swift File

8-10 IBM MobileFirst Platform Foundation for iOS V7.0.0

}

func logDebugWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_DEBUG, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

func logInfoWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_INFO, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

func logWarnWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_WARN, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

func logErrorWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_ERROR, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

func logFatalWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_FATAL, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

func logAnalyticsWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_ANALYTICS, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

//Log methods with metadata

func logTraceWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_TRACE, message: message, args:getVaList(args), userInfo:userInfo)

}

func logDebugWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_DEBUG, message: message, args:getVaList(args), userInfo:userInfo)

}

func logInfoWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_INFO, message: message, args:getVaList(args), userInfo:userInfo)

}

func logWarnWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_WARN, message: message, args:getVaList(args), userInfo:userInfo)

}

func logErrorWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_ERROR, message: message, args:getVaList(args), userInfo:userInfo)

}

func logFatalWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_FATAL, message: message, args:getVaList(args), userInfo:userInfo)

}

func logAnalyticsWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_ANALYTICS, message: message, args:getVaList(args), userInfo:userInfo)

}
}

//Alternatives for macros

private func _metadataDictionary(file:String, fn:String, line:Int) -> Dictionary<String, String> {
return [

"$method" : fn,
"$file" : file.lastPathComponent,
"$line" : String(line),
"$src": "swift"
];

}

Developing MobileFirst applications 8-11

public func OCLoggerTrace(message:String, package:String =
"IMF", file: String = __FILE__, fn: String = __FUNCTION__, line: Int = __LINE__, #args: CVarArgType...) {

OCLogger.getInstanceWithPackage(package).logWithLevel(OCLogger_TRACE, message: message, args:getVaList(args),
userInfo: _metadataDictionary(file, fn, line));
}

public func OCLoggerDebug(message:String, package:String =
"IMF", file: String = __FILE__, fn: String = __FUNCTION__, line: Int = __LINE__, #args: CVarArgType...) {

OCLogger.getInstanceWithPackage(package).logWithLevel(OCLogger_DEBUG, message: message, args:getVaList(args),
userInfo: _metadataDictionary(file, fn, line));
}

public func OCLoggerInfo(message:String, package:String =
"IMF", file: String = __FILE__, fn: String = __FUNCTION__, line: Int = __LINE__, #args: CVarArgType...) {

OCLogger.getInstanceWithPackage(package).logWithLevel(OCLogger_INFO, message: message, args:getVaList(args),
userInfo: _metadataDictionary(file, fn, line));
}

public func OCLoggerWarn(message:String, package:String =
"IMF", file: String = __FILE__, fn: String = __FUNCTION__, line: Int = __LINE__, #args: CVarArgType...) {

OCLogger.getInstanceWithPackage(package).logWithLevel(OCLogger_WARN, message: message, args:getVaList(args),
userInfo: _metadataDictionary(file, fn, line));
}

public func OCLoggerError(message:String, package:String =
"IMF", file: String = __FILE__, fn: String = __FUNCTION__, line: Int = __LINE__, #args: CVarArgType...) {

OCLogger.getInstanceWithPackage(package).logWithLevel(OCLogger_ERROR, message: message, args:getVaList(args),
userInfo: _metadataDictionary(file, fn, line));
}

public func OCLoggerFatal(message:String, package:String =
"IMF", file: String = __FILE__, fn: String = __FUNCTION__, line: Int = __LINE__, #args: CVarArgType...) {

OCLogger.getInstanceWithPackage(package).logWithLevel(OCLogger_FATAL, message: message, args:getVaList(args),
userInfo: _metadataDictionary(file, fn, line));
}

public func OCLoggerAnalytics(message:String, package:String =
"IMF", file: String = __FILE__, fn: String = __FUNCTION__, line: Int = __LINE__, #args: CVarArgType...) {

OCLogger.getInstanceWithPackage(package).logWithLevel(OCLogger_ANALYTICS, message: message, args:getVaList(args),
userInfo: _metadataDictionary(file, fn, line));
}

4. Test that the Swift extension is working by using the Logger in Swift with the
following code:

OCLogger.setLevel(OCLogger_TRACE)
OCLogger.setCapture(true);

let logger : OCLogger = OCLogger.getInstanceWithPackage("MyTestLoggerPackage")

logger.logTraceWithMessages("Hello %@", "Trace");
logger.logTraceWithMessages("Hello Trace");

OCLoggerDebug("Hello Debug!");
OCLoggerDebug("Hello %@", package: "SomePackageName", args: "Debug!");

Results

Verify the output is similar to the following output:
SwiftHelloWorld[7591:4265124] [TRACE] [MyTestLoggerPackage] Hello Trace
SwiftHelloWorld[7591:4265124] [TRACE] [MyTestLoggerPackage] Hello Trace
SwiftHelloWorld[7591:4265124] [DEBUG] [IMF] viewDidLoad() in ViewController.swift:26 :: Hello Debug!
SwiftHelloWorld[7591:4265124] [DEBUG] [SomePackageName] viewDidLoad() in ViewController.swift:27 :: Hello Debug!

8-12 IBM MobileFirst Platform Foundation for iOS V7.0.0

Note: The project name used in this example is SwiftHelloWorld. Your project
name will show in the output in place of SwiftHelloWorld. The code was added to
the viewDidLoad() function in the ViewController.swift file. Your output depends
on where you added the code in your project. The timestamps were removed from
this example for clarity.

Enforcing TLS-secure connections in iOS apps
For development purposes, hybrid iOS projects that are created in IBM MobileFirst
Platform Studio or by using CLI bypass the iOS 9 requirement to enforce Transport
Layer Security (TLS) protocol version 1.2 in all apps.

About this task

Apple’s App Transport Security (ATS) is a new feature of iOS 9 that enforces best
practices for connections between the app and the server. By default, this feature
enforces some connection requirements that improve security. These include
client-side HTTPS requests and server-side certificates and connection ciphers that
conform to Transport Layer Security (TLS) version 1.2 using forward secrecy.

For development purposes, you can override the default behavior by specifying an
exception in the Info.plist file in your app, as described in App Transport
Security Technote. However, in a full production environment, all iOS apps must
enforce TLS-secure connections for them to work properly.

The latest interim fix of IBM MobileFirst Platform Foundation for iOS V7.0.0IBM
MobileFirst Platform Foundation for iOS V6.0.0 and later (required for iOS 9 and
Xcode 7) automatically turn off transport security for hybrid apps to allow all
non-secure connections to the MobileFirst Development Server.

To enable non-TLS connections, the following exception must appear in the
<projectname>info.plist file in the <project>\Resources folder:
<key>NSExceptionDomains</key>

<dict>
<key>yourserver.com</key>
<dict>

<!--Include to allow subdomains-->
<key>NSIncludesSubdomains</key>
<true/>

<!--Include to allow insecure HTTP requests-->
<key>NSTemporaryExceptionAllowsInsecureHTTPLoads</key>
<true/>

</dict>
</dict>

Note: If you are creating a hybrid iOS application, your IBM MobileFirst Platform
Server host name is added automatically to the NSException dictionary. If you are
creating a native iOS application, however, you must manually add the IBM
MobileFirst Platform Server host name to the NSException dictionary.

Procedure
1. To prepare for production, remove or comment out the code that appears

earlier in this page.
2. Set up the client to send HTTPS requests by using the following entry to the

dictionary:

Developing MobileFirst applications 8-13

https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/
https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/

<key>protocol</key>
<string>https</string>

<key>port</key>
<string>10443</string>

The SSL port number is defined on the server in server.xml in the
httpEndpoint definition.

3. Configure a server that is enabled for the TLS 1.2 protocol. For more
information, see Configuring MobileFirst Server to enable TLS V1.2.

4. Make settings for ciphers and certificates, as they apply to your setup. For
more information, see App Transport Security Technote, Secure communications
using Secure Sockets Layer (SSL) for WebSphere Application Server Network
Deployment, and Enabling SSL communication for the Liberty profile.

Disabling bitcode in Xcode builds
You must disable the new bitcode option in Xcode builds for IBM MobileFirst
Platform Foundation for iOS projects.

About this task

Starting with Xcode 7, bitcode is a default, but optional option for iOS apps. The
bitcode option is not currently supported in IBM MobileFirst Platform Foundation
for iOS. To use the MobileFirst SDK in your Xcode projects, you must disable
bitcode. The latest MobileFirst interim fix is required to work with Xcode 7 and
iOS9.

Note: Applications that are based on Apple watchOS 2 require the bitcode to be
enabled and are currently not supported in IBM MobileFirst Platform Foundation
for iOS.

Procedure

On the Xcode Build Settings tab, in the Build Options group, set Enable Bitcode
to No.

Updating mobile apps with IBM MobileFirst Platform Foundation for
iOS and the Application Center

You can choose among different ways to update a mobile application depending
on the context.

When you build applications for internal use in your organization and that are not
to be delivered through public app stores such as the Apple App Store, you could
use the Application Center to deliver these applications over the air. There are
several scenarios that you might want to consider.

Delivering a new version of native code

The main reason that you would want to deliver a new version of an application is
probably because your application uses native code and you want to provide new
features or deliver fixes that require changes in the native code. You might also
need to provide a new native version of the application, even if your MobileFirst
application is completely written by using web technologies, to accommodate new
mobile operating systems supported only in later versions of IBM MobileFirst
Platform Foundation for iOS. You cannot use the direct update mechanism in
either of these cases. You must build and deploy a new version of the application.

8-14 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg21965659
https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html?cp=SSAW57_8.5.5%2F1-3-11-0-4-1-0

You can provide the update through the Application Center.

Start by uploading the new application binary (IPA) to the Application Center
console. The application is listed as a new available version of the application. For
the Application Center to consider the application as a new version of an existing
application, you must keep the application identification unchanged; for example,
it must have the same bundle ID for iOS. You change the internal version of the
application; for example, CFBundleVersion on iOS. For more information about
application properties in the Application Center console, see “Application
properties” on page 11-82.

If you configured the Application Center to send push notifications for updates,
users would receive a notification as soon as the new version is deployed. The
content of this message enables the user to open the Application Center mobile
client on the update page of the mobile application, so that he or she can trigger
an over-the-air installation.

When you disable the previous version, you must provide the URL of the latest
application version, so that users have an easy way to fetch the new version.

In the Application Center, if you want to direct users of the mobile application to
the update page of the mobile client, you can use a custom URL of the format:
ibmappctr://show-app? Package-name

Where Package-name is the package name of the application that you have updated
to a new version.

The exact URL is listed in the “Application properties” page of the Application
Center console. For more information, see “Application properties” on page 11-82.

When a user launches a disabled application version, the user is directed to get the
update on the main page of the application in the Application Center mobile client.
An Update button gives access to over-the-air update of the application.

Updating the Application Center application

Since IBM Worklight Foundation V6.2.0, when a new version of the Application
Center becomes available, users do not have to uninstall the mobile application
before downloading and installing the new version on their mobile devices. For
example, when a new version of the Application Center is made available to
support new mobile operating systems. Users can be automatically notified when a
new version of the mobile client is available in the Application Center repository.
In your role as Administrator of the Application Center, you have only to upload
the new binary version of the mobile client application to the catalog.

MobileFirst Platform Command Line Interface for iOS
To help developers get a better tools experience, IBM MobileFirst Platform
provides a command-line interface (CLI) tool to easily create and manage apps.
The CLI enables developers to use their preferred text editors or alternative IDEs
to create mobile applications.

The commands support tasks such as creating, adding, and configuring with the
MobileFirst API library, adding the client-side MobileFirst properties file and
performing the build and deploy of the MobileFirst application. From the
command-line, you can create and deploy adapters, and test them locally. You can

Developing MobileFirst applications 8-15

administer your MobileFirst project from CLI or REST services, or the Console,
where you can easily control the local server and observe the logs.

You can also use the CLI to integrate third-party tools such as ANT or Grunt to
create your own tool chain for automated testing, build, and deployment flows.

To install command-line tools, see “Installing command-line tools for developers”
on page 6-2.

CLI commands usage
The CLI commands are intended for IT developers to create MobileFirst projects
separately from the Eclipse MobileFirst Studio.

Use the command-line interface (CLI) keywords and options from a command line
window. To run the commands, you can use either mfp or mobilefirst.

You can run the commands in either of the following ways:
v The direct method: You enter the command and set its options on one line and

press Enter. For example: $ mfp add adapter MyAdapter --type http.
v The interactive method: You enter the command with no arguments and press

Enter. For example: $ mfp add adapter. Then, you are prompted to set the
available parameters one by one.

Examples:

$ mfp create MyProject --app myApp
$ cd MyProject
$ mfp add api MyiOS
$ mfp add adapter MySQLAdapter --type sql
$ cd MySQLAdapter
$ mfp build
$ mfp deploy

Command-line flags and options

-v, --version Prints this utility's version
-d, --debug Produces debug log output
-dd, --ddebug Produces verbose log output

For a complete list of the CLI commands with descriptions of their function, see
“Commands.”

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

A
ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

8-16 IBM MobileFirst Platform Foundation for iOS V7.0.0

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

Developing MobileFirst applications 8-17

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file
[
"world"

]

JSON file for Java adapter
{
"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

8-18 IBM MobileFirst Platform Foundation for iOS V7.0.0

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron®, SAP, JCo, or Java.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

<name>
The name that you want for the generated native API.

B
BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

Developing MobileFirst applications 8-19

C
CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D
DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

8-20 IBM MobileFirst Platform Foundation for iOS V7.0.0

H
HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I
INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L
LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R
RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Developing MobileFirst applications 8-21

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S
START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

8-22 IBM MobileFirst Platform Foundation for iOS V7.0.0

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

Developing MobileFirst applications 8-23

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file
[
"world"

]

JSON file for Java adapter
{
"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

8-24 IBM MobileFirst Platform Foundation for iOS V7.0.0

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

<name>
The name that you want for the generated native API.

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Developing MobileFirst applications 8-25

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory

8-26 IBM MobileFirst Platform Foundation for iOS V7.0.0

consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

Developing MobileFirst applications 8-27

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

8-28 IBM MobileFirst Platform Foundation for iOS V7.0.0

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file

Developing MobileFirst applications 8-29

[
"world"

]

JSON file for Java adapter
{
"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

8-30 IBM MobileFirst Platform Foundation for iOS V7.0.0

<name>
The name that you want for the generated native API.

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Developing MobileFirst applications 8-31

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.

8-32 IBM MobileFirst Platform Foundation for iOS V7.0.0

v Direct with a JSON array parameter: $ mfp invoke
adapterName:function [\"string\", 2, true].

v Direct with a JSON file parameter: $ mfp invoke adapterName:function
--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

Developing MobileFirst applications 8-33

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

8-34 IBM MobileFirst Platform Foundation for iOS V7.0.0

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file
[

"world"
]

JSON file for Java adapter
{

"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Developing MobileFirst applications 8-35

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

<name>
The name that you want for the generated native API.

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.

8-36 IBM MobileFirst Platform Foundation for iOS V7.0.0

v If you run the command from the root folder of a MobileFirst project,
the command builds all the apps and adapters in the project.

v If you run the command from the apps folder, the command builds all
the apps in the project.

v If you run the command from the folder of a specific adapter, the
command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.

Developing MobileFirst applications 8-37

v If you run the command from the apps folder, the command deploys all
the apps in the project.

v If you run the command from the folder of a specific adapter, the
command deploys that one adapter.

v If you run the command from the folder of a specific application, the
command deploys that one application.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

8-38 IBM MobileFirst Platform Foundation for iOS V7.0.0

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

Developing MobileFirst applications 8-39

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

8-40 IBM MobileFirst Platform Foundation for iOS V7.0.0

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file
[

"world"
]

JSON file for Java adapter
{

"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

Developing MobileFirst applications 8-41

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

<name>
The name that you want for the generated native API.

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.

8-42 IBM MobileFirst Platform Foundation for iOS V7.0.0

v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

Developing MobileFirst applications 8-43

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

8-44 IBM MobileFirst Platform Foundation for iOS V7.0.0

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

Developing MobileFirst applications 8-45

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.

8-46 IBM MobileFirst Platform Foundation for iOS V7.0.0

v Direct with an array: $ mfp adapter call adapterName/procedure
["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file
[

"world"
]

JSON file for Java adapter
{

"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Developing MobileFirst applications 8-47

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

<name>
The name that you want for the generated native API.

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are

8-48 IBM MobileFirst Platform Foundation for iOS V7.0.0

prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you

Developing MobileFirst applications 8-49

are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

8-50 IBM MobileFirst Platform Foundation for iOS V7.0.0

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

Developing MobileFirst applications 8-51

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file
[
"world"

]

JSON file for Java adapter

8-52 IBM MobileFirst Platform Foundation for iOS V7.0.0

{
"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

<name>
The name that you want for the generated native API.

B:

BD

Developing MobileFirst applications 8-53

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

8-54 IBM MobileFirst Platform Foundation for iOS V7.0.0

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Developing MobileFirst applications 8-55

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

8-56 IBM MobileFirst Platform Foundation for iOS V7.0.0

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

Developing MobileFirst applications 8-57

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file
[
"world"

]

JSON file for Java adapter
{
"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

8-58 IBM MobileFirst Platform Foundation for iOS V7.0.0

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

<name>
The name that you want for the generated native API.

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

Developing MobileFirst applications 8-59

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

8-60 IBM MobileFirst Platform Foundation for iOS V7.0.0

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Developing MobileFirst applications 8-61

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

8-62 IBM MobileFirst Platform Foundation for iOS V7.0.0

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

Developing MobileFirst applications 8-63

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file
[
"world"

]

JSON file for Java adapter
{
"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

8-64 IBM MobileFirst Platform Foundation for iOS V7.0.0

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

<name>
The name that you want for the generated native API.

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Developing MobileFirst applications 8-65

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory

8-66 IBM MobileFirst Platform Foundation for iOS V7.0.0

consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

Developing MobileFirst applications 8-67

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

8-68 IBM MobileFirst Platform Foundation for iOS V7.0.0

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file

Developing MobileFirst applications 8-69

[
"world"

]

JSON file for Java adapter
{
"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

8-70 IBM MobileFirst Platform Foundation for iOS V7.0.0

<name>
The name that you want for the generated native API.

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Developing MobileFirst applications 8-71

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.

8-72 IBM MobileFirst Platform Foundation for iOS V7.0.0

v Direct with a JSON array parameter: $ mfp invoke
adapterName:function [\"string\", 2, true].

v Direct with a JSON file parameter: $ mfp invoke adapterName:function
--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

Developing MobileFirst applications 8-73

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

8-74 IBM MobileFirst Platform Foundation for iOS V7.0.0

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file
[

"world"
]

JSON file for Java adapter
{

"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Developing MobileFirst applications 8-75

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

<name>
The name that you want for the generated native API.

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.

8-76 IBM MobileFirst Platform Foundation for iOS V7.0.0

v If you run the command from the root folder of a MobileFirst project,
the command builds all the apps and adapters in the project.

v If you run the command from the apps folder, the command builds all
the apps in the project.

v If you run the command from the folder of a specific adapter, the
command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.
v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.

Developing MobileFirst applications 8-77

v If you run the command from the apps folder, the command deploys all
the apps in the project.

v If you run the command from the folder of a specific adapter, the
command deploys that one adapter.

v If you run the command from the folder of a specific application, the
command deploys that one application.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

8-78 IBM MobileFirst Platform Foundation for iOS V7.0.0

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Commands
You can use IBM MobileFirst Platform Command Line Interface for iOS to create
apps from the command line.

A:

ADAPTER

Syntax: mfp adapter [add|call]

You can use the adapter command to manage your adapters on the
MobileFirst Server.

ADAPTER ADD

Syntax: mfp adapter add [<name> --type|-t <type> [--jsonstore|-j]
[--ussd|-u] [--package|-p <package]]The adapter add command creates
a new adapter, which is generated in the adapters folder of the current
project.

If you run adapter add without any arguments, you are prompted for the
following parameters:

<name>
The name that you want for the generated adapter.

Developing MobileFirst applications 8-79

<type>
The type of adapter. Valid values are: castiron, http, java, jco, jms,
sap, and sql.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p <package>]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADAPTER CALL

Syntax: mfp adapter call[<adapter>/<procedure> ["<arguments>"]]

or

mfp adapter call[<adapter>/<procedure> [--type|-t get|post]
[--file|-f <args.json>]]

or

Syntax: mfp adapter call [<adapter>/<procedure>

[--type|-t get|post]

[--form|-fp <form_parameters>]

[--header|-h <header_parameters>]

[--query|-q <query_parameters>]

]

The adapter call command calls an adapter's procedure on the
MobileFirst Server. You can use "FORM, HEADER, and QUERY parameters" to
call an adapter's procedure by using the direct mode. Add the flag for the
parameter type and pass the object of parameters, if needed. For example:
--form "username:user" --header "password:pass" --query
"date:01/01/2015".

To use "PATH parameters" in direct mode, add them to the
adapter/procedure path. Replace the {pathParameter} with the value that
you want to send as the parameter. For example:
v Before: myAdapter/users/{username}. In this example, you must replace

the {username} parameter.
v After: myAdapter/users/StanLee

[--file|-f]
The JSON file that contains the required arguments.

[--type|-t]
Indicates the request type: GET or POST are the valid options. If you are
using Java adapters, the type also includes PUT and DELETE.

Note: If the type parameter is not defined, the adapter call command
uses GET by default. Type cannot be passed in a JSON file.

8-80 IBM MobileFirst Platform Foundation for iOS V7.0.0

[--form|-fp]
The form parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--header|-h]
The header parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

[--query|-q]
The query parameters to pass with the procedure. For Java Adapters
and Direct Mode use only.

You can run the adapter call command by using one of the following
methods.
v Interactive: $ mfp adapter call, then follow the prompts by using the

arrow keys.
v Direct with no parameters: $ mfp adapter call adapterName/procedure.
v Direct with multiple parameters: $ mfp adapter call

adapterName/procedure "stringParameter", 2, true.
v Direct with an array: $ mfp adapter call adapterName/procedure

["stringParameter", 2, true

v Direct with a JSON file parameter: $ mfp adapter call
adapterName/procedure --file ./myArgs.json

JSON file
[

"world"
]

JSON file for Java adapter
{

"FORM":{"username":"user","password":"pass"},
"QUERY":{"index":6},
"HEADER":{"Date":"01/01/2015"}

}

v Direct with POST method: $ mfp adapter call adapterName/procedure/
{path_parameter} -fp "username:user1" --type post

v Direct with Java adapter: $ mfp adapter call "adapterName/procedure/
{pathParameter with space}" --form "username:user" --header
"Date:01/01/2015" --query "index=6" --type post

ADD

Syntax: mfp add [adapter|api]The add command generates new
MobileFirst artifacts. The current working directory must be a child of an
existing MobileFirst project. Generated artifacts go into the appropriate
folder within the project, regardless of the current working directory. For
example, adapters are generated to the adapters folder and native APIs are
generated to the apps folder.

ADD ADAPTER

Syntax: mfp add adapter [<name> --type|-t <adaptertype>
[--jsonstore|-j] [--ussd|-u] [--package|-p]]This command is
deprecated in V7.0.0. You can use the adapter add command instead. The
add adapter command creates a new adapter, which is generated into the
adapters folder of the current project.

If you run add adapter without any arguments, you are prompted for the
following parameters:

Developing MobileFirst applications 8-81

<name>
The name that you want for the generated adapter.

<adaptertype>
The type of adapter. For example: HTTP, Cast Iron, SAP, JCo, or Java.

[--jsonstore|-j]
Your choice of JSONStore procedures. JSONStore procedures are not
valid for JCo and Java adapters.

[--ussd|-u]
The option for the Unstructured Supplementary Service Data (USSD)
communication technology.

[--package|-p]
The name of the package that contains the Java adapter classes.
Package option is valid only for Java adapters.

ADD API

Syntax: mfp add api [<name>]The add api command generates a new
native API into the apps folder of the current project. Run the command in
the current working directory, which is a child of a MobileFirst project.

If you run $ mfp add api without any arguments, you are prompted for
the following parameter:

<name>
The name that you want for the generated native API.

B:

BD

Syntax: mfp bdThe bd command builds and deploys to the local test server
the set of MobileFirst resources that are most local to the current working
directory. To run the bd command, navigate to the preferred folder and
enter $ mfp bd.

BUILD

Syntax: mfp buildThe build command builds the set of MobileFirst
resources that are most local to the current working directory.

To generate a build in the preferred folder, navigate to the folder and enter
$ mfp build.
v If you run the command from the root folder of a MobileFirst project,

the command builds all the apps and adapters in the project.
v If you run the command from the apps folder, the command builds all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command builds that one adapter.

C:

CONFIG

Syntax: mfp config [<setting>][<value>]This command is a global
command. Use the config command to set your configuration preferences,
in particular which browser is used by CLI. To configure your preferences,
you can use one of the following syntaxes:
v Interactive: Run $ mfp config and follow the prompts by using the

arrow keys.

8-82 IBM MobileFirst Platform Foundation for iOS V7.0.0

v Direct with the setting parameter: $ mfp config [<setting>].
v Direct with the setting and value parameters: $ mfp config

[<setting>] [<value>].

CONSOLE

Syntax: mfp consoleThis command is a global command. The console
command opens the MobileFirst Operations Console in your default
browser for the current project.

This command takes no parameters. To open the MobileFirst Operations
Console, run: $ mfp console.

CREATE

Syntax: mfp create [<name> --app|-a <app>]This command is a global
command. The create command creates a new MobileFirst project in the
current working directory. This new project contains an iOS app in the
apps folder. If you enter the command without any arguments, you are
prompted for the name of the project and the name of the application. To
generate a new MobileFirst project that is called MyProject, enter $ mfp
create MyProject --app MyApp.

CREATE SERVER

Syntax: mfp create-serverThis command is a global command that does
not need to be run manually because the built-in development server is
automatically created and started as needed. The create server command
creates a new WebSphere Application Server Liberty application server in
your default folder. The server is preconfigured to work as a MobileFirst
local test server. To run the command, enter mfp create-server. This
command takes no arguments.

D:

DEPLOY

Syntax: mfp deployThe deploy command deploys to the local test server
the set of MobileFirst resources that are found in the current working
directory. To run the deploy command in the preferred folder, navigate to
the folder and enter $ mfp deploy.
v If you run the command from the root folder of a MobileFirst project,

the command deploys all apps and adapters in the project.
v If you run the command from the apps folder, the command deploys all

the apps in the project.
v If you run the command from the folder of a specific adapter, the

command deploys that one adapter.
v If you run the command from the folder of a specific application, the

command deploys that one application.

H:

HELP

Syntax: mfp help [<command>]This command is a global command. The
help command displays either information about the general use of the
CLI, or detailed help for each command.
v Information about the use of the CLI: $ mfp help.
v Information about a specific command: $ mfp help invoke.

Developing MobileFirst applications 8-83

I:

INFO

Syntax: mfp infoThe info command generates information about your
environment. This information contains the operating system, the memory
consumption on your machine, the node version, and the CLI version. If
your current directory is a MobileFirst project, it also displays information
about your project.

INVOKE

Syntax: mfp invoke [<adapter>:<procedure>[\"<json array>\"|--file|-f
<path to json array file>]]This command is deprecated. You can use the
adapter call command instead. The invoke command starts a procedure
for a specified adapter on MobileFirst Server. Pass the arguments as a
comma-separated list. If you enter the command with no arguments, you
are prompted for an adapter and procedure, based on what is available in
the current working directory of your project. You can run the command
with one of the following syntaxes:
v Interactive: $ mfp invoke, then follow the prompts by using the arrow

keys.
v Direct with no parameters: $ mfp invoke adapterName:function.
v Direct with a JSON array parameter: $ mfp invoke

adapterName:function [\"string\", 2, true].
v Direct with a JSON file parameter: $ mfp invoke adapterName:function

--file ./myArts.json.

L:

LOGS

Syntax: mfp logsThe logs command shows the path to the local test server
logs. You can run the logs command from any directory. On completion,
the path to the test server logs is displayed and control is returned to the
command line. The logs command takes no arguments. To run it, enter $
mfp logs.

R:

RESTART

Syntax: mfp restartThe restart command restarts the local test server.
Run the restart command in the current working directory, which is a
child of a MobileFirst project. On completion, a message indicates a
successful start, and control is returned to the command line. This
command takes no arguments. To run the restart command in the
preferred folder, navigate to the folder and enter $ mfp restart.

RUN

Syntax: mfp runThe run command starts the local test server. Run mfp run
in the current working directory, which is a child of a MobileFirst project.
This command does not return control to the command line. It displays
new status messages from the server until the server is stopped. The run
command takes no arguments. To run it, enter $ mfp run.

S:

START

8-84 IBM MobileFirst Platform Foundation for iOS V7.0.0

Syntax: mfp startThe start command starts the local test server. Run mfp
start command in the current working directory, which is a child of a
MobileFirst project. On completion, a message indicates that a successful
start and control is returned to the command line. This command takes no
arguments. To start the local test server, enter $ mfp start.

STATUS

Syntax: mfp statusThe status command shows the status of the local test
server, either running or stopped. Run the command in the current
working directory, which is a child of a MobileFirst project. This command
takes no arguments. To run the command, enter $ mfp status.

STOP

Syntax: mfp stopThe stop command stops the local test server. Run mfp
stop command in the current working directory, which is a child of a
MobileFirst project. This command takes no arguments. To run the
command, enter $ mfp stop.

Developing the server side of a MobileFirst application
This collection of topics relates to various aspects of developing the server-side
components of a MobileFirst application.

MobileFirst Java adapters
With IBM MobileFirst Platform Foundation for iOS, you can create, test, and
deploy adapters written in Java.

Java adapters were introduced to MobileFirst, starting with V7.0. Java adapters,
written in Java, are based on the JAX-RS specification and expose a full REST API
to the client. In other words, a Java adapter is a JAX-RS service that can be
deployed to MobileFirst Server and that by default, has access to MobileFirst
Server APIs.

The benefits of using a Java adapter are:
v Ability to fully control the URLs structure, the content types, the request and

response headers, content and encoding.
v Rapid development and testing by using MobileFirst Studio and CLI.
v Rapid deployment to a running MobileFirst Server without compromising on

performance and without any downtime.
v Ready-to-use security integration with MobileFirst security that uses simple

annotations in the source code.

Developing MobileFirst applications 8-85

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html

Figure 1 illustrates how a mobile device (1) can access any Java adapter from its
REST endpoint. The REST interface is protected by the MobileFirst OAuth security
filter, meaning that the client needs to obtain an access token to access the adapter
resources. Because any of the resources of the adapter can have its own URL, it is
possible to use a third-party (that is, non-MobileFirst) URL-based security
framework. The REST interface invokes the Java code (JAX-RS service) to handle
incoming requests. The Java code can perform operations on the server by using
the Java MobileFirst Server API (3). In addition, the Java code can connect to the
enterprise system to fetch data, update data, or perform any other operation that
the enterprise system exposes (2).

For more information about IBM MobileFirst Platform Foundation for iOS
adapters, see .

Adapter sandboxing

Note that every Java adapter has its own isolated sandbox, in which all its classes
are running without knowing about or interrupting the sandboxes of other
adapters. It is possible to include third-party libraries that are required by the
adapter code in the adapter/lib folder. Libraries that are included there override
any libraries that are provided by the application server or included in the
server/lib folder.

Figure 8-5. The Java adapter framework

8-86 IBM MobileFirst Platform Foundation for iOS V7.0.0

Setting up the connectivity to back-end configuration

Unlike JavaScript adapters, Java adapters do not provide back-end connectivity, by
default. It is the responsibility of the adapter developer to write code that connects
to the back-end system. Examples of open source libraries are Apache HttpClient
for connecting over HTTP and java.sql APIs for connecting directly to databases.

For more information about connectivity and samples of implementations of
back-end connectivity inside a Java adapter, see Java Adapter.

Developing Java adapters
Learn about creating a new Java adapter and developing Java adapter code.

Creating a Java adapter using MobileFirst Studio:

Follow these instructions to create a new Java adapter in MobileFirst Studio.

About this task

You can create a Java adapter in MobileFirst Studio.

Procedure

1. In MobileFirst Studio, right-click a MobileFirst project, then select New >
MobileFirst Adapter.

2. In the dialog, select Java Adapter.
3. Enter the adapter name and package name.
4. Click Finish.

Creating a Java adapter using MobileFirst CLI commands:

Follow these instructions to create a Java adapter usingMobileFirst CLI commands.

About this task

You can create a Java adapter from the command line.

Procedure

1. Open a terminal.
2. Change directory to the MobileFirst project directory.
3. Type: mfp add adapter <name> -type java -package <package name>.

Developing Java adapter code:

Learn about implementing the adapter's JAX-RS service, the Java server side API,
and debugging Java adapter code.

Implementing the adapter's JAX-RS service:

To implement the JAX-RS service of the Adapter, you must first implement the
JAX-RS application class, then implement the JAX-RS resources classes.

Implementing the JAX-RS application class:

Developing MobileFirst applications 8-87

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/server-side-development/java-adapter/

About this task

The JAX-RS application class tells the JAX-RS framework which resources are
included in the application. Any resource can have a separate set of URLs.
Traditionally the application class should extend javax.ws.rs.core.Application and
implement the method getClasses or getSingletons that will be called by the
JAX-RS framework to get information about this application. In the following
example, a JAX-RS application defines three resources: Resource1, UsersResource,
and MyResourceSingleton. The first two are provided by the getClasses method,
while the last is provided by getSingletons:
import java.util.HashSet;
import java.util.Set;
import javax.ws.rs.core.Application;

public class MyApplication extends Application{

@Override
public Set<Class<?>> getClasses() {

HashSet<Class<?>> classes = new HashSet<Class<?>>();
classes.add(Resource1.class);
classes.add(UsersResource.class);
return classes;

}

@Override
public Set<Object> getSingletons() {

Set<Object> singletons = new HashSet<Object>();
singletons.add(MyResourceSingleton.getInstance());
return singletons;

}
}

An alternative to using the javax.ws.rs.core.Application is to use
com.worklight.wink.extensions.MFPJAXRSApplication. In the following example,
there is no need to put all the resources classes (or singletons) in a list, since
MFPJAXRSApplication scans the package returned by the getPackageToScan
method for JAX-RS resources and creates the list automatically. Additionally, it has
an init method that is called by IBM MobileFirst Platform Server as soon as the
adapter is deployed (before serving has begun) and when the MobileFirst runtime
starts up:
import com.worklight.wink.extensions.MFPJAXRSApplication;
public class MyApplication2 extends MFPJAXRSApplication{

@Override
protected void init() throws Exception {

//Perform initialization
}

@Override
protected String getPackageToScan() {

return getClass().getPackage().getName();
}

}

Implementing a JAX-RS resource:
About this task

A JAX-RS resource is a POJO ("plain old Java object") which is mapped to a root
URL and has Java methods for serving requests to this root URL and its sub-URLs.
For example:

8-88 IBM MobileFirst Platform Foundation for iOS V7.0.0

import java.util.ArrayList;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.Status;

@Path("/users")
//This is the root URL of the resource ("/users")
public class UsersResource {

//Instead of this static field, it could be a users DAO that works with Database or cloud storage
static ArrayList<User> users = new ArrayList<User>();

@GET
@Produces(MediaType.APPLICATION_JSON)
//This will serve: GET /users
public ArrayList<User> getUsers(){

return users;
}

@Path("/{userId}")
@Produces(MediaType.APPLICATION_JSON)
//This will serve: GET /users/{userId}
public User getUser(@PathParam("userId") String userId){

return findUserById(userId);
}

@POST
@Consumes(MediaType.APPLICATION_JSON)
//This will serve: POST /users
public void addUser(User u) {

users.add(u);
}

@PUT
@Consumes(MediaType.APPLICATION_JSON)
//This will serve: PUT /users
public Response updateUser(User u) {

User user = findUserById(u.getId());
if (user == null){

return Response.status(Status.NOT_FOUND)
.entity("User with ID: "+u.getId()+" not found")
.build();

}
users.remove(user);
users.add(u);
return Response.ok().build();

}

@DELETE
@Path("/{userId}")
//This will serve: DELETE /users/{userId}
public void deleteUser(@PathParam("userId") String userId){

User user = findUserById(userId);
users.remove(user);

}

private User findUserById(String userId) {

Developing MobileFirst applications 8-89

//TODO implement...
return null;

}
}

The resource just shown is mapped to the URL /users and serves the following
requests:

Table 8-2. Resource requests

Request Description

GET /users Gets all users list

POST /user Adds a new user

GET /users/{id} Gets a specific user with id id

PUT /users Updates an existing user

DELETE /users/{id} Deletes a user with id id

The JAX-RS framework does the mapping from the simple Java object User to a
JSON object and vice-versa, making it easier for the service developer to use
without taking care of repeating conversion-related code. The implementation also
helps in extracting parameter values from the URL and from the query string
without having to parse it manually.

Security configuration of a JAX-RS resource:
About this task

After you have implemented a JAX-RS resource inside a Java adapter, the resource
is already secured by the default security of the MobileFirst platform. That means
that only a registered mobile app that is deployed on the same MobileFirst Server
as the adapter can access this resource. It is possible to customize the security
configuration of a resource by using the annotation @OAuthSecurity. This
annotation can be used at the level of the resource itself or in one of its URLs.

@OAuthSecurity annotation
The @OAuthSecurity annotation is declared as follows:
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface OAuthSecurity {

String scope() default "";
boolean enabled() default true;

}

v The scope field is the required scope of the protected resource.
v The enabled field makes it possible to enable or disable security for a

resource.

Using @OAuthSecurity at the resource class level
To make the UserResource that was used in the previous examples
unprotected, all you must do is add:
@OAuthSecurity(enabled=false)

above the class definition, as shown in the following example:
@Path("/users")
@OAuthSecurity(enabled=false)
//This is the root URL of the resource ("/users")
public class UsersResource {
...

8-90 IBM MobileFirst Platform Foundation for iOS V7.0.0

Using @OAuthSecurity at the method level
Suppose you want to leave the user's resource unprotected for readers only
but protect the add/edit/delete user operations. You can use the
@OAuthSecurity annotation at the method level, as shown in the following
example:
@Path("/users")
@OAuthSecurity(enabled=false)
//This is the root URL of the resource ("/users")
public class UsersResource {

@GET
@Produces(MediaType.APPLICATION_JSON)
//This will serve: GET /users
public ArrayList<User> getUsers(){

...
}

@Path("/{userId}")
@Produces(MediaType.APPLICATION_JSON)
//This will serve: GET /users/{userId}
public User getUser(@PathParam("userId") String userId){

...
}

@POST
@Consumes(MediaType.APPLICATION_JSON)
@OAuthSecurity(scope="adminRealm")
//This will serve: POST /users
public void addUser(User u) {

...
}

@PUT
@Consumes(MediaType.APPLICATION_JSON)
@OAuthSecurity(scope="adminRealm")
//This will serve: PUT /users
public Response updateUser(User u) {

...
}

@DELETE
@Path("/{userId}")
@OAuthSecurity(scope="adminRealm")
//This will serve: DELETE /users/{userId}
public void deleteUser(@PathParam("userId") String userId){

...
}

...
}

Java server side API:

Java adapters can use the IBM MobileFirst Platform Server Java API to perform
server-related operations such as: calling other adapters, submitting push
notifications, logging on to the server log, getting values of configuration
properties, reporting activities to analytics, and getting the identity of the request
issuer.

To get the server API interface use the following code:
WLServerAPI serverApi = WLServerAPIProvider.getWLServerAPI();

Developing MobileFirst applications 8-91

The WLServerAPI interface is the parent of all the API categories: analytics,
configuration, push, adapters, authentication. If you want to use the push API, you
can write:
PushAPI pushApi = serverApi.getPushAPI();

For more information on the Java API, see the . Examples of the use of the API are
provided in the following sections.

Logger
Adding a logger to the JAX-RS resource of your adapter is essential for
logging debug information, information, warnings, and errors to the
MobileFirst Server log. In the Java adapters, you can use the standard
java.util.logging logger. To add logger declare the following static field:

static Logger logger = Logger.getLogger(UsersResource.class.getName());

Note: The logger is part of the new adapter template, so in most cases,
there is no need to add it.

Push API
You can extend the UsersResource described in “Implementing the
adapter's JAX-RS service” on page 8-87 to notify all the devices of a user
when the user record is updated:

WLServerAPI serverAPI = WLServerAPIProvider.getWLServerAPI();

@PUT
@Consumes(MediaType.APPLICATION_JSON)
public Response updateUser(User u) {

//TODO Really update the user...

//Notify all devices that the user has been updated
PushAPI push = serverAPI.getPushAPI();
INotification notification = push.buildNotification();
notification.getTarget().setUserIds(u.getId());//Targeted only for the updated user

JSONObject payload = new JSONObject();
payload.put("user", u.getId());
notification.getSettings().getAPNS().setPayload(payload);

try {
push.sendMessage(notification, "myApp");

} catch (MFPSendMessageFailedException e) {
e.printStackTrace(); //Ignore failure in this case, since the update succeeded.

}
return Response.ok().build();

}

Security API
The security API provides the security context object that contains
information about the identity of the request issuer. In the following
example, a new validation is added to the user's resource: User records can
be updated only by users themselves:

WLServerAPI serverAPI = WLServerAPIProvider.getWLServerAPI();

@PUT
@Consumes(MediaType.APPLICATION_JSON)
publis Response updateUser(User u) {

SecurityAPI security = serverAPI.getSecurityAPI();
String requestIssuerUserId = security.getSecurityContext().getUserIdentity().getId();
if (!u.getId().equals(requestIssuerUserId)){

return Response.status(Status.FORBIDDEN)

8-92 IBM MobileFirst Platform Foundation for iOS V7.0.0

.entity("The user: "+requestIssuerUserId+
" is not allowed to modify the user record of another user").build();

}

//TODO Really update the user...

Adapters API
The adapters API makes it easy to perform requests to other adapters in
the same server.

The following example shows how to use the adapters API to call a
JavaScript adapter:

@Path("/")
public class JavaAdapter1Resource {

static Logger logger = Logger.getLogger(JavaAdapter1Resource.class.getName());

@GET
@Path("/calljs")
@Produces("application/json")
public JSONObject callJSAdapterExample() throws Exception{

AdaptersAPI adaptersAPI = WLServerAPIProvider.getWLServerAPI().getAdaptersAPI();
//Using helper method to create a request to the JS adapter
HttpUriRequest req = adaptersAPI.createJavascriptAdapterRequest("JSAdapter", "getStories");
//Execute the request and get the response
HttpResponse resp = adaptersAPI.executeAdapterRequest(req);
//Convert the response to JSON since we know that JS adapters always return JSON
JSONObject json = adaptersAPI.getResponseAsJSON(resp);
//Return the json response as the response of the current request that is being taking care of
return json;

}

Configuration API
The configuration API enables the adapter to read server-side configuration
properties defined in the worklight.properties file or as JNDI entries. For
more information about MobileFirst configuration properties, see
“Commands” on page 8-16.

For example, to get the value of the serverSessionTimeout property, write
the following code:

String serverSessionTimeout = serverAPI.getConfigurationAPI().getMFPConfigurationProperty("serverSessionTimeout");

Debugging Java adapter code:

Use IBM MobileFirst Platform Studio's debug mode to debug Java adapter code.

Starting debug mode:
Before you begin

After you enter debug mode, you can debug the Java code exactly as you debug a
standard Java application. You might need to issue a request to the adapter to
make its code run and hit the breakpoints.

Note: While in debug mode, you can debug the code of all deployed Java adapters
and the code in the server/java folder as well.

Procedure

1. Right-click a Java adapter and select Debug As > Debug MobileFirst Java
Adapters.

2. Optional: Open the Debug perspective in MobileFirst Studio to see threads,
breakpoints, and values.

Developing MobileFirst applications 8-93

Stopping debug mode:
Procedure

1. Open the Debug perspective in MobileFirst Studio.
2. Right-click the Debug tab and select remote debug [Remote Java Application]

> Terminate.

MobileFirst JavaScript adapters
With IBM MobileFirst Platform Foundation for iOS, you can create, test, and
deploy adapters written in JavaScript.

You can create and configure all JavaScript adapters manually. In addition, you can
automatically generate SAP Netweaver Gateway or SOAP adapters with the
services discovery wizard.

Starting with IBM MobileFirst Platform Foundation for iOS V6.3, changes were
made to the XML definition and behavior of JavaScript adapter timeout and
concurrency. For more information, see “Adapter timeout and concurrency” on
page 8-122.

For more general information on IBM MobileFirst Platform Foundation for iOS
adapters, see .

Benefits of MobileFirst JavaScript adapters

JavaScript adapters provide various benefits, as follows:
v Fast Development: Adapters are developed in JavaScript and XSL. Developers

employ flexible and powerful server-side JavaScript to produce succinct and
readable code for integrating with back-end applications and processing data.
Developers can also use XSL to transform hierarchical back-end data to JSON.

v Read-only and Transactional Capabilities: MobileFirst adapters support
read-only and transactional access modes to back-end systems.

v Security: MobileFirst adapters use flexible authentication facilities to create
connections with back-end systems. Adapters offer control over the identity of
the user with whom the connection is made. The user can be a system user, or a
user on whose behalf the transaction is made.

v Transparency: Data retrieved from back-end applications is exposed in a
uniform manner, so that application developers can access data uniformly,
regardless of its source, format, and protocol.

v REST Interface: A new REST interface lets you benefit from the OAuth 2.0
security framework, even when using your existing JavaScript adapters. For
more information, see “Accessing adapters from the /adapters endpoint” on
page 8-158.

The adapter framework

The adapter framework mediates between the mobile apps and the back-end
services. A typical flow is depicted in the following diagram. The app, the
back-end application, and the JavaScript code and XSLT components in the
MobileFirst Server are supplied by the adapter or app developer. The procedure
and auto-conversions are part of IBM MobileFirst Platform Foundation for iOS.

8-94 IBM MobileFirst Platform Foundation for iOS V7.0.0

1. An adapter exposes a set of services, called procedures. Mobile apps invoke
procedures by issuing Ajax requests.

2. The procedure retrieves information from the back-end application.
3. The back-end application then returns data in some format.
v If this format is JSON, the MobileFirst Server keeps the data intact.
v If this format is not JSON, the MobileFirst Server automatically converts it to

JSON. Alternatively, you can provide an XSL transformation to convert the
data to JSON. In this case, the returned content type from the back end must
be XML. Then, you can use an XSLT to filter the data.

4. The JavaScript implementation of the procedure receives the JSON data,
performs any additional processing, and returns it to the calling app.
v Take note of the following points:
v Writing an adapter that pulls large amounts of data and transfers it to the

client application is discouraged because the data must be processed twice:
once at the adapter and once again at the client application.

v HTTP POST requests are used for client-server communications between the
MobileFirst application and the MobileFirst Server. Parameters must be

Figure 8-6. The JavaScript adapter framework

Developing MobileFirst applications 8-95

supplied in a plain text or numeric format. To transfer images (or any other
type of file data), they must be converted to base64 first.

Anatomy of JavaScript adapters

MobileFirst adapters are developed by using XML, JavaScript, and XSL. Each
adapter must have the following elements:
v Exactly one XML file, describing the connectivity to the back-end system to

which the adapter connects, and listing the procedures that are exposed by the
adapter to other adapters and to applications.

v Exactly one JavaScript file, containing the implementation of the procedures
declared in the XML file.

v Zero or more XSL files, each containing a transformation from the raw XML data
retrieved by the adapter to JSON returned by adapter procedures.

The files are packaged in a compressed file with a .adapter suffix (such as
myadapter.adapter).

The root element of the XML configuration files is <adapter>. The main
subelements of the <adapter> element are as follows:
v <connectivity>: Defines the connection properties and load constraints of the

back-end system. When the back end requires user authentication, this element
defines how the credentials are obtained from the user. For more information,
see “Structure of the adapter XML file.”

v <procedure>: Declares a procedure that is exposed by the adapter. For more
information, see “Implementing adapter procedures” on page 8-149.

The structure of the <adapter> element is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>

<description>
<connectivity>

<connectionPolicy>
<loadConstraints>

</connectivity>

<procedure /> <!-- One or more such elements -->
</wl:adapter>

Structure of the adapter XML file
The adapter XML file is used to configure connectivity to the back-end system and
to declare the procedures that are exposed by the adapters to applications and to
other adapters.

The adapter element

The adapter element is the root element of the adapter configuration file. It has the
following structure, which consists of both attributes and subelements:
<wl:adapter name="Java_adap"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.ibm.com/mfp/integration"
xmlns:http="http://www.ibm.com/mfp/integration/http">

<displayName>Java_adap</displayName>
<description>Java_adap</description>
<connectivity>
<connectionPolicy xsi:type="wl:NullConnectionPolicyType"></connectionPolicy>

8-96 IBM MobileFirst Platform Foundation for iOS V7.0.0

</connectivity>

<JAXRSApplicationClass>java_package.Java_adapApplication</JAXRSApplicationClass>
</wl:adapter>

The adapter element attributes

IBM MobileFirst Platform Foundation for iOS provides two schemas that are used
by all adapters. Additionally, this product provides a specific schema for each type
of adapter. Each schema must be associated with a different namespace.
Namespaces are declared by using the xmlns attribute, and are linked to their
schemas by using the xsi:schemaLocation attribute. The <adapter> element
contains the following attributes.

name

Mandatory.

The name of the adapter. This name must be unique within the MobileFirst
Server. It can contain alphanumeric characters and underscores, and must
start with a letter. After you define and deploy an adapter, you cannot
modify its name.

xmlns:namespace

Mandatory.

Defines schema namespaces.

This attribute must appear three times.
v xmlns:xsi: Defines the namespace associated with the

http://www.w3.org/2001/XMLSchema-instance schema.
v xmlns:wl: Defines the namespace that is associated with the

http://www.ibm.com/mfp/integration schema.
v xmlns:namespace: Defines the namespace that is associated with the

schema related to the back-end application. For example, xmlns:sap or
xmlns:sql.

xsi:schemaLocation

Optional.

Identifies the schema locations.
xsi:schemaLocation="http://www.ibm.com/mfp/integration location-of-integration-schema-file
URI-of-specific-adapter-schema location-of-schema"

If this attribute is missing, auto-complete for XML elements and attributes
that are defined win the schema is not available in MobileFirst Studio.

At run time, this attribute has no effect.

The adapter element subelements

The adapter element has the following subelements.

displayName

Optional.

This element is deprecated. The name of the adapter that is displayed in
the MobileFirst Operations Console. If this element is not specified, the
value of the name attribute is used instead.

Developing MobileFirst applications 8-97

description

Optional.

Additional information about the adapter. Displayed in the MobileFirst
Operations Console.

connectivity

Mandatory.

Defines the mechanism by which the adapter connects to the back-end
application. It contains the connectionPolicy subelement. The
connectionPolicy subelement is mandatory, and it defines connection
properties. The structure of this subelement depends on the integration
technology of the back-end application.

procedure

Mandatory.

Defines a process for accessing a service that is exposed by a back-end
application. Occurs once for each procedure that is exposed by the adapter.

The procedure element has the following structure.
<procedure

name="unique-name"
connectAs="value"
audit="value"
securityTest="value"

/>

The procedure element has the following attributes.

name

Mandatory.

The name of the procedure. This name must be unique within the
adapter. It can contain alphanumeric characters and underscores,
and must start with a letter.

connectAs

Optional.

Defines how to create a connection to the back end for invoking
the retrieve procedure. The following values are valid.
v server: Default. The connection to the back-end is created

according to the connection policy defined for the adapter.
v endUser: The connection to the back-end is created with the

user's identity. Only valid if you identify a user realm in the
security tests for this procedure.

audit

Optional.

Defines whether calls to the procedure are logged in the audit log.
The log file is Project Name/server/log/audit/audit.log.

The following values are valid.
v true: Calls to the procedure are logged in the audit log.
v false: Default. Calls to the procedure are not logged in the audit

log.

8-98 IBM MobileFirst Platform Foundation for iOS V7.0.0

securityTest

Optional.

The name of the security test that you want to use to protect the
adapter procedure, as defined in the authenticationConfig.xml
file.

Cast Iron adapter connectionPolicy element:

You can access various enterprise data sources, such as databases, web services,
and JMS, and provides validation, aggregation, and formatting capabilities by
using Cast Iron.

Structure

The connectionPolicy element has the following structure.
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">

<protocol>http</protocol>
<domain>your.CastIron.com</domain>
<port>80</port>
<connectionTimeoutInMilliseconds>30000</connectionTimeoutInMilliseconds>
<socketTimeoutInMilliseconds>30000</socketTimeoutInMilliseconds>
<maxConcurrentConnectionsPerNode>50</maxConcurrentConnectionsPerNode>

</connectionPolicy>

Attributes

The connectionPolicy element has the following attributes.

xsi:type

Mandatory.

The value of this attribute must be set to http:HTTPConnectionPolicyType.

Subelements

The connectionPolicy element has the following subelements.

protocol

Optional.

The URL protocol to use. The following values are valid.
v http: default
v https

domain

Mandatory.

The host address.

port

Optional.

The port address.

connectionTimeoutInMilliseconds

Optional

Developing MobileFirst applications 8-99

The time until a connection to the back-end can be established. This
timeout does not ensure that a timeout exception occurs after a time
elapses after the invocation of the HTTP request.

If you pass a different value for this parameter in the invokeHTTP()
JavaScript function, you can override the value that is defined here. For
more information, see the WL.Server class.

socketTimeoutInMilliseconds

Optional.

The timeout between two consecutive packets, starting from the connection
packet. This timeout does not ensure that a timeout exception occurs after
a time elapses after the invocation of the HTTP request.

If you pass a different value for this parameter in the invokeHttp()
JavaScript function, you can override the value that is defined here. For
more information, see the WL.Server class.

maxConcurrentConnectionsPerNode

Optional.

Defines the maximum number of concurrent connections, which the
MobileFirst Server can open to the back end.

IBM MobileFirst Platform Foundation for iOS does not limit the incoming
service requests from applications. This subelement can be configured at
the application server level. This product limits only the number of
concurrent HTTP connections to the back-end service.

The default number of concurrent HTTP connections is 50. You can modify
this number based on the expected concurrent requests to the adapter and
the maximum requests allowed on the back-end service. You can also
configure the back-end service to limit the number of concurrent incoming
requests.

Consider a two-node system, where the expected load on the system is 100
concurrent requests and the back-end service can support up to 80
concurrent requests. You can set maxConcurrentConnectionsPerNode to 40.
This setting ensures that no more than 80 concurrent requests are made to
the back-end service.

If you increase the value, the back-end application needs more memory. To
avoid memory issues, do not to set this value too high. Instead, estimate
the average and peak number of transactions per second, and evaluate
their average duration. Then, calculate the number of required concurrent
connections as indicated in this example, and add a 5-10% margin. Then,
monitor your back end, and adjust this value as required, to ensure that
your back-end application can process all incoming requests.

When you deploy adapters to a cluster, set the value of this attribute to the
maximum required load divided by the number of cluster members.

For more information about how to size your back-end application, see the
Scalability and Hardware Sizing document and the hardware calculator
spreadsheet at Developer Center website for IBM MobileFirst Platform
Foundation.

8-100 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/
https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

HTTP adapter connectionPolicy element:

You can use the HTTP adapter to start RESTful services and SOAP-based services.
You can also complete HTML scraping.

Structure

The connectionPolicy element has the following structure.
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType"; cookiePolicy="cookie-policy" maxRedirects="int">

<protocol>protocol</protocol>
<domain>host-name</domain>
<port>host-port</port>
<connectionTimeoutInMilliseconds>connection_timeout</connectionTimeoutInMilliseconds>
<socketTimeoutInMilliseconds>socket_timeout</socketTimeoutInMilliseconds>
<authentication> ... </authentication>
<proxy> ... </proxy>
<sslCertificateAlias>ssl-certificate-alias</sslCertificateAlias>
<sslCertificatePassword>ssl-certificate-password</sslCertificatePassword>
<maxConcurrentConnectionsPerNode>max_concurrent_connections</maxConcurrentConnectionsPerNode>

</connectionPolicy>

Attributes

The connectionPolicy element has the following attributes.

xsi:type

Mandatory.

The value of this attribute must be set to http:HTTPConnectionPolicyType.

cookiePolicy

Optional.

This attribute sets how the HTTP adapter handles cookies that arrive from
the back-end application. The following values are valid.
v RFC_2109: default value
v RFC_2965

v NETSCAPE

v IGNORE_COOKIES

maxRedirects

Optional.

The maximum number of redirects that the HTTP adapter can follow. This
attribute is useful when the back-end application sends circular redirects as
a result of some error, such as authentication failures. If this attribute is set
to 0, the adapter does not attempt to follow redirects at all, and the HTTP
302 response is returned to the user. The default value is 10.

Subelements

The connectionPolicy element has the following subelements.

protocol

Optional.

The URL protocol to use. The following values are valid.
v http: default

Developing MobileFirst applications 8-101

v https

domain

Mandatory.

The host address.

port

Optional.

The port address.

sslCertificateAlias

Optional for regular HTTP authentication and simple SSL authentication.

Mandatory for mutual SSL authentication.

The alias of the adapter private SSL key, which is used by the HTTP
adapter key manager to access the correct SSL certificate in the keystore.
For more information about the keystore setup process, see “SSL certificate
keystore setup” on page 10-54.

sslCertificatePassword

Optional for regular HTTP authentication and simple SSL authentication.

Mandatory for mutual SSL authentication.

The password of the adapter private SSL key, which is used by the HTTP
adapter key manager to access the correct SSL certificate in the keystore.
For more information about the keystore setup process, see “SSL certificate
keystore setup” on page 10-54.

authentication

Optional.

Authentication configuration of the HTTP adapter. The HTTP adapter can
use one of four protocols, and can also contain a server identity. You can
configure the HTTP adapter to use one of four authentication protocols by
defining the <authentication> element. You can define the
<authentication> element in one of the following ways.
v Basic Authentication

<authentication>
<basic/>

</authentication>

v Digest Authentication
<authentication>
<digest/>

</authentication>

v NTLM Authentication
<authentication>
<ntlm workstation="value"/>

</authentication>

The workstation attribute is optional. This attribute denotes the name of
the computer on which the MobileFirst Server runs.

v SPNEGO/Kerberos Authentication
<authentication>
<spnego stripPortOffServiceName="true"/>

</authentication>

8-102 IBM MobileFirst Platform Foundation for iOS V7.0.0

The attribute stripPortOffServiceName is optional. This attribute
specifies whether the Kerberos client uses the service name without the
port number.
When you use this option, you must also place the krb5.conf file under
Project Name/server/conf. This file must contain Kerberos configuration
such as the location of the Kerberos server, and domain names. Its
structure is described in the Kerberos V5 System Administrator's Guide
in the mit.edu website.

If the adapter exposes procedures with the attribute connectAs="server",
the connection policy can contain <serverIdentity> element. This feature
applies to all authentication schemes. For example:
<authentication>

<basic/>
<serverIdentity>

<username> ${DOMAIN\user} </username>
<password> ${password} </password>

</serverIdentity>
</authentication>

proxy

Optional.

Access the back-end application. Add a <proxy> element inside the
<connectionPolicy> element. If the proxy requires authentication, add a
nested <authentication> element inside <proxy>. This element has the
same structure as the one used to describe the authentication protocol of
the adapter, described in The HTTP adapter's <authentication> element.

The following example shows a proxy that requires basic authentication
and uses a server identity.

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>http</protocol>
<domain>www.bbc.co.uk</domain>
<proxy>

<protocol>http</protocol>
<domain>wl-proxy</domain>
<port>8167</port>
<authentication>

<basic/>
<serverIdentity>

<username>${proxy.user}</username>
<password>${proxy.password}</password>

</serverIdentity>
</authentication>

</proxy>
</connectionPolicy>

maxConcurrentConnectionsPerNode

Optional.

Defines the maximum number of concurrent connections, which the
MobileFirst Server can open to the back end.

IBM MobileFirst Platform Foundation for iOS does not limit the incoming
service requests from applications. This subelement can be configured at
the application server level. This product limits only the number of
concurrent HTTP connections to the back-end service.

The default number of concurrent HTTP connections is 50. You can modify
this number based on the expected concurrent requests to the adapter and

Developing MobileFirst applications 8-103

http://web.mit.edu/kerberos/

the maximum requests allowed on the back-end service. You can also
configure the back-end service to limit the number of concurrent incoming
requests.

Consider a two-node system, where the expected load on the system is 100
concurrent requests and the back-end service can support up to 80
concurrent requests. You can set maxConcurrentConnectionsPerNode to 40.
This setting ensures that no more than 80 concurrent requests are made to
the back-end service.

If you increase the value, the back-end application needs more memory. To
avoid memory issues, do not to set this value too high. Instead, estimate
the average and peak number of transactions per second, and evaluate
their average duration. Then, calculate the number of required concurrent
connections as indicated in this example, and add a 5-10% margin. Then,
monitor your back end, and adjust this value as required, to ensure that
your back-end application can process all incoming requests.

When you deploy adapters to a cluster, set the value of this attribute to the
maximum required load divided by the number of cluster members.

For more information about how to size your back-end application, see the
Scalability and Hardware Sizing document and the hardware calculator
spreadsheet at Developer Center website for IBM MobileFirst Platform
Foundation.

connectionTimeoutInMilliseconds

Optional.

The timeout in milliseconds until a connection to the back-end can be
established. Setting this timeout does not ensure that a timeout exception
occurs after a specific time elapses after the invocation of the HTTP
request.

If you pass a different value for this parameter in the invokeHTTP()
JavaScript function, you can override the value that is defined here. For
more information, see the WL.Server class.

socketTimeoutInMilliseconds

Optional.

The timeout in milliseconds between two consecutive packets, starting
from the connection packet. Setting this timeout does not ensure that a
timeout exception occurs after a specific time elapses after the invocation
of the HTTP request.

If you pass a different value for the socketTimeoutInMilliseconds
parameter in the invokeHttp() JavaScript function, you can override the
value that is defined here. For more information, see the WL.Server class.

JMS adapter connectionPolicy element:

You can use Java™ Messaging Service (JMS) is the standard messaging Java API to
send messages between two or more clients. The MobileFirst JMS adapter provides
reading and writing capabilities to messaging providers that implement the JMS
API.

Structure

The connectionPolicy element has the following structure.

8-104 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/
https://developer.ibm.com/mobilefirstplatform/additional-documentation/scalability-hardware-sizing-7-0/

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">
<!-- uncomment this if you want to use an external JNDI repository -->
<!-- <namingConnection url="MY_JNDI_URL"
initialContextFactory="providers_intial_context_factory_class_name"
user="JNDIUserName"
password="JNDIPassword"/>
-->

<jmsConnection
connectionFactory="java:comp/env/MYConnectionFactory"
user="MessagingSystemUserName"
password="MessagingSystemPassword"

/>
</connectionPolicy>

Attributes

The connectionPolicy element has the following attributes.

xsi:type

Mandatory.

The value of this attribute must be set to jms:JMSConnectionPolicyType.

Subelements

The connectionPolicy element has the following subelements.

namingConnection

Optional.

Describes how to connect to an external JNDI repository. Only used if the
JNDI objects are not stored in the Java Platform, Enterprise Edition server
that the adapter is deployed in. This element has the following attributes.

url

Mandatory.

The URL of the external JNDI repository. For example:
iiop://localhost. The URL syntax is dependent upon the JNDI
provider.

initialContextFactory

Mandatory.

The initialContextFactory class name of the JNDI provider. For
example: com.ibm.Websphere.naming.WsnInitialContextFactory.
The driver, and any associated files, must be placed in the
/server/lib directory. If you develop in the Eclipse environment,
the driver and associated files must be placed in the /lib directory.

Note: If you develop for WebSphere Application Server with
WebSphere MQ, do not add the WebSphere MQ Java™ archive
(JAR) files to the /lib directory. If the WebSphere MQ JAR files are
added, class loading problems occur because the files already exist
in the WebSphere Application Server environment.

user

Optional.

Developing MobileFirst applications 8-105

User name of a user with authority to connect to the JNDI
repository. If user is not specified, the default user name is guest.

password

Optional.

User name of a user with authority to connect to the JNDI
repository. If user is not specified, the default password is guest.

jmsConnection

Mandatory.

Describes the connection factory and optional security details that are used
to connect to the messaging system.

connectionFactory

Mandatory.

The name of the connection factory that is used when you connect
to the messaging system.

If you are deploying in WebSphere Application Server, the
connection factory must be a global JNDI object. The object must
be addressed without the java:comp/env context. For example:
jms/MyConnFactory and not java:comp/env/jms/MyConnFactory.
However, if you are deploying in Tomcat, the connection factory
must be addressed including the java:/comp/env context. For
example: java:comp/env/jms/MyConnFactory.

user

Optional.

User name of a user with authority to connect to the messaging
system.

password

Optional.

Password for the user who is specified in the user attribute.

SAP Gateway adapter connectionPolicy element:

You can use SAP adapters to communicate with SAP Netweaver Gateway
back-end services.

Structure

The connectionPolicy element has the following structure.
<connectionPolicy xsi:type="nwgateway:NWGatewayHTTPConnectionPolicyType">

<protocol>HTTP</protocol>
<domain>host</domain>
<port>8320</port>
<connectionTimeoutInMilliseconds>30000</connectionTimeoutInMilliseconds>
<socketTimeoutInMilliseconds>30000</socketTimeoutInMilliseconds>
<serviceRootUrl>/sap/opu/odata/IWBEP/RMTSAMPLEFLIGHT_2/</serviceRootUrl>
<authentication>

<basic/>
<serverIdentity>

<client>001</client>
<username>mygatewayuser</username>
<password>mygatewaypassword</password>

8-106 IBM MobileFirst Platform Foundation for iOS V7.0.0

</serverIdentity>
</authentication>
<!-- Following properties used by adapter’s key manager for choosing specific certificate from key store
<sslCertificateAlias></sslCertificateAlias>
<sslCertificatePassword></sslCertificatePassword>-->
<maxConcurrentConnectionsPerNode>50</maxConcurrentConnectionsPerNode>

</connectionPolicy>

Attributes

The connectionPolicy element has the following attributes.

xsi:type

Mandatory.

The value of this attribute must be set to
nwgateway:NWGatewayHTTPConnectionPolicyType.

Subelements

The connectionPolicy element has the following subelements.

protocol

Mandatory.

The URL protocol to use. The following values are valid.
v http: default
v https

domain

Mandatory.

The host address.

port

Mandatory.

The port address.

connectionTimeoutInMilliseconds

Optional.

The time until a connection to the back-end can be established. Setting this
timeout does not ensure that a timeout exception occurs after a time
elapses after the invocation of the HTTP request.

If you pass a different value for this parameter in the invokeHTTP()
JavaScript function, you can override this value. For more information, see
the WL.Server class.

socketTimeoutInMilliseconds

Optional.

The time between two consecutive packets, starting from the connection
packet. Setting this timeout does not ensure that a timeout exception
occurs after a time elapses after the invocation of the HTTP request.

If you pass a different value for this parameter in the invokeHttp()
JavaScript function, you can override the value that is defined here. For
more information, see the WL.Server class.

Developing MobileFirst applications 8-107

serviceRootUrl

Mandatory.

The root URL for the SAP Netweaver gateway service that you are trying
to access.

authentication

Mandatory.

Authentication configuration of the SAP Netweaver Gateway adapter. Your
adapter can use one of four protocols, and a server identity, which you can
configure if you define this element. You can define the authentication in
one of the following ways.
v Basic Authentication

<authentication>
<basic/>

</authentication>

v Digest Authentication
<authentication>
<digest/>

</authentication>

v NTLM Authentication
<authentication>
<ntlm workstation="value"/>

</authentication>

The workstation attribute is optional. This attribute denotes the name of
the computer on which the MobileFirst Server runs.

v SPNEGO/Kerberos Authentication
<authentication>
<spnego stripPortOffServiceName="true"/>

</authentication>

The attribute stripPortOffServiceName is optional. This attribute
specifies whether the Kerberos client uses the service name without the
port number.
When you use this option, you must also place the krb5.conf file under
Project Name/server/conf. This file must contain Kerberos configuration
such as the location of the Kerberos server, and domain names. Its
structure is described in the Kerberos V5 System Administrator's Guide
in the mit.edu website.

If the adapter exposes procedures with the attribute connectAs="server",
the connection policy can contain the serverIdentity element. This feature
applies to all authentication schemes. For example:
<authentication>

<basic/>
<serverIdentity>
<client>001</client>
<username> ${DOMAIN\user} </username>
<password> ${password} </password>

</serverIdentity>
</authentication>

The serverIdentity element has the following 3 subelements.

client

Mandatory.

8-108 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://web.mit.edu/

The SAP-Client to be used to contact the Netweaver Gateway.

username

Mandatory.

The user name for contacting the Netweaver Gateway.

password

Mandatory.

The password for contacting the Netweaver Gateway.

sslCertificateAlias

Optional for regular HTTP authentication and simple SSL authentication.

Mandatory for mutual SSL authentication.

The alias of the adapter private SSL key, which is used by the HTTP
adapter key manager to access the correct SSL certificate in the keystore.
For more information about the keystore setup process, see “SSL certificate
keystore setup” on page 10-54.

sslCertificatePassword

Optional for regular HTTP authentication and simple SSL authentication.

Mandatory for mutual SSL authentication.

The password of the adapter private SSL key, which is used by the HTTP
adapter key manager to access the correct SSL certificate in the keystore.
For more information about the keystore setup process, see “SSL certificate
keystore setup” on page 10-54.

SAP JCo adapter connectionPolicy element:

You can use the SAP Java Connector (SAP JCo) adapters to develop
SAP-compatible components and applications in Java.

Structure

The connectionPolicy element has the following structure.
<connectionPolicy xsi:type="sapjco:JCOConnectionPolicy"

jcoClientClient="001"
jcoClientUser="userName"
jcoClientPasswd="password"
jcoClientLang="EN"
jcoClientAsHost="mysapserver.ibm.com"
jcoClientSysnr="01"
maxConnections="10"

/>

Attributes

The connectionPolicy element has the following attributes.

xsi:type

Mandatory.

The value of this attribute must be set to sapjco:JCOConnectionPolicy.

jcoClientClient

Mandatory.

Developing MobileFirst applications 8-109

The SAP client.

jcoClientUser

Mandatory.

The logon user.

jcoClientPasswd

Mandatory.

The logon password.

jcoClientLang

Mandatory.

The logon language.

jcoClientAsHost

Mandatory.

The application server.

jcoClientSysnr

Mandatory.

The SAP system number.

maxConnections

Mandatory.

The maximum number of connections that are allowed for the pool.

SQL adapter connectionPolicy element:

You can use the MobileFirst SQL adapter to run SQL queries with parameters and
stored procedures that retrieve or update data in the database.

Structure

The connectionPolicy element has two options for connection:
v The dataSourceDefinition subelement: for development mode.
v The dataSourceJNDIName subelement: for production mode.

Connecting by using the dataSourceDefinition subelement:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceDefinition>
<driverClass>com.mysql.jdbc.Driver</driverClass>
<url>jdbc:mysql://localhost:3306/mydb</url>
<user>myUsername</user>
<password>myPassword</password>

</dataSourceDefinition>
</connectionPolicy>

Connecting by using the dataSourceJNDIName subelement:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceJNDIName>jdbc/myAdapterDS</dataSourceJNDIName>
</connectionPolicy>

8-110 IBM MobileFirst Platform Foundation for iOS V7.0.0

Attributes

The connectionPolicy element has the following attributes.

xsi:type

Mandatory.

The value of this attribute must be set to sql:SQLConnectionPolicy.

Subelements

The connectionPolicy element contains either of the following subelements.

dataSourceDefinition

Mandatory

Contains the parameters that are needed to connect to a data source. The
url, user, password, and driverClass parameters can be externalized as
custom properties. Then, they can then be overridden by environment
entries.

The following example illustrates this process.

adapter.xml:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceDefinition>
<driverClass>com.mysql.jdbc.Driver</driverClass>
<url>${my-mysql-url}</url>
<user>${my-mysql-user}</user>
<password>${my-mysql-password}</password>

</dataSourceDefinition>
</connectionPolicy>

worklight.properties:
my-mysql-url=jdbc:mysql://localhost:3306/mysqldbname
my-mysql-user=user_name
my-mysql-password=password

dataSourceJNDIName

Mandatory.

Connect to the data source by using the JNDI name of a data source that is
provided by the application server. Application servers provide a way to
configure data sources. For more information, see “Creating and
configuring the databases manually” on page 10-17.

You can also externalize the data source JNDI name and make it
configurable from the server configuration. For example:

adapter.xml

<connectionPolicy xsi:type="sql:SQLConnectionPolicy">
<dataSourceJNDIName>${my-adapter-ds}</dataSourceJNDIName>

</connectionPolicy>

worklight.properties

my - adapter - ds = jdbc / myAdapterDS

For more information, see “Configuring a MobileFirst project in production by
using JNDI environment entries” on page 10-60.

Developing MobileFirst applications 8-111

Developing JavaScript adapters
Learn to configure a new IBM MobileFirst Platform Foundation for iOS JavaScript
adapter, and set up connectivity to back-end configuration.

Creating a JavaScript MobileFirst adapter:

Follow these instructions to create a MobileFirst project and configure a new
MobileFirst adapter.

About this task

On initial creation of a new adapter, MobileFirst automatically generates the
default skeleton for the adapter with all the required properties, based on the type
(HTTP, SQL, or JMS). You need only to modify the default skeleton to configure an
adapter.

Procedure

1. Optional: Perform this step only if you do not already have an existing
MobileFirst project. If you set up MobileFirst shortcuts, right-click anywhere
within the Eclipse Project Explorer view and click New > MobileFirst Project.
Otherwise, click New > Other, then select MobileFirst > MobileFirst Project
from the list of wizards and click Next.

2. In the New MobileFirst Project wizard, specify a name for the project and
click Finish.

3. If you set up MobileFirst shortcuts, right-click the MobileFirst Project to which
you want to add the adapter, and select New > Adapter. Otherwise, select New

Figure 8-7. Creating a MobileFirst project from the wizard.

8-112 IBM MobileFirst Platform Foundation for iOS V7.0.0

> Other, then select MobileFirst > MobileFirst Adapter from the list of
wizards and click Next.
The New Adapter wizard opens.

4. Select the required adapter type from the Adapter type list and enter a name
for the adapter in the Adapter name field.

Figure 8-8. Configuring a new MobileFirst adapter.

Developing MobileFirst applications 8-113

5. Optional:
v Select Create procedures for offline JSONStore to include four place holder

procedures in the adapter template: a procedure that gets data, a procedure
that adds data, a procedure that replaces data, and a procedure that removes
data. These procedures are designed to help you develop a
JSONStore-enabled application that communicates with a back end.

v Select Create procedures for USSD enablement to generate sample
procedures for USSD in the adapter js file.

6. Click Finish.

Generating adapters with the services discovery wizard:

With the services discovery wizard, you specify the back-end services that you
want to invoke from your MobileFirst project, and generate the adapters that
connect to those services.

The services discovery wizard supports the following types of back-end services:
v IBM Business Process Manager (IBM BPM) process applications. Discover IBM

BPM process applications and generate the generic and application-specific
adapters.

v RESTful resources. Describe a RESTful resource by accessing your back-end
service.

Figure 8-9. Selecting an adapter type.

8-114 IBM MobileFirst Platform Foundation for iOS V7.0.0

v Services that are exposed by an SAP Netweaver Gateway. These services are
resource-based, which means that they expose a collection of resources that you
can manipulate. Like web services, they can also have custom procedural
operations, and generate inputs and outputs.

v Web Services, as described by Web Services Description Language (WSDL) files.
These services are procedural in nature, with inputs and outputs that are
explicit. For example, when a web service calls a remote procedure, it gets a
result.

The adapters that communicate with the chosen back-end service are automatically
generated, and placed in the adapters folder of your project.

Note: If you manually modify an adapter file, first create a copy of this file, and
make sure to modify only the copied file. The services discovery wizard might
regenerate the original file each time you add a service. The exact adapter that is
regenerated depends on the type of service that is involved.

Generating adapters with IBM BPM:

You can use the Add Service Wizard to select an active snapshot and generate an
adapter that provides access to the IBM Business Process Manager (IBM BPM)
REST APIs.

Procedure

1. Right-click the services folder of your project in the Project Explorer tab, and
click Discover Back-end Services. The Add Service Wizard window opens.

2. Select IBM Business Process Manager and click Next. The IBM BPM process
applications page is displayed.

3. You can set up a connection to an IBM BPM server if you complete one of the
following choices.
v Click Add next to the Connections field.
v Click Manage IBM BPM Connections to edit existing connections.

a. Click Add.
v Select an existing IBM BPM connection from the drop-down list in the

Connections field.

Figure 8-10. The Add Service Wizard

Developing MobileFirst applications 8-115

4. Enter your server URL, user, and password credentials and click OK. The IBM
BPM process applications and their available active snapshots are visible in the
Select Snapshop field.

5. Expand the process application that you want to create an adapter for, select a
snapshot, and click Next.

6. Name your adapter and click Finish.

Results

A generic adapter and an application-specific adapter are generated under the
adapters folder of your project. You can use this adapter to access IBM BPM REST
APIs on the IBM BPM server.

The project's /server/conf/worklight.properties file is also updated to include
the necessary IBM BPM server properties.

Generating adapters by describing RESTful resources:

You can use the Add Service wizard to describe a RESTful resource to access your
back-end service. Use the wizard to describe URL segments that are dynamic
parameters to generate MobileFirst adapters.

Procedure

1. Right-click the services folder of your project in the Project Explorer tab, and
click Discover Back-end Services. The Add Service Wizard window opens.

2. Select RESTful and click Next.
The Resource Structure page is visible.

3. Complete the Resource Structure page.
a. Type the URL to the resource into the Resource URL field and complete

one of the following choices.
v Click Fetch URL to retrieve a JSON payload from the URL entered and

display it in the Sample Resource (as JSON) field.
You might need to set up authentication and custom headers before you
click Fetch URL.

v Manually enter a sample JSON payload in the Sample Resource (as
JSON) field.

Figure 8-11. The Add Service Wizard

8-116 IBM MobileFirst Platform Foundation for iOS V7.0.0

The Sample Resource (as JSON) field is completed with the JSON code
that results from the provided URL. That JSON code is parsed into build
structures that are visible in the Resource Structure field.

b. From the Resource Structure field, select which parameter is the Key.
c. Select the level of authentication from the Authentication field.
v None: Authentication is not needed.
v Basic Authentication: Authentication is needed. The user ID and

password are sent in clear text, according to HTTP Basic Authentication
guidelines.

v Digest: Authentication is needed. The user ID and password are sent by
using HTTP Digest authentication (as a hash).

d. If you need specific HTTP headers to communicate with the back-end
service, complete the Request Custom HTTP Header fields. The left column
is the header name, and the right column is the value. The drop-down list
on the left includes a set of HTTP header names. Or, you can type any
header name.

e. Click Next.
4. From the Resource URL Variables page, select the settings for your adapter.

5. To customize resource operations, click Next. Otherwise, click Finish.
6. If you clicked Next, customize your resource operations.

a. Choose the HTTP Method for each operation.

Developing MobileFirst applications 8-117

Table 8-3. HTTP methods

Method Safe Idempotent Cacheable Description

GET Yes Yes Yes Retrieves
information from
the input server
by using the
input URI

PUT No Yes No Puts or updates
a resource on the
server

POST No No No Sends data to
the server

DELETE No Yes No Deletes the
requested
resource

b. Complete the Edit path and parameters field.
c. If you need specific HTTP headers to communicate with the back-end

service, complete the Request Custom HTTP Header fields. The left column
is the header name, and the right column is the value. The drop-down list
on the left includes a set of HTTP header names. Or, you can type any
header name.

d. Click Finish.

Results

v
An adapter is generated under the adapters folder of your project. You can use
this adapter to invoke services with JavaScript calls.

v
A .xml service description file is also generated under the services folder of your
project. You can refer to the .xml files under the services folder of your project
to have a summary view of the target adapters.

Generating adapters with SAP Gateway:

You can use the Add Service Wizard to discover services that are exposed by an
SAP Gateway and generate MobileFirst adapter for invoking the services.

Procedure

1. Right-click the services folder of your project in the Project Explorer tab, and
click Discover Back-end Services. The Add Service Wizard window opens.

8-118 IBM MobileFirst Platform Foundation for iOS V7.0.0

2. Select SAP and click Next.
3. Set up a connection to an SAP Netweaver Gateway server by either:
v Clicking Add to create an SAP connection.
v Clicking the Manage SAP Connections link to edit existing connections.
v Selecting an existing SAP connection from the Connection list.

4. Proceed with the connection configuration by entering your server URL, client
ID, user name, and password. In the Select Service pane, you can now see the
list of SAP services that are available on the server you specified.

5. Click Finish.

Results

v
An adapter is generated under the adapters folder of your project. You can use
this adapter to invoke services with JavaScript calls.

v
An .xml service description file is also generated under the services folder of
your project. You can refer to the .xml files under the services folder of your
project to have a summary view of the target adapters.

Generating adapters with WSDL:

You can use the Add Service Wizard to discover and generate MobileFirst adapters
for invoking a SOAP-based Web Service. You can import a Web Service Definition
Language (WSDL) of the service from your file system, workspace, or remotely by
typing its URL in the wizard.

Procedure

1. Right-click the services folder of your project in the Project Explorer tab, and
click Discover Back-end Services. The Add Service Wizard window opens.

Figure 8-12. The Add Service Wizard

Developing MobileFirst applications 8-119

2. Select Web Service Definition Language (WSDL) and click Next.
3. Complete the Add a Service from WSDL page.Enter a URL or select one from

the URL drop-down list, and click Go. Or browse to a file in your workspace
or in your system.

a. Enter a URL or select one from the URL drop-down list, and click Go.

Note: If you enter a secure URL (https), the system fetches the certificate
from the specified server, and stores it into a private key storage area that is
created in your workspace.

b. Optional. If you are prompted to, enter your credentials. You can now see
the list of available services. Different types of information are displayed in
the Details pane, depending on the level you select:
v The first level corresponds to the binding configuration details. When this

level is selected, the Details pane shows the SOAP version.

Figure 8-13. The Add Service Wizard

8-120 IBM MobileFirst Platform Foundation for iOS V7.0.0

v The second level corresponds to the data operation details. When this
level is selected, the Details pane shows the input and the output of the
remote invoked procedure.

c. Select one or more services that you want to invoke from your application.
4. Click Finish.

Results

v
An adapter is generated under the adapters folder of your project. You can use
this adapter to invoke services with JavaScript calls.

v
An .xml service description file is also generated under the services folder of
your project. You can refer to the .xml files under the services folder of your
project to have a summary view of the target adapters.
A sample payload of each service is available from the Properties dialog box of
the service. You can reuse this sample payload in other adapters. To use the
sample payload of a service:
1. Right-click the service name in the services folder of your project in the

Eclipse Project Explorer view, and click Properties.
2. Copy the text from the Sample Procedure Parameter field.

Invocation of generated SOAP adapters:

The generated SOAP adapters have a procedure that calls the back-end service
operation. You can invoke this procedure from your MobileFirst application in the
same way as you invoke other MobileFirst adapter procedures, by providing the
necessary parameters for the invocation.

The generated procedure accepts two parameters: the message to the service, and
custom HTTP headers.

The message to send to the service (required)

This mandatory parameter is the message to send to the service in JSON format.

The message parameter is a JSON representation of the XML message to include in
the SOAP body that is sent to the service.

The following examples show JSON representations for sample XML messages.
1. Simple XML message: the adapter converts the provided JSON parameter into

XML body by creating a matching element for each JSON attribute.
The following JSON parameter in the procedure:
{"GetTechnicianVisits": {"TechnicianId": "1"}}

is transformed by the adapter into the following XML fragment in the SOAP
body:
<GetTechnicianVisits>

<TechnicianId>1</TechnicianId>
<GetTechnicianVisits>

2. XML messages with namespaces

Developing MobileFirst applications 8-121

The generated adapter implementation (SoapAdapterX-impl.js) has a set of
namespace prefixes imported from the provided WSDL service. To specify
elements with specific namespaces, those prefixes must be used to name the
relevant JSON attributes.
The following JSON parameter in the procedure:
{"tns1:GetTechnicianVisits": {"tns1:TechnicianId": "1"}}

is transformed by the adapter into the following XML fragment in the SOAP
body:
<GetTechnicianVisits xmlns:tns1="http://namespace/sample">

<TechnicianId>1</TechnicianId>
</GetTechnicianVisits>

Note: Since IBM MobileFirst Platform Foundation for iOS V6.2.0, if the names
of the elements are unique, the generated SOAP adapters no longer require the
use of namespace prefixes on all the fields in the payload.

3. XML messages with attributes
Adding the @ prefix to a JSON attribute name instructs the adapter to create an
attribute instead of creating an element.
The following JSON parameter in the procedure:
{"GetTechnicianVisits": {"@technicianId": "1"}}

is transformed by the adapter into the following XML fragment in the SOAP
body:
<GetTechnicianVisits technicianId="1"/>

A JSON object that holds custom HTTP headers for the invocation (optional)

This optional parameter is a JSON object that lists custom HTTP headers (key
values). These custom HTTP headers are added to the service call when the POST
request is invoked with the generated SOAP message.
{ ’custom-header-1’: ’value1’, ’custom-header-2’: ’value2’ }

Setting up connectivity to back-end configuration:

Learn about adapter timeout and concurrency, connectivity for non-Java adapters,
and developing JavaScript adapter code.

Adapter timeout and concurrency:

Changes in the behavior of adapter timeout and concurrency starting in IBM
MobileFirst Platform Foundation for iOS V6.3 have impact on the adapter XML
schema.

Timeout and concurrency in IBM MobileFirst Platform Foundation for iOS V6.3

Starting in IBM MobileFirst Platform Foundation for iOS V6.3, the behavior of
timeout and concurrency was modified for HTTP-based, JMS, and SQL adapters.

HTTP-based adapters
In earlier versions of IBM MobileFirst Platform Foundation for iOS,
timeout and concurrency were handled by thread pools. They are now
enforced by the underlying HTTP framework.
v Timeout:

8-122 IBM MobileFirst Platform Foundation for iOS V7.0.0

Previously, you were able to define a timeout for a single procedure.
Starting from V6.3, you can use the standard socket timeout and
connection timeout that are provided by HTTP frameworks. A socket
timeout defines the time between two consecutive packets, starting from
the connection packet. A connection timeout defines the time within
which a connection to the back-end must be established.
You can set the socket and connection timeouts in two places:
– To set the default value for an adapter, set it in the adapter XML file.

For more details on timeout in the XML file, see “Structure of the
adapter XML file” on page 8-96.

– To set the timeouts for a specific back-end invocation, use the options
struct in the invokeHttp() JavaScript function. For more information,
see the WL.Server class.

v Concurrency:
You use the <maxConcurrentConnectionsPerNode> subelement of the
<connectionPolicy> element in the adapter XML file to set concurrency
limits. For more information, see “Structure of the adapter XML file” on
page 8-96.

JMS adapters

v Timeout: JMS adapter provides several timeout specifications based on
the action that is attempted. There has been no change in functionality in
that sense but the per-procedure timeout has been removed.

v Concurrency: Starting from IBM MobileFirst Platform Foundation for
iOS V6.3, concurrency is no longer supported for JMS adapters.

SQL adapters
Previously, concurrency and timeout were handled by thread pools.
Starting from V6.3, the only method to define concurrency and timeout, is
to use the SQL Connection Pool obtained using a JNDI reference.

XML schema changes in IBM MobileFirst Platform Foundation for iOS V6.3

IBM MobileFirst Platform Foundation for iOS V6.3 uses a new adapter XML
schema. Adapters using earlier schemas cannot be used in Studio V6.3 and CLI
V6.3. The following changes are made to the adapter schema during upgrade:
v The requestTimeoutInSeconds attribute of the <procedure> element is no longer

supported. During project upgrades to IBM MobileFirst Platform Foundation for
iOS V6.3, the attribute is commented out in all <procedure> elements.

v The <loadConstraints> element and its attributes are no longer supported.
During project upgrades to IBM MobileFirst Platform Foundation for iOS V6.3,
this element is removed.

v In HTTP-based adapters, there are three new elements:
<connectionTimeoutInMilliseconds>, <socketTimeoutInMilliseconds>, and
<maxConcurrentConnectionsPerNode> under <connectionPolicy>. During project
upgrades to IBM MobileFirst Platform Foundation for iOS V6.3, these new
elements are added. For more information, see “Structure of the adapter XML
file” on page 8-96.

Compatibility with earlier versions

Adapters from previous version work and can be deployed on the MobileFirst
Server V6.3. However, they behave differently, as described below.

HTTP-based adapters

Developing MobileFirst applications 8-123

v Timeout:
The value of the requestTimeoutInSeconds attribute of <procedure>
elements is now used to set the value of the HTTP socket timeout and
connection timeout per procedure. For more information about socket
and connection timeout see "HTTP-based adapters" in Adapter timeout
and concurrency changes.

v Concurrency:
The concurrency limits are enforced by the underlying HTTP framework,
instead of by a thread pool.

JMS adapters
The requestTimeoutInSeconds attribute of <procedure> and
<loadConstraints> elements is ignored.

SQL adapters
The requestTimeoutInSeconds attribute of <procedure> and
<loadConstraints> elements is ignored. Use JNDI configuration instead.

Adapter invocation failures due to large data

Adapter calls are not intended for returning very large JSON data. The adapter
response is stored in memory and string parsed. Data that exceeds the amount of
available memory might cause adapter invocation to fail. To reduce the possibility
that such a failure occurs, limit the amount of data to less than 10 MB.

Connectivity for non-Java adapters:

With IBM MobileFirst Platform Studio, you can configure back-end connectivity for
non-Java adapters.

HTTP adapters:

The MobileFirst HTTP adapter can be used to invoke RESTful services and
SOAP-based services. It can also be used to perform HTML scraping.

You can use the HTTP adapter to send GET, POST, PUT, and DELETE HTTP requests
and retrieve data from the response body. Data in the response can arrive in XML,
HTML, or JSON formats.

You can use SSL in an HTTP adapter with simple and mutual authentication to
connect to back-end services. Configure the MobileFirst Server to use SSL in an
HTTP adapter by implementing the following steps:
v Set the URL protocol of the HTTP adapter to https.
v Store SSL certificates in a keystore that is defined by using JNDI environment

entries. The keystore setup process is described in “SSL certificate keystore
setup” on page 10-54.

v If you use SSL with mutual authentication, the following extra steps must also
be implemented:
– Generate your own private key for the HTTP adapter or use one provided by

a trusted authority.
– If you generated your own private key, export the public certificate of the

generated private key and import it into the back-end truststore.
– Save the private key of the keystore that is defined by using JNDI

environment entries.

8-124 IBM MobileFirst Platform Foundation for iOS V7.0.0

– Define an alias and password for the private key in the <connectionPolicy>
element of the HTTP adapter XML file, adaptername.xml. The
<sslCertificateAlias> and <sslCertificatePassword> subelements are
described in “HTTP adapter connectionPolicy element” on page 8-101.

v If you use WebSphere Application Server, you can take benefit of the WebSphere
SSL configuration as described in “WebSphere Application Server SSL
configuration and HTTP adapters” on page 10-54.

Note, however that SSL represents transport level security, which is independent of
basic authentication. It is possible to do basic authentication either over HTTP or
HTTPS.

Encoding a SOAP XML envelope:

Follow these instructions to encode a SOAP XML envelope within a request body

About this task

Important: This workaround is only for WebSphere Application Server.

Procedure

1. Encode XML within JavaScript by using E4X.
E4X is officially part of JavaScript 1.6. This technology can be used to encode
any XML document, not necessarily SOAP envelopes. You can use the
WL.Server.signSoapMessage() method only inside a procedure declared within
an HTTP adapter. It signs a fragment of the specified envelope with ID wsId by
using the key in the specified keystoreAlias, and inserting the digital signature
into the input document.
To use WL.Server.signSoapMessage() API when running IBM MobileFirst
Platform Foundation for iOS on IBM WebSphere Application Server, you might
need to add a JVM argument that instructs the application server to use a
specific SOAPMessageFactory implementation instead of a default one.

2. To do this, go to Application servers > {server_name} > Process definition >
Java Virtual Machine and provide the following argument under Generic JVM
arguments.
Type in the code phrase exactly as it is presented here:
-Djavax.xml.soap.MessageFactory=com.sun.xml.internal.messaging
.saaj.soap.ver1_1.SOAPMessageFactory1_1Impl

3. Restart the JVM.

Example
var request =
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<requestMessageObject xmlns="http://acme.com/ws/">
<messageHeader>
<version>1.0</version>
<originatingDevice>{originatingDevice}</originatingDevice>
<originatingIP>
{WL.Server.configuration["local.IPAddress"]}
</originatingIP>
<requestTimestamp>
{new Date().toLocaleString()}
</requestTimestamp>
</messageHeader>
<messageData>
<context>

Developing MobileFirst applications 8-125

<userkey>{userKey}</userkey>
<sessionid>{sessionid}</sessionid>
</context>
</messageData>
</requestMessageObject>
</S:Body>
</S:Envelope>;

NTLM configuration for HTTP adapters:

NTLM uses a challenge-response mechanism for authentication. Learn how to use
a MobileFirst adapter when connecting to a back end or resource that is protected
by NTLM protocol.

Back-end connection types

MobileFirst Server can connect with a back-end system or resource that is
protected by NTLM protocol, either as a server or as an end-user.

Connect as server
In this connection type, all sessions use the same connection context to the
back end. This is the default MobileFirst Server behavior. See Figure 1.

Connect as end user
In this connection type, each session is authenticated separately and has a
unique connection context against the back end. See Figure 2.

Figure 8-14. Connecting to the back end as server

8-126 IBM MobileFirst Platform Foundation for iOS V7.0.0

Back-end connection settings

The connection types that are described in the previous section correspond to the
server and endUser options of the connectAs attribute in the adapter XML file.
v To connect as server (the default), there is no need to make any configuration

change to the adapter.xml file.
v To connect as an end-user, add a procedure element to the adapter XML file, as

follows:
<procedure name= "MyProcedure" connectAs= "endUser" />

For more information about the connectAs attribute, see “Structure of the adapter
XML file” on page 8-96.

Implementing NTLM authentication for server requests:

Implement NTLM authentication where a single, shared instance of HTTP client is
used per adapter for all mobile application instances.

About this task

By default, procedures that connect to a back-end server that uses NTLM protocol
are handled on a server-to-server basis, as the connectAs attribute is defined as
="server". You need only configure serverIdentity of the adapter XML file as a
subelement of the authentication. You also add the ntlm workstation attribute, so
that MobileFirst Server knows which authentication method to use when
connecting to the back end.

Figure 8-15. Connecting to the back end as end user

Developing MobileFirst applications 8-127

Procedure

1. Open the adapter.xml file of the project.
2. Add an authentication element as follows:

<connectivity>
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">

<protocol>http</protocol>
<domain>your-domain-here</domain>
<port>80</port>
<connectionTimeoutInMilliseconds>30000</connectionTimeoutInMilliseconds>
<socketTimeoutInMilliseconds>30000</socketTimeoutInMilliseconds>
<authentication>

<ntlm workstation="ServerName"/>
<serverIdentity>

<username>your-server-name-here/your-username-here</username>
<password>your-password-here</password>

</serverIdentity>
</authentication>
<maxConcurrentConnectionsPerNode>50</maxConcurrentConnectionsPerNode>

</connectionPolicy>
</connectivity>

Note: When the NTLM protocol is used, the user name must always be
specified in the format: server-name/user-name. Ensure that in the adapter.xml
file, you pass the server and user names to the back-end server in that pattern.
For more information, see “HTTP adapter connectionPolicy element” on page
8-101.

Implementing NTLM authentication for end-user requests:

Implement NTLM authentication where a separate instance of HTTP session is
opened for each client session.

About this task

To enable NTLM authentication with connectAs="endUser", you configure the
server and add handling functions in the adapter.

Configure MobileFirst Server authentication:
Procedure

1. In the authenticationConfig.xml file for your project, make the following edits:
a. Create a security test to protect the procedure:

<customSecurityTest name="NTLMSecurityTest">
<test isInternalUserID="true" realm="NTLMAuthRealm"/>

</customSecurityTest>

b. Use BasicAuthenticator, AdapterBasedAuthenticator, or any other
authenticator that handles userIdentity, as the class for the realm to be
used by the security test:
<realm name="NTLMAuthRealm" loginModule="AuthLoginModule">

<className>com.worklight.integration.auth.AdapterAuthenticator</className>
<parameter name="login-function" value="MyAdapter.onAuthRequired"/>
<parameter name="logout-function" value="MyAdapter.onLogout"/>

</realm>

c. Add a login module to create and store user identities to be used by this
realm:
<loginModule name="AuthLoginModule">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

8-128 IBM MobileFirst Platform Foundation for iOS V7.0.0

2. In the adapter.xml file, make the following edits:
a. Add the authentication element and its ntlm workstation subelement to

the adapter XML file, so that MobileFirst Server knows which
authentication method to use when connecting to the back end:
<connectivity>

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>http</protocol>
<domain>Put.Your.Domain.Here</domain>
<port>80</port>
<connectionTimeoutInMilliseconds>30000</connectionTimeoutInMilliseconds>
<socketTimeoutInMilliseconds>30000</socketTimeoutInMilliseconds>
<authentication>

<ntlm workstation="wl-ntlm"/>
</authentication>
<maxConcurrentConnectionsPerNode>50</maxConcurrentConnectionsPerNode>

</connectionPolicy>
</connectivity>

b. Assign this security test to the procedure that is used to connect to the back
end protected by the NTLM protocol, and add connectAs="endUser" to the
procedure declaration in the adapter XML file:
<procedure name= "getNTLMData" securityTest= "NTLMSecurityTest" connectAs= "endUser"/>

Create adapter functions:
Procedure

1. Define the submitAuthentication function. Create a userIdentity that contains
a user identifier and credentials properties. Format the userId in the pattern
servername/username:
function submitAuthentication(username, password){

var userIdentity = {
userId: "MyServerName\/"+ username,
credentials: password

};
WL.Server.setActiveUser("NTLMAuthRealm", null);
WL.Server.setActiveUser("NTLMAuthRealm", userIdentity);
...

}

For more information, see “Implementing adapter-based authenticators” on
page 8-274.

2. Create an HTTP request to the NTLM-protected back end:
function getSecretData(){

var input = {
method : ’get’,
returnedContentType : ’html’,
path : "index.html"

};
return WL.Server.invokeHttp(input);

}

For more information, see the invokehttp() function in the WL.Server class.

Back-end responses in adapters:

Understanding the logic of invocation results both on the client side and inside
adapters helps you handle different failure scenarios.

Developing MobileFirst applications 8-129

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

HTTP adapter flow

For a general description of an adapter flow, see “MobileFirst JavaScript adapters”
on page 8-94. The following sections explain how to handle back-end responses in
the case of an HTTP adapter. A typical HTTP adapter flow might involve the
following sequence of events:
1. The client (that is, the mobile app) uses the invokeProcedure method of the

WL.Client class to invoke one of the adapter's procedures from the MobileFirst
Server.

2. The adapter then uses the invokeHttp method of the WL.Server class to call the
back-end service.

3. The adapter procedure processes the data from the back end and returns a
JSON object to the client.

4. The client calls its onSuccess handler to process the data received by the
adapter.

Responses from the invoke procedure

The adapter flow starts with a WL.Client class invokeProcedure call, which
supports onSuccess and onFailure handlers. Both handlers receive an object, which
is a standard JSON object. The following table describes some of its properties:

Table 8-4. Properties of the object received following the invoke procedure

Property Description

isSuccessful Whether the procedure call is successful.
Note: The text following the table explains
the circumstances when a request is
considered to be successful.

status HTTP status code from the procedure call.
This is not the HTTP code from the
back-end service, only from the connection
with the MobileFirst Server.

errorCode A possible error code if the call is not
successful.

errorMsg A possible error message if the call is not
successful.

invocationContext An optional object that is sent in the
procedure call and is returned as-is.

invocationResult JSON object that is returned by your
procedure call. This object may be
augmented with additional data such as
session information.

Which handler is called depends on the value of the isSuccessful property in the
invocation result:
v If isSuccessful is set to true, onSuccess is called.
v If isSuccessful is set to false, onFailure is called.

As long as your adapter returns something, the procedure invocation is considered
successful and so the isSuccessful property is set to true. The isSuccessful
property is set to false under the following circumstances:
v When calling a procedure that does not exist.

8-130 IBM MobileFirst Platform Foundation for iOS V7.0.0

v When calling an adapter that does not exist.
v When the MobileFirst Server is unresponsive (for example, due to a bad host

name or because the MobileFirst Server is currently unavailable).
v When the invocation times out (you can set a timeout value as one of the

invokeProcedure options).
v When the adapter throws an exception.
v When the code in the procedure specifically overwrites the onSuccess property.

The isSuccessful property is set to false if there is a connection issue between the
client and the adapter; not if there is an error in the back-end service. This means,
for example, that if your procedure calls a back-end service which returns an error
(such as a "404" error) but your procedure still returns a valid JSON object, your
procedure invocation is still considered to be successful from the perspective of the
client. If you simply return the result of invokeHttp straight to the client, since you
are returning something, isSuccessful is true by default and onSuccess is called.
This may or may not be what you want to happen. You need to make sure that
your procedure code is capable of handling cases when a back-end service returns
an error.

Invocations from the adapter to the back end

From your procedure, you call a remote back-end service by using the invokeHttp
method of the WL.Server class. The returned object from this call is a JSON object
that represents the result of the HTTP request. If the response is an XHTML or
XML tree, it is converted to JSON. For example, if the response is an HTML page,
you see a property called “html” (the root HTML tag) with the content tree inside.

The following table describes some of the other properties. Additional arbitrary
properties might also be returned by the back-end service.

Table 8-5. Properties of the object received following the invocation from the adapter to the
back end

Property Description

errors Array of errors during the request.

isSuccessful Boolean value summarizing whether the
request is successful.
Note: The text following the table explains
the circumstances when a request is
considered to be successful.

responseHeaders JSON object representing the different HTTP
headers of the response.

responseTime HTTP response time.

statusCode HTTP status code of the remote invocation.

statusReason Short text description that explains the
status code.

totalTime Response time plus any additional time for
IBM MobileFirst Platform Foundation for
iOS to complete processing or convert
formats.

Developing MobileFirst applications 8-131

Similar to the client side, if isSuccessful is set to true, the data that you receive is
not necessarily exactly what you expect. It merely indicates that something was
returned. You can therefore assume that isSuccessful is true by default. This
includes the following cases:
v The remote HTTP server returns an OK status code such as 200.
v The remote HTTP server returns any valid status code such as 2XX, 3XX, 4XX.

5XX, and other codes.

The isSuccessful property is set to false under the following circumstances:
v The HTTP host cannot be reached or is invalid.
v The HTTP request has timed out.

Because isSuccessful is set to true by default, you might not receive the data that
you want or expect. For example, you might want a “404” error to be treated as a
failure whereasIBM MobileFirst Platform Foundation for iOS considers it a success.
You can use properties such as the statusCode property that is returned in the
result of a WL.Server.invokeHttp call (or any other interesting data from the
response) to decide if the procedure should be considered successful or not. You
can then handle situations that should be considered unsuccessful in one of the
following ways:
v Overwrite the isSuccessful property by setting its value to false in your JSON

response.
v Consider the request as successful, set some custom flags in your JSON

response, and handle the situation in your client's onSuccess handler. You might
also want to place a try/catch block around your procedure code and handle
any exceptions accordingly. If an exception is thrown, the client will receive an
isSuccessful response that is set to false.

In a production environment, returning the result of the invokeHttp call back to the
client might not be the ideal value to return at the end of the procedure for the
following reasons:
v The meaning of a "successful" request might vary in different cases.
v The back-end response might include additional data that should not be

forwarded to the client; such as certain response headers, architecture of the
back end, or any data that is not relevant to the logic of the app. Instead,
consider building a new JSON object with your own data, which might possibly
include parts of the original response.

Example

Here is an example of an adapter that receives a “404” error as a result of trying to
get data from an invalid URL: www.ibm.com/no-such-place.

adapt.xml

This file can be generated using the mfp add adapter command. The back
end host name is set to www.ibm.com.
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter name="adapt"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.ibm.com/mfp/integration"
xmlns:http="http://www.ibm.com/mfp/integration/http"

<displayName>adapt</displayName>
<description>adapt</description>
<connectivity>

8-132 IBM MobileFirst Platform Foundation for iOS V7.0.0

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>http</protocol>
<domain>www.ibm.com</domain>
<port>80</port>

</connectionPolicy>
</connectivity>
<procedure name="test"/>

</wl:adapter>

adapt-impl.js

This is the implementation of the procedure. It calls a remote URL and
generates a response. If the HTTP status code is anything other than 200,
the isSuccessful property is set to false.
function test(){

var input = {
method : ’get’,
path : ’no-such-place’ //Replace this with a valid path to see success

};
var backendResponse = WL.Server.invokeHttp(input);
var procedureResponse = {};

if(backendResponse.isSuccessful && backendResponse.statusCode == 200){
//For simplicity, considering only 200 as valid
//Do something interesting with the data
procedureResponse.interestingData = backendResponse.html.head.title;

}
else{

procedureResponse.isSuccessful = false; //Overwrite to failure
}

return procedureResponse;
}

main.js

The client app invokes the procedure. If the request is successful, the app
logic continues. If the request is not successful, an error message is
displayed.

WL.Client.invokeProcedure({
adapter : ’adapt’,
procedure : ’test’

}, {
onSuccess : function(result) {

//Do something interesting with resulting JSON
$(’#someDiv’).html(result.invocationResult.interestingData);

},
onFailure: function(result){

WL.SimpleDialog.show("Error","The service is temporarily not available.
Please try again later.",[{text: "OK"}]);

}
});

SQL adapters:

You can use the IBM MobileFirst Platform Foundation for iOS SQL adapter to
execute parameterized SQL queries and stored procedures that retrieve or update
data in an SQL database.

You can use plain SQL queries or stored procedures. As a developer, you must
download the JDBC connector driver for the specific database type separately and
add it to the server\lib\ folder of a MobileFirst project. You can download the
JDBC connector driver from the appropriate vendor website.

Developing MobileFirst applications 8-133

For more information about SQL adapters, see theJavaScript SQL Adapter tutorial.

JMS adapters:

Java messaging service (JMS) is the standard messaging Java API for sending
messages between two or more clients. The MobileFirst JMS adapter provides
reading and writing capabilities to messaging providers that implement the JMS
API.

You can configure a JMS adapter to work with such messaging providers as a
Liberty profile server or a WebSphere MQ message broker.

Connecting a JMS adapter to the WebSphere Application Server messaging provider:

You can develop and test MobileFirst adapters that use Java Message Service (JMS)
on a WebSphere Application Server messaging provider. The WebSphere
Application Server messaging provider can be the default messaging provider, a
WebSphere MQ messaging provider, or a third-party provider.

Before you begin

You must have configured the WebSphere Application Server messaging provider
and JMS resources such as the queue connection factories and the queues or topics.

About this task

The following procedure shows how to connect a JMS adapter to a WebSphere
Application Server messaging provider.

Procedure

1. Create a MobileFirst JMS adapter.
2. Because the adapter runs on a JMS-enabled server, the naming connection

section of the adapter.xml file is not necessary. It can remain commented out.
3. Enter the JNDI name for the queue connection factory that was created in the

server.xml file.
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- <namingConnection url="MY_JNDI_URL"
initialContextFactory="providers_initial_context_factory_class_name"
user="JNDIUserName"
password="JNDIPassword"/> -->

<jmsConnection
connectionFactory="jms/WASQCF"
user="admin"
password="admin"
/>

</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="10"/>
</connectivity>

4. In the JMS adapter implementation file, enter the JNDI name for the queue as
the destination for both the read and write methods:
function readMessage() {

var result = WL.Server.readSingleJMSMessage({
destination:"jms/WASQueue",
timeout: 60

});

8-134 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/server-side-development/js-sql-adapter/

if (!result.message) {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> no message in queue");
return {};

} else {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> message received ::");
return result.message;

};
}

5. Change the MobileFirst target server in MobileFirst Platform Command Line
Interface for iOS to point to your WebSphere Application Server environment.

6. Build and deploy the MobileFirst adapter to the WebSphere Application Server
environment. You can test the JMS adapter in your browser by using the
following URL syntax:
http://<was-hostname>:<port>/<context-root>/invoke?adapterName=
<adapterName>&procedure=<procedureName>¶meters=["<parameters>"]

An example of a URL pointing to an external WebSphere Application Server
server:
http://localhost:9080/worklight/invoke?adapter=JMSAdapter&procedure=
writeMessage¶meters=[“Hello World”]

Connecting a JMS adapter to a Liberty profile server:

You can develop and test MobileFirst adapters that use Java Message Service (JMS)
on a WebSphere Application Server Liberty profile ND server.

Before you begin

If you want to create adapters that use the JMS API, you must understand that the
WebSphere Application Server Liberty profile included with IBM MobileFirst
Platform Foundation for iOS does not contain the built-in Liberty JMS features.
Therefore, an embedded MobileFirst Development Server or a local external
instance of this bundled WebSphere Application Server Liberty profile server
cannot act as a JMS provider.

About this task

JMS is supported by the WebSphere Application Server Liberty profile V8.5 ND
(Network Deployment) server. If you have a local copy of this application server
that is installed on the same workstation as your MobileFirst tools, you can use it
to develop and test your JMS applications.

Because WebSphere Application Server Liberty profile does not support remote
JNDI lookups, it is not possible to make remote connections to the JMS server. The
MobileFirst adapter must be running on the same local Liberty profile server that
has JMS enabled.

The following procedure shows how to connect to an external Liberty profile
server that supports JMS.

Procedure

1. Enable JMS on your Liberty profile ND server by using the procedures in the
WebSphere Application Server user documentation at Configuring
point-to-point messaging for a single Liberty profile server. Make a note of the
JNDI connection factory and queue name, as shown in the following code
example:

Developing MobileFirst applications 8-135

http://ibm.biz/knowctr#SS7JFU_8.5.5/com.ibm.websphere.wlp.express.doc/ae/twlp_msg_single_p2p.html
http://ibm.biz/knowctr#SS7JFU_8.5.5/com.ibm.websphere.wlp.express.doc/ae/twlp_msg_single_p2p.html

<!-- Enable features -->
<featureManager>

<feature>jsp-2.2</feature>
<feature>wasJmsServer-1.0</feature>
<feature>wasJmsClient-1.1</feature>
<feature>jndi-1.0</feature>

</featureManager>

<messagingEngine id="defaultME">
<queue
id="libertyQ"
forceReliability="ReliablePersistent"
maxQueueDepth="5000">

</queue>
</messagingEngine>

<jmsQueueConnectionFactory jndiName="jms/libertyQCF" connectionManagerRef="ConMgr2">
<properties.wasJms
nonPersistentMapping="ExpressNonPersistent"
persistentMapping="ReliablePersistent"/>

</jmsQueueConnectionFactory>

<connectionManager id="ConMrg2" maxPoolSize="2"/>

<jmsQueue jndiName="jms/libertyQue">
<properties.wasJms
queueName="libertyQ"
deliveryMode="Application"
timeToLive="500000"
priority="1"
readAhead="AsConnection" />

</jmsQueue>

2. Create a MobileFirst JMS adapter.
3. Because the adapter runs on a JMS-enabled Liberty profile server, the naming

connection section of the adapter.xml file is not necessary. It can remain
commented out.

4. Enter the JNDI name for the connection factory that was created in the
server.xml file.
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- <namingConnection url="MY_JNDI_URL"
initialContextFactory="providers_initial_context_factory_class_name"
user="JNDIUserName"
password="JNDIPassword"/> -->

<jmsConnection
connectionFactory="jms/libertyQCF"
user="admin"
password="admin"
/>

</connectionPolicy>
</connectivity>

5. In the JMS adapter implementation file, enter the JNDI name for the queue as
the destination for both the read and write methods:
function readMessage() {

var result = WL.Server.readSingleJMSMessage({
destination:"jms/libertyQue",
timeout: 60

});
if (!result.message) {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> no message in queue");
return {};

} else {

8-136 IBM MobileFirst Platform Foundation for iOS V7.0.0

WL.Logger.debug(">> JMS adapter >> readNextMessage >> message received ::");
return result.message;

};
}

6. Change the MobileFirst target server in MobileFirst Platform Command Line
Interface for iOS to point to your Liberty ND server.

7. Build and deploy the MobileFirst adapter to the Liberty profile ND server. You
can test the JMS adapter in your browser by using the following URL syntax:
http://<liberty-hostname>:<port>/<context-root>/invoke?adapterName=
<adapterName>&procedure=<procedureName>¶meters=["<parameters>"]

An example of a URL pointing to an external Liberty profile ND server:
http://localhost:9080/worklight/invoke?adapter=JMSAdapter&procedure=
writeMessage¶meters=[“Hello World”]

Connecting a JMS adapter to WebSphere MQ:

You can connect a MobileFirst Java Message Service (JMS) adapter to WebSphere
MQ.

Before you begin

If you are running the adapter on WebSphere Application Server, use the
WebSphere Application Server messaging provider. For more information, see
“Connecting a JMS adapter to the WebSphere Application Server messaging
provider” on page 8-134.

Ensure that you have prior knowledge of WebSphere MQ and have a WebSphere
MQ Message Broker setup with the appropriate JMS administered objects. For
more information about setting up WebSphere MQ for JMS, see the IBM
WebSphere MQ user documentation.

About this task

The MobileFirst JMS adapter does not support connecting to WebSphere MQ
through bindings mode, only in client mode. A TCP connection is created for each
JMS request, even if the JMS broker and MobileFirst adapter are running on the
same computer.

To connect a MobileFirst JMS adapter to WebSphere MQ, you create a project, copy
some JAR files to the project directory, and modify the adapter file.

Procedure

Include the required WebSphere MQ Java libraries
1. Create a MobileFirst project.
2. Locate the java/lib directory in your WebSphere MQ directory.

Example: /opt/mqm/java/lib
3. Copy the following JAR files from the java/lib directory into the server/lib

directory of your MobileFirst project:
v CL3Export.jar

v CL3Nonexport.jar

v com.ibm.mq.axis2.jar

v com.ibm.mq.commonservices.jar

v com.ibm.mq.defaultconfig.jar

Developing MobileFirst applications 8-137

http://ibm.biz/knowctr#SSFKSJ_7.0.1/com.ibm.mq.doc/help_home_wmq.htm
http://ibm.biz/knowctr#SSFKSJ_7.0.1/com.ibm.mq.doc/help_home_wmq.htm

v com.ibm.mq.headers.jar

v com.ibm.mq.jar

v com.ibm.mq.jmqi.jar

v com.ibm.mq.jms.Nojndi.jar

v com.ibm.mq.pcf.jar

v com.ibm.mq.postcard.jar

v com.ibm.mq.soap.jar

v com.ibm.mq.tools.ras.jar

v com.ibm.mqjms.jar

v connector.jar

v dhbcore.jar

v fscontext.jar

v jta.jar

v providerutil.jar

v rmm.jar

Modify the adapter XML file
4. Create a MobileFirst JMS adapter.
5. Open the adapter.xml file.
6. In the namingConnection element of the xml file, set the URL to the location of

your bindings file that was generated by WebSphere MQ.
Example:
url="file:/home/user/JMS"

7. In the namingConnection element of the XML file, set the
initialContextFactory attribute to
com.sun.jndi.fscontext.RefFSContextFactory.

8. In the jmsConnection element, set the connectionFactory attribute to the name
of the connection factory that was set up in WebSphere MQ.

9. Optional: If security is enabled in WebSphere MQ, include the credentials as
shown in the following code example.
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">
<namingConnection
url="file:/home/user/JMS"
initialContextFactory="com.sun.jndi.fscontext.RefFSContextFactory"
user="admin"
password="password"/>

<jmsConnection
connectionFactory="myConnFactory"
user="admin"
password="password"/>

</connectionPolicy>
</connectivity>

Modify the adapter implementation file
10. Open the adapter’s implementation file.
11. In the autogenerated read and write methods, replace the destination

property with the name that was configured in your JMS administered object
in WebSphere MQ.
Example:

8-138 IBM MobileFirst Platform Foundation for iOS V7.0.0

function readMessage() {
var result = WL.Server.readSingleJMSMessage({
destination: "JMS1",
timeout: 60

});
WL.Logger.debug(result);
if (result.errors) {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> errors occured");
return result;

} else if (!result.message) {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> no messages in queue");
return result;

} else {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> message received ::");

};
}

Results

The MobileFirst JMS adapter is now properly configured to connect to WebSphere
MQ. You can test the JMS adapter in your browser by using the following URL:
http://<hostname>:<port>/<context-root>/invoke?adapterName=<adapterName>&procedure=
<procedureName>¶meters=['<parameters>']

Example
http://localhost:10080/worklight/invoke?adapter=JMSAdapter&procedure=
writeMessage¶meters=['Hello World']

SAP Gateway adapters:

Your IBM MobileFirst Platform Foundation for iOS applications can communicate
with SAP Netweaver Gateway back-end services by using SAP adapters. Using
HTTP rest calls and the OData protocol, applications can remotely create, retrieve,
update, and delete entities through the adapter.

Starting an SAP Gateway adapter:

You can create, retrieve, update, delete, and analyze Entities that exist on an SAP
system by using the MobileFirst SAP Gateway adapter.

Creating an entity:

You can create entity remotely through SAP Gateway.

About this task

Table 8-6. Attributes

Attribute Mandatory or Optional Description

content Mandatory Defines the properties of the
entity. Supports JSON and
Atom/XML formatting.

Procedure

v To create an entity in JSON format, write the input parameters as shown in the
following example.
"City": "Midland",

"Country": "USA",
"LanguageCode": "3",

Developing MobileFirst applications 8-139

"LocalCurrencyCode": "324",
"MimeType": "",
"Name": "Destination Paradise",
"POBox": "322",
"PostalCode": "48642",
"Region": "B",
"Street": "100 Electric Ave",
"TelephoneNumber": "5558675309",
"TravelAgencyID": "0000099",
"URL": "www.foo.com"

v To create an entity in XML format, write the input parameters as shown in the
following example.

"<?xml version=\"1.0\" encoding=\"utf-8\"?>
<entry xml:base=\"http:\/\/sapwl01.austin.ibm.com:8003\/sap\/opu\/odata\/iwbep\/RMTSAMPLEFLIGHT_2\/\"

xmlns=\"http:\/\/www.w3.org\/2005\/Atom\" xmlns:m=\"http:\/\/schemas.microsoft.com\/ado\/2007\/08\
/dataservices\/metadata\"
xmlns:d=\"http:\/\/schemas.microsoft.com\/ado\/2007\/08\/dataservices\">

<id>http:\/\/sapwl01.austin.ibm.com:8003\/sap\/opu\/odata\/iwbep\/RMTSAMPLEFLIGHT_2\
/TravelAgencies(’00000099’)<\/id>

<title type=\"text\">TravelAgencies(’00000099’)<\/title>
<updated>2014-07-18T14:10:27Z<\/updated>
<category term=\"RMTSAMPLEFLIGHT_2.TravelAgency\"

scheme=\"http:\/\/schemas.microsoft.com\/ado\/2007\/08\/dataservices\/scheme\"\
/><link href=\"TravelAgencies(’00000099’)\" rel=\"edit\"
title=\"TravelAgency\"\/>

<content type=\"application\/xml\">
<m:properties>

<d:TravelAgencyID>00000099<\/d:TravelAgencyID>
<d:Name>Destination Paradise<\/d:Name>
<d:Street>100 Electric Ave<\/d:Street>
<d:POBox>322<\/d:POBox>
<d:PostalCode>48642<\/d:PostalCode>
<d:City>Midland<\/d:City>
<d:Country>USA<\/d:Country>
<d:Region>B<\/d:Region>

<d:TelephoneNumber>9896002072<\/d:TelephoneNumber>
<d:URL>www.foo.com<\/d:URL>

<d:LanguageCode>34<\/d:LanguageCode>
<d:LocalCurrencyCode>324<\/d:LocalCurrencyCode>
<d:MimeType>xml<\/d:MimeType>

<\/m:properties>
<\/content>

<\/entry>"

Results

If you use the previous examples, you receive the following response from
MobileFirst Server.

{
"d": {

"City": "Midland",
"Country": "USA",
"LanguageCode": "3",
"LocalCurrencyCode": "324",
"MimeType": "",
"Name": "Destination Paradise",
"POBox": "322",
"PostalCode": "48642",
"Region": "B",
"Street": "100 Electric Ave",
"TelephoneNumber": "5558675309",
"TravelAgencyID": "00000099",
"URL": "www.foo.com",
"__metadata": {

8-140 IBM MobileFirst Platform Foundation for iOS V7.0.0

"id": "http:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwbep\/RMTSAMPLEFLIGHT_2\/TravelAgencies(’00000099’)",
"type": "RMTSAMPLEFLIGHT_2.TravelAgency",
"uri": "http:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwbep\/RMTSAMPLEFLIGHT_2\/TravelAgencies(’00000099’)"
}

},
"isSuccessful": true,
"responseHeaders": {

"content-length": "554",
"content-type": "application\/json; charset=utf-8",
"dataserviceversion": "2.0",
"location": "http:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwbep\/RMTSAMPLEFLIGHT_2\

/TravelAgencies(’00000099’)",
"server": "SAP NetWeaver Application Server \/ ABAP 731"

},
"statusCode": 201,
"statusReason": "Created"

}

Retrieving an entity:

You can retrieve an entity through an SAP Gateway server.

About this task

Table 8-7. Attributes

Attribute Mandatory or Optional Description

expand Optional Indicates that the response
from the Gateway represents
navigation properties inline,
rather than referenced.
Formatted as a JSON array.

keys Mandatory Identifies which entity is to
be retrieved based on its key
property or properties.
Formatted as a JSON object.

select Optional Indicates that a response
from the Gateway is
formatted with a subset of
specified properties.
Formatted as a JSON array.

Procedure

To retrieve an entity in JSON format, write the input parameters as shown in the
following example.
{

"keys":{
"carrid":"LH"

},
"select":["carrid", "carrierFlights"],
"expand":["carrierFlights"]

}

Results

If you use the previous example, you receive the following response from
MobileFirst Server.

Developing MobileFirst applications 8-141

{
"__metadata": {

"content_type": "image\/gif",
"edit_media": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\

/CarrierCollection(’LH’)\/$value",
"media_src": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\

/CarrierCollection(’LH’)\/$value",
"type": "RMTSAMPLEFLIGHT.Carrier",
"uri": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\

/CarrierCollection(’LH’)"
},
"carrid": "LH",
"carrierFlights": {

"results": [
{

"CURRENCY": "EUR",
"FlightCarrier": {

"__deferred": {
"uri": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\

/FlightCollection(carrid=’LH’,connid=’0400’,fldate=datetime’2013-12-21T00%3A00%3A00’)\/FlightCarrier"
}

},
"PAYMENTSUM": "209124.00",
"PLANETYPE": "A310-300",
"PRICE": "666.00",
"SEATSMAX": 280,
"SEATSMAX_B": 22,
"SEATSMAX_F": 10,
"SEATSOCC": 267,
"SEATSOCC_B": 22,
"SEATSOCC_F": 9,
"__metadata": {

"type": "RMTSAMPLEFLIGHT.Flight",
"uri": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\

/FlightCollection(carrid=’LH’,connid=’0400’,fldate=datetime’2013-12-21T00%3A00%3A00’)"
},
"carrid": "LH",
"connid": "0400",
"fldate": "\/Date(1387584000000)\/",
"flightBookings": {

"__deferred": {
"uri": "https:\/\/sap4.sapdevelopcenter.com:444\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\

/FlightCollection(carrid=’LH’,connid=’0400’,fldate=datetime’2013-12-21T00%3A00%3A00’)\/flightBookings"
}

...

Updating an entity:

You can update an entity from an SAP Gateway server.

About this task

Table 8-8. Attributes

Attribute Mandatory or Optional Description

content Mandatory This attribute is the new set
of properties for the specified
entity. Any properties that
are not defined in content
are set to an empty string
when the update is complete.
Supports JSON and
Atom/XML formatting.

8-142 IBM MobileFirst Platform Foundation for iOS V7.0.0

Procedure

To update an entity in XML format, write the input parameters as shown in the
following example.
{

“keys”:{
“TravelAgencyID”

}

Results

If you use the previous example, you receive the following response from
MobileFirst Server.
"City": "Midland",
"Country": "USA",
"LanguageCode": "3",
"LocalCurrencyCode": "324",
"MimeType": "",
"Name": "Destination Paradise",
"POBox": "322",
"PostalCode": "48642",
"Region": "B",
"Street": "100 Electric Ave",
"TelephoneNumber": "5558675309",
"TravelAgencyID": "00000099",
"URL": "www.foo.com"

Deleting an entity:

You can delete an existing entity through an SAP Gateway server.

About this task

Table 8-9. Attributes

Attribute Mandatory or Optional Description

keys Mandatory Identifies which entity must
be deleted, based on its key
properties. Formatted as a
JSON object.

Procedure

To delete an entity in JSON format, write the input parameters as shown in the
following example.
{

"keys":{
"TravelAgencyID":"99"

}
}

If you use the previous example, you receive the following response from
MobileFirst Server.
{

"isSuccessful": true,
"responseHeaders": {
"content-length": "0",
"dataserviceversion": "2.0",
"server": "SAP NetWeaver Application Server \/ ABAP 731"

Developing MobileFirst applications 8-143

},
"statusCode": 204,
"statusReason": "No Content"

}

Results

A successful deletion results in a 204 No Content response from the server.

Querying an existing entity:

You can search for existing Collections within an SAP Gateway server.

About this task

Table 8-10. Attributes

Attribute Mandatory or Optional Description

expand Optional Indicates that the response from the
Gateway represents navigation
properties inline, rather than
referenced. Formatted as a JSON
array.

filter Optional Uses logic operators to indicate that
only the matching criteria are
returned in the response. Formatted
as a String. For examples, see: Filter
System Query Option.

custom Optional Overrides all other input parameters
and directly appends this query to
your resource path. You can use this
parameter to generate more complex
queries. For example:
$expand=Products($filter=Date eq
null).

select Optional Indicates that a response from the
Gateway is formatted with a subset
of specified properties. Formatted as
a JSON array.

skip Optional Identifies that the first input number
of items of a Collection are skipped
in the response.

top Optional Identifies how many items of a
Collection are returned in a
response. Formatted as a
non-negative integer, which is
enclosed in quotation marks.

Procedure

v To use the select parameter for querying an existing entity in JSON format,
write the input parameter as shown in the following example.
{

"select": ["TravelAgencyID"]
}

v To use the filter parameter for querying an existing entity in JSON format,
write the input parameter as shown in the following example.

8-144 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html#_Toc372793804
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html#_Toc372793804

{
"filter": “TelephoneNumber eq ’5558675309’”

}

v To use the expand parameter for querying an existing entity in JSON format,
write the input parameter as shown in the following example.
{

"expand": ["carrierFlights"]
}

v To use the skip parameter for querying an existing entity in JSON format, write
the input parameter as shown in the following example.
{

"skip": "2"
}

v To use the top parameter for querying an existing entity in JSON format, write
the input parameter as shown in the following example.
{

"top": "2"
}

Retrieving a property of an entity:

You can retrieve a specific property from an entity through an SAP Gateway
server.

About this task

Table 8-11. Attributes

Attribute Mandatory or Optional Description

keys Mandatory Identifies the entity to be
retrieved based on its key
properties. Formatted as a
JSON Object.

property Optional Defines the Property to be
retrieved. Formatted as a
String.

Procedure

v To retrieve a property from an entity in JSON format, write the input parameters
as shown in the following example.
{

"keys":{
"carrid":’IBM Air’,
"connid":’0017’,
"fldate":"2013-12-18T00:00:00"

},
"property":"carrierFlights"

}

If you use the previous example, you receive the following response from
MobileFirst Server.

{
"isSuccessful": true,
"results": [

{
"CURRENCY": "USD",
"FlightCarrier": {

"__deferred": {

Developing MobileFirst applications 8-145

"uri": "https:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\
/FlightCollection(carrid=’IBM Air’,connid=’0017’,fldate=datetime’2013-12-18T00%3A00%3A00’)\/FlightCarrier"

}
},
"PAYMENTSUM": "192281.41",
"PLANETYPE": "747-400",
"PRICE": "422.94",
"SEATSMAX": 385,
"SEATSMAX_B": 31,
"SEATSMAX_F": 21,
"SEATSOCC": 374,
"SEATSOCC_B": 28,
"SEATSOCC_F": 21,
"__metadata": {

"type": "RMTSAMPLEFLIGHT.Flight",
"uri": "https:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\

/FlightCollection(carrid=’IBM Air’,connid=’0017’,fldate=datetime’2013-12-18T00%3A00%3A00’)"
},
"carrid": "IBM Air",
"connid": "0017",
"fldate": "\/Date(1387324800000)\/",
"flightBookings": {

"__deferred": {
"uri": "https:\/\/servl01.tampa.ibm.com:1234\/sap\/opu\/odata\/iwfnd\/RMTSAMPLEFLIGHT\

/FlightCollection(carrid=’IBM Air’,connid=’0017’,fldate=datetime’2013-12-18T00%3A00%3A00’)\/flightBookings"
}

},
"flightDetails": {

"__metadata": {
"type": "RMTSAMPLEFLIGHT.FlightDetails"

},
"airportFrom": "JFK",
"airportTo": "SFO",

...

v To retrieve a property from an entity in JSON format, write the input parameters
as shown in the following example.
{

"keys":{
"carrid":’AA’,
"connid":’0017’,
"fldate":"2013-12-18T00:00:00"

},
"property":"CARRNAME/$value"

}

If you use the previous example, you receive the following response from
MobileFirst Server.
{

"RETURN": "American Airlines",
"isSuccessful": true,
"responseHeaders": {

"content-length": "17",
"content-type": "text\/plain; charset=utf-8",
"dataserviceversion": "2.0",
"server": "SAP NetWeaver Application Server \/ Tampa 1234",
"x-csrf-token": "9PfsXHsbriIR4PNwfLKBAg=="

},
"statusCode": 200,
"statusReason": "OK"

}

8-146 IBM MobileFirst Platform Foundation for iOS V7.0.0

Configuring an SAP Gateway adapter with a system user:

You can connect to an SAP back end with a system user. However, you should use
user-based authentication for most scenarios. Check your SAP license terms.

Before you begin

Make sure that SAP Gateway adapters exist in yourMobileFirst project.

Procedure

1. Expand the adapters folder of your MobileFirst project, right-click <SAP
Adapter name>.xml, and select Open With > Adapter Editor.

2. In the Adapter Editor view, expand Connectivity and select Connection Policy.
3. Click Add, select authentication from the Add Item window, and click OK.
4. Under Connection Policy, select authentication and click Add.

a. Select the appropriate authentication mechanism of your SAP server. This
example uses basic. The results look something like the following image.

5. To see the changes in the source code, select the Source tab at the bottom of the
Adapter Editor view.

Results

Your SAP Gateway adapter is configured to start procedures on a server-identity
authentication basis.

SAP JCo adapters:

You can use the SAP Java Connector (SAP JCo) adapters to develop
SAP-compatible components and applications in Java.

Invoking an SAP JCo adapter:

If you invoke the SAP Java Connector (SAP JCo) adapter, you can communicate
with the SAP Server both inbound and outbound.

Developing MobileFirst applications 8-147

About this task

Table 8-12. Parameters

Parameter Mandatory or Optional Description

FunctionName Mandatory The name of the function to
be run on the SAP system

Imports Mandatory The input parameters

Procedure

1. Call the invokeSAPFunction procedure and pass in the following parameters.
{"FunctionName" : "BAPI_USER_GET_DETAIL", "Imports" : {"USERNAME" :
"DEVELOPER"}}

2. Save your adapter_name-impls.js file.

Results

The following message is displayed in the Console: Adapter build and deploy
finished.

The Cast Iron adapter:

The MobileFirst Cast Iron adapter initiates orchestrations in Cast Iron to retrieve
and return data to mobile clients.

Cast Iron accesses various enterprise data sources, such as databases, web services,
and JMS, and provides validation, aggregation, and formatting capabilities.

The Cast Iron adapter supports two patterns of connectivity:

Outbound pattern.
The invocation of Cast Iron orchestrations from IBM MobileFirst Platform
Foundation for iOS.

Inbound pattern.
Cast Iron sends notifications to devices through IBM MobileFirst Platform
Foundation for iOS.

The Cast Iron adapter supports the invocation of a Cast Iron orchestration over
HTTP only. Cast Iron Template Integration Projects (TIPs) are provided in Cast Iron
as examples of this technique, and for you to use as a basis for your own
orchestrations. For more information, see the Cast Iron documentation.

Cast Iron uses the standard MobileFirst notification adapter and event sources to
publish notification messages to be delivered to devices by using one of the many
notification providers.

For information about defining event sources, see the createEventSource method
in the WL.Server class.

Cast Iron Template Integration Projects (TIPs) are provided in Cast Iron as
examples of this technique, and for you to use as a basis for your own notification
scenarios. For more information, see the Cast Iron documentation.

To protect the notification adapter, use basic authentication.

8-148 IBM MobileFirst Platform Foundation for iOS V7.0.0

Troubleshooting a Cast Iron adapter – connectivity issues

Symptom: The MobileFirst adapter cannot communicate with the Cast Iron server.

Causes:
v Cast Iron provides two network interfaces, one for administration and one for

data. Ensure that you are using the correct host name or IP address of the Cast
Iron data interface. You can find this information under the Network menu item
in the Cast Iron administrative interface. This information is stored in the
adapter-name.xml file for your adapter.

v The invocation fails with a message Failed to parse the payload from backend.
This failure is typically caused by a mismatch between the data returned by the
Cast Iron orchestration and the returnedContentType parameter in the
adapter-name.js implementation. For example, the Cast Iron orchestration
returns JSON but the adapter is configured to expect XML.

Developing JavaScript adapter code:

Learn about implementing a procedure in the adapter XML file, calling Java code
from a JavaScript adapter, and invoking a back-end service.

Implementing adapter procedures:

Implement a procedure in the adapter XML file, using an appropriate signature
and any return value.

Before you begin

You have declared a procedure in the adapter XML file, using a <procedure> tag.

Procedure

Implement the procedure in the adapter JavaScript file. The signature of the
JavaScript function that implements the procedure has the following format:
function funcName (param1, param2, ...),

Where:
v funcName is the name of function which the procedure implements. This name

must be the same as the value specified in the name attribute of the <procedure>
element in the adapter XML file.

v param1 and param2 are the function parameters. The parameters can be scalars
(strings, integers, and so on) or objects.

In your JavaScript code, you can use the MobileFirst server-side JavaScript API to
access back-end applications, invoke other procedures, access user properties, and
write log and debug lines.
You can return any value from your function, scalar or object.

Example

This example demonstrates how to use JavaScript on the server side. Note the
following when performing procedures on the server side:
v Procedures are implemented in the adapter JavaScript file.
v The service URL is used for procedure invocations.

Developing MobileFirst applications 8-149

v Some parts of the URL are constant; for example, http://example.com/. They
are declared in the XML file. Other parts of the URL can be parameterized; that
is, substituted at run time by parameter values that are provided to the
MobileFirst procedure. The following URL parts can be parameterized:
– Path elements
– Query string parameters
– Fragments

For advanced options for adapters, such as cookies, headers, and encoding, see
“HTTP adapter connectionPolicy element” on page 8-101.

In the JavaScript file, use the same procedure name as in the XML file. The
mandatory parameters to call the procedure are method, path, and
returnedContentType. The procedure can be parameterized at run time, for
example:
function getFeeds() {

var input = {
method : ’get’,
returnedContentType : ’xml’,
path : "rss.xml"

};

return WL.Server.invokeHttp(input);
}

To call an HTTP request, use the WL.Server.invokeHttp method. Provide an input
parameter object, which must specify the following options:
v The HTTP method: GET, POST, PUT, or DELETE
v The returned content type: XML, JSON, HTML, or plain
v The service path
v The query parameters (optional)
v The request body (optional)
v The transformation type (optional)

For a complete list of options, see WL.Server class.

The Rhino container:

IBM MobileFirst Platform Foundation for iOS uses Rhino as the engine for running
the JavaScript script used to implement adapter procedures.

Rhino is an open source JavaScript container developed by Mozilla. In addition to
being part of Java 6, Rhino has two other advantages:
v It compiles the JavaScript code into byte code, which runs faster than interpreted

code.
v It provides access to Java code directly from JavaScript. For example:
var date = new java.util.Date();
var millisec = date.getTime()

Note: Global variables are handled according to the following rules:
v In the same user session (for example, an application loaded in a browser), the

values of global variables persist from one method call of an adapter to another
method call of the same adapter (that is, they are not reset).

8-150 IBM MobileFirst Platform Foundation for iOS V7.0.0

v If you create two different user sessions that connect to the same adapter (for
example, by opening the same app in different browsers or devices), every user
session holds its own global variable state.

v If a user session expires, the Rhino session expires, and variables are no longer
defined.

Calling Java code from a JavaScript adapter:

Follow these instructions to instantiate Java objects and call their methods from
JavaScript code in your adapter.

Before you begin

Attention: The name of any Java package to which you refer from within an
adapter must start with the domains com, org, or net.

Procedure

1. Instantiate a Java object by using the new keyword and apply the method on
the newly instantiated object.

2. Optional: Assign a JavaScript variable to be used as a reference to the newly
instantiated object.

3. Include the Java classes that are called from the JavaScript adapter in your
MobileFirst project under Worklight Project Folder/server/java. They are
automatically built and deployed to the MobileFirst Server, and the result of the
build is placed under Worklight Project Folder/bin

Example
var x = new MyJavaClass();
var y = x.myMethod(1, "a");

USSD Support
Unstructured Supplementary Service Data (USSD) is a communication technology
that is used by GSM cellular telephones to send text messages between a mobile
phone and an application program in the network.

USSD establishes a real-time session between the mobile phone and the application
that handles the service.

IBM MobileFirst Platform Foundation for iOS uses the HTTP/HTTPS protocol to
communicate with the USSD gateway, which is a third-party entity. The USSD
gateway routes USSD messages to the MobileFirst Server. Adapter procedures need
to be defined to process these requests and send back a response. You need to
define USSD event handler to route the requests to the adapter procedure that
handles those requests.

Note: For more information, see the WL.Server.createUSSDEventHandler and
WL.Server.createUSSDResponse APIs in WL.Server.

Here is a sample flow for USSD:
1. A mobile user enters a USSD short code, such as *123#.
2. The request is forwarded to a USSD gateway.
3. The gateway maps the short code to a known URL provided by IBM

MobileFirst Platform Foundation for iOS, creates the USSD session, and
forwards the request to the URL.

Developing MobileFirst applications 8-151

4. A MobileFirst adapter with the matching filter receives the request and
responds to the gateway request with the configurable USSD menu/simple
text.

Configuration required at USSD Gateway
http://<hostname>:<port>/<contextroot>/ussd

This URL can be followed by parameters specific to the gateway. Refer to your
USSD Gateway documentation for more details.

Server-side APIs required at MobileFirst adapter side

To create a filter to process the USSD request:
WL.Server.setEventHandlers([WL.Server.createUSSDEventHandler({
’shortcode’ : ’*123#’
}, handleUSSDRequest)]);

To send back a response:
WL.Server.createUSSDResponse("This is my response", "text/plain", true))

Security

To prevent entities with malicious intent from sending requests to the MobileFirst
Server via a USSD URL, the USSD feature is protected by default. The
authenticationConfig.xml file is configured to reject all requests to the USSD
servlet with a rejecting login module. To allow restricted access to USSD,
MobileFirst administrators must modify the authenticationConfig.xml file with
appropriate authenticator and login modules, or comment the URL pattern /ussd*
to allow unrestricted access. For example, the following configuration in the
authenticationConfig.xml file ensures that only requests with a specific user name
in the header of the HTTP request are allowed:

8-152 IBM MobileFirst Platform Foundation for iOS V7.0.0

<staticResources>
<resource id="subscribeServlet" securityTest="SubscribeServlet">

<urlPatterns>/subscribeSMS*;/ussd*</urlPatterns>
</resource>
...

</staticResources>

<securityTests>
<customSecurityTest name="SubscribeServlet">

<test realm="SubscribeServlet" isInternalUserID="true"/>
</customSecurityTest>
...

</securityTests>

<realms>
<realm name="SubscribeServlet" loginModule="headerLogin">

<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>
</realm>
...

</realms>

<loginModules>
<loginModule name="headerLogin">

<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="username"/>

</loginModule>
...

</loginModules>

Invoking a back-end service for USSD
You can invoke a MobileFirst HTTP adapter to test the USSD functionality.

Before you begin

This feature is only available within MobileFirst Studio for HTTP adapters. It is not
available when you run an adapter on a stand-alone server that is based on
WebSphere Application Server or Tomcat.

About this task

In MobileFirst Studio, you can invoke an HTTP-based USSD adapter and see the
results that are returned to the USSD gateway to verify that the adapter is
performing correctly.

Procedure
1. Right-click an adapter file, and select Run As > Invoke MobileFirst Back-end

Service.

Developing MobileFirst applications 8-153

2. In the dialog box, from the Connect as drop-down list, select gateway. Then
provide the options for invoking the USSD handler in the text box. The USSD
gateway can send HTTP parameters, headers, cookies, or body.

Figure 8-16. Invoking a MobileFirst back-end service

8-154 IBM MobileFirst Platform Foundation for iOS V7.0.0

A browser window opens, displaying the result of the adapter invocation
3. You can follow this procedure as many times as required to test the menu flow

with the USSD gateway. Here are some examples that use the different types of
parameters that are passed from the USSD gateway.
Example 1: Passing query string parameters.

Example 2: Passing JSON parameters in the body.

Figure 8-17. Invocation parameters.

Developing MobileFirst applications 8-155

Example 3: Passing XML in the body.

Note: If the body that you pass is not a JSON object, then enclose the object in
quotes (" "). If it is a JSON object, then surround it with curly brackets ({ }).

Deploying adapters
In MobileFirst Studio, you can automatically deploy a new or modified adapter to
the MobileFirst Server.

Procedure

Right-click the adapter folder and select Run As > Deploy MobileFirst Adapter.

8-156 IBM MobileFirst Platform Foundation for iOS V7.0.0

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Note: When the development server is started, adapters are automatically
deployed after they are created or modified and saved. You can view this feature
by clicking Window > Preferences. Select MobileFirst. To change this feature, clear
the Automatically Deploy Adapters on Change check box. The default value of
this feature is true. The preview command automatically deploys all adapters that
are not deployed for a project if this preference is set to true.

Testing adapters
You can select a procedure, enter a set of parameters, and invoke the procedure on
the MobileFirst Server.

Testing adapters with MobileFirst Platform Command Line Interface for iOS
(CLI)

To test an adapter by using CLI, you must call the adapter.

To call an adapter by using CLI, run the mfp adapter call command. For
more information about this command, see mfp adapter call.

Testing adapters with external tools such as Postman

MobileFirst Java adapters expose a full REST API. If you know the URL of
a resource or procedure, you can use HTTP tools such as Postman to test
requests and pass the following parameters.
v URL parameters

Figure 8-18. Deploying a MobileFirst adapter.

Developing MobileFirst applications 8-157

v Path parameters
v Body parameters
v Headers

If your resource is protected by a security scope, the request prompts you
to provide a valid authorization header. The default value of this security
scope is simple. Unless you disabled security, the endpoint is protected.

As a solution for testing, the development version of the MobileFirst Server
includes a test token endpoint.

To receive a Test Token, create an HTTP POST request to
http(s)://{server_ip}:{server_port}/{project_name}/authorization/v1/
testtoken with your HTTP client (Postman).

You receive a JSON object with a temporary valid authorization token.
{

"Authorization": "Bearer eyJhbGciOiJSUzI1NiIsImpwayI6eyJhbGciOiJSU0EiLCJleHAiOiJBUUFCIiwibW9kIjoi
QU0wRGQ3eEFkdjZILXlnTDdyOHFDTGRFLTNJMm2FPZUlxb2UtckpBMHVadXcyckhoWFozV1ZDZUtlelJWY0NPWXNRTi1t
UUswbWZ6NV8zby1ldjBVWXdYa1NPd0JCbDFFaHFJd1ZEd09pZWcySk1HbDBFWHNQWmZrTlpJLUhVNG9NaWktVHJOTHp..."
}

In your next requests to the adapter endpoints, add an HTTP header with
the name Authorization and the value that you received that starts with
Bearer.

Now that you have a valid token, you can access the resource by using the
security framework.

For more information about the test token endpoint, see “The test token
endpoint” on page 8-241.

Client access to adapters
Clients can access adapters from three endpoints in the IBM MobileFirst Platform
Server.

The following table summarizes the supported adapter types, HTTP methods, and
security model for each MobileFirst Server endpoint.

Table 8-13. Client access to MobileFirst Server endpoints

Endpoint
Supported for
Java adapters

Supported for
JavaScript
adapters

Permitted HTTP methods
Supported

security model

/adapters yes yes GET, POST, PUT, DELETE, HEAD, TRACE
OAuth
2.0-based

/apps/
services/api/
query

no yes POST Pre-V7.0

/invoke no yes GET, POST Pre-V7.0

Accessing adapters from the /adapters endpoint
Clients can access both Java and JavaScript adapters from the /adapters endpoint
on the server. You can access this endpoint from both mobile and non-mobile
clients.

The URL pattern for accessing the /adapters endpoint is as follows:
http(s)://<server>:<port>/<Context>/adapters/<adapter-name>/*

8-158 IBM MobileFirst Platform Foundation for iOS V7.0.0

For example, assuming that http://mfp-server-host/project is the IBM
MobileFirst Platform Foundation for iOS project URL, and the project contains one
Java adapter named adapter1 and the adapter has a resource with path /res1, then
/res1 is accessible from the following URL:
http://mfp-server-host/project/adapters/adapter1/res1

Note: Using the /adapters endpoint is the recommended way to access IBM
MobileFirst Platform Foundation for iOS adapters. This endpoint supports both
JavaScript and Java adapters and is protected by the OAuth security mechanism,
which was introduced beginning with MobileFirst V7.0.

Accessing adapters from a mobile client

IBM MobileFirst Platform Foundation for iOS provides a client API for accessing
OAuth protected resources such as adapters. If you choose to use MobileFirst client
for that purpose, it will automatically handle security for you. The following
example demonstrates how to use the client API to access an adapter resource:

Native iOS client
NSString static *const RESOURCE_URL = @"adapters/adapter1/res1";
WLResourceRequest *request = [WLResourceRequest requestWithURL:[NSURL URLWithString:RESOURCE_URL] method:WLHttpMethodGet];

[request sendWithCompletionHandler:^(WLResponse *response, NSError *error) {
NSString *httpStatus = [NSString stringWithFormat:@"%d", [response status]];
self.httpStatusTextField.text = httpStatus;
if (error != nil) {

[self updateView:[error description]];
} else {

[self updateView:[response responseText]];
}

}];

Accessing adapters from non-mobile clients

When accessing adapters from non-mobile clients, note the following:
v You can access unprotected resources using a non-mobile client.
v In production, it is not possible to access protected resources without a mobile

device.
v In a development environment, it is possible to access protected resources by

using a test token. For more information, see The test token endpoint.

RESTful access to JavaScript adapters

In addition to invoking JavaScript adapters over HTTP by using IBM MobileFirst
Platform Foundation for iOS from the /adapter endpoint, you can call existing
JavaScript adapter procedures over HTTP via REST URLs.

The URL pattern is as follows:
http(s)://<server>:<port>/<Context>/adapters/<adapter-name>/<procedure-name>

For example:
http://<hostname>:<port>/mfp/adapters/TodaysNews/getStories?params=[’world’]

Both the GET and POST methods can be used to call the adapter procedure. The
procedure arguments are passed as the value of a parameter called params. This
parameter is a query parameter for GET requests and a form parameter for POST
requests. The value must be a JSON array of parameters that are provided in order.

Developing MobileFirst applications 8-159

Note:

For successful invocations, the status code of the HTTP response is set to 200 (OK).
The response body contains the JSON output that resulted from the invocation of
the JavaScript adapter. If an error occurred during adapter invocation, the status
code is set to 500 (Internal Server Error).

Accessing adapters from the /apps/services/api/query endpoint
In versions of IBM MobileFirst Platform Foundation for iOS previous to V7.0 this
endpoint was the preferred access point for clients.

The client API that can be used to access adapters from this endpoint is
invokeProcedure in the WLClient class. For more information, see WL.Client iOS
API.

Accessing adapters from the /invoke endpoint
JavaScript adapter procedures can be invoked by issuing an HTTP request to the
MobileFirst /invoke endpoint.

The URL pattern for accessing the /invoke endpoint is as follows
http(s)://<server>:<port>/<Context>/invoke

Note: The usage of the /invoke endpoint is discouraged. Consider using the
/adapters endpoint even when invoking a JavaScript adapter procedure. For more
information, see “Accessing adapters from the /adapters endpoint” on page 8-158.

The following parameters are required:

Table 8-14. Parameters for adapter invocation

Property Description

adapter The name of the adapter

procedure The name of the procedure

parameters An array of parameter values

The request can be either GET or POST.

Note: The invocation service uses the same authentication framework as
described in the “MobileFirst security framework” on page 8-221 section.

The default security test for adapter procedures contains Anti-XSRF protection, but
this configuration can be overridden by either:
v Implementing your own authentication realm (see “Authenticators and login

modules” on page 8-257 for more details).
v Disabling the authentication requirement for a specific procedure. You can do so

by adding the securityTest="wl_unprotected" property to the <procedure>
element in the adapter XML file.

Note: Disabling authentication requirement on a procedure means that this
procedure becomes completely unprotected and anyone who knows the adapter
and the procedure name can access it. Therefore, consider protecting sensitive
adapter procedures.

8-160 IBM MobileFirst Platform Foundation for iOS V7.0.0

JSONStore
Learn about JSONStore.

JSONStore overview
JSONStore features add the ability to store JSON documents in MobileFirst
applications.

JSONStore is a lightweight, document-oriented storage system that is included as a
feature of IBM MobileFirst Platform Foundation for iOS, and enables persistent
storage of JSON documents. Documents in an application are available in
JSONStore even when the device that is running the application is offline. This
persistent, always-available storage can be useful for customers, employees, or
partners, to give them access to documents when, for example, there is no network
connection to the device.

For JSONStore API reference information for native iOS applications, see the
JSONStore Class Reference in the API reference section.

Here is a high-level summary of what JSONStore provides:
v A developer-friendly API that gives developers the ability to populate the local

store with documents, and to update, delete, and search across documents.
v Persistent, file-based storage matches the scope of the application.
v AES 256 encryption of stored data provides security and confidentiality. You can

segment protection by user with password-protection, in the case of more than
one user on a single device.

v Ability to keep track of local changes.

A single store can have many collections, and each collection can have many
documents. It is also possible to have a MobileFirst application that contains
multiple stores. For information, see “JSONStore multiple user support” on page
8-179.

Developing MobileFirst applications 8-161

Note: Because it is familiar to developers, relational database terminology is used
in this documentation at times to help explain JSONStore. There are many
differences between a relational database and JSONStore however. For example,
the strict schema that is used to store data in relational databases is different from
JSONStore's approach. With JSONStore, you can store any JSON content, and index
the content that you need to search.

General JSONStore terminology
Learn about general JSONStore terminology.

JSONStore document

A document is the basic building block of JSONStore.

Figure 8-19. A basic graphic representation of JSONStore.

Figure 8-20. Components and their interaction with the server when you use JSONStore for data synchronization.

8-162 IBM MobileFirst Platform Foundation for iOS V7.0.0

A JSONStore document is a JSON object with an automatically generated identifier
(_id) and JSON data. It is similar to a record or a row in database terminology. The
value of _id is always a unique integer inside a specific collection. Some functions
like the add, replace, and remove methods in the JSONStoreInstance class take an
Array of Documents/Objects. These methods are useful to perform operations on
various Documents/Objects at a time.

Example

Single document
var doc = { _id: 1, json: {name: ’carlos’, age: 99} };

Example

Array of documents
var docs = [

{ _id: 1, json: {name: ’carlos’, age: 99} },
{ _id: 2, json: {name: ’tim’, age: 100} }

]

JSONStore collection

A JSONStore collection is similar to a table, in database terminology

Example

Customer collection
[

{ _id: 1, json: {name: ’carlos’, age: 99} },
{ _id: 2, json: {name: ’tim’, age: 100} }

]

This code is not the way that the documents are stored on disk, but it is a good
way to visualize what a collection looks like at a high level.

JSONStore store

A store is the persistent JSONStore file that contains one or more collections.

A store is similar to a relational database, in database terminology. A store is also
referred to as a JSONStore.

JSONStore search fields

A search field is a key/value pair.

Search fields are keys that are indexed for fast lookup times, similar to column
fields or attributes, in database terminology.

Extra search fields are keys that are indexed but that are not part of the JSON data
that is stored. These fields define the key whose values (in the JSON collection) are
indexed and can be used to search more quickly.

Valid data types are: string, boolean, number, and integer. These types are only
type hints, there is no type validation. Furthermore, these types determine how

Developing MobileFirst applications 8-163

indexable fields are stored. For example, {age: ’number’} will index 1 as 1.0 and
{age: ’integer’} will index 1 as 1.

Examples

Search fields and extra search fields.
var searchField = {name: ’string’, age: ’integer’};
var additionalSearchField = {key: ’string’};

It is only possible to index keys inside an object, not the object itself. Arrays are
handled in a pass-through fashion, meaning that you cannot index an array or a
specific index of the array (arr[n]), but you can index objects inside an array.

Indexing values inside an array.
var searchFields = {

’people.name’ : ’string’, // matches carlos and tim on myObject
’people.age’ : ’integer’ // matches 99 and 100 on myObject

};

var myObject = {
people : [

{name: ’carlos’, age: 99},
{name: ’tim’, age: 100}

]
};

JSONStore queries

Queries are objects that use search fields or extra search fields to look for
documents.

The example presumes that the name search field is of type string and the age
search field is of type integer.

Examples

Find documents with name that matches carlos:
var query1 = {name: ’carlos’};

Find documents with name that matches carlos and age matches 99:
var query2 = {name: ’carlos’, age: 99};

JSONStore query parts

Query parts are used to build more advanced searches. Some JSONStore
operations, such as some versions of find or count take query parts. Everything
within a query part is joined by AND statements, while query parts themselves are
joined by OR statements. The search criteria returns a match only if everything
within a query part is true. You can use more than one query part to search for
matches that satisfy one or more of the query parts.

Find with query parts operate only on top-level search fields. For example: name,
and not name.first. Use multiple collections where all search fields are top-level to
get around this. The query parts operations that work with non top-level search
fields are: equal, notEqual, like, notLike, rightLike, notRightLike, leftLike, and
notLeftLike. The behavior is undetermined if you use non-top-level search fields.

8-164 IBM MobileFirst Platform Foundation for iOS V7.0.0

JSONStore API concepts
JSONStore provides API reference information for iOS applications.

Store

Open and initialize a collection

Starts one or more collections. Starting or provisioning a JSONStore collection
means that the persistent storage that is used to contain collections and documents
is created, if it does not exist. If the store is encrypted and a correct password is
passed, the required security procedures to make the data accessible are run. There
is minimal effort in initializing all the collections when an application starts.

After you open a collection, an accessor to the collection is available, which gives
access to collection APIs. It allows developers to call functions such as find, add,
and replace on an initialized collection.

It is possible to initialize multiple times with different collections. New collections
are initialized without affecting collections that are already initialized.

Destroy

Completely wipes data for all users, destroys the internal storage, and clears
security artifacts. The destroy function removes the following data:
v All documents.
v All collections.
v All stores. For more information, see “JSONStore multiple user support” on page

8-179.
v All JSONStore metadata and security artifacts. For more information, see

“JSONStore security” on page 8-178.

Close all

Locks access to all the collections in a store until the collections are reinitialized.
Where initialize can be considered a login, close can be considered a logout.

Start, commit, and rollback transaction

A transaction is a set of operations that must all succeed for the operations to
manipulate the store. If any operation fails, the transaction can be rolled back to
revert the store to its previous state. After a transaction is started, it is important
that you handle committing or rolling back your transactions to prevent excess
processing. Three operations exist in the Store API for transactions:
v

Start transaction
Begin a snapshot in which the store is reverted to if the transaction fails.

v

Commit transaction
Inform the store that all operations in the transaction succeeded, and all
changes can be finalized.

v

Developing MobileFirst applications 8-165

Rollback transaction
Inform the store that an operation in the transaction failed, and all
changes must be discarded.

Collection

Store and add a document

You can add a document or array of documents to a collection. You can also pass
an array of objects (for example [{name: ’carlos’}, {name: ’tim’}]) instead of a
single object. Every object in the array is stored as a new document inside the
collection.

Remove a document

Marks one or more documents as removed from a collection. Removed documents
are not returned by the find or count operations.

Find All Documents, Find Documents by Id, and Find With Query

You can find documents in a collection by their search fields and extra search
fields. An internal search field, _id, holds a unique integer identifier that can be
used to find the document (Find by Id). You can search for documents with the
following APIs:
v

Find All Documents
Returns every document in a collection.

v

Find All Dirty Documents
Returns every document in a collection that is marked dirty.

v

Find by Id
Find the document with the corresponding _id search key value.

v

Find With Query or Query Parts
Find all documents that match a query or all query parts. For more
information, see the Search Query format section at “Additional
references” on page 8-167.

Filter returns what is being indexed, which might be different than what was
saved to a collection. Some examples of unexpected results are:
1. If your search field has upper case letters, the result is returned in all

lower-case letters.
2. If you pass something that is not a string, it is indexed as a string. For example,

1 is '1', 1.0 is '1.0', true is '1', and false is '0'.
3. If your filter criteria includes non top-level search fields, you might get a single

string with all the terms that are joined by a special identifier (-@-). For
example, ’carlos-@-mike-@-dgonz’.

8-166 IBM MobileFirst Platform Foundation for iOS V7.0.0

Replace a document and change documents

You can use the Replace API to replace the contents of a document in the
collection with new data, which is based on the _id. If the data contains the _id
field of a document in the database, the document is replaced with the data and all
search fields are reindexed for that document.

The Change API is similar to the Replace API, but the Replace is based on a set of
search field criteria instead of _id. The Replace API can be emulated by
performing the Change API with the search field criteria of only _id. All search
fields in the search field criteria must exist in the documents in the store, and in
the data that is passed to the Change API.

Count All Documents, Count All Dirty Documents, and Count
With Query

The Count API returns an integer number by counting the total number of
documents that match the query. There are three Count APIs:
v

Count All Documents
Give the total count of all documents in the collection.

v

Count All Dirty Documents
Give the total number of documents in the collection that are currently
marked dirty.

v

Count With Query or Query Parts
Give the total number of documents that match a specific search query.
For more information, see the Search Query format section at
“Additional references.”

Remove Collection and Clear Collection

Removing a collection deletes all data that is associated with a collection, and
causes the collection accessor to be no longer usable.

Clearing a collection deletes all documents in the collection. This operation keeps
the collection open after it completes.

Mark Clean

The Mark Clean API is used to remove the dirty flag from a document in the
collection, and deletes the document completely from the collection if it was
marked dirty by a remove document operation. The Mark Clean API is useful
when used with the Find All Dirty Documents API to sync the collection with a
remote database.

Additional references

Search Query format

When an API requires a search query, a common format is followed for the
collection. A query consists of an array of objects where each key/value pair is
ANDed together. Each object in the array is ORed together. For example:

Developing MobileFirst applications 8-167

[{fn: "Mike", age: 30}, {fn: "Carlos", age: 36}]

is represented as (with fuzzy search):
(fn LIKE "%Mike%" AND age LIKE "%30%") OR (fn LIKE "%Carlos%" AND age LIKE "%36%")

Search Query Parts format

The following examples use pseudocode to convey how query parts work. A query
such as {name: ’carlos’, age: 10} can be passed a modifier such as {exact:
true}, which ensures only items that exactly match name and age are returned.
Query parts give you the flexibility of adding modifiers to any part of the query.
For example:
queryPart1 = QueryPart().like(’name’, ’carlos’).lessThan(’age’, 10);

The previous example is transformed into something like:
(’name’ LIKE %carlos%) AND (age < 10)

You can also create another query part, for example:
queryPart2 = QueryPart().equal(’name’, ’mike’)

When you add various query parts with the find API, for example:
find([queryPart1, queryPart2]

You get something like:
((’name’ LIKE %carlos%) AND (age < 10)) OR (name EQUAL ’mike’)

Limit and Offset

Passing a limit to an API's options restricts the number of results by the number
specified. It is also possible to pass an offset to skip results by the number
specified. To pass an offset, a limit must also be passed. This API is useful for
implementing pagination or for optimization. By limiting the data to a subset that
is necessary, the memory and processing power is reduced.

Fuzzy Search versus Exact Search

The default behavior is fuzzy searching, which means that queries return partial
results. For example, the query {name: ’carl’} finds ’carlos’ and ’carl’ (for
example, name LIKE ’%carl%’). When {exact: true} is passed, matches are exact
but not case-sensitive. For example, ’hello’ matches ’Hello’ (for example,
name.toLowerCase() = ’hello’). Integer matching is not type-sensitive. For
example, "1" matches both "1" and "1.0". Numbers are stored as their decimal
representation. For example, "1" is stored as "1.0". Boolean values are indexed as
1 (true) and 0 (false).

Troubleshooting JSONStore
Find information to help resolve issues that you might encounter when you use
the JSONStore API.

JSONStore troubleshooting overview
Find information to help resolve issues that you might encounter when you use
the JSONStore API.

8-168 IBM MobileFirst Platform Foundation for iOS V7.0.0

Provide information when you ask for help

It is better to provide more information than to risk not providing enough
information. The following list is a good starting point for the information that is
required to help with JSONStore issues.
v Operating system and version. For example, Mac OSX 10.8.3.
v JDK version. For example, Java SE Runtime Environment (build 1.7).
v IBM MobileFirst Platform Foundation for iOS version. For example, IBM

Worklight V5.0.6 Developer Edition.
v iOS version. For example, iOS Simulator 6.1 or iPhone 4S iOS 6.0.
v Logs, such as Xcode.

Try to isolate the issue

Follow these steps to isolate the issue to more accurately report a problem.
1. Reset the simulator and call the destroy API to start with a clean system.
2. Ensure that you are running on a supported production environment.
v iOS >= 6.0 simulator or device

3. Try to turn off encryption by not passing a password to the init or open APIs.
4. Look at the SQLite database file that is generated by JSONStore. Encryption

must be turned off.
v iOS simulator:

$ cd ~/Library/Application Support/iPhone Simulator/7.1/Applications/<id>/Documents/wljsonstore
$ sqlite3 jsonstore.sqlite

v Look at the searchFields with .schema and select data with SELECT * FROM
<collection-name>;. To exit sqlite3, type .exit. If you pass a user name to
the init method, the file is called <username>.sqlite. If you do not pass a
user name, the file is called jsonstore.sqlite by default.

5. Use the debugger.

Common issues

Understanding the following JSONStore characteristics can help resolve some of
the common issues that you might encounter.
v The only way to store binary data in JSONStore is to first encode it in base64.

Store file names or paths instead of the actual files in JSONStore.
v Accessing JSONStore data from native code is possible only in IBM MobileFirst

Platform Foundation for iOS V6.2.0.
v There is no limit on how much data you can store inside JSONStore, beyond

limits that are imposed by the mobile operating system.
v JSONStore provides persistent data storage. It is not only stored in memory.
v The init API fails when the collection name starts with a digit or symbol. IBM

Worklight V5.0.6.1 and later returns an appropriate error:
4 BAD_PARAMETER_EXPECTED_ALPHANUMERIC_STRING

v There is a difference between a number and an integer in search fields. Numeric
values like 1 and 2 are stored as 1.0 and 2.0 when the type is number. They are
stored as 1 and 2 when the type is integer.

v If an application is forced to stop or crashes, it always fails with error code -1
when the application is started again and the init or open API is called. If this
problem happens, call the closeAll API first.

v When you use JSONStore on a 64-bit device, you might see the following error:

Developing MobileFirst applications 8-169

java.lang.UnsatisfiedLinkError: dlopen failed: "..." is 32-bit instead of 64-bit

This error means that you have 64-bit native libraries in your Android project,
and JSONStore does not currently work when you use these libraries. To
confirm, go to src/main/libs or src/main/jniLibs under your Android project,
and check whether you have the x86_64 or arm64-v8a folders. If you do, delete
these folders, and JSONStore can work again.

Store internals
See an example of how JSONStore data is stored.

The key elements in this simplified example:
v _id is the unique identifier (for example, AUTO INCREMENT PRIMARY KEY).
v json contains an exact representation of the JSON object that is stored.
v name and age are search fields.
v key is an extra search field.

Example

Table 8-15. Contents of a store in JSONStore

_id key name age JSON

1 c carlos 99 {name: 'carlos',
age: 99}

2 t time 100 {name: 'tim', age:
100}

When you search by using one of the following queries or a combination of them:
{_id : 1}, {name: ’carlos’}, {age: 99}, {key: ’c’}, the returned document is
{_id: 1, json: {name: ’carlos’, age: 99} }.

The other internal JSONStore fields are:

_dirty
Determines whether the document was marked as dirty or not. This field is
useful to track changes to the documents. For more information, see
“JSONStore API concepts” on page 8-165 or “Work with external data” on page
8-181.

_deleted
Marks a document as deleted or not. This field is useful to remove objects
from the collection, to later use them to track changes with your backend and
decide whether to remove them or not.

_operation
A string that reflects the last operation to be performed on the document (for
example, replace).

JSONStore errors
Learn about JSONStore errors.

Possible JSONStore error codes that are returned are listed in “JSONStore error
codes” on page 8-171.

8-170 IBM MobileFirst Platform Foundation for iOS V7.0.0

Objective-C

All of the APIs that might fail take an error parameter that takes an address to an
NSError object. If you don not want to be notified of errors, you can pass in nil.
When an operation fails, the address is populated with an NSError, which has an
error and some potential userInfo. The userInfo might contain extra details (for
example, the document that caused the failure).

Example
// This NSError points to an error if one occurs.
NSError* error = nil;

// Perform the destroy.
[JSONStore destroyDataAndReturnError:&error];

JSONStore error codes
Definitions of the error codes that are related to JSONStore.

-100 UNKNOWN_FAILURE
Unrecognized error.

-75 OS_SECURITY_FAILURE
This error code is related to the requireOperatingSystemSecurity flag. It can
occur if the destroy API fails to remove security metadata that is protected by
operating system security (Touch ID with passcode fallback), or the init or
open APIs are unable to locate the security metadata. It can also fail if the
device does not support operating system security, but operating system
security usage was requested.

-50 PERSISTENT_STORE_NOT_OPEN
JSONStore is closed. Try calling the open method in the JSONStore class class
first to enable access to the store.

-48 TRANSACTION_FAILURE_DURING_ROLLBACK
There was a problem with rolling back the transaction.

-47 TRANSACTION_FAILURE_DURING_REMOVE_COLLECTION
Cannot call removeCollection while a transaction is in progress.

-46 TRANSACTION_FAILURE_DURING_DESTROY
Cannot call destroy while there are transactions in progress.

-45 TRANSACTION_FAILURE_DURING_CLOSE_ALL
Cannot call closeAll while there are transactions in place.

-44 TRANSACTION_FAILURE_DURING_INIT
Cannot initialize a store while there are transactions in progress.

-43 TRANSACTION_FAILURE
There was a problem with transactions.

-42 NO_TRANSACTION_IN_PROGRESS
Cannot commit to rolled back a transaction when there is no transaction is
progree.

-41 TRANSACTION_IN_POGRESS
Cannot start a new transaction while another transaction is in progress.

-40 FIPS_ENABLEMENT_FAILURE
Something is wrong with FIPS. See the tutorial on the Getting Started page.

-24 JSON_STORE_FILE_INFO_ERROR
Problem getting the file information from the file system.

Developing MobileFirst applications 8-171

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/

-23 JSON_STORE_REPLACE_DOCUMENTS_FAILURE
Problem replacing documents from a collection.

-22 JSON_STORE_REMOVE_WITH_QUERIES_FAILURE
Problem removing documents from a collection.

-21 JSON_STORE_STORE_DATA_PROTECTION_KEY_FAILURE
Problem storing the Data Protection Key (DPK).

-20 JSON_STORE_INVALID_JSON_STRUCTURE
Problem indexing input data.

-12 INVALID_SEARCH_FIELD_TYPES
Check that the types that you are passing to the searchFields are
stringinteger,number, orboolean.

-11 OPERATION_FAILED_ON_SPECIFIC_DOCUMENT
An operation on an array of documents, for example the replace method can
fail while it works with a specific document. The document that failed is
returned and the transaction is rolled back.

-10 ACCEPT_CONDITION_FAILED
The accept function that the user provided returned false.

-9 OFFSET_WITHOUT_LIMIT
To use offset, you must also specify a limit.

-8 INVALID_LIMIT_OR_OFFSET
Validation error, must be a positive integer.

-7 INVALID_USERNAME
Validation error (Must be [A-Z] or [a-z] or [0-9] only).

-6 USERNAME_MISMATCH_DETECTED
To log out, a JSONStore user must call the closeAll method first. There can be
only one user at a time.

-5 DESTROY_REMOVE_PERSISTENT_STORE_FAILED
A problem with the destroy method while it tried to delete the file that holds
the contents of the store.

-4 DESTROY_REMOVE_KEYS_FAILED
Problem with the destroy method while it tried to clear the keychain (iOS).

-3 INVALID_KEY_ON_PROVISION
Passed the wrong password to an encrypted store.

-2 PROVISION_TABLE_SEARCH_FIELDS_MISMATCH
Search fields are not dynamic. It is not possible to change search fields without
calling the destroy method or the removeCollection method before you call
the init or openmethod with the new search fields. This error can occur if you
change the name or type of the search field. For example: {key: ’string’} to
{key: ’number’} or {myKey: ’string’} to {theKey: ’string’}.

-1 PERSISTENT_STORE_FAILURE
Generic Error. A malfunction in native code, most likely calling the init
method.

0 SUCCESS
In some cases, JSONStore native code returns 0 to indicate success.

1 BAD_PARAMETER_EXPECTED_INT
Validation error.

8-172 IBM MobileFirst Platform Foundation for iOS V7.0.0

2 BAD_PARAMETER_EXPECTED_STRING
Validation error.

3 BAD_PARAMETER_EXPECTED_FUNCTION
Validation error.

4 BAD_PARAMETER_EXPECTED_ALPHANUMERIC_STRING
Validation error.

5 BAD_PARAMETER_EXPECTED_OBJECT
Validation error.

6 BAD_PARAMETER_EXPECTED_SIMPLE_OBJECT
Validation error.

7 BAD_PARAMETER_EXPECTED_DOCUMENT
Validation error.

8 FAILED_TO_GET_UNPUSHED_DOCUMENTS_FROM_DB
The query that selects all documents that are marked dirty failed. An example
in SQL of the query would be: SELECT * FROM [collection] WHERE _dirty > 0.

9 NO_ADAPTER_LINKED_TO_COLLECTION
To use functions like the push and load methods in the JSONStoreCollection
class, an adapter must be passed to the init method.

10 BAD_PARAMETER_EXPECTED_DOCUMENT_OR_ARRAY_OF_DOCUMENTS
Validation error

11
INVALID_PASSWORD_EXPECTED_ALPHANUMERIC_STRING_WITH_LENGTH_GREATER_THAN_ZERO

Validation error

12 ADAPTER_FAILURE
Problem calling WL.Client.invokeProcedure, specifically a problem in
connecting to the MobileFirst Server adapter. This error is different from a
failure in the adapter that tries to call a backend.

13 BAD_PARAMETER_EXPECTED_DOCUMENT_OR_ID
Validation error

14 CAN_NOT_REPLACE_DEFAULT_FUNCTIONS
Calling the enhance method in the JSONStoreCollection class to replace an
existing function (find and add) is not allowed.

15 COULD_NOT_MARK_DOCUMENT_PUSHED
Push sends the document to an adapter but JSONStore fails to mark the
document as not dirty.

16 COULD_NOT_GET_SECURE_KEY
To initiate a collection with a password there must be connectivity to the
MobileFirst Server because it returns a 'secure random token'. IBM Worklight
5.0.6 and later allows developers to generate the secure random token locally
passing {localKeyGen: true} to the init method via the options object.

17 FAILED_TO_LOAD_INITIAL_DATA_FROM_ADAPTER
Could not load data because WL.Client.invokeProcedure called the failure
callback.

18 FAILED_TO_LOAD_INITIAL_DATA_FROM_ADAPTER_INVALID_LOAD_OBJ
The load object that was passed to the init method did not pass the
validation.

Developing MobileFirst applications 8-173

19 INVALID_KEY_IN_LOAD_OBJECT
There is a problem with the key used in the load object when you call the add
method.

20 UNDEFINED_PUSH_OPERATION
No procedure is defined for pushing dirty documents to the server. For
example: the init method (new document is dirty, operation = 'add') and the
push method (finds the new document with operation = 'add') were called, but
no add key with the add procedure was found in the adapter that is linked to
the collection. Linking an adapter is done inside the init method.

21 INVALID_ADD_INDEX_KEY
Problem with extra search fields.

22 INVALID_SEARCH_FIELD
One of your search fields is invalid. Verify that none of the search fields that
are passed in are _id,json,_deleted, or _operation.

23 ERROR_CLOSING_ALL
Generic Error. An error occurred when native code called the closeAll method.

24 ERROR_CHANGING_PASSWORD
Unable to change the password. The old password passed was wrong, for
example.

25 ERROR_DURING_DESTROY
Generic Error. An error occurred when native code called the destroy method.

26 ERROR_CLEARING_COLLECTION
Generic Error. An error occurred in when native code called the
removeCollection method.

27 INVALID_PARAMETER_FOR_FIND_BY_ID
Validation error.

28 INVALID_SORT_OBJECT
The provided array for sorting is invalid because one of the JSON objects is
invalid. The correct syntax is an array of JSON objects, where each object
contains only a single property. This property searches the field with which to
sort, and whether it is ascending or descending. For example: {searchField1 :
“ASC”}.

29 INVALID_FILTER_ARRAY
The provided array for filtering the results is invalid. The correct syntax for
this array is an array of strings, in which each string is either a search field or
an internal JSONStore field. For more information, see “Store internals” on
page 8-170.

30 BAD_PARAMETER_EXPECTED_ARRAY_OF_OBJECTS
Validation error when the array is not an array of only JSON objects.

31 BAD_PARAMETER_EXPECTED_ARRAY_OF_CLEAN_DOCUMENTS
Validation error.

32 BAD_PARAMETER_WRONG_SEARCH_CRITERIA
Validation error.

JSONStore examples
Learn about how to get started with JSONStore examples.

Objective-C API examples
You can use JSONStore for MobileFirst applications.

8-174 IBM MobileFirst Platform Foundation for iOS V7.0.0

The following sections contain example implementations for iOS devices with
JSONStore APIs. Other helpful topics include:
v “JSONStore overview” on page 8-161 - Learn about key concepts.
v “JSONStore API concepts” on page 8-165 - Learn about general information

about the APIs that apply to all implementations of the JSONStore API.
v “Troubleshooting JSONStore” on page 8-168 - Learn how to debug and

understand possible errors.
v “JSONStore advanced topics” on page 8-178 - Learn about security, multiple user

support, performance, and concurrency.
v JSONStore Class Reference - Learn about JSONStore APIs for Objective-C.
v “Work with external data” on page 8-181 - Explains how to get data from an

external source and send changes back to the external source.

Initialize and open connections, get an Accessor, and add data
// Create the collections object that will be initialized.
JSONStoreCollection* people = [[JSONStoreCollection alloc] initWithName:@"people"];
[people setSearchField:@"name" withType:JSONStore_String];
[people setSearchField:@"age" withType:JSONStore_Integer];

// Optional options object.
JSONStoreOpenOptions* options = [JSONStoreOpenOptions new];
[options setUsername:@"carlos"]; //Optional username, default ’jsonstore’
[options setPassword:@"123"]; //Optional password, default no password

// This object will point to an error if one occurs.
NSError* error = nil;

// Open the collections.
[[JSONStore sharedInstance] openCollections:@[people] withOptions:options error:&error];

// Add data to the collection
NSArray* data = @[@{@"name" : @"carlos", @"age": @10}];
int newDocsAdded = [[people addData:data andMarkDirty:YES withOptions:nil error:&error] intValue];

Initialize with a secure random token from the server
[WLSecurityUtils getRandomStringFromServerWithBytes:32

timeout:1000
completionHandler:^(NSURLResponse *response,

NSData *data,
NSError *connectionError) {

// You might want to see the response and the connection error
// before moving forward.

// Get the secure random string by using the data that is
// returned from the generator on the server.
NSString* secureRandom = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

JSONStoreCollection* ppl = [[JSONStoreCollection alloc] initWithName:@"people"];
[ppl setSearchField:@"name" withType:JSONStore_String];
[ppl setSearchField:@"age" withType:JSONStore_Integer];

// Optional options object.
JSONStoreOptions* options = [JSONStoreOptions new];
[options setUsername:@"carlos"]; //Optional username, default ’jsonstore’
[options setPassword:@"123"]; //Optional password, default no password
[options setSecureRandom:secureRandom]; //Optional, default one will be generated locally

// This points to an error if one occurs.
NSError* error = nil;

[[JSONStore sharedInstance] openCollections:@[ppl] withOptions:options error:&error];

// Other JSONStore operations (e.g. add, remove, replace, etc.) go here.
}];

Developing MobileFirst applications 8-175

Find - locate documents inside the Store
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Add additional find options (optional).
JSONStoreQueryOptions* options = [JSONStoreQueryOptions new];
[options setLimit:@10]; // Returns a maximum of 10 documents, default no limit.
[options setOffset:@0]; // Skip 0 documents, default no offset.

// Search fields to return, default: [’_id’, ’json’].
[options filterSearchField:@"_id"];
[options filterSearchField:@"json"];

// How to sort the returned values , default no sort.
[options sortBySearchFieldAscending:@"name"];
[options sortBySearchFieldDescending:@"age"];

// Find all documents that match the query part.
JSONStoreQueryPart* queryPart1 = [[JSONStoreQueryPart alloc] init];
[queryPart1 searchField:@"name" equal:@"carlos"];
[queryPart1 searchField:@"age" lessOrEqualThan:@10];

NSArray* results = [people findWithQueryParts:@[queryPart1] andOptions:options error:&error];

// results = @[@{@"_id" : @1, @"json" : @{ @"name": @"carlos", @"age" : @10}}];

for (NSDictionary* result in results) {

NSString* name = [result valueForKeyPath:@"json.name"]; // carlos.
int age = [[result valueForKeyPath:@"json.age"] intValue]; // 10
NSLog(@"Name: %@, Age: %d", name, age);

}

Replace - change the documents that are already stored inside a
Collection
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// Find all documents that match the queries.
NSArray* docs = @[@{@"_id" : @1, @"json" : @{ @"name": @"carlitos", @"age" : @99}}];

// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the replacement.
int docsReplaced = [[people replaceDocuments:docs andMarkDirty:NO error:&error] intValue];

Remove - delete all documents that match the query
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Find document with _id equal to 1 and remove it.
int docsRemoved = [[people removeWithIds:@[@1] andMarkDirty:NO error:&error] intValue];

Count - gets the total number of documents that match a query
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// Count all documents that match the query.
// The default query is @{} which will
// count every document in the collection.
JSONStoreQueryPart *queryPart = [[JSONStoreQueryPart alloc] init];
[queryPart searchField:@"name" equal:@"carlos"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the count.
int countResult = [[people countWithQueryParts:@[queryPart] error:&error] intValue];

8-176 IBM MobileFirst Platform Foundation for iOS V7.0.0

Destroy - wipes data for all users, destroys the internal storage, and
clears security artifacts
// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the destroy.
[[JSONStore sharedInstance] destroyDataAndReturnError:&error];

Security - close access to all opened Collections for the current user
// This object will point to an error if one occurs.
NSError* error = nil;

// Close access to all collections in the store.
[[JSONStore sharedInstance] closeAllCollectionsAndReturnError:&error];

Security - change the password that is used to access a Store
// The password should be user input.
// It is hardcoded in the example for brevity.
NSString* oldPassword = @"123";
NSString* newPassword = @"456";
NSString* username = @"carlos";

// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the change password operation.
[[JSONStore sharedInstance] changeCurrentPassword:oldPassword withNewPassword:newPassword forUsername:username error:&error];

// Remove the passwords from memory.
oldPassword = nil;
newPassword = nil;

Push - get all documents that are marked as dirty, send them to a
MobileFirst adapter, and mark them clean
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs
NSError* error = nil;

// Return all documents marked dirty
NSArray* dirtyDocs = [people allDirtyAndReturnError:&error];

// ACTION REQUIRED: Handle the dirty documents here
// (e.g. send them to a MobileFirst Adapter).

// Mark dirty documents as clean
int numCleaned = [[people markDocumentsClean:dirtyDocs error:&error] intValue];

Pull - get new data from a MobileFirst adapter
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// ACTION REQUIRED: Get data (e.g. MobileFirst Adapter).
// For this example, it is hardcoded.
NSArray* data = @[@{@"id" : @1, @"ssn": @"111-22-3333", @"name": @"carlos"}];

int numChanged = [[people changeData:data withReplaceCriteria:@[@"id", @"ssn"] addNew:YES markDirty:NO error:&error] intValue];

Check whether a document is dirty
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Check if document with _id ’1’ is dirty.
BOOL isDirtyResult = [people isDirtyWithDocumentId:1 error:&error];

Developing MobileFirst applications 8-177

Check the number of dirty documents
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Check if document with _id ’1’ is dirty.
int dirtyDocsCount = [[people countAllDirtyDocumentsWithError:&error] intValue];

Remove a Collection
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Remove the collection.
[people removeCollectionWithError:&error];

Clear all data that is inside a Collection
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Remove the collection.
[people clearCollectionWithError:&error];

Start a transaction, add some data, remove a document, commit the
transaction and roll back the transaction if there is a failure
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// These objects will point to errors if they occur.
NSError* error = nil;
NSError* addError = nil;
NSError* removeError = nil;

// You can call every JSONStore API method inside a transaction except:
// open, destroy, removeCollection and closeAll.
[[JSONStore sharedInstance] startTransactionAndReturnError:&error];

[people addData:@[@{@"name" : @"carlos"}] andMarkDirty:NO withOptions:nil error:&addError];

[people removeWithIds:@[@1] andMarkDirty:NO error:&removeError];

if (addError != nil || removeError != nil) {

// Return the store to the state before start transaction was called.
[[JSONStore sharedInstance] rollbackTransactionAndReturnError:&error];

} else {
// Commit the transaction thus ensuring atomicity.
[[JSONStore sharedInstance] commitTransactionAndReturnError:&error];

}

Get file information
// This object will point to an error if one occurs
NSError* error = nil;

// Returns information about files JSONStore uses to persist data.
NSArray* results = [[JSONStore sharedInstance] fileInfoAndReturnError:&error];
// => [{@"isEncrypted" : @(true), @"name" : @"carlos", @"size" : @3072}]

JSONStore advanced topics
Learn about JSONStore advanced topics.

JSONStore security
You can secure all of the collections in a store by encrypting them.

To encrypt all of the collections in a store, pass a password to the open API.

8-178 IBM MobileFirst Platform Foundation for iOS V7.0.0

Some security artifacts (such as salt) are stored in the keychain. The store is
encrypted with a 256-bit Advanced Encryption Standard (AES) key. All keys are
strengthened with Password-Based Key Derivation Function 2 (PBKDF2).

You can choose to encrypt data collections for an application, but you cannot
switch between encrypted and plain-text formats, or to mix formats within a store.

The key that protects the data in the store is based on the user password that you
provide. The key does not expire, but you can change it by calling the
changePassword API.

The data protection key (DPK) is the key that is used to decrypt the contents of the
store. The DPK is kept in the iOS keychain even if the application is uninstalled. To
remove both the key in the keychain and everything else that JSONStore puts in
the application, use the destroy API.

The first time that JSONStore opens a collection with a password, which means
that the developer wants to encrypt data inside the store, JSONStore needs a
random token. That random token can be obtained from the client or from the
server.

The native iOS implementation generates a cryptographically secure token locally
by default, or you can pass one through the secureRandom option.

The trade-off is between opening a store offline and trusting the client to generate
that random token (less secure), or opening the store with access to the MobileFirst
Server (requires connectivity) and trusting the server (more secure).

JSONStore multiple user support
With JSONStore, you can create multiple stores that contain different collections in
a single MobileFirst application.

The open (Native iOS) API can take an options object with a user name. Different
stores are separate files in the file system. The user name is used as the file name
of the store. These separate stores can be encrypted with different passwords for
security and privacy reasons. Calling the closeAll API removes access to all the
collections. It is also possible to change the password of an encrypted store by
calling the changePassword API.

An example use case would be various employees that share a physical device (for
example an iPad) and MobileFirst application. In addition, if the employees work
different shifts and handle private data from different customers while they use the
MobileFirst application, multiple user support is useful.

JSONStore performance
Learn about the factors that can affect JSONStore performance.

Network
v Ideally, getting and sending data from and to a MobileFirst adapter should be

done when the application is using a WiFi network.
v Check network connectivity before you perform operations, such as sending all

dirty documents to a MobileFirst adapter.
v The amount of data that is sent over the network to a client heavily affects

performance. Send only the data that is required by the application, instead of
copying everything inside your backend database.

Developing MobileFirst applications 8-179

v If you are using a MobileFirst adapter, consider setting the compressResponse
flag to true. That way, responses are compressed, which generally uses less
bandwidth and has a faster transfer time than without compression.

Memory
v One way to mitigate possible memory issues is by using limit and offset when

you use the find API. That way, you limit the amount of memory that is
allocated for the results and can implement things like pagination (show X
number of results per page).

v Instead of using long key names that are eventually serialized and deserialized
as Strings, consider mapping those long key names into smaller ones (for
example:myVeryVeryVerLongKeyName to k or key). Ideally, you map them to short
key names when you send them from the adapter to the client, and map them to
the original long key names when you send data back to the backend.

v Consider splitting the data inside a store into various collections. Have small
documents over various collections instead of monolithic documents in a single
collection. This consideration depends on how closely related the data is and the
use cases for said data.

v When you use the add API with an array of objects, it is possible to run into
memory issues. To mitigate this issue, call these methods with fewer JSON
objects at a time.

v Allow Automatic Reference Counting to work, but do not depend on it entirely.

CPU
v The amount of search fields and extra search fields that are used affect

performance when you call the add method, which does the indexing. Only
index the values that are used in queries for the find method.

v By default, JSONStore tracks local changes to its documents. This behavior can
be disabled, thus saving a few cycles, by setting the markDirty flag to false
when you use the add, remove, and replace APIs.

v Enabling security adds some overhead to the open APIs and other operations
that work with documents inside the collection. Consider whether security is
genuinely required. For example, the open API is much slower with encryption
because it must generate the encryption keys that are used for encryption and
decryption.

v The replace and remove APIs depend on the collection size as they must go
through the whole collection to replace or remove all occurrences. Because it
must go through each record, it must decrypt every one of them, which makes it
much slower when encryption is used. This performance hit is more noticeable
on large collections.

v The count API is relatively expensive. However, you can keep a variable that
keeps the count for that collection. Update it every time that you store or
remove things from the collection.

v The find APIs (find, findAll, and findById) are affected by encryption, since
they must decrypt every document to see whether it is a match or not. For find
by query, if a limit is passed, it is potentially faster as it stops when it reaches
the limit of results. JSONStore does not need to decrypt the rest of the
documents to figure out if any other search results remain.

More information

For more information about JSONStore performance, see the JSONStore
performance blog post.

8-180 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://www.ibm.com/developerworks/community/blogs/worklight/entry/jsonstore_performance_breakdown
https://www.ibm.com/developerworks/community/blogs/worklight/entry/jsonstore_performance_breakdown

JSONStore concurrency
Learn about JSONStore concurrency.

Objective-C

When you use the Native iOS API for JSONStore, all operations are added to a
synchronous dispatch queue. This behavior ensures that operations that touch the
store are executed in order on a thread that is not the main thread. For more
information, see the Apple documentation at Grand Central Dispatch (GCD).

Work with external data
Learn about the different concepts that are required to work with external data.

For the actual API examples, see “JSONStore examples” on page 8-174.

Pull

Many systems use the term pull to refer to getting data from an external source.

There are three important pieces:

External Data Source
This source can be a database, a REST or SOAP API, or many others. The
only requirement is that it must be accessible from either the MobileFirst
Server or directly from the client application. Ideally, you want this source
to return data in JSON format.

Transport Layer
This source is how you get data from the external source into your internal
source, a JSONStore collection inside the store. One alternative is a
MobileFirst adapter.

Internal Data Source API
This source is the JSONStore APIs that you can use to add JSON data to a
collection.

Note: You can populate the internal store with data that is read from a file, an
input field, or hardcoded data in a variable. It does not have to come exclusively
from an external source that requires network communication.

Push

Many systems use the term push to refer to sending data to an external source.

There are three important pieces:

Internal Data Source API
This source is the JSONStore API that returns documents with local-only
changes (dirty).

Transport Layer
This source is how you want to contact the external data source to send
the changes.

External Data Source
This source is typically a database, REST or SOAP endpoint, among others,
that receives the updates that the client made to the data.

Developing MobileFirst applications 8-181

https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html#//apple_ref/c/func/dispatch_sync

Example push scenario

All of the following code examples are written in pseudocode that looks similar to
JavaScript.

Note: Use MobileFirst adapters for the Transport Layer. Some of the advantages of
using MobileFirst adapters are XML to JSON, security, filtering, and decoupling of
server-side code and client-side code.

Internal Data Source API: JSONStore
After you have an accessor to the collection, you can call the getAllDirty
API to get all documents that are marked as dirty. These documents have
local-only changes that you want to send to the external data source
through a transport layer.
var accessor = WL.JSONStore.get(’people’);

accessor.getAllDirty()

.then(function (dirtyDocs) {
// ...

});

The dirtyDocs argument looks like the following example:
[{_id: 1,

json: {id: 1, ssn: ’111-22-3333’, name: ’Carlos’},
_operation: ’add’,
_dirty: ’1395774961,12902’}]

The fields are:

_id
Internal field that JSONStore uses. Every document is assigned a
unique one.

json
The data that was stored.

_operation
The last operation that was performed on the document. Possible
values are add, store, replace, and remove.

_dirty
A time stamp that is stored as a number to represent when the
document was marked dirty.

Transport Layer: MobileFirst adapter
You can choose to send dirty documents to a MobileFirst adapter. Assume
that you have a people adapter that is defined with an updatePeople
procedure.
.then(function (dirtyDocs) {

return WL.Client.invokeProcedure({
adapter : ’people’,
procedure : ’updatePeople’,
parameters : [dirtyDocs]

});
})

.then(function (responseFromAdapter) {
// ...

})

8-182 IBM MobileFirst Platform Foundation for iOS V7.0.0

Note: You might want to take advantage of the compressResponse, timeout,
and other parameters that can be passed to the invokeProcedure API.
On the MobileFirst Server, the adapter has the updatePeople procedure,
which might look like the following example:
function updatePeople (dirtyDocs) {

var input = {
method : ’post’,
path : ’/people’,
body: {
contentType : ’application/json’,
content : JSON.stringify(dirtyDocs)

}
};

return WL.Server.invokeHttp(input);
}

Instead of relaying the output from the getAllDirty API on the client, you
might have to update the payload to match a format that is expected by
the backend. You might have to split the replacements, removals, and
inclusions into separate backend API calls.

Alternatively, you can iterate over the dirtyDocs array and check the
_operation field. Then, send replacements to one procedure, removals to
another procedure, and inclusions to another procedure. The previous
example sends all dirty documents in bulk to the MobileFirst adapter.
var len = dirtyDocs.length;
var arrayOfPromises = [];

while (len--) {

var currentDirtyDoc = dirtyDocs[len];

switch (currentDirtyDoc._operation) {

case ’add’:
case ’store’:

arrayOfPromises.push(WL.Client.invokeProcedure({
adapter : ’people’,
procedure : ’addPerson’,
parameters : [currentDirtyDoc]

}));

break;

case ’replace’:
case ’refresh’:

arrayOfPromises.push(WL.Client.invokeProcedure({
adapter : ’people’,
procedure : ’replacePerson’,
parameters : [currentDirtyDoc]

}));

break;

case ’remove’:
case ’erase’:

arrayOfPromises.push(WL.Client.invokeProcedure({
adapter : ’people’,
procedure : ’removePerson’,

Developing MobileFirst applications 8-183

parameters : [currentDirtyDoc]
}));

}
}

$.when.apply(this, arrayOfPromises)
.then(function () {

var len = arguments.length;

while (len--) {
// Look at the responses in arguments[len]

}
});

Alternatively, you can skip the MobileFirst adapter and contact the REST
endpoint directly.
.then(function (dirtyDocs) {

return $.ajax({
type: ’POST’,
url: ’http://example.org/updatePeople’,
data: dirtyDocs

});
})

.then(function (responseFromEndpoint) {
// ...

});

External Data Source: Backend REST endpoint
The backend accepts or rejects changes, and then relays a response back to
the client. After the client looks at the response, it can pass documents that
were updated to the markClean API.
.then(function (responseFromAdapter) {

if (responseFromAdapter is successful) {
WL.JSONStore.get(’people’).markClean(dirtyDocs);

}
})

.then(function () {
// ...

})

After documents are marked as clean, they do not show up in the output
from the getAllDirty API.

JSONStore security utilities
Learn about JSONStore security utilities.

JSONStore security utilities overview
The MobileFirst client-side API provides some security utilities to help protect your
user's data. Features like JSONStore are great if you want to protect JSON objects.
However, it is not recommended to store binary blobs in a JSONStore collection.

Instead, store binary data on the file system, and store the file paths and other
metadata inside a JSONStore collection. If you want to protect files like images,
you can encode them as base64 strings, encrypt it, and write the output to disk.
When it is time to decrypt the data, you can look up the metadata in a JSONStore
collection, read the encrypted data from the disk, and decrypt it using the
metadata that was stored. This metadata can include the key, salt, Initialization
Vector (IV), type of file, path to the file, and others.

8-184 IBM MobileFirst Platform Foundation for iOS V7.0.0

At a high level, the SecurityUtils API provides the following APIs:
v Key generation - Instead of passing a password directly to the encryption

function, this key generation function uses Password Based Key Derivation
Function v2 (PBKDF2) to generate a strong 256-bit key for the encryption API. It
takes a parameter for the number of iterations. The higher the number, the more
time it takes an attacker to brute force your key. Use a value of at least 10,000.
The salt must be unique and it helps ensure that attackers have a harder time
using existing hash information to attack your password. Use a length of 32
bytes.

v Encryption - Input is encrypted by using the Advanced Encryption Standard
(AES). The API takes a key that is generated with the key generation API.
Internally, it generates a secure IV, which is used to add randomization to the
first block cipher. Text is encrypted. If you want to encrypt an image or other
binary format, turn your binary into base64 text by using these APIs. This
encryption function returns an object with the following parts:
– ct (cipher text, which is also called the encrypted text)
– IV
– v (version, which allows the API to evolve while still being compatible with

an earlier version)
v Decryption - Takes the output from the encryption API as input, and decrypts

the cipher or encrypted text into plain text.
v Remote random string - Gets a random hex string by contacting a random

generator on the MobileFirst Server. The default value is 20 bytes, but you can
change the number up to 64 bytes.

v Local random string - Gets a random hex string by generating one locally, unlike
the remote random string API, which requires network access. The default value
is 32 bytes and there is not a maximum value. The operation time is
proportional to the number of bytes.

v Encode base64 - Takes a string and applies base64 encoding. Incurring a base64
encoding by the nature of the algorithm means that the size of the data is
increased by approximately 1.37 times the original size.

v Decode base64 - Takes a base64 encoded string and applies base64 decoding.

JSONStore security utilities setup
Ensure that you import the following files to use the JSONStore security utilities
APIs.

iOS
#import "WLSecurityUtils.h"

JSONStore security utilities examples
Learn about JSONStore security utilities examples.

JSONStore security utilities iOS examples:

Learn about JSONStore security utilities iOS examples.

Encryption and decryption
// User provided password, hardcoded only for simplicity.
NSString* password = @"HelloPassword";

// Random salt with recommended length.
NSString* salt = [WLSecurityUtils generateRandomStringWithBytes:32];

// Recomended number of iterations.
int iterations = 10000;

Developing MobileFirst applications 8-185

// Populated with an error if one occurs.
NSError* error = nil;

// Call that generates the key.
NSString* key = [WLSecurityUtils generateKeyWithPassword:password

andSalt:salt
andIterations:iterations
error:&error];

// Text that is encrypted.
NSString* originalString = @"My secret text";
NSDictionary* dict = [WLSecurityUtils encryptText:originalString

withKey:key
error:&error];

// Should return: ’My secret text’.
NSString* decryptedString = [WLSecurityUtils decryptWithKey:key

andDictionary:dict
error:&error];

Encode and decode base64
// Input string.
NSString* originalString = @"Hello world!";

// Encode to base64.
NSData* originalStringData = [originalString dataUsingEncoding:NSUTF8StringEncoding];
NSString* encodedString = [WLSecurityUtils base64StringFromData:originalStringData length:originalString.length];

// Should return: ’Hello world!’.
NSString* decodedString = [[NSString alloc] initWithData:[WLSecurityUtils base64DataFromString:encodedString] encoding:NSUTF8StringEncoding];

Get remote random
[WLSecurityUtils getRandomStringFromServerWithBytes:32

timeout:1000
completionHandler:^(NSURLResponse *response, NSData *data, NSError *connectionError) {

// You might want to see the response and the connection error before moving forward.

// Get the secure random string.
NSString* secureRandom = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

}];

Get local random
NSString* secureRandom = [WLSecurityUtils generateRandomStringWithBytes:32];

Storing mobile data in Cloudant
You can store data for your mobile application in a Cloudant database, which is an
advanced NoSQL database that is capable of handling a wide variety of data types,
such as JSON, full-text, and geospatial data. The SDK is available for Objective-C.

Cloudant benefits

Rapidly develop apps with a simple programming model
Use native iOS mobile APIs for offline synchronization, queries, and secure
integration.

Manage data anywhere, any time
Store data for the users of your app directly on their devices for offline
use. When their device comes online, replication can synchronize the
database from the local copy to the remote and local copies of the user’s
data.

Securely store and retrieve enterprise data
Use access controls to create public and private databases. You can restrict
access to a single user or you can provide shared access.

Scale horizontally and geographically
Cloudant scales to provide highly available data. Data is automatically
partitioned, clustered, and replicated.

8-186 IBM MobileFirst Platform Foundation for iOS V7.0.0

Options for using Cloudant

The MobileFirst Cloudant extensions are available if you are developing a native
iOS application in Swift or Objective-C.

With the SDK, you can store data for your mobile application locally on the device
and remotely in any Cloudant environment. The available options for a Cloudant
environment follow:
v IBM MobileFirst Platform Cloudant Data Layer Local Edition installation (single

node included)
v Cloudant.com database instance (separate charging and licensing)
v Cloudant NoSQL DB service on IBM Bluemix (separate charging and licensing)
v Cloudant Data Layer Local Edition installation (separate charging and licensing)

SDK options

Use the Cloudant Toolkit and IMFData SDKs in your mobile application to access
data in the Cloudant database.

Basic approach:Cloudant Toolkit SDK

With the basic approach, data access is directly to the Cloudant database on
cloudant.com. This database can either be without a security configuration, or you
can configure an API key.

The core functionality for working with Cloudant is in the Cloudant Toolkit and its
associated dependencies:

Cloudant Toolkit core functions

CloudantToolkit.framework
Dependencies: CDTDatastore, CloudantQueryObjc

With the Cloudant Toolkit SDK, you can perform the following data functions:
v Store native objects or document revisions.
v Store to both a remote database or to the device with the same APIs.
v Query data for local and remote databases.
v Replicate data between the local device and remote database for offline access

with Cloudant Sync.

Advanced approach: IMFData SDK

If you want to add more security to your mobile app, use the advanced approach.
In this scenario, you use the IMFData SDK and access is controlled by the
MobileFirst Data Proxy. The security is integrated with the OAuth security
capabilities in MobileFirst.

IMFData functions

IMFData.framework
Dependencies: CloudantSync.h,IMFData/IMFData.h,CloudantToolkit/
CloudantToolkit.h

For more information about setting up the IMFData SDK in your development
environment, see “Obtaining the IMFData SDK” on page 8-190.

Developing MobileFirst applications 8-187

Your code interacts with the authorization manager to obtain an OAuth token. This
token represents the mobile user that is interacting with Cloudant. For more
information, see “Configuring access to Cloudant.”

The Apache CouchDB security model is used, but the implementation is handled
by the SDK.

Cloudant versus JSONStore

You might consider using JSONStore instead of Cloudant in the following
scenarios:
v When you are storing data on the mobile device that needs to be encrypted.
v When you need to synchronize data between the device and the enterprise.
v When you are developing a hybrid application.

For more information about JSONStore, see “JSONStore” on page 8-161.

Configuring access to Cloudant
You can access Cloudant directly, or you can access Cloudant through the
MobileFirst Data Proxy that is integrated with the OAuth security capabilities in
MobileFirst.

About this task

Consider your options for security on your Cloudant database:

Public database - no security
If you are using a Cloudant database on cloudant.com, you can set up a
public database with no security in the Cloudant dashboard. You can then
use the APIs in the Cloudant Toolkit SDK in your mobile application.

Quick security setup
If you are using a Cloudant database on cloudant.com, you can set up
security with an API key. You can then use the Cloudant dashboard or
APIs in the Cloudant Toolkit SDK to configure permissions. For more
information, see “Configuring API keys.”

OAuth integration
For OAuth integration, you must first set up the MobileFirst Data Proxy.
To use OAuth integration, you must use the IMFData SDK. For more
information, see “Configuring OAuth security” on page 8-189.

Configuring API keys
Set up direct access to the Cloudant database on cloudant.com with an API key.

Procedure
1. Set up an API key.

To start developing with Cloudant directly, you must have appropriate
credentials. In development, you might use your Cloudant account user or
Cloudant Local admin user and password. However, setting up an API key is
preferred.
In the Cloudant dashboard, configure an API key and password. You can then
grant the appropriate permissions to the database that you are using in your
application. For more information, see Cloudant documentation: Authentication
and authorization.

8-188 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://cloudant.com/for-developers/faq/auth/
https://cloudant.com/for-developers/faq/auth/

2. Initialize a Cloudant remote database by embedding the API Key and password
in the URL for the remote database.
Remote URL database example for Cloudant:
https://<apikey>:<password>@myaccount.cloudant.com/<database>

Remote URL database example for MobileFirst Platform Cloudant Local:
http://<apikey>:<password>@mycloudantlocal.mycompany.com/<database>

This URL is referred to as the CLOUDANT_PROXY_URL when you initialize
the IMFData SDK.

Configuring OAuth security
Set up access with the OAuth capabilities and MobileFirst Data Proxy.

Before you begin

Install the MobileFirst Data Proxy. For more information, see “Installing and
configuring the MobileFirst Data Proxy” on page 6-153.

About this task

The MobileFirst Data Proxy is protected by the trust association interceptor (TAI).
All requests to the proxy require an OAuth token with a grant scope of cloudant
and an associated user identity.

Procedure
1. Obtain an OAuth token.

Add an authentication adapter to your MobileFirst project. For more
information, see Adapter-based authentication.
The realm for the adapter must either define the realm name as cloudant or
define a grantScope of cloudant.
<realm name="cloudant" loginModule="myUserAuthLoginModule">

<className>com.worklight.core.auth.ext.AdapterAuthenticator</className>
</realm>

<realm name="myUserAuthRealm" loginModule="myUserAuthLoginModule">
<className>com.worklight.core.auth.ext.AdapterAuthenticator</className>
<parameter name="grantScope" value="cloudant"/>

</realm>

If you already have a custom identity realm, you can also create a cloudant
realm that duplicates the existing definition and reuses the same authenticator:
<realms>

<realm loginModule="CustomAuthLoginModule" name="cloudant">
<className>com.worklight.integration.auth.AdapterAuthenticator</className>
<parameter name="login-function" value="CustomAuthAdapter.onAuthRequired"/>
<parameter name="logout-function" value="CustomAuthAdapter.onLogout"/>

</realm>

<realm loginModule="CustomAuthLoginModule" name="customIdentityRealm">
<className>com.worklight.integration.auth.AdapterAuthenticator</className>

<parameter name="login-function" value="CustomAuthAdapter.onAuthRequired"/>
<parameter name="logout-function" value="CustomAuthAdapter.onLogout"/>
</realm>

</realms>

<loginModules>
<loginModule name="CustomAuthLoginModule">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModules>

Developing MobileFirst applications 8-189

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/authentication-security/adapter-based-authentication/

2. Define and register a challenge handler that handles challenges to obtain the
cloudant scope. See the client-side examples that are described in the following
information: Adapter-based authentication.

3. To use the MobileFirst Data Proxy for security protection, you must use the
IMFData SDK.
For more information, see “Obtaining the IMFData SDK.”
When you initialize the IMFData SDK, you provide the URL of the MobileFirst
Data Proxy.
The databases that you create with the IMFDataManager API are primed with
the proxy URL. You can obtain an OAuth token with the cloudant scope
through coordination with the MobileFirst native authorization manager. This
token is then propagated on all requests to the MobileFirst Data Proxy.

Results

For more information about setting up and initializing the IMFData SDK, see
“Obtaining the IMFData SDK.”

Obtaining the IMFData SDK
To use the MobileFirst Cloudant extensions in your native mobile app, you must
set up the SDK in your iOS development environment.

Before you begin

You must have the URL of the Cloudant instance to which you are connecting.
This value is referred to as CLOUDANT_PROXY_URL. For more information, see
“Configuring access to Cloudant” on page 8-188.

Procedure

Pull the most recent frameworks with CocoaPods to add the SDK to your
application. An example Podfile is in the default MobileFirst Platform project
template.
1. Install CocoaPods with the following command in Terminal:

$ sudo gem install cocoapods

2. Enter the following command in Terminal to complete the setup of CocoaPods:

$ pod setup

3. Create a file that is called Podfile in your Xcode project folder. In that file, list
the SDK dependencies that you need. An example Podfile follows:

source ’https://github.com/CocoaPods/Specs.git’
platform :ios, ’7.0’
pod ’IMFDataLocal’, ’1.0.0’
pod ’CloudantToolkitLocal’, ’1.0.0’

This file is also in the default MobileFirst Platform project template in the
iOS-Cloudant-Data-Layer-SDK-Podfile file.

4. Go to your project folder and install the dependencies with the following
command:

8-190 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/authentication-security/adapter-based-authentication/

$ pod install

That command installs your dependencies and creates a new Xcode workspace.

Important: Ensure that you always open the new Xcode workspace, instead of
the original Xcode project file.

5. Add the import statement to your app.
Include the import statement in the relevant classes of your app. For a Swift
application, include the imports in your bridging header.
#import <CloudantToolkit/CloudantToolkit.h>
#import <CloudantSync.h>
#import <IMFData/IMFData.h>

6. Initialize the SDK.
// Initialize the IMFDataManager
IMFDataManager *manager = [IMFDataManager initializeWithUrl:CLOUDANT_PROXY_URL];

// Initialize the IMFDataManager
let manager:IMFDataManager = IMFDataManager.initializeWithUrl(CLOUDANT_PROXY_URL)

To determine the value for CLOUDANT_PROXY_URL:
v If you are using a Cloudant database on cloudant.com, use the URL of your

Cloudant instance.
v If you are using MobileFirst Data Proxy, the URL of the proxy is configured

during installation. The URL includes the context root that you defined, and
is /imf-data-proxy by default. For more information, see “Ant tasks for
installation of MobileFirst Data Proxy” on page 14-27

What to do next

After you initialize the data manager, you can start using data functions in your
app. A good place to start is at “Creating databases.”

Creating databases
Store a local copy of data on the client device and persist the data to Cloudant
periodically.

About this task

With the data manager APIs, you can create data objects that are pre-configured to
work with Cloudant.

Accessing local data stores
You can use a local data store to store data on the client device for fast access, even
when offline.

Procedure

To create Store objects to access a local database, supply a name for the data store.

Important: The database name must be in lower case.
//Get reference to data manager
IMFDataManager *manager = [IMFDataManager sharedInstance];
NSString *name = @"automobiledb";
NSError *error = nil;

Developing MobileFirst applications 8-191

//Create local store
CDTStore *store = [manager localStore:name error:&error];

//Get reference to data manager
let manager = IMFDataManager.sharedInstance()
let name = "automobiledb"

var error:NSError?
var store:CDTStore? = manager.localStore(name, error: &error)

Creating remote data stores

Procedure

To create remote Store objects, supply the data store name.
// Get reference to data manager
IMFDataManager *manager = [IMFDataManager sharedInstance];
NSString *name = @"automobiledb";

// Create remote store
[manager remoteStore:name completionHandler:^(CDTStore *createdStore, NSError *error) {

if(error){
// Handle error

}else{
CDTStore *store = createdStore;
NSLog(@"Successfully created store: %@", store.name);

}
}];

//Get reference to data manager
let manager = IMFDataManager.sharedInstance()
let name = "automobiledb"

// Create remote store
manager.remoteStore(name, completionHandler: { (createdStore:CDTStore!, error:NSError!) -> Void in

if nil != error {
//Handle error

} else {
var store:CDTStore = createdStore
println("Successfully created store: \(store.name)")

}
})

What to do next

If you configured both a local and remote data store, use replication to synchronize
the data between the device and Cloudant. For more information, see “Supporting
offline storage and synchronization” on page 8-201.

Setting user permissions
You can set user permissions on remote databases.

About this task

If you are using OAuth authentication, you can set user permissions on a remote
store with the data manager API. The user must be authenticated with IBM
MobileFirst Platform. For more information, see “Configuring OAuth security” on
page 8-189.

8-192 IBM MobileFirst Platform Foundation for iOS V7.0.0

Procedure

Set user permissions on the remote store.
// Get reference to data manager
IMFDataManager *manager = [IMFDataManager sharedInstance];

// Set permissions for current user on a store
[manager setCurrentUserPermissions: DB_ACCESS_GROUP_MEMBERS forStoreName: @"automobiledb" completionHander:^(BOOL success, NSError *error) {

if(error){
// Handle error

}else{
// setting permissions was successful

}
}];

// Get reference to data manager
let manager = IMFDataManager.sharedInstance()

// Set permissions for current user on a store
manager.setCurrentUserPermissions(DB_ACCESS_GROUP_ADMINS, forStoreName: name) { (success:Bool, error:NSError!) -> Void in

if nil != error {
// Handle error

} else {
// setting permissions was successful

}
}

Modeling data
Cloudant stores data as JSON documents. To store data as objects in your
application, use the included data object mapper class that maps native objects to
the underlying JSON document format.

About this task

The data object mapper serializes top-level properties on native objects that have
number, string, date, or primitive types. If you want to add serialization for a
property with an unsupported data type, you can create a custom property
serializer.

See the following sections for more information:
v “Modeling data for iOS apps”
v “Creating custom property serializers for iOS apps” on page 8-195

If the included data mapper does not provide all the required features for your
application, you can configure the store to use a custom class that conforms to the
object mapper protocol.

Modeling data for iOS apps
In iOS apps, the CDTDataObjectMapper class maps native objects to the
underlying JSON document format. When you create your data store with the
IMFDataManager API, a CDTDataObjectMapper is created automatically and is set
on the CDTStore object.

About this task

The CDTDataObjectMapper class mapping includes top level properties of the
following types: NSNumber, NSString, NSDate, and all primitive types.

Developing MobileFirst applications 8-193

Procedure
1. Create a class that supports the requirements of the CDTDataObjectMapper

class. The CDTDataObjectMapper class supports native objects that meet the
following requirements:
v Conform to the IMFDataObject protocol.
v Have the IMFDataObject protocol metadata property set on the class

interface.
v Extend NSObject.

The following Automobile class meets all the requirements. This class includes
the properties of any automobile, such as the manufactured year, make and
model and owner.

@interface Automobile : NSObject<CDTDataObject>

@property (strong, nonatomic, readwrite) CDTDataObjectMetadata *metadata;

@property NSInteger year;
@property NSString *model;
@property NSString *make;
@property Person *owner;

-(instancetype) initWithMake: (NSString*) make model: (NSString*) model year: (NSInteger) year;

@end
```

class Automobile: NSObject, CDTDataObject {

//Required by the IMFDataObject protocol
var metadata:CDTDataObjectMetadata?

var year:Int
var model:NSString
var make:NSString
var owner:Person?

init(make:String, model:String, year:Int) {
self.year = year
self.model = model
self.make = make

}

override convenience init() {
self.init(make:"", model:"",year:0)

}
}

2. Register the class and data type with the CDTDataObjectMapper.
// Using an existing store

CDTStore *store = existingStore;

[store.mapper setDataType:@"Automobile" forClassName:NSStringFromClass([Automobile class])];

// Use an existing store
let store:CDTStore = existingStore

store.mapper.setDataType("Automobile", forClassName: NSStringFromClass(Automobile.classForCoder()))

Results

CRUD operations that are run against the CDTStore class can use NSObjects
objects.

8-194 IBM MobileFirst Platform Foundation for iOS V7.0.0



Creating custom property serializers for iOS apps
The CDTDataObjectMapper serializes only top-level properties on an object that
have the data type NSNumber, NSString, NSDate, or primitive types. If you want
to add serialization for a property with an unsupported data type, you can create a
custom property serializer.

Procedure
1. Implement a class that conforms to the CDTPropertySerializer protocol.

The CDTPropertySerializer protocol provides the methods that are required to
convert between JSON values and native property values. The return value of
the propertyValueToJSONValue method must be a valid JSON object, according
to Objective-C standards. The Automobile class has a property of type Person.
The Person class is not a supported type for the CDTDataObjectMapper class.
The CDTDataObjectMapper class skips the owner property in the Automobile
class. The interface for the Person class follows:

@interface Person : NSObject

@property NSString *firstName;
@property NSString *lastName;

@end

class Person: NSObject {

var firstName:NSString = ""
var lastName:NSString = ""

}

To serialize the owner property of theAutomobile class, add
aCDTPropertySerializer class to the CDTDataObjectMapper. The following code
snippet implements a custom serializer for Person objects. The PersonSerializer
conforms to the CDTPropertySerializerprotocol.

@interface PersonSerializer : NSObject<CDTPropertySerializer>

@end

@implementation PersonSerializer

-(id) propertyValueToJSONValue: (id) propertyValue error: (NSError**) error
{

if(propertyValue && [propertyValue isKindOfClass:[Person class]]){
Person *person = (Person*)propertyValue;

NSMutableDictionary *personMap = [NSMutableDictionary dictionary];
[personMap setObject:person.firstName forKey:@"firstName"];
[personMap setObject:person.lastName forKey:@"lastName"];
return personMap;

}else{
return nil;

}
}

-(id) jsonValueToPropertyValue: (id) jsonValue error: (NSError**) error
{

if(jsonValue && [jsonValue isKindOfClass:[NSDictionary class]]){
NSDictionary *personMap = (NSDictionary*)jsonValue;

Person *person = [[Person alloc]init];
person.firstName = [personMap objectForKey:@"firstName"];
person.lastName = [personMap objectForKey:@"lastName"];
return person;

}else{

Developing MobileFirst applications 8-195



return nil;
}

}

@end

class PersonSerializer: NSObject,CDTPropertySerializer {
func propertyValueToJSONValue(propertyValue: AnyObject!, error: NSErrorPointer) -> AnyObject! {

if let person = propertyValue as? Person {
var personMap = ["firstName":person.firstName, "lastName":person.lastName]
return personMap

} else {
return nil

}
}

func jsonValueToPropertyValue(jsonValue: AnyObject!, error: NSErrorPointer) -> AnyObject! {
if let personMap = jsonValue as? NSDictionary {

var person:Person = Person()
person.firstName = personMap["firstName"] as! NSString
person.lastName = personMap["lastName"] as! NSString

return person
} else {

return nil
}

}
}

2. Add the PersonSerializer class to the custom property serializers for the
CDTDataObjectMapper class.

// Using an existing store
CDTStore *store = existingStore;

// The ObjectMapper must be a DataObjectMapper instance or a subclass
CDTDataObjectMapper *mapper = (CDTDataObjectMapper*) store.mapper;
[mapper setPropertySerializer: [[PersonSerializer alloc] init] forClassName:NSStringFromClass([Person class])
withDataType:@"Person"];

// Using an existing store
let store:CDTStore = existingStore

// The ObjectMapper must be a DataObjectMapper instance or a subclass
var mapper:CDTDataObjectMapper = store.mapper as! CDTDataObjectMapper
mapper.setPropertySerializer(PersonSerializer(), forClassName: NSStringFromClass(Person.classForCoder()),
withDataType: "Person")

Performing CRUD operations
You can modify the content of a data store.

About this task

You can save, delete, and fetch objects from the data store. To create a persisted
object, an object mapper must be set and the data type must be registered. All code
snippets that use the Automobile class must first register the data type with the
object mapper. For more information, see “Modeling data” on page 8-193.

Creating data
You can save new objects and save changes to existing objects. Use the same
operation for both new and existing objects.

Procedure

Save an object.

8-196 IBM MobileFirst Platform Foundation for iOS V7.0.0



// Use an existing store
CDTStore *store = existingStore;

// Create your Automobile to save
Automobile *automobile = [[Automobile alloc] initWithMake:@"Toyota" model:@"Corolla" year: 2006];

[store save:automobile completionHandler:^(id savedObject, NSError *error) {
if (error) {

// save was not successful, handler received an error
} else {

// use the result
Automobile *savedAutomobile = savedObject;
NSLog(@"saved revision: %@", savedAutomobile);

}
}];

// Use an existing store
let store:CDTStore = existingStore

// Create your object to save
let automobile = Automobile(make: "Toyota", model: "Corolla", year: 2006)

store.save(automobile, completionHandler: { (savedObject:AnyObject!, error:NSError!) -> Void in
if nil != error {

//Save was not successful, handler received an error
} else {

// Use the result
println("Saved revision: \(savedObject)")

}
})

Reading data
You can fetch an object.

Procedure

Read objects.
CDTStore *store = existingStore;
NSString *automobileId = existingAutomobileId;

// Fetch Autombile from Store
[store fetchById:automobileId completionHandler:^(id object, NSError *error) {

if (error) {
// fetch was not successful, handler received an error

} else {
// use the result
Automobile *savedAutomobile = object;
NSLog(@"fetched automobile: %@", savedAutomobile);

}
}];

// Using an existing store and Automobile
let store:CDTStore = existingStore
let automobileId:String = existingAutomobileId

// Fetch Autombile from Store
store.fetchById(automobileId, completionHandler: { (object:AnyObject!, error:NSError!) -> Void in

if nil != error {
// Fetch was not successful, handler received an error

} else {
// Use the result
var savedAutomobile:Automobile = object as! Automobile
println("Fetched automobile: \(savedAutomobile)")

}
})

Developing MobileFirst applications 8-197



Updating data
To update an object, run a save on an existing object. Because the item already
exists, it is updated.

Procedure

Update objects.
// Use an existing store and Automobile
CDTStore *store = existingStore;
Automobile *automobile = existingAutomobile;

// Update some of the values in the Automobile
automobile.year = 2015;

// Save Autombile to the store
[store save:automobile completionHandler:^(id savedObject, NSError *error) {

if (error) {
// sasve was not successful, handler received an error

} else {
// use the result
Automobile *savedAutomobile = savedObject;
NSLog(@"saved automobile: %@", savedAutomobile);

}
}];

// Use an existing store and Automobile
let store:CDTStore = existingStore
let automobile:Automobile = existingAutomobile

// Update some of the values in the Automobile
automobile.year = 2015

// Save Autombile to the store
store.save(automobile, completionHandler: { (savedObject:AnyObject!, error:NSError!) -> Void in

if nil != error {
// Update was not successful, handler received an error

} else {
// Use the result
let savedAutomobile:Automobile = savedObject as! Automobile
println("Updated automobile: \(savedAutomobile)")

}

Deleting data
To delete an object, pass the object to the - delete:completionHandler method.

Procedure

Delete objects. To delete an object, pass the object that you want to delete to the
store.

// Using an existing store and Automobile
CDTStore *store = existingStore;
Automobile *automobile = existingAutomobile;

// Delete the Automobile object from the store
[store delete:automobile completionHandler:^(NSString *deletedObjectId, NSString *deletedRevisionId, NSError *error) {

if (error) {
// delete was not successful, handler received an error

} else {
// use the result
NSLog(@"deleted Automobile doc-%@-rev-%@", deletedObjectId, deletedRevisionId);

}
}];

8-198 IBM MobileFirst Platform Foundation for iOS V7.0.0



// Using an existing store and Automobile
let store:CDTStore = existingStore
let automobile:Automobile = existingAutomobile

// Delete the Automobile object
store.delete(automobile, completionHandler: { (deletedObjectId:String!, deletedRevisionId:String!, error:NSError!)

-> Void in
if nil != error {

// delete was not successful, handler received an error
} else {

// use the result
println("deleted document doc-\(deletedObjectId)-rev-\(deletedRevisionId)")

}
})

Creating indexes
To perform queries, you must create an index.

About this task

You can create indexes for local and remote data stores with the same methods.

Procedure
v Create an index that includes the data type. Indexing with the data type is

useful when an object mapper is set on the data store.
// Use an existing store

CDTStore *store = existingStore;

// The data type to use for the Automobile class
NSString *dataType = [store.mapper dataTypeForClassName:NSStringFromClass([Automobile class])];

// Create the index
[store createIndexWithDataType:dataType fields:@[@"year", @"make"] completionHandler:^(NSError *error) {

if(error){
// Handle error

}else{
// Continue application flow

}
}];

// A store that has been previously created.
let store:CDTStore = existingStore

// The data type to use for the Automobile class
let dataType:String = store.mapper.dataTypeForClassName(NSStringFromClass(Automobile.classForCoder()))

// Create the index
store.createIndexWithDataType(dataType, fields: ["year","make"]) { (error:NSError!) -> Void in

if nil != error {
// Handle error

} else {
// Continue application flow

}
}

v Delete indexes.
// Use an existing store
CDTStore *store = existingStore;
NSString *indexName = existingIndexName;

// Delete the index
[store deleteIndexWithName:indexName completionHandler:^(NSError *error) {

if(error){
// Handle error

Developing MobileFirst applications 8-199



}else{
// Continue application flow

}
}];

// Use an existing store
let store:CDTStore = existingStore
let indexName:String = existingIndexName

// Delete the index
store.deleteIndexWithName(indexName, completionHandler: { (error:NSError!) -> Void in

if nil != error {
// Handle error

} else {
// Continue application flow

}
})

v Delete a data type index:
// Use an existing store
CDTStore *store = existingStore;

// The data type to use for the Automobile class
NSString *dataType = [store.mapper dataTypeForClassName:NSStringFromClass([Automobile class])];

// Delete the index
[store deleteIndexWithDataType:dataType completionHandler:^(NSError *error) {

if(error){
// Handle error

}else{
// Continue application flow

}
}];

// Use an existing store
let store:CDTStore = existingStore

// The data type to use for the Automobile class
let dataType:String = store.mapper.dataTypeForClassName(NSStringFromClass(Automobile.classForCoder()))

// Delete the index
store.deleteIndexWithDataType(dataType, completionHandler: { (error:NSError!) -> Void in

if nil != error {
// Handle error

} else {
// Continue application flow

}
})

Querying data
You can query for objects that have an object mapper.

Before you begin

The Cloudant Toolkit SDK includes a default object mapper. For more information,
see “Modeling data” on page 8-193.

Procedure

Create and run a query.
The Cloudant query API provides convenience methods for querying with
NSPredicate and for querying by data type.
Create an NSPredicate with the query predicate and then run the query against a
CDTStore object.

8-200 IBM MobileFirst Platform Foundation for iOS V7.0.0



// Use an existing store
CDTStore *store = existingStore;

NSPredicate *queryPredicate = [NSPredicate predicateWithFormat:@"(year = 2006)"];
CDTCloudantQuery *query = [[CDTCloudantQuery alloc]
initDataType:[store.mapper dataTypeForClassName:NSStringFromClass([Automobile class])] withPredicate:queryPredicate];

[store performQuery:query completionHandler:^(NSArray *results, NSError *error) {
if(error){

// Handle error
}else{

// Use result of query. Result will be Automobile objects.
}

}];

// Use an existing store
let store:CDTStore = existingStore

let queryPredicate:NSPredicate = NSPredicate(format:"(year = 2006)")
let query:CDTCloudantQuery = CDTCloudantQuery(dataType: "Automobile", withPredicate: queryPredicate)

store.performQuery(query, completionHandler: { (results:[AnyObject]!, error:NSError!) -> Void in
if nil != error {

// Handle error
} else {

// Use result of query. Result will be Automobile objects.
}

})

Supporting offline storage and synchronization
You can synchronize the data on a mobile device with a remote database instance.
You can either pull updates from a remote database to the local database on the
mobile device, or push local database updates to a remote database.

About this task

With the data manager API, you can generate replication objects to control
replications between a local store and a remote store.

When you run pull replication, the local database on the mobile device is updated
with data from a remote database instance.

When you run push replication, the data from the local database on the mobile
device sends data to a remote database.

Running pull replication
Procedure

Run pull replication.
// store is an existing CDTStore object created using IMFDataManager remoteStore
__block NSError *replicationError;
CDTPullReplication *pull = [manager pullReplicationForStore: store.name];
CDTReplicator *replicator = [manager.replicatorFactory oneWay:pull error:&replicationError];
if(replicationError){

// Handle error
}else{

// replicator creation was successful
}

[replicator startWithError:&replicationError];
if(replicationError){

// Handle error
}else{

Developing MobileFirst applications 8-201



// replicator start was successful
}

// (optionally) monitor replication via polling
while (replicator.isActive) {

[NSThread sleepForTimeInterval:1.0f];
NSLog(@"replicator state : %@", [CDTReplicator stringForReplicatorState:replicator.state]);

}

// Use an existing store
let store:CDTStore = existingStore

// store is an existing CDTStore object created using IMFDataManager remoteStore
var replicationError:NSError?
let pull:CDTPullReplication = manager.pullReplicationForStore(store.name)
let replicator:CDTReplicator = manager.replicatorFactory.oneWay(pull, error: &replicationError)
if nil != replicationError {

// Handle error
} else {

// replicator creation was successful
}

replicator.startWithError(&replicationError)
if nil != replicationError {

// Handle error
}else{

// replicator start was successful
}

// (optionally) monitor replication via polling
while replicator.isActive() {

NSThread.sleepForTimeInterval(1.0)
println("replicator state : \(CDTReplicator.stringForReplicatorState(replicator.state))")

}

Running push replication
Procedure

Run push replication.
// store is an existing CDTStore object created using IMFDataManager localStore
__block NSError *replicationError;
CDTPushReplication *push = [manager pushReplicationForStore: store.name];
CDTReplicator *replicator = [manager.replicatorFactory oneWay:push error:&replicationError];
if(replicationError){

// Handle error
}else{

// replicator creation was successful
}

[replicator startWithError:&replicationError];
if(replicationError){

// Handle error
}else{

// replicator start was successful
}

// (optionally) monitor replication via polling
while (replicator.isActive) {

[NSThread sleepForTimeInterval:1.0f];
NSLog(@"replicator state : %@", [CDTReplicator stringForReplicatorState:replicator.state]);

}

// Use an existing store
let store:CDTStore = existingStore

// store is an existing CDTStore object created using IMFDataManager localStore
var replicationError:NSError?

8-202 IBM MobileFirst Platform Foundation for iOS V7.0.0



let push:CDTPushReplication = manager.pushReplicationForStore(store.name)
let replicator:CDTReplicator = manager.replicatorFactory.oneWay(push, error: &replicationError)
if nil != replicationError {

// Handle error
} else {

// replicator creation was successful
}

replicator.startWithError(&replicationError)
if nil != replicationError {

// Handle error
} else {

// replicator start was successful
}

// (optionally) monitor replication via polling
while replicator.isActive() {

NSThread.sleepForTimeInterval(1.0)
println("replicator state : \(CDTReplicator.stringForReplicatorState(replicator.state))")

}

Push notification
Push notification is the ability of a mobile device to receive messages that are
pushed from a server. The most common form of notification is SMS (Short
Message Service). Notifications are received regardless of whether the application
is currently running.

Notifications can take several forms, and are platform-dependent:
v Alert: a pop-up text message
v Badge, Tile: a graphical representation that includes a short text or image
v Banner, Toast: a pop-up text message at the top of the device display that

disappears after it has been read
v Audio alert

The MobileFirst unified push notification mechanism enables the sending of mobile
notifications to mobile phones. Notifications are sent through the vendor
infrastructure. For example, iPhone notifications are sent from the MobileFirst
Server to specialized Apple servers, and from there to the relevant phones. The
unified push notification mechanism in IBM MobileFirst Platform Foundation for
iOS makes the entire process of communicating with the users and devices
completely transparent to the developer.

Developing MobileFirst applications 8-203



iOS apps use the Apple Push Notification Service (APNS). For more information
about setting up push notification, see “Setting up push notifications” on page
8-206.

Proxy settings

Use the proxy settings to set the optional proxy through which notifications are
sent to APNS. You can set the proxy by using the push.apns.proxy.* configuration
properties. For more information, see “Configuration of MobileFirst applications on
the server” on page 10-48.

Architecture

Unlike other IBM MobileFirst Platform Foundation for iOS services, the push
server requires outbound connections to Apple server using port that is defined by
Apple.

For more information, see “Possible MobileFirst push notification architectures.”

Possible MobileFirst push notification architectures
IBM MobileFirst Platform Foundation for iOS supports two different methods of
implementing push notifications, which are based on how the enterprise back end
provides the messages to the MobileFirst Server.

Two common ways exist to create an IBM MobileFirst Platform Foundation for iOS
push notification architecture:
v The Java Message Service (JMS) polling method, in which messages are pulled

from the JMS message queue and sent by the MobileFirst Server
v The enterprise back end method, in which an enterprise back end uses a

MobileFirst adapter to deliver messages to a MobileFirst Server cluster

JMS polling architecture

This architecture relies on the enterprise backend to deliver messages to a single
instance of MobileFirst Server by using a JMS message queue. The developer must

Figure 8-21. Push notification mechanism

8-204 IBM MobileFirst Platform Foundation for iOS V7.0.0



create an IBM MobileFirst Platform Foundation for iOS JMS adapter, which pulls
messages from the queue and calls the IBM MobileFirst Platform Foundation for
iOS server-side push notification API to process the messages.

When this architecture is used, the flow is as follows:
1. Messages are put into the JMS queue by the enterprise backend.
2. The MobileFirst Server polls the JMS queue by using the JMS adapter,

retrieving messages in short batches and sending them to the push providers.
3. A single MobileFirst Server instance pulls from the JMS queue and sends the

push notifications. Even in a MobileFirst Server cluster, only one MobileFirst
Server polls.

4. The process is implemented by using a MobileFirst JMS adapter, which
functions as follows:
v In a MobileFirst Server cluster, the single polling MobileFirst Server is

selected randomly, by using the IBM MobileFirst Platform Foundation for
iOS cluster-sync mechanism.

v If the server that pulls from the JMS queue is shut down, another server
takes its place.

This is the standard architecture. Pros of this method are that it involves an
asynchronous queue, into which you can put the messages that you want to send.
These messages are then processed and pulled later by the MobileFirst Server. Cons
of this method are that only one server is sending the push notifications, so the
maximum messages-per-second throughput is fixed.

Enterprise backend calling the MobileFirst Server architecture

This architecture relies on the enterprise backend to deliver messages to a
MobileFirst Server cluster by calling a MobileFirst adapter procedure.

Figure 8-22. JMS polling push notification architecture

Developing MobileFirst applications 8-205



When this architecture is used, the flow is as follows:
1. The request is routed to one of the MobileFirst Server instances, which sends a

push message to a provider.
2. In this flow, all MobileFirst Server instances can send push notifications, but for

a specific request only one of the server instances performs the task.
3. The enterprise backend initiates calls to the load balancer.

Pros of this method are that all MobileFirst Server can be used to send push
notifications, so you can add more servers if you must send more messages per
second. Cons of this method are that every push message is a transaction on the
MobileFirst Server. You can mitigate this overhead by sending a number of
messages together or by having the MobileFirst adapter procedure that is invoked
call the backend for a batch of messages rather than single messages.

Setting up push notifications
You can send push notifications to mobile devices via the MobileFirst Server.

Setting up push notifications for iOS
To set up push notifications for iOS devices, you must use the Apple Push
Notification Service (APNS). To use APNS, you must be a registered Apple iOS
Developer and obtain an Apple APNS certificate for your application.

Before you begin

Ensure that the following servers are accessible from MobileFirst Server:
v Sandbox servers:

– gateway.sandbox.push.apple.com:2195
– feedback.sandbox.push.apple.com:2196

v Production servers:

Figure 8-23. Enterprise backend push notification architecture

8-206 IBM MobileFirst Platform Foundation for iOS V7.0.0



– gateway.push.apple.com:2195
– feedback.push.apple.com:2196

Procedure
1. Follow the required steps to obtain your APNS certificate and password. For

more information, see the developerWorks article Understanding and setting up
artifacts required to use iOS devices and APNS in a development environment.

2. Place the Apple APNS certificate file at the root of the application folder, in
which the application-descriptor.xml file is held.

3. Install the Entrust CA root certificate by using SSL port 443.
While you work in development mode, rename your certificate file to
apns-certificate-sandbox.p12. When you move to production, rename your
certificate file to apns-certificate-production.p12. In both cases, place the
certificate file in the environment root folder or in the application root folder.
When the hybrid application has both iPhone and iPad environments, separate
certificates are necessary for push notification. In that case, place those
certificates in the corresponding environment folders.

Note: The environment root folder takes the highest priority.
For more information, see the iOS Developer Library.

4. In the application-descriptor.xml file, for <iPhone> set the following
attributes for the <pushSender> element:

Attribute Description

password The APNS certificate password received
from Apple.

Results

Your push notification setup is now complete.

Broadcast notifications
Broadcast notifications are notification messages that are targeted to all the devices
that have the MobileFirst application installed and configured for push
notifications.

Broadcast notifications are enabled by default with any MobileFirst application that
is enabled for push notification. For more information about configuring your
application for push notifications, see “Setting up push notifications” on page
8-206.

Any MobileFirst application that is enabled for push notification has a predefined
subscription to the Push.ALL tag, which is used by MobileFirst Server to broadcast
notification messages to all the devices. To disable broadcast notification for iOS
native app, use unsubscribeTag method of WLPush class, with the tag name
Push.ALL.

For more information about sending broadcast notification, see “Broadcast
notification” on page 8-214 section in “Sending push notifications” on page 8-214.

Developing MobileFirst applications 8-207

https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en
https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html


Event source-based notifications
Event source-based notifications are notification messages that are targeted to
devices with a user subscription.

An event source can either poll notifications from the backend system, or wait for
the backend system to explicitly push a new notification. The process of the event
source-based notifications is as follows: :
1. Notifications are retrieved by the MobileFirst adapter event source, either by

poll or by push from the backend system.
2. The adapter processes the notification and sends it to an Apple push service

mediator.
3. The push service mediator sends a push notification to the device.
4. The device processes the received notification.

To start receiving push notifications, an application must subscribe to an event
source. The event source is a push notification channel to which mobile
applications can register. You can create an event source by declaring a notification
event source in the MobileFirst adapter JavaScript code at a global level, outside
any JavaScript function. For example,
WL.Server.createEventSource({

name: ’PushEventSource’,
onDeviceSubscribe: ’deviceSubscribeFunc’,
onDeviceUnsubscribe: ’deviceUnsubscribeFunc’,
securityTest:’PushApplication-strong-mobile-securityTest’

});

For more information about createEventSource method, see WL.Server class.

After the creation of the event source, you can proceed with the push notification
subscriptions that is described in “Subscribing to an event source.”

For more information about sending event source-based notification, see Event
source-based notification section in “Sending push notifications” on page 8-214.

Subscribing to an event source
Before a device can start receiving push notifications, it must first subscribe to a
push notification event source. When the user approves the push notification
subscription, the device is registered with an appropriate push server.

About this task

There are two levels of subscription: user subscription and device subscription.
v User subscription is an entity that contains a user ID, a device ID, and an event

source ID. It represents the intent of the user to receive notification from a
specific event source.

v A device subscription belongs to a user subscription, and exists in the scope of a
specific user and event source. A user subscription can have several device
subscriptions.

The user subscription for an event source is created when the user first subscribes
to the event source from any device. The event source is declared in the
MobileFirst adapter that is used by the application for push notification services.

After the user approves a push notification subscription, the device is registered
with an Apple push server to obtain a token that is used to identify the device.

8-208 IBM MobileFirst Platform Foundation for iOS V7.0.0



The token is in the following form: Allow notifications for application X on
device Y. The device then sends a subscription request to the MobileFirst Server.

For iOS native application, use the methods of WLPush class.

Procedure
1. When the application first connects to the MobileFirst Server from the device,

the device registers with a push service mediator and obtains a device token.
This process is done automatically by IBM MobileFirst Platform Foundation for
iOS.

2. When the token is obtained, the onReadyToSubscribe callback function that is
defined in the application is notified that a device is ready to subscribe to push
notifications.

3. After the onReadyToSubscribe callback is notified, the application subscribes to
a tag by using the subscribe API.

4. Optional: If push notifications are no longer required, you can unsubscribe. The
device subscription is deleted either by an application that calls the
unsubscribe API, or when the push mediator informs the MobileFirst Server
that the device is permanently inaccessible.

Results

While the user subscription exists, the MobileFirst Server can produce push
notifications for the subscribed user.

What to do next

The event source-based notifications can be delivered by the adapter code to all or
some of the devices that the user subscribed from. For more information, see Event
source-based notification section in “Sending push notifications” on page 8-214.

Interactive notifications
Interactive notifications allow the users to take actions when a notification is
arrived without opening the application. When an interactive notification arrived,
the device shows the action buttons along with the notification message. Currently,
the interactive notifications are supported on iOS devices with version 8 onwards.
If an interactive notification is sent to iOS devices with version lesser than 8, the
notification actions are not displayed.

Sending interactive push notification

Prepare the notification and send notification. For more information, see “Sending
push notifications” on page 8-214.

You can set a string to indicate the category of notification with the notification
object. Based on the category value, the notification action buttons are displayed.

To set the category in event source notifications, there are two options:
v Create notification JSON object and set category in that object:

var notification = { badge:1, category: ’poll’, ....};

v Create notification object by using the WL.Server.createDefaultNotification API
and set category on the notification object:
notification.APNS.category= ’poll’;

Developing MobileFirst applications 8-209



For more information, see the WL.Server.createDefaultNotification and
WL.Server.notifyAllDevices APIs in WL.Server class.

In Broadcast, Tag-based and Uni-cast notifications set the type while you create the
notification object:
notification.settings.apns.category = ’poll’;

For more information, see the WL.Server.sendMessage API in WL.Server class.

Handling interactive push notifications in native iOS application

You must follow these steps to receive interactive notifications:
1. Enable the application capability to perform background tasks on receiving the

remote notifications. This step is required if some of the actions are
background-enabled.

2. In the AppDelegate (application:
didRegisterForRemoteNotificationsWithDeviceTokenapplication:), set the
categories before you set the deviceToken on WLPush Object.

if([application respondsToSelector:@selector(registerUserNotificationSettings:)]){
UIUserNotificationType userNotificationTypes = UIUserNotificationTypeNone | UIUserNotificationTypeSound |

UIUserNotificationTypeAlert | UIUserNotificationTypeBadge;

UIMutableUserNotificationAction *acceptAction = [[UIMutableUserNotificationAction alloc] init];
acceptAction.identifier = @"OK";
acceptAction.title = @"OK";

UIMutableUserNotificationAction *rejetAction = [[UIMutableUserNotificationAction alloc] init];
rejetAction.identifier = @"NOK";
rejetAction.title = @"NOK";

UIMutableUserNotificationCategory *cateogory = [[UIMutableUserNotificationCategory alloc] init];
cateogory.identifier = @"poll";
[cateogory setActions:@[acceptAction,rejetAction] forContext:UIUserNotificationActionContextDefault];
[cateogory setActions:@[acceptAction,rejetAction] forContext:UIUserNotificationActionContextMinimal];

NSSet *catgories = [NSSet setWithObject:cateogory];
[application registerUserNotificationSettings:[UIUserNotificationSettings settingsForTypes:userNotificationTypes

categories:catgories]];
}

3. Implement new callback method on AppDelegate:
-(void)application:(UIApplication *)application handleActionWithIdentifier:(NSString *)identifier
forRemoteNotification:(NSDictionary *)userInfo completionHandler:(void (⌂)())completionHandler

4. This new callback method is invoked when user clicks the action button.
5. The implementation of this method must perform the action that is associated

with the specified identifier and execute the block in the completionHandler
parameter.

Tag-based notification
Tag notifications are notification messages that are targeted to all the devices that
are subscribed to a particular tag.

Tags-based notifications allow segmentation of notifications based on subject areas
or topics. Notification recipients can choose to receive notifications only if it is
about a subject or topic that is of interest. Therefore, tags-based notification
provides a means to segment recipients. This feature enables ability to define tags
and then send and receive messages by tags. A message is targeted to only the
devices that are subscribed to a tag.

8-210 IBM MobileFirst Platform Foundation for iOS V7.0.0



You must first create the tags for the application, set up the tag subscriptions and
then initiate the tag-based notifications. For more information, see .

For more information about sending tag-based notification, see “Tag-based
notification” on page 8-214 section in “Sending push notifications” on page 8-214.

Silent notifications
Silent notifications are notifications that do not display alerts or otherwise disturb
the user. When a silent notification arrives, the application handing code runs in
background without bringing the application to foreground. Currently, the silent
notifications are supported on iOS devices with version 7 onwards. If the silent
notification is sent to iOS devices with version lesser than 7, the notification is
ignored if the application is running in background. If the application is running in
the foreground, then the notification callback method is invoked.

Sending silent push notification

Prepare the notification and send notification. For more information, see “Sending
push notifications” on page 8-214.

The three types of notifications that are supported for iOS are represented by
constants DEFAULT, SILENT, and MIXED. When the type is not explicitly
specified, the DEFAULT type is assumed.

For MIXED type notifications, a message is displayed on the device while, in the
background, the app awakens and processes a silent notification. The callback
method for MIXED type notifications gets called twice - once when the silent
notification reaches the device and once when the application is opened by tapping
on the notification.

To set the type in event source notifications, create notification object by using the
WL.Server.createDefaultNotification API and set type on the notification object:
notification.APNS.type = "DEFAULT" | "SILENT" | "MIXED";

For more information, see the WL.Server.createDefaultNotification and
WL.Server.notifyAllDevices APIs in WL.Server class.

If the notification is event source-based, the silent notifications are ignored if they
arrive before the application registers the callback.

In Broadcast, Tag-based and Uni-cast notifications set the type while you create the
notification object:
notification.APNS.type = "DEFAULT" | "SILENT" | "MIXED";

For more information, see the WL.Server.sendMessage API in WL.Server class.

If the notification is silent, the alert, sound, and badge are ignored.

Handling silent push notifications in native iOS application

You must follow these steps to receive silent notifications:
1. Enable the application capability to perform background tasks on receiving the

remote notifications.

Developing MobileFirst applications 8-211



2. Implement new callback method on AppDelegate (application:
didReceiveRemoteNotification:fetchCompletionHandler:) to receive silent
notifications when the application is running on background.

3. In the callback, check whether the notification is silent or not by checking that
the key content-available is set to 1.

4. After you finish processing the notification, you must call the block in the
handler parameter immediately. Otherwise, your app will be terminated. Your
app has up to 30 seconds to process the notification and call the specified
completion handler block.

Unicast notifications
Unicast notifications are notification messages that are targeted to a particular
device or a userID.

Unicast notifications do not require any additional setup and are enabled by
default when the MobileFirst application is enabled for push notifications. For
more information about configuring your application for push notifications, see
“Setting up push notifications” on page 8-206.

For more information about sending unicast notification, see “Unicast notification”
on page 8-215 section in “Sending push notifications” on page 8-214.

Web-based SMS subscription
Subscription, and unsubscription, to SMS notifications can be performed by
making HTTP GET requests to the subscribe SMS servlet. The subscribe SMS
servlet can be used for SMS subscriptions without the requirement for a user to
have an app installed on their device.

Enter the following URL to access the subscribe SMS servlet:
http://<hostname>:<port>/<context>/subscribeSMS

This URL can be used to subscribe and unsubscribe.

You must create an application and an event source within an adapter and deploy
them on the IBM MobileFirst Platform Server before you make calls to the
subscribe SMS servlet. For more information about how to create an event source,
see the createEventSource method in the WL.Server class.

Table 8-16. Subscribe SMS servlet URL parameters

URL
parameter URL parameter description

option Optional string. Subscribe or unsubscribe action to perform. The default
option is subscribe. If any non-blank string other than subscribe is
supplied, the unsubscribe action is performed.

eventSource Mandatory string. The name of the event source. The event source name is
in the format AdapterName.EventSourceName.

alias Optional string. A short ID defining the event source during subscription.
This ID is the same ID as provided in WL.Client.Push.subscribeSMS.

phoneNumber Mandatory string. User phone number to which SMS notifications are sent.
The phone number can contain digits (0-9), plus sign (+), minus sign (-), and
space (⌂) characters only.

8-212 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 8-16. Subscribe SMS servlet URL parameters (continued)

URL
parameter URL parameter description

userName Optional string. Name of the user. If no user name is provided during
subscription, an anonymous subscription is created by using the phone
number as the user name. If a user name is provided during subscription, it
must also be provided during unsubscription.

appId Mandatory string for subscribe. The ID of the application that contains the
SMS gateway definition. The application ID is constructed from the
application name, application environment, and application version.

Note: If any parameter value contains special characters, this parameter must be
encoded by using URL encoding, also known as percent encoding, before the URL
is constructed. Parameter values containing only the following characters do not
need to be encoded:

a-z, A-Z, 0-9, period (.), plus sign (+), minus sign (-), and underscore (_)

Subscriptions that are created by using the subscribe SMS servlet are independent
of subscriptions that are created by using a device. For example, it is possible to
have two subscriptions for the same phone number and user name; one created by
using the device and one created by using the subscribe SMS servlet. If there are
two subscriptions for the same phone number and user name, unsubscription by
using the subscribe SMS servlet unsubscribes only the subscription that is made
through the subscribe SMS servlet. However, unsubscription by using the IBM
MobileFirst Platform Operations Console unsubscribes both subscriptions.

Security

It is important to secure the subscribe SMS servlet because it is possible for entities
with malicious intent to call the servlet and create spurious subscriptions. By
default,IBM MobileFirst Platform Foundation for iOS protects static resources such
as the subscribe SMS servlet. The authenticationConfig.xml file is configured to
reject all requests to the subscribe SMS servlet with a rejecting login module. To
allow restricted access to the subscribe SMS servlet, MobileFirst administrators
must modify the authenticationConfig.xml file with appropriate authenticator and
login modules.

For example, the following configuration in the authenticationConfig.xml file
ensures only requests with a specific user name in the header of the HTTP request
are allowed:

<staticResources>
<resource id="subscribeServlet" securityTest="SubscribeServlet">
<urlPatterns>/subscribeSMS*</urlPatterns>

</resource>
...

</staticResources>

<securityTests>
<customSecurityTest name="SubscribeServlet">

<test realm="SubscribeServlet" isInternalUserID="true"/>
</customSecurityTest>
...

</securityTests>

<realms>
<realm name="SubscribeServlet" loginModule="headerLogin">

<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>

Developing MobileFirst applications 8-213



</realm>
...

</realms>

<loginModules>
<loginModule name="headerLogin">

<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="username"/>

</loginModule>
...

</loginModules>

Sending push notifications
When you have set up push notification, whether event-source based, tag-based, or
broadcast-enabled, you can send push notifications from the server.

Broadcast notification

Before you can send a broadcast notification, you must set up broadcast
notifications for the required applications. For more information, see “Broadcast
notifications” on page 8-207.

You can send a broadcast notification in the following way:
v Use the sendMessage method of the WL.Server class. The applicationId and

notificationOptions parameters are mandatory.
v The notificationOptions.target object must not be specified or empty.

Event source-based notification

Before you can send event source-based notification, you must set up the
subscriptions. For more information, see “Subscribing to an event source” on page
8-208.

An event source can either poll notifications from the backend system, or wait for
the backend system to explicitly push a new notification. In this example, a
submitNotifications() adapter function is called by a backend system as an
external API to send notifications.
function submitNotification(userId, notificationText) {

varuserSubscription = WL.Server.getUserNotificationSubscription(’PushAdapter.PushEventSource’, userId);
if(userSubscription === null) {
return{ result: "No subscription found for user :: "+ userId };

}

varbadgeDigit = 1;
varnotification = WL.Server.createDefaultNotification(notificationText, badgeDigit, {custom:"data"});
WL.Server.notifyAllDevices(userSubscription, notification);

return{
result: "Notification sent to user :: "+ userId

};
}

For more information about the various APIs to send notifications, see WL.Server.

Tag-based notification

Before you can send tag-based notifications, you must set up tag subscriptions. For
more information, see .

You can send a tag-based notification in the following way:

8-214 IBM MobileFirst Platform Foundation for iOS V7.0.0



v Use the sendMessage method of the WL.Server class. The applicationId and
notificationOptions parameters are mandatory.

v Specify the tagNames as an array in the notificationOptions.target.tagNames
object.

Unicast notification

You can send a unicast notification to a particular device in the following way:
v Use the sendMessage method of the WL.Server class. The applicationId and

notificationOptions parameters are mandatory.
v The deviceId(s) as an array in the notificationOptions.target.deviceIds

object.

You can send a unicast notification to a particular user in the following way:
v Use the sendMessage method of the WL.Server class. The applicationId and

notificationOptions parameters are mandatory.
v The userId(s) as an array in the notificationOptions.target.userIds object.

Note: The notification message can target multiple devices or users by specifying
multiple deviceIDs or userIDs in the notificationOptions.tager.deviceIds or
notificationOptions.target.userIds.

Platform or environment-based notification

You can send a platform or environment-based notification in the following way:
v Use the sendMessage method of the WL.Server class. The applicationId and

notificationOptions parameters are mandatory.
v Specify the platform, A (Apple), in the notificationOptions.target.platforms

object.

Restriction

Restriction: The sendMessage method does not support SMS notification. For more
information, see “Sending SMS push notifications.”

Sending SMS push notifications
In addition to standard push notifications, you can also send Short Message
Service (SMS) messages, more commonly known as text messages, to user devices.
To receive SMS notifications, users must first subscribe to a push notification event
source.

About this task

The SMS notification framework extends the push notification framework. SMS
support is provided for Apple devices that support SMS functions. IBM
MobileFirst Platform Foundation for iOS includes the capability to send SMS
notifications to all platforms that provide SMS support.

Procedure
1. An SMS notification infrastructure is set up.

A MobileFirst adapter acts as a connector to an app that is running on a mobile
device.

Developing MobileFirst applications 8-215



2. The user of the mobile device sends a subscribe request from the application to
the event source that is declared in the MobileFirst adapter, by using the
client-side WL.Client.Push.subscribeSMS method.

3. The user subscription to the event source is registered at the MobileFirst Server.
4. When the back-end service must notify the user, it calls a method in the

MobileFirst adapter.
5. The adapter checks whether an SMS subscription exists for that user and, if it

does, sends the SMS alert message through a preconfigured SMS aggregator.
6. Optional: If SMS notifications are no longer necessary, you can unsubscribe.

The subscription is deleted either by an application that calls the
WL.Client.Push.unsubscribeSMS method, or by using the Admin console. For
more information, see Administering push notifications with the MobileFirst
Operations Console.
For a detailed scenario-based example that shows SMS messaging, see the
developerWorks article Send SMS push notifications to your mobile app using
IBM MobileFirst Platform Foundation for iOS.

Sending push notifications from WebSphere Application
Server – IBM DB2

To issue push notifications from a WebSphere Application Server that uses IBM
DB2 as its database, a custom property must be added.

About this task

If you use WebSphere Application Server with an IBM DB2 database, errors can
arise when you try to send push notifications. To resolve this situation, you must
add a custom property in WebSphere Application Server, at the data source level.

Procedure
1. Log in to the WebSphere Application Server admin console.
2. Select Resources > JDBC > Data sources > DataSource name > Custom

properties and click New.
3. In the Name field, enter allowNextOnExhaustedResultSet.
4. In the Value field, type 1.
5. Change the type to java.lang.Integer.
6. Click OK to save your changes.
7. Select custom property resultSetHoldability.
8. In the Value field, type 1.
9. Click OK to save your changes.

Configuring a polling event source to send push notifications
Polling event sources can be used to generate notification events, such as push
notifications, that the MobileFirst client framework can subscribe to.

About this task

The MobileFirst adapter framework provides the ability to implement event
sources, which can be used to generate notification events such as push
notifications. However, notifications must be retrieved from a back-end system

8-216 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/developerworks/websphere/techjournal/1305_ramachandra/1305_ramachandra.html
http://www.ibm.com/developerworks/websphere/techjournal/1305_ramachandra/1305_ramachandra.html


before they can be sent out. Event sources can either poll notifications from the
back-end system, or wait for the back-end system to explicitly push a new
notification.

This task describes how to create a polling event source, and use it to send push
notifications. A polling event source is a long-running task that has the following
mandatory properties:
v Event source name
v Polling interval
v Polling function

Procedure
v Consider the following simple example. The diagram shows a sample for a basic

polling event source:

The doSomething() function is invoked every three seconds. If you deploy this
adapter to the MobileFirst Server, you see the following logs in the server
console:

The log shows that the doSomething() function is invoked at 3-second intervals.
v This second example shows a more realistic example of a polling event source:

Developing MobileFirst applications 8-217



The sample includes the following key elements:
– Lines 7 - 8: The polling event source continuously invokes a

sendNotifications() function with a 3-second interval.
– Lines 18 - 19: Every time the sendNotifications() function is invoked it

requests messages data from the back-end. The sample shows an HTTP
back-end, but it could be any other type of back-end that MobileFirst adapters
support; for example, SQL. The code assumes that the following JSON
markup is returned by the back-end. However, since the MobileFirst adapter
knows how to automatically convert data to JSON, the back-end data could
also be XML.

{
messages: [{

userId: "John",
text: "New incoming transition",
badge: 2,
payload: {}

}, {
userId: "Bob",
text: "Please approve withdrawal",
badge: 5,
payload: {}

}]
}

– Line 22: The code iterates over the received messages array.
– Line 25: Every message contains the user ID of a user that the notification

should be sent to.
– Line 28: Using this user ID, the code tries to obtain a userSubscription object.
– Lines 30 - 33: If a userSubscription object is found for the specified user ID,

a new notification is created and is sent to all user devices.
– Line 35. If a userSubscription object is not found for the specified user ID, an

error is logged.
An important feature of a polling event source is that unlike regular adapter
procedures, the polling function is triggered by the MobileFirst Server itself, and
not by the incoming request. Therefore any data or APIs related to request or
session context are not available or functional. For example, APIs such as

8-218 IBM MobileFirst Platform Foundation for iOS V7.0.0



WL.Server.getActiveUser() or WL.Server.getClientRequest() are not functional.
Also, you do not need to expose polling function in the adapter XML file.

Using two-way SMS communication
SMS two-way communication enables communication between a mobile phone
and the MobileFirst Server, over an SMS channel. SMS messages that originate
from the mobile device can be sent to the MobileFirst Server through an external
SMS gateway. The MobileFirst Server can then send a response message back to
the originating mobile device.

Before you begin

To run SMS two-way communication, the mobile device must support SMS
functions.

About this task

Keywords or shortcodes should be configured with the third-party SMS gateway.
The gateway should be configured to forward SMS messages to the SMS servlet of
the MobileFirst Server, either directly or through a reverse proxy URL, based on
the topology in your environment:

http://hostname:port/context/receiveSMS

The SMS messages that are sent from mobile phones are forwarded to an adapter
procedure on the MobileFirst Server, which is configured by the developer. The
adapter procedure can include the logic to process the request, or the procedure
can forward the request to a back-end system for processing. The response is
returned by using the MobileFirst notification framework. For more information,
see Push notification.

The two-way SMS architecture is summarized in the following figure:

Developing MobileFirst applications 8-219



1. The adapter registers SMS event handlers on the MobileFirst Server.
2. SMS messages are sent from mobile devices to the SMS gateway, which is

configured with an SMS servlet of MobileFirst Server.
3. The SMS gateway forwards SMS messages to a configured MobileFirst URL.
4. An SMS servlet on MobileFirst Server matches the parameters with filters that

are defined in SMS event handlers, and calls an adapter callback procedure.
5. The adapter processes SMS messages and sends an SMS message to the mobile

device by using the SMS API.

You use a series of server API methods to send and receive SMS messages:

WL.Server.createSMSEventHandler
Create an SMS event handler.

WL.Server.setEventHandlers
Set event handlers to implement callbacks for received events.

WL.Server.subscribeSMS
Subscribe a phone number to the specified event source.

WL.Server.unsubscribeSMS
Unsubscribe the phone number from the specified event source.

WL.Server.getSMSSubscription
Return an SMS subscription object for a phone number.

Troubleshooting push notification problems
Find information to help resolve push notification issues that you might encounter.

Figure 8-24. Two-way SMS architecture

8-220 IBM MobileFirst Platform Foundation for iOS V7.0.0



iOS Push

Table 8-17. iOS Push issues

Problem Actions to take

The push notification fails to send, and you see the
following exception in the server log:

com.notnoop.exceptions.InvalidSSLConfig:
java.io.IOException: Error in loading the keystore:
Private key decryption error:
(java.security.InvalidKeyException:
Illegal key size)

at com.notnoop.apns.internal.Utilities
.newSSLContext(Utilities.java:88)

at com.ibm.pushworks.server.notification.apns
.ApplicationConnection.createBuilderWithCertificate
(ApplicationConnection.java:180)
at com.ibm.pushworks.server.notification.apns
.ApplicationConnection
.<init>(ApplicationConnection.java:59)

...

To resolve this problem, complete the following steps.

1. Download the unrestricted version of the JCE policy
files.

a. Log in to Unrestricted SDK JCE policy files.

b. Select Unrestricted JCE Policy files for SDK for
all newer versions (Version 1.4.2 and higher).

c. Click Continue and finish the download process.

There are 3 files in the .zip file:

v readme.txt

v local_policy.jar

v US_export_policy.jar

2. Update the JCE policy files for the server
environment.

a. Stop the server.

b. Use the new local_policy.jar file and the new
US_export_policy.jar file to replace the old
local_policy.jar file and the
US_export_policy.jar file that are found in the
<jdk_path>/jre/lib/security folder.
Note: The <jdk_path> might be bundled with the
server.

c. Restart the server.

MobileFirst security framework
A collection of topics that describe OAuth-based and classic security features in
IBM MobileFirst Platform Foundation for iOS.

OAuth-based security model
Topics that describe OAuth-based security features in IBM MobileFirst Platform
Foundation for iOS.

Overview

The OAuth 2.0 protocol is based on acquiring an access token, which encapsulates
the authorization that is granted to the client. In that context, the IBM MobileFirst
Platform Server serves as an authorization server and is able to generate such
tokens. The client can then use these tokens to access resources on a resource
server, which can be either the MobileFirst Server itself, or an external server. The
resource servers perform validation on the token to make sure that the client can
be granted access to the requested resource. This separation between resource
server and authorization server in the new OAuth-based model allows you to
enforce MobileFirst security on resources that are running outside the MobileFirst
Server.

To support backward compatibility, the classic (pre-V7.0) MobileFirst security
model is still in use in the flows that are based on the existing MobileFirst APIs
(for example, invokeProcedure in Java). The new client APIs trigger flows that
conform to the OAuth-based security model. IBM MobileFirst Platform Foundation

Developing MobileFirst applications 8-221

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://tools.ietf.org/html/rfc6749


for iOS V7.0 provides seamless integration between the two security models. The
platform allows you to mix classic and new APIs in the same application, while
keeping a consistent security context on the server side.

End-to-end authorization flow

The new MobileFirst end-to-end authorization flow is based on the OAuth
specification and comprises the following phases:
1. Acquiring a token (see Figure 1): In this phase, the client obtains a token from

the authorization server, following these steps:
a. Registration: This phase occurs once in the lifetime of a mobile app that is

installed on a device. In this phase, the client registers itself with the
MobileFirst Server. When application authenticity has been configured, it is
activated during registration.

b. Authorization: In this phase, the client has to undergo specific security
checks, according to the scope of the authorization request. These are
implemented using the building blocks of the classic MobileFirst security
model - authentication realms on the server side, and challenge handlers on
the client side. All the security checks supported by MobileFirst can be used
in this phase (built-in realms such as remoteDisable and others, custom
realms, and adapter-based authentication).

c. Token generation: After successful authorization, the client is redirected to
the token endpoint, where it is authenticated using the PKI trust that was
established during the registration phase. The endpoint then generates two
sets of tokens and sends them back to the client: an access token, which
encapsulates all the security checks that the client has passed in the
authorization phase and an ID token, which contains information regarding
the user and device identity of the client.

8-222 IBM MobileFirst Platform Foundation for iOS V7.0.0



2. Using a token to access protected resources: Protected resources can run on the
MobileFirst Server (see Figure 2) or on external servers (see Figure 3).
Resources on external servers can be protected by using the validation modules
that are provided with MobileFirst: the Node.js validation module for
protecting Node.js resources and the Trust association interceptor (TAI) for
protecting Java resources, or by developing your own custom filter as shown in
the Token validation endpoint example. These modules validate the access
token and ID token in incoming requests, making sure that only authorized
clients are served. To consume such protected resources, the client has to first
acquire the token from the MobileFirst Server, and then add the tokens as an
authorization header to outgoing requests.
The new client APIs enable the client to access protected resources while
transparently handling the handshake with the authorization server.

Figure 8-25. Obtain token flow

Developing MobileFirst applications 8-223



Figure 8-26. Protecting a resource on the MobileFirst Server

8-224 IBM MobileFirst Platform Foundation for iOS V7.0.0



Protecting resources with OAuth-based security

It is possible to enforce MobileFirst security on resources running on the
MobileFirst Server, as well as on resources running on any, external resource
server. MobileFirst V7.0 provides several types of validation modules to enforce
security on resources. These modules perform the following validation logic:
v Integrity: Digital signature for both ID token and access token is verified.
v Token expiration: Both tokens are tested for expiration. An expired token will

fail the validation.
v Scope: Required scope for the resource is verified. The token has to contain the

scope tokens (realm names) that are defined in the scope, and these scope tokens
have to be valid (meaning, not expired).

v Mandatory scope: In addition to the scope defined by the resource, the access
token must contain the valid scope that is required by the application. This
scope contains the realms, which are defined in the security test that is
protecting the application.

Note that each scope token (realm name) has its own expiration time, which can be
different than the expiration time of the containing access token. To pass
validation, both a scope token and its containing token must not be expired. The
expiration period of a scope token (realm name) is defined by the expiration

Figure 8-27. Protecting a resource on an external server

Developing MobileFirst applications 8-225



attribute of the login module that is associated with the realm. For more
information about configuring expiration of login modules, see “Configuring login
modules” on page 8-282. For information about configuring access token
expiration, see Application descriptor of iOS applications.

Consider the following example: a resource /somePath/myResource/doSomething
is protected by the scope {myCustomRealm myLoginRealm}. All requests to this
resource will be intercepted by the validation module, so a valid token with a
scope that contains myCustomRealm and myLoginRealm must be present in the
request. In case such a token exists, the request is granted, and the resource is
consumed. Otherwise, the validation module rejects the request. In this case, the
client (through the client API) interacts with the MobileFirst Server to obtain the
token, which requires successful authentication to the specified realms. After
acquiring the token, the client resends the request, which now passes the token
validation, and the resource is consumed.

Protecting internal resources - RESTful adapters
MobileFirst V7.0 enables you to enforce MobileFirst security on resources
that are running on the MobileFirst Server, that is, Java and JavaScript
RESTful adapters. For more information, see Security configuration of a
JAX-RS resource.

Protecting external resources
With MobileFirst V7.0, you can enforce MobileFirst security on resources
running outside the MobileFirst Server. To this end, you can use the
built-in Node.js and Java validation modules, or implement your own
custom validation module in the technology of your choice, using the
online validation endpoint:

Node filter
The passport-mfp-token-validation module provides a passport
validation strategy for protecting apps on a Node.js server. For
more information, see “Protecting resources on Node.js servers” on
page 8-230.

TAI filter
You can use the IBM MobileFirst™ Platform Foundation OAuth
trust association interceptor (TAI) to protect application resources
on WebSphere® Application Server or WebSphere Application
Server Liberty. For more information, see “Protecting resources on
WebSphere Application Server or WebSphere Application Server
Liberty” on page 8-232.

Custom filter
The token validation endpoint on the MobileFirst Server validates
tokens that are issued by the authorization server. For more
information, see “Protecting resources with the token validation
endpoint” on page 8-238.

Specifying the user identity realm in OAuth-based flows

Although user authorization may include authorization with several realms, only
one of these realms is defined as the user identity realm, and that realm
determines the user identity. In an OAuth-based flow, the user identity realm is set
according to the userIdentityRealms definition in the application descriptor. Note
that in the classic (pre-V7.0) flows, the user identity realm is selected according to
the definition in the security test. See customSecurityTest. In OAuth-based flows,
information about the user identity, which is set by the userIdentityRealms

8-226 IBM MobileFirst Platform Foundation for iOS V7.0.0



attribute, is part of the data contained in the “ID token” on page 8-229.

Combining classic and OAuth-based security models

MobileFirst Server V7.0 provides a smooth integration between the classic and
OAuth-based security models.

Essentially, both flows share the same security context on the server side, and so
any security state of a specific realm (such as expiration, or login status) is
consistently shared between the flows. This allows you, the developer, to mix
classic and OAuth-based security APIs, while providing a unified experience for
the end user.

Consider, for example, a client application that calls an adapter procedure
protected by some realm myCustomRealm and then retrieves a token for a scope
that includes the same realm. In this case, the user will have to pass the
myCustomRealm security check only on the first call, and will get the relevant
token on the second call, without having to re-authenticate.

Some issues need to be considered when using both models in the same flow, or
on the same resource:
v Device SSO:

The configuration of the Device SSO feature is based on the device and user
identity realms that are defined in the security test, which is protecting the
resource. However, OAuth resources are not protected by security tests and do
not have a single defined user realm per resource, so the
standard MobileFirst device SSO behavior does not apply to them. For more
information, see “Device single sign-on (SSO)” on page 8-294..

v The login/logout API:
The WLClient login/logout API enables a user to log in to and log out of a
specific realm, by updating the server side security state. However, in the new
OAuth-based security model, security credentials are also kept in the access
token on the client side. The result is that using this API will cause an
inconsistent state, for example, in which the client is logged out of a realm on
the server side but still holds a valid token for that realm on the client side. To
solve this inconsistency, it is recommended to re-obtain the access token, by
using the obtainAuthorizationHeaderForScope method, after successful login or
logout.
For example, consider a client that passed the security checks for Realm1 and
Realm2, and later calls logout(Realm2). In this case, the access token on the
client would still contain the security credentials for both Realm1 and Realm2,
and the client could use this token to access protected resources. To refresh the
token, that is, to obtain a token for Realm1 only, the client calls
obtainAuthorizationHeaderForScope without the logged out realm Realm2.
iOS example:

[[WLClient sharedInstance]logout:@"MyRealm" withDelegate:self];

-(void)onSuccess:(WLResponse *)response{
// re-obtain the token
[[WLAuthorizationManager sharedInstance]obtainAuthorizationHeaderForScope:nil completionHandler:^(WLResponse *response, NSError *error) {
// successful logout logic

}];
}

Developing MobileFirst applications 8-227



Test token endpoint

The test token endpoint enables you to get a valid token via a REST call, without
having to set up a mobile client. For more information, see “The test token
endpoint” on page 8-241.

Public key endpoint

The public key endpoint gets the server's public key. The public key is used, for
example, for the verification of digitally signed OAuth tokens. The path for the
endpoint is as follows:
/authorization/v1/publickey

The endpoint returns the public key information using the JWK standard format.
For more information, see JSON Web Key. The following is an example of a result
returned by this endpoint:

{
"e": "AQAB",
"n": "AM0Dd7xAdv6H-ygL7r8qCLdE-3I2kk45zgZtDd_qs8fvnYfdiqTSV4_2t6OGG8CV5Ce41PMpIwmL410X9IZnv

hxoYiFcMSaOeIqoe-rJA0uZuw2rHhXZ3WVCeKezRVcCOYsQN-mQK0mfz5_3o-ev0UYwXkSOwBBl1Ehq
IwVDwOieg2JMGl0EXsPZfkNZI-HU4oMii-TrNLzRWkMmLvm09hL5zosUNA15veCKph2WpmSm2S61nDhH7gLEoymDnTEjPY5Aoh2i
nI-36RGYVMUUbO46CrNUYuIobOiXlLzBIhuICpfVdxT_x7stKX5C9BfMTB4GkOHP5cUv7Nz1dDhIPu8",

"kty": "RSA"
}

Note: The server uses an RSA key type, and therefore the kty attribute is always
RSA.

Preview mode

The new OAuth-based flows are also available in preview mode. However, in this
mode, the registration phase is protected by an anti-cross site request forgery
realm, wl_antiXSRFRealm, and not application authenticity.

Note: Preview mode is not available in production environments.

Exposed endpoints

You can enable white- and blacklists to the endpoints of the MobileFirst Server. For
a list of endpoints for use with the OAuth-based security model, see “Endpoints of
the IBM MobileFirst Platform Server production server” on page 6-272.

Security client APIs

MobileFirst V7.0 provides client APIs that conform to the new OAuth-based
security model.
v There is an API for consuming protected resources, which transparently supports

the interaction with the MobileFirst Server (obtaining the token requested by the
resource).
– In Objective-C: WLResourceRequest

v In addition, APIs are provided to create a custom client implementation that is
able to interact with the validation modules and MobileFirst Server. See the
following example:
– “Custom requests to resources using Objective-C” on page 8-242

8-228 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://tools.ietf.org/html/draft-ietf-jose-json-web-key-31


OAuth-based tokens
Learn about token response, MobileFirst Server authorization headers, access
tokens, and ID tokens.

Access token

The access token is a digitally signed token that describes the authorization
permissions of a client. The token contains the following noteworthy attributes:
v expiration: Expiration of the access token in seconds. An expired token is not

valid.
v scope: Scope of the authorization permissions of this token. The scope comprises

a list of scope tokens.
v scope tokens: Scope tokens are mapped to MobileFirst realms (a scope token is

the name of a MobileFirst realm). Each such scope token represents a successful
authentication that the client has undergone during the authorization phase.
Each scope token has an expiration of its own (in seconds).

ID token

The ID token is a digitally signed token, implementing the OIDC specification. It
contains information about the device, application, and user identity. The device
and application identity are defined in the registration phase and are always
present in the ID token. The user identity is defined according to
userIdentityRealms, as described in The application descriptor. In case there is no
such realm defined, the ID token contains no user identity, meaning that the user is
“anonymous”.

To learn more about using the data in the ID token, see Protecting resources on
WebSphere Application Server or WebSphere Application Server Liberty,
“Protecting resources on Node.js servers” on page 8-230,“Protecting resources with
the token validation endpoint” on page 8-238, and “Implementing the adapter's
JAX-RS service” on page 8-87.

MobileFirst Server authorization header

After the client has acquired an access token, it can use the token in requests to
protected resources. As described in the OAuth 2.0 Bearer Token Usage
specification, the client uses the "Bearer" authentication scheme to transmit the
access token in the authorization HTTP header. The following is an example of the
value of the authorization header:
Authorization: Bearer yI6ICJodHRwOi8vc2VydmVyLmV4YW1...

Successful token response

The access token and ID token are generated in the token endpoint after the
authorization phase and sent to the client.

A successful token response from the MobileFirst authorization server looks like
this:

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"token_type": "Bearer",
"expires_in": 3600,

Developing MobileFirst applications 8-229

http://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750


"access_token": "yI6ICJodHRwOi8vc2VydmVyLmV4YW1...",
"id_token": "eyJhbGciOiJSUzI1NiIsImtpZCI6Ij..."
"scope": "wl_directUpdateRealm wl_remoteDisableRealm wl_antiXSRFRealm wl_deviceNoProvisioningRealm wl_anonymousUserRealm"

}

Note:

v token_type is always "Bearer", as defined in the OAuth 2.0 Bearer Token Usage
specification.

v expires_in is the expiration time of the access token, in seconds.
v scope is the list of the scope tokens (realms) that is included in the access token.

Protecting external resources
You can protect application resources that are located on WebSphere Application
Server, WebSphere Application Server Liberty or Node.js servers by using OAuth
security.

Protecting resources on Node.js servers:

You can protect your resources that are running on Node.js servers with
OAuth-based IBM MobileFirst Platform Foundation for iOS security.

mfpStrategy

The passport-mfp-token-validation npm module provides a passport validation
strategy and a verification function to validate access tokens and ID tokens that are
issued by the MobileFirst server.

passport.use (new mfpStrategy(options));

The options parameter contains one or more of the following options:
v publicKeyServerUrl: (Mandatory) Specifies the URL of the MobileFirst Server

from which the public key will be retrieved to verify the tokens.

Note: Alternatively, you can pass the public key server URL as a parameter to
the passport.authenticate method. This method is used in the Example.)

v scope: Space-separated string to define the list of realm names that are required
for accessing the resource. If no scope is specified, only the mandatory scope
will be checked in the token.

Note: Alternatively, you can pass the scope as a parameter to the
passport.authenticate method. (See Example.)

v cacheSize: The maximum number of tokens allowed. The default value is 500.
v logger: Defines a logger instance. The default value is the IBM default logger,

which outputs log messages to the console.
v analytics.onpremise:

– url: The url that specifies the location of the operational analytics server. For
example, http://localhost:10080/worklight-analytics-service/data.

– username: The username if credentials are required.
– password: The password if credentials are required.

For more information on npm passports, see Passport Readme. For more
information about the passport.authenticate method, see Authenticate.

8-230 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://www.npmjs.org/package/passport-mfp-token-validation
https://www.npmjs.org/package/passport#readme
http://passportjs.org/guide/authenticate/


Example

The following example shows how to use mfpStrategy in a node application:
var express = require(’express’),

passport = require(’passport-mfp-token-validation’).Passport,
mfpStrategy = require(’passport-mfp-token-validation’).Strategy;
//the configuration (’config’) is optional if you wish to report
//events to the Analytics Server.
var config = {

url : ’http://localhost:10080/worklight-analytics-service/data’
username : ’admin’,
password : ’admin’

};

passport.use(new mfpStrategy({publicKeyServerUrl:’http://localhost:10080/WLProject’,
analytics : {onpremise: config}}));

var app = express();
app.use(passport.initialize());

// protect api with MFP strategy using scope Realm1 Realm2 Realm3
app.get(’/v1/apps/:appid/service’, passport.authenticate(’mobilefirst-strategy’,

{session: false , scope: ’Realm1 Realm2 Realm3’ }),
function(req, res){

res.send(200, req.securityContext);
}

);

app.listen(3000);

To start the example, issue the following commands:
$ npm install express
$ npm install passport
$ npm install passport-mfp-token-validation

Token verification

The passport-mfp-token-validation module verifies the authorization header of the
request. The authorization header consists of the following elements:
Bearer Access_token ID_token

where

Bearer (Mandatory) Is the required string for the token type, as defined in the
OAuth 2.0 specification.

Access_token 
(Mandatory) Encapsulates all of the security checks that the client has
passed in the authorization phase.

ID_token 
(Optional) Contains information about the user and device identity of the
client.

Bearer and Access_token are mandatory. ID_token is optional. The
passport-mfp-token-validation module will verify the token with the public key
that is retrieved from the authorization server. If the token is verified successfully,
the securityContext and user objects will be attached to the request object.

securityContext
After a successful validation, a security context object is added to the
current request.

Developing MobileFirst applications 8-231



The securityContext object contains the following fields:
v imf.sub: The sub value of the ID token or the unique ID of the client if

there is no ID token.
v imf.user: The user value that is extracted from the ID token. If there is

no ID token, this field holds a blank object.
v imf.device: The device value that is extracted from the ID token. If

there is no ID token, this field holds a blank object.
v imf.application: The application value that is extracted from the ID

token. If there is no ID token, this field holds a blank object.

user The user object in the request is returned by the passport framework. Its
value is the same as the value of imf.user in the securityContext object.

Protecting resources on WebSphere Application Server or WebSphere
Application Server Liberty:

You can protect your resources that are running on WebSphere Application Server
or WebSphere Application Server Liberty servers with OAuth-based IBM
MobileFirst Platform Foundation for iOS security.

Overview

To enable MobileFirst OAuth security for resources on WebSphere Application
Server or WebSphere Application Server Liberty servers, complete the following
steps:
1. Configure OAuthTAI
2. Set the security role
3. Install and configure OAuthTAI on the server
4. Add the tokens to the authorization header
5. Use the security context to access resources

Configure OAuthTAI

The OAuthTAI feature is configured by using XML. For WebSphere Application
Server Liberty, you add the XML to the server.xml file. For WebSphere Application
Server, you save it in a separate file.

The OAuthTAI element is the root element. The following sections describe the
OAuthTAI attributes and subelements:

OAuthTAI attributes

cacheSize

(Optional) Maximum number of tokens allowed. The default is 500.

OAuthTAI subelements

securityConstraint

(Mandatory) The value of securityConstraint must be a number 1 to n.

securityConstraint attributes

securedURLs

8-232 IBM MobileFirst Platform Foundation for iOS V7.0.0



(Mandatory) If multiple URLs are specified in securedURLs, separate each
URL by a space. The following types of URLs are supported:
v Exact match URL. For example, /context-root/a/xyz
v Path match URL. For example, /context-root/*
v Wild card match URL. For example, /context-root/*/xyz

httpMethods

(Optional) Default value: ALL. The httpMethods attribute is case insensitive.
Its value can be one or more of the following strings: ALL, DELETE, GET,
POST,PUT,HEAD,OPTIONS,TRACE, or CONNECT. If multiple methods are specified,
separate the methods by a space.

scope

(Optional) If scope is not specified, the only checking that is done is to
make sure that the mandatory scopes are not expired.

The following is an example:
<?xml version="1.0" encoding="UTF-8"?>

<OAuthTAI>
<securityConstraint httpMethods="GET POST" securedURLs="/mfp-oauth-java-tests/*"

scope="Realm1 Realm2"/>
<securityConstraint httpMethods="DELETE" securedURLs="/another-context-root/*"/>

</OAuthTAI>

Set the security role

To protect the web resources used by your application, you must specify
TAIUserRole as the Java Platform, Enterprise Edition (Java EE) security role. You
can specify TAIUserRole as the Java EE security role in one of two ways: in the
web.xml file or as an annotation.

To specify the TAIUserRole in the web.xml file, define TAIUserRole in the
security-role element, and then use this role to secure the web resource in the
security-constraint element. For example:

<security-constraint>
<web-resource-collection>

<web-resource-name>BaseServlet</web-resource-name>
<url-pattern>/Test/devices</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>TAIUserRole</role-name>
</auth-constraint>

</security-constraint>
<security-role id="SecurityRole_TAIUserRole" >

<description>This is the role that MFP OAuthTAI uses to protect the resource. It must be mapped to
’All Authenticated in Application’ in WAS and to ’ALL_AUTHENTICATED_USERS’ in Liberty.</description>

<role-name>TAIUserRole</role-name>
</security-role>

To specify TAIUserRole with an annotation:
@WebServlet("/Test/devices")
@ServletSecurity(@HttpConstraint(rolesAllowed={"TAIUserRole"}))
public class BaseServlet extends HttpServlet {

// servlet code ...
}

Developing MobileFirst applications 8-233



Install and configure OAuthTAI in WebSphere Application Server or WebSphere
Application Server Liberty

Installing OAuthTAI in WebSphere Application Server Liberty

1. Copy the file product_install_dir/WorklightServer/external-server-
libraries/com.ibm.worklight.oauth.tai_1.0.0.jar to usr/extension/lib.
where

product_install_dir
is the installation directory for MobileFirst Server.

usr is the user directory for theWebSphere Application Server Liberty
profile (default name usr).

2. Copy the file OAuthTai-1.0.mf from the directory WorklightServer/external-
server-libraries to the directory usr/extension/lib/features.

3. Edit the server.xml file to add the OAuthTAI -1.0 feature. For example:
<featureManager>

<feature>appSecurity-2.0</feature>
<feature>usr:OAuthTai-1.0</feature>
<!--other necessary features-->

</featureManager>

4. Edit the server.xml file to add the OAuthTAI feature. Note that the security
role TAIUserRole is mapped to a special subject named
ALL_AUTHENTICATED_USERS. For example:

<usr_OAuthTAI id="myOAuthTAI">
<securityConstraint httpMethods="GET POST" securedURLs="/worklight-oauth-java-tests/*"

scope="Realm1 Realm2"/>
<securityConstraint httpMethods="DELETE" securedURLs="/another-context-root/*"/>

</usr_OAuthTAI>

<basicRegistry id="basic" realm="BasicRealm" />

<application type="war" id="basicauth" name="basicauth" location="${server.config.dir}/apps/basicauth.war">
<application-bnd>
<security-role name="TAIUserRole">
<special-subject type="ALL_AUTHENTICATED_USERS" />
</security-role>

</application-bnd>
</application>

5. Add the URL to the authorization server into the environment variables of your
deployment. One way of doing so is to add the entry into the server.env file,
which is located in the same directory as the server.xml file. Add the
following, where

publicKeyServerUrl=URL_to_authorization_server.

URL_to_authorization_server is the URL to the MobileFirst authorization
server.

Installing OAuthTAI in WebSphere Application Server

1. Copy project_root_dir/target/com.ibm.worklight.oauth.tai_1.0.0.jar to
product_install_dir/lib/ext.

2. Open the WebSphere Application Server console.
3. Click Security > Global Security > Authentication, and select Enable LTPA.
4. Click Security > Global Security > Application security > Enable application

security.

5. Configure the trust association.

8-234 IBM MobileFirst Platform Foundation for iOS V7.0.0



a. Click Security > Global Security > Web and SIP security > Trust
association.

b. Click Enable trust association.
c. Under Interceptors, click New, and create a new interceptor with the

following values:
v Interceptor class name:com.worklight.oauth.tai.OAuthTAI
v Custom properties: configFileLocation = OAuthTAI_config_file_dir/

filename.xml

where
OAuthTAI_config_file_dir/filename.xml is the directory path and file
name of the XML configuration file that you already created. See the
configuration file example .

6. Create an environment entry that points to the authorization server.
a. In the WebSphere Application Server console, click Servers > Server Types

> WebSphere application servers > your_server_name > Server
Infrastructure > Java and Process Management > Process Definition >
Additional Properties > Environment Entries.

b. Create the following environment variable:
publicKeyServerUrl=authorization_server_URL

where

authorization_server_URL
is the URL to the MobileFirst authorization server.

7. Map the security role.
a. In the WebSphere Application Server console, click Applications >

Application Types > WebSphere enterprise applications >
your_application_name > Details Properties > Security role to user/group
mapping.

b. Map the role that is allowed to access your application to All
Authenticated in Application's Realm. (For example, TAIUserRole as in
sample above.)

8. Restart WebSphere Application Server.

Add the tokens to the authorization header of your request

Add the following line to the authorization header of your request:
Authorization: Bearer Access_token ID_token

where

Bearer (Mandatory) Is the required string for the token type, as defined in the
OAuth 2.0 specification.

Access_token 
(Mandatory) Encapsulates all of the security checks that the client has
passed in the authorization phase.

ID_token 
(Optional) Contains information about the user and device identity of the
client.

When the application attempts to access resources protected by OAuth TAI, the
following validation checks occur:

Developing MobileFirst applications 8-235



Validation item Result if invalid

The authorization header exists. A 401 error is returned, with the response header
WWW-Authenticate: Bearer realm=“imfAuthentication”,
scope="${required_scopes_list}"

The authorization header starts with the string Bearer. A 400 error is returned, with the response header
WWW-Authenticate: Bearer realm=“imfAuthentication”,
error="invalid_request",
scope="${required_scopes_list}

The signature of the access token and the ID token are
valid and not expired, and theycan be decoded.

A 401 error is returned, with the response header
WWW-Authenticate: Bearer realm=“imfAuthentication”,
error="invalid_request",
scope="${required_scopes_list}"

Validation of scope. This includes the following:

v Verification of the scope in the access token.

v Whether the mandatory scope is expired.

v Whether the scope is expired.

v Whether the access token contains all of the required
realm names.

A 403 error is returned, with the response header
WWW-Authenticate: Bearer realm="imfAuthentication",
error="insufficient_scope",
error_description="${detail_information_of_error}.",
scope="${required_scopes_list}"

The security context object

After successful validation, a security context is available to your application. The
security context is a JSON object that contains the following properties:

Subject: securityContext.get("imf.sub");
The subject is a string which uniquely identifies the application installation
on a device and the authenticated user. uniquely identifies the application
installation on a device and the authenticated user.

User Identity: (Optional)securityContext.get("imf.user");
The user identity is a JSON object which contains information about the
authenticated user. For anonymous tokens, the user identity is null. The
user identity contains the following properties:
v "id": (Mandatory) The user identity of the authenticated user identity

realm.
v "authBy": (Mandatory):The name of the authenticated user identity

realm.
v "displayName": (Optional) The user's display name as set when

authenticating the user identity realm. This property may be null.
v "attributes" : (Optional) Additional data that can be set when

authenticating the user identity realm. This property may be null.

Application information:securityContext.get("imf.application");
Application information, including"id", "environment", and "version". For
example:

{"id":"com.MobileFirst.TestApp","environment":"iOSnative","version":"1.0"}

Device information:securityContext.get("imf.device");
Device information, including "id", "platform", "model" and "osVersion".
For example:

{"id":"E3D422A2-437C-438C-87FF-D6E7DF94725D","platform":"iOS","model":"iPhone Simulator","osVersion":"8.1"}

Example

8-236 IBM MobileFirst Platform Foundation for iOS V7.0.0



JSONObject securityContext = callerWLCredential.getSecurityContext();
String subject = securityContext.get("imf.sub");
JSONObject imfUser = securityContext.get("imf.user");
JSONObject imfDevice = securityContext.get("imf.device");
JSONObject imfApplication = securityContext.get("imf.application");

The WSCredential and WLCredential APIs provide credential functionality.

com.ibm.websphere.security.cred.WSCredential 
The WSCredential interface defines a credential that represents an
authenticated principal to WebSphere Application Server or WebSphere
Application Server Liberty. For example:

Subject callerSubject = WSSubject.getCallerSubject();
WSCredential callerCredential = callerSubject.getPublicCredentials

(WSCredential.class).iterator().next();

For more information about WSCredential, see the WSCredential
documentation for your version of WebSphere Application Server or
WebSphere Application Server Liberty. For example, see WSCredential for
WebSphere Application Server Network Deployment 8.5.

com.worklight.oauth.tai.WLCredential
The WLCredential interface provides APIs to get the MobileFirst specific
principal details.

WLCredential callerWLCredential = callerSubject.getPublicCredentials
(WLCredential.class).iterator().next();

IBM MobileFirst Platform Foundation for iOS OAuthTAI in development mode

In development mode, you can copy the jar and the manifest file from the
following locations, depending on your development environment:

MobileFirst Studio 
The root of every project contains a folder named
externalServerLibraries. This folder contains both the TAI jar file
(com.ibm.worklight.oauth.tai_1.0.0.jar) and the manifest file
(OAuthTai-1.0.mf).

MobileFirst Platform Command Line Interface for iOS

The TAI jar file (com.ibm.worklight.oauth.tai_1.0.0.jar) and the
manifest file (OAuthTai-1.0.mf ) are located in the CLI_install_dir/public
folder,

where

CLI_install_dir

is the path where MobileFirst Platform Command Line Interface for iOS is
installed. Both files are also copied into the /externalServerLibraries
folder in any new MobileFirst project created by the command-line
interface.

Reporting analytics

The Token lib library can report analytic events to IBM MobileFirst Platform
Operational Analytics. You must configure the Resource Server that contains the
Token lib with your Analytics URL and credentials.

The MobileFirst Operational Analytics server is protected by basic authentication.
When you installed this server, you configured the data entry point and basic

Developing MobileFirst applications 8-237

https://www-01.ibm.com/support/knowledgecenter/api/content/nl/en-us/SSAW57_8.5.5/com.ibm.websphere.javadoc.doc/web/apidocs/com/ibm/websphere/security/cred/WSCredential.html
https://www-01.ibm.com/support/knowledgecenter/api/content/nl/en-us/SSAW57_8.5.5/com.ibm.websphere.javadoc.doc/web/apidocs/com/ibm/websphere/security/cred/WSCredential.html


authentication credentials. To configure the Resource Server, you must provide the
Analytics credentials through JNDI properties, specifically the URL to the data
entry point, the user name, and password. These properties are set with the
following property names:
v imf.analytics.url

v imf.analytics.username

v imf.analytics.password

If your Resource Server is running on WebSphere Application Server Liberty, you
must configure these properties by using JNDI by adding entries to your
server.xml file. For example:

<jndiEntry jndiName="imf.analytics.username" value="admin"/>

If your Resource Server is running on WebSphere Application Server, you must
configure these properties as Environment Entries. In the WebSphere Application
Server Console, go to Servers > Server Types > Websphere application servers >
<your server> > Server Infrastructure > Java and Process Management > Process
Definition > Additional Properties > Environment Entries > New. This value is
the location where you had to set publicKeyServerUrl when you set up OAuthTAI.

Protecting resources with the token validation endpoint:

The token validation endpoint on the IBM MobileFirst Platform Server validates
tokens that are issued by the authorization server.

The token endpoint implements the OAuth 2.0 token introspection specification
and validates access tokens and ID tokens. Using this endpoint, you can write a
custom filter in any language to protect resources that are external to the
MobileFirst Server. The filter delegates the token validation to the endpoint. An
example of a custom filter in Node.js is shown at the end of this topic.

8-238 IBM MobileFirst Platform Foundation for iOS V7.0.0



The endpoint has the same processing logic as the built-in Node.js filter and TAI
filter.

Usage: The URL pattern for accessing the endpoint is as follows:
http(s)://<server_ip>:<server_port>/<project_name>/authorization/v1/token/introspection

The endpoint responds to a POST request with the following parameters:

token Mandatory. The MobileFirst access token to be checked.

id_token
Optional. The MobileFirst ID token to be checked.

required_scope
Optional. If specified, the endpoint should ensure that the access token
covers that scope.

Response: If the token validates successfully, the validation endpoint responds with
a JSON object that is in application/json format and that has the following
top-level members:
{

"active": true,
"exp" : timestamp,

Figure 8-28. Custom token validation

Developing MobileFirst applications 8-239



"scope" : "scope1 scope2 scope3",
"user_id" : userid,
"security_context" : securityContext,

}

active Indicates whether the token is valid or not.

exp Indicates the expiration time of the token.

scope Indicates the scopes of the token.

user_id
Indicates the unique identity of the token. If an ID token is provided, the
value is a subfield of the ID token. If not, the value is the prn field in the
access token.

security_context
Contains the decoded information from the access token and ID token.

In case of validation failure, the response conforms to the OAuth 2.0 specification,
meaning that the status is 40* and WWW-Authenticate is added to the response
header. The header looks like this:

WWW-Authenticate: Bearer realm="<realm name>", error="<error code>"[, error_description="<error description>"][, scope="<scope>"]

Example: The following example demonstrates a Node.js custom filter that uses
the endpoint:

//Implementation of custom Filter
var express = require(’express’);
var http = require(’http’);
//For creating form-data queries
var querystring = require(’querystring’);
var app = express();

app.get(’/resource/test0’, function(req, res) {
var authorizationHeader = req.headers["authorization"];
//Authorization header - Bearer <accessToken> <idToken>
var accessToken;
var idToken;
if(typeof authorizationHeader != ’undefined’){

var tokenSplit = authorizationHeader.split(" ");
accessToken = tokenSplit[0] + " " + tokenSplit[1];
idToken = tokenSplit[2];

}
var form = {

token : accessToken,
idToken : idToken

}

var formData = querystring.stringify(form);
var options = {

hostname : "10.0.0.12",
port : 10080,
path : "/Test/authorization/v1/token/validation",
method : ’POST’,
’Content-Type’: ’application/x-www-form-urlencoded’,
’Content-Length’: formData.length

};

var reqToWL = http.request(options, function(resFromWL) {
resFromWL.on(’data’, function(introspectionData) {

if(!introspectionData.active){
console.log(JSON.parse(introspectionData));
console.log("Token is invalid");
var status = resFromWL.statusCode;
var wwwAuthenticate = resFromWL.headers["www-authenticate"];

8-240 IBM MobileFirst Platform Foundation for iOS V7.0.0



//Set the header and send the response received from the MobileFirst server
res.set("WWW-Authenticate",wwwAuthenticate);
res.status(status).send();

}else{
console.log("Token is valid");
var name = introspectionData.security_context.imf.user.displayName;
//Send the response with the payload
res.send({secretMessage:"hello "+name,payload:introspectionData});

}
});

});
reqToWL.on(’error’, function(e) {

console.log(’problem with request to WL server: ’ + e.message);
});

// write data to request body
reqToWL.write(formData);
reqToWL.end();

});

app.listen(3000);
console.log("app is listening at " + 3000);

The test token endpoint
The test token endpoint enables you to get a valid token via a REST call, without
having to set up a mobile client.

The OAuth model that is used inIBM MobileFirst Platform Foundation for iOS
requires a MobileFirst client API to be running in the mobile application that
interacts with the MobileFirst Serverto obtain the access token. Setting up the
mobile app often means unnecessary overhead, particularly in back end testing
situations. Use the test token endpoint to get a valid token through a REST call (by
using tools such as Postman or cURL), without a mobile client.

Note: The test token endpoint is available only in the development version of IBM
MobileFirst Platform Foundation for iOS.

Usage

The endpoint provides a valid token with a default expiration of two hours and a
scope that includes all the realms that are defined in your
authenticationConfig.xml file.

The URL pattern for accessing the endpoint is as follows:
http(s)://<server_ip>:<server_port>/<project_name>/authorization/v1/testtoken

The endpoint responds to a POST request with the following parameters:

accessTokenExpiration
Number of seconds for the token expiration.

tokenFormat: Header/Token 
Response format:
1. Header (default): returns a JSON object that can be copied directly to

REST apps (such as Postman) as a header, for example:
{Authorization: Bearer eyJhbG...}

2. Token: returns the OAuth token as defined by the spec:
{

"scope": "SubscribeServlet wl_directUpdateRealm wl_authenticityRealm SampleAppRealm wl_remoteDisableRealm
wl_antiXSRFRealm wl_deviceAutoProvisioningRealm wl_deviceNoProvisioningRealm wl_anonymousUserRealm",

Developing MobileFirst applications 8-241



"token_type": "bearer",
"expires_in": 1421262002284,
"id_token": "eyJhbG...",
"access_token": "eyJhb.."

}

Custom requests to resources using Objective-C
This sample illustrates how to get data from a protected resource by using a
custom NSURLRequest and the MobileFirst AuthorizationManager API.

Inside the didReceiveResponse delegate, the authorizationManager determines
whether this response is a MobileFirst protocol response. If so, the user gets the
scope, obtains the authorization header for this scope, and requests the protected
resource one more time.

-(IBAction)sendCustomRequestToResource:(id)sender {
// The URL of the resource with filter
NSString *nodeResourceString = @"http://localhost:3000/v1/apps/1234/test";

// Create the first request to the resource - will fail due to authentication.
NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL URLWithString:nodeResourceString]];

// Create url connection and fire request with a delegate
NSURLConnection *conn = [[NSURLConnection alloc] initWithRequest:request delegate:self];

}

-(void) connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse *)response{
WLAuthorizationManager *authorizationManager = [WLAuthorizationManager sharedInstance];

// Check that the response conforms to the MFP protocol
if([authorizationManager isAuthorizationRequiredForResponse:response]){

// Get required scope from response
NSString *scope = [authorizationManager authorizationScopeForResponse:response];

//Obtain authorization header for the scope
[[WLAuthorizationManager sharedInstance] obtainAuthorizationHeaderForScope:scope

completionHandler:^(WLResponse *wlResponse, NSError *wlError) {
if (!wlError) {

// Create the request.
NSMutableURLRequest *mutRequest = [NSMutableURLRequest

requestWithURL:[NSURL URLWithString:@"http://localhost:3000/v1/apps/1234/test"]];

// Add the Authorization header that was obtained
[mutRequest addValue:authorizationManager.cachedAuthorizationHeader forHTTPHeaderField:@"authorization"];
NSError *requestError; // Error from resource (if any) will be here

// Create URL connection and fire request with a delegate
NSURLConnection *conn = [[NSURLConnection alloc] initWithRequest:mutRequest delegate:self];

} else {
// Error obtaining Authorization header from MFP Server
NSLog(@"%@",[wlError localizedDescription]);

}
}];

}
else{

//This is the applicative response from the resource
NSLog(@"Meta-data response from resource: %@",[response description]);

}
}

Classic security model
Topics that describe classic (pre-V7.0) security features in IBM MobileFirst Platform
Foundation for iOS.

8-242 IBM MobileFirst Platform Foundation for iOS V7.0.0



The following sections provide high-level information about the MobileFirst
security model.

Goals and structure of MobileFirst security framework

The MobileFirst security framework serves two main goals. It controls access to the
protected resources, and it propagates the user (or server) identity to the back-end
systems through the adapter framework.

It is key to the success of the application that the MobileFirst security framework
does not include its own user registry, credentials storage, or access control
management. Instead, it delegates all those functions to the existing enterprise
security infrastructure. This delegation allows MobileFirst Server to integrate
smoothly as a presentation tier into the existing enterprise landscape. Integration
with the existing security infrastructure is an important feature of the MobileFirst
security framework, and supports custom extensions that allow integration with
virtually any security mechanism.

Another feature of the IBM MobileFirst Platform Foundation for iOS security
framework is support of multi-factor authentication. It means that any protected
resource can require multiple checks to control access. A typical example of
multi-factor authentication is the combination of device, application, and user
authentication.

Each type of security check has its own configuration, and a configured check is
called a realm. Multiple realms can be grouped in a named entity that is called a
security test. Each protected resource refers to the security test. All the configuration
entities are defined in a single configuration file so that the definitions can be
reused across different protected resources.

An implementation of security checks usually includes a client part and a server
part. The two parts interact with each other according to their private protocol.
This protocol is usually a sequence of 1) challenges that are sent by the server and
2) responses that are returned by the client.

The IBM MobileFirst Platform Foundation for iOS security framework provides a
wire protocol. This protocol allows the combination of challenges and responses of
multiple security checks during a single request-and-response round trip. The
protocol serves two important purposes: it allows the number of extra round trips
between the client and server to be minimized, and it separates the application
logic and the security checks implementation.

Developing MobileFirst applications 8-243



Protected resources and authentication context

A protected resource can be any of the following items:
v Application

Any request to the application requires successful authentication in all realms of
the security test that is defined in the application descriptor.

v Adapter procedure

Procedure invocation requires successful authentication in all realms of the
security test that is defined in the adapter descriptor. The user identity and
credentials that are obtained during such authentication can be propagated to
the enterprise information system represented by this adapter.

v Event source

Subscription to push notifications requires successful authentication in all realms
of the security test that are defined in the event source definition (in adapter
JavaScript).

v Static resource

Static resources are defined as URL patterns in the authentication configuration
file. They allow protection of "static" web applications such as the MobileFirst
Operations Console.

During the session, an application can access different resources. The results of the
authentication in different realms are stored in the session authentication context.
These results are then shared among all of the protected resources in the scope of
the current session.

8-244 IBM MobileFirst Platform Foundation for iOS V7.0.0



Realms and security tests

A realm represents a fully configured security check that must be completed before
it can allow access to a protected resource. The semantics of the checks are not
limited to the authentication, but can implement any logic that can serve as
protection for the server-side application resources, for example:
v User authentication
v Device authentication and provisioning
v Application authenticity check
v Remote disable of the ability to connect to MobileFirst Server
v Direct update
v Anti-XSRF check (cross-site request forgery)

The realms are defined in the authentication configuration file on the MobileFirst
project level. A realm consists of two parts: the authenticator and the login module.
The authenticator obtains the credentials from the client, and the login module
validates those credentials, and builds the user identity.

The realms are grouped into security tests, which are defined in the same
authentication configuration files. The security test defines not only the group of
realms, but also the order in which they must be checked. For example, it often
makes sense not to ask for the user credentials until you make sure that the
application itself is authentic.

Since some realms are relevant only to mobile or only to web environments, the
configuration of a security test can be non-trivial. IBM MobileFirst Platform
Foundation for iOS provides simplified security test configurations for mobile and
web environments. It is also possible to create a custom security test from scratch.

MobileFirst protocol and client challenge handlers

Each security check defines its own protocol, which is a sequence of challenges
that are sent by the server and responses that are sent by the client. On the server
side, the component that implements this private protocol is the authenticator. On
the client side, the corresponding component is called the challenge handler.

When the client request tries to access a protected resource, MobileFirst Server
checks all the appropriate realms. Several realms can decide to send a challenge.
Challenges from multiple realms are composed into a single response and sent
back to the client.

MobileFirst client infrastructure extracts the individual challenges from the
response, and routes them to the appropriate challenge handlers. When a challenge
handler finishes the processing, it submits its response to the MobileFirst client
infrastructure. As an example, this occurs when the challenge handler obtains the
user name and password from a login user interface. When all the responses are
received, the MobileFirst client infrastructure resends the original request with all
the challenge responses.

MobileFirst Server extracts those responses from the request and passes them to
the appropriate authenticators. If an authenticator is satisfied, it reports a success,
and MobileFirst Server calls the login module. If the login module succeeds in
validating all of the credentials, the realm is considered successfully authenticated.

Developing MobileFirst applications 8-245



If all the realms of the security test are successfully authenticated, MobileFirst
Server allows the request processing to proceed.

If a realm check fails, its authenticator sends another (or the same) challenge to the
client, and the whole process repeats.

Combining multiple challenges and responses into a single response and request
maximizes security efficiency by reducing the number of extra round trips. For
example, the checks for device authentication, application authenticity, and direct
update can be done in a single round trip.

The fact the MobileFirst client infrastructure automatically resends the original
request with the challenge responses allows separation between the application
logic and security aspects. Though any application request can result in a security
challenge, the application logic must not include any special processing for that
case. The challenge handlers are not related to the application context and can
focus on the security-related logic.

Integration with container security

MobileFirst Server is technically a web application hosted by an application server
(such as WebSphere Application Server). Thus, it is often desirable to reuse
authentication capabilities of the application server for MobileFirst Server, and vice
versa. Since this task can be non-trivial, it is important to understand the
differences between IBM MobileFirst Platform Foundation for iOS and Web
Container authentication models:
v The Java Platform, Enterprise Edition model allows only one authentication

scheme for a web application. Multiple resource collections are defined by URL
patterns, with authentication constraints defined by a white list of role names.

v The MobileFirst model, by contrast, allows protection of each resource by
multiple authentication checks, and the resources are not necessarily identified
by the URL pattern. In some cases, authentication can be triggered dynamically
during the request processing.

As a result, the authentication integration between MobileFirst Server and the Java
Platform, Enterprise Edition container is implemented as a custom IBM MobileFirst
Platform Foundation for iOS realm. This realm can interact with the container and
obtain and set its authenticated principal.

MobileFirst Server includes a set of login modules and authenticators for
WebSphere Application Server full profile and WebSphere Application Server
Liberty profile that implement this integration with LTPA tokens. The integration
works as follows:
v If the caller principal (an entity that can be authenticated) of the servlet request is

already set, the container authentication was successful, and the same principal
is set as the MobileFirst user identity. This case assumes that the MobileFirst
WAR file has appropriate login configuration and resource collection definitions.
Including this information can be tricky because the web.xml file for MobileFirst
project is generated automatically, and those definitions would be overwritten in
every build.

v If the incoming request contains a Lightweight Third Party Authentication
(LTPA) token, the login module validates it, and creates the MobileFirst user
identity.

v If the request does not contain an LTPA token, the authenticator requests the
user name and password from the client. The login module validates them and

8-246 IBM MobileFirst Platform Foundation for iOS V7.0.0



creates the MobileFirst user identity. In addition, it creates the LTPA token, and
sends it back to the client as a cookie. In this case, the authentication capabilities
of WebSphere Application Server are reused by MobileFirst realms in the form of
Java utilities that implement validation and building of an LTPA token.

Integration with web gateways

Web gateways like DataPower and IBM Security Access Manager provide user
authentication so that only authenticated requests can reach the internal
applications. The internal applications can obtain the result of the authentication
that is done by the gateway from a special header, for example, an LTPA token.

When MobileFirst Server is protected by a web gateway, it means that the client
requests first encounter the gateway. The gateway sends back a login form and
validates the credentials, and if the validation is successful, submits the request to
the MobileFirst Server. This sequence implies the following requirements on the
MobileFirst security elements:
v The client-side challenge handler must be able to present the gateway's login

form, submit the credentials, and recognize the login failure and success.
v The authentication configuration must include the realm that can obtain and

validate the token that is provided by the gateway.
v The security test configuration must take into account that the user

authentication is always done first. For example, there is no point in using the
device single sign-on (SSO) feature because the user credentials are requested by
the gateway.

Further information on security, as it is implemented in IBM MobileFirst Platform
Foundation for iOS, is provided in the following overview of security features.
There are links to the relevant sections of the documentation, which pertain to
them.

Integration with IBM Security Access Manager

IBM Security Access Manager can be integrated with IBM MobileFirst Platform
Foundation for iOS to provide the following protections by using risk-based access
decisions to protect MobileFirst applications and adapters as listed here:
v User authentication
v SSO
v Identity attributes
v Fine-grained authorization

SSO can be achieved to the mobile client and in adapter server connections. The
context-based access policies can be defined to provide identity assurance and
strong authentication with a one time password (OTP) for adapter-based
transactions in IBM MobileFirst Platform Foundation for iOS and application
authentication.

For more information about IBM Security Access Manager, see IBM Security Access
Manager for IBM MobileFirst Platform Foundation for iOS.

MobileFirst application authenticity overview
An overview of application authenticity features and procedures within IBM
MobileFirst Platform Foundation for iOS

Developing MobileFirst applications 8-247

http://www.ibm.com/support/docview.wss?uid=swg24034222
http://www.ibm.com/support/docview.wss?uid=swg24034222


IBM MobileFirst Platform Foundation for iOS framework provides a number of
security mechanisms. One of them is a security test for application authenticity.
Most MobileFirst security mechanisms are based on the same concept: obtaining
identity through challenge handling. Just as the user authentication realm is used
to obtain and validate the identity of a user, an application authenticity realm is
used to obtain and validate the identity of an application. Therefore, this process is
referred to as application authenticity.

Any entity can access HTTP services (APIs) that are available from MobileFirst
Server by issuing an HTTP request. Therefore, it is suggested that you protect
relevant services with a number of security tests. Application authenticity makes
sure that any application that tries to connect to MobileFirst Server is authentic
and was not tampered with or modified by some attacker.

Starting with IBM MobileFirst Platform Foundation for iOS V7.0, you can enable
one of three levels of authentication for your app: none, basic, and extended. For
more information on enabling extended app authentication, see “Configuring
extended app authenticity checking” on page 10-51.

Authenticity process

Application authenticity checks use the same transport protocol as other
MobileFirst authentication framework realms:
1. The application makes an initial request to MobileFirst Server.
2. MobileFirst Server goes through the authentication configuration and finds that

this application must be protected by an application authenticity realm.
3. MobileFirst Server generates a challenge token and returns it to application.
4. The application receives the challenge token.
5. The application processes the challenge token and generates a challenge

response.
6. The application submits the challenge response to MobileFirst Server.
7. If the challenge response is valid, MobileFirst Server serves the application with

the required data.
8. If the challenge response is invalid, MobileFirst Server refuses to serve the

application.

Authenticity considerations during migration to MobileFirst Server V7.0

In versions prior to MobileFirst Platform Foundation V7.0, there was an option to
control application authenticity from the MobileFirst Operations Console. This
option is no longer available starting from V7.0. Existing applications configured
with an authenticity realm and a security test in authenticationConfig.xml and a
security test and security attributes in the application-descriptor.xml file are
checked for authenticity at runtime when migrated to MobileFirst Server V7.0,
ignoring any previous authenticity control mode that was specified in an older
version of MobileFirst Operation Console.

Enabling an application authenticity check (example)

The following example shows the steps for enabling application authenticity on
iOS:
1. Modify the authenticationConfig.xml file to add relevant authenticity realms

to your security tests:

8-248 IBM MobileFirst Platform Foundation for iOS V7.0.0



v If you use <mobileSecurityTest>, you must add the <testAppAuthenticity/>
child element to this file.

v If you use <customSecurityTest>, you must add <test
realm=”wl_authenticityRealm”/> child element to the file.

After you have updated your authenticationConfig.xml file, rebuild, and
redeploy the .war file.

2. Modify the application-descriptor.xml file of your application.

Remember: In the application-descriptor.xml file, you must also define a
security test. For more information, see “Security tests.”

3. After you have updated the required elements, rebuild and redeploy your
application to MobileFirst Server.

Security tests
A security test defines a security configuration for a protected resource. Predefined
tests are supplied for standard web and mobile security requirements. You can
write your own custom security tests and define the sequence in which they are
implemented. In web and mobile security tests, you cannot define the sequence in
which realms are processed. If you want to define the sequence, you must write
your own custom security test and use the step property.

A security test specifies one or more authentication realms and an authentication
realm can be used by any number of security tests. A protectable resource can be
protected by any number of realms.

A protected resource is protected by a security test. When a client attempts to
access a protected resource, IBM MobileFirst Platform Foundation for iOS checks
whether the client is already authenticated according to all realms of the security
test. If the client is not yet authenticated, IBM MobileFirst Platform Foundation for
iOS triggers the process of authentication for all unauthenticated realms.

Before you define security tests, define the authentication realms that the tests use.

Define a security test for each environment in the application-descriptor.xml file,
by using the property securityTest="test_name". If no security test is defined for
a specific environment, only a minimal set of default platform tests is run.

You can define three types of security test:

webSecurityTest
A test that is predefined to contain realms that are related to web security.

Use a webSecurityTest to protect web applications.

A webSecurityTest must contain one testUser element with a realm
definition for user authentication. The identity that is obtained from this
realm is considered to be a user identity.

By default, a webSecurityTest includes protection against cross-site request
forgery (XSRF) attacks.

mobileSecurityTest
A test that is predefined to contain realms that are related to mobile
security.

Use a mobileSecurityTest to protect mobile applications.

Developing MobileFirst applications 8-249



A mobileSecurityTest must contain one testUser element with a realm
definition for user authentication. The identity that is obtained from this
realm is considered to be a user identity.

A mobileSecurityTest must contain one testDevice element with a realm
definition for device authentication. The identity that is obtained from this
realm is considered to be a device identity.

By default, a mobileSecurityTest includes protection against XSRF attacks,
automatic checking for Direct Updates every session, and the ability to
remotely disable, from the MobileFirst Operations Console, the ability for
the app to connect to MobileFirst Server.

customSecurityTest
A custom security test. No predefined realms are added. Only tests that are
included are tested.

Use a customSecurityTest to define your own security requirements and
the sequence and grouping in which they occur.

You can define any number of tests within a customSecurityTest. Each test
specifies one realm. To define a realm as a user identity realm, add the
property isInternalUserId="true" to the test. The isInternalUserID
attribute means that this realm is used for user identification for reporting
and push subscriptions. There must be exactly one such realm for every
security configuration that is applied to a mobile or web resource.

For a device auto provisioning realm, the isInternalDeviceID attribute
means that this realm is used for device identification for reporting, push
subscriptions, and device SSO features. There must be exactly one such
realm for every security configuration that is applied to a mobile resource.

Important: When you use device auto provisioning in customSecurityTests,
an authenticity realm must also be present within the tests, otherwise
provisioning cannot succeed.

To specify the order in which a client must authenticate in the different
realms, add the property step="n" to each test, where n indicates the
sequence. If a sequence is not specified, then all tests are done in a single
step.

Note: Application authenticity and Device provisioning are not supported in Java
Platform, Micro Edition (Java ME).

Sample security tests

This section describes what a webSecurityTest and a mobileSecurityTest contain.

The webSecurityTest contains:
v The following realms, enabled by default: wl_anonymousUserRealm and

wl_antiXSRFRealm.
v The user realm that you must specify.

The mobileSecurityTest contains:
v The following realms, enabled by default: wl_anonymousUserRealm,

wl_antiXSRFRealm, wl_directUpdateRealm, wl_remoteDisableRealm and
wl_deviceNoProvisioningRealm.

v The user and device realms that you must specify.

8-250 IBM MobileFirst Platform Foundation for iOS V7.0.0



A customSecurityTest has no realms that are enabled by default. You must define
all realms that you want your customSecurityTest to contain.

For a webSecurityTest:
<webSecurityTest name="webTest">

<testUser realm="wl_anonymousUserRealm"/>
</webSecurityTest>

The equivalent as a customSecurityTest:
<customSecurityTest name="webTest">

<test realm="wl_antiXSRFRealm" />
<test realm="wl_anonymousUserRealm" isInternalUserId="true" />

</customSecurityTest>

For a mobileSecurityTest:
<mobileSecurityTest name="mobileTest">

<testUser realm="wl_anonymousUserRealm"/>
<testDeviceId provisioningType="none" />

</mobileSecurityTest>

The equivalent as a customSecurityTest:
<customSecurityTest name="mobileTest">

<test realm="wl_antiXSRFRealm" />
<test realm="wl_remoteDisableRealm" />
<test realm="wl_anonymousUserRealm" isInternalUserID="true" />
<test realm="wl_deviceNoProvisioningRealm" isInternalUserID="true" />

</customSecurityTest>

Usually, you add your own realm to your configuration to authenticate users. The
following example shows a configuration where the realm named
MyUserAuthRealm is the realm that the developer added.

Example with your own realm name as a realm definition for testUser:

For a webSecurityTest:
<webSecurityTest name="webTest">

<testUser realm="MyUserAuthRealm"/>
</webSecurityTest>

The equivalent as a customSecurityTest
<customSecurityTest name="webTest">

<test realm="wl_antiXSRFRealm" />
<test realm="MyUserAuthRealm" isInternalUserId="true" />

</customSecurityTest>

For a mobileSecurityTest:
<mobileSecurityTest name="mobileTest">

<testUser realm="MyUserAuthRealm"/>
<testDeviceId provisioningType="none" />

</mobileSecurityTest>

The equivalent as a customSecurityTest:
<customSecurityTest name="mobileTest">

<test realm="wl_antiXSRFRealm" />
<test realm="wl_remoteDisableRealm" />
<test realm="MyUserAuthRealm" isInternalUserID="true" />
<test realm="wl_deviceNoProvisioningRealm" isInternalUserID="true" />

</customSecurityTest>

Developing MobileFirst applications 8-251



Authentication realms
Resources are protected by authentication realms. Authentication processes can be
interactive or non-interactive.

An authentication realm defines the process to be used to authenticate users, and
consists of the following steps:
1. Specification of how to collect user credentials, for example, by using a form,

using basic HTTP authentication or using SSO.
2. Specification of how to verify the user credentials, for example, checking that

the password matches the user name, or by using an LDAP server or some
other authentication server.

3. Specification of how to build the user identity, that is, how to build objects that
contain all the necessary user properties.

The same realm can be used in different security tests. In this case, clients must
undergo the authentication process that is defined for the realm only once.

Authentication processes can be interactive or non-interactive, as demonstrated in
the following authentication process examples:
v An example of interactive authentication is a login form that is displayed when

a user attempts to access a protected resource. The authentication process
includes verifying the user credentials.

v An example of non-interactive authentication is a user cookie that the
authentication process looks for when a user attempts to access a protected
resource. If there is a cookie, this cookie is used to authenticate the user. If there
is no cookie, a cookie is created, and this cookie is used to authenticate the user
in the future.

User certificate authentication realm:

The user certificate authentication realm authenticates the user with X.509
certificates that are generated with the MobileFirst Server together with your
public key infrastructure (PKI).

Anti-cross site request forgery (anti-XSRF) realm:

The wl_antiXSRFRealm protects against cross-site request forgery attacks.

In a cross-site request forgery attack, unauthorized commands are transmitted from
a web browser that is trusted by the targeted web site. To protect against this, IBM
MobileFirst Platform Foundation for iOS provides an anti-cross site request forgery
realm, wl_antiXSRFRealm. This realm is enabled by default in the webSecurityTest
and the mobileSecurityTest.

The anti-XSRF realm is relevant only for web environments, when the application
runs in a browser. It is not relevant for installed mobile applications. Also, the
anti-XSRF realm does not protect against session hijacking.

The anti-XSRF technique is based on the same-origin constraint policy, which
requires that after an initial request, all subsequent requests come from the same
source as the initial one. A script that is loaded from a different origin is assumed
to be an attacker script.

When a new session is initiated, the first request to MobileFirst Server receives an
HTTP 401 ("Unauthorized") response that contains the WL-Instance_Id token. The

8-252 IBM MobileFirst Platform Foundation for iOS V7.0.0



MobileFirst framework extracts this token and uses it as a header on all
subsequent requests. If this header is not present in these subsequent requests,
HTTP 401 is returned again, and access to resources is denied.

The server-side realm implementation ensures that each incoming request has the
correct value in the WL-Instance_Id header. If the header is missing or has an
incorrect value, the realm again returns a 401 response with the challenge that
contains the correct value for WL-Instance_Id. However, due to the same-origin
constraint policy, the targeted web site does not allow the attacking web site to
read the challenge.

The server returns a challenge and does not destroy the session in the case of a
missing or incorrect token because this situation can be a result of a legitimate use
case. For example, if a session is timed-out on the server side, the client might
send a request with an expired token. Or, a session race condition might occur in
which the client sends two or more requests simultaneously when the session is
not established or is timed out. A legitimate client should be able to recover from
these situations automatically, so the server sends the same challenge in the case of
failure.

For more information, see Cross-site request forgery.

Note: If code that uses the anti-XSRF realm attempts to access a resource that is
protected by OAuth authentication, and the client has a valid token, the
MobileFirst Server is not called. As a result, the server does not check whether the
request contains the header. The MobileFirst Server is called when the token
expires or when the anti-XSRF realm inside the token expires. When the realm
expires, the anti-XSRF authenticator is invoked and the server checks whether the
request contains the header. For more information about OAuth authentication, see
MobileFirst OAuth-based security model.

Simple data sharing
Learn about the Simple Data Sharing feature.

Simple data sharing overview
Learn about the Simple Data Sharing feature.

The Simple Data Sharing feature makes it possible to securely share lightweight
information among a family of applications on a single device. This feature uses
native APIs that are already present in the different mobile SDKs to provide one
unified developer API. This MobileFirst API abstracts the different platform
complexities, making it easier for developers to quickly implement code that
allows for inter-application communication.

This feature is supported on iOS applications.

After you enable the Simple Data Sharing feature, you can use the provided native
APIs to exchange simple string tokens among a family of applications on a device.

When used with the MobileFirst device single sign-on (SSO) feature, the Simple
Data Sharing feature enhances the ability of these features to share security
credentials among applications in the same family. For example, you can share user
authentication cookies among a family of applications to allow device SSO to work
when a reverse proxy is used.

Developing MobileFirst applications 8-253

http://en.wikipedia.org/wiki/Cross-site_request_forgery


For more information about device SSO with a reverse proxy, see “Configuring
device single sign-on with a reverse proxy” on page 8-299.

Simple data sharing general terminology
Learn about simple data sharing general terminology.

MobileFirst application family

An application family is a way to associate a group of applications which share the
same level of trust. Applications in the same family can securely and safely share
information with each other.

To be considered part of the same MobileFirst application family, all applications in
the same family must comply with the following requirements:
v Specify the same value for the application family in the application descriptor.

– For iOS applications, this requirement is synonymous to the access group
entitlements value and the wlAppFamily value in the worklight.plist file.

v Applications must be signed by the same signing identity. This requirement
means that only applications from the same organization can use this feature.
– For iOS applications, this requirement means the same Application ID prefix,

provisioning profile, and signing identity is used to sign the application.

Aside from the IBM MobileFirst Platform Foundation for iOS provided APIs,
applications in the same MobileFirst application family can also use the data
sharing APIs that are available through their respective native mobile SDK APIs.

String tokens

Sharing string tokens across applications of the same MobileFirst application
family can now be accomplished in native iOS applications through the Simple
Data Sharing feature.

String tokens are considered simple strings, such as passwords or cookies. Using
large strings results in considerable performance degradation.

Consider encrypting tokens when you use the APIs for added security. For more
information, see “JSONStore security utilities” on page 8-184.

Enabling the Simple Data Sharing feature
Learn how to enable the Simple Data Sharing feature.

Enabling the Simple Data Sharing feature for iOS native
applications
Update iOS native applications to enable the Simple Data Sharing feature.

Before you begin

For more information about how to develop iOS native applications, see
“Developing native applications for iOS” on page 8-4.

Note: Only applications from the same organization can use this feature.

8-254 IBM MobileFirst Platform Foundation for iOS V7.0.0



About this task

To enable simple data sharing, you must modify your iOS native application.

Procedure
1. Enable the Simple Data Sharing option by specifying the application family

name in the worklight.plist file with the wlAppFamily property.
2. In Xcode, add a Keychain Access Group with the same name as your

wlAppFamily.
The application-identifier entitlement must be the same for all applications in
your family.

Note: By default, MobileFirst applications are part of the worklight.group
access group that is defined in the entitlement property file. Ensure that this
group continues to be the first group in the list.

3. Ensure that applications that are part of the same family share the same
Application ID prefix. For more information, see Managing Multiple App ID
Prefixes in the iOS Developer Library.

4. Save and sign applications. Ensure that all applications in this group are signed
by the same iOS certificate and provisioning profiles.

5. Repeat the steps for all applications that you want to make part of the same
application family.

Results

You can now use the native Simple Data Sharing APIs to share simple strings
among the group of applications in the same family. For more information, see the
Simple Data Sharing Objective-C APIs in the WLSimpleDataSharing class.

Simple data sharing API concepts
Learn about simple data sharing API concepts.

Sharing string tokens across applications of the same MobileFirst application
family can be accomplished in iOS native applications. This API is meant for
sharing simple strings securely.

The Simple Data Sharing APIs allow any application in the same family to set, get,
and clear key-value pairs from a common place. The Simple Data Sharing APIs are
similar for every platform, and provide an abstraction layer, hiding the
complexities that exist with each native SDK's APIs, making it easy to use.

The following examples show how you can set, get, and delete tokens from the
shared credential storage for the different environments.

iOS native applications
[WLSimpleDataSharing setSharedToken: myName value: myValue];
NSString* token = [WLSimpleDataSharing getSharedToken: myName]];
[WLSimpleDataSharing clearSharedToken: myName];

For more information about the native iOS APIs, see WLSimpleDataSharing Class
Reference.

Developing MobileFirst applications 8-255

https://developer.apple.com/library/ios/technotes/tn2311/_index.html
https://developer.apple.com/library/ios/technotes/tn2311/_index.html


Troubleshooting simple data sharing
Find information to help resolve issues that you might encounter when you use
the Simple Data Sharing feature.

Table 8-18. Troubleshooting the Simple Data Sharing feature. This table lists possible
problems and actions to take to troubleshoot the Simple Data Sharing feature.

Problem Actions to take

Unable to access shared data when you use
the Simple Data Sharing APIs.

Ensure that all applications in the same
family are all redeployed under the same
MobileFirst application family name. For
more information, see “Enabling the Simple
Data Sharing feature” on page 8-254.

Unable to get MobileFirst device SSO to
work with a reverse proxy.

1. Ensure that you enabled the Simple Data
Sharing feature. For more information,
see “Enabling the Simple Data Sharing
feature” on page 8-254.

2. Ensure that all applications in the same
family specified the necessary reverse
proxy authentication cookie.

For more information, see “Configuring
device single sign-on with a reverse proxy”
on page 8-299.

Unable to specify cookie or user certificate
sharing.

You must first enable the MobileFirst Simple
Data Sharing feature and specify a
MobileFirst application family before you
can enable device SSO or user certificate
authentication sharing options. For more
information, see “Enabling the Simple Data
Sharing feature” on page 8-254.

Simple data sharing limitations and special considerations
Learn about the limitations and special considerations of the Simple Data Sharing
feature.

Security considerations

Because this feature allows for data access among a group of applications, special
care must be taken to protect access to the device from unauthorized users.
Consider the following security aspects:

Device Lock
For added security, ensure that devices are secured by a device password,
passcode, or pin, so that access to the device is secured if the device is lost
or stolen.

Jailbreak Detection
Consider using a mobile device management solution to ensure that
devices in your enterprise are not jailbroken or rooted.

Encryption
Consider encrypting any tokens before you share them for added security.
For more information, see “JSONStore security utilities” on page 8-184.

8-256 IBM MobileFirst Platform Foundation for iOS V7.0.0



Size limit

This feature is meant for sharing of small strings, such as passwords or cookies. Be
cognizant not to abuse this feature, as there are performance implications with
such attempts to encrypt and decrypt or read and write any large values of data.

Authenticators and login modules
An authenticator collects client credentials. A login module validates them.

An authenticator is a server component which is used to collect credentials from the
client. The authenticator passes the credentials to a login module, which validates
them and builds a client identity object. Both authenticators and login modules are
components of the application's realm.

An authenticator can, for example, collect any type of information accessible from
an HTTP request object, such as cookies or any data in headers or the body of the
request.

A login module can validate the credentials that are passed to it in various ways.
For example:
v Using a web service
v Looking up the client ID in a database
v Using an LTPA token

A number of predefined authenticators and login modules are supplied. If these do
not meet your needs, you can write your own in Java.

Mobile device authentication
You can require mobile devices to authenticate themselves. Device identity is used
in several places within IBM MobileFirst Platform Foundation for iOS. You can use
provisioning, which is the process of obtaining a security certificate. There are
three modes of the provisioning process.

Unique device ID

The unique device ID is used by IBM MobileFirst Platform Foundation for iOS for
device ID-related features, such as security, device SSO, reports, and push
notifications.

On iOS

v To calculate the unique device ID, a globally unique ID (GUID) is used
that is generated during device authentication process.

v The unique device ID can be unique either to the application or to all
applications from the same vendor.

v The unique device ID is stored in the device keychain.

Note: The availability of the unique device ID depends on the operating system of
the device, and on the application vendor. A vendor who provides multiple
applications that can be installed on the same device might then choose whether to
require provisioning for each individual application or for a group of applications.
If several applications are from the same vendor, they can have the same unique
device ID. If these applications are from different vendors, they have different
unique device IDs.

Developing MobileFirst applications 8-257



To access the unique device ID on the device and on the MobileFirst back-end
server, some security controls are performed. The device ID is not a secret data and
can be passed to the server in one of the two following ways:
v As is, for a non-secure device authentication.
v Accompanied with credentials, for a secure device authentication. In that case,

the device ID is digitally signed with a X509 certificate. This certificate results of
the provisioning process that takes place the first time the application runs on
the device.

The unique device ID is stored in the raw data reports that are generated by IBM
MobileFirst Platform Foundation for iOS. There are no special access controls
available on these reports, as the unique device ID is not considered sensitive data.
For more information about raw data reports, see “Using raw data reports” on
page 12-76.

For more information about mobile device provisioning, see the tutorials on the
Getting Started page.

Scope of mobile device authentication

In addition to requiring users to authenticate before they access certain resources,
you can also require mobile devices to authenticate before apps installed on them
can access the MobileFirst Server.

Device and application authentication is a process that allows making claims of
type "this is application A installed on device D".

Device and application authentication is relevant only for applications that are
installed on mobile devices.

Mobile device provisioning

When a MobileFirst application first runs on a mobile device, it creates a pair of
PKI-based keys. It then uses the keys to sign the public characteristics of the device
and application, and sends them to the MobileFirst Server for authentication
purposes.

A key pair alone is not sufficient to sign these public characteristics because any
app can create a key pair. In order for a key pair to be trusted, it must be signed
by an external trusted authority to create a certificate. The process of obtaining
such a certificate is called provisioning.

When a certificate is obtained, the app can then store the key pair in the device
keystore, access to which is protected by the operating system.

The provisioning process has three modes:

No provisioning
In this mode, the provisioning process does not happen. This mode is
usually suitable during the development cycle, to temporarily disable the
provisioning for the application. Technically, the client application does not
trigger the provisioning process, and the server does not verify the client
certificate.

Auto-provisioning
In this mode, the MobileFirst Server automatically issues a certificate for

8-258 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-native-ios-development-7-0/


the device and application data that is provided by the client application.
Use this option only when the MobileFirst application authenticity features
are enabled.

Custom provisioning
In this mode, the MobileFirst Server is augmented with custom logic that
controls the device and application provisioning process. This logic can
involve integration with an external system, such as a mobile device
manager (MDM). The external system can issue the client certificate based
on an activation code that is obtained from the app, or can instruct the
MobileFirst Server to do so.

Note:

Device auto-provisioning

Device auto-provisioning has three aspects:
v Provisioning granularity: the scope of the provisioned entity.
v Pre required login: the realms that a client must be authenticated with before it

can get permission to perform provisioning.
v CA Certificate: the parent certificate, which issues device certificates for the

provisioning process.

The default behavior is as follows:
v Provisioning granularity: a single application.
v Pre required login: a login is required to the authentication realm, if any, defined

for the current security test.
v CA Certificate: a MobileFirst CA Certificate, which is embedded into the

platform.

Whether it is obtained by an auto-provisioning or custom provisioning process, the
certificate is stored by the client app on the device, and used for signing the
payload sent to the MobileFirst Server. The MobileFirst Server validates the client
certificate, regardless of how it is obtained.

The server sends a request for ID, which the client responds to with a
certificate-signed payload. If the client does not have the certificate, then a request
is sent to the MobileFirst Server automatically to get a certificate, and after that is
done, the client automatically sends the signed payload.

After the server sends the ok response, the original request is sent automatically.

Granularity of provisioning

The key pair that is used to sign the device and app properties can represent a
single application, a group of applications, or an entire device. For example:

Single application
A company’s provisioning process requires separate activation for each
application that is installed on the device. In this case, the application is
the provisionable entity, and each application must generate its own key
pair.

Group of applications
A company develops different groups of applications to employees in
different geographical regions. If the activation is required per region, the

Developing MobileFirst applications 8-259



key pair would represent the group of applications that belong to that
region. All applications from the same group use the same key pair for
their signatures.

Entire device
In this case, the key pair represents the whole device. All the applications
from the same vendor that are installed on that device use the same key
pair.

The authentication configuration file
All types of authentication component are configured in the authentication
configuration file.

Authentication components, security tests, realms, login modules, and
authenticators are all configured in the authenticationConfig.xml authentication
configuration file, which is in the /server/conf directory of your MobileFirst
project. A web security test or mobile security test must contain a <testUser>
element that specifies the realm name. The definition of a realm includes the class
name of an authenticator, and a reference to a login module, and refers to a
collection of resource managers that recognizes a common set of user credentials
and authorizations. Authenticators are the entities that authenticate clients.
Authenticators collect client information, and then use login modules to verify this
information.

Table 8-19. Predefined realms: properties of the <test realm> element.

Realm reference Login module reference Description

wl_anonymousUserRealm WeakDummy This realm is the default user realm.
As having a user identity is
mandatory for a user to use IBM
MobileFirst Platform Foundation for
iOS properly, use this realm if you do
not require any special identification
of users. This realm gives the user a
random unique user ID to be used
for various features in the server,
such as reports and audit,
identification of access to back-end
systems, and push notification. This
realm is transparent, that is, it does
not require any user interaction.

wl_antiXSRFRealm WLAntiXSRFLoginModule This realm is used to avoid cross-site
request forgery attacks. When a new
session is initiated, the first request to
MobileFirst Server gets an HTTP 401
response that contains the
WL-Instance-Id token. The
MobileFirst framework extracts this
token and uses it as a header on all
subsequent requests. If this header is
not present in these subsequent
requests, HTTP 401 is returned again.
This security mechanism makes sure
that all subsequent requests are
coming from the same source as the
initial one.

8-260 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 8-19. Predefined realms: properties of the <test realm> element. (continued)

Realm reference Login module reference Description

wl_authenticityRealm wl_authenticityLoginModule This realm is used to verify that
application is authentic and it was
not modified by a third party. The
basic authenticity check is based on
certificates that are used to sign
applications. Extended application
authenticity is based on the
application binary file.

wl_deviceAutoProvisioningRealm WLDeviceAutoProvisioningLoginModule The description of this parameter is
the same as for
wl_deviceNoProvisioningRealm, but
the obtained device identity is
automatically provisioned by the
MobileFirst Server. This realm must
be used with wl_authenticityRealm.

wl_deviceNoProvisioningRealm WLDeviceNoProvisioningLoginModule A default device identity realm. Device
identity is similar to user identity, but
it is provided by the device itself.
Device identity is relevant for hybrid
and native smartphone environments
only. The device identity is a must
for functionality such as push
notifications, and reports. This
parameter means that the obtained
device identity is used as is, without
provisioning.

wl_directUpdateRealm WLDirectUpdateNullLoginModule This realm is used to enable the
direct update feature. The direct
update feature allows for updating of
application web resources (not native
code) on client devices without the
need for users to explicitly download
and install the new version. This
realm is useful when a fix or an
enhancement is done to the web
resources of the application and you
do not want to start a full release
cycle for it. It can be configured to
test for updates once per session, per
each request, or disabled..

Developing MobileFirst applications 8-261



wl_remote_DisableRealm WLRemoteDisableNullLoginModule This realm is used to block
applications with specific application
environments or versions from
accessing resources on the server, or
to notify clients with some
mandatory message that is related to
the server. This realm is typically
used when a new application version
is released and you no longer want
the applications with the older
versions to connect to the server. In
this case, for example, you want to
give directions to the clients on how
to obtain the new version of the
application with a link to its market
download page. Another typical use
of this realm is when you find a
problem with an application security
and you want to immediately block
access from this application to
sensitive data until the problem is
fixed. You can configure the contents
of the block or notification message
and give a link to more information
or the new version. For more
information about remote disable, see
“Remotely disabling application
connectivity” on page 11-3.

MobileFirst static resources (other than Application Center) such as the MobileFirst
Operations Console are also configured in the authentication configuration file, in
the <resource> element.

The configuration file has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfiguration xmlns:tns="http://www.worklight.com/auth/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<staticResources>
<resource>...</resource>
<resource>...</resource>

</staticResources>
<securityTests>
<customSecurityTest>...</customSecurityTest>
<customSecurityTest>...</customSecurityTest>

</securityTests>
<realms>
<realm>...</realm>
<realm>...</realm>

</realms>
<loginModules>
<loginModule>...</loginModule>
<loginModule>...</loginModule>

</loginModules>
</tns:loginConfiguration>

Configuring authenticators and realms
Authenticators are defined within the realm that uses them.

Realms are defined in <realm> elements in the authenticationConfig.xml file. The
<realms> element contains a separate <realm> subelement for each realm.

Modify realms by using the authentication configuration editor.

8-262 IBM MobileFirst Platform Foundation for iOS V7.0.0



The <realm> element has the following attributes:

Table 8-20. The <realm> element attributes

Attribute Description

name Mandatory. The unique name by which the realm is referenced by the
protected resources.

loginModule Mandatory. The name of the login module that is used by the realm.

The <realm> element has the following subelements:

Table 8-21. The <realm> element subelements

Element Description

<className> Mandatory. The class name of the authenticator.

For details of the supported authenticators, see the following topics.

<parameter> Optional. Represents the name-value pairs that are passed to the
authenticator upon instantiation.

This element might be displayed multiple times.

<onLoginUrl> Optional. Defines the path to which the client is forwarded upon successful
login.

If this element is not specified, then depending on the authenticator type,
either the current request processing is continued, or a saved request is
restored.

Implementing basic authenticators
You can implement basic authentication in mobile applications.

About this task

The basic authenticator implements basic HTTP authentication. Basic
authentication is an industry-standard method that is used to collect user name
and password information.

In accordance with standard basic authentication, MobileFirst Server sends an
HTTP Not Authorized (401) response to the client, with the header:
WWW-Authenticate: Basic realm="realmName". When MobileFirst Server receives
the response from the client, it extracts the base64-encoded credentials from the
Authorization header of the request and decodes them. A login module validates
the credentials that have been received.

Note: You can use basic authentication for web applications only, not for mobile
applications.

The fully qualified Java class name for the basic authenticator is:
com.worklight.core.auth.ext.BasicAuthenticator

Parameters

The basic authenticator has the following parameter:

Developing MobileFirst applications 8-263



Parameter Description

<basic-realm-
name>

Mandatory. A string that is sent to the client as a realm name, and
presented by the browser in the login dialog.

Flow

The following diagram illustrates the flow in the basic authentication
process:

Procedure
1. Configure the authenticationConfig.xml file. For more information, see “The

authentication configuration file” on page 8-260.
2. Code the server side.

Note: If you want to protect an adapter procedure with basic authentication,
you must declare it in the adapter XML file. See the example in this page.

3. Associate the basic authenticator with a login module. MobileFirst Platform
Command Line Interface for iOS provides several predefined login modules.
For an example, see Non-validating login module.

4. Code the client side, if necessary.

Example

The following example demonstrates how to implement a simple basic
authentication mechanism. An adapter procedure is protected by a basic
authenticator, and when the user attempts to invoke the procedure from the
application, the browser displays a login dialog and the authentication process
starts.

Configuration of the authenticationConfig.xml file
<securityTests>

<customSecurityTest name="DummyAdapter-securityTest">
<test isInternalUserID="true" realm="MyAppRealm"/>

Figure 8-29. Basic authentication processBasic authentication process

Figure 8-30. Login dialog for authentication

8-264 IBM MobileFirst Platform Foundation for iOS V7.0.0



</customSecurityTest>
</securityTests>

<realms>
<realm name="MyAppRealm" loginModule="StrongDummy">

<className>com.worklight.core.auth.ext.BasicAuthenticator</className>
<parameter name="basic-realm-name" value="My App"/>

</realm>
</realms>

<loginModules>
<loginModule name="StrongDummy">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule
</className>

</loginModule>
</loginModules>

Note:

The realm uses the StrongDummy login module, which is implemented by
the class NonValidatingLoginModule (see Non-validating login module).
"Non-validating" means that the user credentials are not checked against
any list of user names and passwords. In other words: any combination of
user name and password is valid.

Coding the server side

1. Create a MobileFirst adapter.
2. Add a procedure and protect it with the custom security test that you

created earlier. This procedure's implementation can return some
hard-coded value, for example:
<procedure name="getSecretData" securityTest="DummyAdapter-securityTest"/>

Coding the client side

1. Create a MobileFirst application.
2. Write a call to the adapter procedure that you added on the server side,

for example:
var invocationData = {
adapter: <adapterName>,
procedure: "getSecretData",
parameters: []

};

WL.Client.invokeProcedure(invocationData, {
onSuccess : successCallback,
onFailure : failCallback

});

Implementing form-based authenticators
You can authenticate users of mobile applications by using a login form.

About this task

In form-based authentication, if an application tries to access a protected resource,
the server returns the HTML code of a login form. Even though a form of this kind
is most suited to desktop and web environments (where you display the returned
login form), you can also use form-based authentication in mobile applications.

The fully qualified Java class name of the form-based authenticator is:
com.worklight.core.auth.ext.FormBasedAuthenticator.

Developing MobileFirst applications 8-265



This authenticator type presents a login form to the user. The login form must
contain j_username and j_password fields, the j_security_check submit action, and
the POST submit method.

A login module validates the credentials that are provided. If the login fails, the
user is redirected to an error page.

Parameters

The form-based authenticator has the following parameters:

Parameter Description

login-page Path to a user-defined login page template, relative to the web
application context under the conf directory. A sample login.html
template file is provided under this directory when you create a
MobileFirst project.

The authenticator renders the login page template with the error
messages. To display the error message, use the
placeholder ${errorMessage} in the login page template.

auth-redirect Path to a user-defined login page (html/jsp) relative to the web
application context. IBM MobileFirst Platform Foundation for iOS
redirects to the page when the user credentials are needed.

Both the login-page and auth-redirect parameter are optional, but if you
decide to use them, use either one or the other. You cannot use them
together. You can also use neither. In this case, IBM MobileFirst Platform
Foundation for iOS uses its default login page template.

Flow

The following diagram illustrates the flow in the form-based authentication
process:

8-266 IBM MobileFirst Platform Foundation for iOS V7.0.0



Procedure
1. Configure the authenticationConfig.xml file. For more information, see “The

authentication configuration file” on page 8-260.
2. Code the server side. To work, the form-based authenticator must be associated

with a login module. MobileFirst Platform Command Line Interface for iOS
provides several predefined login modules. For an example, see Non-validating
login module.

Note: If you want to protect an adapter procedure with form-based
authentication, you must declare it in the adapter XML file. See the example in
this page.

3. Code the client side.
You must declare a challenge handler in the application to handle challenges
from the form-based configured realm. The following sample shows one way to
implement a challenge handler class:
var sampleAppRealmChallengeHandler = WL.Client.createChallengeHandler("SampleAppRealm");

The challenge handler must implement the following functions:

Figure 8-31. Form-based authentication process

Developing MobileFirst applications 8-267



v isCustomResponse: this function is called each time that a response is
received from the server. It is used to detect whether the response contains
data that is related to this challenge handler. It must return either true or
false. Here is a simple example:
sampleAppRealmChallengeHandler.isCustomResponse = function(response) {

return false;
};

v handleChallenge: this function is used to perform required actions, such as
hide application screen and show login screen. handleChallenge is called by
the framework, if isCustomResponse returns true. Here is a simple
implementation, as an example:
sampleAppRealmChallengeHandler.handleChallenge = function(response) {
};

The challenge handler can also optionally implement the following, additional
functions:
v submitLoginForm: this function sends the collected credentials to a specific

URL. You can also specify request parameters, headers, and callback.
v submitSuccess: this function notifies the MobileFirst framework that the

authentication finished successfully. The MobileFirst framework then
automatically issues the original request that triggered the authentication.

v submitFailure: this function notifies the MobileFirst framework that the
authentication process failed to finish. The MobileFirst framework then
disposes of the original request that triggered the authentication.

Example

The following example demonstrates how to implement a simple form-based
authentication mechanism that is based on a user name and a password. In the
example, an adapter procedure is protected by a form-based authenticator, and
when the user attempts to call the procedure from the application, the login form
is displayed and the authentication process starts.

Configuration of the authenticationConfig.xml file
<securityTests>

<customSecurityTest name="DummyAdapter-securityTest">
<test isInternalUserID="true" realm="SampleAppRealm"/>

</customSecurityTest>
</securityTests>

<realms>
<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>
<parameter name="login-page" value="login.html"/>

</realm>
</realms>

<loginModules>
<loginModule name="StrongDummy">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>

</loginModule>
</loginModules>

Coding the server side

Perform the following steps:
1. Create a MobileFirst adapter.
2. Add a procedure and protect it with the custom security test that you

created earlier. The implementation can return some hard-coded value,
for example:

8-268 IBM MobileFirst Platform Foundation for iOS V7.0.0



<procedure name="getSecretData" securityTest="DummyAdapter-securityTest"/>

Coding the client side

Perform the following steps:
1. Create a MobileFirst application.
2. Create a challenge handler in the application, to handle challenges from

the SampleAppRealm realm, for example:
var sampleAppRealmChallengeHandler = WL.Client.createChallengeHandler("SampleAppRealm");

3. Implement the mandatory isCustomResponse and handleChallenge
functions (and other, optional functions) of the challenge handler, as
described previously.

What to do next

For a more extensive example of implementing form-based authentication, see the
tutorial on the Getting Started page.

Implementing custom authenticators
You can use default MobileFirst login modules and authenticators, or customize
your own.

About this task

You can write custom login modules and authenticators when those that IBM
MobileFirst Platform Foundation for iOS supplies do not match your requirements.

Procedure
1. Configure the authenticationConfig.xml file.

For more information, see “The authentication configuration file” on page
8-260.

2. Code the server side.
You create custom login modules and authenticators as instances of Java
classes, which you must place in the server/java folder of the project. They are
server-side entities and they are packed inside the WAR file of the project. The
authenticator, login module, and user identity instances are stored in a session
scope, so that they exist while the session is active.

Authenticator interface and methods
Your custom authenticator class must implement the
com.worklight.server.auth.api.WorkLightAuthenticator interface. The
WorkLightAuthenticator interface extends the java.io.Serializable
interface, so as a result, your custom authenticator implements
java.io.Serializable. This means that your custom authenticator must
have no non-serializable members and also declare a serialVersionUID
version number, as recommended in the Serializable Interface Java
documentation.

The custom authenticator must implement the following methods:
v init: This method is called when the authenticator instance is

created. It receives the options that are specified in the realm
definition in the authenticationConfig.xml file.

v processRequest: This method is called for each request from an
unauthenticated session. The method must return an

Developing MobileFirst applications 8-269

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/
http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html


AuthenticationResult status. While the request is processed, the
method might retrieve data from the request and write data to the
response.
The AuthenticationResult status can return the following values:
– SUCCESS: The credentials were successfully collected and the login

module can now validate them.
– CLIENT_INTERACTION_REQUIRED: The client must still supply

authentication data.
– REQUEST_NOT_RECOGNIZED: The authenticator is not handled.

v processAuthenticationFailure: This method is called if the login
module returns a failure for the validation of credentials.

v processRequestAlreadyAuthenticated: This method is called for each
request from a session that has already been authenticated. It returns
an AuthenticationResult value for authenticated requests.

v getAuthenticationData: Login modules use this method to retrieve
the credentials that are collected by an authenticator.

v changeResponseOnSuccess: This method is called after the login
module successfully validates credentials. Use this method to notify a
client application of the success of the authentication, for example to
modify the response before it is returned to the client. This method
must return true if the response was modified orfalse otherwise.

v clone: This method creates a deep copy of the object members.

Login module interface and methods
Your custom login module class must implement the
com.worklight.server.auth.api.WorkLightAuthLoginModule interface.
The WorkLightAuthLoginModule interface extends the
java.io.Serializable interface, so as a result, your custom
LoginModule implements java.io.Serializable. This means that your
LoginModule must have no non-serializable fields and also declare a
serialVersionUID version number, as recommended in the Serializable
Interface Java documentation.

The login module must implement the following methods:
v init: This method is called when the login module instance is

created. This method receives the options that are specified in the
login module definition of the authenticationConfig.xml file.

v login: This method is called after the authenticator returns SUCCESS
status. It receives an authenticationData object from the
authenticator and validates the credentials that are collected by the
authenticator. If the credentials are valid, the method returns true. If
the credential validation fails, the method returns false or raises a
runtime exception. In this case, the exception string that is returned
to the authenticator as an errorMessage parameter.

v createIdentity: This method is called after the credentials are
successfully validated. The method creates and returns a
UserIdentity object, which contains information about the
authenticated user, such as unique user name, display name, Java
security roles, and custom user attributes.

v logout: Use this method to clean up cached data and class members
after the user logs out.

v abort: Use this method to clean up cached data and class members
after the user stops the authentication flow.

8-270 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html


v clone: This method creates a deep copy of the object members.
3. Code the client side.

You must declare a challenge handler in the application to handle challenges
from the custom authenticator realm. The following sample shows one way to
implement a challenge handler class:

var myChallengeHandler = WL.Client.createChallengeHandler("CustomAuthenticatorRealm");

The challenge handler must implement the following methods:
v isCustomResponse: This method is called each time that a response is

received from the server. It detects whether the response contains data that is
related to this challenge handler. It must return true or false. Here is a
simple example:

sampleAppRealmChallengeHandler.isCustomResponse = method(response) {
return false;

};

v handleChallenge: Use this method for such actions as hide application screen
and show login screen. If the isCustomResponse method returns true,
thehandleChallenge method is called by the framework. Here is a simple
implementation, as an example:

sampleAppRealmChallengeHandler.handleChallenge = method(response) {
};

Optionally, the challenge handler can also implement the following methods:
v submitLoginForm: This method sends the collected credentials to a specific

URL. You can also specify request parameters, headers, and callback.
v submitSuccess: This method notifies the MobileFirst framework that the

authentication finished successfully. The MobileFirst framework then
automatically issues the original request that triggered the authentication.

v submitFailure: This method notifies the MobileFirst framework that the
authentication process failed. The MobileFirst framework then disposes of
the original request that triggered the authentication.

Example

The following example shows how to implement a custom authenticator and login
module. In the example, an adapter procedure is protected by a custom
authenticator. When the user attempts to call the procedure from the application,
the application requests the user's credentials and the authentication process starts.

Configuration of the authenticationConfig.xml file
<securityTests>

<customSecurityTest name="DummyAdapter-securityTest">
<test isInternalUserID="true" realm="CustomAuthenticatorRealm"/>

</customSecurityTest>
</securityTests>

<realms>
<realm name="CustomAuthenticatorRealm" loginModule="CustomLoginModule">

<className>com.mypackage.MyCustomAuthenticator</className>
</realm>

</realms>

<loginModules>
<loginModule name="CustomLoginModule">

<className>com.mypackage.MyCustomLoginModule</className>
</loginModule>

</loginModules>

Developing MobileFirst applications 8-271



Coding the server side
Code the following elements on the server side: adapter, authenticator, and
login module.
v Adapter:

1. Create a MobileFirst adapter.
2. Add a procedure and protect it with the custom security test that

you created earlier. The implementation can return some hardcoded
value. For example:

<procedure name="getSecretData" securityTest="DummyAdapter-securityTest"/>

v Authenticator:
1. Create a MyCustomAuthenticator.java class in the

server/java/com/mypackage folder. This class must implement the
com.worklight.server.auth.api.WorkLightAuthenticator interface,
as follows:

public class MyCustomAuthenticator implements WorkLightAuthenticator{}

2. Add the generated serialVersionUID constant to the class.
3. Implement the mandatory methods of the class.

– processRequest: This method retrieves the user name and
password credentials that are passed as request parameters. Check
the credentials for basic validity, collect the credentials, and return
SUCCESS. If a problem occurs with the received credentials, add an
errorMessage to the response and return the
CLIENT_INTERACTION_REQUIRED status message. If the request does
not contain authentication data, add the authStatus:required
property to the response and again, return a
CLIENT_INTERACTION_REQUIRED status message.

public AuthenticationResult processRequest(HttpServletRequest request, HttpServletResponse response,
boolean isAccessToProtectedResource) throws IOException, ServletException {

if (request.getRequestURI().contains("my_custom_auth_request_url")){
String username = request.getParameter("username");
String password = request.getParameter("password");

if (null != username && null != password && username.length() > 0 && password.length() > 0){
this.username = request.getParameter("username");

this.password = request.getParameter("password");
return AuthenticationResult.createFrom(AuthenticationStatus.SUCCESS);

} else {
response.setContentType("application/json; charset=UTF-8");
response.setHeader("Cache-Control", "no-cache, must-revalidate");
response.getWriter().print("{\"authStatus\":\"required\",

\"errorMessage\":\"Please enter username and password\"}");
return AuthenticationResult.createFrom(AuthenticationStatus.CLIENT_INTERACTION_REQUIRED);

}
}

if (!isAccessToProtectedResource)
return AuthenticationResult.createFrom(AuthenticationStatus.REQUEST_NOT_RECOGNIZED);

response.setContentType("application/json; charset=UTF-8");
response.setHeader("Cache-Control", "no-cache, must-revalidate");
response.getWriter().print("{\"authStatus\":\"required\"}");
return AuthenticationResult.createFrom(AuthenticationStatus.CLIENT_INTERACTION_REQUIRED);

}

– processAuthenticationFailure: This method writes an error
message to a response body and returns the
CLIENT_INTERACTION_REQUIRED status message.

public AuthenticationResult processAuthenticationFailure(HttpServletRequest
request, HttpServletResponse response, String errorMessage) throws IOException, ServletException {
response.setContentType("application/json; charset=UTF-8");

8-272 IBM MobileFirst Platform Foundation for iOS V7.0.0



response.setHeader("Cache-Control", "no-cache, must-revalidate");
response.getWriter().print("{\"authStatus\":\"required\", \"errorMessage\":\"" + errorMessage + "\"}");
return AuthenticationResult.createFrom(AuthenticationStatus.CLIENT_INTERACTION_REQUIRED);

}

v Login module:
1. Create a MyCustomLoginModule.java class in the server/java/com/

mypackage folder. This class must implement the
com.worklight.server.auth.api.WorkLightAuthLoginModule interface.

public class MyCustomLoginModule implements WorkLightAuthLoginModule{}

2. Implement the mandatory methods of the class.
– login: This method retrieves the user name and password

credentials that the authenticator stored previously. In this
example, the login module validates the credentials against
hardcoded values. You can implement your own validation rules.
If the credentials are valid, the login method returns true. For
example:

public boolean login(Map<String> authenticationData) {
USERNAME =(String) authenticationData.get("username");
PASSWORD = (String) authenticationData.get("password");
if (USERNAME.equals("wluser") && PASSWORD.equals("12345"))
return true;
else throw new RuntimeException("Invalid credentials"); }

</String>

– createIdentity: This method is called when the login method
returns true. It is used to create a UserIdentity object. In that
object, you can store your own custom attributes and use them
later in Java or adapter code. The UserIdentity object contains
user information. Its constructor is as follows:

public UserIdentity(String loginModule, String name, String displayName, Set<String> roles, Map<String,
Object> attributes, Object credentials)

Here is an example of how to implement this method:
public UserIdentity createIdentity(String loginModule) {

HashMap<String, Object> customAttributes = new HashMap<String, Object>();
customAttributes.put("AuthenticationDate", new Date());

UserIdentity identity = new UserIdentity(loginModule, USERNAME, null, null, customAttributes, PASSWORD);
return identity;

}

Coding the client side

Follow these steps:
1. Create a MobileFirst application.
2. Create a challenge handler in the application to handle challenges from

the custom authenticator realm. For example:
var myAppRealmChallengeHandler =
WL.Client.createChallengeHandler ("CustomAuthenticatorRealm");

3. Implement the mandatory isCustomResponse and isCustomResponse
methods, and optional methods of the challenge handler, as described
in Step 3.

What to do next

For a more extensive example of implementing custom authentication and login,
see module Custom Authenticator and Login Module in hybrid applications in
“Tutorials, samples, and additional resources” on page 5-1.

Developing MobileFirst applications 8-273



Header authenticator
Description and syntax of the header authenticator.

Description

The header authenticator is not interactive. The header authenticator must be used
with the Header login module.

Class Name
com.worklight.core.auth.ext.HeaderAuthenticator

Parameters

None.
<realm name="RealmHeader" loginModule="HeaderLoginModule">
<className> com.worklight.core.auth.ext.HeaderAuthenticator </className>
</realm>

Persistent cookie authenticator
Description and syntax of the persistent cookie authenticator.

Description

The persistent cookie authenticator looks for a specific cookie in any request that is
sent to it. If the request does not contain the cookie, the authenticator creates a
cookie, and sends it in the response. This authenticator is not interactive, that is, it
does not ask the user for credentials, and is mainly used in environment realms.

Class Name
com.worklight.core.auth.ext.PersistentCookieAuthenticator

Parameters

The persistent cookie authenticator class has the following parameter:

Parameter Description

<cookie-name> Optional. The name of the persistent cookie. If this parameter is not
specified, the default name, WL_PERSISTENT_COOKIE, is used.

<realm name="PersistentCookie" loginModule="dummy">
<className> com.worklight.core.auth.ext.PersistentCookieAuthenticator </className>
</realm>

Implementing adapter-based authenticators
You can authenticate users of mobile applications by using an adapter-based
authenticator.

About this task

Adapter-based authentication enables you to develop custom authentication logic
by using a JavaScript function within a MobileFirst adapter.

Adapter-based authentication is flexible and customizable. The following diagram
illustrates one possible implementation. The process is illustrated and described as

8-274 IBM MobileFirst Platform Foundation for iOS V7.0.0



follows.

1. The client makes a request to the resource that is protected by adapter
authentication.

2. MobileFirst Server checks whether the client is already authenticated.
a. If it is, the requested data is returned.
b. Otherwise, authentication continues.

3. The adapter procedure that is defined in authenticationConfig.xml as a
login-function is called.

4. The login-function procedure is used to return a custom JSON payload to the
client.

5. The client processes the custom JSON payload and sends its credentials to the
adapter procedure used for authentication.

6. The adapter procedure that is used for authentication receives credentials and
validates them.
a. If validation fails, the flow returns to step 4.
b. Otherwise, authentication continues.

7. The adapter procedure that is used for authentication creates a user identity
and returns a success status to the client.

8. The client receives the success status and issues the original request.
9. The flow returns to step 2.

Figure 8-32. Adapter-based authentication process

Developing MobileFirst applications 8-275



For more information, see “The authentication configuration file” on page 8-260.

Procedure
1. Configure the authenticationConfig.xml file.
v Add security tests to the <securityTest> section of the file. Because the

security test that you are using is protecting an adapter procedure, you use
the <customSecurityTest> parameter.

v Add authentication realms to the <realms> section. For the className
parameter, use the com.worklight.integration.auth.AdapterAuthenticator
to indicate that the server-side part of the authenticator is defined in the
adapter. Define two parameter-value pairs for login and logout:
– login-function: whenever the MobileFirst authentication framework

detects an attempt to access a protected resource, the login-function is
called automatically.

– logout-function: when logout is detected (explicit or session timeout), the
logout-function is called automatically.

In both cases, the value syntax is adapterName.functionName.
v Add a login module to the <loginModules> section. All of the validation logic

that is done in a login module is performed in the adapter's JavaScript code
and you need no further validation. For that reason, adapter-based
authentication must be used with a NonValidatingLoginModule only. No
additional validation is performed by the IBM MobileFirst Platform, and the
developer takes responsibility for the validation of credentials within the
adapter. For more information, see Non-validating login module.

2. Code the server side.
The fully qualified name of the Java class for adapter authenticators is
com.worklight.integration.auth.AdapterAuthenticator. It takes the
mandatory login-function parameter and the optional logout-function
parameters. Both parameters specify adapter function names. The syntax is:
adapter-name.function-name, for example, myAuthAdapter.onAuthRequired. You
need to implement the login-function and logout-function in your
adapter.js source file. In the example, these parameters are implemented as
AuthAdapter.onAuthRequired and AuthAdapter.onLogout.

Note:

v Both login-function and logout-function should only be used internally by
a MobileFirst Server. For this reason, it is important that you do not expose
them as procedures in the adapter XML file.

v In contrast, the function that receives credentials is directly called by a client.
Therefore, you must expose the function in the adapter XML file. When the
challenge handler invokes the submit call, the handler is responsible for
handling all the possible responses. In particular, if the submit call returns a
challenge, the challenge is passed to the invocation callback, and is not
processed by the security framework. To prevent a situation in which the
invocation callback cannot handle the challenge, disable the authentication
requirement for the submit procedure by using the wl_unprotected security
test.

v Alternatively, you can define a more sophisticated security test for this
function. Just make sure that the security context on the client side is
sufficient to answer the challenge. One way to do this is to enrich the client
security context by a call to WL.Client.connect before the adapter is called.

8-276 IBM MobileFirst Platform Foundation for iOS V7.0.0



v If your MobileFirst Server runs on WebSphere® Application Server, version 7
(any release) or releases of WebSphere Application Server Liberty 8.5 prior to
Fix Pack 2, the application server's Web container custom flag

com.ibm.ws.webcontainer.suppressLoggingServiceRuntimeExcep

must be set to true. The default is false. If this flag is not changed, then the
adapter will fail to authenticate and an exception will occur. For more
information, see APAR PM74090 or APAR PM79934 for WebSphere
Application Server.

In addition to implementing login-function and logout-function, you also need
to implement an adapter function that receives credentials from the client,
validate them, and create a user identity, for example, function
submitCredentials (user, password).
v The login function

The login-function parameter specifies the name of the JavaScript function to
be invoked once the login process is triggered. The triggering can happen
either when the client application explicitly invokes the WL.Client.login
API, or when an unauthenticated attempt to access a resource protected by
the adapter authentication realm is made. Use this function to return a
payload to the client to notify it about the required authentication. The
login-function receives original request headers that are converted to JSON as
a first function argument so that they can be used to decide on the kind of
authentication that is needed, for example. Then it is the login-function that
returns the response to the client, instead of the original function

v The logout function

The logout-function parameter specifies the name of the JavaScript function
to be invoked once logout from the realm has occurred. The logout can be
triggered by having the client application call the WL.Client.logout API, or
when the MobileFirst Server decides to invalidate the session (for example, a
session timeout). The logout-function receives no arguments.

v The submit credentials function

This is the function that actually performs the authentication. The client
should call this function with arguments containing user credentials or
authentication data. It should then validate the credentials and once
validated, this function should use WL.Server.setActiveUser(realm,
identity) to register the authenticated identity. The function can include a
flag or message in the response to let the application know if the login was
successful or not. If not, it is advised to programatically limit the number of
login trials in your application.

3. Code the client side.
a. Create a MobileFirst application, with an element for displaying the

application content and an element for authentication. For example, when
authentication is required, the application hides the applicative element and
shows the authentication element. When authentication is complete, it does
the opposite.

b. Create a challenge handler, by using the WL.Client.createChallengeHandler
method to create a challenge handler object. You must implement the
following mandatory methods: isCustomResponse, handleChallenge. In
addition, the following mandatory methods are available in every challenge
handler that you must use: submitAdapterAuthentication, submitSuccess,
submitFailure.

Developing MobileFirst applications 8-277

http://www-01.ibm.com/support/docview.wss?uid=swg1PM74090
http://www-01.ibm.com/support/docview.wss?uid=swg1PM79934


Note:
You must attach each of these mandatory challenge handler functions to its
object. For example: myChallengeHandler.submitSuccess.

Example

The following example demonstrates how to implement an adapter-based
authentication mechanism that relies on a user name and a password.

Configuration of the authenticationConfig.xml file
<securityTests>

<customSecurityTest name="SingleStepAuthAdapter-securityTest">
<test isInternalUserID="true" realm="SingleStepAuthRealm"/>

</customSecurityTest>
</securityTests>

<realms>
<realm loginModule="AuthLoginModule" name="SingleStepAuthRealm">
<className>com.worklight.integration.auth.AdapterAuthenticator</className>
<parameter name="login-function"

value="SingleStepAuthAdapter.onAuthRequired"/>
<parameter name="logout-function"

value="SingleStepAuthAdapter.onLogout"/>
</realm>

</realms>

<loginModules>
<loginModule name="AuthLoginModule">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule
</className>

</loginModule>
</loginModules>

Code the server side authentication

Perform the following steps:
1. Create an adapter that takes care of the authentication process. In this

example, it is SingleStepAuthAdapter.
2. SingleStepAuthAdapter could include the following two procedures, for

example:
<procedure name="submitAuthentication" securityTest="wl_unprotected"/>
<procedure name="getSecretData" securityTest="SingleStepAuthAdapter-securityTest"/>

v The submitAuthentication procedure takes care of the authentication
process and authentication is not required to call it.

v The getSecretData procedure is available to authenticated users only.
3. Define the onAuthRequired function:

function onAuthRequired(headers, errorMessage) {
errorMessage = errorMessage ? errorMessage : null;

return {
authRequired: true,
errorMessage: errorMessage

};
}

v This function receives the response headers and an optional
errorMessage parameter. The object that is returned by this function
is sent to the client application. The authRequired:true and
errorMessage:errorMessage pairs define a custom challenge object
that is sent to the application.

8-278 IBM MobileFirst Platform Foundation for iOS V7.0.0



v The authRequired:true property is used in a challenge handler to
detect that the server is requesting authentication.

v Whenever the MobileFirst framework detects an unauthenticated
attempt to access a protected resource, the onAuthRequired function is
called, as you defined in the authenticationConfig.xml file.

4. Define the submitAuthentication function. The function is called by the
client app to validate the user name and password.
/* In this sample, the credentials are validated against some
* hardcoded values, but any other validation mode is valid,
* for example by using SQL or web services. */
if (username==="worklight" && password === "worklight"){

/* If the validation passed successfully, the WL.Server.setActiveUser method
* is called to create an authenticated session for the SingleStepAuthRealm,
* with user data stored in a userIdentity object. You can add your own custom
* properties to the user identity attributes. */
var userIdentity = {
userId: username,
displayName: username,
attributes: {

foo: "bar"
}

};

WL.Server.setActiveUser("SingleStepAuthRealm", userIdentity);

/* An object is sent to the application, stating that the authentication
* screen is no longer required. */
return {

authRequired: false
};

}

/* If the credentials validation fails, an object that is built
* by the onAuthRequired function is returned to the application
* with a suitable error message. */
return onAuthRequired(null, "Invalid login credentials");
}

5. Define the getSecretData function. For the purposes of demonstration,
at the conclusion of successful authentication, you could return a
hard-coded value:
function getSecretData() {
return {

secretData: "Very very secret data"
};

}

6. Define the onLogout function, to be called automatically on logout. It
can perform a cleanup, for example.
function onLogout(){
WL.Logger.debug("Logged out");

}

Code the client side authentication

Perform the following steps:
1. Create a MobileFirst application.
2. You might create some HTML code, for example, to display application

content only after authentication is complete.
3. Create the challenge handler. Use the

WL.Client.createChallengeHandler method to create a challenge
handler object; supply a realm name as a parameter. For example:

Developing MobileFirst applications 8-279



var singleStepAuthRealmChallengeHandler =
WL.Client.createChallengeHandler("SingleStepAuthRealm");

/* The isCustomResponse function of the challenge handler
* is called each time a response is received from the server.
* That function is used to detect whether the response contains
* data that is related to this challenge handler. The function returns true or false.
*/

singleStepAuthRealmChallengeHandler.isCustomResponse = function(response) {
if (!response||!response.responseJSON||response.responseText === null) {

return false;
}
if (typeof(response.responseJSON.authRequired) !== ’undefined’){
return true;
} else {
return false;
}

};

4. Define a handleChallenge function. That function behaves differently
according to the result of the authRequired function in the previous
step.
/* If the isCustomResponse function returns true, the
* framework calls the handleChallenge function. This function
* is used to perform required actions, such as to hide the
* application screen or show the login screen. */
singleStepAuthRealmChallengeHandler.handleChallenge =
function(response){
var authRequired = response.responseJSON.authRequired;

if (authRequired == true){
$("#AppDiv").hide();
$("#AuthDiv").show();
$("#AuthPassword").empty();
$("#AuthInfo").empty();

if (response.responseJSON.errorMessage)
$("#AuthInfo").html(response.responseJSON.errorMessage);

} else if (authRequired == false){
$("#AppDiv").show();
$("#AuthDiv").hide();
singleStepAuthRealmChallengeHandler.submitSuccess();
}

};
$("#authCancelButton").click(function(){
singleStepAuthRealmChallengeHandler.submitFailure();

});

The code in this step demonstrates two of three additional challenge
handler functions that you need to use:
v The submitSuccess function notifies the MobileFirst framework that

the authentication process completed successfully. The MobileFirst
framework then automatically issues the original request that
triggered authentication.

v The submitFailure function notifies the MobileFirst framework that
the authentication process completed with failure. The MobileFirst
framework then disposes of the original request that triggered
authentication.

5. The third challenge handler function you must use is
submitAdapterAuthentication. It sends collected credentials to a

8-280 IBM MobileFirst Platform Foundation for iOS V7.0.0



specific adapter procedure. It has the same signature as the
WL.Client.invokeProcedure function. Here is an example:
$("#AuthSubmitButton").bind(’click’, function () {
var username = $("#AuthUsername").val();
var password = $("#AuthPassword").val();

var invocationData = {
adapter : "SingleStepAuthAdapter",
procedure : "submitAuthentication",
parameters : [ username, password ]

};

singleStepAuthRealmChallengeHandler.submitAdapterAuthentication(invocationData, {});
});

What to do next

For a more extensive example of implementing adapter-based authentication, see
the tutorials on the Getting Started page.

LTPA authenticator
Description and syntax for the LTPA authenticator.

Description

Use the Lightweight Third-Party Authentication authenticator to integrate with the
WebSphere Application Server LTPA mechanisms.

Note: This authenticator is supported only on WebSphere Application Server. To
avoid unnecessary errors on other application servers, the authenticator is
commented out in the default authenticationConfig.xml file that is created with
an empty MobileFirst project. To use it, remove the comments first.

This authenticator can be used with the WASLTPAModule login module.

Class Name
com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator

Parameters

The adapter authenticator class has the following parameters:

Parameter Description

login-page Mandatory. The login page URL relative to the web application context.

error-page Optional. The error page URL relative to the web application context. If
this parameter is not set, the URL from the login-page is also used for
the error-page.

cookie-domain Optional. A String such as example.com, which specifies the domain in
which the LTPA SSO cookie applies. If this parameter is not set, no
domain attribute is set on the cookie. The single sign-on is then
restricted to the application server host name and does not work with
other hosts in the same domain.
Note: This parameter is deprecated. Define this parameter in the
<loginModule> entry for the WebSphereLoginModule instead. If the
parameter is defined in both places, the value in the <loginModule>
entry takes precedence.

Developing MobileFirst applications 8-281

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/


Parameter Description

httponly-cookie Optional. A String with a value of either true or false, which specifies
whether the cookie has the HttpOnly attribute set. This attribute helps
to prevent cross-site scripting attacks.
Note: This parameter is deprecated. Define this parameter in the
<loginModule> entry for the WebSphereLoginModule instead. If the
parameter is defined in both places, the value in the <loginModule>
entry takes precedence.

cookie-name Optional. A String that specifies the name of the LTPA SSO cookie. If
this parameter is not set, the default cookie name is LtpaToken.
Note: This parameter is deprecated. Define this parameter in the
<loginModule> entry for the WebSphereLoginModule instead. If the
parameter is defined in both places, the value in the <loginModule>
entry takes precedence.

Example
<realm name="WASLTPARealm" loginModule="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>
<parameter name="login-page" value="/login.html"/>
<parameter name="error-page" value="/loginError.html"/>

</realm>

Configuring login modules
Login modules are defined in <loginModule> elements in the
authenticationConfig.xml file.

The <loginModules> element contains a separate <loginModule> subelement for
each login module.

The <loginModule> element has the following attributes:

Attribute Description

expirationInSeconds Optional. Defines the expiration period of
realms that use this login module. Note that
authentication to a login module is only
valid within the same client session.
Therefore, a client that has successfully
authenticated with the login module remains
authenticated until the end of the expiration
period, or until the end of the session,
whichever occurs first. The default
expiration is the special value "-1", which
indicates that there is no set expiration
period and the login remains valid until the
end of the client session.

name Mandatory. The unique name by which
realms reference the login module.

8-282 IBM MobileFirst Platform Foundation for iOS V7.0.0



Attribute Description

audit Optional. Defines whether login attempts
that use the login module are logged in the
audit log. The log file is Worklight Project
Name/server/log/audit/audit.log.

Valid values are:

true
Login and logout attempts are logged in
the audit log.

false
Default. Login and logout attempts are
not logged in the audit log.

The MobileFirst security framework provides several built-in realms (for example,
directUpdate and remoteDisable). In order to modify the default expiration period
of these realms, open the worklight.properties file, uncomment the line
corresponding to the realm, and change the expiration value. The following shows
the relevant sections in worklight.properties:

#######################################################################################################################
# Expiration time for built-in realms
#######################################################################################################################
# Use these properties to configure the expiration time (in seconds) for Worklight’s built-in realms.
# A value of -1 means the realm will remain authenticated as long as the server session doesn’t time out.
#wl.realm.expiration.directUpdate=-1
#wl.realm.expiration.remoteDisable=300
#wl.realm.expiration.deviceAutoProvisioning=-1
#wl.realm.expiration.deviceNoProvisioning=-1
#wl.realm.expiration.antiXSRF=-1
#wl.realm.expiration.authenticity=-1
#wl.realm.expiration.anonymousUser=-1

The <loginModule> element has the following subelements:

Element Description

<className> Mandatory. The class name of the login
module.

For details of the supported login modules,
see the following topics.

<parameter> Optional. An initialization property of the
login module. The supported properties and
their semantics depend on the login module
class.

This element can occur multiple times.

Non-validating login module
The non-validating login module accepts any user name and password passed by
the authenticator.

Class Name
com.worklight.core.auth.ext.NonValidatingLoginModule

Developing MobileFirst applications 8-283



Parameters

None
<loginModule name="dummy">
<className> com.worklight.core.auth.ext.NonValidatingLoginModule </className>
</loginModule>

Single identity login module
The single identity login module is used to grant access to a protected resource to
a single user, the identity of which is defined in the worklight.properties file. Use
this module only for test purposes.

Class Name
com.worklight.core.auth.ext.SingleIdentityLoginModule

Parameters

None

Configuration

.The worklight.properties file must contain the following properties:

Key Description

console.username Name of the user who can access the
protected resource.

console.password Password of the user who can access the
protected resource. The password can be
encrypted as indicated in “Storing properties
in encrypted format” on page 10-56.

Header login module
The Header login module is always used with the Header authenticator. It
validates the request by looking for specific headers.

Class Name
com.worklight.core.auth.ext.HeaderLoginModule

Parameters

The Header login module has the following parameters:

Parameter Description

user-name-header Mandatory. The name of the header that
contains the user name. If the request does
not contain this header, the authentication
fails.

display-name-header Optional. The name of the header that
contains the display name. If this parameter
is not specified, the user name is used as the
display name.

8-284 IBM MobileFirst Platform Foundation for iOS V7.0.0



<loginModule name="HeaderLoginModule" audit="true">
<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="userid"/>
<parameter name="display-name-header" value="username"/>

</loginModule>

WASLTPAModule login module
The WASLTPAModule login module enables integration with WebSphere
Application Server LTPA mechanisms.

Note: This login module is only supported on WebSphere Application Server. To
avoid unnecessary errors when IBM MobileFirst Platform Foundation for iOS is
run on other application servers, the login module is commented out in the default
authenticationConfig.xml file that is created with an empty MobileFirst project. To
use it, remove the comments first.

Class Name

com.worklight.core.auth.ext.WebSphereLoginModule

Parameters

The login module class has the following parameters:

Parameter Description

cookie-domain Optional. A String such as example.com, which specifies the domain in
which the LTPA SSO cookie applies. If this parameter is not set, no
domain attribute is set on the cookie. The single sign-on is then
restricted to the application server host name and does not work with
other hosts in the same domain.

httponly-cookie Optional. A String with a value of either true or false, which specifies
whether the cookie has the HttpOnly attribute set. This attribute helps
to prevent cross-site scripting attacks.

cookie-name Optional. A String that specifies the name of the LTPA SSO cookie. If
this parameter is not set, the default cookie name is LtpaToken.

role Optional. A String that specifies the Java EE role that the authenticated
user must belong to for the login to be successful. If the parameter is
not specified, no role checking is performed.

Note: When you specify a role parameter, the role must be defined in the
MobileFirst web application deployment descriptor (web.xml). A set of users or
groups must be mapped to that role by using the usual WebSphere Application
Server mechanisms.
<loginModule name="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
<parameter name="role" value="wluser"/>
<parameter name="cookie-domain" value="example.com"/>
<parameter name="httponly-cookie" value="true"/>
<parameter name="cookie-name" value="LtpaToken2"/>

</loginModule>

LDAP login module
You can use the LDAP login module to authenticate users against LDAP servers,
for example Active Directory, or OpenLDAP.

Developing MobileFirst applications 8-285



LDAP login module implements a UserNamePasswordLoginModule interface, so you
must use it with an authenticator that implements a
UsernamePasswordAuthenticator interface.

Class Name
com.worklight.core.auth.ext.LdapLoginModule

Parameters

You must set the following parameters for the LDAP login module:

Parameter Description Sample values

ldapProviderUrl Mandatory. The IP address or the
URL of the LDAP server.

ldap://10.0.1.2

ldaps://10.0.1.3

ldapTimeoutMs Mandatory. The connection timeout
to the LDAP server in milliseconds.

2000

ldapSecurityAuthentication Mandatory. The LDAP security
authentication type. The value is
usually simple. Consult your LDAP
administrator to obtain the relevant
authentication type.

none

simple

strong

validationType Mandatory. The type of validation.
The value can be exists,
searchPattern, or custom. See the
following table for more details.

exists

searchPattern

custom

ldapSecurityPrincipalPattern Mandatory. Depending on the
LDAP server type, this parameter
might require security credentials
that you must supply in several
formats. Some LDAP servers
require only the user name, for
example john, and others require
the user name and the domain, for
example john@server.com. You use
this property to define the pattern
to create your user name based
credentials. You can use the
{username} placeholder.

{username}

{username}@myserver.com

CN={username},DC=myserver,DC=com

ldapSearchFilterPattern Optional. This parameter is
required only if the value of the
validationType parameter is
searchPattern. You use this
parameter to define a search filter
pattern that is run when a
successful LDAP binding is
established. The user validation is
successful if the search returns one
or more entries. You can use the
{username} placeholder. The syntax
might change depending on the
LDAP server type.

(sAMAccountName={username})

(&(objectClass=user)
(sAMAccountName={username})
(memberof=CN=Sales,OU=Groups,
OU=MyCompany,DC=myserver,DC=com))

8-286 IBM MobileFirst Platform Foundation for iOS V7.0.0



Parameter Description Sample values

ldapSearchBase Optional. This parameter is
required only if the validationType
parameter is searchPattern. Use
this parameter to define the base of
the LDAP search.

dc=myserver,dc=com

ldapReferral Optional. This parameter indicates
to the service providers how to
handle referrals. If a value is not
specified for this property, then no
value is assigned to it.

Possible values are:

v ignore - referrals are ignored

v follow - referrals are
automatically followed

v throw - each referral causes a
ReferralException to be thrown

ignore

Sample LDAP login module definition:
<loginModule name="LDAPLoginModule">

<className>com.worklight.core.auth.ext.LdapLoginModule</className>
<parameter name="ldapProviderUrl" value="ldap://10.0.1.2"/>
<parameter name="ldapTimeoutMs" value="2000"/>
<parameter name="ldapSecurityAuthentication" value="simple"/>
<parameter name="validationType" value="searchPattern"/>
<parameter name="ldapSecurityPrincipalPattern" value="{username}@myserver.com"/>
<parameter name="ldapSearchFilterPattern" value="(&amp;(objectClass=user)(sAMAccountName={username})

(memberof=CN=Sales,OU=Groups,OU=MyCompany,DC=myserver,DC=com))"/>
<parameter name="ldapSearchBase" value="dc=myserver,dc=com"/>
<parameter name="ldapReferral" value="ignore"/>

</loginModule>

Values of the validationType parameter

Value Description

exists The login module tries to establish the LDAP binding with the supplied
credentials. The credentials validation is successful if the binding is
successfully established.

searchPattern The login module tries to do the exists validation. When the validation
succeeds, the login module issues a search query to the LDAP server
context, according to the ldapSearchFilterPattern and ldapSearchBase
parameters. The credentials validation is successful if the search query
returns one or more entries.

custom With this value, you can implement custom validation logic. The login
module tries to do the exists validation. When the validation succeeds, the
login module calls a public boolean doCustomValidation(LdapContext
ldapCtx, String username) method. To override this method, you must
create a custom Java class in your MobileFirst project and extend from
com.worklight.core.auth.ext.UserNamePasswordLoginModule. See the
following example.

Sample custom validation implementation:
package mycode;
import javax.naming.ldap.LdapContext;
import com.worklight.core.auth.ext;

Developing MobileFirst applications 8-287



public class MyCustomLdapLoginModule extends LdapLoginModule {

@Override
public boolean doCustomValidation(LdapContext ldapCtx, String username, String password) {

boolean success = true;

// Do some custom validations here using ldapCtx, validationProperties and username
// Return true in case of validation success and false otherwise

return success;
}

}

Note:

After you implement your custom extension of LdapLoginModule, use it as a
className value of LoginModule in your AuthenticationConfig.xml file.

Configuring device auto provisioning
You can change the default behavior of device auto provisioning with regards to
granularity of the provisioning, and pre-required realms for provisioning. You can
also change the CA certificate (root certificate) that is used to issue certificates for
provisioned devices.

Procedure
v To change the default behavior of provisioning granularity and pre-required

realms, define a new realm for device provisioning and add the following
<realm> element to the <realms> element in the authenicationConfig.xml file.
Then, use it in your security test of choice:
<realm name="wl_myProvisioningRealm"

loginModule="WLDeviceAutoProvisioningLoginModule">
<className>com.worklight.core.auth.ext.DeviceAutoProvisioningAuthenticator</className>
<parameter name="provisioned-entity" value="application" />
<parameter name="pre-required-realms" value="wl_authenticityRealm" />

<realm>

where provisioned-entity can have one of the following values:
– application
– device
– group:<group-name>, where group-name is the name of the provisioning

application group

and pre-required-realms is a comma-separated list of realm names that are
required to be successfully logged in to before provisioning is allowed to begin.

Note: Applications must be signed by the same signing credentials and (on iOS)
share the same bundleID prefix.

v To use a CA certificate other than the default MobileFirst CA certificate,
configure the following properties.

wl.ca.keystore.path 
The path to the keystore, relative to the server folder in the MobileFirst
Project, for example: conf/default.keystore.

8-288 IBM MobileFirst Platform Foundation for iOS V7.0.0



wl.ca.keystore.type
The type of the keystore file. Valid values are jks or pkcs12.

wl.ca.keystore.password 
The password to the keystore file, for example: worklight.

wl.ca.key.alias
The alias of the entry where the private key and certificate are stored, in
the keystore, for example: keypair1.

wl.ca.key.alias.password
The password to the alias in the keystore for example: worklight.

For information about how to specify MobileFirst configuration properties, see
“Configuration of MobileFirst applications on the server” on page 10-48

v To enable multiple applications to share the same certificate, define a bundleId
attribute in the application descriptor.

Configuring and implementing custom device provisioning
Custom device provisioning is an extension of auto device provisioning. The main
difference between auto and custom provisioning is that you can perform custom
validation of the certificate signing request (CSR) during the provisioning process
and custom validation of the certificate during each device authentication process.

The custom device provisioning must be implemented in the JavaScript code of an
adapter. Specify the names of the validate-csr and validate-certificate
functions in the authenticationConfig.xml file as realm and login module
parameters:

<securityTests>
<mobileSecurityTest name="CustomDeviceProvisioningSecurityTest">

<testAppAuthenticity/>
<testDeviceId provisioningType="custom" realm="CustomDeviceProvisioningRealm"/>

</mobileSecurityTest>
</securityTests>

<realms>
<realm name="CustomDeviceProvisioningRealm" loginModule="CustomDeviceProvisioningLoginModule">

<className>com.worklight.core.auth.ext.DeviceAutoProvisioningAuthenticator</className>
<parameter name="validate-csr-function" value="ProvisioningAdapter.validateCSR"/>

</realm>
</realms>

<loginModules>
<loginModule name="CustomDeviceProvisioningLoginModule">

<className>com.worklight.core.auth.ext.DeviceAutoProvisioningLoginModule</className>
<parameter name="validate-certificate-function" value="ProvisioningAdapter.validateCertificate"/>

</loginModule>
</loginModules>

The validate-csr-function checks that the certificate signing request (CSR) sent
by the client is complete and contains the correct information that is needed for the
certification of the device. This logic might also validate some properties of CSR
against internal or external services / directories.

The validate-certificate-function verifies that the certificate was issued with
the right certificate authority (CA). The logic might also verify that the certificate
contains all the necessary data about the device for this custom device
authentication realm.

Developing MobileFirst applications 8-289



For more information about how to implement these functions, see the tutorials on
the Getting Started page.

It is important to understand the concept of mobile device authentication and auto
provisioning. For more information about mobile device authentication, see
“Mobile device authentication” on page 8-257.

With custom device provisioning, you can also implement custom variations of the
CSR during the initial provisioning flow and of the certificate at each application
start.

You must configure the server and the client for custom device provisioning.

Implementing server-side components for custom device
provisioning
You can implement server-side components for custom device provisioning.

About this task

To implement server-side components for custom device provisioning, complete
the following steps.

Procedure
1. Create an adapter and name it ProvisioningAdapter.
2. Add two functions with the following signatures to the adapter’s JavaScript

file:
v The validateCSR(clientDN, csrContent) function is called only during initial

device provisioning. The function is used to check whether the device is
authorized to be provisioned. After the device is provisioned, this function is
not called again.

v The validateCertificate(certificate, customAttributes) function is called
each time that the mobile application establishes a new session with the
MobileFirst Server. The function is used to validate that the certificate that
the application or device possesses is still valid and that the application or
device is allowed to communicate with the MobileFirst Server.

Note: These functions are called internally by the MobileFirst authentication
framework. Do not declare them in the adapter’s XML file.

3. Configure the authenticationConfig.xml file.
a. Add a realm and name it CustomDeviceProvisioningRealm to the

authenticationConfig.xml file.
v Use CustomDeviceProvisioningLoginModule for the loginModule.
v Use the auto provisioning authenticator className parameter.
v Add a validate-csr-function parameter.
v The value of this parameter points to an adapter function that validates

the certificate signing request (CSR).
<realms>

<realm name="CustomDeviceProvisioningRealm"
loginModule="CustomDeviceProvisioningLoginModule">

<className>com.worklight.core.auth.ext.DeviceAutoProvisioningAuthenticator</className>
<parameter name="validate-csr-function"

value="ProvisioningAdapter.validateCSR" />
</realm>

</realms>

b. Add the loginModule named CustomDeviceProvisioningLoginModule.

8-290 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/


v Use the auto provisioning login module className parameter.
v Add a validate-certificate-function parameter.
v The value of this parameter points to an adapter function that validates

the certificate.
<loginModules>

<loginModule name="CustomDeviceProvisioningModule">
<className>com.worklight.core.auth.ext.DeviceAutoProvisioningLoginModule</classname>
<parameter name="validate-certificate-function"

value="ProvisioningAdapter.validateCertificate" />
</loginModule>

</loginModules>

c. Create a securityTest named mobileSecurityTest.
v Add a mandatory <testAppAuthenticity /> test.
v Add a mandatory <testDeviceId /> test.
v Specify provisioningType="custom".
v Specify realm="CustomDeviceProvisioningRealm".
<securityTests>

<mobileSecurityTest name="CustomDeviceProvisioningSecurityTest">
<testAppAuthenticity />
<testDeviceId provisioningType="custom" realm="CustomDeviceProvisioningRealm" />

</mobileSecurityTest>
</securityTests>

Results

You implemented server-side components for custom device provisioning.

Example

validateCSR function
The following example shows the validateCSR function:
function validateCSR(clientDN, csrContent) {

WL.Logger.log("validateCSR :: clientDN :: " + JSON.stringify(clientDN));
WL.Logger.log("validateCSR :: csrContent :: " + JSON.stringify(csrContent));

var activationCode = csrContent.activationCode;

// This is a place to perform validation of csrContent and update clientDN if required.
// You can do it using adapter backend connectivity
if (activationCode == "worklight") {

response = {
isSuccessful: true,
clientDN: clientDN + ",CN=someCustomData",
attributes: {

customAttribute: "some-custom-attribute"
}

};
} else {

response = {
isSuccessful: false,
errors: ["Invalid activation code"]

};
}

return response;
}

validateCertificate function
The following example shows the validateCertificate function:
function validateCertificate(certificate, customAttributes) {

WL.Logger.log("validateCertificate :: certificate :: + "JSON.stringify(certificate));
WL.Logger.log("validateCertificate :: customAttributes :: + "JSON.stringify(customAttributes));

// Additional custom certificate validations can be performed here.

Developing MobileFirst applications 8-291



return {
isSuccessful: true

};
}

What to do next

You can implement client-side components for custom device provisioning. For
more information about implementing client-side components, see “Implementing
client-side components for custom device provisioning.” For more information
about custom device provisioning, see tutorial on the Getting Started page.

Implementing client-side components for custom device
provisioning
You can implement client-side components for custom device provisioning.

The following prerequisites are required for device provisioning:
v MobileFirst Server from MobileFirst Enterprise Edition or IBM MobileFirst

Platform Foundation Consumer Edition.
v In the Application Center console, application authentication must be set to

enabled, blocking.

The included MobileFirst Development Server can be used for device provisioning.

The following sections describe the implementation of the client-side components
in iOS applications.

Implementing client-side components for native iOS:

You can implement client-side components for custom device provisioning in
native iOS.

Before you begin

For more information about the prerequisites, see “Implementing client-side
components for custom device provisioning.”

About this task

To implement client-side components for custom device provisioning, complete the
following steps.

Procedure

1. Create a MobileFirst native API application for iOS.
2. Configure the application for the Application Authenticity test. The authenticity

test works only with IBM MobileFirst Platform Foundation Consumer Edition
and IBM MobileFirst Platform Foundation Enterprise Edition. For more
information about application authenticity, see “MobileFirst application
authenticity overview” on page 8-247.

3. Create an iOS native application and use the wlConnectWithDelegate function
to connect to the server.

4. For the wlConnectWithDelegate function to trigger authentication, specify the
MobileFirst native API application as a protected resource by adding a custom
security test or mobile security test in the application descriptor.
<nativeIOSApp securityTest="MySecurityTest" version="1.0">

8-292 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/


5. Add a new class CustomChallengeHandlerand register it in the main by using
[[WLClient sharedInstance]
registerChallengeHandler:[customChallengeHandler
initWithRealm:@"wl_myCustomProvisioningRealm"]].

6. Implement the following methods, which are required by the challenge handler
for device provisioning.

createCustomCsr(challenge)
This method is responsible for returning custom properties that are
added to the certificate signing request (CSR). Add a custom
activationCode property, which is used in the adapterâ€

™s validateCSR
function.

handleSuccess(identity)
This method is called when certificate validation is successfully
completed by the validateCertificate adapter function.

handleFailure()
This method is called when certificate validation fails. You must call
clearDeviceProvisioningCertificate() from this method to delete the
stored certificate on the device.

Here is a sample implementation of a challenge handler for custom device
provisioning:

@interface CustomChallengeHandler : BaseProvisioningChallengeHandler <WLDelegate>{
@private

ViewController *vc;
}
- (id)initWithController: (ViewController *)mainView;
- (void) createCustomCsr : (NSDictionary *) challenge;
@property (nonatomic, strong)NSString *passcode;
@end

@implementation CustomChallengeHandler
- (id)initWithController: (ViewController *) mainView{

if ( self = [super init] )
{

vc = mainView;
}
return self;

}
-(void) createCustomCsr : (NSDictionary *) challenge {

[vc updateMessage:@"\nCreating custom Csrâ€⌂];
[vc updateMessage:[NSString stringWithFormat:@"\t Passcode :: %@", self.passcode]

NSMutableDictionary* answer =[[NSMutableDictionary alloc] init];
[answer setValue:self.passcode forKey:@"activationCode"];
[self submitCsr:answer :challenge];

}
-(void)onSuccess:(WLResponse *)response {

[vc updateMessage:@"Device authentication with custom device provisioning was successfully completed"];
[vc updateMessage:response.description];

}
-(void)onFailure:(WLFailResponse *)response{

[vc updateMessage:@"Server has rejected your device. You must reinstall the application and perform
device provisioning again."];

[vc updateMessage:response.description];
}
@end

Developing MobileFirst applications 8-293



Results

You have implemented client-side components for custom device provisioning in
native iOS.

What to do next

You can implement server-side components for custom device provisioning. For
more information, see “Implementing server-side components for custom device
provisioning” on page 8-290. For more information about custom device
provisioning, see the tutorial on the Getting Started page.

Device single sign-on (SSO)
Single sign-on (SSO) enables users to access multiple resources (that is, applications
and adapter procedures) by authenticating only once.

When a user successfully logs in through an SSO-enabled login module, the user
gains access to all resources that are using the same login module, without having
to authenticate again for each of them. The authenticated state remains alive as
long as requests to resources protected by the login module are being issued
within the timeout period, which is identical to the session timeout period.

Device authentication

The SSO feature requires the use of device authentication. This means that for a
protected resource that needs to be protected with SSO, there must also be a device
authentication realm in the securityTest protecting the resource in the
authenticationConfig.xml file. Device authentication should take place before the
SSO-enabled user authentication.

Performance

When you use the single sign-on feature, the load on the database might increase,
and you might have to adjust the database configuration.

Implementing a custom authentication to support SSO

To allow SSO to operate on your custom authentication classes (authenticator and
loginModule) you must:
1. Make all fields in your class transient except for those fields that are being used

by the following methods:
v
WorklightAuthenticator.processRequestAlreadyAuthenticated(HttpServletRequest,
HttpServletResponse)

v WorklightAuthLoginModule.logout()

2. Mark the authenticator and loginModule classes (and any class referred to by
those classes that is not transient after you perform step 1) with the class
annotation @DeviceSSO(supported = true) .

Device SSO in the OAuth-based security model

OAuth resources are not protected by security tests and do not have a single
defined user realm per resource, therefore the standard MobileFirst device SSO
behavior does not apply for them.

8-294 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/


However, in order to obtain an access token in the MobileFirst OAuth-based
security model, the client is also required to pass the application's security test. If
SSO is configured for this security test, it will function for the MobileFirst
OAuth-based security model as it does for the classical MobileFirst security model.

Configuring device single sign-on
Single sign-on (SSO) is a property of a login module. You can enable single sign-on
for custom security tests and for mobile security tests.

About this task

You can enable single sign-on from a <mobileSecurityTest> element or from a
<loginModule> element of theauthenticationConfig.xml configuration file. For
custom security tests, you enable single sign-on on the <loginModule> element. For
mobile security tests, you enable single sign-on on the testUser realm of the
<mobileSecurityTest> element.

Basically, you configure SSO in the same way for native IOS applications as for
hybrid applications. However, for native SSO to work on iOS, this additional step
is mandatory: In Xcode, add a Keychain Access Group with the same name for all
apps that participate in device SSO.

Procedure

Take the following points into consideration, depending on how you choose to
configure device single sign-on:
v When you configure <mobileSecurityTest> elements, enable single sign-on from

the <securityTest> element by setting the value of the sso attribute to true. You
can enable SSO for user realms only. If the sso attribute is not specified, it is
assumed to be set to false. For example:

<mobileSecurityTest name="mst">
<testDeviceId provisioningType="none"/>
<testUser realm="myUserRealm" sso="true"/>

</mobileSecurityTest>

v When you configure <customSecurityTest> elements, enable single sign-on by
configuring an ssoDeviceLoginModule property on the user login module in the
authentication configuration file, where ssoDeviceLoginModule is the name of the
login module that is used for the device authentication realm. For example:

<loginModule name="MySSO" ssoDeviceLoginModule="WLDeviceNoProvisioningLoginModule">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>

</loginModule>

In this example, "MySSO" is the name of the user login module for which single
sign-on is being enabled so that its login can be shared.
"WLDeviceNoProvisioningLoginModule" is the name of the login module that
handles device authentication; in this case, with no provisioning. To use
auto-provisioning as the device login module, set the ssoDeviceLoginModule
property to the value "WLDeviceAutoProvisioningLoginModule". With custom
provisioning, you define the name when you create the custom provisioning
login module.

v When you configure <customSecurityTest> elements, you must configure the
user realm at least one step later than the device realm. This is necessary to
ensure that the SSO feature operates correctly. When you configure SSO on
<mobileSecurityTest>, the platform takes care of this prioritization
automatically. The following example illustrates a correct <customSecurityTest>
configuration:

Developing MobileFirst applications 8-295



<customSecurityTest name="adapter">
<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" step="1"/>
<test realm="MySSO" isInternalUserID="true" step="2"/>

</customSecurityTest>

v For Windows Phone 8, the following items must be implemented:
– The Publisher ID specified in the WMAppManifest.xml file must be the same for

all applications that participate in the single sign-on.
– The following line must be added to the WMAppManifest.xml file:

<Capability Name=’ID_CAP_IDENTITY_DEVICE’ />

v A cleanup task cleans the database of orphaned and expired single-sign-on login
contexts. To configure the cleanup task interval, use the
sso.cleanup.taskFrequencyInSeconds server property and assign the required
task interval value, expressed in seconds. For information about how to specify
MobileFirst configuration properties, see “Configuration of MobileFirst
applications on the server” on page 10-48.

Results

Device single sign-on implementations are successful if they conform to any of the
following valid configurations. Avoid inconsistent states that result from
configurations with built-in conflicts, as described below. Inconsistent states can
result in the MobileFirst project failing to start.

Valid configurations:

v The <loginModule> element does not specify the ssoDeviceLoginModule
attribute, and all mobile security tests that use this login module for
their user realms have sso=”false”. In this case, SSO is disabled for all
applications that are protected by security tests (mobile or custom) with
this login module for a user realm. For example:

<securityTests>
<mobileSecurityTest name="FormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="false"/>

</mobileSecurityTest>
<mobileSecurityTest name="AnotherFormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="false"/>

</mobileSecurityTest>
</securityTests>
<realms>

<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>

</realm>
</realms>
<loginModules>

<loginModule name="StrongDummy">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>

</loginModule>
</loginModules>

v The <loginModule> element does not specify the ssoDeviceLoginModule
attribute, and all mobile security tests that use this login module for
their user realms have sso=”true”. In this case, SSO is enabled for all
applications that are protected by security tests (mobile or custom) with
this login module for a user realm. For example:

<securityTests>
<mobileSecurityTest name="FormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="true"/>

</mobileSecurityTest>

8-296 IBM MobileFirst Platform Foundation for iOS V7.0.0



<mobileSecurityTest name="AnotherFormTest">
<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="true"/>

</mobileSecurityTest>
</securityTests>
<realms>

<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>

</realm>
</realms>
<loginModules>

<loginModule name="StrongDummy">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>

</loginModule>
</loginModules>

v The <loginModule> element specifies the ssoDeviceLoginModule attribute,
and all mobile security tests that use this login module for their user
realms have sso=”true”. In this case, SSO is enabled for all applications
that are protected by security tests (mobile or custom) with this login
module for a user realm. For example:

<securityTests>
<mobileSecurityTest name="FormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="true"/>

</mobileSecurityTest>
<mobileSecurityTest name="AnotherFormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="true"/>

</mobileSecurityTest>
</securityTests>
<realms>

<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>

</realm>
</realms>
<loginModules>

<loginModule name="StrongDummy" ssoDeviceLoginModule="WLDeviceAutoProvisioningLoginModule">
<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>

</loginModule>
</loginModules>

Single sign-on inconsistent state

Avoid conflicts in the single sign-on configuration of a login module. Such
conflicts cause inconsistency in the single sign-on state of the login
module, and can lead to unexpected results.

A conflict can exist between the configuration of a <loginModule> element
and the configuration of a <mobileSecurityTest> element. Such conflict can
happen when you enable single sign-on of a login module in the
<loginModule> element and then disable single sign-on for the same login
module, by using it in a <mobileSecurityTest> without specifying
sso=”true” for the realm of this <loginModule>. For example:

<securityTests>
<mobileSecurityTest name="FormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm"/>

</mobileSecurityTest>
</securityTests>
<realms>

<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>

</realm>
</realms>

Developing MobileFirst applications 8-297



<loginModules>
<loginModule name="StrongDummy" ssoDeviceLoginModule="WLDeviceAutoProvisioningLoginModule">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

</loginModules>

Another case of conflict can happen between different
<mobileSecurityTest> elements, when two <mobileSecurityTest> elements
use the same login module, with conflicting values for the sso attribute. In
this example, the same realm contains conflicting sso enablement states in
two <mobileSecurityTest> elements.

<securityTests>
<mobileSecurityTest name="FormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm"/>

</mobileSecurityTest>
<mobileSecurityTest name="FormTestWithSso">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm" sso="true"/>

</mobileSecurityTest>
</securityTests>

Here is another example, in which the same login module is used for
different realms with conflicting SSO enablement states in two
<mobileSecurityTest> elements:

<securityTests>
<mobileSecurityTest name="FormTest">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealm"/>

</mobileSecurityTest>
<mobileSecurityTest name="FormTestWithSso">

<testDeviceId provisioningType="none"/>
<testUser realm="SampleAppRealmWithSso" sso="true"/>

</mobileSecurityTest>
</securityTests>
<realms>

<realm name="SampleAppRealm" loginModule="StrongDummy">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>

</realm>
<realm name="SampleAppRealmWithSso" loginModule="StrongDummy">

<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>
</realm>

</realms>

What to do next

When you use a reverse proxy, more configuration and settings are necessary.
Either of the following options allow device SSO to work with a reverse proxy.

Device single sign-on with the IBM Security Access Manager
Web reverse proxy
Additional configuration and settings are required when you use the IBM Security
Access Manager Web reverse proxy.

You can configure the IBM Security Access Manager Web reverse proxy or IBM
Security Access Manager WebSEAL when you enable device SSO to delegate user
authentication to the MobileFirst Device SSO realm. For more information about
the required configurations and samples, see IBM Security Access Manager for IBM
MobileFirst Platform Foundation for iOS.

8-298 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg24034222
http://www.ibm.com/support/docview.wss?uid=swg24034222


This option is supported on all mobile platforms and you can use the IBM Security
Access Manager features such as Risk-Based Access (RBA), Context-Based Access
(CBA), Strong Authentication (One-time password), and Identity aware
applications (OAuth) to further enhance security.

Configuring device single sign-on with a reverse proxy
Additional configuration and settings are required when you use a reverse proxy.

Before you begin

Ensure that you configured device single sign-on as explained in “Configuring
device single sign-on” on page 8-295.

About this task

Device SSO and reverse proxies

Device single sign-on with a reverse proxy can also be achieved with the
“Simple data sharing” on page 8-253 feature. The Simple Data Sharing
feature allows a set of applications to share authentication cookies that
allow access through the reverse proxy and delegate authentication to the
MobileFirst Server Device SSO realm.

With the Simple Data Sharing feature, you can tell the MobileFirst client
runtime environment to share credentials among applications in the same
MobileFirst application family. Because you are working with security
tokens, you must ensure that access to the applications is protected by
other mechanisms. For example, ensure that the device is not jailbroken,
and that the device is password-protected. For more information, see
“Simple data sharing limitations and special considerations” on page 8-256.

The following steps show how to configure device single sign-on with a reverse
proxy.

Procedure
1. Enable the Simple Data Sharing feature as explained in “Enabling the Simple

Data Sharing feature” on page 8-254.
2. For hybrid applications, follow these steps.

a. Ensure that you select the MobileFirst device SSO option.
b. Specify a comma-separated list of cookie names that you want IBM

MobileFirst Platform Foundation for iOS to remember and share among the
applications in your specified family.

3. For native applications, follow these steps.
a. Add the wlShareCookies property in the MobileFirst properties file.

Developing MobileFirst applications 8-299



b. Specify a comma-separated list of cookie names that you want IBM
MobileFirst Platform Foundation for iOS to remember and share among the
applications in your specified family.

wlShareCookies = PD-S-SESSION-ID

Each application in the MobileFirst family must be enabled for simple data
sharing, and must also specify the cookie, which it agrees to share and reuse.
For example, you can specify any one of the PD-*SESSION-ID cookies for IBM
Security Access Manager or the Ltpatoken or Ltpatoken2 cookies for IBM
WebSphere DataPower.

Results

You have configured device single sign-on with a reverse proxy.

Developing accessible applications
To develop accessible applications, easily used by people with disabilities, this topic
helps you to learn about resources available to improve the accessibility of your
apps.

When you build an application for your business, it is important to consider the
user experience of individuals with a disability or impairment. Taking steps to
consider enablement of tools like screen magnification, audio assistance, or other
assistive technologies can extend the reach of your business.

In general, mobile applications can be made highly accessible. This following
sections provide resources to help you make your mobile application as accessible
as possible. IBM MobileFirst Platform Foundation for iOS provides a strong
foundation for building accessible applications because it supports industry
standards and allows you to leverage them.

Native application accessibility

If your application is native, the ability to make it accessible is determined by the
capabilities of the target platform itself. The links that follow provide resources for
the supported mobile platforms, laying out available options and capabilities.
v iOS

– Accessibility in iOS
– Understanding Accessibility on iOS
– iOS. A wide range of features for a wide range of needs.

Client-side log capture
Applications in the field occasionally experience problems that require a
developer's attention to fix. It is often difficult to reproduce problems in the field.
Developers who worked on the code for the problem application often do not have
the environment or exact device with which to test. In these situations, it is helpful
to be able to retrieve debug logs from the client devices as the problems occur in
the environment in which they happen.

Starting in IBM Worklight V6.2.0, developers that use MobileFirst client-side APIs
who want to capture both platform (IBM MobileFirst Platform Foundation for iOS)

8-300 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.apple.com/technologies/ios/accessibility.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Accessibility_on_iPhone/Accessibility_on_iPhone.html
http://www.apple.com/accessibility/iphone/vision.html


and application (your code) logs for debug and problem determination should use
the appropriate client-side APIs. By doing so, debug log data is made available for
capture and sending to the server.

Introduction to client-side logging

The APIs that are available with MobileFirst client libraries include a logger in
JavaScript and iOS native code base. The logger API is similar to commonly used
logger APIs, such as console.log (JavaScript), java.util.logging (Java), and NSLog
(Objective-C). The MobileFirst logger API has the additional capability of
persistently capturing logged data for sending to the server to be used for analytics
gathering and developer inspection. Use the logger APIs to report log data at
appropriate levels so that developers who inspect logs can triage and fix problems
without having to reproduce problems in their labs.

There are seven levels. From least verbose to most verbose, they are FATAL,
ERROR, WARN, INFO, LOG, DEBUG, TRACE.

Example usage of level-appropriate messages:
v Use TRACE for method entry and exit points.
v Use DEBUG for method result output.
v Use LOG for class instantiation.
v Use INFO for initialization reporting.
v Use WARN to log deprecated usage warnings.
v Use ERROR for unexpected exceptions or unexpected network protocol errors.
v Use FATAL for unrecoverable crashes or hangs.

Default log feature behavior
v Log capture is ON.
v During development, the default log level is DEBUG.

– On iOS, development mode means that the DEBUG macros is defined.
v In production, the default log level is FATAL.

– On iOS, production mode means that the DEBUG macros is not defined.
v Log persistent client-side buffer maximum size is 100k bytes.

– Log entries are treated as a first in, first out (FIFO) queue; oldest log entries
are deleted to make room for more recent log entries.

v Log configuration set at the server by the MobileFirst administrator is
piggybacked on responses to explicit WLClient connect and invokeProcedure API
calls, and is applied automatically.

v All captured log data, if any, is sent to the MobileFirst Server during each
successful client network init sequence and invokeProcedure response, with a
60 second minimum interval between sends.
– Turn this automatic behavior on or off by using one or more of the following

options:
- Logger.setAutoSendLogs(boolean)

- OCLogger.setAutoSendLogs(boolean)

- WL.Logger.config({autoSendLogs: boolean})

– After automatic behavior is turned off, you must explicitly call the send
method (in both the Logger and Analytics classes) in your application to send
any persistently captured client logs to the MobileFirst Server.

Developing MobileFirst applications 8-301



Note: For example, when capture is ON and the logger level is configured to FATAL,
the logger captures uncaught exceptions and only logs at the FATAL level. It
would not capture logs at ERROR, WARN, or INFO that may lead up to that
failure. Alternatively, a more verbose logger level would also capture non-FATAL
level logs leading up to the FATAL entry.

During development
v Developers should make liberal and reasonable use of the client-side logger

APIs.
v Client-side logs that are uploaded to the embedded Liberty server in IBM

MobileFirst Platform Foundation for iOS are written to files under the
clientlogs folder. This folder is a peer to the logs folder of the embedded
server.
– Verifying this behavior is a good way to confirm the expected behavior of

your usage of the API.

In production
v Logger configuration is controllable from the MobileFirst Operations Console.

Configuration that is retrieved from the server is used as an override of the
locally set configuration. Clients revert to the pre-override configuration when
the MobileFirst administrator removes the logger configuration and the client
retrieves the instruction from the server.

Things to consider

During application development, consider the following questions.

Should capture be always on or always off?
The default setting of capture is ON. When capture is on, all logs at the
specified level or filter are captured in a persisted rotating log buffer. You
can change the default of the capture setting by using the logger API.

Consider that turning capture on at a verbose logger level has an impact to
resource consumption:
v CPU
v File system space
v frequency of network usage when captured log data is also being sent to

the server
v size of network payload when captured log data is also being sent to the

server

At what level should you set the logger?
There are seven levels. From least verbose to most verbose, they are
FATAL, ERROR, WARN, INFO, LOG, DEBUG, TRACE.

For example, when capture is ON and the logger level is configured to
FATAL, the logger captures uncaught exceptions and only logs at the
FATAL level. It will not capture logs at ERROR, WARN, or INFO that may
lead up to that failure. Alternatively, a more verbose logger level will also
capture non-FATAL level logs leading up to the FATAL entry.

Consider that verbose logger levels, when capture is ON, can affect:
v frequency of network usage
v size of the payload that is sent to the server
v application performance, and therefore user experience

8-302 IBM MobileFirst Platform Foundation for iOS V7.0.0



How frequently should clients check with the server for logger configuration
changes?

By default, client applications check for updated logger configuration
during the MobileFirst client network init sequence, which is not
necessarily application startup or application foreground events.

The init sequence can be infrequent, depending on the design of your
application. For example, the init sequence might happen only at
check-out in a retail shopping application. In this example, the application
can check for new configuration on every onForeground event to ensure
that it retrieves and applies the configuration soon after the MobileFirst
administrator sets in the Catalog tab of the MobileFirst Operations
Console.

For example, to retrieve and apply configuration overrides from the server
when the client comes to the foreground, you can place the WLClient
updateConfigFromServer function call:
v applicationDidBecomeActive (iOS)

How can you guarantee that all captured log data on the client gets to the
server?

The short answer is that there is no way to guarantee preservation of all
captured data. Clients might be running the application offline and
simultaneously accumulating captured log data. Because the client is
offline with limited file system space, older log data must be purged in
favor of preserving more recent log data, which is the behavior of the log
capture feature.

You can make a best effort at ensuring that all captured data gets to the
server by applying one or more of the following strategies:
v Call the send function on a time interval.
v Trigger a call to the send function on application lifecycle events, like

pause and resume events.
v Batch the send call with other application network activity, like

invokeProcedure. This approach allows the device radio to sleep and
preserve battery.

v Increase the capacity of the persistent log buffer on the client by calling
the setMaxFileSize function.

How can you capture logs from your application only, and exclude logger entries
from MobileFirst code?

If your application code is making good use of the MobileFirst logger API,
and you want to capture logs from your application only, you can use a
consistent package name or consistent set of package names for your
logger instances. For example:
v // iOS

OCLoggerDebugWithPackage(@"MyPackage", @"this is a debug message");
// or Info, Log, Warn, and so on

or
// iOS
OCLogger* logger = [OCLogger getInstanceWithPackage:@"MyPkg"];
[logger debug:@"this is a debug message"];
// or Info, Log, Warn, and so on

Then, set the filters on the logger to allow logging only for your package
or packages:
v // iOS

[OCLogger setFilters:@{@"MyAppPkg": @(OCLogger_DEBUG)}];

Developing MobileFirst applications 8-303



How can you never collect or send logs from deployed apps in the field?
Call setCapture(false) as early as possible in your application lifecycle
code to set the default behavior. Avoid the Client Log Profiles tab of the
MobileFirst Operations Console.

Server preparation for uploaded log data
You must prepare your server to receive uploaded client log data.

Upon receiving uploaded client logs, the MobileFirst production server passes the
uploaded data to the Operational Analytics component feature and to an adapter
that you create and deploy. Neither of these options are present in a production
MobileFirst Server; you must install and configure them. To receive and persist
uploaded client logs at the MobileFirst Server, you must take at least one of the
following two actions:
1. Install the IBM MobileFirst Platform Operational Analytics as described in

“Installing the IBM MobileFirst Platform Operational Analytics” on page 6-146.
2. Deploy an adapter that is named WLClientLogReceiver or the name that

corresponds to the value of the wl.clientlogs.adapter.name JNDI property.

If you deploy an adapter to receive uploaded client logs, the adapter must be an
HTTP adapter that is named WLClientLogReceiver or the value of the
wl.clientlogs.adapter.name JNDI property. The adapter must have at least one
procedure that must be named log. The log procedure is passed two parameters:
deviceInfo (a JSON object) and logMessages (a JSON array). For more information
about implementing adapter procedures, see “Implementing adapter procedures”
on page 8-149.

The procedure element in the WLClientLogReceiver.xml file for log:
<procedure name="log" />

The implementation of the adapter determines the destination of the uploaded log
content.

One convenient way to persistently record uploaded client logs is to place the
audit="true" attribute in the adapter's procedure element. This flag instructs the
MobileFirst Server to report all adapter invocations and parameter arguments
inline to the server log file:
<procedure name="log" audit="true" />

Alternatively, you process the parameters that are passed into the log procedure
explicitly.

Server security

By default, there is no security that protects the loguploader servlet that receives
uploaded client logs and analytics at the MobileFirst Server. You can configure the
security tests that protect the servlet in the authenticationConfig.xml file. But to
avoid unexpectedly prompting the user for authentication credentials when you
send logs, you have two choices:
1. Use a security test that requires no custom challenge handler code and no user

interaction, and freely call the logger send function.
2. Ensure that the security test in front of the servlet remains the same as the

security test of the application, and be careful about placement of extra logger
send function calls.

8-304 IBM MobileFirst Platform Foundation for iOS V7.0.0



If you choose to change the security test, and you choose option one, an explicit
call to the logger send function does not result in an unexpected authentication
challenge prompt or other authentication failure. The logger send function is safe
to place throughout your application.

If you choose to change the security test, and you choose option two, a carelessly
placed call to the logger send function might result in an unexpected
authentication challenge prompt or other authentication failure. In this case,
explicit calls to the logger send function in your application must be placed
carefully. If your client applications call the logger send function explicitly, ensure
that they do so after authentication succeeds. For example, call the logger send
function in the invokeProcedure onSuccess callback of an adapter invocation that
is protected by the same security test as the log receiver servlet.

Logging sensitive data

The logger library does not automatically protect against logging sensitive data.
Data is stored in plain text, but is only readable within the context of the
application that is using the logger API. Avoid logging sensitive data

Uploaded client logs

In the embedded Liberty development server, the uploaded client logs are written
to a file that corresponds with that client's unique attributes. The uploaded client
log file is written, or appended, at the following path, which is a peer to the logs
folder:

clientlogs/[os]/[os_version]/[app_id]/[app_version]/[device_id].log

Uploaded logs are not written to the file system in MobileFirst production servers.

Client-side log capture configuration from MobileFirst
Operations Console

In the redesigned MobileFirst Operations Console, administrators can use the
Client Log Profile link of a runtime environment to adjust client logger
configuration.

Administrators can adjust the log level and log package filters for any combination
of operating system, operating system version, application, application version,
and device model.

When the MobileFirst administrator creates a configuration profile, the log
configuration is concatenated with responses to explicit WLClient connect and
invokeProcedure API calls, and is applied automatically.

When the MobileFirst administrator removes a configuration profile, on the next
client application WLClient connect and invokeProcedure API calls, the client
reverts to its configuration before the server configuration profile override.

What is provided on the client side
OCLogger

Developing MobileFirst applications 8-305



Note: Native iOS code that calls nslog directly is not captured in the client-side
logs. Developers must use OCLogger to capture client-side logs. For more
information about the OCLogger API, see “Objective-C client-side API for iOS apps”
on page 9-2.

MobileFirst Filtered Export
You can use the MobileFirst Filtered Export option to export only the required
MobileFirst project resources to an archive file on the local system. Filtered Export
ignores the files that are generated at build time, resulting in a smaller file than the
previous method of exporting.

Before you begin

To complete this export, you must select a valid MobileFirst project. Any other
project is not eligible for Filtered Export.

Procedure
1. Right-click the MobileFirst project, then select Export.
2. In the Export window that appears, expand IBM MobileFirst.
3. Select MobileFirst Filtered Export.
4. Click Next.
5. Click Browse to complete the file path of the To archive file field. The only

valid file extension is .zip.
6. Click Finish.

8-306 IBM MobileFirst Platform Foundation for iOS V7.0.0



API reference

To develop your iOS applications, refer to the MobileFirst API in Objective-C.

MobileFirst client-side API
This collection of topics contains a description of the application programming
interface (API) for use in writing client applications with IBM MobileFirst Platform
Foundation for iOS.

You can use MobileFirst client-side API capabilities to improve application
development, and MobileFirst server-side API to improve client/server integration
and communication between mobile applications and back-end systems.

With the MobileFirst client-side API, your mobile application has access to various
MobileFirst features during run time, by using libraries that are bundled into the
application. The libraries integrate your mobile application with MobileFirst Server
by using predefined communication interfaces. The libraries also provide unified
access to native device functionality, which simplifies application development.

The MobileFirst client-side API provide access to MobileFirst functions across
multiple device platforms and development approaches. Applications that are built
by using web technologies can access MobileFirst Server through the APIs by using
JavaScript, and application using native components can access the APIs directly
by using Java and Objective-C. Mobile applications developed with the native
development approach benefit from simplified application security and the
integration features of MobileFirst tooling.

MobileFirst client-side API components also provide the following features, which
improve application development.

Client to server integration

Client to server integration ensures transparent communication between a mobile
application that is built with MobileFirst technology, and MobileFirst Server.
MobileFirst mobile applications always use an SSL-enabled connection to the
server, including for authentication. With such an integration, you can manage
your applications and implement security features such as remotely disabling the
ability to connect to MobileFirst Server, or updating the web resources of an
application.

Encrypted data store

This encrypted data store is located on the device and can access private data by
using an API. This helps prevent malicious users to access private data, because all
they can obtain is highly encrypted data. The encryption uses ISO/IEC 18033-3
security standards, such as AES256 or PCKS#5, that complies with the United
States National Security Agency regulations for transmitting confidential or secret
information. The key that is used to encrypt the information is unique to the
current user of the application and the device. MobileFirst Server issues a special
key when a new encrypted data store is created.

© Copyright IBM Corp. 2006, 2016 9-1



JSONStore

A JSONStore store is included in IBM MobileFirst Platform Foundation for iOS to
synchronize mobile application data with related data on the back-end. JSONStore
provides an offline-capable, key-value database that can be synchronized.
JSONStore implements the application local read, write, update, and delete
operations and use the MobileFirst adapter technology to synchronize the related
back-end data.

Runtime skinning

Runtime skinning is a feature that helps you incorporate an adaptive design that
you can adapt to each mobile device. The MobileFirst runtime skin is a
user-interface variant that you can apply during application run time, which is
based on device properties such as operating system, screen resolution, and form
factor. This type of user-interface abstraction helps you develop applications for
multiple mobile device models at the same time.

Location services API

IBM MobileFirst Platform Foundation for iOS provides a number of functions for
location services. Location services enable you to use Geo and WiFi positions to
perform various actions.

Objective-C client-side API for iOS apps
Use this API to develop native app for iOS environment.

You can access MobileFirst services from iOS applications by using this Objective-C
client-side API.

Note: To develop native iOS applications, you can also use Apple Swift. This
language is compatible with Objective-C. For more information about using
MobileFirst API from within the Swift project, see “Creating a Swift project” on
page 8-8.

You can find the description of the API in the following file: Objective-C client-side
API for iOS apps.

MobileFirst server-side API
Use the server-side API that IBM MobileFirst Platform Foundation for iOS defines
to modify the behavior of the servers that your mobile applications rely on.

MobileFirst Server provides a set of mobile capabilities with the use of
client/server integration and communication between mobile applications and
back-end systems.

Server-side application code

You can develop server-side application code and optimize performance, security,
and maintenance. By developing server-side application code, your mobile
application has direct access to back-end transactional capabilities and cloud-based
services. This improves error handling, and enhances security by including more
custom steps for request validation or process authorization.

9-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mfpf_objc_ios_native_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mfpf_objc_ios_native_client_api.zip


Built-in JSON translation capability

A built-in JSON translation capability reduces the footprint of data transferred
between the mobile application and MobileFirst Server. JSON is a lightweight and
human-readable data interchange format. Because JSON messages have a smaller
footprint than other comparable data-interchange formats, such as XML, they can
be more quickly parsed and generated by mobile devices. In addition, MobileFirst
Server can automatically convert hierarchical data to the JSON format to optimize
delivery and consumption.

Built-in security framework

You can use encryption and obfuscation techniques with a built-in security
framework to protect both user-specific and application business logic. A built-in
security framework provides easy connectivity or integration into your existing
enterprise security mechanisms. This security framework handles connection
credentials for back-end connectivity, so the mobile application can use a back-end
service, without having to know how to authenticate with it. The authentication
credentials stay with MobileFirst Server, and do not stay on the mobile device. If
you are running MobileFirst Server with IBM WebSphere Application Server, you
can use enterprise-class security and enable Single-Sign-On (SSO) by using IBM
Lightweight Third Party Authentication (LTPA).

Adapter library

You can use the adapter library to connect to various back-end systems, such as
web services, databases, and messaging applications. For example, IBM MobileFirst
Platform Foundation for iOS provides adapters for SOAP or XML over HTTP,
JDBC, and JMS. Extra adapters simplify integration with IBM WebSphere Cast Iron,
which in turn supplies connectors for various cloud-based or on-premise services
and systems. With the adapter library, you can define complex lookup procedures
and combine data from multiple back-end services. This aggregation helps to
reduce overall traffic between a mobile application and MobileFirst Server.

Unified push notification

You can use unified push notification, which simplifies the notification process
because the application remains platform-neutral. Unified push notification is an
abstraction layer for sending notifications to mobile devices by using either the
device vendor's infrastructure or MobileFirst Server SMS capabilities. The user of a
mobile application can subscribe to notifications through the mobile application.
This request, which contains information about the device and platform, is sent to
the MobileFirst Server. The system administrator can manage subscriptions, push
or poll notifications from back-end systems, and use the Application Center to
send notifications to mobile devices.

JavaScript server-side API
The MobileFirst server-side JavaScript API comprises a series of packages.

You can find the description of the API in the following file: JavaScript server-side
API.

API reference 9-3

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mfpf_javascript_server_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mfpf_javascript_server_api.zip


Java server-side API
The MobileFirst server-side Java API comprises a series of packages.

You can find the description of the API in the following file: Java server-side API.

MobileFirst OAuth TAI API
Use this API when your application uses OAuth TAI (Trust Association
Interceptors) security. It contains the WLCredential class, which stores the IBM
MobileFirst token information of an authenticated principal.

You can find the description of the API in the following file: OAuth TAI API

REST Services API
The REST API provides several services to administer the runtime environments
concerning adapters, applications, devices, audit, transactions, security, and push
notifications.

The REST service API for adapters and applications for each runtime environment
is located in /management-apis/1.0/runtimes/runtime-name/, where runtime-name is
the name of the runtime environment that is administered through the REST
service. Then, the type of object addressed by the service is identified together with
the appropriate method. For example, /management-apis/1.0/runtimes/runtime-
name/Adapters (POST) refers to the service for deploying an adapter.

Adapter Binary (GET, HEAD)
Retrieves the binary of a specific adapter.

Description

It supports range requests to deliver only a range of the bytes of the adapter.
Clients can use this feature to resume a download after interruption.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

GET, HEAD

Path

/otu/1.0/one-time-url-hash/runtimes/runtime-name/downloads/adapters/adapter-
name

Example
https://www.example.com/worklightadmin/otu/1.0/ffabc301/runtimes/
myruntime/downloads/adapters/myadapter?locale=de_DE

9-4 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mfpf_java_server_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mfpf_java_oauth_tai_api.zip


Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

one-time-url-hash
The one-time-url hash code.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/octet-stream

Response

The binary data of the specified adapter.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

416
The requested range of bytes is not satisfiable.

500
An internal error occurred.

Adapter (DELETE)
Deletes a specific adapter.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

API reference 9-5



Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/adapters/adapter-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/adapters/myadapter?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deleted adapter.

JSON Example
{

"ok" : false,
"productVersion" : "7.0.0",
"transaction" : {

"appServerId" : "Tomcat",
"description" : {

"filename" : "myadapter.adapter",
"name" : "myadapter",

},
"errors" : [

{
"details" : "An internal error occured.",

9-6 IBM MobileFirst Platform Foundation for iOS V7.0.0



},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_ADAPTER",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<delete-adapter-result

ok="false"
productVersion="7.0.0">
<transaction

appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_ADAPTER"
userName="demouser">
<description

filename="myadapter.adapter"
name="myadapter"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-adapter-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the adapter.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

API reference 9-7



status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always DELETE_ADAPTER.

userName
The user that initiated the transaction.

The description has the following properties:

filename
The optional file name of the adapter.

name
The name of the adapter.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

500
An internal error occurred.

Adapter (GET)
Retrieves metadata of a specific adapter.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

9-8 IBM MobileFirst Platform Foundation for iOS V7.0.0



Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/adapters/adapter-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/adapters/myadapter?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the specified adapter.

JSON Example
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"description" : "My first sample adapter",
"link" : "https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter",
"name" : "myadapter",
"platformVersion" : "6.1.0.00.20131126-0630",
"procedures" : [ "getSomething", ... ],
"productVersion" : "7.0.0",
"projects" : [

{
"name" : "myproject",

},
...

],
"urls" : [

{
"formParameters" : [

{
"defaultValue" : "n/a",
"javaType" : "java.lang.String",
"name" : "param",

},
...

],

API reference 9-9



"javaClass" : "com.example.MyRestWrapper",
"javaMethodName" : "multiplyNumbers",
"method" : "POST",
"pathParameters" : [

{
"defaultValue" : "n/a",
"javaType" : "java.lang.String",
"name" : "param",

},
...

],
"queryParameters" : [

{
"defaultValue" : "n/a",
"javaType" : "java.lang.String",
"name" : "param",

},
...

],
"uri" : "/multiply",

},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<adapter

deployTime="2014-04-13T00:18:36.979Z"
description="My first sample adapter"
link="https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter"
name="myadapter"
platformVersion="6.1.0.00.20131126-0630"
productVersion="7.0.0">
<procedures>

<procedure>getSomething</procedure>
...

</procedures>
<projects>

<project name="myproject"/>
...

</projects>
<urls>

<url
javaClass="com.example.MyRestWrapper"
javaMethodName="multiplyNumbers"
method="POST"
uri="/multiply">
<formParameters>

<formParameter
defaultValue="n/a"
javaType="java.lang.String"
name="param"/>

...
</formParameters>
<pathParameters>

<pathParameter
defaultValue="n/a"
javaType="java.lang.String"
name="param"/>

...
</pathParameters>
<queryParameters>

<queryParameter
defaultValue="n/a"
javaType="java.lang.String"

9-10 IBM MobileFirst Platform Foundation for iOS V7.0.0



name="param"/>
...

</queryParameters>
</url>
...

</urls>
</adapter>

Response Properties

The response has the following properties:

deployTime
The date in ISO 8601 format when the adapter was deployed.

description
The description of the adapter.

link
The URL to access detail information about the adapter.

name
The name of the adapter.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the adapter.

procedures
The JavaScript procedures of the adapter.

productVersion
The exact product version.

projects
The projects the adapter belong to.

urls
The API documentation of the URLs of the REST API provided by the adapter.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

The url has the following properties:

formParameters
The form parameters.

javaClass
The Java class

javaMethodName
The Java method

method
The HTTP method.

pathParameters
The path parameters.

queryParameters
The query parameters.

API reference 9-11



uri
The URI of the REST API.

The REST API parameter has the following properties:

defaultValue
The default value.

javaType
The Java type name.

name
The name of the parameter.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

500
An internal error occurred.

Adapter (POST)
Deploys an adapter.

Description

It first checks whether the input adapter is valid. Then, it transfers the adapter to
the database and to the runtime.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/adapters

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/adapters?async=false&locale=de_DE

9-12 IBM MobileFirst Platform Foundation for iOS V7.0.0



Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml

Response

The metadata of the deployed adapter.

JSON Example
{

"ok" : false,
"productVersion" : "7.0.0",
"transaction" : {

"appServerId" : "Tomcat",
"description" : {

"alreadyDeployed" : false,
"filename" : "myadapter.adapter",
"name" : "myadapter",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_ADAPTER",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deploy-adapter-result

ok="false"

API reference 9-13



productVersion="7.0.0">
<transaction

appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_ADAPTER"
userName="demouser">
<description

alreadyDeployed="false"
filename="myadapter.adapter"
name="myadapter"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</deploy-adapter-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the adapter.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_ADAPTER.

userName
The user that initiated the transaction.

9-14 IBM MobileFirst Platform Foundation for iOS V7.0.0



The description has the following properties:

alreadyDeployed
Whether a version of the adapter was already previously deployed.

filename
The optional file name of the adapter.

name
The name of the adapter.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Adapters (GET)
Retrieves metadata for the list of deployed adapters.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/adapters

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/adapters?locale=de_DE&offset=0&orderBy=name&pageSize=100

API reference 9-15



Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: name, deployTime. The default sort mode is:
name.

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deployed adapters.

JSON Example
{

"items" : [
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"description" : "My first sample adapter",
"link" : "https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter",
"name" : "myadapter",
"platformVersion" : "6.1.0.00.20131126-0630",
"procedures" : [ "getSomething", ... ],
"projects" : [

{
"name" : "myproject",

},
...

],
"urls" : [

{
"formParameters" : [

{
"defaultValue" : "n/a",
"javaType" : "java.lang.String",
"name" : "param",

},
...

],
"javaClass" : "com.example.MyRestWrapper",
"javaMethodName" : "multiplyNumbers",

9-16 IBM MobileFirst Platform Foundation for iOS V7.0.0



"method" : "POST",
"pathParameters" : [

{
"defaultValue" : "n/a",
"javaType" : "java.lang.String",
"name" : "param",

},
...

],
"queryParameters" : [

{
"defaultValue" : "n/a",
"javaType" : "java.lang.String",
"name" : "param",

},
...

],
"uri" : "/multiply",

},
...

],
},
...

],
"pageSize" : 100,
"productVersion" : "7.0.0",
"startIndex" : 0,
"totalListSize" : 33,

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<adapters

pageSize="100"
productVersion="7.0.0"
startIndex="0"
totalListSize="33">
<items>

<item
deployTime="2014-04-13T00:18:36.979Z"
description="My first sample adapter"
link="https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/adapters/myadapter"
name="myadapter"
platformVersion="6.1.0.00.20131126-0630">
<procedures>

<procedure>getSomething</procedure>
...

</procedures>
<projects>

<project name="myproject"/>
...

</projects>
<urls>

<url
javaClass="com.example.MyRestWrapper"
javaMethodName="multiplyNumbers"
method="POST"
uri="/multiply">
<formParameters>

<formParameter
defaultValue="n/a"
javaType="java.lang.String"
name="param"/>

...
</formParameters>
<pathParameters>

API reference 9-17



<pathParameter
defaultValue="n/a"
javaType="java.lang.String"
name="param"/>

...
</pathParameters>
<queryParameters>

<queryParameter
defaultValue="n/a"
javaType="java.lang.String"
name="param"/>

...
</queryParameters>

</url>
...

</urls>
</item>
...

</items>
</adapters>

Response Properties

The response has the following properties:

items
The array of adapter metadata

pageSize
The page size if only a page of adapters is returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only a page of adapters is returned.

totalListSize
The total number of adapters.

The adapter has the following properties:

deployTime
The date in ISO 8601 format when the adapter was deployed.

description
The description of the adapter.

link
The URL to access detail information about the adapter.

name
The name of the adapter.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the adapter.

procedures
The JavaScript procedures of the adapter.

projects
The projects the adapter belong to.

urls
The API documentation of the URLs of the REST API provided by the adapter.

9-18 IBM MobileFirst Platform Foundation for iOS V7.0.0



The project has the following properties:

name
The name of the project, which is the context root of the runtime.

The url has the following properties:

formParameters
The form parameters.

javaClass
The Java class

javaMethodName
The Java method

method
The HTTP method.

pathParameters
The path parameters.

queryParameters
The query parameters.

uri
The URI of the REST API.

The REST API parameter has the following properties:

defaultValue
The default value.

javaType
The Java type name.

name
The name of the parameter.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Adobe Air Application Binary (GET)
Retrieves the Adobe Air binary of a specific app version.

Description

It supports range requests to deliver only a range of the bytes of the app version.
Clients can use this feature to resume a download after interruption.

API reference 9-19



Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/otu/1.0/one-time-url-hash/runtimes/runtime-name/downloads/air/application-
name/application-version

Example
https://www.example.com/worklightadmin/otu/1.0/ffabc301/runtimes/
myruntime/downloads/air/myapplication/1.0?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-version
The application version number.

one-time-url-hash
The one-time-url hash code.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/octet-stream

Response

The binary data of the specified app version.

Errors

400
The request is invalid.

403

9-20 IBM MobileFirst Platform Foundation for iOS V7.0.0



The user is not authorized to call this service.

404
The corresponding runtime or the app version is not found.

416
The requested range of bytes is not satisfiable.

500
An internal error occurred.

APNS Credentials (DELETE)
Deletes Apple Push Notification Service (APNS) credentials of the application with
the application ID, environment, and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/apnsConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/apnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

API reference 9-21



Produces

application/json, application/xml, text/xml

Response

The delete status of APNS credentials.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "DELETE_PUSH_CREDENTIALS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deleteAPNSCredentialsStatus

status="Success"
type="DELETE_PUSH_CREDENTIALS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</deleteAPNSCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The APNS credentials are deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404

9-22 IBM MobileFirst Platform Foundation for iOS V7.0.0



The corresponding runtime is not found or not running.

500
An internal error occurred.

APNS Credentials (GET)
Retrieves Apple Push Notification Service (APNS) credentials of the application
with the application ID, environment, and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/apnsConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/apnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

API reference 9-23



Response

The APNS credentials of the application such as certificate information, password,
and product version.

JSON Example
{

"certificateExpirationDate" : 2015-05-05T06:29:10.000Z,
"certificateFileName" : "apns-certificate-sandbox.p12",
"password" : "password",
"productVersion" : "7.0.0",
"sandbox" : true,

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<apnsCredentials

certificateExpirationDate="2015-05-05T06:29:10.000Z"
certificateFileName="apns-certificate-sandbox.p12"
password="password"
productVersion="7.0.0"
sandbox="true"/>

Response Properties

The response has the following properties:

certificateExpirationDate
The expiry date of Certificate.

certificateFileName
The name of the certificate.

password
The password of the certificate.

productVersion
The exact product version.

sandbox
The sandbox is true if certificate is of sandbox type.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

APNS Credentials (PUT)
Sets Apple Push Notification Service (APNS) credentials of the application with the
application ID, environment, version, password, certificate file name, and
certificate.

9-24 IBM MobileFirst Platform Foundation for iOS V7.0.0



Description

The payload is the form data in which password, certificate file name, and
certificate are submitted.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/apnsConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/apnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml

API reference 9-25



Form-data Parameters

certificateFileName
(string) The certificate file name.

password
(string) The certificate password.

certificate
(File) The certificate file.

Response

The status of set APNS credentials.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_APNS_CREDENTIALS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<setAPNSCredentialsStatus

status="Success"
type="SET_APNS_CREDENTIALS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</setAPNSCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The APNS credentials are saved successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

9-26 IBM MobileFirst Platform Foundation for iOS V7.0.0



Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

App Version Access Rule (PUT)
Sets the access rule of a specific app version.

Description

The access rule specifies the behavior when a user accesses the application on the
device.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/accessRule

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
applications/myapplication/ios/1.0/accessRule?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

API reference 9-27



application-version
The application version number.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"action" : "NOTIFY",
"downloadLink" : "ibmappctr://myapp",
"message" : "Please update!",
"multiLanguageMessage" : [

{
"locale" : "de",
"message" : "Bitte updaten!",

},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<accessrule

action="NOTIFY"
downloadLink="ibmappctr://myapp"
message="Please update!">
<multiLanguageMessage>

<localizedMessage
locale="de"
message="Bitte updaten!"/>

...
</multiLanguageMessage>

</accessrule>

Payload Properties

The payload has the following properties:

action
The action to be performed. It can have the following values: NOTIFY (notify the
user of some message), BLOCK (block the execution the application), DELETE
(remove the access rule).

9-28 IBM MobileFirst Platform Foundation for iOS V7.0.0



downloadLink
An optional link displayed with the message where to download a new
version of the application.

message
The message to be displayed when the action is NOTIFY or BLOCK.

multiLanguageMessage
Messages in additional languages

The multilanguage message has the following properties:

locale
The locale of the message.

message
The translated message.

Response

The metadata of the app version and its access rule.

JSON Example
{

"ok" : false,
"productVersion" : "7.0.0",
"transaction" : {

"appServerId" : "Tomcat",
"description" : {

"action" : "NOTIFY",
"appVersion" : {

"applicationName" : "myapplication",
"environment" : "ios",
"version" : "1.0",

},
"createdAtDate" : "2014-02-13T00:18:36.979Z",
"message" : "This version is no longer supported.",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "SET_APPLICATION_ENV_VERSION_ACCESS_RULE",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-appversion-accessrule-result

ok="false"
productVersion="7.0.0">
<transaction

appServerId="Tomcat"
id="1"

API reference 9-29



status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="SET_APPLICATION_ENV_VERSION_ACCESS_RULE"
userName="demouser">
<description

action="NOTIFY"
createdAtDate="2014-02-13T00:18:36.979Z"
message="This version is no longer supported.">
<appVersion

applicationName="myapplication"
environment="iphone"
version="1.0"/>

</description>
<errors>

<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-appversion-accessrule-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always
SET_APPLICATION_ENV_VERSION_ACCESS_RULE.

9-30 IBM MobileFirst Platform Foundation for iOS V7.0.0



userName
The user that initiated the transaction.

The description has the following properties:

action
The action to be done when a disabled app version is accessed. Possible values
are: NOTIFY, BLOCK, NA, DELETE.

appVersion
The corresponding app version

createdAtDate
The date in ISO 8601 format when the app version access rule was created.

downloadLink
The download link where to obtain a new version of the application.

message
The message to be displayed when a disabled app version is accessed.

The app version has the following properties:

applicationName
The name of the application.

environment
The environment of the application.

version
The version of the application.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the app version is not found.

500
An internal error occurred.

App Version (DELETE)
Deletes a specific app version.

API reference 9-31



Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name/
application-env/application-version

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
applications/myapplication/iphone/1.0?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

9-32 IBM MobileFirst Platform Foundation for iOS V7.0.0



Response

The metadata of the deleted app version.

JSON Example
{

"ok" : false,
"productVersion" : "7.0.0",
"transaction" : {

"appServerId" : "Tomcat",
"description" : {

"applicationName" : "myapplication",
"environment" : "iphone",
"version" : "1.0",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_APPLICATION_ENV_VERSION",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<delete-appversion-result

ok="false"
productVersion="7.0.0">
<transaction

appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_APPLICATION_ENV_VERSION"
userName="demouser">
<description

applicationName="myapplication"
environment="iphone"
version="1.0"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-appversion-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

API reference 9-33



productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always DELETE_APPLICATION_ENV_VERSION.

userName
The user that initiated the transaction.

The description has the following properties:

applicationName
The name of the application.

environment
The environment of the application.

version
The version of the application.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

9-34 IBM MobileFirst Platform Foundation for iOS V7.0.0



404
The corresponding runtime or the app version is not found.

500
An internal error occurred.

App Version Lock (PUT)
Locks a specific app version.

Description

A locked app version cannot be updated anymore.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/lock

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
applications/myapplication/android/1.0/lock?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

API reference 9-35



Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"lock" : true,
"warning" : "true",

}

Payload Properties

The payload has the following properties:

lock
Whether the app version is locked.

warning
When a warning happens, provides the details.

Response

JSON Example
{

"ok" : true,
"warning" : "true",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-appversion-lock-result

ok="true"
warning="true"/>

Response Properties

The response has the following properties:

ok Whether the operation was successful.

warning
When a warning happens, provides the details.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404

9-36 IBM MobileFirst Platform Foundation for iOS V7.0.0



The corresponding runtime or the app version is not found.

500
An internal error occurred.

Application Binary (GET, HEAD)
Retrieves the binary of a specific app version.

Description

It supports range requests to deliver only a range of the bytes of the app version.
Clients can use this feature to resume a download after interruption.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

GET, HEAD

Path

/otu/1.0/one-time-url-hash/runtimes/runtime-name/downloads/applications/
application-name/application-env/application-version

Example
https://www.example.com/worklightadmin/otu/1.0/ffabc301/runtimes/myruntime/
downloads/applications/myapplication/android/1.0?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

one-time-url-hash
The one-time-url hash code.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

API reference 9-37



Produces

application/octet-stream

Response

The binary data of the specified app version.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the app version is not found.

416
The requested range of bytes is not satisfiable.

500
An internal error occurred.

Application (DELETE)
Deletes a specific application and all its app versions.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
applications/myapplication?async=false&locale=de_DE

9-38 IBM MobileFirst Platform Foundation for iOS V7.0.0



Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deleted application.

JSON Example
{

"ok" : false,
"productVersion" : "7.0.0",
"transaction" : {

"appServerId" : "Tomcat",
"description" : {

"applicationName" : "myapplication",
},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_APPLICATION",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<delete-application-result

ok="false"
productVersion="7.0.0">
<transaction

appServerId="Tomcat"
id="1"

API reference 9-39



status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_APPLICATION"
userName="demouser">
<description applicationName="myapplication"/>
<errors>

<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-application-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always DELETE_APPLICATION.

userName
The user that initiated the transaction.

The description has the following properties:

applicationName
The name of the application.

The error has the following properties:

9-40 IBM MobileFirst Platform Foundation for iOS V7.0.0



details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the application is not found.

500
An internal error occurred.

Application (GET)
Retrieves metadata of a specific application.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/applications/application-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/applications/myapplication?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

API reference 9-41



locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the specified application.

JSON Example
{

"description" : "My first sample application",
"displayName" : "My Sample Application",
"environments" : [

{
"applicationEnvironmentDataAccess" : {

"action" : "NOTIFY",
"createdTime" : "2014-04-13T00:18:36.979Z",
"message" : "This version is no longer supported.",

},
"authenticityConfig" : "BASIC",
"buildTime" : "2014-03-29T00:18:36.979Z",
"deployTime" : "2014-04-13T00:18:36.979Z",
"deviceProvisioningRealm" : "myProvRealm",
"envPlatformVersion" : "7.0.0",
"environment" : "iphone",
"link" : "https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication/iphone/1.0",
"prevBuildTime" : "2014-03-29T00:18:36.979Z",
"securityTest" : "mobileTest",
"supportRemoteDisable" : true,
"supportsAuthenticity" : true,
"userAuthenticationRealm" : "myAuthRealm",
"version" : "1.0",
"versionLocked" : false,

},
...

],
"link" : "https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication",
"name" : "myapplication",
"platformVersion" : "6.1.0.00.20131126-0630",
"productVersion" : "7.0.0",
"projects" : [

{
"name" : "myproject",

},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<application

description="My first sample application"
displayName="My Sample Application"
link="https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication"
name="myapplication"
platformVersion="6.1.0.00.20131126-0630"
productVersion="7.0.0">
<environments>

9-42 IBM MobileFirst Platform Foundation for iOS V7.0.0



<environment
authenticityConfig="BASIC"
buildTime="2014-03-29T00:18:36.979Z"
deployTime="2014-04-13T00:18:36.979Z"
deviceProvisioningRealm="myProvRealm"
envPlatformVersion="7.0.0"
environment="iphone"
link="https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication/iphone/1.0"
prevBuildTime="2014-03-29T00:18:36.979Z"
securityTest="mobileTest"
supportRemoteDisable="true"
supportsAuthenticity="true"
userAuthenticationRealm="myAuthRealm"
version="1.0"
versionLocked="false">
<applicationEnvironmentDataAccess

action="NOTIFY"
createdTime="2014-04-13T00:18:36.979Z"
message="This version is no longer supported."/>

</environment>
...

</environments>
<projects>

<project name="myproject"/>
...

</projects>
</application>

Response Properties

The response has the following properties:

description
The description of the application.

displayName
The display name of the application.

environments
The array of application environments.

link
The URL to access detail information about the application.

name
The name of the application.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the application.

productVersion
The exact product version.

projects
The projects the application belong to.

The environment has the following properties:

applicationEnvironmentDataAccess
The access rule to be executed when the app version is disabled.

authenticityConfig
The application authenticity configuration. Possible values are: NONE, BASIC,
EXTENDED.

API reference 9-43



buildTime
The time stamp when the app version was built.

deployTime
The date in ISO 8601 format when the application was deployed.

deviceProvisioningRealm
The name of the realm used for device provisioning.

envPlatformVersion
The version of the platform of the environment.

environment
The platform environment of the app version: iphone.

link
The URL to access detail information about the application version.

prevBuildTime
The time stamp when the app that was previously deployed was built.

publishUrl
For web applications, this is the URL under which the web application was
published.

securityTest
The name of the security test for a protected resource.

supportRemoteDisable
true if the application version supports remote disabling.

supportsAuthenticity
true if the application version supports authentication.

userAuthenticationRealm
The name of the realm used to authenticate users.

version
The version number of the app version.

versionLocked
Whether the version is locked.

The applicationEnvironmentDataAccess has the following properties:

action
The action to be done when a disabled app version is accessed. Possible values
are: NOTIFY, BLOCK, NA.

createdTime
The date in ISO 8601 format when the app version access rule was created.

downloadLink
The download link where to obtain a new version of the application.

message
The message to be displayed when a disabled app version is accessed.

multiLanguageMessage
Internationalized variants of the message to be displayed when a disabled app
version is accessed.

The project has the following properties:

9-44 IBM MobileFirst Platform Foundation for iOS V7.0.0



name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running, or the application is not found.

500
An internal error occurred.

Application (POST)
Deploys an application.

Description

It first checks whether the input application is valid. Then, it transfers the
application to the database and to the runtime.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/applications

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/applications?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

API reference 9-45



async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml, text/html

Response

The metadata of the deployed application.

JSON Example
{

"ok" : false,
"productVersion" : "7.0.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"appVersionsAlreadyDeployed" : [
{

"applicationName" : "myapplication",
"environment" : "iphone",
"version" : "1.0",

},
...

],
"appVersionsDeployed" : [
{

"applicationName" : "myapplication",
"environment" : "iphone",
"version" : "1.0",

},
...

],
"filename" : "myapplication.wlapp",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_APPLICATION",
"userName" : "demouser",

},
}

9-46 IBM MobileFirst Platform Foundation for iOS V7.0.0



XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deploy-application-result

ok="false"
productVersion="7.0.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_APPLICATION"
userName="demouser">
<description filename="myapplication.wlapp">

<appVersionsAlreadyDeployedArray>
<appVersionsAlreadyDeployed

applicationName="myapplication"
environment="iphone"
version="1.0"/>

...
</appVersionsAlreadyDeployedArray>
<appVersionsDeployedArray>
<appVersionsDeployed

applicationName="myapplication"
environment="iphone"
version="1.0"/>

...
</appVersionsDeployedArray>

</description>
<errors>

<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</deploy-application-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

API reference 9-47



status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_APPLICATION.

userName
The user that initiated the transaction.

The description has the following properties:

appVersionsAlreadyDeployed
The app versions that were already previously deployed and remain
unchanged.

appVersionsDeployed
The app versions deployed.

filename
The optional file name of the application.

The app version has the following properties:

applicationName
The name of the application.

environment
The environment of the application.

version
The version of the application.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

9-48 IBM MobileFirst Platform Foundation for iOS V7.0.0



Applications (GET)
Retrieves metadata for the list of deployed applications.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/applications

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
applications?locale=de_DE&offset=0&orderBy=name&pageSize=100

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: name. The default sort mode is: name.

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deployed applications.

API reference 9-49



JSON Example
{

"items" : [
{

"description" : "My first sample application",
"displayName" : "My Sample Application",
"environments" : [

{
"applicationEnvironmentDataAccess" : {

"action" : "NOTIFY",
"createdTime" : "2014-04-13T00:18:36.979Z",
"message" : "This version is no longer supported.",

},
"authenticityConfig" : "BASIC",
"buildTime" : "2014-03-29T00:18:36.979Z",
"deployTime" : "2014-04-13T00:18:36.979Z",
"deviceProvisioningRealm" : "myProvRealm",
"envPlatformVersion" : "7.0.0",
"environment" : "iphone",
"link" : "https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication/iphone/1.0",
"prevBuildTime" : "2014-03-29T00:18:36.979Z",
"securityTest" : "mobileTest",
"supportRemoteDisable" : true,
"supportsAuthenticity" : true,
"userAuthenticationRealm" : "myAuthRealm",
"version" : "1.0",
"versionLocked" : false,

},
...

],
"link" : "https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication",
"name" : "myapplication",
"platformVersion" : "6.1.0.00.20131126-0630",
"projects" : [

{
"name" : "myproject",

},
...

],
},
...

],
"pageSize" : 100,
"productVersion" : "7.0.0",
"startIndex" : 0,
"totalListSize" : 33,

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<applications

pageSize="100"
productVersion="7.0.0"
startIndex="0"
totalListSize="33">
<items>

<item
description="My first sample application"
displayName="My Sample Application"
link="https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication"
name="myapplication"
platformVersion="6.1.0.00.20131126-0630">
<environments>

9-50 IBM MobileFirst Platform Foundation for iOS V7.0.0



<environment
authenticityConfig="BASIC"
buildTime="2014-03-29T00:18:36.979Z"
deployTime="2014-04-13T00:18:36.979Z"
deviceProvisioningRealm="myProvRealm"
envPlatformVersion="7.0.0"
environment="iphone"
link="https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication/iphone/1.0"
prevBuildTime="2014-03-29T00:18:36.979Z"
securityTest="mobileTest"
supportRemoteDisable="true"
supportsAuthenticity="true"
userAuthenticationRealm="myAuthRealm"
version="1.0"
versionLocked="false">
<applicationEnvironmentDataAccess

action="NOTIFY"
createdTime="2014-04-13T00:18:36.979Z"
message="This version is no longer supported."/>

</environment>
...

</environments>
<projects>

<project name="myproject"/>
...

</projects>
</item>
...

</items>
</applications>

Response Properties

The response has the following properties:

items
The array of application metadata

pageSize
The page size if only a page of applications is returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only a page of applications is returned.

totalListSize
The total number of applications.

The application has the following properties:

description
The description of the application.

displayName
The display name of the application.

environments
The array of application environments.

link
The URL to access detail information about the application.

API reference 9-51



name
The name of the application.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the application.

projects
The projects the application belong to.

The environment has the following properties:

applicationEnvironmentDataAccess
The access rule to be executed when the app version is disabled.

authenticityConfig
The application authenticity configuration. Possible values are: NONE, BASIC,
EXTENDED.

buildTime
The time stamp when the app version was built.

deployTime
The date in ISO 8601 format when the application was deployed.

deviceProvisioningRealm
The name of the realm used for device provisioning.

envPlatformVersion
The version of the platform of the environment.

environment
The platform environment of the app version: iphone.

link
The URL to access detail information about the application version.

prevBuildTime
The time stamp when the app that was previosuly deployed was built.

publishUrl
For web applications, this is the URL under which the web application was
published.

securityTest
The name of the security test for a protected resource.

supportRemoteDisable
true if the application version supports remote disabling.

supportsAuthenticity
true if the application version supports authentication.

userAuthenticationRealm
The name of the realm used to authenticate users.

version
The version number of the app version.

versionLocked
Whether the version is locked.

The applicationEnvironmentDataAccess has the following properties:

9-52 IBM MobileFirst Platform Foundation for iOS V7.0.0



action
The action to be done when a disabled app version is accessed. Possible values
are: NOTIFY, BLOCK, NA.

createdTime
The date in ISO 8601 format when the app version access rule was created.

downloadLink
The download link where to obtain a new version of the application.

message
The message to be displayed when a disabled app version is accessed.

multiLanguageMessage
Internationalized variants of the message to be displayed when a disabled app
version is accessed.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Associate beacons and triggers (DELETE)
Deletes the association of beacons and triggers with the UUID, major number,
minor number and triggerName.

Description

Deleting a beacon or beacon-trigger would delete the corresponding
beacon-to-trigger associations as well.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

API reference 9-53



Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggerAssociations/
applications/application-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
beaconTriggerAssociations/applications/myapplication?locale=de_DE&major=1
&minor=4439&
triggerName=DwellInsideLoanSection&uuid=3d402cf0-3691-4bd9-97ff-0b0a93a160ef

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

major
Mandatory. The major number of the beacon whose trigger-association must be
deleted.

minor
Mandatory. The minor number of the beacon whose trigger-association must be
deleted.

triggerName
Mandatory. The name of the beacon trigger whose beacon-association must be
deleted.

uuid
Mandatory. The UUID of the beacon whose trigger-association must be deleted.

Produces

application/json, application/xml, text/xml

Response

The status of the delete of the beacon trigger association.

JSON Example
{

"beaconTriggerAssociations" : {
"major" : 1,
"minor" : 4439,
"triggerName" : "DwellInsideLoanSection",
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
"productVersion" : "7.0.0",
"transaction" : {
"appServerId" : "Tomcat",

9-54 IBM MobileFirst Platform Foundation for iOS V7.0.0



"errors" : [
{
},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "DELETE_BEACON_AND_TRIGGER_ASSOCIATION",
"userName" : "demouser",
"warnings" : [

{
},
...

],
},

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<delete-beacon-trigger-association-result productVersion="7.0.0">

<beaconTriggerAssociations
major="1"
minor="4439"
triggerName="DwellInsideLoanSection"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef"/>

<transaction
appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="DELETE_BEACON_AND_TRIGGER_ASSOCIATION"
userName="demouser">
<errors>

<error/>
...

</errors>
<project name="myproject"/>
<warnings>

<warning/>
...

</warnings>
</transaction>

</delete-beacon-trigger-association-result>

Response Properties

The response has the following properties:

beaconTriggerAssociations
The details of the beacon trigger association that is deleted.

productVersion
The exact product version.

transaction
The details of the transaction.

The beaconTriggerAssociations has the following properties:

API reference 9-55



major
The major number of the beacon whose trigger-associations must be deleted.

minor
The minor number of the beacon whose trigger-associations must be deleted.

triggerName
An unique name for this beacon trigger.

uuid
The UUID of beacon whose trigger-associations must be deleted

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: DELETE_BEACON_AND_TRIGGER_ASSOCIATION.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
Not Found - Either: a) beacon with specified by UUID, major and minor is not found,
OR b) trigger with specified triggerName is not found.

500
An internal error occurred.

9-56 IBM MobileFirst Platform Foundation for iOS V7.0.0



Associate beacons and triggers (GET)
Retrieves the association of beacons and triggers with the UUID, major number,
minor number, and triggerName.

Description

The beacons and triggers associations are retrieved based on the following query
parameters:
v None are specified: Returns all beacon and trigger associations of this

application.
v Only triggerName is specified: Returns the associations of the specified trigger

with any of the beacons.
v Only UUID is specified with/without triggerName (major and minor number

are not specified): Returns the associations of the specified/any trigger with any
of the beacons that have matching UUID.

v Only UUID and major number are specified with/without triggerName (minor
is not specified): Returns the associations of the specified/any trigger with any
of the beacons that have matching UUID and major number.

v Only UUID and minor number are specified with/without triggerName (major
is not specified): Returns the associations of the specified/any trigger with any
of the beacons that have matching UUID and minor number.

v UUID, major, and minor number are specified with/without triggerName:
Returns the associations of the specified/any trigger with the specified beacon.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggerAssociations/
applications/application-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
beaconTriggerAssociations/applications/myapplication?errorIfNotFound=true
&locale=de_DE&major=1
&minor=4439&triggerName=DwellInsideLoanSection&uuid=3d402cf0-3691-4bd9-97ff-0b0a93a160ef

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

API reference 9-57



application-name
The name of the application.

Query Parameters

Query parameters are optional.

errorIfNotFound
If this flag is set to true (default value) with any of the uuid/major/minor/
triggerName parameters specified, and there are no matching beacon trigger
associations, then 'HTTP 404 Not Found' error is returned instead of an empty
list in the output.

locale
The locale used for error messages.

major
The major number of the beacon whose trigger-associations must be fetched.

minor
The minor number of the beacon whose trigger-associations must be fetched.

triggerName
The name of beacon trigger whose beacon-associations must be fetched.

uuid
The UUID of the beacon whose trigger-associations must be fetched.

Produces

application/json, application/xml, text/xml

Response

The details of all the beacon trigger associations that are retrieved.

JSON Example
{

"beaconTriggerAssociations" : [
{

"major" : 1,
"minor" : 4439,
"triggerName" : "DwellInsideLoanSection",
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
...

],
"productVersion" : "7.0.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<list-beacon-trigger-associations-result productVersion="7.0.0">

<beaconTriggerAssociations>
<beaconTriggerAssociation

major="1"
minor="4439"
triggerName="DwellInsideLoanSection"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef"/>

...
</beaconTriggerAssociations>

</list-beacon-trigger-associations-result>

9-58 IBM MobileFirst Platform Foundation for iOS V7.0.0



Response Properties

The response has the following properties:

beaconTriggerAssociations
The array of beacon trigger associations.

productVersion
The exact product version.

The beaconTriggerAssociations has the following properties:

major
The major number of the beacon.

minor
The minor number of the beacon.

triggerName
The unique name of the beacon trigger.

uuid
The UUID of the beacon.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The errorIfNotFound flag is set to true (or not specified) and one of the following conditions
happened: a) a beacon with the specified UUID, major, and minor number is not found,
or b) the trigger with specified triggerName is not found,
or c) no association found between the specified beacon and trigger.
If the errorIfNotFound flag is set to false and there are no matching beacon-trigger associations,
then an empty list is returned instead of 404 error.

406
Unsupported Accept type - The content type specified in Accept header is not application/json,
application/xml or text/xml.

500
An internal error occurred.

Associate beacons and triggers (PUT)
Associates the specified beacons with the specified triggers.

Description

Use this API to specify a trigger and the list of beacons to associate with it. Or to
specify a beacon and the list of triggers to associate with it.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

API reference 9-59



v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggerAssociations/
applications/application-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
beaconTriggerAssociations/applications/myapplication?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

The payload has values for the beacons and the trigger names. It can be in JSON
or XML format.

JSON Example
{

"beacons" : [
{

"major" : 1,
"minor" : 4439,
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
...

],
"triggers" : [
{

"triggerName" : "DwellInsideLoanSection",

9-60 IBM MobileFirst Platform Foundation for iOS V7.0.0



},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<beaconTriggerAssociations>

<beacons>
<beacon

major="1"
minor="4439"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef"/>

...
</beacons>
<triggers>
<trigger triggerName="DwellInsideLoanSection"/>
...

</triggers>
</beaconTriggerAssociations>

Payload Properties

The payload has the following properties:

beacons
List of beacons to which each of the listed triggers must be associated with.
Each beacon is identified by its UUID, major and minor number.

triggers
List of triggers to which each of the listed beacons must be associated with.
Each beacon-trigger is identified by its triggerName.

The beaconTriggers has the following properties:

triggerName
The name of beacon-trigger.

The beacons has the following properties:

major
The major number of the beacon.

minor
The minor number of the beacon.

uuid
The UUID of the beacon.

Response

The status of the association of beacons and triggers.

JSON Example
{

"beaconTriggerAssociations" : [
{

"major" : 1,
"minor" : 4439,
"triggerName" : "DwellInsideLoanSection",
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
...

API reference 9-61



],
"productVersion" : "7.0.0",
"transaction" : {
"appServerId" : "Tomcat",
"errors" : [

{
},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "ASSOCIATE_BEACONS_AND_TRIGGERS",
"userName" : "demouser",
"warnings" : [

{
},
...

],
},

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<add-beacon-trigger-associations-result productVersion="7.0.0">

<beaconTriggerAssociations>
<beaconTriggerAssociation

major="1"
minor="4439"
triggerName="DwellInsideLoanSection"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef"/>

...
</beaconTriggerAssociations>
<transaction
appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="ASSOCIATE_BEACONS_AND_TRIGGERS"
userName="demouser">
<errors>

<error/>
...

</errors>
<project name="myproject"/>
<warnings>

<warning/>
...

</warnings>
</transaction>

</add-beacon-trigger-associations-result>

Response Properties

The response has the following properties:

beaconTriggerAssociations
The list of the beacon trigger associations that are created.

productVersion
The exact product version.

9-62 IBM MobileFirst Platform Foundation for iOS V7.0.0



transaction
The details of the transaction.

The beaconTriggerAssociations has the following properties:

major
The major number of the beacon that is associated with a specified
beacon-trigger.

minor
The minor number of the beacon that is associated with a specified
beacon-trigger.

triggerName
An unique name for this beacon trigger.

uuid
The UUID of the beacon that is associated with a specified beacon-trigger.

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: ASSOCIATE_BEACONS_AND_TRIGGERS.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
Bad Request - The request could not be understood by the server due to malformed syntax.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

API reference 9-63



404
Not Found - One/more of the specified beacons or beacon-triggers not found.

406
Unsupported Accept type - The content type specified in Accept header is not application/json,
application/xml or text/xml.

415
Unsupported Media Type - The server is refusing to service the request because the request
payload is not in application/json or application/xml or text/xml types.

500
An internal error occurred.

Beacon Trigger (DELETE)
Deletes the beacon trigger by using the triggerName.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggers/trigger-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/beaconTriggers/mytrigger?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

trigger-name
The name of the beacon trigger.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

9-64 IBM MobileFirst Platform Foundation for iOS V7.0.0



Response

The status of the delete of the beacon trigger.

JSON Example
{

"beaconTrigger" : {
"actionPayload" : {

"alert" : "Avail lowest interest rate of just 7.5% on home loans!",
},
"dwellingTime" : 5000,
"proximityState" : "Far",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

},
"productVersion" : "7.0.0",
"transaction" : {

"appServerId" : "Tomcat",
"errors" : [

{
},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "DELETE_BEACON_TRIGGER",
"userName" : "demouser",
"warnings" : [

{
},
...

],
},

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<delete-beacon-trigger-result productVersion="7.0.0">

<beaconTrigger
dwellingTime="5000"
proximityState="Far"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.5% on home loans!"/>

</beaconTrigger>
<transaction

appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="DELETE_BEACON_TRIGGER"
userName="demouser">
<errors>

<error/>
...

</errors>
<project name="myproject"/>
<warnings>

<warning/>

API reference 9-65



...
</warnings>

</transaction>
</delete-beacon-trigger-result>

Response Properties

The response has the following properties:

beaconTrigger
The details of the beacon trigger that is deleted.

productVersion
The exact product version.

transaction
The details of the transaction.

The beaconTrigger has the following properties:

actionPayload
The details of an action to be taken when the trigger is activated.

dwellingTime
Optional: Applicable only for triggerTypes: DwellInside and DwellOutside. It
should be specified in milliseconds and defines how long the device must be
inside, or outside a beacon region before the dwellInside or dwellOutside
trigger is activated. Mandatory with triggerType of DwellInside and
DwellOutside.

proximityState
Optional: The proximity state that is specified for a beacon trigger. It can be
either Immediate, Near, or Far. The default value is Far.

triggerName
An unique name for this beacon trigger.

triggerType
The type of beacon trigger. The value of the type can be either Enter, Exit,
DwellInside, or DwellOutside.

The actionPayload has the following properties:

alert
The alert message to be sent when a trigger is activated.

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

9-66 IBM MobileFirst Platform Foundation for iOS V7.0.0



timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: DELETE_BEACON_TRIGGER.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
Not Found - A beacon trigger with the specified triggerName is not found.

500
An internal error occurred.

Beacon Trigger (GET)
Retrieves the beacon trigger with the triggerName.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggers/trigger-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/beaconTriggers/mytrigger?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

API reference 9-67



trigger-name
The name of the beacon trigger.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The details of the beacon trigger that is retrieved.

JSON Example
{

"beaconTrigger" : {
"actionPayload" : {

"alert" : "Avail lowest interest rate of just 7.5% on home loans.",
},
"dwellingTime" : 5000,
"proximityState" : "Near",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

},
"productVersion" : "7.0.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<show-beacon-trigger-result productVersion="7.0.0">

<beaconTrigger
dwellingTime="5000"
proximityState="Near"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.5% on home loans."/>

</beaconTrigger>
</show-beacon-trigger-result>

Response Properties

The response has the following properties:

beaconTrigger
The beacon trigger that was found.

productVersion
The exact product version.

The beaconTrigger has the following properties:

actionPayload
The details of the action that is taken when the trigger is activated.

dwellingTime
Available only for triggerTypes: DwellInside and DwellOutside. It is the time

9-68 IBM MobileFirst Platform Foundation for iOS V7.0.0



in milliseconds that specifies how long the device must be inside, or outside
the associated beacon region before the DwellInside or DwellOutside trigger is
activated.

proximityState
The proximity state that was specified for the beacon trigger. It is either
Immediate, Near, or Far.

triggerName
The unique name of the beacon trigger.

triggerType
The type of beacon trigger. It is either Enter, Exit, DwellInside, or
DwellOutside.

The actionPayload has the following properties:

alert
The alert message that is shown on the mobile device of user when this trigger
is activated.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
Not Found - No beacon-trigger found with matching triggerName.

406
Unsupported Accept type - The content type specified in Accept header is not
application/json, application/xml or text/xml.

500
An internal error occurred.

Beacon Triggers (GET)
Retrieves all the beacon triggers.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggers

API reference 9-69



Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes/myruntime/beaconTriggers?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The details of all the beacon triggers that are retrieved.

JSON Example
{

"beaconTriggers" : [
{

"actionPayload" : {
"alert" : "Avail lowest interest rate of just 7.5% on home loans.",

},
"dwellingTime" : 5000,
"proximityState" : "Near",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

},
...

],
"productVersion" : "7.0.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<list-beacon-triggers-result productVersion="7.0.0">

<beaconTriggers>
<beaconTrigger

dwellingTime="5000"
proximityState="Near"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.5% on home loans."/>

</beaconTrigger>
...

</beaconTriggers>
</list-beacon-triggers-result>

Response Properties

The response has the following properties:

9-70 IBM MobileFirst Platform Foundation for iOS V7.0.0



beaconTriggers
The array of the beacon triggers.

productVersion
The exact product version.

The beaconTriggers has the following properties:

actionPayload
The details of the action that is taken when the trigger is activated.

dwellingTime
Available only for triggerTypes: DwellInside and DwellOutside. It is the time
in milliseconds that specifies how long the device must be inside, or outside
the associated beacon region before the DwellInside or DwellOutside trigger is
activated.

proximityState
The proximity state that was specified for the beacon trigger. It is either
Immediate, Near, or Far.

triggerName
The unique name of the beacon trigger.

triggerType
The type of beacon trigger. It is either Enter, Exit, DwellInside, or
DwellOutside.

The actionPayload has the following properties:

alert
The alert message that is shown on the mobile device of user when this trigger
is activated.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

406
Unsupported Accept type - The content type specified in Accept header is not
application/json, application/xml or text/xml.

500
An internal error occurred.

Beacon Triggers (POST)
Adds a new beacon trigger by using the triggerName, triggerType, proximityState,
and actionPayload properties.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

API reference 9-71



Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggers

Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes/myruntime/beaconTriggers?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

The payload has values for the triggerName, triggerType, proximityState,
dwellingTime, and actionPayload properties. It can be in JSON or XML format

JSON Example
{

"actionPayload" : {
"alert" : "Avail lowest interest rate of just 7.5% on home loans!",

},
"dwellingTime" : 5000,
"proximityState" : "Far",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<beaconTrigger

dwellingTime="5000"
proximityState="Far"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.5% on home loans!"/>

</beaconTrigger>

9-72 IBM MobileFirst Platform Foundation for iOS V7.0.0



Payload Properties

The payload has the following properties:

actionPayload
The details of an action to be taken when the trigger is activated.

dwellingTime
Optional: Applicable only for triggerTypes: DwellInside and DwellOutside. It
should be specified in milliseconds and defines how long the device must be
inside, or outside a beacon region before the dwellInside or dwellOutside
trigger is activated. Mandatory with triggerType of DwellInside and
DwellOutside.

proximityState
Optional: The proximity state that is specified for a beacon trigger. It can be
either Immediate, Near, or Far. The default value is Far.

triggerName
An unique name for this beacon trigger (consisting of alphanumeric or
underscore characters and beginning with an alphabet).

triggerType
The type of beacon trigger. The value of the type can be either Enter, Exit,
DwellInside, or DwellOutside.

The actionPayload has the following properties:

alert
The alert message to be sent when a trigger is activated.

Response

The status of the adding of the beacon trigger.

JSON Example
{

"beaconTrigger" : {
"actionPayload" : {

"alert" : "Avail lowest interest rate of just 7.5% on home loans!",
},
"dwellingTime" : 5000,
"proximityState" : "Far",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

},
"productVersion" : "7.0.0",
"transaction" : {

"appServerId" : "Tomcat",
"errors" : [

{
},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "ADD_BEACON_TRIGGER",
"userName" : "demouser",

API reference 9-73



"warnings" : [
{
},
...

],
},

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-beacon-trigger-result productVersion="7.0.0">

<beaconTrigger
dwellingTime="5000"
proximityState="Far"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.5% on home loans!"/>

</beaconTrigger>
<transaction

appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="ADD_BEACON_TRIGGER"
userName="demouser">
<errors>

<error/>
...

</errors>
<project name="myproject"/>
<warnings>

<warning/>
...

</warnings>
</transaction>

</set-beacon-trigger-result>

Response Properties

The response has the following properties:

beaconTrigger
The details of the beacon trigger that is created.

productVersion
The exact product version.

transaction
The details of the transaction.

The beaconTrigger has the following properties:

actionPayload
The details of an action to be taken when the trigger is activated.

dwellingTime
Optional: Applicable only for triggerTypes: DwellInside and DwellOutside. It
should be specified in milliseconds and defines how long the device must be
inside, or outside a beacon region before the dwellInside or dwellOutside
trigger is activated. Mandatory with triggerType of DwellInside and
DwellOutside.

9-74 IBM MobileFirst Platform Foundation for iOS V7.0.0



proximityState
Optional: The proximity state that is specified for a beacon trigger. It can be
either Immediate, Near, or Far. The default value is Far.

triggerName
An unique name for this beacon trigger.

triggerType
The type of beacon trigger. The value of the type can be either Enter, Exit,
DwellInside, or DwellOutside.

The actionPayload has the following properties:

alert
The alert message to be sent when a trigger is activated.

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: ADD_BEACON_TRIGGER.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
Bad Request - The request could not be understood by the server due to malformed syntax.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

406
Unsupported Accept type - The content type specified in Accept header is not application/json,
application/xml or text/xml.

API reference 9-75



409
Conflict - There is already an existing trigger with the specified triggerName.

415
Unsupported Media Type - The server is refusing to service the request because the request
payload is not in application/json or application/xml or text/xml types.

500
An internal error occurred.

Beacon Triggers (PUT)
Updates the beacon trigger that is specified by using the triggerName property.
Other properties (triggerType, proximityState, dwellingTime, and actionPayload)
are optional. Only those that need to be updated must be specified.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/beaconTriggers

Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes/myruntime/beaconTriggers?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

9-76 IBM MobileFirst Platform Foundation for iOS V7.0.0



Payload

The payload has values for the triggerName, triggerType, proximityState,
dwellingTime, and actionPayload properties. It can be in JSON or XML format.

JSON Example
{

"actionPayload" : {
"alert" : "Avail lowest interest rate of just 7.25% on home loans!",

},
"triggerName" : "DwellInsideLoanSection",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<beaconTrigger triggerName="DwellInsideLoanSection">

<actionPayload alert="Avail lowest interest rate of just 7.25% on home loans!"/>
</beaconTrigger>

Payload Properties

The payload has the following properties:

actionPayload
The details of an action to be taken when the trigger is activated.

triggerName
An unique name for this beacon trigger.

The actionPayload has the following properties:

alert
The alert message to be sent when a trigger is activated.

Response

The status of the update of the beacon trigger.

JSON Example
{

"beaconTrigger" : {
"actionPayload" : {

"alert" : "Avail lowest interest rate of just 7.25% on home loans!",
},
"dwellingTime" : 5000,
"proximityState" : "Far",
"triggerName" : "DwellInsideLoanSection",
"triggerType" : "Enter",

},
"productVersion" : "7.0.0",
"transaction" : {

"appServerId" : "Tomcat",
"errors" : [

{
},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "SUCCESS",

API reference 9-77



"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "UPDATE_BEACON_TRIGGER",
"userName" : "demouser",
"warnings" : [

{
},
...

],
},

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-beacon-trigger-result productVersion="7.0.0">

<beaconTrigger
dwellingTime="5000"
proximityState="Far"
triggerName="DwellInsideLoanSection"
triggerType="Enter">
<actionPayload alert="Avail lowest interest rate of just 7.25% on home loans!"/>

</beaconTrigger>
<transaction

appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="UPDATE_BEACON_TRIGGER"
userName="demouser">
<errors>

<error/>
...

</errors>
<project name="myproject"/>
<warnings>

<warning/>
...

</warnings>
</transaction>

</set-beacon-trigger-result>

Response Properties

The response has the following properties:

beaconTrigger
The details of the beacon trigger that is updated.

productVersion
The exact product version.

transaction
The details of the transaction.

The beaconTrigger has the following properties:

actionPayload
The details of an action to be taken when the trigger is activated.

dwellingTime
Optional: Applicable only for triggerTypes: DwellInside and DwellOutside. It
should be specified in milliseconds and defines how long the device must be

9-78 IBM MobileFirst Platform Foundation for iOS V7.0.0



inside, or outside a beacon region before the dwellInside or dwellOutside
trigger is activated. Mandatory with triggerType of DwellInside and
DwellOutside.

proximityState
Optional: The proximity state that is specified for a beacon trigger. It can be
either Immediate, Near, or Far. The default value is Far.

triggerName
An unique name for this beacon trigger.

triggerType
The type of beacon trigger. The value of the type can be either Enter, Exit,
DwellInside, or DwellOutside.

The actionPayload has the following properties:

alert
The alert message to be sent when a trigger is activated.

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: UPDATE_BEACON_TRIGGER.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
Bad Request - The request could not be understood by the server due to malformed syntax.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

API reference 9-79



404
Not Found - A beacon-trigger with specified triggerName does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json,
application/xml or text/xml.

415
Unsupported Media Type - The server is refusing to service the request because the request
payload is not in application/json or application/xml or text/xml types.

500
An internal error occurred.

Beacons (DELETE)
Deletes the beacon by using the UUID, the major number, and minor number.

Description

Each of these query parameters (uuid, major and minor) are mandatory. If any of
them are missing, the request fails with 400 Bad Request.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/beacons

Example
https://www.example.com/worklightadmin/management-apis/1.0/
beacons?locale=de_DE&major=1&minor=4439&uuid=3d402cf0-3691-4bd9-97ff-0b0a93a160ef

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

major
Mandatory. The major number of the beacon.

minor
Mandatory. The minor number of the beacon.

9-80 IBM MobileFirst Platform Foundation for iOS V7.0.0



uuid
Mandatory. The UUID of the beacon.

Produces

application/json, application/xml, text/xml

Response

The status of the delete of the beacon. The transaction details might be empty if
there are no runtimes deployed.

JSON Example
{

"beacon" : {
"major" : 1,
"minor" : 4439,
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
"ok" : false,
"productVersion" : "7.0.0",
"transactions" : [
{

"appServerId" : "Tomcat",
"errors" : [
{
},
...

],
"id" : 1,
"project" : {
"name" : "myproject",

},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "DELETE_BEACON",
"userName" : "demouser",
"warnings" : [
{
},
...

],
},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<remove-beacon-result

ok="false"
productVersion="7.0.0">
<beacon
major="1"
minor="4439"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef"/>

<transactions>
<transaction

appServerId="Tomcat"
id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"

API reference 9-81



timeUpdated="2014-11-14T05:21:13.456Z"
type="DELETE_BEACON"
userName="demouser">
<errors>
<error/>
...

</errors>
<project name="myproject"/>
<warnings>
<warning/>
...

</warnings>
</transaction>
...

</transactions>
</remove-beacon-result>

Response Properties

The response has the following properties:

beacon
The details of the beacon that is deleted.

ok Whether all transactions were successful.

productVersion
The exact product version.

transactions
The details of the transactions, one for each runtime.

The beacon has the following properties:

major
The major number of the beacon.

minor
The minor number of the beacon.

uuid
The UUID of the beacon.

The transaction has the following properties:

appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

9-82 IBM MobileFirst Platform Foundation for iOS V7.0.0



type
The type of the transaction: DELETE_BEACON.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
Bad Request - The request could not be understood by the server due to missing mandatory
parameters uuid, major, minor.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
A beacon with the specified uuid+major+minor numbers is not found.

500
An internal error occurred.

Beacons (GET)
Retrieves the beacon with the UUID, major number, and minor number.

Description

The beacons are retrieved based on which of the query parameters are mentioned:
v UUID, major number, and minor number are all specified: returns the details of

a specific beacon.
v Only UUID and major number are specified: returns the details of all beacons

with matching UUID and major number.
v Only UUID and minor number are specified: returns the details of all beacons

with matching UUID and minor number.
v Only UUID is specified: returns the details of all beacons with matching UUID.
v None are specified: returns the details of all beacons.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

API reference 9-83



Method

GET

Path

/management-apis/1.0/beacons

Example
https://www.example.com/worklightadmin/management-apis/1.0/
beacons?errorIfNotFound=true&locale=de_DE&major=1&minor=4439&
uuid=3d402cf0-3691-4bd9-97ff-0b0a93a160ef

Query Parameters

Query parameters are optional.

errorIfNotFound
If this flag is set to true (default value), and uuid and/or major/minor
parameters are specified for which there are no matching beacons, then 'HTTP
404 Not Found' error is returned instead of an empty list in the output.

locale
The locale used for error messages.

major
The major number of the beacon.

minor
The minor number of the beacon.

uuid
The UUID of the beacon.

Produces

application/json, application/xml, text/xml

Response

The details of all the beacons that are retrieved.

JSON Example
{

"beacons" : [
{

"customData" : {
"beaconLocation" : "loanSection",
"branchName" : "Indiranagar, Bangalore",

},
"latitude" : 12.952,
"longitude" : 77.644,
"major" : 1,
"minor" : 4439,
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
...

],
"productVersion" : 7.0.0,

}

9-84 IBM MobileFirst Platform Foundation for iOS V7.0.0



XML Example
<?xml version="1.0" encoding="UTF-8"?>
<list-beacons-result productVersion="7.0.0">

<beacons>
<beacon

latitude="12.952"
longitude="77.644"
major="1"
minor="4439"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef">
<customData
beaconLocation="loanSection"
branchName="Indiranagar, Bangalore"/>

</beacon>
...

</beacons>
</list-beacons-result>

Response Properties

The response has the following properties:

beacons
The array of beacons

productVersion
The exact product version.

The beacons has the following properties:

customData
Optional: Any other customer-specific data that is associated with this beacon
like branch/store where this beacon is deployed.

latitude
Optional latitude where the beacon is deployed.

longitude
Optional longitude where the beacon is deployed.

major
The major number of the beacon.

minor
The minor number of the beacon.

uuid
The UUID of the beacon.

The customData has the following properties:

beaconLocation
The physical location of the beacon.

branchName
The branch where the beacon is installed.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404

API reference 9-85



A beacon with the specified uuid and/or major/minor is not found and errorIfNotFound flag was
either not specified or was set to true.

406
Unsupported Accept type - The content type specified in Accept header is not application/json,
application/xml or text/xml.

500
An internal error occurred.

Beacons (PUT)
Registers (Adds/Updates) the beacon that is identified by UUID, major number,
and minor number in the payload.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/beacons

Example
https://www.example.com/worklightadmin/management-apis/1.0/
beacons?locale=de_DE

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

The payload can be in JSON or XML format and has values for UUID, major
number, minor number, latitude, longitude, and customData properties.

9-86 IBM MobileFirst Platform Foundation for iOS V7.0.0



JSON Example
{

"customData" : {
"beaconLocation" : "loanSection",
"branchName" : "Indiranagar, Bangalore",

},
"latitude" : "12.95213",
"longitude" : 77.64482,
"major" : 1,
"minor" : 4439,
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<beacon

latitude="12.95213"
longitude="77.64482"
major="1"
minor="4439"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef">
<customData
beaconLocation="loanSection"
branchName="Indiranagar, Bangalore"/>

</beacon>

Payload Properties

The payload has the following properties:

customData
Optional: Any other customer-specific data that is associated with this beacon
like branch/store where this beacon is deployed.

latitude
Optional latitude where the beacon is deployed.

longitude
Optional longitude where the beacon is deployed.

major
The major number of the beacon (positive number in the range 0-65535
inclusive).

minor
The minor number of the beacon (positive number in the range 0-65535
inclusive).

uuid
UUID of beacon. UUID must be specified in canonical form and has 32
hexadecimal digits. The digits are specified in five groups and separated by
hyphens, in the form 8-4-4-4-12 for a total of 36 characters (32 alphanumeric
characters and 4 hyphens).

The customData has the following properties:

beaconLocation
The physical location of the beacon.

branchName
The branch where the beacon is installed.

API reference 9-87



Response

The status of the add/update of the beacon. The transaction details might by
empty if there are no runtimes deployed.

JSON Example
{

"beacon" : {
"customData" : {

"beaconLocation" : "loanSection",
"branchName" : "Indiranagar, Bangalore",

},
"latitude" : "12.952",
"longitude" : 77.644,
"major" : 1,
"minor" : 4439,
"uuid" : "3d402cf0-3691-4bd9-97ff-0b0a93a160ef",

},
"ok" : true,
"productVersion" : "7.0.0",
"transactions" : [
{

"appServerId" : "Tomcat",
"errors" : [
{
},
...

],
"id" : 1,
"project" : {
"name" : "myproject",

},
"status" : "SUCCESS",
"timeCreated" : "2014-11-14T05:21:13.404Z",
"timeUpdated" : "2014-11-14T05:21:13.456Z",
"type" : "REGISTER_BEACON",
"userName" : "demouser",
"warnings" : [
{
},
...

],
},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-beacon-result

ok="true"
productVersion="7.0.0">
<beacon
latitude="12.952"
longitude="77.644"
major="1"
minor="4439"
uuid="3d402cf0-3691-4bd9-97ff-0b0a93a160ef">
<customData

beaconLocation="loanSection"
branchName="Indiranagar, Bangalore"/>

</beacon>
<transactions>
<transaction

appServerId="Tomcat"

9-88 IBM MobileFirst Platform Foundation for iOS V7.0.0



id="1"
status="SUCCESS"
timeCreated="2014-11-14T05:21:13.404Z"
timeUpdated="2014-11-14T05:21:13.456Z"
type="REGISTER_BEACON"
userName="demouser">
<errors>
<error/>
...

</errors>
<project name="myproject"/>
<warnings>
<warning/>
...

</warnings>
</transaction>
...

</transactions>
</set-beacon-result>

Response Properties

The response has the following properties:

beacon
The details of the beacon that is added/updated.

ok Whether all transactions were successful.

productVersion
The exact product version.

transactions
The details of the transactions, one for each runtime.

The beacon has the following properties:

customData
Optional: Any other customer-specific data that is associated with this beacon
like branch/store where this beacon is deployed.

latitude
Optional latitude where the beacon is deployed.

longitude
Optional longitude where the beacon is deployed.

major
The major number of the beacon.

minor
The minor number of the beacon.

uuid
The UUID of the beacon.

The customData has the following properties:

beaconLocation
The physical location of the beacon.

branchName
The branch where the beacon is installed.

The transaction has the following properties:

API reference 9-89



appServerId
The id of the web application server.

errors
Errors, if any, that occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: SUCCESS, FAILURE.

timeCreated
The date in ISO 8601 format when the transaction was started.

timeUpdated
The date in ISO 8601 format when the transaction was completed.

type
The type of the transaction: REGISTER_BEACON.

userName
The user that initiated the transaction.

warnings
Warnings, if any, that occurred during the transaction.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
Bad Request - The request could not be understood by the server due to malformed
syntax or missing mandatory UUID, major and minor values.

401
Unauthorized - The caller is either not authenticated or not authorized to make
this request.

406
Unsupported Accept type - The content type specified in Accept header is not
application/json, application/xml or text/xml.

415
Unsupported Media Type - The server is refusing to service the request because
the request payload is not in application/json or application/xml or text/xml types.

500
An internal error occurred.

Device Application Status (PUT)
Changes the status of a specific application on a specific device.

9-90 IBM MobileFirst Platform Foundation for iOS V7.0.0



Description

A device can be marked as enabled or disabled for a specific device. Disabled
applications cannot access the server.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/devices/device-id/applications/
application-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
devices/12345-6789/applications/myapplication?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

device-id
The device id.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

application/json

API reference 9-91



Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"status" : "ENABLED",
}

Payload Properties

The payload has the following properties:

status
The status of the application: ENABLED or DISABLED.

Response

The metadata of the transaction.

JSON Example
{

"ok" : false,
"productVersion" : "7.0.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"appName" : "myapplication",
"deviceId" : "12345-6789",
"status" : "ENABLED",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "CHANGE_DEVICE_APPLICATION_STATUS",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-applicationdevice-status-result

ok="false"
productVersion="7.0.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"

9-92 IBM MobileFirst Platform Foundation for iOS V7.0.0



type="CHANGE_DEVICE_APPLICATION_STATUS"
userName="demouser">
<description

appName="myapplication"
deviceId="12345-6789"
status="ENABLED"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-applicationdevice-status-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the status change.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always CHANGE_DEVICE_APPLICATION_STATUS.

userName
The user that initiated the transaction.

The description has the following properties:

appName
The application name.

deviceId
The device id.

API reference 9-93



status
The status of the application: ENABLED or DISABLED.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the device is not found.

500
An internal error occurred.

Device (DELETE)
Deletes all metadata of a specific device.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/devices/device-id

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/devices/12345-6789?async=false&locale=de_DE

9-94 IBM MobileFirst Platform Foundation for iOS V7.0.0



Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

device-id
The device id.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deleted device.

JSON Example
{

"ok" : false,
"productVersion" : "7.0.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"deviceId" : "12345-6789",
"status" : "LOST",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "REMOVE_DEVICE",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<remove-device-result

ok="false"
productVersion="7.0.0">
<transaction
appServerId="Tomcat"

API reference 9-95



id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="REMOVE_DEVICE"
userName="demouser">
<description

deviceId="12345-6789"
status="LOST"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</remove-device-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the device.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always REMOVE_DEVICE.

userName
The user that initiated the transaction.

The description has the following properties:

deviceId
The device id.

9-96 IBM MobileFirst Platform Foundation for iOS V7.0.0



status
The status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the device is not found.

500
An internal error occurred.

Device Status (PUT)
Changes the status of a specific device.

Description

A device can be marked as active, lost, stolen, disabled, or expired. Lost, stolen or
disabled devices cannot access the server. A device is marked expired if it has not
connected to the MobileFirst server for 90 days.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/devices/device-id

API reference 9-97



Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/devices/12345-6789?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

device-id
The device id.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"status" : "LOST",
}

Payload Properties

The payload has the following properties:

status
The new status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

Response

The metadata of the transaction.

JSON Example
{

"ok" : false,
"productVersion" : "7.0.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"deviceId" : "12345-6789",
"status" : "LOST",

},

9-98 IBM MobileFirst Platform Foundation for iOS V7.0.0



"errors" : [
{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "CHANGE_DEVICE_STATUS",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-device-status-result

ok="false"
productVersion="7.0.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="CHANGE_DEVICE_STATUS"
userName="demouser">
<description

deviceId="12345-6789"
status="LOST"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-device-status-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the status change.

errors
The errors occurred during the transaction.

id The id of the transaction.

API reference 9-99



project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always CHANGE_DEVICE_STATUS.

userName
The user that initiated the transaction.

The description has the following properties:

deviceId
The device id.

status
The status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the device is not found.

500
An internal error occurred.

Devices (GET)
Retrieves metadata for the list of devices that accessed this project.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

9-100 IBM MobileFirst Platform Foundation for iOS V7.0.0



v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/devices

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
devices?locale=de_DE&offset=0&orderBy=uid&pageSize=100&query=Jeremy

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: uid, friendlyName, deviceModel,
deviceEnvironment, status, lastAccessed. The default sort mode is: uid.

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

query
A device friendly name or a user to search for.

Produces

application/json, application/xml, text/xml

Response

The metadata of the devices that accessed this project.

JSON Example
{

"items" : [
{

"applicationDeviceAssociations" : [

API reference 9-101



{
"appName" : "myapplication",
"deviceId" : "12345-6789",
"deviceStatus" : "LOST",
"status" : "ENABLED",

},
...

],
"deviceEnvironment" : "iphone",
"deviceModel" : "iPhone 5",
"deviceOs" : "4.4",
"friendlyName" : "Jeremy’s Personal Phone",
"id" : "12345-6789",
"lastAccessed" : "2014-05-13T00:18:36.979Z",
"status" : "LOST",
"uid" : "Jeremy",

},
...

],
"pageSize" : 100,
"productVersion" : "7.0.0",
"startIndex" : 0,
"totalListSize" : 33,

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<devices

pageSize="100"
productVersion="7.0.0"
startIndex="0"
totalListSize="33">
<items>
<item

deviceEnvironment="iphone"
deviceModel="iPhone 5"
deviceOs="4.4"
friendlyName="Jeremy’s Personal Phone"
id="12345-6789"
lastAccessed="2014-05-13T00:18:36.979Z"
status="LOST"
uid="Jeremy">
<applicationDeviceAssociations>
<applicationDeviceAssociation

appName="myapplication"
deviceId="12345-6789"
deviceStatus="LOST"
status="ENABLED"/>

...
</applicationDeviceAssociations>

</item>
...

</items>
</devices>

Response Properties

The response has the following properties:

items
The array of device metadata

pageSize
The page size if only a page of devices is returned.

9-102 IBM MobileFirst Platform Foundation for iOS V7.0.0



productVersion
The exact product version.

startIndex
The start index in the total list if only a page of devices is returned.

totalListSize
The total number of devices.

The device has the following properties:

applicationDeviceAssociations
The applications on the device.

deviceEnvironment
The platform environment of the app version: iphone.

deviceModel
The device model.

deviceOs
The device operating system.

friendlyName
The friendly name of the device.

id The device id.

lastAccessed
The date in ISO 8601 format when the device was last accessed.

status
The status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

uid
The user name of the device.

The device application has the following properties:

appName
The name of the application.

deviceId
The device id.

deviceStatus
The status of the device:ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

status
The status of the application: ENABLED or DISABLED.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

API reference 9-103



Event Source (GET)
Retrieves metadata for the event source.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/eventsources/adapter-
name/eventsource-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/notifications/eventsources/myadapter/myeventsource?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

eventsource-name
The name of the event source.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the event source.

9-104 IBM MobileFirst Platform Foundation for iOS V7.0.0



JSON Example
{

"numberOfMessagesSent" : 1,
"numberOfSubscribedUsers" : 1,
"productVersion" : "7.0.0",
"qname" : "SampleAdapter.SampleEventSource",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<eventsources

numberOfMessagesSent="1"
numberOfSubscribedUsers="1"
productVersion="7.0.0"
qname="SampleAdapter.SampleEventSource"/>

Response Properties

The response has the following properties:

numberOfMessagesSent
Number of messages sent to this event source.

numberOfSubscribedUsers
Number of subscribed users of this event source.

productVersion
The exact product version.

qname
The name of the event source.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Event Sources (GET)
Retrieves metadata for the list of event sources.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

API reference 9-105



Path

/management-apis/1.0/runtimes/runtime-name/notifications/eventsources

Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes/myruntime/notifications/eventsources?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the event sources.

JSON Example
{

"eventsources" : [
{

"numberOfMessagesSent" : 1,
"numberOfSubscribedUsers" : 1,
"qname" : "myadapter.myeventsource",

},
...

],
"productVersion" : "7.0.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<eventsources productVersion="7.0.0">

<eventsources>
<eventsource

numberOfMessagesSent="1"
numberOfSubscribedUsers="1"
qname="myadapter.myeventsource"/>

...
</eventsources>

</eventsources>

Response Properties

The response has the following properties:

eventsources
The array of event source metadata

9-106 IBM MobileFirst Platform Foundation for iOS V7.0.0



productVersion
The exact product version.

The eventsource has the following properties:

numberOfMessagesSent
Number of messages sent to this event source.

numberOfSubscribedUsers
Number of subscribed users of this event source.

qname
The name of the event source.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Farm topology members (GET)
Retrieves the list of members of the farm.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/farm

Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes/myruntime/farm?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

API reference 9-107



Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The list of nodes registered in the current farm topology

JSON Example
{

"nodes" : [
{

"adminUser" : "johndoe",
"appServerType" : "LIBERTY",
"heartbeatTime" : "2014-12-08T23:32:04.700Z",
"host" : "192.168.0.4",
"pk" : {
"projectName" : "mytestproject",
"serverId" : "Farm_Node_3",

},
"port" : "8686",
"status" : "ALIVE",
"tomcatPort" : "8989",

},
...

],
"numberOfNodes" : 3,
"productVersion" : "7.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<farm-members

numberOfNodes="3"
productVersion="7.0">
<nodes>
<node

adminUser="johndoe"
appServerType="LIBERTY"
heartbeatTime="2014-12-08T23:32:04.700Z"
host="192.168.0.4"
port="8686"
status="ALIVE"
tomcatPort="8989">
<pk
projectName="mytestproject"
serverId="Farm_Node_3"/>

</node>
...

</nodes>
</farm-members>

Response Properties

The response has the following properties:

9-108 IBM MobileFirst Platform Foundation for iOS V7.0.0



nodes
The array of farm nodes

numberOfNodes
The total number of nodes.

productVersion
The exact product version.

The farm node has the following properties:

adminUser
The user id to use for REST

appServerType
The server type of this node

heartbeatTime
The last heartbeat time

host
The hostname of this node

pk The primary key of this node

port
The port to use for REST or RMI

status
The status of this node

tomcatPort
The port to use for RMI if behind a firewall

The farm node pk has the following properties:

projectName
The MobileFirst runtime related to this farm member

serverId
The server identifier of this farm member

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Farm topology members (DELETE)
Unregisters a farm node.

Description

This service removes a farm node By default, the service will remove a farm node
only if it is marked as being Down If you want to force the deletion, even if the
farm member is marked as being Alive, you should set the force argument to true.

API reference 9-109



Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/farm/server-id

Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes/myruntime/farm/farm_member_1?force=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

server-id
The server id of the farm member to remove

Query Parameters

Query parameters are optional.

force
Whether the service should unregister a farm member, even if it is marked as
being Alive. The default is false.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The status of the unregistration of the farm member

JSON Example
{

"ok" : true,
"productVersion" : "7.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<remove-farm-member-result

ok="true"
productVersion="7.0"/>

9-110 IBM MobileFirst Platform Foundation for iOS V7.0.0



Response Properties

The response has the following properties:

ok Whether the operation was successful.

productVersion
The exact product version.

Errors

403
The user is not authorized to call this service.

404
The corresponding farm member is not found.

500
An internal error occurred.

GCM Credentials (DELETE)
Deletes Google Cloud Messaging (GCM) credentials of the application with the
application ID, environment, and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/gcmConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/gcmConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

API reference 9-111



application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The delete status of GCM credentials.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "DELETE_PUSH_CREDENTIALS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deleteGCMCredentialsStatus

status="Success"
type="DELETE_PUSH_CREDENTIALS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</deleteGCMCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The GCM credentials are deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

9-112 IBM MobileFirst Platform Foundation for iOS V7.0.0



name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

GCM Credentials (GET)
Retrieves Google Cloud Messaging (GCM) credentials of the application with the
application ID, environment, and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/gcmConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/gcmConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

API reference 9-113



Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The GCM Credentials of the application with the application ID, environment, and
version.

JSON Example
{

"apiKey" : "AIzaSyDSJrULbNZZzzZZzzxyX7ZTmnoRLkwiU",
"productVersion" : "7.0.0",
"senderId" : "9999999999999",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<gcmCredentials

apiKey="AIzaSyDSJrULbNZZzzZZzzxyX7ZTmnoRLkwiU"
productVersion="7.0.0"
senderId="9999999999999"/>

Response Properties

The response has the following properties:

apiKey
The key value received from GCM.

productVersion
The exact product version.

senderId
The project ID received from GCM.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

GCM Credentials (PUT)
Set Google Cloud Messaging (GCM) credentials of the application with the
application ID, environment, and version.

9-114 IBM MobileFirst Platform Foundation for iOS V7.0.0



Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/gcmConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/gcmConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload in JSON format has values for apiKey and senderId.

API reference 9-115



JSON Example
{

"apiKey" : "AIzaSyDSJrrrrrrrrrrZZZZZZZX7ZTmnoRLkwiU",
"senderId" : "1099999999999",

}

Payload Properties

The payload has the following properties:

apiKey
The key value received from GCM.

senderId
The project ID received from GCM.

Response

The status of set GCM credentials.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_GCM_CREDENTIALS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<setGCMCredentialsStatus

status="Success"
type="SET_GCM_CREDENTIALS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</setGCMCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The GCM credentials are saved successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

9-116 IBM MobileFirst Platform Foundation for iOS V7.0.0



The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Mediator (GET)
Retrieves metadata of the mediator.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/mediators/mediator-
name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/notifications/mediators/Google?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

mediator-name
The name of the mediator.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

API reference 9-117



Produces

application/json, application/xml, text/xml

Response

The metadata of the mediator.

JSON Example
{

"productVersion" : "7.0.0",
"type" : "Google",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<mediators

productVersion="7.0.0"
type="Google"/>

Response Properties

The response has the following properties:

productVersion
The exact product version.

type
The type of the mediator.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Mediators (GET)
Retrieves the list of all supported mediators for sending notifications.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

9-118 IBM MobileFirst Platform Foundation for iOS V7.0.0



Path

/management-apis/1.0/runtimes/runtime-name/notifications/mediators

Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes/myruntime/notifications/mediators?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The list of all supported mediators for sending notifications.

JSON Example
{

"mediators" : [
{

"type" : "Google",
},
...

],
"productVersion" : "7.0.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<mediators productVersion="7.0.0">

<mediators>
<mediator type="Google"/>
...

</mediators>
</mediators>

Response Properties

The response has the following properties:

mediators
The array of mediator metadata

productVersion
The exact product version.

The mediator has the following properties:

API reference 9-119



type
The type of the mediator.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

MPNS Credentials (DELETE)
Deletes MPNS credentials of the application with the application ID, environment,
and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/mpnsConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/mpnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

9-120 IBM MobileFirst Platform Foundation for iOS V7.0.0



Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The delete status of MPNS credentials.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "DELETE_PUSH_CREDENTIALS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deleteMPNSCredentials

status="Success"
type="DELETE_PUSH_CREDENTIALS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</deleteMPNSCredentials>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The MPNS credentials are deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

API reference 9-121



Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

MPNS Credentials (GET)
Retrieves MPNS credentials of the application with the application ID,
environment, and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/mpnsConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/mpnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

9-122 IBM MobileFirst Platform Foundation for iOS V7.0.0



locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The MPNS Credentials of the application with the application ID, environment,
and version.

JSON Example
{

"authenticated" : true,
"keyAlias" : "aliasName",
"keyAliasPassword" : "password",
"productVersion" : "7.0.0",
"serviceName" : "wl.ibm.push",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<mpnsCredentials

authenticated="true"
keyAlias="aliasName"
keyAliasPassword="password"
productVersion="7.0.0"
serviceName="wl.ibm.push"/>

Response Properties

The response has the following properties:

authenticated
Returns whether the push configuration is authenticated.

keyAlias
The alias used to access the keystore specified in the worklight.properties.

keyAliasPassword
The password for the key alias.

productVersion
The exact product version.

serviceName
The common name (CN) found in the MPNS certificate's Subject value.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

API reference 9-123



MPNS Credentials (PUT)
Set MPNS credentials of the application with the application ID, environment,
version, keyAlias, keyAliasPassword, and serviceName.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/mpnsConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/mpnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

9-124 IBM MobileFirst Platform Foundation for iOS V7.0.0



Payload

The payload in JSON format has values for keyAlias, keyAliasPassword, and
serviceName.

JSON Example
{

"authenticated" : true,
"keyAlias" : "aliasName",
"keyAliasPassword" : "password",
"serviceName" : "wl.ibm.push",

}

Payload Properties

The payload has the following properties:

authenticated
Returns whether the push configuration is authenticated.

keyAlias
The alias is used to access the keystore that is specified in the
worklight.properties file.

keyAliasPassword
The password for your key alias.

serviceName
The common name (CN) found in the MPNS certificate's Subject value.

Response

The status of set MPNS credentials.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_MPNS_CREDENTIALS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<setMPNSCredentialsStatus

status="Success"
type="SET_MPNS_CREDENTIALS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</setMPNSCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

API reference 9-125



project
Project name.

status
The MPNS credentials are saved successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Device Registration (DELETE)
Deletes the device with the device ID and application ID.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/devices/device-id

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/devices/12345-6789?locale=de_DE

9-126 IBM MobileFirst Platform Foundation for iOS V7.0.0



Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

device-id
The device id.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

Deletes the device with the device ID and application ID.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "REMOVE_DEVICE",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deleteDevice

status="Success"
type="REMOVE_DEVICE">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</deleteDevice>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The device is deleted successfully.

API reference 9-127



type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Device Registration (GET)
Retrieves metadata of the device with the given device ID.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/devices/device-id

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/devices/12345-6789?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

9-128 IBM MobileFirst Platform Foundation for iOS V7.0.0



device-id
The device id.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the device with the given device ID.

JSON Example
{

"deviceId" : "testdevice",
"platform" : "G",
"productVersion" : "7.0.0",
"token" : "testtoken",
"userId" : "worklight",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<devices

deviceId="testdevice"
platform="G"
productVersion="7.0.0"
token="testtoken"
userId="worklight"/>

Response Properties

The response has the following properties:

deviceId
The unique id of the device.

platform
The device platform.

productVersion
The exact product version.

token
The unique push token of the device.

userId
The userId of the device.

Errors

403
The user is not authorized to call this service.

API reference 9-129



404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Device Subscription (DELETE)
Delete subscriptions of a combination of application, tag name, and device ID.

Description

The subscriptions that are deleted are for a combination of application, tag name,
and device ID.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/subscriptions

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/subscriptions?deviceId=45ccfd8e-ca97-3e9
a-ad47-16f87c9e395b&locale=de_DE&tag-Name=Gold

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

deviceId
The unique deviceId of the device.

locale
The locale used for error messages.

tag-Name
The tag name.

9-130 IBM MobileFirst Platform Foundation for iOS V7.0.0



Produces

application/json, application/xml, text/xml

Response

The status of delete subscriptions.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "DELETE_SUBSCRIPTIONS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deleteSubscriptionsStatus

status="Success"
type="DELETE_SUBSCRIPTIONS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</deleteSubscriptionsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The subscription is deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404

API reference 9-131



The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Device Subscription (GET)
Retrieves metadata of the subscriptions.

Description

The subscriptions can be obtained for application, for a particular tag, for a
particular devieId and a combination of application, tag name and deviceId

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/subscriptions

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/subscriptions?deviceId=testdevice
&locale=de_DE&offset=1&size=6&tag-Name=testtag

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

deviceId
The unique id of the device.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

9-132 IBM MobileFirst Platform Foundation for iOS V7.0.0



size
The number of elements to be returned.

tag-Name
The name of the tag.

Produces

application/json, application/xml, text/xml

Response

The metadata of the subscriptions.

JSON Example
{

"offset" : 1,
"productVersion" : "7.0.0",
"size" : 6,
"subscriptions" : [
{

"deviceId" : "testdevice",
"tag-Name" : "testtag",

},
...

],
"totalListSize" : 6,

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<pushDevicesubscription

offset="1"
productVersion="7.0.0"
size="6"
totalListSize="6">
<subscriptions>
<subscription

deviceId="testdevice"
tag-Name="testtag"/>

...
</subscriptions>

</pushDevicesubscription>

Response Properties

The response has the following properties:

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

productVersion
The exact product version.

size
The number of elements to be returned.

subscriptions
The array of subscription metadata

totalListSize
The total number of subscriptions.

API reference 9-133



The pushDevicesubscription has the following properties:

deviceId
The unique id of the device.

tag-Name
The name of the tag.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Devices Registration (GET)
Retrieves metadata for the list of devices of an application.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/devices

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/devices?locale=de_DE&offset=1&size=6

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

9-134 IBM MobileFirst Platform Foundation for iOS V7.0.0



locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

size
The number of elements to be returned.

Produces

application/json, application/xml, text/xml

Response

The metadata of the devices of an application.

JSON Example
{

"devices" : [
{

"deviceId" : "testdevice",
"platform" : "G",
"token" : "testtoken",
"userId" : "worklight",

},
...

],
"offset" : 1,
"productVersion" : "7.0.0",
"size" : 6,
"totalListSize" : 6,

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<devices

offset="1"
productVersion="7.0.0"
size="6"
totalListSize="6">
<devices>
<device

deviceId="testdevice"
platform="G"
token="testtoken"
userId="worklight"/>

...
</devices>

</devices>

Response Properties

The response has the following properties:

devices
The array of device metadata

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

API reference 9-135



productVersion
The exact product version.

size
The number of elements to be returned.

totalListSize
The total number of deivces.

The pushDeviceRegistration has the following properties:

deviceId
The unique id of the device.

platform
The device platform.

token
The unique push token of the device.

userId
The userId of the device.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Enabled Applications (GET)
Retrieves metadata for the list of deployed push enabled applications.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications

Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes/myruntime/notifications/applications?locale=de_DE

9-136 IBM MobileFirst Platform Foundation for iOS V7.0.0



Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deployed push enabled applications.

JSON Example
{

"applications" : [
{

"applicationEnvironments" : [
{

"deviceCount" : 1,
"mediatorType" : "Google",
"numberOfMessagesSent" : 1,
"userCount" : 1,

},
...

],
"deviceCount" : 1,
"displayName" : "SampleApplication",
"userCount" : 1,

},
...

],
"productVersion" : "7.0.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<pushnotification productVersion="7.0.0">

<applications>
<application

deviceCount="1"
displayName="SampleApplication"
userCount="1">
<applicationEnvironments>
<applicationEnvironment

deviceCount="1"
mediatorType="Google"
numberOfMessagesSent="1"
userCount="1"/>

...
</applicationEnvironments>

</application>
...

</applications>
</pushnotification>

API reference 9-137



Response Properties

The response has the following properties:

applications
The array of push enabled application metadata

productVersion
The exact product version.

The application has the following properties:

applicationEnvironments
The array of application environments.

deviceCount
Number of subscribed devices of this application.

displayName
The name of the application.

userCount
Number of subscribed users of this application.

The applicationEnvironment has the following properties:

deviceCount
Number of subscribed devices of this application environment.

mediatorType
The name of the application environment.

numberOfMessagesSent
Number of messages sent for this application environment.

userCount
Number of subscribed users of this application environment.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Tags (DELETE)
Deletes tag of the application with the application ID and tag.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

9-138 IBM MobileFirst Platform Foundation for iOS V7.0.0



Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/tags/tag-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/tags/mytag?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

tag-name
The name of the tag.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The delete status of delete tag.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "DELETE_TAGS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deleteTagStatus

status="Success"
type="DELETE_TAGS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</deleteTagStatus>

API reference 9-139



Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The tags are deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Tags (GET)
Retrieves tags of the application with the application ID.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/tags

9-140 IBM MobileFirst Platform Foundation for iOS V7.0.0



Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/notifications/applications/myapplication/tags?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The Tags of the application with details such as description, name, and product
version.

JSON Example
{

"description" : "This is a Gold tag.",
"name" : "Gold",
"productVersion" : "7.0.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<tags

description="This is a Gold tag."
name="Gold"
productVersion="7.0.0"/>

Response Properties

The response has the following properties:

description
The description of the Tag.

name
The name of the Tag.

productVersion
The exact product version.

Errors

403
The user is not authorized to call this service.

API reference 9-141



404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Tags (POST)
Create Tags of the application with the application ID.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/tags

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/notifications/applications/myapplication/tags?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

9-142 IBM MobileFirst Platform Foundation for iOS V7.0.0



Payload

The payload in JSON format has values for name and description.

JSON Example
{

"description" : "This is a Gold tag.",
"name" : "Gold",

}

Payload Properties

The payload has the following properties:

description
The description of the tag.

name
The name of the tag.

Response

The status of create tags.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "CREATE_TAGS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<createTagsStatus

status="Success"
type="CREATE_TAGS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</createTagsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The tags are created successfully.

type
Transaction type.

API reference 9-143



The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Tags (PUT)
Update Tags of the application with the application ID and tag.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/tags/tag-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/tags/mytag?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

tag-name
The name of the tag.

9-144 IBM MobileFirst Platform Foundation for iOS V7.0.0



Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload in JSON format has values for name and description.The tag
description is updated based on the given tag name.

JSON Example
{

"description" : "This is modified description of the Gold tag.",
"name" : "Gold",

}

Payload Properties

The payload has the following properties:

description
The description of the tag.

name
The name of the tag.

Response

The status of update tags.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "UPDATE_TAGS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<updateTagsStatus

status="Success"
type="UPDATE_TAGS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</updateTagsStatus>

API reference 9-145



Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
The tags are updated successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Runtime (DELETE)
Deletes a specific runtime.

Description

The purpose of this API is to allow to cleanup the database. You can delete a
runtime only when it is stopped. A runtime that is currently active cannot be
deleted.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name

9-146 IBM MobileFirst Platform Foundation for iOS V7.0.0



Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime?locale=de_DE&mode=empty

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

mode
Whether to delete the runtime only if it has no applications or adapters.
Possible values are empty (delete only when empty) and always (delete even
when not empty, the default).

Produces

application/json, application/xml, text/xml

Errors

403
The user is not authorized to call this service.

409
The corresponding runtime cannot be deleted. Possible reasons:
It is still running, hence you must stop the runtime first.
It is not empty but you passed the mode empty
to delete only an empty runtime.

500
An internal error occurred.

Runtime (GET)
Retrieves metadata for a specific runtime.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

API reference 9-147



Path

/management-apis/1.0/runtimes/runtime-name

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime?expand=true&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

expand
Set to true to show details of the applications and adapters. The default is
false

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata for the runtime.

JSON Example
{

"adapters" : [
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"description" : "My first sample adapter",
"link" : "https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/adapters/myadapter",
"name" : "myadapter",
"platformVersion" : "6.1.0.00.20131126-0630",
"procedures" : [ "getSomething", ... ],
"projects" : [

{
"name" : "myproject",

},
...

],
"urls" : [

{
"formParameters" : [

{
"defaultValue" : "n/a",
"javaType" : "java.lang.String",
"name" : "param",

},
...

],
"javaClass" : "com.example.MyRestWrapper",
"javaMethodName" : "multiplyNumbers",

9-148 IBM MobileFirst Platform Foundation for iOS V7.0.0



"method" : "POST",
"pathParameters" : [

{
"defaultValue" : "n/a",
"javaType" : "java.lang.String",
"name" : "param",

},
...

],
"queryParameters" : [

{
"defaultValue" : "n/a",
"javaType" : "java.lang.String",
"name" : "param",

},
...

],
"uri" : "/multiply",

},
...

],
},
...

],
"applications" : [

{
"description" : "My first sample application",
"displayName" : "My Sample Application",
"environments" : [

{
"applicationEnvironmentDataAccess" : {

"action" : "NOTIFY",
"createdTime" : "2014-04-13T00:18:36.979Z",
"message" : "This version is no longer supported.",

},
"authenticityConfig" : "BASIC",
"buildTime" : "2014-03-29T00:18:36.979Z",
"deployTime" : "2014-04-13T00:18:36.979Z",
"deviceProvisioningRealm" : "myProvRealm",
"envPlatformVersion" : "7.0.0",
"environment" : "iphone",
"link" : "https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication/iphone/1.0",
"prevBuildTime" : "2014-03-29T00:18:36.979Z",
"securityTest" : "mobileTest",
"supportRemoteDisable" : true,
"supportsAuthenticity" : true,
"userAuthenticationRealm" : "myAuthRealm",
"version" : "1.0",
"versionLocked" : false,

},
...

],
"link" : "https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication",
"name" : "myapplication",
"platformVersion" : "6.1.0.00.20131126-0630",
"projects" : [

{
"name" : "myproject",

},
...

],
},
...

],
"auditEnabled" : true,

API reference 9-149



"bitlyApiKey" : "",
"bitlyUsername" : "",
"name" : "myruntime",
"numberOfActiveDevices" : 100,
"numberOfDecommisionedDevices" : 5,
"platformVersion" : "6.1.0.00.20131126-0630",
"productVersion" : "7.0.0",
"running" : true,
"serverVersion" : "7.0.0",
"synchronizationStatus" : "ok",
"topology" : "STANDALONE",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<runtime

auditEnabled="true"
bitlyApiKey=""
bitlyUsername=""
name="myruntime"
numberOfActiveDevices="100"
numberOfDecommisionedDevices="5"
platformVersion="6.1.0.00.20131126-0630"
productVersion="7.0.0"
running="true"
serverVersion="7.0.0"
synchronizationStatus="ok"
topology="STANDALONE">
<adapters>

<adapter
deployTime="2014-04-13T00:18:36.979Z"
description="My first sample adapter"
link="https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/adapters/myadapter"
name="myadapter"
platformVersion="6.1.0.00.20131126-0630">
<procedures>

<procedure>getSomething</procedure>
...

</procedures>
<projects>

<project name="myproject"/>
...

</projects>
<urls>

<url
javaClass="com.example.MyRestWrapper"
javaMethodName="multiplyNumbers"
method="POST"
uri="/multiply">
<formParameters>

<formParameter
defaultValue="n/a"
javaType="java.lang.String"
name="param"/>

...
</formParameters>
<pathParameters>

<pathParameter
defaultValue="n/a"
javaType="java.lang.String"
name="param"/>

...
</pathParameters>
<queryParameters>

<queryParameter

9-150 IBM MobileFirst Platform Foundation for iOS V7.0.0



defaultValue="n/a"
javaType="java.lang.String"
name="param"/>

...
</queryParameters>

</url>
...

</urls>
</adapter>
...

</adapters>
<applications>

<application
description="My first sample application"
displayName="My Sample Application"
link="https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication"
name="myapplication"
platformVersion="6.1.0.00.20131126-0630">
<environments>

<environment
authenticityConfig="BASIC"
buildTime="2014-03-29T00:18:36.979Z"
deployTime="2014-04-13T00:18:36.979Z"
deviceProvisioningRealm="myProvRealm"
envPlatformVersion="7.0.0"
environment="iphone"
link="https://www.example.com/worklightadmin/management-apis/1.0/runtimes/

myruntime/applications/myapplication/iphone/1.0"
prevBuildTime="2014-03-29T00:18:36.979Z"
securityTest="mobileTest"
supportRemoteDisable="true"
supportsAuthenticity="true"
userAuthenticationRealm="myAuthRealm"
version="1.0"
versionLocked="false">
<applicationEnvironmentDataAccess

action="NOTIFY"
createdTime="2014-04-13T00:18:36.979Z"
message="This version is no longer supported."/>

</environment>
...

</environments>
<projects>

<project name="myproject"/>
...

</projects>
</application>
...

</applications>
</runtime>

Response Properties

The response has the following properties:

adapters
The array of adapters (shown only with expand=true).

applications
The array of applications (shown only with expand=true).

auditEnabled
Whether audit is enabled.

API reference 9-151



bitlyApiKey
The key for the Bitly service.

bitlyUsername
The user name for the Bitly service.

name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

numberOfActiveDevices
The number of active devices using this runtime.

numberOfAdapters
The number of adapters deployed in this runtime (shown only with
expand=false).

numberOfApplications
The number of applications deployed in this runtime (shown only with
expand=false).

numberOfDecommisionedDevices
The number of devices decommissioned for this runtime.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the project WAR file.

productVersion
The exact product version.

running
Whether the runtime is currently active or has stopped.

serverVersion
The exact IBM MobileFirst Platform Server version number from which
worklight-jee-library.jar is taken.

synchronizationStatus
The status of the nodes of the runtime. Can contain the values "ok" if all nodes
of the runtime are running without error, "synchronizing" if some node is in
progress of synchronizing, or an error message if some nodes failed to
synchronize.

topology
Server topology. Can contain the values "STANDALONE", "CLUSTER" or
"FARM"

The adapter has the following properties:

deployTime
The date in ISO 8601 format when the adapter was deployed.

description
The description of the adapter.

link
The URL to access detail information about the adapter.

name
The name of the adapter.

9-152 IBM MobileFirst Platform Foundation for iOS V7.0.0



platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the adapter.

procedures
The JavaScript procedures of the adapter.

projects
The projects the adapter belong to.

urls
The API documentation of the URLs of the REST API provided by the adapter.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

The url has the following properties:

formParameters
The form parameters.

javaClass
The Java class

javaMethodName
The Java method

method
The HTTP method.

pathParameters
The path parameters.

queryParameters
The query parameters.

uri
The URI of the REST API.

The REST API parameter has the following properties:

defaultValue
The default value.

javaType
The Java type name.

name
The name of the parameter.

The application has the following properties:

description
The description of the application.

displayName
The display name of the application.

environments
The array of application environments.

link
The URL to access detail information about the application.

API reference 9-153



name
The name of the application.

platformVersion
The exact version number of the IBM MobileFirst Platform Foundation
development tools (Studio) that built the application.

projects
The projects the application belong to.

The environment has the following properties:

applicationEnvironmentDataAccess
The access rule to be executed when the app version is disabled.

authenticityConfig
The application authenticity configuration. Possible values are: NONE, BASIC,
EXTENDED.

buildTime
The time stamp when the app version was built.

deployTime
The date in ISO 8601 format when the application was deployed.

deviceProvisioningRealm
The name of the realm used for device provisioning.

envPlatformVersion
The version of the platform of the environment.

environment
The platform environment of the app version: iphone.

link
The URL to access detail information about the application version.

prevBuildTime
The time stamp when the app that was previously deployed was built.

publishUrl
For web applications, this is the URL under which the web application was
published.

securityTest
The name of the security test for a protected resource.

supportRemoteDisable
true if the application version supports remote disabling.

supportsAuthenticity
true if the application version supports authentication.

userAuthenticationRealm
The name of the realm used to authenticate users.

version
The version number of the app version.

versionLocked
Whether the version is locked.

The applicationEnvironmentDataAccess has the following properties:

9-154 IBM MobileFirst Platform Foundation for iOS V7.0.0



action
The action to be done when a disabled app version is accessed. Possible values
are: NOTIFY, BLOCK, NA.

createdTime
The date in ISO 8601 format when the app version access rule was created.

downloadLink
The download link where to obtain a new version of the application.

message
The message to be displayed when a disabled app version is accessed.

multiLanguageMessage
Internationalized variants of the message to be displayed when a disabled app
version is accessed.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Runtime Lock (DELETE)
Forces the release of the transaction lock of a runtime.

Description

This API should not be used in normal operations.

Transactions are performed sequentually. Hence each transaction such as deploying
an application or adapter takes the runtime lock. The next transaction waits until
the lock is released. After a serious crash, it may happen that the lock is still taken
even though the corresponding transaction crashed. The lock will get automatically
released after 30 minutes. However, with this API, you can force the release of the
lock earlier.

Forcing the release of the lock when a transaction is currently active may corrupt
the system. You should use this API only when you are sure that no transaction is
currently active.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

Method

DELETE

API reference 9-155



Path

/management-apis/1.0/runtimes/runtime-name/lock

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/lock?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

JSON Example
{

"busy" : false,
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<lock busy="false"/>

Response Properties

The response has the following properties:

busy
Whether the runtime is still busy with a transaction after forcing the release of
the lock.

Errors

403
The user is not authorized to call this service.

500
An internal error occurred.

Runtime Lock (GET)
Retrieves information about the transaction lock of a runtime.

9-156 IBM MobileFirst Platform Foundation for iOS V7.0.0



Description

Transactions are performed sequentually. Hence each transaction such as deploying
an application or adapter takes the runtime lock. The next transaction waits until
the lock is released. This API allowed to retrieve whether a runtime is currently
busy with a transaction.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/lock

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/lock?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

JSON Example
{

"busy" : true,
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<lock busy="true"/>

API reference 9-157



Response Properties

The response has the following properties:

busy
Whether the runtime is currently busy with a transaction.

Errors

403
The user is not authorized to call this service.

500
An internal error occurred.

Runtimes (GET)
Retrieves metadata for the list of runtimes.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes

Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes?fullInfo=true&locale=de_DE&mode=db

Query Parameters

Query parameters are optional.

fullInfo
The default value false returns basic list of properties of a runtime, while the
value true returns all properties of this runtime (see a GET on a single runtime
for the complete list of properties).

locale
The locale used for error messages.

mode
The default mode running retrieves only the running runtimes, while the mode
db retrieves also the runtimes stored in the database that might not be running.

9-158 IBM MobileFirst Platform Foundation for iOS V7.0.0



Produces

application/json, application/xml, text/xml

Response

The metadata for the list of runtimes.

JSON Example
{

"productVersion" : "7.0.0",
"projects" : [

{
"auditEnabled" : true,
"link" : "https://www.example.com/worklightadmin/

management-apis/1.0/runtimes/myruntime",
"name" : "myruntime",
"numberOfActiveDevices" : 100,
"numberOfAdapters" : 1,
"numberOfApplications" : 1,
"numberOfDecommisionedDevices" : 5,
"running" : true,
"synchronizationStatus" : "ok",
"topology" : "STANDALONE",

},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<projectconfiguration productVersion="7.0.0">

<projects>
<project

auditEnabled="true"
link="https://www.example.com/worklightadmin/

management-apis/1.0/runtimes/myruntime"
name="myruntime"
numberOfActiveDevices="100"
numberOfAdapters="1"
numberOfApplications="1"
numberOfDecommisionedDevices="5"
running="true"
synchronizationStatus="ok"
topology="STANDALONE"/>

...
</projects>

</projectconfiguration>

Response Properties

The response has the following properties:

productVersion
The exact product version.

projects
The array of runtimes.

The runtime has the following properties:

auditEnabled
Whether audit is enabled.

API reference 9-159



link
The URL to access detail information about the runtime.

name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

numberOfActiveDevices
The number of active devices using this runtime.

numberOfAdapters
The number of adapters deployed in this runtime.

numberOfApplications
The number of applications deployed in this runtime.

numberOfDecommisionedDevices
The number of devices decommissioned for this runtime.

running
Whether the runtime is currently active or has stopped.

synchronizationStatus
The status of the nodes of the runtime. Can contain the values "ok" if all nodes
of the runtime are running without error, "synchronizing" if some node is in
progress of synchronizing, or an error message if some nodes failed to
synchronize.

topology
Server topology. Can contain the values "STANDALONE", "CLUSTER" or
"FARM"

Errors

403
The user is not authorized to call this service.

500
An internal error occurred.

Send Bulk Messages (POST)
Send bulk messages with different options to be specified.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

POST

9-160 IBM MobileFirst Platform Foundation for iOS V7.0.0



Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/messages/bulk

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/notifications/applications/myapplication/messages/bulk?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload in JSON format has values for array of messages, target, and settings.

JSON Example
{

"//ArrayOfMessageBody" : [
{

"messages" : {
"alert" : "Test message",

},
"settings" : {

"apns" : {
"badge" : 1,
"iosActionKey" : "Ok",
"payload" : "",
"sound" : "song.mp3",

},
"gcm" : {

"delayWhileIdle" : ,
"payload" : "",
"sound" : "song.mp3",
"timeToLive" : ,

},
"mpns" : {

"raw" : {
"payload" : {
},

API reference 9-161



},
"title" : {

"backBackgroundImage" : "Blue.jpg",
"backContent" : "Back Title Content",
"backTitle" : "Back Title",
"backgroundImage" : "Red.jpg",
"count" : 1,
"title" : "Push Notification",

},
"toast" : {

"param" : "/Page2.xaml?NavigatedFrom=Toast Notification",
"title" : "Hello",

},
},

},
"target" : {

"consumerIds" : [ "MyConsumerId1", ... ],
"deviceIds" : [ "MyDeviceId1", ... ],
"platforms" : [ "A,G", ... ],
"tagNames" : [ "Gold", ... ],

},
},
...

],
}

Payload Properties

The payload has the following properties:

//ArrayOfMessageBody
The array of message

The bulk-messages has the following properties:

messages
The array of message

settings
The settings are the different attributes of the notification.

target
Set of targets can be consumer Ids, devices, platforms, or tags.

The message has the following properties:

alert
A string to be displayed in the alert.

The settings has the following properties:

apns
Attributes for sending message to an iOS device.

mpns
Attributes for sending message to an MPNS device.

The apns has the following properties:

badge
An integer value to be displayed in a badge on the application icon.

iosActionKey
The label of the dialog box button that allows the user to open the app upon
receiving the notification.

9-162 IBM MobileFirst Platform Foundation for iOS V7.0.0



payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

The gcm has the following properties:

delayWhileIdle
A Boolean value that indicates that the message must not be sent if the device
is idle. The server waits for the device to become active before the message is
sent.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

timeToLive
The duration (in seconds) that the message is kept on GCM storage if the
device is offline. Default value is 4 weeks, and must be set as a JSON number.

The mpns has the following properties:

raw
Raw.

title
Title.

toast
Toast.

The raw has the following properties:

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

The title has the following properties:

backBackgroundImage
URL of the back image on a medium flip Tile.

backContent
Content that displays on the back of a medium flip Tile.

backTitle
Title that displays on the back of a flip Tile.

backgroundImage
URL of the front image on a medium flip Tile.

count
An integer value from 1 to 99. If the value of count is not set or it is set to 0,
the circle image and value do not display in the Tile. This property is also
known as badge.

API reference 9-163



title
A string that indicates the title of the application. The title fits on a single line
of text and must not be wider than the Tile. Approximately 15 characters can
fit in the title before it is truncated.

The toast has the following properties:

param
Toast notification content.

title
Toast notification title.

The target has the following properties:

consumerIds
The array of consumer Ids.

deviceIds
JSON array of the device ids. Devices with these ids receive the notification.

platforms
JSON array of platforms. Devices running on these platforms receive the
notification. Supported values are A, G, and M.

tagNames
JSON array of tags. Devices that are subscribed to these tags receive the
notification.

Response

The status of send messages.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_PUSH_NOTIFICATION_ENABLED",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<sendMessagesStatus

status="Success"
type="SET_PUSH_NOTIFICATION_ENABLED">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</sendMessagesStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

9-164 IBM MobileFirst Platform Foundation for iOS V7.0.0



project
Project name.

status
Message submitted for delivery.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Send Message (POST)
Send message with different options to be specified.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/messages

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/messages?locale=de_DE

API reference 9-165



Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload in JSON format has values for message, target, and settings.

JSON Example
{

"message" : {
"alert" : "Test message",

},
"settings" : {

"apns" : {
"badge" : 1,
"iosActionKey" : "Ok",
"payload" : "",
"sound" : "song.mp3",

},
"gcm" : {

"delayWhileIdle" : ,
"payload" : "",
"sound" : "song.mp3",
"timeToLive" : ,

},
"mpns" : {

"raw" : {
"payload" : {
},

},
"title" : {

"backBackgroundImage" : "Blue.jpg",
"backContent" : "Back Title Content",
"backTitle" : "Back Title",
"backgroundImage" : "Red.jpg",
"count" : 1,
"title" : "Push Notification",

},
"toast" : {

"param" : "/Page2.xaml?NavigatedFrom=Toast Notification",
"title" : "Hello",

},

9-166 IBM MobileFirst Platform Foundation for iOS V7.0.0



},
},
"target" : {

"consumerIds" : [ "MyConsumerId1", ... ],
"deviceIds" : [ "MyDeviceId1", ... ],
"platforms" : [ "A,G", ... ],
"tagNames" : [ "Gold", ... ],

},
}

Payload Properties

The payload has the following properties:

message
The alert message to be sent

settings
The settings are the different attributes of the notification.

target
Set of targets can be consumer Ids, devices, platforms, or tags.

The message has the following properties:

alert
A string to be displayed in the alert.

The settings has the following properties:

apns
Attributes for sending message to an iOS device.

mpns
Attributes for sending message to an MPNS device.

The apns has the following properties:

badge
An integer value to be displayed in a badge on the application icon.

iosActionKey
The label of the dialog box button that allows the user to open the app upon
receiving the notification.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

The gcm has the following properties:

delayWhileIdle
A Boolean value that indicates that the message must not be sent if the device
is idle. The server waits for the device to become active before the message is
sent.

API reference 9-167



payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

timeToLive
The duration (in seconds) that the message is kept on GCM storage if the
device is offline. Default value is 4 weeks, and must be set as a JSON number.

The mpns has the following properties:

raw
Raw.

title
Title.

toast
Toast.

The raw has the following properties:

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

The title has the following properties:

backBackgroundImage
URL of the back image on a medium flip Tile.

backContent
Content that displays on the back of a medium flip Tile.

backTitle
Title that displays on the back of a flip Tile.

backgroundImage
URL of the front image on a medium flip Tile.

count
An integer value from 1 to 99. If the value of count is not set or it is set to 0,
the circle image and value do not display in the Tile. This property is also
known as badge.

title
A string that indicates the title of the application. The title fits on a single line
of text and must not be wider than the Tile. Approximately 15 characters can
fit in the title before it is truncated.

The toast has the following properties:

param
Toast notification content.

title
Toast notification title.

The target has the following properties:

9-168 IBM MobileFirst Platform Foundation for iOS V7.0.0



consumerIds
The array of consumer Ids.

deviceIds
JSON array of the device ids. Devices with these ids receive the notification.

platforms
JSON array of platforms. Devices running on these platforms receive the
notification. Supported values are A, G, and M.

tagNames
JSON array of tags. Devices that are subscribed to these tags receive the
notification.

Response

The status of send message.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_PUSH_NOTIFICATION_ENABLED",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<sendMessageStatus

status="Success"
type="SET_PUSH_NOTIFICATION_ENABLED">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</sendMessageStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

status
Message submitted for delivery.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

API reference 9-169



name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Transaction (GET)
Retrieves information of a specific transaction.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/transactions/transaction-id

Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes/myruntime/transactions/1?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

transaction-id
The transaction id.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

9-170 IBM MobileFirst Platform Foundation for iOS V7.0.0



Produces

application/json, application/xml, text/xml

Response

The information of the specified transaction.

JSON Example
{

"appServerId" : "Tomcat",
"description" : {
},
"errors" : [
{

"details" : "An internal error occured.",
},
...

],
"id" : 1,
"productVersion" : "7.0.0",
"project" : {
"name" : "myproject",

},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_ADAPTER",
"userName" : "demouser",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<transaction

appServerId="Tomcat"
id="1"
productVersion="7.0.0"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_ADAPTER"
userName="demouser">
<description/>
<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>

Response Properties

The response has the following properties:

appServerId
The id of the web application server.

description
The details of the transaction, depending on the transaction type.

errors
The errors occured during the transacton.

id The id of the transaction.

API reference 9-171



productVersion
The exact product version.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction.

userName
The user that initiated the transaction.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the transaction is not found.

500
An internal error occurred.

Transactions (GET)
Retrieves information of failed transactions.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

9-172 IBM MobileFirst Platform Foundation for iOS V7.0.0



Path

/management-apis/1.0/runtimes/runtime-name/transactions/errors

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/
myruntime/transactions/errors?locale=de_DE&offset=0&orderBy=created&pageSize=100

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: created, updated, type, status, user, server. The
default sort mode is: created.

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

Produces

application/json, application/xml, text/xml, application/zip

Response

The information of the transactions.

JSON Example
{

"items" : [
{

"appServerId" : "Tomcat",
"description" : {
},
"errors" : [
{

"details" : "An internal error occured.",
},
...

],
"id" : 1,
"project" : {
"name" : "myproject",

},
"status" : "FAILURE",

API reference 9-173



"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_ADAPTER",
"userName" : "demouser",

},
...

],
"pageSize" : 100,
"productVersion" : "7.0.0",
"startIndex" : 0,
"totalListSize" : 33,

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<transactions

pageSize="100"
productVersion="7.0.0"
startIndex="0"
totalListSize="33">
<items>
<item

appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_ADAPTER"
userName="demouser">
<description/>
<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</item>
...

</items>
</transactions>

Response Properties

The response has the following properties:

items
The array of transations

pageSize
The page size if only a page of transactions is returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only a page of transactions is returned.

totalListSize
The total number of transactions.

The transaction has the following properties:

appServerId
The id of the web application server.

9-174 IBM MobileFirst Platform Foundation for iOS V7.0.0



description
The details of the transaction, depending on the transaction type.

errors
The errors occured during the transacton.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction.

userName
The user that initiated the transaction.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Unsubscribe SMS (POST)
Unsubscribes the list of given phone numbers for SMS.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

API reference 9-175



Method

POST

Path

/management-apis/1.0/runtimes/runtime-name/notifications/unsubscribeSMS

Example
https://www.example.com/worklightadmin/management-apis/1.0/
runtimes/myruntime/notifications/unsubscribeSMS?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload with comma separated list of phone numbers.

JSON Example
{

"numbers" : "1234,5678",
}

Payload Properties

The payload has the following properties:

numbers
Comma separated list of phone numbers.

Response

The response status of SMS unsubscription.

JSON Example
{

"failure" : "5678",
"success" : "1234",

}

9-176 IBM MobileFirst Platform Foundation for iOS V7.0.0



XML Example
<?xml version="1.0" encoding="UTF-8"?>
<unsubscribeSMS

failure="5678"
success="1234"/>

Response Properties

The response has the following properties:

failure
Comma separated list of phone numbers which are not deleted.

success
Comma separated list of phone numbers which are successfully deleted.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

WNS Credentials (DELETE)
Deletes Windows Push Notification Services (WNS) credentials of the application
with the application ID, environment, and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

DELETE

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/wnsConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/wnsConf/android/1.0/?locale=de_DE

API reference 9-177



Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The delete status of WNS credentials.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "DELETE_PUSH_CREDENTIALS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deleteWNSCredentialsStatus

status="Success"
type="DELETE_PUSH_CREDENTIALS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</deleteWNSCredentialsStatus>

Response Properties

The response has the following properties:

productVersion
The exact product version.

project
Project name.

9-178 IBM MobileFirst Platform Foundation for iOS V7.0.0



status
The WNS credentials are deleted successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

WNS Credentials (GET)
Retrieves Windows Push Notification Services (WNS) credentials of the application
with the application ID, environment, and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

GET

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/wnsConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/wnsConf/android/1.0/?locale=de_DE

API reference 9-179



Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The WNS Credentials of the application with the application ID, environment, and
version.

JSON Example
{

"clientSecret" : "82e4569er",
"packageSID" : "ms-app://s-123-566-78910",
"productVersion" : "7.0.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<wnsCredentials

clientSecret="82e4569er"
packageSID="ms-app://s-123-566-78910"
productVersion="7.0.0"/>

Response Properties

The response has the following properties:

clientSecret
The client secret received from WNS.

packageSID
The unique identifier of the app received from WNS.

productVersion
The exact product version.

9-180 IBM MobileFirst Platform Foundation for iOS V7.0.0



Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

WNS Credentials (PUT)
Sets Windows Push Notification Services (WNS) credentials of the application with
the application ID, environment, and version.

Roles

Users in the following roles are authorized to perform this operation:
v worklightadmin

v worklightdeployer

v worklightmonitor

v worklightoperator

Method

PUT

Path

/management-apis/1.0/runtimes/runtime-name/notifications/applications/
application-name/wnsConf/application-env/application-version/

Example
https://www.example.com/worklightadmin/management-apis/1.0/runtimes/myruntime/
notifications/applications/myapplication/wnsConf/android/1.0/?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

API reference 9-181



locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

The payload in JSON format has values for packageSID and clientSecret.

JSON Example
{

"clientSecret" : "82e4569er",
"packageSID" : "ms-app://s-123-566-78910",

}

Payload Properties

The payload has the following properties:

clientSecret
The client secret received from WNS.

packageSID
The unique identifier of the app received from WNS.

Response

The status of set WNS credentials.

JSON Example
{

"productVersion" : {
"productVersion" : "7.0.0",

},
"project" : {
"name" : "PushNotifications",

},
"status" : "Success",
"type" : "SET_WNS_CREDENTIALS",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<setWNSCredentialsStatus

status="Success"
type="SET_WNS_CREDENTIALS">
<productVersion productVersion="7.0.0"/>
<project name="PushNotifications"/>

</setWNSCredentialsStatus>

Response Properties

The response has the following properties:

9-182 IBM MobileFirst Platform Foundation for iOS V7.0.0



productVersion
The exact product version.

project
Project name.

status
The WNS credentials are saved successfully.

type
Transaction type.

The productVersion has the following properties:

productVersion
The exact product version

The project has the following properties:

name
Name of the project

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

MobileFirst Cloudant API reference
Cloudant is an advanced NoSQL database that is capable of handling a wide
variety of data types, such as JSON, full-text, and geospatial data. You can use the
Cloudant APIs to access a Cloudant database from your mobile application.

For more information about the SDK and Cloudant, see “Storing mobile data in
Cloudant” on page 8-186.

Objective-C API for MobileFirst Cloudant extensions
Use the Objective-C API reference if you are developing a native iOS application in
Swift or Objective-C that accesses a Cloudant database.

You can use the IMFData Framework for iOS and the CloudantToolkit Framework
for iOS to make your data persistent in the cloud.
v You can find description of the API of the IMFData Framework for iOS in the

following file: Objective-C API for MobileFirst Cloudant extensions: IMFData
v You can find description of the API of the CloudantToolkit Framework for iOS

in the following file: Objective-C API for MobileFirst Cloudant extensions:
Cloudant Toolkit

API reference 9-183

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mfpf_objc_ios_native_client_data_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mfpf_objc_ios_native_client_cloudant_toolkit_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v700/mfpf_objc_ios_native_client_cloudant_toolkit_api.zip


9-184 IBM MobileFirst Platform Foundation for iOS V7.0.0



Deploying MobileFirst projects

Note: Before you can deploy the project to the production environment, you must
install the MobileFirst Administration Components as described in “Installing the
MobileFirst Server administration” on page 6-43.

You can deploy several MobileFirst runtime environments (that is, several project
WAR files) to an application server just as you would deploy any Java EE
application. Each deployed project must have a unique name and a unique context
path.

Note: An Administration Service must be installed on the application server where
you install a runtime environment. Otherwise, the runtime environment cannot
download its applications and adapters and cannot start.

You can choose between having several projects use the same database server, or
making each project use a different database server. If you configure several
projects to use the same database, you must configure each data source to connect
to an independent data storage structure (for example, different schemas on DB2,
or different user names on Oracle). Database sharing is not relevant for MySQL
and Apache Derby.

Several instances of MobileFirst Server with different versions of IBM MobileFirst
Platform Foundation for iOS installed can share the same application server and
the same MobileFirst Administration Service. However, they must be migrated to
be compatible with the current version of the Administration Service. For more
information about migration, see “Migrating a project WAR file for use with a new
MobileFirst Server” on page 10-39.

Deploying MobileFirst applications to test and production
environments

When you have developed an application, deploy it to a separate test and
production environment.

About this task

When you finish a development cycle of your application, you usually deploy it to
a testing environment, and then to a production environment.

The tools that you can use to deploy apps and adapters across development, QA,
and production environments are described in the following topics.

Deploying an application from development to a test or
production environment

After you have developed an application, you want to move from your
development environment and deploy a MobileFirst project to a test or production
environment.

© Copyright IBM Corp. 2006, 2016 10-1



Before you begin

You have built a MobileFirst project that contains one or more applications in
MobileFirst tools. A WAR file and a set of .wlapp files are created in the bin folder
of your MobileFirst project. You now want to deploy the project and the
applications to a test or production environment.
v A WAR file is created by MobileFirst tools for every MobileFirst project,

regardless of the number of apps it contains.
v If you build an entire app, a file that is called app-name.wlapp is created,

containing the code and resources of all environments that are supported by
your app. For example: myApp-all.wlapp.

v If you build an app only for specific environments, a file that is called
app-name-env-version.wlapp is created per environment. For example:
myApp-iphone-1.0.wlapp.

About this task

First, you prepare the application or applications for deployment, and then you
deploy them. You can deploy many apps within the same project. The following
instructions lead you through this process.

Procedure
1. Install the MobileFirst Server administration components as described in

“Installing the MobileFirst Server administration” on page 6-43.
You can have several MobileFirst runtime environments that are managed by
the same MobileFirst Operations Console. Verify that you have deployment
rights for IBM MobileFirst Platform Foundation for iOS, such as the role of
worklightdeployer or worklightadmin. For more information, see “Configuring
user authentication for MobileFirst Server administration” on page 6-82.

2. For each application in the project, change the settings in the
application-descriptor.xml file to match your production environment.
If necessary depending on the functions of the app, change the following
settings.
v Settings screen
v Device provisioning
v Application authenticity
v User authentication

3. You might want to look at the settings in the worklight.properties file, which
is in server/conf. Those settings define the default values for the configuration
properties on the server. When you deploy your MobileFirst project on the
server, you can replace the default settings that are in the
worklight.properties file with values that are relevant for the production
environment. For more information, see “Configuring a MobileFirst project in
production by using JNDI environment entries” on page 10-60.

4. Create the project WAR file in either of two ways:
v Right-click the application and click Run As > Run on MobileFirst

Development Server.
v Use the Ant script tool that is described in “Ant tasks for building and

deploying applications and adapters” on page 10-69.

The project WAR file is generated in the bin folder.

10-2 IBM MobileFirst Platform Foundation for iOS V7.0.0



5. Configure a database and deploy the project WAR to the application server
with one of these two methods:
v With the MobileFirst Server Configuration Tool. For more information, see

“Deploying, updating, or undeploying MobileFirst Server by using the Server
Configuration Tool” on page 10-9.

v With Ant tasks for configuring a database for a MobileFirst project and
deploying a MobileFirst project WAR file to an application server. With this
method, you can also configure the project on the server by using JNDI
environment entries.
– The documentation of the Ant tasks for configuring a database is at

“Creating and configuring the databases with Ant tasks” on page 10-13.
– The documentation of the Ant tasks for deploying a project WAR file is at

“Deploying a project WAR file and configuring the application server with
Ant tasks” on page 10-14.

– The list of JNDI environment entries that can be configured is at
“Configuring a MobileFirst project in production by using JNDI
environment entries” on page 10-60.

– You can find sample Ant files that use these Ant tasks in the MobileFirst
distribution in product_install_dir/WorklightServer/configuration-
samples. Their file names use the naming convention configure-
appServer-database.xml. For more information, see “Sample configuration
files” on page 14-35.
a. First call configuredatabase, the databases target in the sample Ant

files.
b. Then call configureapplicationserver, the install target in the sample

Ant files.
6. If you wish to enable extended authenticity checking, follow the steps in

“Configuring extended app authenticity checking” on page 10-51.
7. Open the MobileFirst Operations Console of the target environment.

If the MobileFirst Operations Console is installed with the default context root,
its URL is of the form https://your-remote-server:server-port/
worklightconsole. If HTTPS is not supported in your application server, it is
the unsecured URL http://your-remote-server:server-port/
worklightconsole.

Important: If you access the MobileFirst Operations Console through HTTP
instead of HTTPS, your MobileFirst administration user password is
compromised.

8. From the MobileFirst Operations Console, deploy the relevant .wlapp files from
the bin folder of your MobileFirst project. If you enabled extended authenticity
checking in step 6, deploy the .wlapp files that resulted from that procedure,
instead.
v For more information about how to deploy an application by using

MobileFirst Operations Console, see “Deploying apps” on page 10-78.
v You can also deploy the app to the target environment by using the

MobileFirst Server administration command-line tools. For more information
about how to deploy an app by using the provided command-line tools, see
“Administering MobileFirst applications through Ant” on page 11-11 and
“Administering MobileFirst applications through the command line” on page
11-36.

9. Deploy the adapters from the development environment.
a. Navigate to the bin folder in your project.

Deploying MobileFirst projects 10-3



b. Copy the .adapter file or files.
c. From the MobileFirst Operations Console, deploy the .adapter files from

the bin folder of your project.
v For more information about how to deploy an adapter by using

MobileFirst Operations Console, see “Deploying adapters” on page 10-79.
v You can also deploy the adapter to the target environment by using the

MobileFirst Server administration command-line tools. For more
information about how to deploy an app by using the provided
command-line tools, see “Administering MobileFirst applications through
Ant” on page 11-11 and “Administering MobileFirst applications through
the command line” on page 11-36.

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Building a project WAR file with Ant
You can build the project WAR file by using Ant tasks.

Before you can run Ant tasks, make sure that Apache Ant is installed. The
minimum supported version of Ant is listed in “System requirements” on page 2-7.

Apache Ant 1.8.4 is included in MobileFirst Server. In the product_install_dir/
shortcuts/ directory, the following scripts are provided:
v For UNIX / Linux: ant
v For Windows: ant.bat

These scripts are ready to run, which means that they do not require specific
environment variables. If the JAVA_HOME environment variable is set, the scripts
accept it.

Note: Since IBM Worklight Foundation V6.2.0, the worklight-ant-builder.jar file
is included in the IBM MobileFirst Platform Command Line Interface for iOS,
whereas in earlier versions, it was included in MobileFirst Server. By default,
worklight-ant-builder.jar is installed in the following location: <CLI Install
Path>/public/worklight-ant-builder.jar. For example, on OSX, the default CLI
Install Path is /Applications/IBM/Worklight-CLI. If you use the default installation
path, the Ant task is installed here: /Applications/IBM/Worklight-CLI/public/
worklight-ant-builder.jar.

The Ant task for building a MobileFirst project WAR file has the following
structure:
<?xml version="1.0" encoding="UTF-8"?>
<project name="myProject" default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="cli_install_dir/public/worklight-ant-builder.jar"/>
</classpath>

</taskdef>
<target name="all">
<war-builder projectfolder="."

destinationfolder="bin/war"
warfile="bin/project.war"
classesFolder="classes-folder"/>

</target>
</project>

10-4 IBM MobileFirst Platform Foundation for iOS V7.0.0



The <war-builder> element has the following attributes:
v The projectfolder attribute specifies the path to your project.
v The destinationfolder attribute specifies a folder for holding temporary files.
v The warfile attribute specifies the destination and file name of the generated

.war file
v The classesFolder attribute specifies a folder with compiled Java classes to add

to the .war file. .jar files in the projectfolder\server\lib directory are added
automatically

Deploying the project WAR file
For the MobileFirst runtime environment to start, you must deploy it to the server
where the Administration Services application is installed. If you use WebSphere
Application Server Network Deployment, you can alternatively install the
MobileFirst runtime environment in a server or cluster of the cell other than the
one where the Administration Services application that manages this runtime is
installed. If you do so, you must start the server or cluster where the
Administration Services application is installed before the one where the
MobileFirst runtime environment is installed.

Before you start

See “Planning deployment of administration components and runtimes” on
page 6-7 for the supported deployment topologies.

Install the MobileFirst Server by following the procedure in “Installing
MobileFirst Server” on page 6-2.

If you have a farm topology, configure the server farm by following the
procedure in “Installing a server farm” on page 6-97.

The database and application server prerequisites for this task are
described in “Installation prerequisites” on page 6-4.

You must build a MobileFirst project WAR file by using MobileFirst Platform
Command Line Interface for iOS, or by following the instructions in “Building a
project WAR file with Ant” on page 10-4. The WAR file contains the default
configuration values for the server, and some resources for the MobileFirst
applications and adapters.
v For project WAR files built with earlier versions than V6.2.0.x: The project WAR

file must be built with the same version of Worklight Studio as the version used
to build the apps that are deployed on the Worklight Server.

v For project WAR files that were built with V6.2.0 and later, and deployed to
Worklight Server V6.2.0.1 and later, apps and adapters that were built with any
version, 5.0.6.x and above (but not later than the project WAR version itself), can
be deployed.

You can deploy a MobileFirst project in one the following ways:
v By using the Server Configuration Tool.
v By using a set of Ant tasks that are supplied with MobileFirst Server to deploy a

project WAR file and configure your databases and application servers.
v By creating and configuring the databases manually, and deploying the project

WAR file manually.

Optional creation of databases
If you want to activate the option to install the project runtime databases when
you run the Ant tasks or the Server Configuration Tool, you must have certain

Deploying MobileFirst projects 10-5



database access rights that entitle you to create the databases, or the users, or both,
that are required by the project runtime component.

If you have sufficient database administration credentials, and if you enter the
administrator user name and password in the installer when prompted, the
installation tools can create the databases for you. Otherwise, you must ask your
database administrator to create the required database for you. In this case, the
database must be created before you start the installation tools.

The following topics describe the procedure for the supported database
management systems.

Important: The manual creation of databases is optional if you install MobileFirst
Server with the Server Configuration Tool or the Ant tasks because the Server
Configuration Tool and the Ant tasks can create the databases automatically.

Creating the DB2 databases:

This section explains the procedures used to create the DB2 databases.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the DB2 databases manually” on page 10-17 instead.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead.

The <configureDatabase> Ant task can create the databases for you if you enter the
name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the databases for you. For more
information, see the DB2 Solution user documentation.

You can replace the database names (here WRKLGHT and WLREPORT) and passwords
with database names and passwords of your choosing.

Important: You can name your databases and user differently, or set a different
password, but ensure that you enter the appropriate database names, user name,
and password correctly across the DB2 database setup. DB2 has a database name
limit of 8 characters on all platforms, and has a user name and password length
limit of 8 characters for Unix and Linux systems, and 30 characters for Windows.

You can also choose to have the data for WRKLGHT database and the data for
WLREPORT database be stored in a single database, as different schemas. To this
effect, in the following procedure, use a single database name of your choosing
instead of WRKLGHT and WLREPORT.

Procedure

1. Create a system user, for example, named wluser in a DB2 admin group such
as DB2USERS, using the appropriate commands for your operating system. Give
it a password, for example, wluser. If you want multiple MobileFirst projects to

10-6 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html


connect to the same database, use a different user name for each connection.
Each database user has a separate default schema. For more information about
database users, see the DB2 documentation and the documentation for your
operating system.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor

v On Linux or UNIX systems, navigate to ~/sqllib/bin and enter ./db2.
v Enter database manager and SQL statements similar to the following

example to create the two databases:
CREATE DATABASE WRKLGHT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WRKLGHT
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT WRKLGHT
CREATE DATABASE WLREPORT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLREPORT
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT WLREPORT
QUIT

Where wluser is the name of the system user that you previously created. If
you defined a different user name, replace wluser accordingly.

3. It is also possible to use only one database (with pagesize settings compatible
with what is previously listed), and to create the databases for IBM MobileFirst
Platform Foundation for iOS in different schemas. In that case, only one
database is required. If the IMPLICIT_SCHEMA authority is granted to the user
created in step 1 (the default in the database creation script in step 2), no
further action is required. If the user does not have the IMPLICIT_SCHEMA
authority, you need to create a SCHEMA for the runtime database tables and
objects and a SCHEMA for the reports database tables and objects.

Creating the MySQL databases:

This section explains the procedures used to create the MySQL databases.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the MySQL databases manually” on page 10-28
instead.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

The <configureDatabase> Ant task can create the databases for you if you enter the
name and password of the superuser account. For more information, see Securing
the Initial MySQL Accounts on your MySQL database server. Your database
administrator can also create the databases for you. When you manually create the
databases, you can replace the database names (here WRKLGHT and WLREPORT)
and the password with database names and a password of your choosing. Note
that MySQL database names are case-sensitive on UNIX.

Deploying MobileFirst projects 10-7

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html


Procedure

1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE WRKLGHT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;
CREATE DATABASE WLREPORT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;

Where worklight before the @ sign is the user name, password after IDENTIFIED
BY is the user password, and Worklight-host is the name of the host on which
IBM MobileFirst Platform Foundation for iOS runs.

Creating the Oracle databases:

You can use the <configureDatabase> Ant task to create the Oracle databases,
except for the Oracle 12c database type.

Before you begin

You perform this procedure to create the databases before you run Ant tasks or the
Server Configuration Tool to populate them. For a fully manual database
installation, see “Configuring the Oracle databases manually” on page 10-33
instead.

About this task

Note: The Reports database (WLREPORTS below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

The <configureDatabase> Ant task can create the databases, except for the Oracle
12c database type, or the users and schemas inside an existing database if you
enter the name and password of the Oracle administrator on the database server,
and the account can be accessed through SSH. Otherwise, the database
administrator can create the databases or users and schemas for you. When you
manually create the databases or users, you can use database names, user names,
and a password of your choosing. Note that lowercase characters in Oracle user
names might not be supported.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new database named ORCL:
a. Use global database name ORCL_your_domain, and system identifier (SID)

ORCL.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts, because you must first create a user account.
c. On the Character Sets tab of the step Initialization Parameters, select Use

Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.

10-8 IBM MobileFirst Platform Foundation for iOS V7.0.0



If the Oracle installation is on a UNIX or Linux machine, make sure that the
database will be started the next time the Oracle installation is restarted. To this
effect, make sure the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create database users either by using Oracle Database Control, or by using the
Oracle SQLPlus command-line interpreter.
v Using Oracle Database Control.

a. Create the user for the runtime database:
1) Connect as SYSDBA.
2) Go to the Users page: click Server, then Users in the Security section.
3) Create a user, for example, named WORKLIGHT. If you want multiple

MobileFirst projects to connect to the same general-purpose database
you created in step 1, use a different user name for each connection.
Each database user has a separate default schema.

4) Assign the following attributes:
– Profile: DEFAULT
– Authentication: password
– Default tablespace: USERS
– Temporary tablespace: TEMP
– Status: Unlocked
– Add system privilege: CREATE SESSION
– Add system privilege: CREATE SEQUENCE
– Add system privilege: CREATE TABLE
– Add quota: Unlimited for tablespace USERS

b. Repeat step "a" to create a user, for example, named
WORKLIGHTREPORTS for the MobileFirst report database.

v Using the Oracle SQLPlus command-line interpreter.
The commands in the following example create a user named WORKLIGHT
and a user named WORKLIGHTREPORTS:

CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER WORKLIGHT IDENTIFIED BY ’WORKLIGHT_password’ DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WORKLIGHT;
DISCONNECT;

CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER WORKLIGHTREPORTS IDENTIFIED BY ’WORKLIGHTREPORTS_password’ DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WORKLIGHTREPORTS;
DISCONNECT;

Deploying, updating, or undeploying MobileFirst Server by using
the Server Configuration Tool
The Server Configuration Tool is a graphical tool that you can use to deploy,
update, or undeploy a MobileFirst Server instance to or from an application server
and database.

If you use this tool in production to upgrade a MobileFirst Server, you must
complete more actions to upgrade the server, as described in “Upgrading to
MobileFirst Server V7.0.0 in a production environment” on page 7-4.

Before you use this tool, verify that the user who runs the Server Configuration
Tool has the privileges that are described in “File system prerequisites” on page
6-5.

Deploying MobileFirst projects 10-9



The Server Configuration Tool provides the same capabilities as the Ant tasks that
are described in “Ant tasks for installation of MobileFirst Operations Console and
Administration Services” on page 14-10 and “Ant tasks for installation of
MobileFirst runtime environments” on page 14-16. Compared to Ant tasks, the
Server Configuration Tool is limited to a set of operations that are described in the
following list:
v The supported databases are IBM DB2, Oracle, and MySQL.

Restriction: The Derby database is not supported.
v It is not possible to define JNDI deployment properties, such as

publicWorkLightHostname or other properties that are listed in “Configuring a
MobileFirst project in production by using JNDI environment entries” on page
10-60. To define those properties, use Ant files. You can use the Server
Configuration Tool to export an Ant file from a server configuration and then
add JNDI deployment properties to it manually. (See “Other operations available
in the Server Configuration Tool” on page 10-12.)

v The Server Configuration Tool must be started on the computer where your
application server is installed.

v The Server Configuration Tool maintains a deployment status of configuration
server components, whether they are deployed or not. This status is not accurate
if the MobileFirst Server components are modified outside the Server
Configuration Tool.

v The Server Configuration Tool is available only on Windows and Linux (x86). It
is also available on Mac OS for test or demonstration purposes, but the
MobileFirst Server is not supported for production in this environment.

v You can use the Server Configuration Tool to install MobileFirst Server to
WebSphere Application Server Network Deployment (clusters, servers), to a
stand-alone WebSphere Application Server instance, or to a Liberty or Tomcat
server. However, you cannot use the Server Configuration Tool to install
MobileFirst Server to a server farm.

v You cannot use the Server Configuration Tool to add a runtime to an
Administration Service that was installed or upgraded with Ant tasks and not
with the Server Configuration Tool.

Figure 10-1. Server Configuration Tool main window

10-10 IBM MobileFirst Platform Foundation for iOS V7.0.0



Running the Server Configuration Tool

You can start the Server Configuration Tool in the following ways:

On Linux

v By using the desktop menu shortcut Server Configuration Tool.
v In a File Manager, click the file mf_server_install_dir/shortcuts/

configuration-tool.sh.

Note: mf_server_install_dir is the directory where you install MobileFirst
Server. mf_server is the shortcut for MobileFirst Server.

v From a shell command line, run the command mf_server_install_dir/
shortcuts/configuration-tool.sh.

On Windows

v By using the Start > IBM MobileFirst Platform Server > Server
Configuration Tool menu command.

v In Windows Explorer, double-click the file mf_server_install_dir/
shortcuts/configuration-tool.bat.

v In a console window, run mf_server_install_dir/shortcuts/
configuration-tool.bat.

On Mac OS X 

Restriction: MobileFirst Server is not supported for production in this
environment.
v In the Finder, double-click the file mf_server_install_dir/shortcuts/

configuration-tool.sh.
v In a Terminal window, run mf_server_install_dir/shortcuts/

configuration-tool.sh.

Main tasks

Create a MobileFirst Server configuration

For more information, see “Installing MobileFirst Server administration
with the Server Configuration Tool” on page 6-51.

After a MobileFirst Server configuration is created, you can do the following tasks:

Edit an existing MobileFirst Server configuration and redeploy
Use this task to edit and modify an existing MobileFirst Server
configuration. If you select this action, the work flow is as follows:
1. You are prompted to select one of the configurations visible in the

Navigation view.
2. If passwords are required to redeploy the configuration, you are

prompted to enter them.
3. After you enter the passwords, the configuration is checked for errors.
4. If errors are found, a report is displayed.
5. You can then edit the configuration.
6. If the configuration contains no errors, the Redeploy button is enabled.
7. When you click Redeploy, the MobileFirst administration components

are uninstalled from the application server, and reinstalled with the
new parameters.

Deploying MobileFirst projects 10-11



Add a MobileFirst runtime environment to a configuration
Use this task to add a MobileFirst runtime environment to a MobileFirst
Server configuration.

To create a new MobileFirst runtime environment, complete the following
steps:
1. Select a MobileFirst Server configuration.
2. Select File > Add MobileFirst runtime environment.
3. Enter a descriptive name for the MobileFirst runtime environment.
4. Select the path for the MobileFirst project WAR file to be deployed.
5. Step through the wizard to describe the target database management

system.
If you need to create a database for your MobileFirst runtime
environment, the Server Configuration Tool can create it for you. If you
provide the requested administrator password when you are prompted
in the Database Creation Request panel, the database for MobileFirst
runtime environment is created. Alternatively, you can ask your
database administrator to create the database manually by following
the instructions in “Optional creation of databases” on page 10-5.

6. After you provide all the necessary information, the Deploy button is
enabled. When you click Deploy, the following effects take place:
a. The configuration file is saved.
b. If the database contains no MobileFirst tables, these tables are

created.
c. If the database contains MobileFirst tables for an older version of

the product, the tables are upgraded to the current version.
d. If the database operations succeed, the MobileFirst Server is

deployed to the application server.
e. If the WAR file needs to be migrated to the current version, it is

migrated.

Replace the project WAR file of a deployed runtime
Use this task to update the WAR files and libraries of the MobileFirst
administration components. For example, apply a fix pack to the
installation directory of MobileFirst Server.

Replace the WAR file of a deployed MobileFirst Server configuration
If you applied a fix pack to your installation of MobileFirst Server, use this
task to update the console and administration WAR files of a deployed
configuration.

Other operations available in the Server Configuration Tool

Export a Configuration
When you click File > Export Configuration as Ant files, Ant files are
exported. These Ant files contain tasks that take the following actions for
the MobileFirst Operations Console and Administration Services, and for
each MobileFirst runtime environment of the configuration:
v Create or update the databases
v Deploy the WAR file
v Update the WAR file
v Undeploy the WAR file

10-12 IBM MobileFirst Platform Foundation for iOS V7.0.0



A help target, the default target of the Ant project, describes the different
targets available. You might want to export a configuration for the
following reasons:
v To add deployment JNDI properties, then run the Ant file in

command-line mode with Apache Ant.
v To run the Ant file on a computer without a graphical user interface.
v To perform the MobileFirst Server operations in batch mode (from the

command line and without using a graphical user interface).

If you modify the MobileFirst Server status outside the Server
Configuration Tool, the status for this configuration is no longer accurate.

Migrate a V6.1.0 Configuration
Configurations that were created with IBM Worklight V6.1.0 are displayed
in a folder called Worklight 6.1 Configurations. To migrate such
configurations to IBM MobileFirst Platform Foundation for iOS V7.0.0,
complete the following steps:
1. Select the configuration.
2. Right-click to open a contextual menu.
3. Select Migrate a V6.1 configuration. An IBM MobileFirst Platform

Foundation for iOS V7.0.0 configuration is created.
4. Review all the pages of the wizard. In Database Additional Settings,

you must enter information for the new administration database.
5. When all the pages are reviewed, click Migrate.

The IBM Worklight runtime environment V6.1.0 is removed from the
application server. The databases are migrated, the MobileFirst Operations
Console and Administration Services are deployed, and the MobileFirst
runtime environment is deployed.

Change the working directory where the configurations are stored
Click File > Preferences and select a different working directory.

Using Ant tasks to deploy the project WAR file

Creating and configuring the databases with Ant tasks:

If you did not manually create databases, you can use Ant tasks to create and
configure your databases.

About this task

If you did not use the procedure in “Optional creation of databases” on page 10-5
to create the databases manually, complete the following steps.

Procedure

1. Review the sample configuration files in “Sample configuration files” on page
14-35, and copy the Ant file that corresponds to your database. The files for
creating a database are named after the following pattern:
create-database-database.xml

For more information, see table 1, Table 14-62 on page 14-35, in “Sample
configuration files” on page 14-35.

2. Follow step 4 of the page “Sample configuration files” on page 14-35 to edit the
Ant file and replace the placeholder values for the properties at the top of the
file.

Deploying MobileFirst projects 10-13



3. Run the following commands to create the databases.
ant -f create-database-database.xml databases

You can find the Ant command in product_install_dir/shortcuts.
If the databases are created, and you must create only the databaseTABLES.
4. Edit the Ant script that you use later to create and configure the databases.
5. Review the sample configuration files in “Sample configuration files” on page

14-35, and copy the Ant file that corresponds to your database. The files for
configuring an existing database are named after this pattern:
configure-appServer-database.xml

For more information, see table 1, Table 14-62 on page 14-35, in “Sample
configuration files” on page 14-35.

6. See step 4 of the page “Sample configuration files” on page 14-35 to edit the
Ant file and replace the placeholder values for the properties at the top of the
file.

7. Run the following commands to create the databases.
ant -f configure-appServer-database.xml databases

You can find the Ant command in product_install_dir/shortcuts.

What to do next

See also:
v “Ant configuredatabase task reference” on page 14-1
v “Sample configuration files” on page 14-35

Deploying a project WAR file and configuring the application server with Ant
tasks:

Use Ant tasks to deploy the project WAR file to an application server, and
configure data sources, properties, and database drivers that are used by IBM
MobileFirst Platform Foundation for iOS. A set of Ant tasks is supplied with IBM
MobileFirst Platform Server.

Before you begin

See “Planning deployment of administration components and runtimes” on page
6-7 for the supported deployment topologies.

Before you deploy your project WAR file and configure the application server, you
must complete the following procedures:
v “Installing MobileFirst Server” on page 6-2.
v “Installing a server farm” on page 6-97, to configure the server farm if you have

a farm topology.
v “Creating and configuring the databases with Ant tasks” on page 10-13

If you deploy different project WAR files, each WAR file must have its own set of
tables. Either the database, or the schema where the tables are stored, must be
different. For Oracle, the database user must be different.

You must run the Ant task on the computer where the application serve is
installed, or the Network Deployment Manager for WebSphere Application Server

10-14 IBM MobileFirst Platform Foundation for iOS V7.0.0



Network Deployment. If you want to start the Ant task from a computer on which
Worklight Server is not installed, you must copy the file mf_server_install_dir/
WorklightServer/worklight-ant-deployer.jar to that computer.

Note: The mf_server_install_dir placeholder is the directory where you installed
IBM MobileFirst Platform Server.

Procedure

1. Review the environment ID that you used to install the MobileFirst Server
administration. This environment ID is installed as a JNDI property. For more
information about the list of JNDI properties, see “List of JNDI properties for
MobileFirst Server administration” on page 6-86.

Important: If the MobileFirst Server administration used an environment ID,
install the project WAR file with the same environment ID. Otherwise, that
project WAR file cannot be managed by the MobileFirst Server administration.

2. Edit the Ant script that you use later to deploy the Project WAR File.
a. Review the sample configuration files in “Sample configuration files” on

page 14-35, and copy the Ant file that corresponds to your database. The
files for deploying a project WAR file are named after the following pattern:
configure-appServer-database.xml

For more information, see table 1, Table 14-62 on page 14-35, in “Sample
configuration files” on page 14-35.

Note: If your file name follows the pattern configure-appServer-
database.xml, you can reuse it for “Creating and configuring the databases
with Ant tasks” on page 10-13,

b. Follow step 4 of the page “Sample configuration files” on page 14-35 to edit
the Ant file and replace the placeholder values for the properties at the top
of the file.

3. If the MobileFirst Server administration uses an environment ID, and you run
an Ant task for the installation, add an environmentID attribute to the following
Ant tasks, which are used for the administration installation:
v installworklightadmin

v updateworklightadmin

v uninstallworklightadmin

v configureapplicationserver

v updateapplicationserver

v unconfigureapplicationserver

For more information, see “Ant tasks for installation of MobileFirst runtime
environments” on page 14-16 and “Ant tasks for installation of MobileFirst
Operations Console and Administration Services” on page 14-10.

Important: The value of the attribute must be the same as the one used for the
MobileFirst Server administration.

4. To deploy the project WAR file, run the following command:
ant -f configure-appServer-database.xml install

You can find the Ant command in mf_server_install_dir/shortcuts

Deploying MobileFirst projects 10-15



What to do next

See also:
v “Ant tasks for installation of MobileFirst runtime environments” on page 14-16
v “Sample configuration files” on page 14-35
v “Using Ant tasks to install MobileFirst Server administration” on page 6-53
v “Encrypting database password with Ant tasks for Liberty” on page 14-9

Configuring WebSphere Application Server Network Deployment servers:

Specific considerations when you configure WebSphere Application Server
Network Deployment servers through Ant tasks are documented in this section.

To install a MobileFirst project into a set of WebSphere Application Server Network
Deployment servers, run the <configureapplicationserver> Ant task on the
computer where the deployment manager is running.

Procedure

1. Specify a database type other than Apache Derby. IBM MobileFirst Platform
Foundation for iOS supports Apache Derby only in embedded mode, and this
choice is incompatible with deployment through WebSphere Application Server
Network Deployment.

2. As value of the profile attribute, specify the deployment manager profile.
Attention: Do not specify an application server profile and then a single
managed server. Doing so causes the deployment manager to overwrite the
configuration of the server. This is true whether you install on the computer on
which the deployment manager is running or on a different computer.

3. Specify an inner element, depending on where you want the MobileFirst
Runtime Component to be installed. The following table lists the available
elements:

Note: You must choose the same inner element to install the MobileFirst
Administration Services. You must install an instance of the MobileFirst
Administration Service on each server where the MobileFirst Runtime
Component is installed.

Table 10-1. Inner elements of <was> for network deployment

Element Explanation

cell Install the MobileFirst project into all application servers of the cell.

cluster Install the MobileFirst project into all application servers of the specified cluster.

node Install the MobileFirst project into all application servers of the specified node that
are not in a cluster.

server Install the MobileFirst project into the specified server, which is not in a cluster.

4. After starting the <configureapplicationserver> Ant task, restart the affected
servers:
v You must restart the servers that were running and on which the MobileFirst

project application was installed. To restart these servers with the
deployment manager console, select Applications > Application Types >
WebSphere enterprise applications > IBM_Worklight_Console > Target
specific application status.

v You do not have to restart the deployment manager or the node agents.

10-16 IBM MobileFirst Platform Foundation for iOS V7.0.0



Results

The configuration has no effect outside the set of servers in the specified scope.
The JDBC providers, JDBC data sources, and shared libraries are defined with the
specified scope. The entities that have a cell-wide scope (the applications and, for
DB2, the authentication alias) use the specified id attribute as a suffix in their
name; it makes their name unique. So, you can install MobileFirst Server in
different configurations or even different versions of MobileFirst Server, in different
clusters of the same cell.

Note: Because the JDBC driver is installed only in the specified set of application
servers, the Test connection button for the JDBC data sources in the WebSphere
Application Server administrative console of the deployment manager might not
work.

Adding a server to a cluster

When you add a server to a cluster that has a MobileFirst project installed on it,
you must repeat some configuration manually. For each affected server, add a
specific web container custom property:
1. Click Servers > Server Types > Application Servers, and select the server.
2. Click Web Container Settings > Web container.
3. Click Custom properties.
4. Click New.
5. Enter the property values listed in the following table:

Table 10-2. Web container custom property values

Property Value

Name com.ibm.ws.webcontainer.invokeFlushAfterService

Value false

Description See http://www.ibm.com/support/
docview.wss?uid=swg1PM50111.

6. Click OK.
7. Click Save.

Deploying the project WAR file manually

Creating and configuring the databases manually:

You can manually create and configure the IBM MobileFirst Platform Foundation
for iOS databases.

Note: The Reports database and the sample BIRT Reports are deprecated in IBM
MobileFirst Platform Foundation for iOS V7.0.0. Use “Operational analytics” on
page 12-8 instead.

Configuring the DB2 databases manually:

You configure the DB2 databases manually by creating the databases, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Deploying MobileFirst projects 10-17



Procedure

1. Create the databases. This step is described in “Creating the DB2 databases” on
page 10-6.

2. Create the tables in the databases. This step is described in “Setting up your
DB2 databases manually.”

3. Perform the application server-specific setup as the following list shows.

Note: At this stage, you can choose to provide a database user with limited
privileges to better secure access to the Application Server database during
runtime operations. To create a database user with restricted privileges, see
“Restricting database user permissions for IBM MobileFirst Platform Server
runtime operations” on page 6-20.

Setting up your DB2 databases manually:

You can set up the database manually instead of using Ant tasks.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead.

Set up your DB2 database by creating the database schema. The following
procedure creates the schemas for WRKLGHT and WLREPORT in different databases, but
it is possible to group them in the same database. In this case, skip step 5.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password password. For more information, see the DB2 documentation and the
documentation for your operating system.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across
the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

Note: If you want multiple instances of IBM MobileFirst Platform Server to
connect to the same database, use a different user name for each connection.
Each database user has a separate default schema.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called WRKLGHT:
CREATE DATABASE WRKLGHT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WRKLGHT
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

Where worklight is the name of the system user that you previously created. If
you defined a different user name, replace worklight with the user name.

4. Run DB2 with the following commands to create the WRKLGHT tables:

10-18 IBM MobileFirst Platform Foundation for iOS V7.0.0



db2 CONNECT TO WRKLGHT USER worklight USING password
db2 SET CURRENT SCHEMA = ’WRKSCHM’
db2 -vf product_install_dir/WorklightServer/databases/create-worklight-db2.sql -t

Where worklight after USER is the name of the system user with "CONNECT"
access to the WRKLGHT database that you previously created, and password after
USING is this user's password. If you defined either a different user name, or a
different password, or both, replace worklight, or password, or both.
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

Important: If you do not specify the user name and password, DB2 assumes
that the user is the current user, and creates the tables by using this current
user's schema. If the current user differs from the settings in Worklight, then
the current user is denied access to the tables in the database.

5. Enter the following database manager and SQL statements to create a database
that is called WLREPORT:
CREATE DATABASE WLREPORT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLREPORT
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

6. Run DB2 with the following commands to create the WLREPORT tables:
db2 CONNECT TO WLREPORT USER worklight USING password
db2 SET CURRENT SCHEMA = ’WLRESCHM’
db2 -vf product_install_dir/WorklightServer/databases/create-worklightreports-db2.sql -t

Configuring Liberty profile for DB2 manually:

If you want to manually set up and configure your DB2 database with WebSphere
Application Server Liberty profile, use the following procedure.

Before you begin

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver
Versions, or fetch it from the directory DB2_INSTALL_DIR/java on the DB2
server) to $LIBERTY_HOME/wlp/usr/shared/resources/db2. If that directory does
not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file (worklightServer can be replaced in this path
by the name of your server) as follows:
<!-- Declare the jar files for DB2 access through JDBC. -->
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the runtime database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WRKLGHT" currentSchema="WRKSCHM"

Deploying MobileFirst projects 10-19

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866


serverName="db2server" portNumber="50000"
user="worklight" password="password"/>

</dataSource>

<!-- Declare the reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLREPORT" currentSchema="WLRESCHM"

serverName="db2server" portNumber="50000"
user="worklight" password="password"/>

</dataSource>

Where worklight after user= is the name of the system user with "CONNECT"
access to the WRKLGHT and WLREPORT databases that you previously created, and
password after password= is this user's password. If you defined either a
different user name, or a different password, or both, replace these entries
accordingly. Also, replace db2server with the host name of your DB2 server (for
example, localhost, if it is on the same machine).

Note: The database user that is provided in step 2 does not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-20.
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.
The jndiName attributes must depend on the context root that you select for the
MobileFirst Server application, following the instructions in “Configuring the
Liberty profile manually” on page 10-40. If the context root is /app_context, use
jndiName="app_context/jdbc/WorklightDS" and jndiName="app_context/jdbc/
WorklightReportsDS" respectively.

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

Note: You have one password for each database: runtime (by default
WRKLGHT) and reports (by default WLREPORT).

Configuring WebSphere Application Server for DB2 manually:

If you want to manually set up and configure your DB2 database with WebSphere
Application Server, use the following procedure.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the DB2 database Setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/project-name/db2.

10-20 IBM MobileFirst Platform Foundation for iOS V7.0.0



v For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
project-name/db2.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/project-name/db2.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/project-name/db2.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/project-name/db2.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the DB2 JDBC driver JAR file to the directory that you determined in step

1.
You can retrieve the file in one of two ways:
v Download it from DB2 JDBC Driver Versions.
v Fetch it from the db2_install_dir/java on the DB2 server directory.

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database type to DB2.
e. Set Provider type to DB2 Using IBM JCC Driver.
f. Set Implementation Type to Connection pool data source.
g. Set Name to DB2 Using IBM JCC Driver.
h. Click Next.
i. Set the Class path to the set of JAR files in the directory that you

determined in step 1, one per line, replacing WAS_INSTALL_DIR/profiles/
profile-name with the WebSphere Application Server variable reference
${USER_INSTALL_ROOT}.

j. Do not set Native library path.
k. Click Next.
l. Click Finish.
m. The JDBC provider is created.
n. Click Save.

4. Create a data source for the runtime database:
a. Click Resources > JDBC > Data Sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Set the Data source name to Worklight Database.
e. Set JNDI Name to jdbc/WorklightDS.
f. Click Next.
g. Enter properties for the data source, for example:
v Driver type: 4
v Database Name: WRKLGHT

Deploying MobileFirst projects 10-21

http://www.ibm.com/support/docview.wss?uid=swg21363866


v Server name: localhost
v Port number: 50000 (default)
Leave Use this data source in (CMP) selected.

h. Click Next.
i. Create JAAS-J2C authentication data, specifying the DB2 user name and

password as its properties. If necessary, go back to the data source creation
wizard, by repeating steps 4a on page 10-21 to 4h.

j. Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

k. Click Next and Finish.
l. Click Save.
m. In Resources > JDBC > Data sources, select the new data source.
n. Click WebSphere Application Server data source properties.
o. Select the Non-transactional data source check box.
p. Click OK.
q. Click Save.
r. Click Custom properties for the data source, select property currentSchema,

and set the value to the schema used to create the data source tables
(WRKSCHM and WLRESCHM in this example).

5. Create a data source for the reports database:
a. Click Resources > JDBC > Data Sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Set the Data source name to Worklight Reports Database.
e. Set JNDI Name to jdbc/WorklightReportsDS.
f. Click Next.
g. Enter properties for the data source, for example:
v Driver type: 4
v Database Name: WLREPORT
v Server name: localhost
v Port number: 50000 (default)
Leave Use this data source in (CMP) selected.

h. Click Next.
i. If you need a different DB2 user name and password for the reports

database than for the runtime database, create JAAS-J2C authentication data,
specifying the DB2 user name and password as its properties. If necessary,
go back to the data source creation wizard, by repeating steps 5a to 5h.

j. Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

k. Click Next and Finish.
l. Click Save.
m. In Resources > JDBC > Data sources, select the new data source.
n. Click WebSphere Application Server data source properties.
o. Select the Non-transactional data source check box.
p. Click OK.

10-22 IBM MobileFirst Platform Foundation for iOS V7.0.0



q. Click Save.
r. Click Custom properties for the data source, select property currentSchema,

and set the value to the schema used to create the data source tables
(WRKSCHM and WLRESCHM in this example).

6. Test the data source connection by selecting each Data Source and clicking Test
Connection.

7. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for DB2 manually:

If you want to manually set up and configure your DB2 database with Apache
Tomcat server, use the following procedure.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file to $TOMCAT_HOME/lib.
You can retrieve the file in one of two ways:
v Download it from DB2 JDBC Driver Versions
v Fetch it from the db2_install_dir/java directory on the DB2 server.

2. Prepare an XML statement that defines the data source, as shown in the
following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat manually” on page 10-46.

<Resource auth="Container"
driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/WorklightDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://db2server:50000/WRKLGHT:currentSchema=WRKSCHM;"/>

<Resource auth="Container"
driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/WorklightReportsDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://db2server:50000/WLREPORT:currentSchema=WLRESCHM;"/>

Where worklight after username= is the name of the system user with
"CONNECT" access to the WRKLGHT and WLREPORT databases that you previously
created, and password after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
worklight accordingly. Also, replace db2server with the host name of your DB2
server (for example, localhost, if it is on the same machine).

Note: The database user that is provided in this step does not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are

Deploying MobileFirst projects 10-23

http://www.ibm.com/support/docview.wss?uid=swg21363866


listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-20.
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

Configuring the Apache Derby databases manually:

You configure the Apache Derby databases manually by creating the databases and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the databases and the tables within them. This step is described in
“Setting up your Apache Derby databases manually.”

2. Configure the application server to use this database setup. Go to one of the
following topics:
v “Configuring Liberty Profile for Derby manually” on page 10-25
v “Configuring WebSphere Application Server for Derby manually” on page

10-25
v “Configuring Apache Tomcat for Derby manually” on page 10-28

Setting up your Apache Derby databases manually:

You can set up your Apache Derby database manually instead of by running Ant
tasks.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Set up your Apache Derby database by creating the database schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from Apache Derby: Downloads.

For supported versions of Apache Derby, see “System requirements” on page
2-7.
The script displays ij version number.

2. At the command prompt, enter the following commands:
connect ’jdbc:derby:WRKLGHT;user=WORKLIGHT;create=true’;
run ’product_install_dir/WorklightServer/databases/create-worklight-derby.sql’;
connect ’jdbc:derby:WLREPORT;user=WORKLIGHT;create=true’;
run ’product_install_dir/WorklightServer/databases/create-worklightreports-derby.sql’;
quit;

10-24 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://db.apache.org/derby/derby_downloads


Configuring Liberty Profile for Derby manually:

If you want to manually set up and configure your Apache Derby database with
WebSphere Application Server Liberty Profile, use the following procedure.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the Apache Derby database setup procedure before continuing.

Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:

<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the Worklight Server project database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/WRKLGHT" user="WORKLIGHT"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool" />

</dataSource>

<!-- Declare the Worklight Server reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/WLREPORT" user="WORKLIGHT"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool" />

</dataSource>

The jndiName attributes must depend on the context root that you select for the
MobileFirst Server application, following the instructions in “Configuring the
Liberty profile manually” on page 10-40. If the context root is /app_context, use
jndiName="app_context/jdbc/WorklightDS" and jndiName="app_context/jdbc/
WorklightReportsDS" respectively.

Configuring WebSphere Application Server for Derby manually:

You can set up and configure your Apache Derby database manually with
WebSphere Application Server.

Deploying MobileFirst projects 10-25



About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/project-name/derby.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
project-name/derby.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/project-name/derby.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/project-name/derby.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/project-name/derby.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/

lib/derby.jar to the directory that you determined in step 1.
3. Set up the JDBC provider.

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database type to User-defined.
e. Set Class Implementation name to

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40.
f. Set Name to Worklight - Derby JDBC Provider.
g. Set Description to Derby JDBC provider for Worklight.
h. Click Next.
i. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

j. Click Finish.
4. Create the data source for the runtime database.

a. In the WebSphere Application Server console, click Resources > JDBC >
Data sources.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source Name to Worklight Database.

10-26 IBM MobileFirst Platform Foundation for iOS V7.0.0



e. Set JNDI name to jdbc/WorklightDS.
f. Click Next.
g. Select the existing JDBC provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the Worklight Database data source that you created.
m. Under Additional Properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the WRKLGHT database that is created by the

configuredatabase ant task.
p. Click OK.
q. Click Save.

r. At the top of the page, click Worklight Database.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.
u. Click OK.
v. Click Save.
w. In the table, select the Worklight Database data source that you created.
x. Click test connection (only if you are not on the console of a WAS

Deployment Manager).
5. Set up the data source for the reports database.

a. In the WebSphere Application Server console, click Resources > JDBC >
Data sources.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source name to Worklight Reports Database.
e. Set JNDI name to jdbc/WorklightReportsDS.
f. Click Next.
g. Select the existing JDBC provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the Worklight Reports Database data source that you

created.
m. Under Additional properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the WLREPORT database that is created by the

configuredatabase ant task.
p. Click OK.
q. Click Save.

Deploying MobileFirst projects 10-27



r. At the top of the page, click Worklight Reports Database.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.
u. Click OK.
v. Click Save.
w. In the table, select the Worklight Reports Database data source that you

created.
x. Optional: Only if you are not on the console of a WebSphere Application

Server Deployment Manager, click test connection.
6. For WebSphere Application Server Network Deployment, click System

administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for Derby manually:

If you want to manually set up and configure your Apache Derby database with
the Apache Tomcat server, use the following procedure.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/
lib/derby.jar to the directory $TOMCAT_HOME/lib.

2. Prepare an XML statement that defines the data source, as shown in the
following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat manually” on page 10-46.

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/WorklightDS"
username="WORKLIGHT"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WRKLGHT"/>

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/WorklightReportsDS"
username="WORKLIGHT"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WLREPORT"/>

Configuring the MySQL databases manually:

You configure the MySQL databases manually by creating the databases, creating
the database tables, and then configuring the relevant application server to use this
database setup.

10-28 IBM MobileFirst Platform Foundation for iOS V7.0.0



Procedure

1. Create the databases. This step is described in “Creating the MySQL databases”
on page 10-7.

2. Create the tables in the databases. This step is described in “Setting up your
MySQL databases manually.”

3. Perform the application server-specific setup as the following list shows.

Setting up your MySQL databases manually:

You can set up the database manually instead of using the Ant tasks.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the following procedure to set up your MySQL databases.

Procedure

1. Create the database schema.
a. Run a MySQL command line client with the option -u root.
b. Enter the following commands:

CREATE DATABASE WRKLGHT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’worklight’;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
FLUSH PRIVILEGES;
CREATE DATABASE WLREPORT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’worklight’;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
FLUSH PRIVILEGES;

USE WRKLGHT;
SOURCE product_install_dir/WorklightServer/databases/create-worklight-mysql.sql;

USE WLREPORT;
SOURCE product_install_dir/WorklightServer/databases/create-worklightreports-mysql.sql;

Where worklight before the "at" sign (@) is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM MobileFirst Platform Foundation for iOS runs.

2. Add the following property to your MySQL option file:
max_allowed_packet=256M

For more information about max_allowed_packet, see the MySQL
documentation, section Packet Too Large.

3. Add the following property to your MySQL option file: innodb_log_file_size
= 250M

For more information about innodb_log_file_size, see the MySQL
documentation, section innodb_log_file_size.
For more information about option files, see the MySQL documentation.

Configuring Liberty profile for MySQL manually:

If you want to manually set up and configure your MySQL database with
WebSphere Application Server Liberty profile, use the following procedure.

Deploying MobileFirst projects 10-29

http://dev.mysql.com/doc/refman/5.5/en/packet-too-large.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
http://dev.mysql.com


Before you begin

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:
<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

<!-- Declare the Worklight Server project database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="WRKLGHT"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="password"/>

</dataSource>

<!-- Declare the Worklight Server reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="WLREPORT"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="password"/>

</dataSource>

Where worklight after user= is the user name, password after password= is this
user's password, and mysqlserver is the host name of your MySQL server. If
you have defined either a different user name, or a different password, or both,
replace these entries accordingly. Also, replace mysqlserver with the host name
of your MySQL server (for example, localhost, if it is on the same machine).

Note: The database user that is provided in this step does not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-20.
The jndiName attributes must depend on the context root that you select for the
MobileFirst Server application, following the instructions in “Configuring the
Liberty profile manually” on page 10-40. If the context root is /app_context, use
jndiName="app_context/jdbc/WorklightDS" and jndiName="app_context/jdbc/
WorklightReportsDS" respectively.

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

Note: You have one password for each database: runtime (by default
WRKLGHT) and reports (by default WLREPORT).

10-30 IBM MobileFirst Platform Foundation for iOS V7.0.0



Configuring WebSphere Application Server for MySQL manually:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server, use the following
procedure.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/project-name/mysql.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
project-name/mysql.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/project-name/mysql.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/project-name/mysql.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/project-name/mysql.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the MySQL JDBC driver JAR file that you downloaded from Download

Connector/J to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Create a JDBC provider named MySQL.
e. Set Database type to User defined.
f. Set Scope to Cell.
g. Set Implementation class to

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.

Deploying MobileFirst projects 10-31

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/


h. Set the Class path to the JAR file in the directory that you determined in
step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

i. Save your changes.
4. Create a data source for the runtime database:

a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Type any name (for example, Worklight Database).
e. Set JNDI Name to jdbc/WorklightDS.
f. Use the existing JDBC Provider MySQL, defined in the previous step.
g. Set Scope to New.
h. On the Configuration tab, select Non-transactional data source.
i. Click Next a number of times, leaving all other settings as defaults.
j. Save your changes.

5. Create a data source for the reports database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Type any name (for example, Worklight Report Database).
e. Set JNDI Name to jdbc/WorklightReportsDS.
f. Use the existing JDBC Provider MySQL, defined in the previous step.
g. Set Scope to New.
h. On the Configuration tab, select Non-transactional data source. New.
i. Click Next a number of times, leaving all other settings as defaults.
j. Save your changes.

6. Set the custom properties of each new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

portNumber = 3306
relaxAutoCommit=true
databaseName = WRKLGHT or WLREPORT respectively
serverName = the host name of the MySQL server
user = the user name of the MySQL server
password = the password associated with the user name

Note: The database user that is listed in this step does not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst
Platform Server runtime operations” on page 6-20.

7. Set the WAS custom properties of each new data source.
a. In Resources > JDBC > Data sources, select the new data source.
b. Click WebSphere Application Server data source properties.
c. Select the Non-transactional data source check box.
d. Click OK.
e. Click Save.

10-32 IBM MobileFirst Platform Foundation for iOS V7.0.0



8. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for MySQL manually:

If you want to manually set up and configure your MySQL database with the
Apache Tomcat server, use the following procedure.

About this task

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/lib directory.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat manually” on page 10-46.

<Resource name="jdbc/WorklightDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://mysqlserver:3306/WRKLGHT"/>

<Resource name="jdbc/WorklightReportsDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://mysqlserver:3306/WLREPORT"/>

Where worklight after username= is the user name of the MySQL server,
worklight after password= is this user's password, and mysqlserver is the host
name of your MySQL server (for example, localhost, if it is on the same
machine).

Note: The database user that is listed in this step does not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-20.

Configuring the Oracle databases manually:

You configure the Oracle databases manually by creating the databases, creating
the database tables, and then configuring the relevant application server to use this
database setup.

Deploying MobileFirst projects 10-33



Procedure

1. Create the databases. This step is described in “Creating the Oracle databases”
on page 10-8.

2. Create the tables in the databases. This step is described in “Setting up your
Oracle databases manually.”

3. Perform the application server-specific setup as the following list shows.

Setting up your Oracle databases manually:

You can set up the database manually instead of using Ant tasks.

About this task

Note: The Reports database (WLREPORTS below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the following procedure to set up your Oracle databases.

Procedure

1. Ensure that you have at least one Oracle database.
In many Oracle installations, the default database has the SID (name) ORCL. For
best results, set the character set of the database to Unicode (AL32UTF8).
If the Oracle installation is on a UNIX or Linux computer, make sure that the
database is started the next time the Oracle installation is restarted. To this
effect, make sure that the line in /etc/oratab that corresponds to the database
ends with a Y, not with an N.

2. Create the user WORKLIGHT, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.
v To create the user for the runtime database/schema (by default Worklight),

by using Oracle Database Control, proceed as follows:
a. Connect as SYSDBA.
b. Go to the Users page.
c. Click Server, then Users in the Security section.
d. Create a user, named WORKLIGHT with the following attributes:

Profile: DEFAULT
Authentication: password
Default tablespace: USERS
Temporary tablespace: TEMP
Status: Unlocked
Add system privilege: CREATE SESSION
Add system privilege: CREATE SEQUENCE
Add system privilege: CREATE TABLE
Add quota: Unlimited for tablespace USERS

e. Repeat the previous step to create the user WORKLIGHTREPORTS for the
reports database/schema and a user WORKLIGHT for the runtime
database/schema.

v To create the two users by using Oracle SQLPlus, enter the following
commands:

CONNECT SYSTEM/SYSTEM_password@ORCL
CREATE USER WORKLIGHT IDENTIFIED BY WORKLIGHT_password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WORKLIGHT;
DISCONNECT;

10-34 IBM MobileFirst Platform Foundation for iOS V7.0.0



CONNECT SYSTEM/SYSTEM_password@ORCL
CREATE USER WORKLIGHTREPORTS IDENTIFIED BY WORKLIGHTREPORTS_password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO WORKLIGHTREPORTS;
DISCONNECT;

3. Create the database tables for the runtime database and reports database:
a. Using the Oracle SQLPlus command-line interpreter, create the tables for

the runtime database by running the create-worklight-oracle.sql file:
CONNECT WORKLIGHT/product_password@ORCL
@product_install_dir/WorklightServer/databases/create-worklight-oracle.sql
DISCONNECT;

b. Using the Oracle SQLPlus command-line interpreter, create the tables for
the reports database by running the create-worklightreports-oracle.sql
file:
CONNECT WORKLIGHTREPORTS/<WORKLIGHTREPORTS_password>@ORCL
@product_install_dir/WorklightServer/databases/create-worklightreports-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:
a. Download the JDBC driver from the Oracle website at Oracle: JDBC, SQLJ,

Oracle JPublisher and Universal Connection Pool (UCP).
b. Ensure that the Oracle JDBC driver is in the system path. The driver file is

ojdbc6.jar.

Configuring Liberty Profile for Oracle manually:

If you want to manually set up and configure your Oracle database with
WebSphere Application Server Liberty profile, use the following procedure.

Before you begin

Note: The Reports database (WLREPORTS below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC Driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/oracle. If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/wlp/usr/
servers/worklightServer/server.xml file (worklightServer may be replaced in
this path by the name of your server) as shown in the following JNDI code
example:
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

<!-- Declare the Worklight Server project database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin" databaseName="ORCL"

serverName="oserver" portNumber="1521"
user="WORKLIGHT" password="WORKLIGHT_password"/>

</dataSource>

Deploying MobileFirst projects 10-35

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html


<!-- Declare the Worklight Server reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin" databaseName="ORCL"

serverName="oserver" portNumber="1521"
user="WORKLIGHTREPORTS" password="WORKLIGHTREPORTS_password"/>

</dataSource>

Where WORKLIGHT and WORKLIGHTREPORTS after user= are the names of the users
with "CONNECT" access to the WRKLGHT and WLREPORT databases that you
previously created, and password after password= are this users' passwords. If
you defined either different user names, or different passwords, or both, replace
these entries accordingly. Also, replace oserver with the host name of your
Oracle server (for example, localhost, if it is on the same machine).

Note:

v For more information on how to connect the Liberty server to the Oracle
database with a service name, or with a URL, see the WebSphere Application
Server Liberty Core 8.5.5 documentation, section properties.oracle.

v The database users that are provided in this step do not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-20.

The jndiName attributes must depend on the context root that you select for the
MobileFirst Server application, following the instructions in “Configuring the
Liberty profile manually” on page 10-40. If the context root is /app_context, use
jndiName="app_context/jdbc/WorklightDS" and jndiName="app_context/jdbc/
WorklightReportsDS".

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

Note: You have one password for each database: runtime (by default
WRKLGHT) and reports (by default WLREPORT).

Configuring WebSphere Application Server for Oracle manually:

If you want to manually set up and configure your Oracle database with
WebSphere Application Server, use the following procedure.

About this task

Note: The Reports database (WLREPORTS below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the Oracle database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/project-name/oracle.

10-36 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0


v For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
project-name/oracle.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/project-name/oracle.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/project-name/oracle.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/project-name/oracle.

If the directory for the JDBC driver JAR file does not exist, you must create it.
2. Add the Oracle ⌂ojdbc6.jar file downloaded from JDBC and Universal

Connection Pool (UCP) to the directory that you determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Complete the JDBC Provider fields as indicated in the following table:

Table 10-3. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver

Implementation type Connection pool data source

Name Oracle JDBC Driver

e. Click Next.
f. Set the Class path to the JAR file in the directory that you determined in

step 1, replacing WAS_INSTALL_DIR/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

g. Click Next.
The JDBC provider is created.

4. Create a data source for the runtime database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source name to Oracle JDBC Driver DataSource.
e. Set JNDI name to jdbc/WorklightDS.
f. Click Next.
g. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.
h. Click Next.
i. Set the URL value to jdbc:oracle:thin:@oserver:1521:ORCL, where oserver is

the host name of your Oracle server (for example, localhost, if it is on the
same machine).

j. Click Next twice.

Deploying MobileFirst projects 10-37

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html


k. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource
> Custom properties.

l. Set oracleLogPackageName to oracle.jdbc.driver.
m. Set user = WORKLIGHT.
n. Set password = WORKLIGHT_password.
o. Click OK and save the changes.
p. In Resources > JDBC > Data sources, select the new data source.
q. Click WebSphere Application Server data source properties.
r. Select Non-transactional data source.
s. Click OK.
t. Click Save.

5. Create a data source for the reports database, following the instructions in step
2, but using the JNDI name jdbc/WorklightReportsDS and the user name
WORKLIGHTREPORTS and its corresponding password.

Note: The database users WORKLIGHT and WORKLIGHTREPORTS that are provided in
this step do not need extended privileges on the databases. If you need to
implement restrictions on the database, you can set here a user that has the
restricted privileges that are listed in “Restricting database user permissions for
IBM MobileFirst Platform Server runtime operations” on page 6-20.

6. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Configuring Apache Tomcat for Oracle manually:

If you want to manually set up and configure your Oracle database with the
Apache Tomcat server, use the following procedure.

About this task

Note: The Reports database (WLREPORTS below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat manually” on page 10-46.

<Resource name="jdbc/WorklightDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521:ORCL"
username="WORKLIGHT"
password="WORKLIGHT_password"/>

<Resource name="jdbc/WorklightReportsDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"

10-38 IBM MobileFirst Platform Foundation for iOS V7.0.0



url="jdbc:oracle:thin:@oserver:1521:ORCL"
username="WORKLIGHTREPORTS"
password="WORKLIGHTREPORTS_password"/>

Where WORKLIGHT and WORKLIGHTREPORTS after username= are the names of the
users with "CONNECT" access to the WRKLGHT and WLREPORT databases that you
previously created, and password after password= are this users' passwords. If
you defined either different user names, or different passwords, or both, replace
these entries accordingly. Also, replace oserver with the host name of your
Oracle server (for example, localhost, if it is on the same machine).

Note: The database users that are provided in this step do not need extended
privileges on the databases. If you need to implement restrictions on the
database, you can set here a user that has the restricted privileges that are
listed in “Restricting database user permissions for IBM MobileFirst Platform
Server runtime operations” on page 6-20.

Deploying a project WAR file and configuring the application server manually:

The procedure to manually deploy your app to an application server depends on
the type of application server being configured, as detailed here. Depending on the
version of the product that was used to build the project WAR file and the version
of MobileFirst Server, you might need to migrate the WAR file first.

When the version of IBM MobileFirst Platform Foundation for iOS produces a
WAR file that is not compatible with the version of MobileFirst Server, you must
migrate the project WAR file to the current MobileFirst Server version to ensure a
successful manual deployment. All fix packs of a product version are compatible in
that sense, and so you do not need to migrate associated project WAR files.

These manual configuration instructions assume that you are familiar with your
application server.

Note: Using the Ant task to deploy the project WAR file and configure the
application server is more reliable than installing and configuring manually, and
should be used whenever possible.

Migrating a project WAR file for use with a new MobileFirst Server:

Use Ant tasks to migrate a project WAR file so that you can deploy it manually to
a new version of MobileFirst Server.

You migrate a project WAR file by running a <migrate> Ant task, which is
included in the worklight-ant-deployer.jar library. You can migrate .war files
that are developed in V5.0.6 of this product and later. To run the Ant task, you
invoke it from an Ant XML file similar to the following example:

<?xml version="1.0" encoding="UTF-8"?>
<project name="MigrateWarFile" default="migrate" basedir=".">

<target name="migrate">
<echo message="Loading Ant Tool" />
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<pathelement location="worklight-ant-deployer.jar" />

</classpath>
</taskdef>
<migrate sourceWarFile="d:/myOldWarFolder/myProject.war" destWarFile="d:/myNewWarFolder/myMigratedProject.war"/>

</target>
</project>

Deploying MobileFirst projects 10-39



The <migrate> task accepts the following input parameters:

sourceWarFile
(mandatory) The path to the source project WAR file. The path must not
contain spaces.

destWarFile
(optional) The destination file for the migrated WAR file. Default value:
<source-war-folder>/migrated-to-<new version number>/<source-war-
filename>.

Configuring the Liberty profile manually:

To configure the WebSphere Application Server Liberty profile manually, you must
modify the server.xml file and declarations for the runtime and the IBM
MobileFirst Platform Operations Console.

Before you begin

See “Planning deployment of administration components and runtimes” on page
6-7 for the supported deployment topologies.

Review the environment IDs. Environment IDs are optional, but if you do specify
one, the identifier must meet the following two conditions:
v Its value must be the same for each MobileFirst runtime environment that is

managed by the same MobileFirst Server administration component.
v Its value must match the environment ID that is used when the MobileFirst

Server administration component is installed.

The environment ID is defined as an application JNDI variable, prefixed by the
context root of the application. See Step 5.

About this task

In addition to modifications for the databases that are described in “Creating and
configuring the databases manually” on page 10-17, you must make the following
modifications to the server.xml file.

Note: In the following procedure, when the example uses the worklight.war
project file, use the name of your MobileFirst project, for example, myProject.war.

Procedure

1. In the installation directory of Liberty, open the user data directory.
v If the installation directory of Liberty contains a etc/server.env file and if

this file defines a WLP_USER_DIR variable, the user data directory is the
value of this variable.

v Otherwise, it is the usr directory in the installation directory of Liberty.
2. Copy the MobileFirst JAR file into the shared/resources/lib/ directory that is

in the user data directory.
If there is no etc/server.env file in the installation directory of Liberty, enter
the following commands, according to your operating system:
v On UNIX and Linux:

mkdir -p WLP_DIR/usr/shared/resources/lib
cp product_install_dir/WorklightServer/worklight-jee-library.jar WLP_DIR/usr/shared/resources/lib

v On Windows:

10-40 IBM MobileFirst Platform Foundation for iOS V7.0.0



mkdir WLP_DIR\usr\shared\resources\lib
copy /B product_install_dir\WorklightServer\worklight-jee-library.jar WLP_DIR\usr\shared\resources\
lib\worklight-jee-library.jar

3. Ensure that the <featureManager> element contains at least the following
<feature> elements:
v For WebSphere Application Server Liberty profile V8.5.0.x:

<feature>ssl-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>

v For WebSphere Application Server Liberty profile V8.5.5.0 and later:
<feature>jdbc-4.0</feature>
<feature>servlet-3.0</feature>
<feature>ssl-1.0</feature>

4. Copy the worklight.war file to the apps directory of the Liberty server.

Note: The apps directory is in the same directory as the server.xml file.
5. Add the following declarations in the <server> element for the MobileFirst

runtime and the MobileFirst Operations Console.

Important: The id attribute of the privateLibrary tag must identify a unique
MobileFirst runtime. By convention, it takes this form: <privateLibrary
id="worklightlib_<context root>">

<!-- Declare the Worklight Server application. -->
<application id="worklight" name="worklight" location="worklight.war" type="war">

<classloader delegation="parentLast">
<privateLibrary id="worklightlib_worklight">

<fileset dir="${shared.resource.dir}/lib" includes="worklight-jee-library.jar"/>
<fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_*.jar"/>

</privateLibrary>
</classloader>

</application>

<!-- Declare web container custom properties for the Worklight Server application. -->
<webContainer invokeFlushAfterService="false"/>

This declaration installs the MobileFirst Server application with the context root
/worklight. If you want to assign a different context root /app_context, start
the declaration with one of the following code snippets:

<application id="app_context" name="app_context" location="worklight.war" type="war">

Or:
<application id="worklight" name="worklight" location="worklight.war" context-root="/app_context" type="war">

In either case, also change the privateLibrary tag accordingly: <privateLibrary
id="worklightlib_app_context">

6. If the database is Oracle, add the commonLibraryRef attribute to the class loader
of the worklight runtime application.
...
<classloader delegation="parentLast" commonLibraryRef="OracleLib">
...

The name of the library reference (OracleLib in this example) must be the ID of
the library that contains the JDBC JAR file. This ID is declared in the procedure
that is documented in “Configuring Liberty profile for Oracle manually for
MobileFirst Server administration” on page 6-69.

7. If the MobileFirst Server administration component uses an environment ID,
declare that environment ID for MobileFirst Server application:

Deploying MobileFirst projects 10-41



<jndiEntry jndiName="worklight/ibm.worklight.admin.environmentid" value=’"ValueOfEnvironmentID"’/>

v worklight is the context root of the MobileFirst Server application. If you
choose another value in previous step, replace worklight with that value.

v Replace ValueOfEnvironmentID with the value that is used for the MobileFirst
Server administration component.

Related tasks:
“Configuring a MobileFirst project in production by using JNDI environment
entries” on page 10-60
When you deploy a MobileFirst project to a MobileFirst Server, you can configure
the project’s WAR file with JNDI environment entries to set product environment
properties.
Related information:

WebSphere Application Server documentation about Deploying application to
the Liberty Profile

Configuring WebSphere Application Server manually:

To configure WebSphere Application Server manually, you must configure
variables, custom properties, and class loader policies.

Before you begin

See “Planning deployment of administration components and runtimes” on page
6-7 for the supported deployment topologies.

Find the SOAP port of the deployment manager (WebSphere Application Server
Network Deployment only)

These instructions assume that a stand-alone profile exists with an
application server named “Worklight” and that the server is using the
default ports.

For WebSphere Application Server Network Deployment, find the SOAP
port of the deployment manager:
1. Open the System Administration/Deployment manager.
2. In Additional properties, open Ports.
3. Note the value of SOAP_CONNECTOR_ADDRESS. This value is needed to set

the value of the ibm.worklight.admin.jmx.dmgr.port environment entry
for the MobileFirst Administration Services.

Review the environment IDs
Specifying an environment ID is optional. However, if you specify an ID,
use the same value for each MobileFirst runtime environment that is
managed by the same MobileFirst Server administration component.
Moreover, this value must match the environment ID that is used when the
MobileFirst Server administration component is installed. For more
information about the ibm.worklight.admin.environmentid JNDI property,
see “Configuring a MobileFirst project in production by using JNDI
environment entries” on page 10-60.

Procedure

1. Determine a suitable file name for the MobileFirst shared library in the
WebSphere Application Server installation directory.

10-42 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_dep.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_dep.html


v For a standalone server, you can use a file name such as
WAS_INSTALL_DIR/optionalLibraries/IBM/project-name/worklight-jee-
library.jar.

v For deployment to a WebSphere Application Server Network Deployment
cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
project-name/worklight-jee-library.jar.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/project-name/worklight-jee-library.jar.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/project-name/worklight-jee-library.jar.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/project-name/worklight-jee-
library.jar.

If the directory does not exist, you must create it.
2. Copy the file product_install_dir/WorklightServer/worklight-jee-

library.jar to the location that you determined in step 1.
3. Log on to theWebSphere Application Server administration console for your

MobileFirst Server.
The address is of the form http://server.com:9060/ibm/console, where server
is the name of the server.

4. Create the MobileFirst shared library definition:
a. Click Environment > Shared libraries.
b. From the Scope list, select Worklight server.
c. Click New. The Configuration pane is displayed.
d. In the Name field, type WL_PLATFORM_LIB.
e. Optional: In the Description field, type a description of the library.
f. In the Classpath field, enter the file name that you determined in step 1,

replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

g. In Class Loading, select the check box Use an isolated class loader for
this shared library.

5. Create the MobileFirst JDBC data source and provider.
See the instructions for the appropriate DBMS in “Creating and configuring
the databases manually” on page 10-17.

6. Add a specific web container custom property.
a. Click Servers > Server Types > Application Servers, and select the server

for IBM MobileFirst Platform Foundation for iOS.
b. Click Web Container Settings > Web container.
c. Click Custom properties.
d. Click New.
e. Enter the property values listed in the following table.

Table 10-4. Values for the web container custom property.

Property Value

Name com.ibm.ws.webcontainer.invokeFlushAfterService

Value false

Deploying MobileFirst projects 10-43



Table 10-4. Values for the web container custom property (continued).

Property Value

Description See http://www.ibm.com/support/
docview.wss?uid=swg1PM50111

f. Click OK.
g. Click Save.

7. Install a MobileFirst project WAR file.

Note: In the following procedure, when the example uses worklight.war, use
the name of your MobileFirst project, for example, myProject.war.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Navigate to the MobileFirst Server installation directory
product_install_dir/WorklightServer.

c. Select worklight.war, and then click Next.
d. On the "How do you want to install the application?" page, select

Detailed, and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Continue repeatedly until you reach Step 4 of the wizard: Map

Shared Libraries.
g. Select Select for worklight_war and click Reference shared libraries.
h. From the Available list, select WL_PLATFORM_LIB and click >.
i. Click OK.
j. Click Next until you reach the “Map context roots for web modules” page.
k. In the Context Root field, type /worklight.
l. Click Next.
m. In Map environment Entries for Web Module, you can assign the JNDI

variables according to your configuration.
v Set the variable ibm.worklight.topology.platform to WAS
v Set the variable ibm.worklight.admin.jmx.connector to SOAP
v If the environment ID is set for the Administration Services, set the

variable ibm.worklight.admin.environmentid to the same value.
v On a stand-alone WebSphere Application Server, set the value of

ibm.worklight.topology.clustermode to Standalone
v On WebSphere Application Server Network Deployment, set the

variables as follows:
– ibm.worklight.topology.clustermode: Cluster
– ibm.worklight.admin.jmx.dmgr.host: the host name of the

deployment manager
– ibm.worklight.admin.jmx.dmgr.port: the SOAP port of the

deployment manager
n. Click Finish.

8. Optional: As an alternative to step 6, you can map the shared libraries as
follows:

10-44 IBM MobileFirst Platform Foundation for iOS V7.0.0



a. Click Applications > Application Types > WebSphere enterprise
applications > worklight_war.

b. In the References section, click Shared library references.
c. Select Select for worklight_war and click Reference shared libraries.
d. From the Available list, select WL_PLATFORM_LIB and click >.
e. Click OK twice to return to the worklight_war configuration page.
f. Click the Save link.

9. Define the startup behavior.
a. Click Applications > Application Types > WebSphere enterprise

applications > worklight_war.
b. Click Startup behavior.
c. In Startup Order, enter 2.

Note: The MobileFirst Administration service must already be available
when the MobileFirst runtime starts.

10. Configure the class loader policies and then start the application:
a. Click the Manage Applications link, or click Applications > WebSphere

Enterprise Applications.
b. From the list of applications, click worklight_war.
c. In the “Detail Properties” section, click the Class loading and update

detection link.
d. In the “Class loader order” pane, click Classes loaded with local class

loader first (parent last).
e. Click OK.
f. In the Modules section, click Manage Modules.
g. From the list of modules, click the MobileFirst module.
h. In the “Class loader order” pane, click Classes loaded with local class

loader first (parent last).
i. Click OK twice.
j. Click Save.
k. Select Select for worklight_war and click Start.

11. Review the server class loader policy: Click Servers > Server Types >
Application Servers > Worklight

v If the class loader policy is set to Multiple, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-last, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-first, change the class loader policy to Multiple, and set the class
loader order of all applications other than MobileFirst applications to
parent-first.

12. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

Results

You can now view the runtime component from the MobileFirst Administration
Console that is installed in “Installing the MobileFirst Server administration” on
page 6-43. The default URL of the MobileFirst Administration Console is
http://<server>:<port>/worklightconsole, where server is the host name of your

Deploying MobileFirst projects 10-45



server and port is the port number (default value 9080).

Configuring Apache Tomcat manually:

To configure Apache Tomcat manually, you must copy JAR and WAR files to
Tomcat, add database drivers, edit the server.xml file, and then start Tomcat.

Before you begin

See “Planning deployment of administration components and runtimes” on page
6-7 for the supported deployment topologies.

Review the environment IDs. Specifying an environment ID is optional. If you
specify an ID, use the same value for each MobileFirst runtime environment that is
managed by the same MobileFirst Server administration component. Moreover, this
value must match the environment ID that is used when the MobileFirst Server
administration component is installed. For more information about the
ibm.worklight.admin.environmentid JNDI property, see “Configuring a MobileFirst
project in production by using JNDI environment entries” on page 10-60.

Procedure

1. Copy the MobileFirst JAR file to the Tomcat lib directory:
v On UNIX and Linux systems: cp product_install_dir/WorklightServer/

worklight-jee-library.jar tomcat_install_dir/lib

v On Windows systems: copy /B product_install_dir\WorklightServer\
worklight-jee-library.jar tomcat_install_dir\lib\worklight-jee-
library.jar

2. Add the database drivers to the Tomcat lib directory. See the instructions for
the appropriate DBMS in “Creating and configuring the databases manually”
on page 10-17.

3. Copy the MobileFirst project WAR file to the Tomcat web application directory,
tomcat_install_dir/webapps, and rename it according to the context root. For
example:
v If the context root is /worklight, rename it to worklight.war.
v If the context root is /, rename it to ROOT.war.

4. Edit tomcat_install_dir/conf/server.xml to declare the context and properties
of the MobileFirst application:

<!-- Declare the MobileFirst runtime environment. -->
<Context path="/worklight" docBase="worklight">

<Environment name="ibm.worklight.topology.platform" value="Tomcat" type="java.lang.String" override="false"/>
<Environment name="ibm.worklight.topology.clusterMode" value="Standalone" type="java.lang.String" override="false"/>
<!-- Declare the worklight and worklight reports databases. -->
<!-- <Resource name="jdbc/WorklightDS" type="javax.sql.DataSource" ... /> -->
<!-- <Resource name="jdbc/WorklightReportsDS" type="javax.sql.DataSource" ... /> -->

</Context>

Where you must uncomment and complete the <Resource> element to declare
the administration database as described in the following sections:
v “Configuring Apache Tomcat for DB2 manually” on page 10-23
v “Configuring Apache Tomcat for Derby manually” on page 10-28
v “Configuring Apache Tomcat for MySQL manually” on page 10-33
v “Configuring Apache Tomcat for Oracle manually” on page 10-38
Make sure that the path and docBase attributes are both consistent with the
WAR file name. That is, if the WAR file name is worklight.war, set the path to

10-46 IBM MobileFirst Platform Foundation for iOS V7.0.0



"/worklight" and the docBase to "worklight". Whereas if the WAR file name is
ROOT.war, set the path to "" and the docBase to "ROOT".
If the environment ID is set for the Administration Services, set the variable
ibm.worklight.admin.environmentid to the same value.

5. Start Tomcat.

Completing the deployment of a project WAR file:

To complete the deployment, you may need to restart the application server.

When the project WAR file is deployed on the application server, you must restart
the application server in the following circumstances:
v When you used the <configureApplicationServer> Ant task or the manual

instructions for deploying the project WAR file:
– If you are using WebSphere Application Server with DB2 as database type for

one or both of the databases.
– If you are using WebSphere Application Server Liberty profile or Apache

Tomcat.
v When you used the <updateApplicationServer> Ant task:

– If you are using WebSphere Application Server (full profile or Liberty profile)
and the MobileFirst runtime library (worklight-jee-library.jar) is changed.

– If you are using Apache Tomcat.

If you are using WebSphere Application Server Network Deployment and you
deployed to managed servers through the deployment manager:
v You must restart the servers that were running during the deployment and on

which the MobileFirst project web application has been installed.
To restart these servers with the deployment manager console, select
Applications > Application Types > WebSphere enterprise applications >
IBM_Worklight_Console > Target specific application status.

v You do not have to restart the deployment manager or the node agents.

Configuring multiple MobileFirst projects in different
environments
Different environments operate independently. For example, with this approach
you can host a test environment, a pre-production environment, and a production
environment on the same server or in the same WebSphere Application Server
Network Deployment cell.

You can configure multiple projects, either with the same Administration Services
and MobileFirst Operations Console, or with separate MobileFirst environments.
An environment consists of the following web applications:
v The Administration Services web application,
v Optionally, the MobileFirst Operations Console web application,
v Some MobileFirst runtime environments or project web applications, each with

the appropriate database schemas.

According to your installation method, you specify the environment as follows:
v If you install with Ant tasks, specify it through the attribute environmentId in

the <installworklightadmin> and <configureapplicationserver> invocations.

Deploying MobileFirst projects 10-47



v If you install manually, specify it through the JNDI property
ibm.worklight.admin.environmentid of the Administration Services application,
and of the project WAR file.

If you use this approach, you must respect the following constraints:
v Each Administration Services application must use a different administration

database or schema.
v Each configuration for a MobileFirst runtime environment must use a different

runtime database or schema, and its own reports database or schema.
v Each configuration for a MobileFirst runtime environment must be deployed

with the same environmentId attribute as the corresponding Administration
Services.

v If the application server is WebSphere Application Server Liberty profile, each
MobileFirst project must use a different contextroot attribute and have a
different base name for the .war file. But you can rename a .war file before you
install it. The id attribute of the Ant tasks is not used in this case.

v If the application server is WebSphere Application Server full profile or
WebSphere Application Server Network Deployment, each MobileFirst project
must use either a different environmentId attribute or, when installed with Ant
tasks and with the same environmentId, a different id attribute. Different
deployments with the same contextroot attribute are possible, if they are
deployed to separate sets of servers (for example, to different clusters or to
different nodes).

v If the application server is Apache Tomcat, each MobileFirst project must use a
different contextroot attribute. In addition, the versions of the JDBC drivers
must be suitable for all declared data sources of the particular database type.

Configuration of MobileFirst applications on the server
You can configure each MobileFirst application by specifying a set of configuration
parameters on the server side.

MobileFirst application configuration parameters configure the database, push
notifications, the use of SSL to secure communications between the server and the
client application, and other settings.

When you develop a MobileFirst application, you use the worklight.properties
file to specify most of the configuration parameters. This file is in the server/conf
folder in the project. You use the worklight.properties file during development to
test a particular configuration. For example, if you want to use the analytics
features during development, you might set the wl.analytics.url property to a valid
URL in the worklight.properties file.

When your MobileFirst project is built by MobileFirst Platform Command Line
Interface for iOS, the project WAR file that is created in the project bin folder
contains the configuration that is specified in the worklight.properties file. The
values for the parameters that are specified in the worklight.properties file then
define the default configuration of your application.

When you deploy your project (your WAR file) to the production or test
environment, your configuration is certain to be different from the development
environment. It is easy to modify the configuration to fit the new environment
because the project WAR file defines JNDI environment entries for each parameter
that can be configured in a production environment. You leave the values in the

10-48 IBM MobileFirst Platform Foundation for iOS V7.0.0



worklight.properties file unchanged; instead, you specify the configuration
during the deployment to the application server.

See “Configuring a MobileFirst project in production by using JNDI environment
entries” on page 10-60 to learn about the JNDI environment entries that you can
specify in a production environment. Properties that are relevant only in
development environments are not available as JNDI entries.

Within the worklight.properties file, you can define some application-specific
configuration properties; for example, to configure the URL of a service that is
called from the mobile application and the URL is different in production,
development, and test environments. See “Declaring and using application-specific
configuration properties” on page 10-58 to learn how to create such configuration
properties.

Configuring the IBM MobileFirst Platform Server location
You can configure the MobileFirst Server location by specifying configuration
properties.

In production, you must configure your server location in the following
circumstances:
v You are using relative path for the onLoginUrl parameter in the

authenticationConfig.xml file.
v You are generating the URL for mobile web and desktop browser apps from the

console.

In most cases, production servers sit behind a reverse proxy; therefore, their
machine IP address (which is the default value of publicWorkLightHostname) is not
used for accessing them from the outside world.

To configure the MobileFirst Server location, set the values of the following
properties:

Table 10-5. MobileFirst Server location properties

Property name Description

publicWorkLightHostname The IP address or host name of the
computer running IBM MobileFirst Platform
Foundation for iOS.

If the MobileFirst Server is behind a reverse
proxy, the value is the IP address or host
name of the reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: IP address of current server.

Deploying MobileFirst projects 10-49



Table 10-5. MobileFirst Server location properties (continued)

Property name Description

publicWorkLightPort The port for accessing the MobileFirst
Server.

If the MobileFirst Server is behind a reverse
proxy, the value is the port for accessing the
reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: 10080.

The <configureApplicationServer> Ant task
sets a default value that depends on the
application server.

publicWorkLightProtocol The protocol for accessing the MobileFirst
Server.

The valid values are HTTP and HTTPS. If the
MobileFirst Server is behind a reverse proxy,
the value is the protocol for accessing the
reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: HTTP.

The <configureApplicationServer> Ant task
sets a default value that depends on the
application server.

For descriptions of other configuration properties, see “Configuring a MobileFirst
project in production by using JNDI environment entries” on page 10-60.

For information about how to specify configuration properties, see “Configuration
of MobileFirst applications on the server” on page 10-48.

Runtime database setup for development mode
IBM MobileFirst Platform Foundation for iOS uses defaults to access the runtime
database, which kind is WRKLGHT by default. When you work in a development
environment and use JDBC to connect to a database, you can use a set of property
keys to change the settings.

Attention:

This method of declaring data sources is deprecated in a production environment
and is only suitable when working in a development environment and using JDBC
for database connections. To configure data sources when working in a production
environment, see “Creating and configuring the databases manually” on page
10-17.

Property keys and values for JDBC-based properties

Property Key Property Value

wl.db.url JDBC path to the runtime database.

10-50 IBM MobileFirst Platform Foundation for iOS V7.0.0



Property keys and values for JDBC-based properties

Property Key Property Value

wl.db.username Runtime database user name.

Default: Worklight

wl.db.password Runtime database password.

Default: Worklight

wl.db.driver The class that implements a JDBC driver for
each vendor. For example:

MySQL: com.mysql.jdbc.Driver

Oracle: oracle.jdbc.OracleDriver

DB2: com.ibm.db2.jcc.DB2Driver

Derby:
org.apache.derby.jdbc.EmbeddedDriver

wl.reports.db.url(*) JDBC path to the reports database

Default: refers to runtime database.
Note: Deprecated in V7.0.0. Use
“Operational analytics” on page 12-8
instead.

wl.reports.db.username(*) Reports database user name.

Default: refers to Worklight database.
Note: Deprecated in V7.0.0. Use
“Operational analytics” on page 12-8
instead.

wl.reports.db.password(*) Reports database password

Default: refers to runtime database.
Note: Deprecated in V7.0.0. Use
“Operational analytics” on page 12-8
instead.

Note: (*) By default all report mechanisms in MobileFirst Server use a single
reports database. The reports database is set to be the same as the runtime
database. For more information about how this default setting can be changed, see
“Using raw data reports” on page 12-76.

Configuring extended app authenticity checking
Checking extended application authenticity is an additional method of verifying
that the MobileFirst application on the device has not been tampered with.

Enabling extended authenticity checking

To enable extended authenticity checking, you must deploy a modified .wlapp file,
instead of the original .wlapp file that is generated by the build process. To obtain
the modified .wlapp file, use one of the following two facilities:
v The enable-extended-authenticity command of the wladm Ant task, as

described in “Commands for apps” on page 11-18.
v The enable extended-authenticity command of the wladm program, as

described in “Commands for apps” on page 11-44.

Deploying MobileFirst projects 10-51



You need to specify the following files as inputs for those commands:
v The .wlapp file, from the bin folder of your MobileFirst project.
v The mobile application file for the device, that is, the corresponding .ipa file. If

your application must support both 32-bit and 64-bit execution, provide a single
.ipa file that includes both 32-bit and 64-bit code.

The resulting, modified .wlapp file is the file that you deploy to the MobileFirst
Server.

Note:

v The extended application authenticity mechanism demands that there be a
dedicated version of the .wlapp file per each version of the native app. Before
you distribute a new version of the mobile application file (.ipa), you must
perform the following actions:
1. Update the application version number in the application-descriptor.xml

file.
2. Rebuild to create a new .wlapp file.
3. Run one of the commands described previously to enable authenticity

checking on the production-ready .ipa file and the new .wlapp file.
4. Deploy the .wlapp file produced in step 3 to the MobileFirst Server.

Disabling extended authenticity checking

To revert from extended authenticity checking to basic authenticity checking,
deploy the original .wlapp file to the MobileFirst Server, for each of the desired
environments.

Enabling extended authenticity checking for apps that undergo app
thinning

App thinning was introduced by Apple in iOS 9 for apps that are compiled with
Xcode 7. App thinning reduces the size of files that are downloaded from the App
Store. The feature might affect the extended authenticity features of IBM
MobileFirst Platform Foundation for iOS apps because the binary file in the App
Store might differ from the one that is downloaded to the client device.

In order to insure that the new ipa file that you upload to the App Store can take
advantage of app thinning, without influencing extended authenticity, first install
the latest interim fix. To enable this extended authenticity, you must perform the
following actions:
1. Configure the original .wlapp file by using the enable-extended-authenticity

command of the wladm program, as described earlier in this page.
2. Deploy the .wlapp file to the server for testing.

Note: App thinning does not take place in apps that were developed using earlier
versions of iOS and Xcode.

Push notification settings
When working with push notifications, you must use the correct proxy settings.
For iOS, you use APNS proxy settings. SMS has its own set of proxy settings.

The following properties are required only when a proxy is used to route requests
to APNS, GCM, or SMS push servers. When no proxy is used, it is not necessary to
set the properties (the *.enabled property value should be set to false).

10-52 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.apple.com/library/prerelease/watchos/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html


APNS proxy settings Value

push.apns.proxy.enabled Shows whether APNS must be accessed
through a proxy. Can be either true or
false. The default is false.

push.apns.proxy.type APNS proxy type. Must be SOCKS.

push.apns.proxy.host APNS proxy host.

push.apns.proxy.port APNS proxy port.

push.apns.proxy.user Proxy user name, if the proxy requires
authentication. Empty user name means no
authentication.

push.apns.proxy.password Proxy password, if the proxy requires
authentication.

SMS proxy settings Value

push.sms.proxy.enabled Can be either true or false. Use true to
send SMS notifications through proxy.

push.sms.proxy.protocol SMS proxy protocol. Can be either http or
https.

push.sms.proxy.host SMS proxy host name.

push.sms.proxy.port SMS proxy port. Use -1 for the default port.

push.sms.proxy.user Proxy user name, for authentication. An
empty user name means no authentication.

push.sms.proxy.password Proxy password, if the proxy requires
authentication.

Analytics
Analytics properties files contain the parameters for how IBM MobileFirst Platform
Foundation for iOS creates activity logs and sends them to a server for analysis.

You can modify how the MobileFirst Server forwards analytics data to the IBM
MobileFirst Platform Operational Analytics by editing the following properties
files.

Table 10-6. IBM MobileFirst Platform Operational Analytics properties..

Property Name Default Value Description

wl.analytics.console.url None. Optional. The URL that is exposed by the IBM
MobileFirst Platform Operational Analytics that
links to the Analytics console. Set this property if
you want to access the Analytics console from the
MobileFirst Operations Console. Example:

http://<hostname>:<port>/analytics/console

wl.analytics.logs.forward true When the property is set to true, server logs that
are recorded on the MobileFirst Server are captured
and forwarded to the IBM MobileFirst Platform
Operational Analytics.

wl.analytics.password None. Required. The password that is used if the data
entry point for the IBM MobileFirst Platform
Operational Analytics is protected with basic
authentication.

Deploying MobileFirst projects 10-53



Table 10-6. IBM MobileFirst Platform Operational Analytics properties. (continued).

Property Name Default Value Description

wl.analytics.url None. Required. The URL that is exposed by the IBM
MobileFirst Platform Operational Analytics that
receives incoming analytics data. Example:

http://<hostname>:<port>/analytics-service/data

wl.analytics.username None. Required. The user name that is used if the data
entry point for the IBM MobileFirst Platform
Operational Analytics is protected with basic
authentication.

WebSphere Application Server SSL configuration and HTTP
adapters
By setting a property, you can make HTTP adapters take benefit of the WebSphere
SSL configuration.

By default, HTTP adapters do not take benefit of the WebSphere SSL configuration
by concatenating the Java Runtime Environment (JRE) truststore with the
Worklight truststore as referenced by the ssl.keystore.path,
ssl.keystore.password, and ssl.keystore.type properties. See “Configuring SSL
between MobileFirst adapters and back-end servers by using self-signed
certificates” on page 6-135. To have HTTP adapters use the WebSphere SSL
configuration, set the ssl.websphere.config property to true. This value has the
following effects, in order of precedence:
1. If the ssl.keystore.path, ssl.keystore.password, ssl.keystore.type

properties are set, the adapter uses the truststore that is referenced in these
properties without concatenating it with the JRE truststore.

2. If the ssl.websphere.alias property is set, the adapter uses the SSL
configuration that is associated with the alias as set in this property.

3. If the ssl.keystore.path, ssl.keystore.password, ssl.keystore.type, and
ssl.websphere.alias properties are not set, the WebSphere outbound dynamic
configuration is used.

SSL certificate keystore setup
Mobile applications often connect to multiple back-end systems. Some back-end
systems require access through an HTTP adapter, and each back-end system can
require a different SSL certificate for secure communication using HTTPS. These
SSL certificates are stored in a keystore that is configured to the IBM MobileFirst
Platform Server by using property keys.

IBM MobileFirst Platform Foundation for iOS provides a default keystore. You can
choose to use this default keystore or replace it with your own keystore.

To configure an SSL certificate keystore, you must set the values of the property
keys listed in the following table:

Table 10-7. JNDI environment entries for SSL certificate keystore

Property name Description

ssl.keystore.path Path to the keystore relative to the server
folder in the MobileFirst project; for
example: conf/my-cert.jks.

ssl.keystore.type Type of keystore file. Valid values are jks or
pkcs12.

10-54 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 10-7. JNDI environment entries for SSL certificate keystore (continued)

Property name Description

ssl.keystore.password Password to the keystore file.

ssl.websphere.alias WebSphere SSL configuration alias used by
the HTTP adapters

ssl.websphere.config Set this property to true to have HTTP
adapters use WebSphere SSL configuration.
Default: false.

For descriptions of other MobileFirst configuration properties, see “Configuring a
MobileFirst project in production by using JNDI environment entries” on page
10-60.

For information about how to specify MobileFirst configuration properties, see
“Configuration of MobileFirst applications on the server” on page 10-48.

In addition to defining these three properties, configure the HTTP adapter XML
file, which is located under <Worklight Root Directory>\adapters\<HTTP adapter
name>. This file is described in “Structure of the adapter XML file” on page 8-96.

If you use SSL with mutual authentication between the MobileFirst Server and a
back-end system, be aware of the following requirement:
v Define an alias and password for the private key of the keystore where the SSL

certificate is stored. The alias and password are defined in the
<connectionPolicy> element of the HTTP adapter XML file, adaptername.xml.
The <sslCertificateAlias> and <sslCertificatePassword> subelements are
described in “HTTP adapter connectionPolicy element” on page 8-101.

Note: The password that is specified in ssl.keystore.password is not the same
password that is specified in <sslCertificatePassword>. ssl.keystore.password
is used to access the keystore itself. <sslCertificatePassword> is used to access
the correct SSL certificate within the keystore.

Miscellaneous Settings
Configure the serverSessionTimeout, bitly.username, bitly.apikey,
compress.response.threshold, and adapters.saxparser.doctype.validation
parameters.

Property keys and values for the serverSessionTimeout, bitly.username, bitly.apikey,
compress.response.threshold, and adapters.saxparser.doctype.validation parameters.

Property Key Property Value

serverSessionTimeout Client inactivity timeout, after which the
MobileFirst session is invalidated.

Default is 10 minutes.

bitly.username User name for accessing the bit.ly API for
creating a shortened URL for mobile web
apps through MobileFirst Operations
Console.

bitly.apikey The bit.ly API Key.

Deploying MobileFirst projects 10-55



Property keys and values for the serverSessionTimeout, bitly.username, bitly.apikey,
compress.response.threshold, and adapters.saxparser.doctype.validation parameters.

Property Key Property Value

compress.response.threshold The threshold size of the payload that is
returned in response to an invokeProcedure
call beyond which the response is
compressed. The default value is 20480
bytes. Responses with payload larger than
the compress.response.threshold are
compressed by the server. To disable
compression, set this value to a large value.
Similarly, to compress every response, set
this value to 0 (zero). If the payload is larger
than the compress.response.threshold, the
payload is compressed irrespective of
whether or not compression was requested
by the client through the compressResponse
option.

adapters.saxparser.doctype.validation True or False. If set to False, the adapter
does not validate the XML response received
from the back-end server. This might be
useful in cases where the time required to
validate could be expected to exceed the
allowed timeout value. The default setting is
True, meaning that the server validates the
response.

Storing properties in encrypted format
When you configure MobileFirst applications on the server, you must encrypt the
properties that are too sensitive to be written in clear text.

There are two ways to encrypt properties:
v Within the properties file: See “Encryption within the properties file.” This

option is the only one for Tomcat.
v By using the application server encoding tools: PropFilePasswordEncoder for

WebSphere Application Server and SecurityUtility for Liberty profile. For
WebSphere Application Server and Liberty profile. See “Encoding the JNDI
properties” on page 10-57.

Encryption within the properties file

The encryption facility that comes with IBM MobileFirst Platform Foundation for
iOS uses the 128-bit symmetric-key algorithm that is defined by the AES
specification.

Storing properties in open or encrypted format

You can keep the properties that are contained in the
worklight.properties file either in open or in encrypted form.

An encrypted property is determined by a suffix .enc appended to its
name. For example:
console.password.enc=TYakEHRba3rIU7pNjxtDxoAdqijKIEt7cy4mCr0iaEj0rY08ODK00yqR

10-56 IBM MobileFirst Platform Foundation for iOS V7.0.0



The MobileFirst configuration is accessed for a property. If the property is
not found, but the same encrypted property (with the .enc suffix) is
defined, MobileFirst automatically decrypts the value, and returns it to the
caller.

Storing the master key

All encrypted values use the same secret key, which is stored in the special
variable called worklight_enc_password. This variable is defined as an
operating-system environment variable:
v On Windows systems: Set an environment variable under the user that

runsMobileFirst Server. Under a Windows NT service, define the
password as a service property by using the registry editor. For more
information, see the Microsoft support website.

v On Linux systems: Set the environment variable.

Encryption

You can encrypt MobileFirst properties by using the 128-bit symmetric-key
algorithm that is defined by the AES specification.
v On Windows systems, use the encrypt.bat utility under

product_install_dir/WorklightServer. This utility accepts a file that
contains the properties to be encrypted and the encryption password.
The utility outputs the encrypted values to the same file, so that
sensitive data is deleted.

v On Linux systems, use the encrypt.sh utility.

The input file for the encryption is called secret.properties and contains
the following data:
worklight_enc_password=abc123
certificate.password=certificatepwd123
wl.db.password=edf545

After you run the encrypt.sh tool, the secret.properties file contains the
following data:
#Copy the contents of this file to the worklight.properties file.
#Keep the password value in the secure system property worklight_enc_password.
#Wed Nov 28 10:10:44 CST 2012
certificate.password.enc=dR4lnMQDaNEQyLQl7b2RmpdE99HKpqaSJ6mce0uJgaY\=
wl.db.password.enc=6boxojGZsUNTXwOOGgI6dg\=\=

Encoding the JNDI properties

The preferred way to encrypt JNDI properties in WebSphere Application Server is
to use the password encoding tools that are available with both application servers.
v For WebSphere Application Server: the PropFilePasswordEncoder tool
v For the Liberty profile: the SecurityUtility command

You can use the encoded value as the value of the JNDI properties.

For more information about how to encode properties with the application server
tools, see the WebSphere Application Server documentation.

Deploying MobileFirst projects 10-57



Obsolete properties
Some properties are no longer required.

Table 10-8. Categories and list of obsolete properties

Category Properties

Proxy settings proxy.enabled, proxy.nonProxyHosts, proxy.host,
proxy.port, proxy.username, proxy.password,
https.proxy.host, https.proxy.port

Public resource server
settings

publicResourceServer.deployDestination,
publicResourceServer.host, publicResourceServer.port,
publicResourceServer.filesRootDir

Environments environment.iphone, environment.embedded

Certificate settings certificate.certificatesDirPath,
certificate.keyStoreFilePath, certificate.keyAlias,
certificate.keyStorePassword,
certificate.keyAliasPassword, certificate.PFXFilePath,
certificate.password, certificate.DERFilePath,
certificate.P7BFilePath,
vista.linux.osslsigncodeFilepath

Push notification settings push.apns.certificatePassword, push.gcm.senderID,
push.gcm.senderPassword

Miscellaneous settings devmode, guid, wlclientTimeout, backend.request.timeout,
reports.produceReports, wl.db.initialSize,
wl.db.maxActive, wl.db.maxIdle, wl.db.testOnBorrow,
wl.db.autoddl

Tomcat settings local.bindAddress, local.httpPort

Single identity login module
security settings

console.username, console.password

Declaring and using application-specific configuration properties
Use the ${propertyName} notation to reuse application-specific properties that are
declared in the worklight.properties file.

As a developer, you might want to parameterize some elements in the
configuration of the server side of your MobileFirst application so that an IT
administrator can change the value in production. For example, a MobileFirst
adapter might need to call a back-end service, and the URL of this service might
be different in a production environment from its value in a development
environment. In this scenario, you can create a new MobileFirst configuration
property to store the URL, and the IT administrator can then set the final
production value as a JNDI environment entry.

You can declare application-specific properties in the worklight.properties file.
You can then reuse the value of those properties within the authentication
configuration file (authenticationConfig.xml) and the adapter descriptor file
(adapter.xml) by using the ${propertyName} notation.

Here is an example for declaring a data source and reusing it in an adapter:
1. In the worklight.properties file, define a new (custom) property:

my.adapter.db.jndi.name=jdbc/MyAdapterDS

2. You can then include a property declaration in the adapter.xml file:

10-58 IBM MobileFirst Platform Foundation for iOS V7.0.0



<wl:adapter>
...
<connectivity>
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceJNDIName>
${my.adapter.db.jndi.name}

</dataSourceJNDIName>
</connectionPolicy>
...

Such properties are exposed as JNDI entries (see “Configuring a MobileFirst
project in production by using JNDI environment entries” on page 10-60) for
the project WAR file. In this example, the JNDI name of the adapter data source
becomes parametric and can be changed from the server configuration files.

In authenticationConfig.xml, you can use ${propertyName} notation for all realm
and loginModule parameters. Here are examples (in bold typeface) for such
properties:

<securityTests>

<customSecurityTest name="MySecurityTest">
<test realm="MySecurityRealm" isInternalUserID="true"/>

</customSecurityTest>

</securityTests>

<realms>

<realm name="MySecurityRealm" loginModule="MySecurityLoginModule">
<className>com.test.auth.MyAuthenticator</className>
<parameter name="login-mode" value="${my.security.realm.mode}"/>
<parameter name="my-other-realm-param" value="${my.security.realm.param}"/>

</realm>

</realms>

<loginModules>

<loginModule name="MySecurityLoginModule">
<className>com.test.auth.MyLoginModule</className>
<parameter name="roles-allowed" value="${my.security.allowed.roles}"/>
<parameter name="my-other-login-param" value="${my.security.login.param}"/>

</loginModule>

</loginModules>

For more information about configuring realm parameters, see “Configuring
authenticators and realms” on page 8-262. For loginModule parameters, see
“Configuring login modules” on page 8-282.

In adapter.xml, you can use the ${propertyName} notation in the following
elements:

For HTTP adapters:
<connectivity>

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>${my.protocol}</protocol>
<domain>${my.domain}</domain>
<port>${my.port}</port>

<authentication>
<ntlm workstation="${local.hostname}" />
<serverIdentity>

<username>${my.server.identity.username}</username>

Deploying MobileFirst projects 10-59



<password>${my.server.identity.password}</password>
</serverIdentity>

</authentication>

<!-- Following properties used by adapter’s key manager for choosing specific certificate from key store -->

<sslCertificateAlias>${my.ssl.certificate.alias}</sslCertificateAlias>
<sslCertificatePassword>${my.ssl.certificate.password}</sslCertificatePassword>

</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="${max.connections.per.node}"/>
</connectivity>

For SQL adapters:
<connectivity>

<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<!-- Example for using a JNDI data source, replace with actual data source name -->
<!-- <dataSourceJNDIName>${my.data.source.jndi.name}</dataSourceJNDIName> -->

<!-- Example for using MySQL connector, do not forget to put the MySQL connector library in the project’s lib folder -->
<dataSourceDefinition>

<driverClass>${my.driver.class.name}</driverClass>
<url>${my.data.source.url}</url>
<user>${my.data.source.username}</user>
<password>${my.data.source.password}</password>

</dataSourceDefinition>
</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="${max.connections.per.node}" />
</connectivity>

For JMS adapters:
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- uncomment this if you want to use an external JNDI repository -->
<!-- <namingConnection url="${my.naming.connection.url}"

initialContextFactory="${my.initial.context.factory}"
user="${my.naming.connection.username}"
password="${my.naming.connection.password}"/>

-->

<jmsConnection connectionFactory="${my.jms.connection.factory}"
user="${my.jms.connection.username}"
password="${my.jms.connection.password}"

/>
</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="${max.connections.per.node}"/>
</connectivity>

For more information about configuring adapters, see “HTTP adapter
connectionPolicy element” on page 8-101.

Configuring a MobileFirst project in production by using JNDI
environment entries
When you deploy a MobileFirst project to a MobileFirst Server, you can configure
the project’s WAR file with JNDI environment entries to set product environment
properties.

10-60 IBM MobileFirst Platform Foundation for iOS V7.0.0



About this task

JNDI environment entries cover all the properties that you can set in a production
environment. You set the JNDI environment entries in one of two ways:
v Either by editing the configuration XML file for the deployer Ant tasks,
v Or by configuring the server's environment entries. On WebSphere Application

Server full profile, you use the administration console. On WebSphere
Application Server Liberty profile or Apache Tomcat, you edit the server.xml
file.

Many of the MobileFirst configuration properties must have different values when
the project is deployed to different environments. For example, the configuration
properties that are used to specify the MobileFirst Server public URL (that is,
publicWorkLightHostname, publicWorkLightPort, and publicWorkLightProtocol)
might be different when the MobileFirst project is deployed to a staging server or
to a production server. You can configure the project WAR file through JNDI
environment entries.

Note: Some of the properties are relevant only in a development environment and
are not available as JNDI entries.

Note: There are two ways to encrypt the JNDI properties that are listed in the
following table, as described in “Storing properties in encrypted format” on page
10-56:
v You can define the property with the .enc suffix in the worklight.properties

file that is packaged in the WAR file of the MobileFirst project. You can then
override the encrypted value by using a JNDI property. With Apache Tomcat,
this option is the only one available.

v On WebSphere Application Server full profile and Liberty profile, you can use
the password encoding tools: PropFilePasswordEncoder for WebSphere
Application Server and SecurityUtility for Liberty profile.

The following table lists the MobileFirst properties that are always available as
JNDI entries:

Table 10-9. MobileFirst properties available as JNDI entries.

Property name Description

adapters.saxparser.doctype.validation Specifies whether the adapter should validate the XML
response received from the back-end server. If set to
False, the adapter does not validate the response. This
might be useful in cases where the time required to
validate could be expected to exceed the allowed timeout
value. Default: True

cluster.data.synchronization.taskFrequencyInSeconds
Applications and adapters cluster data synchronization
interval. Default: 2.

deployables.cleanup.taskFrequencyInSeconds
Deployable folder cleanup task interval (in seconds).
Default: 86400.

Deploying MobileFirst projects 10-61



Table 10-9. MobileFirst properties available as JNDI entries (continued).

Property name Description

ibm.worklight.admin.environmentid
Optional. Environment identifier for the registration of
the MBeans. Use this identifier when different instances
of the MobileFirst Server are installed on the same
application server. The identifier determines which
Administration Services, which console, and which
runtimes belong to the same installation. The
Administration Services manage only the runtimes that
have the same environment identifier.

ibm.worklight.admin.jmx.connector
Mandatory. JMX connector type, by default RMI/SOAP.
WebSphere Application Server profile only.

ibm.worklight.admin.jmx.dmgr.host
Mandatory. Deployment Manager host name. WebSphere
Application Server Network Deployment only.

ibm.worklight.admin.jmx.dmgr.port
Mandatory. Deployment Manager RMI or SOAP port.
WebSphere Application Server Network Deployment
only.

ibm.worklight.admin.jmx.pwd Optional. WebSphere Application Server Farm: the user
password of the SOAP connection.

ibm.worklight.admin.jmx.user Optional. WebSphere Application Server Farm: the user
name of the SOAP connection.

ibm.worklight.admin.rmi.registryPort
Optional. RMI registry port for the JMX connection
through a firewall. Tomcat only.

ibm.worklight.admin.rmi.serverPort
Optional. RMI server port for the JMX connection
through a firewall. Tomcat only.

ibm.worklight.admin.serverid
Optional. Server identifier. Must be different for each
server in the farm. Server farms only.

ibm.worklight.jndi.configuration
Optional. If the JNDI configuration is injected into the
WAR files or provided as a shared library, the value of
this property is the name of the JNDI configuration. This
value can also be specified as a system property. See
“Predefining MobileFirst Server configuration for several
deployment environments” on page 6-227.

ibm.worklight.jndi.file
Optional. If the JNDI configuration is stored as an
external file, the value of this property is the path of a
file that describes the JNDI configuration. This value can
also be specified as a system property. See “Predefining
MobileFirst Server configuration for several deployment
environments” on page 6-227.

ibm.worklight.topology.clustermode
In addition to the server type, you must specify the
server topology. The values that are allowed:

v Standalone

v Cluster

v Farm

The default value is Standalone.

10-62 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 10-9. MobileFirst properties available as JNDI entries (continued).

Property name Description

ibm.worklight.topology.platform
Server type. The values can be:

v Liberty

v WAS

v Tomcat

If the default value is not set, the application tries to
guess the server type.

publicWorkLightHostname The IP address or host name of the computer that is
running IBM MobileFirst Platform Foundation for iOS.

If the MobileFirst Server is behind a reverse proxy, the
value is the IP address or host name of the reverse proxy.

This property must be identical for nodes within the
same cluster.

Default: IP address of current server.

publicWorkLightPort The port for accessing the MobileFirst Server.

If the MobileFirst Server is behind a reverse proxy, the
value is the port for accessing the reverse proxy.

This property must be identical for nodes within the
same cluster.

Default: 10080.

The configureApplicationServer Ant task sets a default
value that depends on the application server.

publicWorkLightProtocol The protocol for accessing the MobileFirst Server.

The valid values are HTTP and HTTPS. If the MobileFirst
Server is behind a reverse proxy, the value is the protocol
for accessing the reverse proxy.

This property must be identical for nodes within the
same cluster.

Default: HTTP.

The configureApplicationServer Ant task sets a default
value that depends on the application server.

push.apns.proxy.enabled
Indicates whether APNS must be accessed through a
proxy. Default: false.

push.apns.proxy.host
APNS proxy host.

push.apns.proxy.port
APNS proxy port.

push.apns.proxy.user
Proxy user name, if the proxy requires authentication.
Empty user name means no authentication.

push.apns.proxy.password
Proxy password, if the proxy requires authentication.

Deploying MobileFirst projects 10-63



Table 10-9. MobileFirst properties available as JNDI entries (continued).

Property name Description

push.sms.proxy.enabled
Indicates whether push SMS proxy is enabled. Default:
false.

push.sms.proxy.host
Push SMS proxy host.

push.sms.proxy.password
Push SMS proxy password.

push.sms.proxy.port
Push SMS proxy port.

push.sms.proxy.protocol
Push SMS proxy protocol.

push.sms.proxy.user
Push SMS proxy user.

serverSessionTimeout
Idle session timeout in minutes. Default: 10.

ssl.keystore.password
SSL certificate keystore password.

ssl.keystore.path
SSL certificate keystore location. Default:
conf/mfp-default.keystore.

ssl.keystore.type
SSL certificate keystore type. Valid keystore types: jks or
PKCS12. Default: jks.

ssl.websphere.alias WebSphere SSL configuration alias used by the HTTP
adapters

ssl.websphere.config Set this property to true to have HTTP adapters use
WebSphere SSL configuration. Default: false.

sso.cleanup.taskFrequencyInSeconds
Interval (seconds) for a cleanup task that cleans the
database of orphaned and expired single-sign-on login
contexts. Default: 5

wl.analytics.console.url
Optional. The URL that is exposed by the IBM
MobileFirst Platform Operational Analytics that links to
the Analytics console. Set this property if you want to
access the Analytics console from the MobileFirst
Operations Console. Example:

http://<hostname>:<port>/analytics/console

wl.analytics.logs.forward
Boolean value (true or false) that indicates whether to
send all com.worklight.* logs to the operational analytics
server. If this value is true, all logs that are specified in
com.worklight settings are forwarded to the operational
analytics server. The default value is true. This setting is
only supported on MobileFirst production servers.

wl.analytics.password
The password that is used if the data entry point for the
IBM MobileFirst Platform Operational Analytics is
protected with basic authentication.

10-64 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 10-9. MobileFirst properties available as JNDI entries (continued).

Property name Description

wl.analytics.url
The URL that is exposed by the IBM MobileFirst
Platform Operational Analytics that receives incoming
analytics data. Example: http://<hostname>:<port>/
analytics-service/data.

wl.analytics.username
The user name that is used if the data entry point for the
IBM MobileFirst Platform Operational Analytics is
protected with basic authentication.

wl.ca.key.alias
Alias of the entry where the private key and certificate
are stored in the keystore. Default: mfp-default-cert.

wl.ca.key.alias.password
Password to the alias in the keystore.

wl.ca.keystore.password
Password to the keystore file.

wl.ca.keystore.path
Path to the keystore relative to the server folder in the
MobileFirst project. Default: conf/mfp-default.keystore.

wl.ca.keystore.type
Type of keystore file. Valid values are jks or pkcs12.
Default: jks.

wl.clientlogs.adapter.name
The name of the HTTP adapter that you want to use to
receive client-side logs. If you do not specify this
property, the default WLClientLogReceiver name is used.

wl.device.archiveDecommissioned.when
A value, in days, that defines when client devices that
were decommissioned will be placed in an archive file
when the decommissioning task is run. The archived
client devices are written to a file in the MobileFirst
Server home\devices_archive directory. The name of the
file contains the time stamp when the archive file is
created. Default: 90 days.

wl.device.decommission.when
The number of days of inactivity after which a client
device is decommissioned by the device
decommissioning task. Default: 90 days.

wl.device.enableAccessManagement
A Boolean value (true or false) that enables the Access
Management features on the MobileFirst Server. If the
Access Management features are enabled, each time a
device attempts to connect to the server, it is checked
against the backend for its access rights.

wl.device.tracking.enabled
A value that is used to enable or disable device tracking
in IBM MobileFirst Platform Foundation for iOS. For
performance reasons, you can disable this flag when IBM
MobileFirst Platform Foundation for iOS is running only
Business-to-Consumer (B2C) apps. When device tracking
is disabled, the license reports are also disabled and no
license metrics are generated.

Deploying MobileFirst projects 10-65



Table 10-9. MobileFirst properties available as JNDI entries (continued).

Property name Description

mfp.adapter.invocation.url
The URL to be used for invoking adapter procedures
from inside Java adapters, or JavaScript adapters that are
invoked using the /rest endpoint. If this property is not
set, the URL of the currently executing request will be
used (this is the default behavior). This value should
contain the full URL, including the context root.

Custom user properties that are defined in the worklight.properties file are
exposed too.

The wl.db.* and wl.reports.db.* properties are not available as JNDI
environment entries because they are intended for use only during the
development phase.

Configuring with the Ant task

When you deploy and configure the project with the Ant task (as described in
“Deploying a project WAR file and configuring the application server with Ant
tasks” on page 10-14), it is possible to set values for MobileFirst configuration
properties inside the <configureapplicationserver> tag. For example:
<configureapplicationserver shortcutsDir="${shortcuts.dir}">

<property name="serverSessionTimeout" value="30"/>
<property name="publicWorkLightHostname" value="www.example.com"/>
<property name="publicWorkLightPort" value="80"/>
<property name="publicWorkLightProtocol" value="http"/>

Manually configuring on the server

In some cases, when you do not want to or cannot redeploy the application, it is
also possible to set values for MobileFirst configuration properties manually on the
server configuration files (or console). This procedure is what the Ant task does
behind the scenes. The manual configuration method is less recommended because
in some cases (for example, when upgrading or redeploying), the application
server might forget the configuration and the administrator must reconfigure it.

Procedure

Complete the following tasks, depending on which application server is used:
v WebSphere Liberty profile:

Insert the following declarations in the server.xml file:
<application id="worklight" name="worklight" location="worklight.war"

type="war" context-root="/app_context_path">
</application>
<jndiEntry value="9080" jndiName="app_context_path/publicWorkLightPort"/>
<jndiEntry value="www.example.com" jndiName="app_context_path/publicWorkLightHostname"/>

The context path (in the previous example: app_context_path) connects between
the JNDI entry and a specific MobileFirst application. If multiple MobileFirst
applications exist on the same server, you can define specific JNDI entries for
each application by using the context path prefix. Typically, app_context_path is
"worklight".

v Apache Tomcat:
Insert the following declarations in the server.xml file:

10-66 IBM MobileFirst Platform Foundation for iOS V7.0.0



<Context docBase="app_context_path" path="/app_context_path">
<Environment name="publicWorkLightPort" override="false"

type="java.lang.String" value="9080"/>
<Environment name="publicWorkLightHostname" override="false"

type="java.lang.String" value="www.example.com"/>
</Context>

Note: On Apache Tomcat, override="false" is mandatory.
With Apache Tomcat, the context path prefix is not needed because the JNDI
entries are defined inside the <Context> element of an application.

v WebSphere Application Server:
1. In the administration console, go to Applications > Application Types >

WebSphere enterprise applications > Worklight > Environment entries for
Web modules

2. In the Value fields, enter values that are appropriate to your circumstances.

Note: Preconfigure JNDI properties in a property file as an alternative to setting
JNDI environment entries by editing the deployer Ant task configuration XML file
or by configuring the server environment entries through the WebSphere
Application Server administration console or the server.xml file on WebSphere
Application Server Liberty profile or Apache Tomcat. Holding JNDI properties in a
property file makes it easier to transfer the entire configuration from one web
application server to another. For example, you can configure a test web server;
when the configuration is stable, you can easily transfer the configuration to the
production web server by copying the property file to the production server. For
details of this mechanism, see “Predefining MobileFirst Server configuration for
several deployment environments” on page 6-227.
Related reference:
“Configuration of MobileFirst applications on the server” on page 10-48
You can configure each MobileFirst application by specifying a set of configuration
parameters on the server side.

SMS gateway configuration
An SMS gateway, or SMS aggregator, is a third-party entity which is used to
forward SMS notification messages to a destination mobile phone number. IBM
MobileFirst Platform Foundation for iOS routes the SMS notification messages
through the SMS gateway.

To send SMS notifications from IBM MobileFirst Platform Foundation for iOS, one
or more SMS gateways must be configured in the SMSConfig.xml file, which is in
the /server/conf folder of your project. To configure an SMS gateway, you must
set the values of the following elements, subelements, and attributes in the
SMSConfig.xml file. The MobileFirst Server must be restarted when any changes are
made in the SMSConfig.xml file.

Deploying MobileFirst projects 10-67



Table 10-10. SMSConfig.xml elements and subelements

Element Element Value

gateway Mandatory. The <gateway> element is the
root element of the SMS gateway definition.
It includes 6 attributes:

v hostname

v id

v port

v programName

v toParamName

v textParamName

These attributes are described in Table 10-11.

parameter Optional. The <parameter> subelement is
dependent on the SMS gateway. Each SMS
gateway may have its own set of
parameters. The number of <parameter>
subelements is dependent on SMS
gateway-specific parameters. If an SMS
gateway requires the user name and
password to be set, then these parameters
can be defined as <parameter> subelements.

Each <parameter> subelement has the
following attributes:

v name

v value

Table 10-11. <gateway> element attributes

Attribute Attribute Value

hostname Mandatory. The host name of the configured
SMS gateway.

id Mandatory. A unique ID that identifies the
SMS gateway. Application developers
specify the ID in the application descriptor
file, application-descriptor.xml, when they
develop an application.

port Optional. The port number of the SMS
gateway. The default value is 80.

programName Optional. The name of the program that the
SMS gateway expects. For example, if the
SMS gateway expects the following URI:

http://<hostname>:port/sendsms

then programName="sendsms"

toParamName Optional. The name that is used by the SMS
gateway to specify the destination mobile
phone number. The default value is to. The
destination mobile phone number is sent as
a name-value pair when SMS notifications
are sent; that is, toParamName=destination
mobile phone number.

10-68 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 10-11. <gateway> element attributes (continued)

Attribute Attribute Value

textParamName Optional. The name that is used by the SMS
gateway to specify the SMS message text.
The default value is text.

If the SMS gateway expects an HTTP post in the following format to forward SMS
messages to a mobile device:

http://myhost:13011/cgi-bin/sendsms?to=destination mobile phone
number&text=message text&username=fcsuser&password=fcspass

The SMSConfig.xml file is configured as follows:
<?xml version="1.0" encoding="UTF-8"?>
<sms:config xmlns:sms="http://www.worklight.com/sms/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<gateway hostname="myhost" id="kannelgw" port="13011" programName="cgi-bin/sendsms" toParamName="to" textParamName="text">
<parameter name = "username" value = "fcsuser" />
<parameter name = "password" value = "fcspass" />

</gateway>

</sms:config>

Ant tasks for building and deploying applications and
adapters

A set of Ant tasks is supplied with MobileFirst Server and the IBM MobileFirst
Platform Command Line Interface for iOS. You can use them to build and deploy
your applications, adapters, and projects.

IBM MobileFirst Platform Foundation for iOS provides a set of Ant tasks that help
you build and deploy adapters and applications to your MobileFirst Server. A
typical use of these Ant tasks is to integrate them with a central build service that
is called manually or periodically on a central build server.

Prerequisites

Before you can run Ant tasks, make sure that Apache Ant is installed. The
minimum supported version of Ant is listed in “System requirements” on page 2-7.

Apache Ant 1.8.4 is included in MobileFirst Server. In the product_install_dir/
shortcuts/ directory, the following scripts are provided.
v For UNIX / Linux: ant
v For Windows: ant.bat

These scripts are ready to run, which means that they do not require specific
environment variables. If the JAVA_HOME environment variable is set, the scripts
accept it.

Building applications and adapters
If you use Ant tasks, you can build both applications and adapters.

You can use the following examples of Ant XML files to build applications and
adapters.

Deploying MobileFirst projects 10-69



Note: Since V6.2.0, the worklight-ant-builder.jar file is included in the IBM
MobileFirst Platform Command Line Interface for iOS as well as the MobileFirst
Server, whereas in earlier versions, it was included only in Worklight Server. By
default, worklight-ant-builder.jar is installed in the following location:
cli_install_dir/public/worklight-ant-builder.jar. For example, on OSX, the
default CLI Install Path is /Applications/IBM/Worklight-CLI. If you use the default
installation path, the Ant task is installed here: /Applications/IBM/Worklight-CLI/
public/worklight-ant-builder.jar.

In Worklight Server V6.2.0 and MobileFirst Server, the default location of
worklight-ant-builder.jar is mfp_server_install_dir/WorklightServer/
worklight-ant-builder.jar. This file has the same version as the server.

Building a native API application

The Ant task for building a native API application has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="cli_install_dir/public/worklight-ant-builder.jar"/>
</classpath>

</taskdef>
<target name="target-name">

<native-app-builder
sourcefolder="application-source-files-folder"
outputFolder="output-folder"/>

</target>
</project>

The <native-app-builder> element has the following attributes:
v The sourceFolder attribute specifies the root folder for the application, which

contains the application-descriptor.xml file and other source files for the
application.

v The ouptputFolder attribute specifies the folder to which the resulting .wlapp
file is written.

Building an adapter

The Ant task for building an adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="cli_install_dir/public/worklight-ant-builder.jar"/>
</classpath>

</taskdef>

<path id="base.path">
<pathelement path="/Users/miguel/badjars"/>

</path>

<target name="target-name">
<adapter-builder

folder="adapter-source-files-folder"
destinationfolder="destination-folder"
classpathref="base.path"/>

</target>
</project>

10-70 IBM MobileFirst Platform Foundation for iOS V7.0.0



The <adapter-builder> element has the following attributes:
v The folder attribute specifies the folder that contains the source files of the

adapter (its .xml and .js files).
v The destinationfolder attribute specifies the folder to which the resulting

.adapter file is written.
v The classpathref attribute specifies a custom class path for the adapter builder.

If this property is not specified, then the class path of the running Ant task is
used to compile the code.

The classpathref attribute is required to be set for RESTful Java adapters. It is not
mandatory for JavaScript adapters. You must add the Worklight-jee-library.jar
to the class path for Java adapters. In the case of RESTful Java adapters, the task
compiles the code in the adapterRootFolder/src directory and copies the compiled
classes to the adapterRootFolder/bin directory. Any source files that are not Java
are also copied. Error messages are printed in the console.

This Ant task requires that the JAVA_HOME environment variable is set to point to a
JDK and not a JRE.

If you must build more than one adapter file, add an <adapter-builder> element
for each adapter.

Example:

Building a JavaScript adapter
<adapter-builder

folder="adapterRootFolder"
destinationfolder="destination-folder"/>

Building a Java adapter without libs
<path id="my.path">

<pathelement path="/product_install_dir/WorklightServer/worklight-jee-library.jar"/>
</path>

<adapter-builder
folder="adapterRootFolder"
destinationfolder="destination-folder"
classpathref="my.path"/>

Building a Java adapter with the server/lib and the adapter/lib folders in the
class path

<path id="my.path">
<pathelement path="/product_install_dir/WorklightServer/worklight-jee-library.jar"/>
<fileset dir="adapterRootFolder/lib">

<include name="*.jar" />
</fileset>
<fileset dir="projectRootFolder/server/lib">

<include name="*.jar" />
</fileset>

</path>

<adapter-builder
folder="adapterRootFolder"
destinationfolder="destination-folder"
classpathref="my.path"/>

Building the Starter project

To use the Ant script starter example, complete the following steps.
1. Download the Starter Application sample.

Deploying MobileFirst projects 10-71



2. Add the build.xml file to the root folder of your project.
3. Complete the following properties inside the build.xml file with the

correct values. These values depend on your computer and the location
where IBM MobileFirst Platform Foundation for iOS is installed.

<!-- The admin console URL -->
<property name="mfp.admin.url" value="http://localhost:10080/worklightadmin"/>
<!-- The MobileFirst server host to be written in the app configuration file (wlconfig.properties or worklight.plist) -->
<property name="mfp.server.url" value="http://localhost:10080/worklight"/>
<!-- The MobileFirst builder jar - This jar contains all the builder ant tasks -->
<property name="mfp.ant.builder.jar" value="product_install_dir/WorklightServer/worklight-ant-builder.jar"/>
<!-- The MobileFirst deployer jar - This jar contains all the deployer ant tasks -->
<property name="mfp.ant.deployer.jar" value="product_install_dir/WorklightServer/worklight-ant-deployer.jar"/>
<!-- The MobileFirst server Java EE library jar - This jar is required for building the server/java folder
and for building Java adapters as well -->
<property name="mfp.jee.library.jar" value="product_install_dir/WorklightServer/worklight-jee-library-production.jar"/>

4. Ensure that the MobileFirst Server is running and that MobileFirst
WAR is installed on it.

5. Run the ant command. The ant command builds and deploys the app
and the adapter of the Starter Application project. It also builds, but
does not deploy, the WAR.

<?xml version="1.0"?>
<project default="build-all-and-deploy" name="build-tools" basedir=".">
<property name="mfp.runtime.name" value="worklight"/>
<!-- The admin console URL -->

<property name="mfp.admin.url" value="http://localhost:10080/worklightadmin"/>
<!-- The MobileFirst server host to be written in the app configuration file (wlconfig.properties or worklight.plist) -->

<property name="mfp.server.url" value="http://localhost:10080/worklight"/>
<!-- The MobileFirst builder jar - This jar contains all the builder ant tasks -->

<property name="mfp.ant.builder.jar" value="product_install_dir/WorklightServer/worklight-ant-builder.jar"/>
<!-- The MobileFirst deployer jar - This jar contains all the deployer ant tasks -->

<property name="mfp.ant.deployer.jar" value="product_install_dir/WorklightServer/worklight-ant-deployer.jar"/>
<!-- The MobileFirst server Java EE library jar - This jar is required for building the server/java folder

and for building Java adapters as well -->
<property name="mfp.jee.library.jar" value="product_install_dir/WorklightServer/worklight-jee-library-production.jar"/>
<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>
<pathelement location="${mfp.ant.builder.jar}"/>

</classpath>
</taskdef>
<taskdef resource="com/worklight/ant/deployers/antlib.xml">
<classpath>
<pathelement location="${mfp.ant.deployer.jar}"/>

</classpath>
</taskdef>
<target name="build-all-and-deploy">
<antcall target="build-war"/>
<antcall target="build-applications"/>
<antcall target="build-adapters"/>
<antcall target="deploy"/>

</target>
<target name="build-war">
<path id="compiler-classpath">
<pathelement location="${mfp.jee.library.jar}"/>

</path>
<mkdir dir="bin/classes"/>
<javac classpath="${mfp.jee.library.jar}" destdir="bin/classes" srcdir="server/java">
<classpath refid="compiler-classpath"/>

</javac>
<war-builder classesFolder="bin/classes" warfile="bin/StarterApplication.war" destinationfolder="bin" projectfolder="."/>

</target>
<target name="build-applications">
<echo>Building Hybrid application "StarterApplication"...</echo>
<app-builder environments="android,iphone,windowsphone8,desktopbrowser,ipad,mobilewebapp,windows8,common"
nativeprojectprefix="StarterApplication" outputfolder="bin" worklightserverhost="${mfp.server.url}"

applicationfolder="apps/StarterApplication"/>
<echo>Building Native iOS application "NativeiOS"...</echo>
<native-app-builder worklightserverhost="${mfp.server.url}" outputFolder="bin" sourcefolder="apps/NativeiOS"/>
<echo>Building Native Android application "NativeAndroid"...</echo>
<native-app-builder worklightserverhost="${mfp.server.url}" outputFolder="bin" sourcefolder="apps/NativeAndroid"/>
<echo>Building Native WP8 application "NativeWP8"...</echo>
<native-app-builder worklightserverhost="${mfp.server.url}" outputFolder="bin" sourcefolder="apps/NativeWP8"/></target>

<target name="build-adapters">
<antcall target="build-adapter">

10-72 IBM MobileFirst Platform Foundation for iOS V7.0.0



<param name="adapter.folder" value="adapters/StarterApplicationAdapter"/>
</antcall>

</target>
<target name="build-adapter">
<path id="compiler-classpath">
<fileset dir="${adapter.folder}/lib">
<include name="*.jar"/>

</fileset>
<fileset dir="server/lib">
<include name="*.jar"/>

</fileset>
<pathelement location="${mfp.jee.library.jar}"/>

</path>
<echo>Building adapter ${adapter.name}</echo>
<adapter-builder destinationfolder="bin" classpathref="compiler-classpath" folder="${adapter.folder}"/>

</target>
<target name="deploy">
<wladm password="admin" user="admin" secure="false" url="${mfp.admin.url}">
<deploy-adapter file="bin/StarterApplicationAdapter.adapter" runtime="${mfp.runtime.name}"/>
<deploy-app file="bin/StarterApplication-all.wlapp" runtime="${mfp.runtime.name}"/>

</wladm>
</target>

</project>

Building applications from IBM Worklight V6.0.0 and deploying
them to MobileFirst Server
Users who want to build applications and adapters from IBM Worklight V6.0.0 to
their current version of MobileFirst Server must use two Ant scripts, one to build
their artifacts and one to deploy them.

If you want to build apps and adapters from a IBM Worklight V6.0.0 project and
deploy them to a MobileFirst Server, you might think that all you need to do is
add a <taskdef> definition as shown in the following Ant task.

Note:

v WL600_DIR is the directory where you installed IBM Worklight V6.0.0.
v product_install_dir is the directory where you installed the current version of

MobileFirst Server.
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<pathelement location="WL600_DIR/WorklightServer/worklight-ant.jar" />

</classpath>
</taskdef>

<taskdef resource="com/worklight/ant/deployers/antlib.xml">
<classpath>

<pathelement location="product_install_dir/WorklightServer/worklight-ant-deployer.jar" />
</classpath>

</taskdef>

However, the JAR files worklight-ant.jar and worklight-ant-deployer.jar
conflict, because they contain classes with the same name in different versions. To
solve this conflict, you must split the script into two different Ant files: one to
build V6.0.0 artifacts and the other to deploy them to MobileFirst Server, as shown
in the following examples.

Ant script to build V6.0.0 artifacts
<project basedir="." default="build-and-deploy">

<property name="project.name" value="MyProject" />
<property name="wl.server" value="http://localhost:9080/${project.name}/" />
<property name="wl.project.location" location="${basedir}/${project.name}" />
<property name="output.location" location="${wl.project.location}/bin" />

<property name="wl.adapter.name" location="MyAdapter" />
<property name="wl.application.name" location="MyApplication" />

Deploying MobileFirst projects 10-73



<property name="worklight-ant" location="worklight-ant.jar" />

<target name="init">
<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>
<pathelement location="${worklight-ant}" />

</classpath>
</taskdef>

</target>

<target name="build">
<adapter-builder folder="${wl.project.location}/adapters/${wl.adapter.name}" destinationFolder="${output.location}"/>
<app-builder applicationFolder="${wl.project.location}/apps/${wl.application.name}" outputfolder="${output.location}"

worklightserverhost="${wl.server}" nativeprojectprefix="${project.name}"/>
</target>

<target name="deploy">
<ant antfile="deploy.xml" inheritall="true" />

</target>

<target name="build-and-deploy" depends="init,build,deploy" />
</project>

Ant script to deploy V6.0.0. artifacts to MobileFirst Server
<project basedir="." default="deploy">

<property name="worklight-ant-deployer" location="worklight-ant-deployer.jar" />

<target name="init">
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<pathelement location="${worklight-ant-deployer}" />

</classpath>
</taskdef>

</target>

<target name="deploy" depends="init">
<wladm url="https://server-address:secure-port/worklightadmin" user="username" password="password">

<deploy-app runtime="project-name" file="${output.location}/${wl.application.name}-all.wlapp"/>
<deploy-adapter runtime="project-name" file="${output.location}/${wl.adapter.name}.adapter"/>

</wladm>
</target>

</project>

Deploying applications and adapters
You can use Ant tasks to deploy MobileFirst applications and adapters.

The following sections show examples of Ant XML files that use the wladm Ant
task to deploy applications and adapters. You can run these Ant files locally on the
MobileFirst Server host computer or remotely on a different computer. To run them
remotely on a different computer, you must first copy the file
product_install_dir/WorklightServer/worklight-ant-deployer.jar to that
computer.

Deploying an application

Note: Before you use this Ant task, as a prerequisite step, you must deploy the
corresponding MobileFirst project of the application. For more information, see
“Deploying the project WAR file” on page 10-5.

A typical Ant script for deploying an application has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/deployers/antlib.xml">
<classpath>

<pathelement location="product_install_dir/WorklightServer/worklight-ant-deployer.jar"/>

10-74 IBM MobileFirst Platform Foundation for iOS V7.0.0



</classpath>
</taskdef>
<target name="target-name">

<wladm url="https://server-address:secure-port/worklightadmin" user="username" password="password">
<deploy-app runtime="project-name" file="myApp.wlapp"/>

</wladm>
</target>

</project>

The <wladm> element has the following attributes:

Table 10-12. Attributes of the <wladm> element

Attribute
Mandatory/
Optional Description

url Mandatory The full URL of your MobileFirst Server web
application for administration services

user and password Mandatory The credentials of a user in a worklightadmin or
worklightdeployer role

The <deploy-app> element has the following attributes:

Table 10-13. Attributes of the <deploy-app> element

Attribute
Mandatory/
Optional Description

runtime Mandatory The name of the MobileFirst runtime / project.

file Mandatory Contains the .wlapp file to deploy.

For more information about <wladm>, see “Administering MobileFirst applications
through Ant” on page 11-11.

If you must deploy more than one .wlapp file, either add a <deploy-app> element
for each file in a single <wladm> element, or add a <wladm> element for each file.

Deploying an adapter

Note: Before you use this Ant task, as a prerequisite step, you must deploy the
corresponding MobileFirst project of the adapter. For more information, see
“Deploying the project WAR file” on page 10-5.

A typical Ant script for deploying an adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/deployers/antlib.xml">
<classpath>

<pathelement location="product_install_dir/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>
<target name="target-name">

<wladm url="https://server-address:secure-port/worklightadmin" user="username" password="password">
<deploy-adapter runtime="project-name" file="myAdapter.adapter"/>

</wladm>
</target>

</project>

The <wladm> element has the following attributes:

Deploying MobileFirst projects 10-75



Table 10-14. Attributes of the <wladm> element

Attribute
Mandatory/
Optional Description

url Mandatory The full URL of your MobileFirst Server web
application for administration services

user and password Mandatory The credentials of a user in a worklightadmin or
worklightdeployer role

The <deploy-adapter> element has the following attributes:

Table 10-15. Attributes of the <deploy-adapter> element

Attribute
Mandatory/
Optional Description

runtime Mandatory The name of the MobileFirst runtime / project.

file Mandatory Contains the .adapter file to deploy.

For more information about <wladm>, see “Administering MobileFirst applications
through Ant” on page 11-11.

If you must deploy more than one .adapter file, either add a <deploy-adapter>
element for each file in a single <wladm> element, or add a <wladm> element for
each file.

Deploying applications and adapters to MobileFirst Server
You can deploy customer-specific content (apps and adapters) only after the project
WAR file is deployed and the server is started.

About this task

Customer-specific content includes applications that must be served by IBM
MobileFirst Platform Server and their underlying integration adapters. You can
create apps and adapters by building them using IBM MobileFirst Platform
Command Line Interface for iOS, or with the Ant tasks provided with IBM
MobileFirst Platform Foundation for iOS to build them. The result of the build
action is files with extension .wlapp and .adapter respectively.

There are two ways to deploy applications and adapters to IBM MobileFirst
Platform Operations Console:
v Use Ant tasks that are provided with IBM MobileFirst Platform Foundation for

iOS, and described in “Ant tasks for building and deploying applications and
adapters” on page 10-69 and “Deploying a project WAR file and configuring the
application server with Ant tasks” on page 10-14.

v Use MobileFirst Operations Console to manually deploy apps and adapters.

You can deploy customer-specific content (apps and adapters) only after the project
and MobileFirst administration WAR files are deployed and the server is started.

10-76 IBM MobileFirst Platform Foundation for iOS V7.0.0



Procedure
1. To deploy an adapter, click SELECT FILE. Then, navigate to the adapter file

and select it. A message is displayed that indicates whether the deployment
action succeeded or failed.

2. Click ADAPTERS to display the adapter list.
3. In the adapter list, expand the deployed adapter to display connectivity details.
4. Repeat steps 1 to 3 for each adapter that you want to deploy.
5. To deploy an application, either deploy the app_name-all.wlapp file, or

individual app_name-environment_name-version.wlapp files. For each of these
files, click SELECT FILE. Then, navigate to the WLAPP file and select it. A
message is displayed that indicates whether the deployment action succeeded
or failed.

6. In the application list, click the deployed application to display details of
environments and versions.

7. Repeat steps 5 and 6 for each app that you want to deploy.

Administering adapters and apps in MobileFirst Operations
Console

You administer adapters and apps through MobileFirst Operations Console.

About this task

Before performing any of the other tasks in this collection of topics, open
MobileFirst Operations Console:

Procedure
1. Open a browser and enter a URL of the following form: https://

hostname:secure-port/worklightconsole where secure-port depends on your server
configuration. The defaults are 9443 for WebSphere Application Server and 8443
for Apache Tomcat.

Note: Security warning. If you access MobileFirst Operations Console through
http instead of https, your MobileFirst administration user password will be
compromised.

This usage is different from the MobileFirst Development Server, where no
security is used. In the development environment, you use the port for the
Liberty profile server in the URL: http://localhost:10080/worklightconsole.

2. If your MobileFirst Server is configured to require login, and you are not
currently logged in, log in when prompted to do so.

Figure 10-2. Deploying an adapter or an application from MobileFirst Operations Console

Deploying MobileFirst projects 10-77



Results

If only one project is deployed on the server, you see the Catalog page of
MobileFirst Operations Console and you can start performing administration tasks.

If several projects are deployed on the server, you see a list of projects in
MobileFirst Operations Console. Select the project to administer to navigate to the
Catalog page of this project.

Deploying apps
You can select WLAPP files to deploy.

Procedure

To deploy an app, you deploy either the app_name-all.wlapp file, or individual
app_name-environment_name-version.wlapp files. For each of these files, perform
the following steps:
1. From a runtime or the applications list, click SELECT FILE in the deployment

section.
2. Navigate to your WLAPP file and select it.

Results

A message is displayed that indicates whether the deployment action succeeded or
failed.

Deleting apps
You can delete an app or a version of an environment of an app.

About this task

An application can be provided in different mobile device environments, such as a
tablet version and a phone version. You can delete the whole app or an
environment version only.

Procedure

Delete an entire app or a version of an environment of an app.
v To delete an app, in the application list, click the delete icon represented by a

cross at the end of the application row.
v To delete a version of an environment of an app:

1. To open the details of the environment, click the name of the app.
2. Select the icon of the version of the environment to delete; for example, iPad.
3. Click DELETE.

Exporting adapter configuration files
Export the configuration files for the adapter by copying them from the source
folder.

Procedure

To export a deployed adapter:

Obtain the adapter from the development environment.

10-78 IBM MobileFirst Platform Foundation for iOS V7.0.0



1. Navigate to the /bin folder in your project
2. Copy the .adapter file or files.

Deploying adapters
Deploy an adapter from the MobileFirst Operations Console.

Procedure

To deploy an adapter:
1. From a runtime or the adapters list, click SELECT FILE in the deployment

section.
2. Navigate to your adapter file and select it. A message is displayed that

indicates whether the deployment action succeeded or failed.
3. Expand the deployed adapters to view the connectivity details and the list of

procedures that it shows.

Modifying adapters
To modify an adapter, replace it with a new one.

Procedure

To modify an adapter:

Deploy the modified adapter file, as described in “Deploying adapters.”

Results

The new adapter replaces the original one.

Deleting adapters
Delete an adapter from MobileFirst Operations Console by clicking DELETE.

Procedure

To delete an adapter:

In the adapter list, click DELETE in the adapter row.

MobileFirst security overview
IBM MobileFirst Platform Foundation for iOS has comprehensive support for
various authentication and authorization methods.

MobileFirst security basics

The following image shows the authentication elements hierarchy:

Deploying MobileFirst projects 10-79



Security test
A security test is a set of tests that are used to protect a resource, such as
an adapter procedure or application environment. A test includes
information about which realm is required to authenticate and other
parameters, such as authentication order. A protected resource is accessible
only after the client authenticates to all of the tests that are specified in the
security test. If the client is unable to log in to all tests, the request to
access the protected resource is denied. Individual adapter procedures or
an entire application environment can be protected by a security test. For
more information about security tests and the different types of security
tests, see “Security tests” on page 8-249.

Realm A realm creates a relationship between a MobileFirst login module and a
MobileFirst authenticator to provide a means of authentication. For more
information about realms, see “Authentication realms” on page 8-252.

Authenticator
An authenticator parses incoming requests from a MobileFirst client to
search for required credentials when a protected resource is requested. If
credentials are not available in the request, the authenticator is responsible
for challenging the client to authenticate. The credentials, after received
correctly from the client, are formatted to the login module's predefined
requirements and sent to the login module. For more information about
authenticators, see “Authenticators and login modules” on page 8-257.

Login module
After an authenticator is able to parse credentials from a request, they are
sent to a login module that is responsible for validating those credentials.
After the credentials are considered valid and the user can be authorized,
the login module creates a user identity for the realm. For more
information about login modules, see “Authenticators and login modules”
on page 8-257.

User identity
After a login module successfully validates a set of user credentials, it
creates a user identity. A user identity contains at least a user name and a
display name. It can also contain attributes that provide more details the
protected resource might need.

Challenge handlers
A challenge handler is the client-side JavaScript that is included into a
MobileFirst application that is created by the developer. A challenge

10-80 IBM MobileFirst Platform Foundation for iOS V7.0.0



handler handles an authentication challenge from the server. A challenge
handler can be defined for each realm, and is responsible for the following
tasks:
v Determine whether a request is an authentication challenge that is

specific to the realm.
v Perform necessary user interaction if it receives a challenge.
v Send the credentials to the server to complete the authentication.
v Validate that the authentication was successful.

MobileFirst security configuration
For MobileFirst Server to protect a resource, such as an adapter procedure or an
application environment, the administrator must first configure the MobileFirst
Server instance.

Defining a login module

A login module is the most basic security element in the MobileFirst authentication
configuration. You can define a login module in the <loginModules> element in the
authenticationConfig.xml file. The following example shows a login module
definition:
<loginModules>
...

<loginModule name="HeaderLogin"
audit="true
expirationInSeconds="-1">

<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="userid" />
<parameter name="display-name-header" value="username" />

</loginModule>
...
</loginModules>

In this example, the login module is called HeaderLogin and is referred to from a
realm element. The <className> element must contain the full Java namespace to a
login module implementation. The HeaderLoginModule is a login module that is
included by default. It checks that the user entered any, non-empty user name and
password.

Defining a realm

After a login module is defined, you must specify a realm. You can add a realm to
the <realms> element in the authenticationConfig.xml file. The following example
shows a realm definition:
<realms>
...

<realm name="RequiresUserHeaders" loginModule="HeaderLogin">
<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>

</realm>
...
</realms>

Defining a security test

You can define a security test in the <securityTests> element in the
authenticationConfig.xml file. The following example shows a security test
definition:

Deploying MobileFirst projects 10-81



<securityTests>
...

<customSecurityTest name="BasicRequirements">
<test realm="wl_antiXSRFRealm" />
<test realm="wl_authenticityRealm" />
<test realm="wl_remoteDisableRealm" />
<test realm="RequiresUserHeaders" isInternalUserID="true" />
<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" />

</customSecurityTest>
...
</securityTests>

This custom security test is called BasicRequirements, and contains a list of tests.
The tests define which realms are required for authorization into the protected
resource. The tests in this example are built-in realms. Built-in realms are prefixed
with wl_.

Note: If one test fails, then the entire security test fails.

The isInternalUserID attributes can be set to true only on a single realm. This
attribute is used as the default identity for a user in the security test. The
isInternalDeviceID attribute is similar, but sets a default device identity.

This example uses the RequiresUserHeaders realm in the previous example.

Creating a challenge handler

You must create a challenge handler for your MobileFirst app to handle any
custom challenges.

For more information about challenge handlers, see the tutorials on the following
Getting Started pages of the Developer Center: Custom Authentication and Custom
Authentication in native iOS applications.

MobileFirst application environment protection

After a security test is configured with the appropriate realms, you can protect any
resource. One option is to completely protect an application’s environment with
that security test.

To set up this protection, you must add the securityTest attribute to the
environment’s element in the applicationDescriptor.xml file. The following
example shows the environment protection definition:
<iPhone version="1.0" securityTest="BasicRequirements">
...
</iPhone>

This definition requires every iPhone device that connects to the server through
your application to log in to the BasicRequirements security test.

MobileFirst adapter procedure protection

Another option is to protect a MobileFirst adapter procedure. Using the same
security test, you can protect an adapter procedure. When the procedure is called
and the user is not already authenticated into the security test, the client is
required to authenticate. If you have an adapter procedure named GetSecretData,
you can protect it in the adapter’s XML configuration file by adding the
securityTest attribute to the <procedure> element:

10-82 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/authentication-security/custom-authenticator-login-module/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/authentication-security/custom-authenticator-login-module/custom-authenticator-login-module-native-ios-applications/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/authentication-security/custom-authenticator-login-module/custom-authenticator-login-module-native-ios-applications/


<procedure name="GetSecretData" securityTest="BasicRequirements" />

MobileFirst Security and LTPA
Lightweight Third-Party Authentication (LTPA) is a security token type that is used
by IBM WebSphere Application Server and other IBM products. LTPA can be used
to send the credentials of an authenticated user to backend services. It can also be
used as a single sign-on (SSO) token between the user and multiple servers.

The following image shows a simple client/server flow with LTPA:

After a user logs in, the server generates an LTPA token, which is an encrypted
hash that contains authenticated user information. The token is signed by a private
key that is shared among all the servers that want to decode it. The token is
usually in cookie form for HTTP services. By sending the token as a cookie, there
is no need for subsequent user interaction.

LTPA tokens have a configurable expiration time to reduce the possibility for
session hijacking.

The following image shows a client-server-backend flow with LTPA:

Deploying MobileFirst projects 10-83



Your infrastructure can also use the LTPA token to communicate with a backend
server to act on behalf of the user. The user cannot directly access the backend
server. Enterprise environments should use a reverse proxy, such as DataPower or
IBM Security Access Manager, in the DMZ, and place the MobileFirst Server in the
intranet. This configuration ensures that access to the MobileFirst Server cannot be
obtained until a user authenticates. For more information, see “Reverse proxy with
LTPA” on page 10-94.

Configuring the MobileFirst LTPA realm:

The IBM MobileFirst Platform Server contains the authenticator and login module
that are designed to handle authentication by using LTPA through form-base
authentication.

About this task

You must update the authenticationConfig.xml file to configure your server to
use the MobileFirst LTPA realm.

Procedure

1. Add the login module definition to the <loginModules> element in your
server’s authenticationConfig.xml file. The following example uses a login
module that is called WASLTPAModule:
<loginModules>
...

<loginModule name="WASLTPAModule">
<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>

</loginModule>
...
</loginModules>

2. Add the realm definition to the <realms> element in your server’s
authenticationConfig.xml file. The following example uses a realm that is
called WASLTPARealm:
<realms>
...

<realm name="WASLTPARealm" loginModule="WASLTPAModule">
<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>

10-84 IBM MobileFirst Platform Foundation for iOS V7.0.0



<parameter name="login-page" value="/login.html" />
<parameter name="error-page" value="/loginError.html" />

</realm>
...
</realms>

3. Add a user test to an existing test in the authenticationConfig.xml file.
<customSecurityTest name="LTPASecurityTest">

<test realm="wl_authenticityRealm" />
<test realm="WASLTPARealm" isInternalUserID="true" />
<test realm="wl_deviceNoProvisiongRealm" isInternalDeviceID="true" />

</customSecurityTest>

4. Create a login page and a login error page. The WASLTPARealm must know
which HTML file to present to the client when the client must authenticate.
This HTML file must be named login.html. When the client enters invalid
credentials, the WASLTPARealm presents an error HTML file. This HTML file must
be named loginError.html. These HTML files must be added to the root
directory in the MobileFirst Server WAR file. The following example shows a
sample login.html file:
<html>

<head>
<title>Login</title>

</head>
<body>
<form method="post" action="j_security_check">

<input type="text"
id="j_username"
name="j_username"
placeholder="User name" />

<input type="password"
id="j_password"
name="j_password"
placeholder="Password" />

<input type="submit" id="login" name="login" value="Log In" />
</form>

</body>
</html>

The following example shows a sample loginError.html file:
<html>

<head>
<title>Login Error</title>

</head>
<body>
An error occurred while trying to log in.

</body>
</html>

Configuring the MobileFirst Server for Trusteer
Configure the IBM MobileFirst Platform Server to use Trusteer®-generated data to
protect resources.

About this task

You must update the authenticationConfig.xml file to configure your server to
use the MobileFirst Trusteer realm.

Note: If code that uses the Trusteer realm accesses a resource that is protected by
OAuth authentication, and the client has a valid token, the MobileFirst Server is
not called. As a result, the server does not check whether the device passes all of
the configured Trusteer parameters. The MobileFirst Server is called when the

Deploying MobileFirst projects 10-85



token expires or when the Trusteer realm inside the token expires. When the realm
expires, the Trusteer authenticator is invoked and the server checks whether the
devices passes all of the configured Trusteer parameters.

Procedure
1. Add the login module definition to the <loginModules> element in your

server’s authenticationConfig.xml file. The following example uses a login
module that is called trusteerFraudDetectionLogin:

<loginModules>
...

<loginModule name="trusteerFraudDetectionLogin">
<className>com.worklight.core.auth.ext.TrusteerLoginModule</className>

</loginModule>
...
</loginModules>

2. Add the realm definition to the <realms> element in your server’s
authenticationConfig.xml file. The following example uses a realm that is
called wl_basicTrusteerFraudDetectionRealm:

<realms>
...

<realm name="basicTrusteerFraudDetectionRealm" loginModule="trusteerFraudDetectionLogin">
<className>com.worklight.core.auth.ext.TrusteerAuthenticator</className>

<parameter name="rooted-device" value="block"/>
<parameter name="device-with-malware" value="block"/>
<parameter name="rooted-hiders" value="block"/>
<parameter name="unsecured-wifi" value="alert"/>
<parameter name="outdated-configuration" value="alert"/>

</realm>
...
</realms>

The possible values for Trusteer realm parameters are described in Table 10-16.

Table 10-16. Possible values for Trusteer realm parameters

Value Description

block Access fails.

alert Access is permitted and it is recommended
to issue a warning.

accept Access is permitted.

The error codes that have been defined for Trusteer correspond to the
parameters in the realm. See Table 10-17.

Table 10-17. Trusteer error codes

Code Description Corresponding parameter

TAS_ROOT rooted-device

TAS_MALWARE Indicates that the device
contains malware. Currently
financial malware is
detected, but will be
expanded to all malware.

device-with-malware

10-86 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 10-17. Trusteer error codes (continued)

Code Description Corresponding parameter

TAS_ROOT_EVIDENCE Indicate that the device
contains root hider
applications that hide the
fact that the device is
rooted/jailbroken.

rooted-hiders

TAS_WIFI Indicates that the device is
currently connected to an
unsecured Wi-Fi.

unsecured-wifi

TAS_OUTDATED Indicates that Trusteer SDK
configuration has not
updated for some time,
meaning that it did not
connect to the Trusteer
server. 

outdated-configuration

TAS_INVALID_HEADER Indicates that the format of
the Trusteer header is
invalid.

-

TAS_NO_HEADER Indicates that the Trusteer
SDK is not installed, or has
failed to initialize.

-

3. Define a security test in the <securityTest> element in the
authenticationConfig.xml file. For Trusteer, it could be:

<customSecurityTest name="TrusteerTest">
<test realm="wl_basicTrusteerFraudDetectionRealm" isInternalUserID="true" step="1"/>
...

</customSecurityTest>

4. Use the security test to protect a resource. For example, you can protect an
application’s environment completely with that security test by adding the
securityTest attribute to the environment’s element in the
authenticationConfig.xml file:

<iPhone version="1.0" securityTest="TrusteerTest">
...

</iPhone>

This definition requires every iPhone device that connects to the server through
your application to log in to the TrusteerTest security test.

5. Using the same security test, another option is to protect a MobileFirst adapter
procedure. . If you have an adapter procedure named GetSecretData, you can
protect it in the XML configuration file of the adapter by adding the <realms>
attribute to the <procedure>:

<procedure name="GetSecretData" securityTest="TrusteerTest" />

6. Create a challenge handler for your MobileFirst app to handle Trusteer
challenges. The following samples are samples of simple challenge handlers:

JavaScript
var trusteerChallengeHandler = WL.Client.createWLChallengeHandler("wl_basicTrusteerFraudDetectionRealm");

trusteerChallengeHandler.handleFailure = function(error) {
//Note: error object includes array of alerts (same values as error.reason) from the
//Trusteer authenticator and can be accessed via error.alerts
WL.SimpleDialog.show("Error", "Operation failed. Please contact customer support (reason code: " + error.reason + ")",
[{text:"OK"}]);

};

Deploying MobileFirst projects 10-87



//In case authenticator succeeds, there may still be alerts that developer should notify the user about:

trusteerChallengeHandler.processSuccess = function(identity){
var alerts = identity.attributes.alerts; //Array of alerts codes
if(alerts.length > 0) {
WL.SimpleDialog.show("Warning", "Please note that your device is : " + alerts, [{text:"OK"}]);

}
}

Java
public class TrusteerChallengeHandler extends WLChallengeHandler {

private static Logger logger = Logger.getInstance(TrusteerChallengeHandler.class.getSimpleName());
public TrusteerChallengeHandler(String realmName) { super(realmName); }

@Override
public void handleSuccess(JSONObject identity) {

try {
JSONArray alerts = identity.getJSONObject("attributes").getJSONArray("alerts");
if(alerts.length() > 0) {

logger.warn ("TrusteerChallengeHandler.handleSuccess with alerts: " + alerts);
//todo: display message to the user

}
} catch (Exception e) {

logger.error("Unexpected error: " + e);
}

}

@Override
public void handleFailure(JSONObject error) {

try {
String errorReason = error.getString("reason");
logger.error("TrusteerChallengeHandler.handleFailure: " + errorReason + "(" + error + ")");
String msg = "Trusteer fraud detection failed due to " + errorReason;
JSONArray alerts = error.getJSONArray("alerts");
if(alerts.length() > 0) {

logger.warn ("TrusteerChallengeHandler.handleSuccess with alerts: " + alerts);
//todo: We also have alerts...

}
//todo: display error message to user

} catch (Exception e) {
logger.warn ("Unexpected error: " + e);
}

}

@Override
public void handleChallenge(JSONObject challenge) {

//Nothing to do...
}

}

// Register your newly created challenge handler for your Trusteer realm:
WLClient.getInstance().registerChallengeHandler(

new TrusteerChallengeHandler("wl_basicTrusteerFraudDetectionRealm”)
);

Objective-C
// Assuming you have added a Trusteer realm to the authentication configuration file of
// your server, you can register a challenge handler to receive the responses from
// the authenticator.

// Create a class that extends WLChallengeHandler:
#import "WLChallengeHandler.h"

10-88 IBM MobileFirst Platform Foundation for iOS V7.0.0



@interface TrusteerChallengeHandler : WLChallengeHandler
@end

// Register your newly created challenge handler for your Trusteer realm:
[[WLClient sharedInstance] registerChallengeHandler:
[[TrusteerChallengeHandler alloc] initWithRealm:@"
wl_basicTrusteerFraudDetectionRealm"]];

// If you have set one of your realm options to block, a blocking event will trigger handleFailure.
@implementation TrusteerChallengeHandler
//...
-(void) handleFailure: (NSDictionary *)failure{

NSLog(@"Your request could not be completed. Reason code: %@",
failure[@"reason"]);

}
//...
@end

// If your have set one of your realm options to alert, you can catch the alert event
// by implementing the handleSuccess method.
@implementation TrusteerChallengeHandler
//...
-(void) handleSuccess:(NSDictionary *)success{

NSArray* alerts = success[@"attributes"][@"alerts"];
if(alerts && alerts.count){

for(NSString* alert in alerts){
NSLog(@"This device is %@", alert);

}
}

}
//...
@end

Accessing Trusteer risk assessment
Access Trusteer risk assessment to add Trusteer protection on the client side.

For an application that is running on a rooted device, you might want to disable
the "Transfer Funds" button entirely, in addition to the server-side security tests
described in “Configuring the MobileFirst Server for Trusteer” on page 10-85.

The following code samples are for JavaScript, Java, and Objective-C:

JavaScript
WL.Trusteer.getRiskAssessment(onSuccess);

Where onSuccess is a function that receives a JSON object that contains all
the data processed by Trusteer. See Trusteer documentation for information
on each risk item.
function onSuccess(result){

//See the logs for full result
WL.Logger.debug(JSON.stringify(result));
//Check for a specific flag
if(result["os.rooted"]["value"] != 0){

alert("This device is rooted!");
}

}

Objective-C
#import “WLTrusteer.h”
NSDictionary* risks =[[WLTrusteer sharedInstance] riskAssessment];

This returns an NSDictionary of all the data that is processed by Truster.
See Trusteer documentation for information on each risk item.

Deploying MobileFirst projects 10-89



//See logs for full result
NSLog(@"%@",risks);
//Check for a specific flag
NSNumber* rooted = [[risks objectForKey:@"os.rooted"] objectForKey:@"value"];
if([rooted intValue]!= 0){
NSLog(@"Device is jailbroken!");
}

Java
WLTrusteer trusteer = WLTrusteer.getInstance();
JSONObject risks = trusteer.getRiskAssessment();

This returns an JSONObject of all the data that is processed by Truster. See
Trusteer documentation for information on each risk item.
JSONObject rooted = (JSONObject) risks.get("os.rooted");
if(rooted.getInt("value") > 0){
//device is rooted
}

Supported configurations for LTPA
IBM MobileFirst Platform Foundation for iOS supports different configuration
options to take advantage of LTPA, based on the server configuration and
administrative requirements.

Protective application server (Option 1)

This configuration is formally known as Option 1 in tutorial WebSphere LTPA-based
authentication, which you can find on the Getting Started page. The application
server is configured to protect all resources in the MobileFirst Server application,
which is given specified roles. The application server sends the login page if the
user does not send a valid LTPA token with the request. After the user sends valid
credentials, the original request is sent to the MobileFirst Server application with
an LTPA token. The LTPA realm consumes the LTPA token and automatically logs
in the user.

The following image shows a protective application server flow:

10-90 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/


This option is not preferred for new configurations. The application server such as
the WebSphere Application Server Liberty (Liberty) protects all resources and
forces users to log in before any other authentication mechanism. The behavior
occurs regardless of the expected authentication order for a security test.

To use this option with Liberty, you must edit the web.xml from the MobileFirst
Server WAR file and Liberty’s server.xml file. The following example shows the
required modifications to the web.xml file:
<!-- Existing web.xml configuration here -->

<security-constraint id="worklightSecurityConstraint">
<web-resource-collection id="worklightWebResourceCollection">
<web-resource-name>Worklight Server</web-resource-name>
<description>Protection area for Worklight Server.</description>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint id="worklightAuthConstraint">
<description></description>
<role-name>allAuthenticationUsers</role-name>

</auth-constraint>
<user-data-constraint id="worklightUserDataConstraint">
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>

<security-role id="securityRoleAllAuthenticatedUsers">
<description>All Authenticated Users Role.</description>
<role-name>allAuthenticationUsers</role-name>

</security-role>

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>

Deploying MobileFirst projects 10-91



<form-login-page>/login.html</form-login-page>
<form-error-page>/loginError.html</form-error-page>

</form-login-config>
</login-config>

The following example shows the required modifications to the server.xml file:
<featureManager>

<feature>appSecurity-1.0</feature>
<!-- Any additional features you need go here -->

</featureManager>

<!-- Use an existing user registry instead if you have one.
This registry is just an example. -->

<basicRegistry>
<user name="sampleuser" password="demo" />

</basicRegistry>

<!-- Any additional settings go here -->
<application context-root="/worklight"

location="worklight.war"
name="worklight"
type="war">

<classloader commonLibraryRef="worklight-6.1.0,apps-common" />

<!-- This is our addition: application-bnd.
The security-role defines who is authorized into a role from web.xml -->

<application-bnd>
<security-role name="allAuthenticationUsers">
<special-subject type="ALL_AUTHENTICATED_USERS" />

</security-role>
</application-bnd>

</classloader>
</application>

Note: Remember to add the login.html and loginError.html files to the root
directory in the MobileFirst Server WAR file to provide a way for the user to log
in. For more information, see step 4 of “Configuring the MobileFirst LTPA realm”
on page 10-84.

Protective MobileFirst security test (Option 2)

An alternative configuration allows the server to use all of the MobileFirst security
test configuration features. This option is preferred for new configurations. For
example, Option 1 always asks the user to log in on the first request. Option 2 asks
for the user to authenticate only when the MobileFirst Server deems that it is
necessary.

The following image shows a protective security test flow:

10-92 IBM MobileFirst Platform Foundation for iOS V7.0.0



You need to modify only Liberty’s server.xml file to configure this option. The
WASLTPARealm handles the actual authentication against the user registry that is
defined in the server.xml file. The example configuration allows the user with the
user name sample user and the password demo to authorize correctly.

The following example shows the required modifications to the server.xml file:
<featureManager>

<feature>appSecurity-1.0</feature>
<!-- Any additional features you need go here -->

</featureManager>

<!-- Use an existing user registry instead if you have one.
This registry is just an example. -->

<basicRegistry>
<user name="sampleuser" password="demo"/>

</basicRegistry>

<!-- Any additional settings go here -->
<application context-root="/worklight"

location="worklight.war"
name="worklight"
type="war">

<classloader commonLibraryRef="worklight-6.1.0,apps-common"/>
<!-- This is our addition: application-bnd.

The security-role defines who is authorized into a role from web.xml -->
<application-bnd>

<security-role name="allAuthenticationUsers">
<special-subject type="ALL_AUTHENTICATED_USERS" />

</security-role>
</application-bnd>

</classloader>
</application>

Note: Remember to add the login.html and loginError.html files to the root
directory in the MobileFirst Server WAR file to provide a way for the user to log
in. For more information, see step 4 of “Configuring the MobileFirst LTPA realm”
on page 10-84.

Deploying MobileFirst projects 10-93



Advanced security features
IBM MobileFirst Platform Foundation for iOS supports more features that can use
LTPA in advanced scenarios, such as user certificate authentication and role-based
authentication.

Role-based authentication

In IBM Worklight V6.1 and later, role-based authentication is supported. This
feature allows the MobileFirst LTPA realm to be configured to restrict access to a
specific Java Platform, Enterprise Edition role. The realm denies the user if the user
is not authorized to the role that is specified. This feature is optional. By not
defining a required role in the realm's configuration, all users get an LTPA token
and are authorized if credentials are correct.

For more information, see “WASLTPAModule login module” on page 8-285.

User certificate authentication

In IBM Worklight V6.1 and later, the User Certificate Authentication feature is
supported. This form of authentication allows users to authenticate through an
X.509 client certificate over SSL. The realm definition includes parameters to
configure the authenticator, which includes the concept of a dependent realm. The
dependent realm is a realm that is required to be authenticated before the user
certificate can be generated. After the user logs in to the dependent realm, the user
certificate authenticator uses the user identity to build the certificate signing
request (CSR) and certificate.

Topologies and use cases
IBM MobileFirst Platform Foundation for iOS supports various infrastructure
topologies for a set of requirements that can take advantage of LTPA or MobileFirst
security.

Reverse proxy with LTPA

A reverse proxy can be used to authenticate, and then send the user's LTPA token
after the user is authenticated. This configuration can be useful when you want to
offload IBM MobileFirst Platform Foundation for iOS from handling vital user
credentials or to use an existing authentication setup. The MobileFirst Server must
be configured for LTPA authentication to get the user identity. Both supported
LTPA configurations log the user in automatically if the LTPA token is valid and
the user is authorized. For more information about integrating IBM MobileFirst
Platform Foundation for iOS with a reverse proxy, see “Integration and
authentication with a reverse proxy” on page 13-3.

The following image shows a reverse proxy flow:

10-94 IBM MobileFirst Platform Foundation for iOS V7.0.0



High availability
High availability is provided through clustering, the ability to provide multiple
MobileFirst Server instances acting together.

Multiple MobileFirst Server instances enable horizontal scaling of the software as
well as the prevention of a single point of failure.

Clustering
The MobileFirst Server creates a cluster by deploying multiple servers that share
the database instance.

The basic setup consists of the load balancer, the cluster nodes, and a database that
is shared by the cluster nodes.

All cluster nodes are identical; that is, the content of the installation folder is the
same in all nodes. Cluster nodes do not synchronize with each other at run time.
All management data is in the MobileFirst administration services, which verify
that all cluster nodes have the same data. With WebSphere Application Server
Network Deployment, you can use built in clustering support for distributing the
MobileFirst project WAR (and the MobileFirst Shared library). For more information,
see the IBM WebSphere Application Server V8 user documentation.

MobileFirst Server can run on a VMware virtual machine. In such cases, one
machine image is created and then deployed again and again.

IBM MobileFirst Platform Foundation for iOS is stateful. It caches session state
within the server memory. The result is that if one MobileFirst Server is taken
offline, active user sessions are lost and the client is asked to log on again.

Configuring the load balancer
You can use hardware-based or software-based load balancers.

Deploying MobileFirst projects 10-95

http://ibm.biz/knowctr#SSEQTP_8.0.0/as_ditamaps/welcome_base.html


If you do not want to use a hardware-based load balancer, you can use a simpler,
software-based load balancer or reverse proxy such as the Apache Tomcat web
server. Any load balancer that can support the following features is adequate:
v Mandatory: Sticky session
v Mandatory: Reverse proxy capabilities
v Optional: SSL Acceleration

Configuration of the load balancer depends on the vendor and is not covered in
this document. It is common to define the range of the node addresses so that they
can be added or deleted dynamically.

Adding a node to the cluster
Follow the instructions for creating a IBM MobileFirst Platform Server to add a
node to the cluster.

About this task

You can add a node to the cluster, by following the instructions for creating a
MobileFirst Server:

Procedure
1. Add the IP address of the node to the load balancer or use an existing address

from a range that was pre-allocated to instances of MobileFirst Server.
2. Install the MobileFirst Server.
3. Apply the project WAR.

Firewalls
Firewalls can be configured at various layers of the IBM MobileFirst Platform
Foundation for iOS architecture.

Firewalls in front of a MobileFirst Server use the typical configuration.

Special attention must be given to a firewall layer between the IBM MobileFirst
Platform Foundation for iOS servers and the IBM MobileFirst Platform Foundation
for iOS database.
v MobileFirst Server employs database connection pooling. Firewalls may detect

idle database connections and terminate them resulting in unexpected behavior.
v Firewalls limit the number of connections allowed. This is done to prevent

Denial of Service (DoS) attacks. However, with multiple clustered MobileFirst
Server instances, the number of connections might be higher than usual.

Disaster Recovery Site
IBM MobileFirst Platform Foundation for iOS supports the creation of a separate
disaster recovery site that becomes operational if the original site goes down.

A disaster recovery site is a second, physically separate IT center on which a copy
of the IT systems exists, and springs into operation if the original site is down.
IBM MobileFirst Platform Foundation for iOS has such a site for some of its
customers.

Within the site, IBM MobileFirst Platform Foundation for iOS provides redundancy
at every level: compensating load balancers, multiple IBM MobileFirst Platform

10-96 IBM MobileFirst Platform Foundation for iOS V7.0.0



Foundation for iOS servers that scale linearly, and database redundancy through
Oracle RAC. Some customers prefer to provide another level of redundancy by
using a disaster recovery site.

The key administrative factors for such a site are:
v Architecture
v Data mirroring from master to backup site
v Switching to back up site on disaster

Architecture
The architecture of the backup site is a copy of the original site. Special
care must be taken to:
v Provide access to all corporate back-end systems.
v Create a switch that transfers incoming requests from master to backup

site.

Data mirroring
For the backup site to work, data on the master site must be mirrored to
the backup regularly:

Table 10-18. Data mirroring

Component Description Mirror frequency

IBM MobileFirst Platform
Foundation for iOS
Database

All tables must be mirrored.
The exceptions to this rule
are cache tables
(SSO_LOGIN_CONTEXTS) and
report tables (which are large
in size).

Highly dependent on
implementation and can
range from a few minutes to
24 hours. For more
information, contact software
support.

IBM MobileFirst Platform
Foundation for iOS
Software, customization,
and content

Any change in IBM
MobileFirst Platform
Foundation for iOS software,
customization, or content
must also be installed on the
mirror servers.

As it occurs.

Switching to back up site
When you switch to the backup site, some information might be lost:
v All clients lose context and disconnect. In the case of an authenticated

app, the user is prompted to log in again.
v Report information is lost (unless previously mirrored).
v Cache is lost. If Cache was implemented for various queries, an

additional server fetch is required to fill cache.

Switching back to Master Site
Before you switch back to the master site, you must mirror the database
back to the master site.

Important: The success of a recovery site is in the details. To ensure the
successful functioning of such a site, you must develop and follow a strict
written procedure, which you test regularly.

Updating MobileFirst apps in production
There are general guidelines for upgrading your MobileFirst apps when they are
already in production, on the Application Center or in app stores.

Deploying MobileFirst projects 10-97



Deploying your MobileFirst apps for the first time to MobileFirst Server and the
Application Center is covered in other sections of the information center, such as
“Deploying an application from development to a test or production environment”
on page 10-1. To recap, the general procedure is as follows:
v Build and test your app using IBM MobileFirst Platform Foundation for iOS,

and use either the MobileFirst Operations Console or the supplied Ant tasks to
deploy its .wlapp files to MobileFirst Server and the Application Center.

v Submit the generated device app files (such as .ipa for iOS) to their respective
app stores (the Apple Store in this example).

v Wait for the completion of the review and approval process. Try to avoid
updating your app before the review process is completed because doing so can
trigger a Direct Update and can confuse the reviewers.

Procedures for upgrading your app when it is already in production are contained
in this section. There are several ways to perform such upgrades, depending on
their nature:
v Is the upgrade a new version of the app that contains new features or native

code, or is it a bug fix or security upgrade?
v Is the upgrade mandatory or optional?
v If it is optional, do you want to leave the old version of the app in place and

available to users, or not?
v How and when do you want to notify users of the upgrade?

These subjects are covered in the following topics.

Deploying a new app version and leaving the old version
working

The most common upgrade path, used when you introduce new features or
modify native code, is to release a new version of your app. Consider following
these steps:
1. Increment the app version number.
2. Build and test your project and generate new .wlapp, .apk, and .ipa files for it.
3. Deploy the new .wlapp files to MobileFirst Server.
4. Submit the new .apk or .ipa files to their respective app stores.
5. Wait for review and approval, and for the apps to become available.
6. Optional - send notification message to users of the old version, announcing

the new version. See “Displaying a notification message on application startup”
on page 11-5 and “Defining administrator messages from MobileFirst
Operations Console in multiple languages” on page 11-5.

Deploying a new app version and blocking the old version

This upgrade path is used when you want to force users to upgrade to the new
version, and block their access to the old version. Consider following these steps:
1. Optional - send notification message to users of the old version, announcing a

mandatory update in a few days. See “Displaying a notification message on
application startup” on page 11-5 and “Defining administrator messages from
MobileFirst Operations Console in multiple languages” on page 11-5.

2. Increment the app version number.
3. Build and test your project and generate new .wlapp, .apk, and .ipa files for it.
4. Deploy the new .wlapp files to MobileFirst Server.

10-98 IBM MobileFirst Platform Foundation for iOS V7.0.0



5. Submit the new .apk or .ipa files to their respective app stores.
6. Wait for review and approval, and for the apps to become available.
7. Copy links to the new app version.
8. Block the old version of the app in MobileFirst Operations Console, supplying

a message and link to the new version. See “Locking an application” on page
11-3 and “Remotely disabling application connectivity” on page 11-3.

Note: If you disable the old app, it is no longer able to communicate with
MobileFirst Server. Users can still start the app and work with it offline unless you
force a server connection on app startup.

Application authenticity

This feature will not work properly for clients that were built with an older version
of IBM MobileFirst Platform Foundation for iOS when the application deployed is
of a new product version but has the same application version. Those client
requests to access the authenticity-protected resources will be denied.

To keep support of old applications using app authenticity, or block them, follow
these steps:
1. Upgrade the project using the newer version of IBM MobileFirst Platform

Foundation for iOS, as described above.
2. Increment the versions of the upgraded applications.
3. Deploy the new WAR file that was built.
4. Deploy the new applications to the server alongside the applications that were

built with the old IBM MobileFirst Platform Foundation for iOS.
5. Normally, both applications work as expected. If you want to use the new ones

only, block the old ones and refer to the new ones for upgrade.

For more information about application authenticity, see “MobileFirst application
authenticity overview” on page 8-247.

Deploying MobileFirst projects 10-99



10-100 IBM MobileFirst Platform Foundation for iOS V7.0.0



Administering MobileFirst applications

Run and maintain MobileFirst applications in production.

IBM MobileFirst Platform Foundation for iOS provides several ways to administer
MobileFirst applications in development or in production. MobileFirst Operations
Console is the main tool with which you can monitor all deployed MobileFirst
applications from a centralized web-based console.

The main operations that you can perform through MobileFirst Operations Console
are:
v Deploy mobile applications and adapters to MobileFirst Server.
v Manage application versions to deploy new versions or remotely disable old

versions.
v Manage mobile devices and users to manage access to a specific device or access

for a specific user to an application.
v Display notification messages on application startup.
v Monitor push notification services.
v Collect client-side logs for specific applications installed on a specific device.

Not every kind of administration user can perform every administration operation.
MobileFirst Operations Console, and all administration tools, have four different
roles defined for administration of MobileFirst applications. The following
MobileFirst administration roles are defined:

Monitor
In this role, a user can monitor deployed MobileFirst projects and
deployed artifacts. This role is read-only.

Operator
An Operator can perform all mobile application management operations,
but cannot add or remove application versions or adapters.

Deployer
In this role, a user can perform the same operations as the Operator, but
can also deploy applications and adapters.

Administrator
In this role, a user can perform all application administration operations.

Note: In IBM MobileFirst Platform Foundation for iOS V7.0.0, the predefined
MobileFirst Operations Console that is deployed to the embedded Liberty server
has the following authentication configuration:
v Role "worklightadmin", user "admin", password "admin"
v Role "worklightdeployer", user "deployer", password: "demo"
v Role "worklightmonitor", user "monitor", password: "demo"
v Role "worklightoperator", user "operator", password: "demo"

You must map the different administrators to these roles when you configure
MobileFirst Server during installation of MobileFirst Operations Console. See
“Installing the MobileFirst Server administration” on page 6-43.

© Copyright IBM Corp. 2006, 2016 11-1



MobileFirst Operations Console can be used to administer several runtime
environments, which are issued from several independent MobileFirst projects and
are deployed to the same application server or cluster. For more information about
deploying a MobileFirst project, see “Deploying an application from development
to a test or production environment” on page 10-1.

MobileFirst Operations Console is not the only way to administer MobileFirst
applications. IBM MobileFirst Platform Foundation for iOS also provides other
tools to incorporate administration operations into your build and deployment
process.

A set of REST services is available to perform administration operations. For API
reference documentation of these services, see “REST Services API” on page 9-4.

With this set of REST services, you can perform the same operations that you can
do in MobileFirst Operations Console. You can manage applications, adapters, and,
for example, upload a new version of an application or disable an old version.

MobileFirst applications can also be administered by using Ant tasks or with the
wladmin command line tool. See “Administering MobileFirst applications through
Ant” on page 11-11 or “Administering MobileFirst applications through the
command line” on page 11-36.

Similar to the web-based console, the REST services, Ant tasks, and command line
tools are secured and require you to provide your administrator credentials, which
enable you to perform operations within your specified role.

Administering MobileFirst applications with MobileFirst Operations
Console

You can administer MobileFirst applications through the MobileFirst Operations
Console by deploying new versions of mobile and desktop apps, by locking apps
or denying access, or by displaying notification messages.

In V6.1.0 and earlier versions of the product, MobileFirst Operations Console was
deployed in the project WAR file. If two project WAR files were deployed, each
one had its own administration console. Starting with V6.2.0, MobileFirst
Operations Console is deployed separately and can administer all runtime
environments in the same server.

You can start the console by entering one of the following URLs:
v Secure mode for production or test: https://hostname:secure_port/

worklightconsole

v Development: http://server_name:port/worklightconsole

In either case, the list of all runtime environments is displayed. Select the runtime
environment that you want to administer to access the functions of the MobileFirst
Operations Console.

You can return to the list of runtime environments by clicking the Home link at the
top of the page in MobileFirst Operations Console.

Use the MobileFirst Operations Console to manage your applications.
v To see all the applications that are installed and all the device platforms that are

supported.

11-2 IBM MobileFirst Platform Foundation for iOS V7.0.0



v To disable specific application versions on specific platforms and force users to
upgrade before they continue to use the application. When you implement direct
updates to mobile devices and desktop apps, software updates are pushed
directly to application web resources or users’ desktops

v To send out notifications to application users and to manage push notifications
from defined event sources to applications.

v To install and manage adapters that are used by applications, and to inspect
aggregated usage statistics from MobileFirst Server.

v To lock apps to prevent them from being mistakenly updated and to prevent the
redeployment of web resources for a particular application.

v To display a notification message on app start to inform users without causing
the application to exit.

For an easy way to upgrade an application, see “Upgrading a mobile application
in MobileFirst Server and the Application Center” on page 11-85.

Locking an application
You can prevent developers or administrators from mistakenly updating an
application, by locking it in MobileFirst Operations Console.

Procedure

To lock an application version for a specific environment, select Lock this version
for the application version in the relevant environment.

Remotely disabling application connectivity
You can use the Remote Disable procedure to deny a user's access to a certain
application version due to phase-out policy or due to security issues encountered
in the application.

Before you begin

If you need to use the Remote Disable feature with servers and clusters that
experience heavy loads, consider enabling the Remote Disable cache. Enabling the
cache can improve performance by reducing how frequently the database is
checked to see if an app has been remotely disabled. By default, the cache is
disabled. To enable and configure the cache, add the following lines to the
MobileFirst project worklight.properties file:
v wl.remoteDisable.cache.enabled=true

v wl.remoteDisable.cache.refreshIntervalInSeconds=1

The refresh interval determines how long (measured in seconds) values are kept in
the cache before they are refreshed from the database. If you increase the interval,
performance is improved as a result of fewer connections being made to the
database, but you increase the duration before the remote disable state comes into
effect. For example, if your infrastructure contains a cluster of four MobileFirst
Server and you set wl.remoteDisable.cache.refreshIntervalInSeconds=1, the
database is accessed 4 times per second to check the remote disable state.

Note: If code that uses the Remote Disable feature accesses a resource that is
protected by OAuth authentication, and the client has a valid token, the
MobileFirst Server is not called. As a result, the server does not check whether a
specific application is disabled. The MobileFirst Server is called when the token
expires or when the Remote Disable realm inside the token expires. When the

Administering MobileFirst applications 11-3



realm expires, the Remote Disable authenticator is invoked and the server checks
whether the specific application version is disabled.

About this task

Using the MobileFirst Operations Console, you can disable access to a specific
version of a specific application on a specific mobile operating system and provide
a custom message to the user.

Procedure
1. To use this Remote Disable feature, change the status of the application version

that must be disabled from Active to Access Disabled.
2. Add a custom message as shown in the following text:

This version is no longer supported. Please upgrade to the next version.

You can also specify a URL for the new version of the application (usually in
the appropriate public or private app store). For some environments, the
Application Center provides a URL to access the Details view of an application
version directly. See “Application properties” on page 11-82.
When users run an application that is Remotely Disabled, they receive a text
message about the access denial. They can either close the dialog and continue
working offline (that is, without access to the MobileFirst Server), or they can
upgrade to the latest version of the application. Closing the dialog keeps the
application running, but any application interaction that requires server
connectivity causes the dialog to be displayed again.
Modifying the behavior of the Remote Disable operation

As noted above, the default dialog that is displayed to a user when an
application is remotely disabled contains two buttons, Get new version, and
Close. Clicking Close closes the dialog, but allows the user to continue
working offline, with no connection to the MobileFirst Server.

Note: The actual text on the two buttons is customizable, and can be
overridden in the message.properties file.
In older versions of IBM MobileFirst Platform Foundation for iOS, when you
disabled an application using the MobileFirst Operations Console, the default
behavior was to completely disable or end it, such that the application would
not function, even in offline mode.
There is a way to modify the default behavior of the Remote Disable feature to
completely disable an application if there is a need to do so (such as a severe
security flaw).
v Add a new Boolean attribute to your initOptions.js file, named

showCloseOnRemoteDisableDenial.
v If this attribute is missing or is set to true, the Remote Disable notification

displays the default behavior described earlier.
v If this attribute is set to false (that is, "Do not show the Close button on the

dialog"), the behavior is as follows:
– If you disable the application on the MobileFirst Operations Console and

specify a link to the new version, the dialog displays only a single button,
the Get new version button. The Close button is not shown. The user has
no choice but to update the application, and this preserves the older
behavior of forcing the user to exit the application.

– If you disable the application and do not specify a link to the new version,
the dialog again displays only a single button, but in this case the Close
button.

11-4 IBM MobileFirst Platform Foundation for iOS V7.0.0



Related tasks:
“Defining administrator messages from MobileFirst Operations Console in multiple
languages”
You can set the deny and notification messages from IBM MobileFirst Platform
Operations Console in multiple languages.

Displaying a notification message on application startup
You can set a notification message that is displayed for the user when the
application starts, but does not cause the application to exit.

About this task

You can use this type of message to notify application users of temporary
situations, such as planned service downtime.

Procedure
1. For the relevant application, change the status of the application version from

Active to Active, Notifying.
2. Add a custom message, such as the following text:

Server downtime is planned for Saturday 4am to 6am.

Results

The message is displayed the next time that the app is started or resumed. The
message is displayed only once.
Related tasks:
“Defining administrator messages from MobileFirst Operations Console in multiple
languages”
You can set the deny and notification messages from IBM MobileFirst Platform
Operations Console in multiple languages.

Defining administrator messages from MobileFirst Operations
Console in multiple languages

You can set the deny and notification messages from IBM MobileFirst Platform
Operations Console in multiple languages.

About this task

The messages are sent based on the locale of the device, and must comply with the
ISO 639-1 and ISO 3166-2 standards.

Procedure

To add the deny and notification messages for multiple languages, follow these
steps.
1. In MobileFirst Operations Console, select the status Active, Notifying, or

Access Disabled in the list of application rules.
2. Click SUPPORTED LOCALES. The name “SUPPORTED LOCALES” is

followed by the number of available locales; for example, SUPPORTED
LOCALES (7) indicates that seven locales are available for the messages that
you want to add.
In the Messages for multiple languages window, you can upload a CSV file.

Administering MobileFirst applications 11-5



Such a CSV file must define a series of lines. Each line contains a locale code,
such as “fr-FR” for French (France) or “en” for English, a comma, and the
corresponding message text. The specified locale codes must comply with the
ISO 639-1 and ISO 3166-2 standards. The first line with an empty locale defines
the default message. If you did not define an alternative, or if the locale from
the client matches none of the uploaded locales, this default message is
displayed.

Note: To create a CSV file, you must use an editor that supports UTF-8
encoding, such as Notepad.
The following figure shows an example of a CSV file:

3. Click UPLOAD CSV to browse and select the CSV file that you want to
upload. In “List of supported locales”, you can see the locales and translated
messages that you uploaded.

Figure 11-1. Sample CSV file

11-6 IBM MobileFirst Platform Foundation for iOS V7.0.0



4. Process the uploaded messages:
v To clear “List of supported locales”, click CLEAR. This action does not clear

the default message.
v To validate the messages that you uploaded, click OK.
v To discard the changes and return to the console, click CANCEL.

Note: If you modified the default message, then the new default message
shows.

5. Click SAVE to save the default message and the multilingual messages.
The following figure displays the mobile device of the user, which shows the
localized message. The title and the button caption are in English. If the locale
does not supply any messages, the default message is returned.

Figure 11-2. Uploading a CSV file

Administering MobileFirst applications 11-7



Error log of operations on runtime environments
Use the error log to access failed management operations initiated from MobileFirst
Operations Console or the command line on the selected runtime environment,
and to see the effect of the failure on the servers.

The error log shows the most recent operation first.

You access the error log by clicking Error log of a runtime environment in
MobileFirst Operations Console.

Figure 11-3. Application Disabled message

11-8 IBM MobileFirst Platform Foundation for iOS V7.0.0



Expand the row that refers to the failed operation to access more information
about the current state of each server. To access the complete log, download the log
by clicking Download log.

Audit log of administration operations
In the MobileFirst Operations Console, you can refer to an audit log of
administration operations.

MobileFirst Operations Console provides access to an audit log for login, logout,
and all administration operations, such as deploying apps or adapters or locking
apps. The audit log can be disabled by setting the ibm.worklight.admin.audit Java
Naming and Directory Interface (JNDI) property on the web application of the
MobileFirst Administration service (worklightadmin.war) to false.

Each record in the audit log has the following fields, separated by a vertical bar
(|); see Figure 11-5 on page 11-11.

Table 11-1. Fields in audit log records

Field name Description

Timestamp Date and time when the record was created.

Type The type of operation. See list of operation
types for the possible values.

User The username of the user who is signed in.

Outcome The outcome of the operation; possible
values are SUCCESS, ERROR, PENDING.

Figure 11-4. Sample error log

Administering MobileFirst applications 11-9



Table 11-1. Fields in audit log records (continued)

Field name Description

ErrorCode If the outcome is ERROR, ErrorCode indicates
what the error is.

Runtime Name of the MobileFirst project associated
with the operation.

The following list shows the possible values of Type of operation.
v Login

v Logout

v AdapterDeployment

v AdapterDeletion

v ApplicationDeployment

v ApplicationDeletion

v ApplicationLockChange

v ApplicationAuthenticityCheckRuleChange

v ApplicationAccessRuleChange

v ApplicationVersionDeletion

v add config profile

v DeviceStatusChange

v DeviceApplicationStatusChange

v DeviceDeletion

v unsubscribeSMS

v DeleteDevice

v DeleteSubscriptions

v SetPushEnabled

v SetGCMCredentials

v DeleteGCMCredentials

v sendMessage

v sendMessages

v setAPNSCredentials

v DeleteAPNSCredentials

v setMPNSCredentials

v deleteMPNSCredentials

v createTag

v updateTag

v deleteTag

v add runtime

v delete runtime

11-10 IBM MobileFirst Platform Foundation for iOS V7.0.0



Administering MobileFirst applications through Ant
You can administer MobileFirst applications through the wladm Ant task.

Comparison with other facilities

You can execute administration operations with IBM MobileFirst Platform
Foundation for iOS in the following ways:
v The MobileFirst Operations Console, which is interactive.
v The wladm Ant task.
v The wladm program.
v The MobileFirst administration REST services.

The wladm Ant task, wladm program, and REST services are useful for automated or
unattended execution of operations, such as eliminating operator errors in
repetitive operations or operating outside the operator's normal working hours.

The wladm Ant task and the wladm program are simpler to use and have better error
reporting than the REST services. The advantage of the wladm Ant task over the
wladm program is that it is platform independent and easier to integrate when
integration with Ant is already available.

Figure 11-5. Sample audit log of MobileFirst administration operations

Administering MobileFirst applications 11-11



Prerequisites

Apache Ant is required to run the wladm task. For information about the minimum
supported version of Ant, see “System requirements” on page 2-7.

For convenience, Apache Ant 1.8.4 is included in MobileFirst Server. In the
product_install_dir/shortcuts/ directory, the following scripts are provided.
v ant for UNIX / Linux
v ant.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

You can use the wladm Ant task on a different computer than the one on which you
installed MobileFirst Server.
v Copy the file product_install_dir/WorklightServer/worklight-ant-

deployer.jar to the computer.
v Make sure that a supported version of Apache Ant and a Java runtime

environment are installed on the computer.

To use the wladm Ant task, add this initialization command to the Ant script:
<taskdef resource="com/worklight/ant/deployers/antlib.xml">

<classpath>
<pathelement location="product_install_dir/WorklightServer/worklight-ant-deployer.jar"/>

</classpath>
</taskdef>

Other initialization commands that refer to the same worklight-ant-deployer.jar
file are redundant because the initialization by defaults.properties is also
implicitly done by antlib.xml. Here is one example of a redundant initialization
command:
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<pathelement location="product_install_dir/WorklightServer/worklight-ant-deployer.jar"/>

</classpath>
</taskdef>

Calling the wladm Ant task
You can use the wladm Ant task and its associated commands to administer
MobileFirst applications.

Syntax

Call the wladm Ant task as follows:
<wladm url=... user=... password=...|passwordfile=... [secure=...]>

some commands
</wladm>

11-12 IBM MobileFirst Platform Foundation for iOS V7.0.0



Attributes

The wladm Ant task has the following attributes:

Table 11-2. List of <wladm> attributes

Attribute Description Required Default

url The base URL of the MobileFirst web
application for administration services

Yes

secure Whether to avoid operations with security risks No true

user The user name for accessing the MobileFirst
administration services

Yes

password The password for the user Either one is
requiredpasswordfile The file that contains the password for the user

timeout Timeout for the entire REST service access, in
seconds

No

connectTimeout Timeout for establishing a network connection,
in seconds

No

socketTimeout Timeout for detecting the loss of a network
connection, in seconds

No

connectionRequestTimeout Timeout for obtaining an entry from a
connection request pool, in seconds

No

url

The base URL preferably uses the HTTPS protocol. For example, if you use
default ports and context roots, use the following URL.
v For WebSphere Application Server: https://server:9443/worklightadmin
v For Tomcat: https://server:8443/worklightadmin

secure The default value is true. Setting secure="false" might have the following
effects:
v The user and password might be transmitted in an unsecured way,

possibly even through unencrypted HTTP.
v The server's SSL certificates are accepted even if self-signed or if they

were created for a different host name than the specified server's host
name.

password

Specify the password either in the Ant script, through the password
attribute, or in a separate file that you pass through the passwordfile
attribute. The password is sensitive information and therefore needs to be
protected. You must prevent other users on the same computer from
knowing this password. To secure the password, before you enter the
password into a file, remove the read permissions of the file for users other
than yourself. For example, you can use one of the following commands:
v On UNIX: chmod 600 adminpassword.txt
v On Windows: cacls adminpassword.txt /P Administrators:F

%USERDOMAIN%\%USERNAME%:F

Additionally, you might want to obfuscate the password to hide it from an
occasional glimpse. To do so, use the wladm config password command to

Administering MobileFirst applications 11-13



store the obfuscated password in a configuration file. Then, you can copy
and paste the obfuscated password to the Ant script or to the password
file.

The wladm call contains commands that are encoded in inner elements. These
commands are executed in the order in which they are listed. If one of the
commands fails, the remaining commands are not executed, and the wladm call
fails.

Elements

You can use the following elements in wladm calls:

Table 11-3. Elements that can be used in <wladm>

Element Description Count

show-info Shows user and configuration
information

0..∞

show-versions Shows versions information 0..∞

list-runtimes Lists the runtimes 0..∞

show-runtime Shows information about a runtime 0..∞

delete-runtime Deletes a runtime 0..∞

list-adapters Lists the adapters 0..∞

deploy-adapter Deploys an adapter 0..∞

show-adapter Shows information about an adapter 0..∞

delete-adapter Deletes an adapter 0..∞

adapter Other operations on an adapter 0..∞

list-apps Lists the apps 0..∞

deploy-app Deploys an app 0..∞

show-app Shows information about an app 0..∞

delete-app Deletes an app 0..∞

delete-app-version Delete a version of an app 0..∞

app-version Other operations on an app 0..∞

list-beacons Lists the beacons 0..∞

set-beacon Specifies information about a beacon 0..∞

show-beacon Shows information about a beacon 0..∞

remove-beacon Removes information about a beacon 0..∞

list-beacon-triggers Lists the beacon triggers 0..∞

set-beacon-trigger Specifies a beacon trigger 0..∞

show-beacon-trigger Shows a beacon trigger 0..∞

delete-beacon-trigger Deletes a beacon trigger 0..∞

list-beacon-trigger-associations Lists the associations between
beacons and beacon triggers

0..∞

set-beacon-trigger-association Specifies an association between a
beacon and a beacon trigger

0..∞

show-beacon-trigger-association Shows the association between a
beacon and a beacon trigger

0..∞

11-14 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-3. Elements that can be used in <wladm> (continued)

Element Description Count

delete-beacon-trigger-association Deletes the association between a
beacon and a beacon trigger

0..∞

list-devices Lists the devices 0..∞

remove-device Removes a device 0..∞

device Other operations for a device 0..∞

XML Format

The output of most commands is in XML, and the input to specific commands,
such as <set-accessrule>, is in XML too. You can find the XML schemas of these
XML formats in the product_install_dir/WorklightServer/wladm-schemas/
directory. The commands that receive an XML response from the server verify that
this response conforms to the specific schema. You can disable this check by
specifying the attribute xmlvalidation="none".

Output character set

Normal output from the wladm Ant task is encoded in the encoding format of the
current locale. On Windows, this encoding format is the so-called "ANSI code
page". The effects are as follows:
v Characters outside of this character set are converted to question marks when

they are output.
v When the output goes to a Windows command prompt window (cmd.exe),

non-ASCII characters are incorrectly displayed because such windows assume
characters to be encoded in the so-called "OEM code page".

To work around this limitation:
v On operating systems other than Windows, use a locale whose encoding is

UTF-8. This locale is the default locale on Red Hat Linux and OS X. Many other
operating systems have the en_US.UTF-8 locale.

v Or use the attribute output="some file name" to redirect the output of a wladm
command to a file.

Commands for adapters
When you call the wladm Ant task, you can include various commands for
adapters.

The list-adapters command

The list-adapters command returns a list of the adapters deployed for a given
runtime. It has the following attributes:

Table 11-4. list-adapters command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

output Name of output file. No

Administering MobileFirst applications 11-15



Table 11-4. list-adapters command attributes (continued)

Attribute Description Required Default

outputproperty Name of Ant property for the
output.

No

Example:

<list-adapters runtime="worklight"/>

This command is based on the “Adapters (GET)” on page 9-15 REST service.

The deploy-adapter command

The deploy-adapter command deploys an adapter in a runtime. It has the
following attributes:

Table 11-5. deploy-adapter command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

file Binary adapter file (.adapter). Yes Not available

Example:

<deploy-adapter runtime="worklight" file="MyAdapter.adapter"/>

This command is based on the “Adapter (POST)” on page 9-12 REST service.

The show-adapter command

The show-adapter command shows details about an adapter. It has the following
attributes:

Table 11-6. show-adapter command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an adapter. Yes Not available

output Name of output file. No

outputproperty Name of Ant property for the
output.

No

Example:

<show-adapter runtime="worklight" name="MyAdapter"/>

This command is based on the “Adapter (GET)” on page 9-8 REST service.

11-16 IBM MobileFirst Platform Foundation for iOS V7.0.0



The delete-adapter command

The delete-adapter command removes (undeploys) an adapter from a runtime. It
has the following attributes:

Table 11-7. delete-adapter command attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an adapter. Yes Not available

Example:

<delete-adapter runtime="worklight" name="MyAdapter"/>

This command is based on the “Adapter (DELETE)” on page 9-5 REST service.

The adapter command group

The adapter command group has the following attributes:

Table 11-8. adapter command group attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an adapter. Yes Not available

It supports the following elements:

Table 11-9. adapter command group elements

Element Description Count

get-binary Gets the binary data. 0..∞

The get-binary command

The get-binary command inside an <adapter> element returns the binary adapter
file. It has the following attributes:

Table 11-10. get-binary command attributes

Attribute Description Required Default

tofile Name of the output file. Yes Not available

Example:
<adapter runtime="worklight" name="MyAdapter">

<get-binary tofile="/tmp/MyAdapter.adapter"/>
</adapter>

This command is based on the “Adapter Binary (GET, HEAD)” on page 9-4 REST
service.

Administering MobileFirst applications 11-17



Commands for apps
When you call the wladm Ant task, you can include various commands for apps.

The enable-extended-authenticity command

The enable-extended-authenticity command creates a .wlapp file that is based on
an original .wlapp file but has extended authenticity checking enabled. It has the
following attributes:

Table 11-11. The enable-extended-authenticity command's attributes

Attribute Description Required Default

srcwlappfile Original binary app file
(.wlapp, not .apk or .ipa)

Yes Not available

devicefile Binary mobile app file
(.apk, .ipa, or .xap)

Yes Not available

destwlappfile Output binary app file
(.wlapp, not .apk or .ipa)

Yes Not available

Example
<enable-extended-authenticity srcwlappfile="myapp-iphone-1.0.wlapp"

devicefile="MyApp.ipa"
destwlappfile="myapp-iphone-1.0.extauth.wlapp"/>

Note: This command operates locally, without connecting to the server.

For more information about enabling extended app authenticity checking, see
“Configuring extended app authenticity checking” on page 10-51.

The list-apps command

The list-apps command returns a list of the apps that are deployed in a runtime.
It has the following attributes:

Table 11-12. The list-apps command's attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

output Name of output file. No

outputproperty Name of Ant property for
the output.

No

Example

<list-apps runtime="worklight"/>

This command is based on the “Applications (GET)” on page 9-49 REST service.

The deploy-app command

The deploy-app command deploys an app (possibly with multiple environments)
in a run time. It has the following attributes:

11-18 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-13. The deploy-app command's attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

file Binary app file (.wlapp,
not .apk, or .ipa).

Yes Not available

Example

<deploy-app runtime="worklight" file="MyApp-all.wlapp"/>

This command is based on the “Application (POST)” on page 9-45 REST service.

The show-app command

The show-app command returns a list of the apps that are deployed in a runtime. It
has the following attributes:

Table 11-14. The show-app command's attributes

Attribute Description Required Default

runtime Name of the run time web
application / MobileFirst
project.

Yes Not available

name Name of an app. Yes Not available

output Name of output file. No

outputproperty Name of Ant property for
the output.

No

Example

<show-app runtime="worklight" name="MyApp"/>

This command is based on the “Application (GET)” on page 9-41 REST service.

The delete-app command

The delete-app command removes (undeploys) an app, with all its app versions,
for all environments for which it was deployed, from a runtime. It has the
following attributes:

Table 11-15. The delete-app command's attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an app. Yes Not available

Administering MobileFirst applications 11-19



Example

<delete-app runtime="worklight" name="MyApp"/>

This command is based on the “Application (DELETE)” on page 9-38 REST service.

The delete-app-version command

The delete-app-version command removes (undeploys) an app version from a
runtime. It has the following attributes:

Table 11-16. The delete-app-version command's attributes

Attribute Description Required Default

runtime Name of the runtime web
application / MobileFirst
project.

Yes Not available

name Name of an app. Yes Not available

environment Mobile platform. Yes Not available

version Version of the app. Yes Not available

Example

<delete-app-version runtime="worklight" name="MyApp" environment="iphone"
version="1.1"/>

This command is based on the “App Version (DELETE)” on page 9-31 REST
service.

The app-version command group

The app-version command group has the following attributes:

Table 11-17. The app-version command's group attributes

Attribute Description Required Default

runtime Name of the run time web
application / MobileFirst
project.

Yes Not available

name Name of an app. Yes Not available

environment Mobile platform. Yes Not available

version Version of the app. Yes Not available

It supports the following elements:

Table 11-18. The app-version command's group elements

Element Description Count

get-binary Gets the binary data. 0..∞

get-accessrule Gets the access rule. 0..∞

set-accessrule Changes the access rule. 0..∞

get-authenticitycheckrule Gets the authenticity check
rule.

0..∞

11-20 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-18. The app-version command's group elements (continued)

Element Description Count

set-authenticitycheckrule Changes the authenticity
check rule.

0..∞

get-lock Gets the lock state. 0..∞

set-lock Changes the lock state. 0..∞

The get-binary command

The get-binary command, inside an <app-version> element, returns the binary file
wlapp for a version of an app. It has the following attributes:

Table 11-19. The get-binary command's attributes

Attribute Description Required Default

tofile Name of the output file. Yes Not available

Example
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<get-binary tofile="/tmp/MyApp.wlapp"/>
</app-version>

This command is based on the “Application Binary (GET, HEAD)” on page 9-37
REST service.

The get-accessrule command

The get-accessrule command returns the access rule for an app version. It has the
following attributes:

Table 11-20. The get-accessrule command's attributes

Attribute Description Required Default

output Name of a file in which to
store the output.

No

outputproperty Name of an Ant property
in which to store the
output.

No

Example
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<get-accessrule output="/tmp/MyApp-accessrule.xml"/>
</app-version>

This command is based on the “Application (GET)” on page 9-41 REST service.

The set-accessrule command

The set-accessrule command changes the access rule for an app version. It has
the following attributes:

Administering MobileFirst applications 11-21



Table 11-21. The set-accessrule command's attributes

Attribute Description Required Default

file Name of the input file. Yes Not available

Example
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<set-accessrule file="/tmp/new-accessrule.xml"/>
</app-version>

This command is based on the “App Version Access Rule (PUT)” on page 9-27
REST service.

The get-authenticitycheckrule command

The get-authenticitycheckrule command returns the authenticity check rule for
an app version. This command is no longer supported with servers of IBM
MobileFirst Platform Foundation for iOS V7.0.0 or later. This command is only
available with V6.2.0 and V6.3.0. It has the following attributes:

Table 11-22. The get-authenticitycheckrule command's attributes

Attribute Description Required Default

output Name of a file in which to
store the output.

No

outputproperty Name of an Ant property
in which to store the
output.

No

Example
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<get-authenticitycheckrule output="/tmp/MyApp-authenticitycheckrule.txt"/>
</app-version>

This command is based on the “Application (GET)” on page 9-41 REST service.

The set-authenticitycheckrule command

The set-authenticitycheckrule command changes the authenticity check rule for
an app version. This command is no longer supported with servers of IBM
MobileFirst Platform Foundation for iOS V7.0.0 or later. This command is only
available with V6.2.0 and V6.3.0. It has the following attributes:

Table 11-23. The set-authenticitycheckrule command's attributes

Attribute Description Required Default

action Action to perform for
authenticity checking.

Yes Not available

The possible actions are:
v DISABLED: Authenticity is not checked.
v IGNORED: Authenticity is checked, but not enforced. If it fails, only a warning is

given and the session is authorized.
v ENABLED: Authenticity is checked and enforced.

11-22 IBM MobileFirst Platform Foundation for iOS V7.0.0



Example
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<set-authenticitycheckrule action="enabled"/>
</app-version>

The get-lock command

The get-lock command returns information about whether an app version is
locked or unlocked. It has the following attributes:

Table 11-24. The get-lock command's attributes

Attribute Description Required Default

output Name of a file in which to
store the output.

No

outputproperty Name of an Ant property
in which to store the
output.

No

Example
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<get-lock output="/tmp/MyApp-lock.txt"/>
</app-version>

This command is based on the “Application (GET)” on page 9-41 REST service.

The set-lock command

The set-lock command sets an app version to locked or unlocked state. It has the
following attributes:

Table 11-25. The set-lock command's attributes

Attribute Description Required Default

lock New lock state. Yes Not available

The possible lock values are true and false.

Example
<app-version runtime="worklight" name="MyApp" environment="iphone" version="1.1">

<set-lock lock="true"/>
</app-version>

This command is based on the “App Version Lock (PUT)” on page 9-35 REST
service.

Commands for beacons
When you call the wladm Ant task, you can include various commands for the
beacons and beacon triggers. A beacon is a piece of information that is associated
with an iBeacon. A beacon trigger is an action that a mobile device runs in relation
to an iBeacon, when there is an association between the beacon and the beacon
trigger.

The list-beacons command

The list-beacons command returns a list of the beacons that match a given UUID
and optionally, a given major and minor number. It has the following attributes.

Administering MobileFirst applications 11-23



Table 11-26. list-beacons command attributes

Attribute Description Required Default

uuid UUID (32 hex digits)
of the beacons to
search for.

Only if major or minor
are specified

wild

major Major number of the
beacons to search for.

No wild

minor Minor number of the
beacons to search for.

No wild

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<list-beacons uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6"/>

This command is based on the “Beacons (GET)” on page 9-83 REST service.

The set-beacon command

The set-beacon command specifies or updates information about a beacon. It has
the following attributes:

Table 11-27. set-beacon command attributes

Attribute Description Required Default

file Name of the input
file.

Yes Not available

The input file can be in JSON or XML format. If it is in XML format, it must follow
the schema that is given in the file product_install_dir/WorklightServer/wladm-
schemas/input/beacon.xsd.

Example:

<set-beacon file="entrance.xml"/>

This command is based on the “Beacons (PUT)” on page 9-86 REST service.

The show-beacon command

The show-beacon command shows details about a beacon. It has the following
attributes:

Table 11-28. show-beacon command attributes

Attribute Description Required Default

uuid UUID (32 hex digits)
of the beacon.

Yes Not available

major Major number of the
beacon.

Yes Not available

minor Minor number of the
beacon.

Yes Not available

11-24 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-28. show-beacon command attributes (continued)

Attribute Description Required Default

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-beacon uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1"
minor="23"/>

This command is based on the “Beacons (GET)” on page 9-83 REST service.

The remove-beacon command

The remove-beacon command removes (clears) the information about a beacon. It
has the following attributes:

Table 11-29. remove-beacon command attributes

Attribute Description Required Default

uuid UUID (32 hex digits)
of the beacon.

Yes Not available

major Major number of the
beacon.

Yes Not available

minor Minor number of the
beacon.

Yes Not available

Example:

<remove-beacon uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1"
minor="23"/>

This command is based on the “Beacons (DELETE)” on page 9-80 REST service.

The list-beacon-triggers command

The list-beacon-triggers command returns the list of beacon triggers, belonging
to a given runtime. It has the following attributes:

Table 11-30. list-beacon-triggers command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

Administering MobileFirst applications 11-25



<list-beacon-triggers runtime="worklight"/>

This command is based on the “Beacon Triggers (GET)” on page 9-69 REST service.

The set-beacon-trigger command

The set-beacon-trigger command specifies or updates information about a beacon
trigger, belonging to a given runtime. It has the following attributes:

Table 11-31. set-beacon-trigger command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

file Name of the input
file.

Yes Not available

The input file can be in JSON or XML format. If it is in XML format, it must follow
the schema that is given in the file product_install_dir/WorklightServer/wladm-
schemas/input/beacon-trigger.xsd.

Example:

<set-beacon-trigger runtime="worklight" file="entrance-alert.xml"/>

This command is based on the “Beacon Triggers (PUT)” on page 9-76 REST service.

The show-beacon-trigger command

The show-beacon-trigger command shows details about a beacon trigger,
belonging to a given runtime. It has the following attributes:

Table 11-32. show-beacon-trigger command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

name Name of the beacon
trigger.

Yes Not available

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-beacon-trigger runtime="worklight" name="entrance-alert"/>

This command is based on the “Beacon Trigger (GET)” on page 9-67 REST service.

The delete-beacon-trigger command

The delete-beacon-trigger command deletes a beacon trigger from a given
runtime. It has the following attributes:

11-26 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-33. delete-beacon-trigger command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

name Name of the beacon
trigger.

Yes Not available

Example:

<delete-beacon-trigger runtime="worklight" name="entrance-alert"/>

This command is based on the “Beacon Trigger (DELETE)” on page 9-64 REST
service.

The list-beacon-trigger-associations command

The list-beacon-trigger-associations command returns the list of associations
between beacons and beacon triggers that match given criteria, belonging to an
app in a given runtime. It has the following attributes:

Table 11-34. list-beacon-trigger-associations command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

app Name of an app. Yes Not available

uuid UUID (32 hex digits)
of the beacon.

Only if major or
minor are specified

major Major number of the
beacon.

No

minor Minor number of the
beacon.

No

triggerName Name of the beacon
trigger.

No

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Examples:

<list-beacon-trigger-associations runtime="worklight" app="productguide"/>

<list-beacon-trigger-associations runtime="worklight" app="productguide"
uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1" minor="23"/>

<list-beacon-trigger-associations runtime="worklight" app="productguide"
triggerName="entrance-alert"/>

Administering MobileFirst applications 11-27



This command is based on the “Associate beacons and triggers (GET)” on page
9-57 REST service.

The set-beacon-trigger-association command

The set-beacon-trigger-association command specifies an association between a
beacon and a beacon trigger, belonging to an app in a given runtime. It has the
following attributes:

Table 11-35. set-beacon-trigger-association command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

app Name of an app. Yes Not available

uuid UUID (32 hex digits)
of the beacon.

Yes Not available

major Major number of the
beacon.

Yes Not available

minor Minor number of the
beacon.

Yes Not available

triggerName Name of the beacon
trigger.

Yes Not available

Example:

<set-beacon-trigger-association runtime="worklight" app="productguide"
uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1" minor="23"
triggerName="entrance-alert"/>

This command is based on the “Associate beacons and triggers (PUT)” on page
9-59 REST service.

The show-beacon-trigger-association command

The show-beacon-trigger-association command shows an association between a
beacon and a beacon trigger, belonging to an app in a given runtime. It has the
following attributes:

Table 11-36. show-beacon-trigger-association command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

app Name of an app. Yes Not available

uuid UUID (32 hex digits)
of the beacon.

Yes Not available

major Major number of the
beacon.

Yes Not available

minor Minor number of the
beacon.

Yes Not available

11-28 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-36. show-beacon-trigger-association command attributes (continued)

Attribute Description Required Default

triggerName Name of the beacon
trigger.

Yes Not available

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-beacon-trigger-association runtime="worklight" app="productguide"
uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1" minor="23"
triggerName="entrance-alert"/>

This command is based on the “Associate beacons and triggers (GET)” on page
9-57 REST service.

The delete-beacon-trigger-association command

The delete-beacon-trigger-association command deletes an association between
a beacon and a beacon trigger from an app in a given runtime. It has the following
attributes:

Table 11-37. delete-beacon-trigger-association command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

app Name of an app. Yes Not available

uuid UUID (32 hex digits)
of the beacon.

Yes Not available

major Major number of the
beacon.

Yes Not available

minor Minor number of the
beacon.

Yes Not available

triggerName Name of the beacon
trigger.

Yes Not available

Example:

<delete-beacon-trigger-association runtime="worklight" app="productguide"
uuid="496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6" major="1" minor="23"
triggerName="entrance-alert"/>

This command is based on the “Associate beacons and triggers (DELETE)” on page
9-53 REST service.

Commands for devices
When you call the wladm Ant task, you can include various commands for devices.

Administering MobileFirst applications 11-29



The list-devices command

The list-devices command returns the list of devices that have contacted the
apps of a runtime. It has the following attributes:

Table 11-38. list-devices command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

query A friendly name or
user identifier to
search for.

No

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

The query parameter specifies a string to search for. All devices that have a
friendly name or user identifier that contains this string (with case-insensitive
matching) are returned.

Examples:

<list-devices runtime="worklight"/>

<list-devices runtime="worklight" query="john"/>

This command is based on the “Devices (GET)” on page 9-100 REST service.

The remove-device command

The remove-device command clears the record about a device that has contacted
the apps of a runtime. It has the following attributes:

Table 11-39. remove-device command attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

id Unique device
identifier.

Yes Not available

Example:

<remove-device runtime="worklight" id="496E974CCEDE86791CF9A8EF2E5145B6"/>

This command is based on the “Device (DELETE)” on page 9-94 REST service.

11-30 IBM MobileFirst Platform Foundation for iOS V7.0.0



The device command group

The device command group has the following attributes:

Table 11-40. device command group attributes

Attribute Description Required Default

runtime Name of the runtime
web application /
MobileFirst project.

Yes Not available

id Unique device
identifier.

Yes Not available

It supports the following elements:

Table 11-41. device command group elements

Element Description Count

set-status Changes the status. 0..∞

set-appstatus Changes the status for an
app.

0..∞

The set-status command

The set-status command changes the status of a device, in the scope of a runtime.
It has the following attributes:

Table 11-42. set-status command attributes

Attribute Description Required Default

status New status. Yes Not available

The status can be one of:
v ACTIVE

v LOST

v STOLEN

v EXPIRED

v DISABLED

Example:
<device runtime="worklight" id="496E974CCEDE86791CF9A8EF2E5145B6">

<set-status status="EXPIRED"/>
</device>

This command is based on the “Device Status (PUT)” on page 9-97 REST service.

The set-appstatus command

The set-appstatus command changes the status of a device, regarding an app in a
runtime. It has the following attributes:

Table 11-43. set-appstatus command attributes

Attribute Description Required Default

app Name of an app. Yes Not available

Administering MobileFirst applications 11-31



Table 11-43. set-appstatus command attributes (continued)

Attribute Description Required Default

status New status. Yes Not available

The status can be one of:
v ENABLED

v DISABLED

Example:
<device runtime="worklight" id="496E974CCEDE86791CF9A8EF2E5145B6">

<set-appstatus app="MyApp" status="DISABLED"/>
</device>

This command is based on the “Device Application Status (PUT)” on page 9-90
REST service.

Commands for troubleshooting
The following commands can help investigate problems with the MobileFirst
Server web applications.

The show-info command

The show-info command shows basic information about the MobileFirst
administration services that can be returned without accessing any runtime nor
database. This command can be used to test whether the MobileFirst
administration services are running at all. It has the following attributes:

Table 11-44. show-info command attributes

Attribute Description Required Default

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-info/>

The show-versions command

The show-versions command displays the MobileFirst versions of various
components:
v wladmVersion: the exact MobileFirst Server version number from which

worklight-ant-deployer.jar is taken.
v productVersion: the exact MobileFirst Server version number from which

worklightadmin.war is taken.

And for every project WAR file:
v serverVersion: the exact MobileFirst Server version number from which

worklight-jee-library.jar is taken.
v platformVersion: the exact version number of the MobileFirst development tools

that built the project WAR file.

11-32 IBM MobileFirst Platform Foundation for iOS V7.0.0



It has the following attributes:

Table 11-45. show-versions command attributes

Attribute Description Required Default

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<show-versions/>

The list-runtimes command

The list-runtimes command returns a list of the deployed runtimes (MobileFirst
projects). It has the following attributes:

Table 11-46. list-runtimes command attributes

Attribute Description Required Default

inDatabase Whether to look in
the database instead
of via MBeans.

No false

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Examples:

<list-runtimes/>

<list-runtimes inDatabase="true"/>

This command is based on the “Runtimes (GET)” on page 9-158 REST service.

The show-runtime command

The show-runtime command shows information about a given deployed runtime
(MobileFirst project). It has the following attributes:

Table 11-47. show-runtime command attributes

Attribute Description Required Default

runtime Name of the runtime
web application or
MobileFirst project.

Yes Not available

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

Administering MobileFirst applications 11-33



<show-runtime runtime="worklight"/>

This command is based on the “Runtime (GET)” on page 9-147 REST service.

The delete-runtime command

The delete-runtime command deletes the runtime, including its apps and
adapters, from the database. It is only possible to delete a runtime when its web
application is stopped. It has the following attributes:

Table 11-48. delete-runtime command attributes

Attribute Description Required Default

runtime Name of the runtime
web application or
MobileFirst project.

Yes Not available

condition Condition when to
delete it: empty or
always (dangerous!)

No

Example:

<delete-runtime runtime="worklight" condition="empty"/>

This command is based on the “Runtime (DELETE)” on page 9-146 REST service.

The list-farm-members command

The list-farm-members command returns a list of the farm member servers on
which a given runtime is deployed. It has the following attributes:

Table 11-49. list-farm-members command attributes

Attribute Description Required Default

runtime Name of the runtime
web application or
MobileFirst project.

Yes Not available

output Name of output file. No

outputproperty Name of Ant
property for the
output.

No

Example:

<list-farm-members runtime="worklight"/>

This command is based on the “Farm topology members (GET)” on page 9-107
REST service.

The remove-farm-member command

The remove-farm-member command removes a server from the list of farm members
on which a given runtime is deployed. This command should be used when the
server has become unavailable or disconnected. It has the following attributes:

11-34 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-50. remove-farm-member command attributes

Attribute Description Required Default

runtime Name of the runtime
web application or
MobileFirst project.

Yes Not available

serverId Identifier of the
server.

Yes Not available

force Force removal of a
farm member, even if
it is available and
connected.

No false

Example:

<remove-farm-member runtime="worklight" serverId="srvlx15"/>

This command is based on the “Farm topology members (DELETE)” on page 9-109
REST service.

A complex example of a wladm Ant task
Here is an example of how to use several wladm invocations and XML processing to
solve more complex tasks.

This example lists all access rules of all apps in all runtimes. The third-party
XMLTask Ant task, from oopsconsultancy is used, which provides, in particular:
v Iteration over a list of XML elements that are specified through an XPath

expression.
v Access to several attributes of an XML element, in each iteration.

Here is an example of the code:
<?xml version="1.0" encoding="UTF-8"?>
<project default="main">
<!-- Prerequisite for using the <wladm> Ant task. -->
<taskdef resource="com/worklight/ant/deployers/antlib.xml">
<classpath>
<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>

</classpath>
</taskdef>
<!-- Prerequisite for using the <xmltask> Ant task. -->
<taskdef name="xmltask" classname="com.oopsconsultancy.xmltask.ant.XmlTask">
<classpath>
<pathelement location="/opt/xmltask/xmltask.jar"/>

</classpath>
</taskdef>

<!-- Parameters for every <wladm> invocation. -->
<property name="url" value="https://localhost:8443/worklightadmin"/>
<property name="user" value="demo"/>
<property name="password" value="demo"/>
<property name="secure" value="false"/>

<target name="main">
<wladm url="${url}" user="${user}" password="${password}" secure="${secure}">
<list-runtimes output="/tmp/ListRuntimes.xml" inDatabase="true"/>

</wladm>
<xmltask source="/tmp/ListRuntimes.xml">
<call path="/projectconfiguration/projects/project">
<param name="runtime" path="@name"/>
<actions>

Administering MobileFirst applications 11-35

http://www.oopsconsultancy.com/software/xmltask/


<echo message="runtime=@{runtime}"/>
<sequential>
<wladm url="${url}" user="${user}" password="${password}" secure="${secure}">
<list-apps runtime="@{runtime}" output="/tmp/ListApps.xml"/>

</wladm>
<xmltask source="/tmp/ListApps.xml">
<call path="/applications/items/item/appVersions/appVersion">
<param name="name" path="@application"/>
<param name="environment" path="@environment"/>
<param name="version" path="@version"/>
<actions>
<sequential>
<echo message="Access rules for app name=@{name}, environment=@{environment}, version=@{version}:"/>
<wladm url="${url}" user="${user}" password="${password}" secure="${secure}">
<app-version runtime="@{runtime}" name="@{name}" environment="@{environment}" version="@{version}">
<get-accessrule/>

</app-version>
</wladm>

</sequential>
</actions>

</call>
</xmltask>

</sequential>
</actions>

</call>
</xmltask>

</target>
</project>

Administering MobileFirst applications through the command line
You can administer MobileFirst applications through the wladm program.

Comparison with other facilities

You can execute administration operations with IBM MobileFirst Platform
Foundation for iOS in the following ways:
v The MobileFirst Operations Console, which is interactive.
v The wladm Ant task.
v The wladm program.
v The MobileFirst administration REST services.

The wladm Ant task, wladm program, and REST services are useful for automated or
unattended execution of operations, such as eliminating operator errors in
repetitive operations or operating outside the operator's normal working hours.

The wladm program and the wladm Ant task are simpler to use and have better error
reporting than the REST services. The advantage of the wladm program over the
wladm Ant task is that it is easier to integrate when integration with operating
system commands is already available. Moreover, it is more suitable to interactive
use.

Prerequisites

The wladm command is provided in the product_install_dir/shortcuts/ directory
as a set of scripts:
v wladm for UNIX / Linux
v wladm.bat for Windows

11-36 IBM MobileFirst Platform Foundation for iOS V7.0.0



These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

To use the wladm program, either put the product_install_dir/shortcuts/
directory into your PATH environment variable, or reference its absolute file name
in each call.

Calling the wladm program
You can use the wladm program to administer MobileFirst applications.

Syntax

Call the wladm program as follows:
wladm --url= --user= ... [--passwordfile=...] [--secure=false] some command

The wladm program has the following options:

Table 11-51. wladm program options

Option Type Description Required Default

--url URL Base URL of the MobileFirst web
application for administration
services

Yes

--secure Boolean Whether to avoid operations with
security risks

No true

--user name User name for accessing the
MobileFirst admin services

Yes

--passwordfile file File containing the password for
the user

No

--timeout Number Timeout for the entire REST service
access, in seconds

No

--connect-
timeout

Number Timeout for establishing a network
connection, in seconds

No

--socket-
timeout

Number Timeout for detecting the loss of a
network connection, in seconds

No

--connection-
request-
timeout

Number Timeout for obtaining an entry
from a connection request pool, in
seconds

No

--verbose Detailed output No

url

The URL preferably uses the HTTPS protocol. For example, if you use
default ports and context roots, use this URL:
v For WebSphere Application Server: https://server:9443/wladmin
v For Tomcat: https://server:8443/wladmin

secure

The --secure option is set to true by default. Setting it to --secure=false
might have the following effects:
v The user and password might be transmitted in an unsecured way

(possibly even through unencrypted HTTP).

Administering MobileFirst applications 11-37



v The server's SSL certificates are accepted even if self-signed or if they
were created for a different host name from the server's host name.

password

Specify the password in a separate file that you pass in the --passwordfile
option. In interactive mode (see “Interactive mode” on page 11-39), you
can alternatively specify the password interactively. The password is
sensitive information and therefore needs to be protected. You must
prevent other users on the same computer from knowing these passwords.
To secure the password, before you enter the password into a file, you
must remove the read permissions of the file for users other than yourself.
For example, you can use one of the following commands:
v On UNIX: chmod 600 adminpassword.txt
v On Windows: cacls adminpassword.txt /P Administrators:F

%USERDOMAIN%\%USERNAME%:F

For this reason, do not pass the password to a process through a
command-line argument. On many operating systems, other users can
inspect the command-line arguments of your processes.

The wladm calls contains a command. The following commands are supported.

Table 11-52. wladm invocation supported commands

Command Description

show info Shows user and configuration information

show versions Shows version information

list runtimes [--in-database] Lists the runtimes

show runtime [runtime-name] Shows information about a runtime

delete runtime [runtime-name] condition Deletes a runtime

list adapters [runtime-name] Lists the adapters

deploy adapter [runtime-name] file Deploys an adapter

show adapter [runtime-name] adapter-name Shows information about an adapter

delete adapter [runtime-name]
adapter-name

Deletes an adapter

adapter [runtime-name] adapter-name get
binary [> tofile]

Get the binary data of an adapter

list apps [runtime-name] Lists the apps

deploy app [runtime-name] file Deploys an app

show app [runtime-name] app-name Shows information about an app

delete app [runtime-name] app-name Deletes an app

delete app version [runtime-name]
app-name environment version

Deletes a version of an app

app version [runtime-name] app-name
environment version get binary [>
tofile]

Gets the binary data of an app version

app version [runtime-name] app-name
environment version get accessrule

Gets the access rule of an app version

app version [runtime-name] app-name
environment version set accessrule file

Changes the access rule of an app version

11-38 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-52. wladm invocation supported commands (continued)

Command Description

app version [runtime-name] app-name
environment version get
authenticitycheckrule

Gets the authenticity check rule of an app
version

app version [runtime-name] app-name
environment version set
authenticitycheckrule action

Changes the authenticity check rule of an
app version

app version [runtime-name] app-name
environment version get lock

Gets the lock state of an app version

app version [runtime-name] app-name
environment version set lock lock

Changes the lock state of an app version

list beacons [uuid [major minor]] Lists the beacons

set beacon file Specifies information about a beacon

show beacon uuid major minor Shows information about a beacon

remove beacon uuid major minor Removes information about a beacon

list beacon-triggers [runtime-name] Lists the beacon triggers

set beacon-trigger [runtime-name] file Specifies a beacon trigger

show beacon-trigger [runtime-name]
trigger-name

Shows a beacon trigger

delete beacon-trigger [runtime-name]
trigger-name

Deletes a beacon trigger

list beacon-trigger-associations
[runtime-name] app-name [uuid major
minor] [trigger-name]

Lists the associations between beacons and
beacon triggers

set beacon-trigger-association
[runtime-name] app-name uuid major minor
trigger-name

Specifies an association between a beacon
and a beacon trigger

show beacon-trigger-association
[runtime-name] app-name uuid major minor
trigger-name

Shows the association between a beacon and
a beacon trigger

delete beacon-trigger-association
[runtime-name] app-name uuid major minor
trigger-name

Deletes the association between a beacon
and a beacon trigger

list devices [runtime-name] [--query
query]

Lists the devices

remove device [runtime-name] id Removes a device

device [runtime-name] id set status
new-status

Changes the status of a device

device [runtime-name] id set appstatus
app-name new-status

Changes the status of a device for an app

Interactive mode

Alternatively, you can also call wladm without any command in the command line.
You can then enter commands interactively, one per line.

The exit command, or end-of-file on standard input (Ctrl-D on UNIX terminals)
terminates wladm.

Administering MobileFirst applications 11-39



Help commands are also available in this mode. For example:
v help

v help show versions

v help device

v help device set status

Command history in interactive mode

On some operating systems, the interactive wladm command remembers the
command history. With the command history, you can select a previous command,
using the arrow-up and arrow-down keys, edit it, and execute it.
v On Linux, the command history is enabled in terminal emulator windows if the

rlwrap package is installed and found in PATH. To install the rlwrap package:
– On Red Hat Linux: sudo yum install rlwrap
– On SUSE Linux: sudo zypper install rlwrap
– On Ubuntu: sudo apt-get install rlwrap

v On OS X, the command history is enabled in the Terminal program if the rlwrap
package is installed and found in PATH. To install the rlwrap package:
1. Install MacPorts by using the installer from www.macports.org.
2. Run the command:

sudo /opt/local/bin/port install rlwrap

Then, to make the rlwrap program available in PATH, use this command in a
Bourne-compatible shell:
PATH=/opt/local/bin:$PATH

v On Windows, the command history is enabled in cmd.exe console windows.

In environments where rlwrap does not work or is not required, you can disable
its use through the option --no-readline.

The configuration file

You can also store the options in a configuration file, instead of passing them on
the command line at every call. When a configuration file is present and the option
–configfile=file is specified, you can omit the following options:
v --url=URL

v --secure=boolean

v --user=name

v --passwordfile=file

v --timeout=seconds

v --connect-timeout=seconds

v --socket-timeout=seconds

v --connection-request-timeout=seconds

v runtime-name

Use these commands to store these values in the configuration file.

Table 11-53. Commands to store values in the configuration file

Command Comment

wladm [--configfile=file] config url URL

11-40 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-53. Commands to store values in the configuration file (continued)

Command Comment

wladm [--configfile=file] config secure
boolean

wladm [--configfile=file] config user
name

wladm [--configfile=file] config
password

Prompts for the password.

wladm [--configfile=file] config timeout
seconds

wladm [--configfile=file] config
connect-timeout seconds

wladm [--configfile=file] config
socket-timeout seconds

wladm [--configfile=file] config
connection-request-timeout seconds

wladm [--configfile=file] config runtime
runtime-name

Use this command to list the values that are stored in the configuration file: wladm
[--configfile=file] config

The configuration file is a text file, in the encoding of the current locale, in Java
.properties syntax. The default configuration file is on
v UNIX: $HOME/.wladm.config
v Windows: My Documents\IBM MobileFirst Platform Server Data\wladm.config,

or My Documents\IBM Worklight Server Data\wladm.config

Note: When you do not specify a --configfile option, the default configuration
file is used only in interactive mode and in config commands. For noninteractive
use of the other commands, you must explicitly designate the configuration file if
you want to use one.

Important: The password is stored in an obfuscated format that hides the
password from an occasional glimpse. However, this obfuscation provides no
security.

Generic options

There are also the usual generic options:

Table 11-54. Generic options

Option Description

--help Shows some usage help

--version Shows the version

XML format

The commands that receive an XML response from the server verify that this
response complies with the specific schema. You can disable this check by
specifying --xmlvalidation=none.

Administering MobileFirst applications 11-41



Output character set

Normal output that is produced by the wladm program is encoded in the encoding
format of the current locale. On Windows, this encoding format is "ANSI code
page". The effects are as follows:
v Characters outside of this character set are converted to question marks when

they are output.
v When the output goes to a Windows command prompt window (cmd.exe),

non-ASCII characters are incorrectly displayed because such windows assume
characters to be encoded in "OEM code page".

To work around this limitation:
v On operating systems other than Windows, use a locale whose encoding is

UTF-8. This format is the default locale on Red Hat Linux and OS X. Many other
operating systems have a en_US.UTF-8 locale.

v Or use the wladm Ant task, with attribute output="some file name" to redirect
the output of a command to a file.

Commands for adapters
When you invoke the wldam program, you can include various commands for
adapters.

The list adapters command

The list adapters command returns a list of the adapters that are deployed for a
runtime.

Syntax:
list adapters [runtime-name]

It takes the following arguments:

Table 11-55. list adapters command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

It takes the following options after the object:

Table 11-56. list adapters options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
list adapters worklight

This command is based on the “Adapters (GET)” on page 9-15 REST service.

11-42 IBM MobileFirst Platform Foundation for iOS V7.0.0



The deploy adapter command

The deploy adapter command deploys an adapter in a runtime.

Syntax:
deploy adapter [runtime-name] file

It takes the following arguments:

Table 11-57. deploy adapter command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

file Binary adapter file (.adapter)

Example:
deploy adapter worklight MyAdapter.adapter

This command is based on the “Adapter (POST)” on page 9-12 REST service.

The show adapter command

The show adapter command shows details about an adapter.

Syntax:
show adapter [runtime-name] adapter-name

It takes the following arguments:

Table 11-58. show adapter command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

adapter-name Name of an adapter

It takes the following options after the object:

Table 11-59. show adapter options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
show adapter worklight MyAdapter

This command is based on the “Adapter (GET)” on page 9-8 REST service.

The delete adapter command

The delete adapter command removes (undeploys) an adapter from a runtime.

Syntax:

Administering MobileFirst applications 11-43



delete adapter [runtime-name] adapter-name

It takes the following arguments:

Table 11-60. delete adapter command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

adapter-name Name of an adapter

Example:
delete adapter worklight MyAdapter

This command is based on the “Adapter (DELETE)” on page 9-5 REST service.

The adapter command prefix

The adapter command prefix takes the following arguments before the verb:

Table 11-61. adapter command prefix arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

adapter-name Name of an adapter

The adapter get binary command

The adapter get binary command returns the binary adapter file.

Syntax:
adapter [runtime-name] adapter-name get binary [> tofile]

It takes the following options after the verb:

Table 11-62. adapter get binary options

Option Description Required Default

> tofile Name of the output
file.

No Standard output

Example:
adapter worklight MyAdapter get binary > /tmp/MyAdapter.adapter

This command is based on the “Adapter Binary (GET, HEAD)” on page 9-4 REST
service.

Commands for apps
When you invoke the wladm program, you can include various commands for apps.

11-44 IBM MobileFirst Platform Foundation for iOS V7.0.0



The enable extended-authenticity command

The enable extended-authenticity command creates a .wlapp file that is based on
an original .wlapp file. But, this new file's extended authenticity property is
enabled.

Syntax:
enable extended-authenticity src-wlapp-file device-file > dest-wlapp-file

It takes the following arguments:

Table 11-63. The enable extended-authenticity command's arguments

Argument Description

src-wlapp-file Original binary app file (.wlapp, not .apk, or .ipa)

device-file Binary mobile app file (.apk, .ipa, or .xap)

dest-wlapp-file Output binary app file (.wlapp, not .apk, or .ipa)

Example:
enable extended-authenticity myapp-iphone-1.0.wlapp MyApp.ipa > myapp-iphone-1.0.extauth.wlapp

If you are invoking this command from the operating system command line, you
need to escape the ">" character so that the command interpreter (shell or cmd.exe)
does not intercept it. For example:
wladm enable extended-authenticity myapp-iphone-1.0.wlapp MyApp.ipa ">" myapp-iphone-1.0.extauth.wlapp

This command operates locally, without connecting to the server. For more
information about enabling extended app authenticity checking, see “Configuring
extended app authenticity checking” on page 10-51.

The list apps command

The list apps command returns a list of the apps that are deployed in a run time.

Syntax:
list apps [runtime-name]

It takes the following arguments:

Table 11-64. The list apps command's arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

It takes the following options after the object:

Table 11-65. The list apps command's options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
list apps worklight

Administering MobileFirst applications 11-45



This command is based on the “Applications (GET)” on page 9-49 REST service.

The deploy app command

The deploy app command deploys an app (possibly with multiple environments)
in a run time.

Syntax:
deploy app [runtime-name] file

It takes the following arguments:

Table 11-66. The deploy app command's arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

file Binary app file (.wlapp, not .apk, or .ipa)

Example:
deploy app worklight MyApp-all.wlapp

This command is based on the “Application (POST)” on page 9-45 REST service.

The show app command

The show app command shows details about an app in a run time, in particular its
environments and versions.

Syntax:
show app [runtime-name] app-name

It takes the following arguments:

Table 11-67. The show app command's arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app

It takes the following options after the object:

Table 11-68. The show app command's options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
show app worklight MyApp

This command is based on the “Application (GET)” on page 9-41 REST service.

11-46 IBM MobileFirst Platform Foundation for iOS V7.0.0



The delete app command

The delete app command removes (undeploys) an app (from all environments,
and all versions) from a run time.

Syntax:
delete app [runtime-name] app-name

It takes the following arguments:

Table 11-69. The delete app command's arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project

app-name Name of an app

Example:
delete app worklight MyApp

This command is based on the “Application (DELETE)” on page 9-38 REST service.

The delete app version command

The delete app version command removes (undeploys) an app version from a
run time.

Syntax:
delete app version [runtime-name] app-name environment version

It takes the following arguments:

Table 11-70. The delete app version command's arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app

environment Mobile platform

version Version of the app

Example:
delete app version worklight MyApp iPhone 1.1

This command is based on the “App Version (DELETE)” on page 9-31 REST
service.

Administering MobileFirst applications 11-47



The app version command prefix

The app version command prefix takes the following arguments before the verb:

Table 11-71. The app version command's prefix arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app

environment Mobile platform

version Version of the app

The app version get binary command

The app version get binary command returns the binary wlapp file for a version
of an app.

Syntax:
app version [runtime-name] app-name environment version get binary [> tofile]

It takes the following arguments after the verb:

Table 11-72. The app version get binary command's arguments

Argument Description Required Default

> tofile Name of the output
file.

No Standard output

Example:
app version worklight MyApp iPhone 1.1 get binary > /tmp/MyApp.wlapp

This command is based on the “Application Binary (GET, HEAD)” on page 9-37
REST service.

The app version get accessrule command

The app version get accessrule command returns the access rule for an app
version.

Syntax:
app version [runtime-name] app-name environment version get accessrule

Example:
app version worklight MyApp iPhone 1.1 get accessrule

This command is based on the “Application (GET)” on page 9-41 REST service.

The app version set accessrule command

The app version set accessrule command changes the access rule for an app
version.

Syntax:

11-48 IBM MobileFirst Platform Foundation for iOS V7.0.0



app version [runtime-name] app-name environment version set accessrule file

It takes the following arguments after the verb:

Table 11-73. The app version set accessrule command's arguments

Argument Description

file Name of the input file.

Example:
app version worklight MyApp iPhone 1.1 set accessrule /tmp/new-accessrule.xml

This command is based on the “App Version Access Rule (PUT)” on page 9-27
REST service.

The app version get authenticitycheckrule command

The app version get authenticitycheckrule command returns the authenticity
check rule for an app version. This command is no longer supported with servers
of IBM MobileFirst Platform Foundation for iOS V7.0.0 or later. This command is
only available with V6.2.0 and V6.3.0.

Syntax:
app version [runtime-name] app-name environment version get authenticitycheckrule

Example:
app version worklight MyApp iPhone 1.1 get authenticitycheckrule

This command is based on the “Application (GET)” on page 9-41 REST service.

The app version set authenticitycheckrule command

The app version set authenticitycheckrule command changes the authenticity
check rule for an app version. This command is no longer supported with servers
of IBM MobileFirst Platform Foundation for iOS V7.0.0 or later. This command is
only available with V6.2.0 and V6.3.0.

Syntax:
app version [runtime-name] app-name environment version set authenticitycheckrule action

It takes the following arguments after the verb:

Table 11-74. The app version set authenticitycheckrule command's arguments

Argument Description

action Action to perform for authenticity checking

The following actions are possible:
v DISABLED: Authenticity is not checked
v IGNORED: Authenticity is checked, but not enforced. If it fails, only a warning is

given and the session is authorized
v ENABLED: Authenticity is checked and enforced

Example:

Administering MobileFirst applications 11-49



app version worklight MyApp iPhone 1.1 set authenticitycheckrule enabled

The app version get lock command

The app version get lock command returns information about whether an app
version is locked or unlocked.

Syntax:
app version [runtime-name] app-name environment version get lock

Example:
app version worklight MyApp iPhone 1.1 get lock

This command is based on the “Application (GET)” on page 9-41 REST service.

The app version set lock command

The app version set lock command sets an app version to locked or unlocked
state.

Syntax:
app version [runtime-name] app-name environment version set lock lock

It takes the following arguments after the verb:

Table 11-75. The app version set lock command's arguments

Argument Description

lock New lock state.

The possible lock values are true and false.

Example:
app version worklight MyApp iPhone 1.1 set lock true

This command is based on the “App Version Lock (PUT)” on page 9-35 REST
service.

Commands for beacons
When you call the wladm program, you can include various commands for the
beacons and beacon triggers. A beacon is a piece of information that is associated
with an iBeacon. A beacon trigger is an action that a mobile device executes in
relation to an iBeacon, when there is an association between the beacon and the
beacon trigger.

The list beacons command

The list beacons command returns the list of beacons that match a given UUID
and optionally, a given major and minor number.

Syntax:
list beacons [uuid [major minor]]

It takes the following arguments:

11-50 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-76. list beacons command arguments

Argument Description

uuid UUID (32 hex digits) of the beacons to
search for.

major Major number of the beacons to search for.
Use '_' as a wildcard.

minor Minor number of the beacons to search for.
Use '_' as a wildcard.

It takes the following options after the object:

Table 11-77. list beacons options

Option Description

--xml Produce XML output instead of tabular
output.

Example:

list beacons 496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6

This command is based on the “Beacons (GET)” on page 9-83 REST service.

The set beacon command

The set beacon command specifies or updates information about a beacon.

Syntax:
set beacon file

It takes the following arguments:

Table 11-78. set beacon command arguments

Argument Description

file Name of the input file.

The input file can be in JSON or XML format. If it is in XML format, it must follow
the schema that is given in the file product_install_dir/WorklightServer/wladm-
schemas/input/beacon.xsd.

Example:

set beacon entrance.xml

This command is based on the “Beacons (PUT)” on page 9-86 REST service.

The show beacon command

The show beacon command shows details about a beacon.

Syntax:
show beacon uuid major minor

It takes the following arguments:

Administering MobileFirst applications 11-51



Table 11-79. show beacon command arguments

Argument Description

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon.

minor Minor number of the beacon.

It takes the following options after the object:

Table 11-80. show beacon options

Option Description

--xml Produce XML output instead of tabular
output.

Example:

show beacon 496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6 1 23

This command is based on the “Beacons (GET)” on page 9-83 REST service.

The remove beacon command

The remove beacon command removes (clears) the information about a beacon.

Syntax:
remove beacon uuid major minor

It takes the following arguments:

Table 11-81. remove beacon command arguments

Argument Description

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon.

minor Minor number of the beacon.

Example:

remove beacon 496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6 1 23

This command is based on the “Beacons (DELETE)” on page 9-80 REST service.

The list beacon-triggers command

The list beacon-triggers command returns the list of beacon triggers, belonging
to a given runtime.

Syntax:
list beacon-triggers [runtime-name]

It takes the following arguments:

11-52 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-82. list beacon-triggers command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

It takes the following options after the object:

Table 11-83. list beacon-triggers options

Option Description

--xml Produce XML output instead of tabular
output.

Example:

list beacon-triggers worklight

This command is based on the “Beacon Triggers (GET)” on page 9-69 REST service.

The set beacon-trigger command

The set beacon-trigger command specifies or updates information about a beacon
trigger, belonging to a given runtime.

Syntax:
set beacon-trigger [runtime-name] file

It takes the following arguments:

Table 11-84. set beacon-trigger command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

file Name of the input file.

The input file can be in JSON or XML format. If it is in XML format, it must follow
the schema that is given in the file product_install_dir/WorklightServer/wladm-
schemas/input/beacon-trigger.xsd.

Example:

set beacon-trigger worklight entrance-alert.xml

This command is based on the “Beacon Triggers (PUT)” on page 9-76 REST service.

The show beacon-trigger command

The show beacon-trigger command shows details about a beacon trigger,
belonging to a given runtime.

Syntax:
show beacon-trigger [runtime-name] trigger-name

It takes the following arguments:

Administering MobileFirst applications 11-53



Table 11-85. show beacon-trigger command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

trigger-name Name of the beacon trigger.

It takes the following options after the object:

Table 11-86. show beacon-trigger options

Option Description

--xml Produce XML output instead of tabular
output.

Example:

show beacon-trigger worklight entrance-alert

This command is based on the “Beacon Trigger (GET)” on page 9-67 REST service.

The delete beacon-trigger command

The delete beacon-trigger command deletes a beacon trigger from a given
runtime.

Syntax:
delete beacon-trigger [runtime-name] trigger-name

It takes the following arguments:

Table 11-87. delete beacon-trigger command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

trigger-name Name of the beacon trigger.

Example:

delete beacon-trigger worklight entrance-alert

This command is based on the “Beacon Trigger (DELETE)” on page 9-64 REST
service.

The list beacon-trigger-associations command

The list beacon-trigger-associations command returns the list of associations
between beacons and beacon triggers that match given criteria, belonging to an
app in a given runtime.

Syntax:
list beacon-trigger-associations [runtime-name] app-name [uuid major minor] [trigger-name]

11-54 IBM MobileFirst Platform Foundation for iOS V7.0.0



It takes the following arguments:

Table 11-88. list beacon-trigger-associations command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app.

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon. Use '_' as a
wildcard.

minor Minor number of the beacon. Use '_' as a
wildcard.

trigger-name Name of the beacon trigger.

It takes the following options after the object:

Table 11-89. list beacon-trigger-associations options

Option Description

--xml Produce XML output instead of tabular
output.

Examples:

list beacon-trigger-associations worklight productguide

list beacon-trigger-associations worklight productguide 496E-974C-CEDE-
8679-1CF9-A8EF-2E51-45B6 1 23

list beacon-trigger-associations worklight productguide entrance-alert

This command is based on the “Associate beacons and triggers (GET)” on page
9-57 REST service.

The set beacon-trigger-association command

The set beacon-trigger-association command specifies an association between a
beacon and a beacon trigger, belonging to an app in a given runtime.

Syntax:
set beacon-trigger-association [runtime-name] app-name uuid major minor trigger-name

It takes the following arguments:

Table 11-90. set beacon-trigger-association command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app.

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon.

Administering MobileFirst applications 11-55



Table 11-90. set beacon-trigger-association command arguments (continued)

Argument Description

minor Minor number of the beacon.

trigger-name Name of the beacon trigger.

Example:

set beacon-trigger-association worklight productguide 496E-974C-CEDE-8679-
1CF9-A8EF-2E51-45B6 1 23 entrance-alert

This command is based on the “Associate beacons and triggers (PUT)” on page
9-59 REST service.

The show beacon-trigger-association command

The show beacon-trigger-association command shows an association between a
beacon and a beacon trigger, belonging to an app in a given runtime.

Syntax:
show beacon-trigger-association [runtime-name] app-name uuid major minor trigger-name

It takes the following arguments:

Table 11-91. show beacon-trigger-association command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app.

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon.

minor Minor number of the beacon.

trigger-name Name of the beacon trigger.

It takes the following options after the object:

Table 11-92. show beacon-trigger-association options

Option Description

--xml Produce XML output instead of tabular
output.

Example:

show beacon-trigger-association worklight productguide 496E-974C-CEDE-8679-
1CF9-A8EF-2E51-45B6 1 23 entrance-alert

This command is based on the “Associate beacons and triggers (GET)” on page
9-57 REST service.

11-56 IBM MobileFirst Platform Foundation for iOS V7.0.0



The delete beacon-trigger-association command

The delete beacon-trigger-association command deletes an association between
a beacon and a beacon trigger from an app in a given runtime.

Syntax:
delete beacon-trigger-association [runtime-name] app-name uuid major minor trigger-name

It takes the following arguments:

Table 11-93. delete beacon-trigger-association command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

app-name Name of an app.

uuid UUID (32 hex digits) of the beacon.

major Major number of the beacon.

minor Minor number of the beacon.

trigger-name Name of the beacon trigger.

Example:

delete beacon-trigger-association worklight productguide
496E-974C-CEDE-8679-1CF9-A8EF-2E51-45B6 1 23 entrance-alert

This command is based on the “Associate beacons and triggers (DELETE)” on page
9-53 REST service.

Commands for devices
When you invoke the wladm program, you can include various commands for
devices.

The list devices command

The list devices command returns the list of devices that have contacted the
apps of a runtime.

Syntax:
list devices [runtime-name] [--query query]

It takes the following arguments:

Table 11-94. list devices command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

query A friendly name or user identifier, to search
for.

The query parameter specifies a string to search for. All devices that have a
friendly name or user identifier that contains this string (with case-insensitive
matching) are returned.

Administering MobileFirst applications 11-57



It takes the following options after the object:

Table 11-95. list devices options

Option Description

--xml Produce XML output instead of tabular
output.

Examples:
list-devices worklight
list-devices worklight --query=john

This command is based on the “Devices (GET)” on page 9-100 REST service.

The remove device command

The remove device command clears the record about a device that has contacted
the apps of a runtime.

Syntax:
remove device [runtime-name] id

It takes the following arguments:

Table 11-96. remove device command arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

id Unique device identifier.

Example:
remove device worklight 496E974CCEDE86791CF9A8EF2E5145B6

This command is based on the “Device (DELETE)” on page 9-94 REST service.

The device command prefix

The device command prefix takes the following arguments before the verb:

Table 11-97. device command prefix arguments

Argument Description

runtime-name Name of the runtime web application /
MobileFirst project.

id Unique device identifier.

The device set status command

The device set status command changes the status of a device, in the scope of a
runtime.

Syntax:
device [runtime-name] id set status new-status

It takes the following arguments:

11-58 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-98. device set status command arguments

Argument Description

new-status New status.

The status can be:
v ACTIVE

v LOST

v STOLEN

v EXPIRED

v DISABLED

Example:
device worklight 496E974CCEDE86791CF9A8EF2E5145B6 set status EXPIRED

This command is based on the “Device Status (PUT)” on page 9-97 REST service.

The device set appstatus command

The device set appstatus command changes the status of a device, regarding an
app in a runtime.

Syntax:
device [runtime-name] id set appstatus app-name new-status

It takes the following arguments:

Table 11-99. device set appstatus command arguments

Argument Description

app-name Name of an app.

new-status New status.

The status can be:
v ENABLED

v DISABLED

Example:
device worklight 496E974CCEDE86791CF9A8EF2E5145B6 set appstatus MyApp DISABLED

This command is based on the “Device Application Status (PUT)” on page 9-90
REST service.

Commands for troubleshooting
When you invoke the wladm program, you can include various commands for
troubleshooting.

The show info command

The show info command shows basic information about the MobileFirst
administration services that can be returned without accessing any runtime nor
database. This command can be used to test whether the MobileFirst
administration services are running at all.

Administering MobileFirst applications 11-59



Syntax:
show info

It takes the following options after the object:

Table 11-100. show info options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
show info

The show versions command

The show versions command displays the MobileFirst versions of various
components:
v wladmVersion: the exact MobileFirst Server version number from which

worklight-ant-deployer.jar is taken.
v productVersion: the exact MobileFirst Server version number from which

worklightadmin.war is taken

and for every project WAR file:
v serverVersion: the exact MobileFirst Server version number from which

worklight-jee-library.jar is taken
v platformVersion: the exact version number of the MobileFirst development tools

that built the project WAR file

Syntax:
show versions

It takes the following options after the object:

Table 11-101. show versions options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
show versions

The list runtimes command

The list runtimes command returns a list of the deployed runtimes (MobileFirst
projects).

Syntax:
list runtimes [--in-database]

It takes the following options:

11-60 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-102. list runtimes options

Option Description

--in-database Whether to look in the database instead of
via MBeans

--xml Produce XML output instead of tabular
output.

Examples:
list runtimes
list runtimes --in-database

This command is based on the “Runtimes (GET)” on page 9-158 REST service.

The show runtime command

The show runtime command shows information about a given deployed runtime
(MobileFirst project).

Syntax:
show runtime [runtime-name]

It takes the following arguments:

Table 11-103. show runtime arguments

Argument Description

runtime-name Name of the runtime web application or
MobileFirst project.

It takes the following options after the object:

Table 11-104. show runtime options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
show runtime worklight

This command is based on the “Runtime (GET)” on page 9-147 REST service.

The delete runtime command

The delete runtime command deletes a runtime, including its apps and adapters,
from the database. It is only possible to delete a runtime when its web application
is stopped.

Syntax:
delete runtime [runtime-name] condition

It takes the following arguments:

Administering MobileFirst applications 11-61



Table 11-105. delete runtime arguments

Argument Description

runtime-name Name of the runtime web application or
MobileFirst project.

condition Condition when to delete it: 'empty' or
'always' (dangerous!)

Example:
delete runtime worklight empty

This command is based on the “Runtime (DELETE)” on page 9-146 REST service.

The list farm-members command

The list farm-members command returns a list of the farm member servers on
which a given runtime is deployed.

Syntax:
list farm-members [runtime-name]

It takes the following arguments:

Table 11-106. list farm-members arguments

Argument Description

runtime-name Name of the runtime web application or
MobileFirst project.

It takes the following options after the object:

Table 11-107. list farm-members options

Option Description

--xml Produce XML output instead of tabular
output.

Example:
list farm-members worklight

This command is based on the “Farm topology members (GET)” on page 9-107
REST service.

The remove farm-member command

The remove farm-member command removes a server from the list of farm members
on which a given runtime is deployed. This command should be used when the
server has become unavailable or disconnected.

Syntax:
remove farm-member [runtime-name] server-id

It takes the following arguments:

11-62 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 11-108. remove farm-member arguments

Argument Description

runtime-name Name of the runtime web application or
MobileFirst project.

server-id Identifier of the server.

It takes the following options after the object:

Table 11-109. remove farm-member option

Option Description

--force Force removal of a farm member, even if it
is available and connected.

Example:
remove farm-member worklight srvlx15

This command is based on the “Farm topology members (DELETE)” on page 9-109
REST service.

Administering push notifications with the MobileFirst Operations
Console

The Push Notifications page in the MobileFirst Operations Console provides you
with a quick view of the various entities in the push notification chain.

The EVENT SOURCES tab displays the list of data sources that are configured in
your MobileFirst Server, including the number of users that are subscribed to
notifications from each source.

Clicking APPLICATIONS displays the deployed applications that can receive push
notifications. For each application, the push notification services available for this
application are also displayed. The console displays the number of notifications
that are retrieved by an event source and sent to each application since system
startup. It also displays errors that are related to connectivity to the push
notification services.

Figure 11-6. Data sources of push notifications in the MobileFirst Operations Console

Administering MobileFirst applications 11-63



Administrators can forcibly unsubscribe existing SMS subscriptions by clicking
UNSUBSCRIBE DEVICES. Administrators can enter the mobile phone numbers to
be unsubscribed.

Note: You can have two subscriptions for the same phone number and user name;
one created by using the device and one created by using the subscribe SMS
servlet. If two subscriptions exist for the same phone number and user name,
unsubscription by using the MobileFirst Operations Console unsubscribes both
subscriptions.

Figure 11-7. Deployed applications that receive push notifications in the MobileFirst Operations Console

11-64 IBM MobileFirst Platform Foundation for iOS V7.0.0



Application Center
Learn about the Application Center: what it is for, the different components and
features, and how to use the console and the client.

The sale of mobile devices now exceeds that of personal computers. Consequently,
mobile applications become critical for businesses.

The Application Center is a tool to make sharing mobile applications within an
organization easier.

You can use the Application Center as an enterprise application store. With the
Application Center, you can target some mobile applications to particular groups
of users within the company.

A development team can also use the Application Center during the development
phase of an application to share applications with testers, designers, or executives
in the company. In such a scenario, it makes collaboration easier between all the
people who are involved in the development process.

Concept of the Application Center
The Application Center can be used as an Enterprise application store and is a
means of sharing information among different team members within a company.

Figure 11-8. Unsubscribe existing SMS subscriptions

Administering MobileFirst applications 11-65



The concept of the Application Center is similar to the concept of the Apple public
App Store, except that it targets only private usage within a company.

By using the Application Center, users from the same company or organization
download applications to mobile phones or tablets from a single place that serves
as a repository of mobile applications.

The Application Center targets mobile applications that are installed on the device
itself. Those applications can be native applications that are built by using the
device SDK or hybrid applications that mix native and web content. The
Application Center does not target mobile web applications; such applications are
delivered to the mobile device web browser through a URL like a website.

The Application Center manages mobile applications; it supports any kind of iOS
application, including applications that are built on top of the MobileFirst platform.

You can use the Application Center as part of the development process of an
application. A typical scenario of the Application Center is a team building a
mobile application; the development team creates a new version of an iOS
application. The development team wants this new version to be reviewed and
tested by the extended team. A developer goes to the Application Center console
and uploads the new version of the application to the Application Center. As part
of this process, the developer can enter a description of the application version. For
example, the description could mention the elements that the development team
added or fixed from the previous version. The new version of the application is
then available to the other members of the team.

Another person, for example, a beta tester, can launch the Application Center
installer application, the mobile client, to locate this new version of a mobile
application in the list of available applications and install it on his mobile device.
After testing the new version, the beta tester can rate the application and submit
feedback. The feedback is visible to the developer from the Application Center
console.

The Application Center is a convenient way to share mobile applications within a
company or a group; it is a means of sharing information among team members.

Specific platform requirements
The iOS operating system imposes specific requirements for deploying, installing,
or using applications on mobile devices.

All iOS applications that are managed through the Application Center must be
packaged for “Ad Hoc Distribution”. With an iOS developer account, you can
share your application with up to 100 iOS devices. With an iOS enterprise account,
you can share your in-house application with an unlimited number of iOS devices.
See iOS Developer Program and iOS Enterprise Program for details.

For more information about “Ad Hoc Distribution”, see the Apple page about ad
hoc provisioning profiles.

General architecture
The Application Center is composed of these main elements: a server-side
component, a repository, an administration console, and a mobile client
application.

11-66 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.apple.com/programs/ios/distribute.html
https://developer.apple.com/programs/ios/enterprise/
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html


Server-side component

The server-side component is a Java Enterprise application that must be deployed
in a web application server such as IBM WebSphere or Apache Tomcat.

The server-side component consists of an administration console and a mobile
application. This mobile application installs the mobile applications available to the
client-side component.

The web console and the installer application communicate through REST services
with the server component.

Several services compose the Application Center server-side component; for
example, a service that lists available applications, a service that delivers the
application binary files to the mobile device, or a service that registers feedback
and ratings.

Repository

A database that stores information such as which application is installed on which
devices, the feedback about applications, and the mobile application binary files.
The Application Center application is associated with the database when you
configure the Application Center for a particular web application server and a
supported database.

Administration console

A web console through which administrators can manage applications, user access
rights to install applications, user feedback about mobile applications, and details
about applications installed on devices. See “The Application Center console” on
page 11-76.

Mobile client application

You use the mobile client to install applications on a mobile device and to send
feedback about an application to the server. See “The mobile client” on page
11-104.

The following figure shows an overview of the architecture.

Administering MobileFirst applications 11-67



From the Application Center console you can:
v Upload different versions of mobile applications.
v Remove unwanted applications.
v Control access to applications.

Access to the applications stored in the Application Center can be controlled from
the Application Center console. Each application is associated with the list of
people who can install the application.
v View feedback that mobile users have sent about an application.
v Obtain information about applications installed on a device.
v Make an application inactive so that it is not visible in the available applications

for download.

From the mobile client you can:
v List available mobile applications.
v Install a new application on a device.
v Send feedback about an application.

You will find instructions in this document about how to configure the Application
Center server-side component on various Java application servers after IBM
MobileFirst Platform Foundation for iOS is installed, as well as how to build
MobileFirst applications for the Application Center client.

Preliminary information
To use the Application Center, you must configure security settings, start the web
application server where IBM MobileFirst Platform Foundation for iOS is installed,
start the Application Center console, and log in.

When you install IBM MobileFirst Platform Foundation for iOS, the Application
Center is automatically installed in the specified application server.

Figure 11-9. Architecture of the Application Center

11-68 IBM MobileFirst Platform Foundation for iOS V7.0.0



If you install the Application Center in WebSphere Application Server Liberty
profile, the server is created and located in installation-directory/server.

After the installation is complete, you must configure the security settings for the
applications. See “Configuring the Application Center after installation” on page
6-188 or, if you are using LDAP authentication, “Managing users with LDAP” on
page 6-194.

The following example shows how to start the server and then the Application
Center console on Liberty profile.

You can start the Liberty server by using the server command located in the
directory installation-directory/server/wlp/bin.

To start the server, use the command:
server start worklightServer

When the server is running, you can start the Application Center console by
entering this address in your browser:

http://localhost:9080/appcenterconsole/

You are requested to log in. By default, the Application Center installed on Apache
Tomcat or WebSphere Liberty Profile has two users defined for this installation:
v demo with password demo
v appcenteradmin with password admin

To start using the Application Center console, refer to “The Application Center
console” on page 11-76.

To install and run the mobile client on iOS operating system, see “Installing the
client on an iOS mobile device” on page 11-104.

Preparations for using the mobile client
To use the mobile client to install apps on mobile devices, you must first import
the IBMAppCenter project into the Eclipse environment, build the project, and
deploy the mobile client in the Application Center.

Prerequisites for building the Application Center installer

The Application Center comes with an iOS version of the client application that
runs on the mobile device. This mobile application that supports installation of
applications on your mobile device is called the mobile client. The mobile client is
a MobileFirst mobile application.

The MobileFirst project IBMAppCenter contains the iOS version of the client.

The iOS version for iPad and iPhone is not delivered as a compiled application.
The application must be created from the MobileFirst project named IBMAppCenter.
This project is also delivered as part of the distribution in the ApplicationCenter/
installer directory.

To build the iOS version, you must have the appropriate MobileFirst and Apple
software. The version of MobileFirst Platform Command Line Interface for iOS
must be the same as the version of IBM MobileFirst Platform Server on which this

Administering MobileFirst applications 11-69



documentation is based. The Apple Xcode version is V6.1.

Importing and building the project
You must import the IBMAppCenter project into MobileFirst Studio and then build
the project.

About this task

Follow the normal procedure to import a project into MobileFirst Studio.

Application Center requires MobileFirst Studio for importing and building the
IBMAppCenter project. MobileFirst Studio is not part of IBM MobileFirst Platform
Foundation for iOS, but if you purchased this product, you are entitled to the full
cross-platform version of the product as well. For information about how to obtain
MobileFirst Studio, see “Application Center requires MobileFirst Studio for
importing and building the IBMAppCenter project” on page 3-12.

Procedure
1. Select File > Import.
2. Select General > Existing Project into Workspace.
3. On the next page, select Select root directory and locate the root of the

IBMAppCenter project.
4. Select “IBMAppCenter project”.
5. Select “Copy projects into workspace”. This selection creates a copy of the

project in your workspace. On UNIX systems, the IBMAppCenter project is read
only at the original location. so copying projects into workspace avoids
problems with file permissions.

6. Click Finish to import the IBMAppCenter project into MobileFirst Studio.

What to do next

Build the IBMAppCenter project. The MobileFirst project contains a single
application named AppCenter. Right-click the application and select Run as > Build
All Environments.

iOS MobileFirst Studio generates a native iOS project in IBMAppCenter/apps/
AppCenter/iphone/native. The IBMAppCenterAppCenterIphone.xcodeproj
file is in the iphone/native folder. This file is the Xcode project that you
must compile and sign by using Xcode.

See The Apple developer site to learn more about how to sign the iOS
mobile client application. To sign an iOS application, you must change the
Bundle Identifier of the application to a bundle identifier that can be used
with the provisioning profile that you use. The value is defined in the
Xcode project settings as com.your_internet_domain_name.appcenter,
where your_internet_domain_name is the name of your internet domain.

If you want to enable push notifications for application updates, you must
first configure the Application Center client properties. See “Configuring
push notifications for application updates” on page 11-73 for more
information.

Customizing features (for experts)
You can customize features by editing a central property file and manipulating
some other resources.

11-70 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.apple.com/


Purpose

To customize features: several features are controlled by a central property file
called config.json in the directory IBMAppCenter/apps/AppCenter/common/js/
appcenter/. If you want to change the default application behavior, you can adapt
this property file before you build the project.

Properties

This file contains the properties shown in the following table.

Table 11-110. Properties in the config.js file

Property Description

url The hardcoded address of the Application Center
server. If this property is set, the address fields of the
Login view are not displayed.

defaultPort If the url property is null, this property prefills the
port field of the Login view on a phone. This is a
default value; the field can be edited by the user.

defaultContext If the url property is null, this property prefills the
context field of the Login view on a phone. This is a
default value; the field can be edited by the user.

ssl The default value of the SSL switch of the Login view.

allowDowngrade This property indicates whether installation of older
versions is authorized or not; an older version can be
installed only if the operating system and version
permit downgrade,

showPreviousVersions This property indicates whether the device user can
show the details of all the versions of applications or
only details of the latest version.

showInternalVersion This property indicates whether the internal version is
shown or not. If the value is false, the internal version
is shown only if no commercial version is set.

listItemRenderer This property can have one of these values:

v full, the default value; the application lists show
application name, rating, and latest version.

v simple: the application lists show the application
name only.

listAverageRating This property can have one of these values:

v latestVersion: the application lists show the average
rating of the latest version of the application.

v allVersions: the application lists show the average
rating of all versions of the application.

requestTimeout This property indicates the timeout in milliseconds for
requests to the Application Center server.

allowAppLinkReview This property indicates whether local reviews of
applications from external application stores can be
registered and browsed in the Application Center.
These local reviews are not visible in the external
application store. These reviews are stored in the
Application Center server.

Administering MobileFirst applications 11-71



Other resources

Other resources that are available are application icons, application name, splash
screen images, icons, and translatable resources of the application.

Application icons

iOS: Files named iconsize.png in the IBMAppCenter/apps/AppCenter/
iphone/native/Resources directory.

Application name

iOS: Edit the CFBundleDisplayName key in the IBMAppCenter/apps/
AppCenter/iphone/native/IBMAppCenterAppCenterIphone-Info.plist file.

Splash screen images

iOS: Files named Default-size.png in the IBMAppCenter/apps/AppCenter/
iphone/native/Resources directory.

Hybrid splash screen during auto login: /IBMAppCenter/apps/AppCenter/
common/js/idx/mobile/themes/common/idx/Launch.css

Icons (buttons, stars, and similar objects) of the application
IBMAppCenter/apps/AppCenter/common/css/images.

Translatable resources of the application
IBMAppCenter/apps/AppCenter/common/js/appcenter/nls/common.js.

Deploying the mobile client in Application Center
Deploy the different versions of the client application to Application Center.

The iOS version of the mobile client must be deployed to the Application Center.
To do so, you must upload the iOS application (.ipa) files to the Application
Center.

Follow the steps described in “Adding a mobile application” on page 11-79 to add
the mobile client application for iOS. Make sure that you select the Installer
application property to indicate that the application is an installer. Selecting this
property enables mobile device users to install the mobile client application easily
over the air. To install the mobile client, see the related task.
Related tasks:
“Installing the client on an iOS mobile device” on page 11-104
You can install the mobile client, or any signed application marked with the
installer flag, on your iOS mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

Push notifications of application updates
You can configure the Application Center client so that push notifications are sent
to users when an update is available for an application in the store.

The Application Center administrator uses push notifications to automatically send
notification automatically, to any iOS device. Notifications are sent for updates to
favorite applications and of new applications that are deployed on the Application
Center server and that are marked as recommended.

11-72 IBM MobileFirst Platform Foundation for iOS V7.0.0



Push notification process

Push notifications are sent to a device if the following conditions are met:
v The device has Application Center installed and started it at least one time.
v The user has not disabled push notification for this device for the Application

Center in the Settings > Notifications interface.
v The user is allowed to install the application. Such permissions are controlled

through the Application Center access rights.
v The application is marked as recommended, or is marked as preferred for the

user who is using Application Center on this device. Those flags are set
automatically when the user installs an application through Application Center.
You can see which applications are marked as preferred by looking at the
Application Center Favorites tab on the device.

v The application is not installed on the device or a more recent version is
available than the version that is installed on the device.
The first time that the Application Center client starts on a device, the user
might be asked whether to accept incoming push notifications. This is the case
for iOS mobile devices. The push notification feature does not work when the
service is disabled on the mobile device.
Application Center cannot know precisely which app versions are installed
because it does not detect what apps the user removed. Hence, if the user
installs the latest version of an application but removes it later, no update is
notified because the Application Center does not detect the removal. iOS
operating system versions offer a way to switch this service on or off on a per
application basis.
Refer to your device vendor to learn how to configure your mobile device for
push notifications.

Related concepts:
“Marking or unmarking a favorite app” on page 11-121
Mark your favorite apps or unmark an app to have it removed from the favorites
list.
Related reference:
“Application properties” on page 11-82
Applications have their own sets of properties that depend on the operating
system on the mobile device and that cannot be edited. Applications also have a
common property and editable properties.

Configuring push notifications for application updates
Configure the Application Center services to communicate with Apple push
notification servers.

Purpose

You must configure the credentials or certificates of the Application Center services
to be able to communicate with third-party push notification servers.

Configuring the server scheduler of the Application Center

The server scheduler is a background service that automatically starts and stops
with the server. This scheduler is used to empty at regular intervals a stack that is
automatically filled by administrator actions with push update messages to be sent.
The default interval between sending two batches of push update messages is

Administering MobileFirst applications 11-73



twelve hours. If this default value does not suit you, you can modify it by using
the server environment variables ibm.appcenter.push.schedule.period.amount and
ibm.appcenter.push.schedule.period.unit.

The value of ibm.appcenter.push.schedule.period.amount is an integer. The value of
ibm.appcenter.push.schedule.period.unit can be seconds, minutes, or hours. If the unit
is not specified, the amount is an interval that is expressed in hours. These
variables are used to define the elapsed time between two batches of push
messages.

Use JNDI properties to define these variables.

Important: In production, you should avoid setting the unit to seconds. The
shorter the elapsed time, the higher the load on the server; the unit expressed in
seconds is only implemented for testing and evaluation purposes. For example,
when the elapsed time is set to 10 seconds, push messages are sent almost
immediately.

See “List of JNDI properties for the Application Center” on page 6-223 for a
complete list of properties that you can set.

Example for Apache Tomcat server

Define these variables with JNDI properties in the server.xml file:
<Environment name="ibm.appcenter.push.schedule.period.unit" override="false" type="java.lang.String" value="hours"/>
<Environment name="ibm.appcenter.push.schedule.period.amount" override="false" type="java.lang.String" value="2"/>

For information about how to configure JNDI variables for WebSphere Application
Server v8.5, see Using resource environment providers in WebSphere Application
Server.

For information about how to configure JNDI variables for WebSphere Application
Server Liberty profile, see Using JNDI binding for constants from the server
configuration files.

The remaining actions for setting up the push notification service depend on the
vendor of the device where the target application is installed. See the following
topics.

Configuring the Application Center server for connection to
Apple Push Notification Services
Configure your iOS project for Apple Push Notification Services (APNs).

Before you begin

Ensure that the following servers are accessible from Application Center server.

Sandbox servers

v gateway.sandbox.push.apple.com:2195
v feedback.sandbox.push.apple.com:2196

Production servers

v gateway.push.apple.com:2195
v feedback.push.apple.com:2196

11-74 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/developerworks/websphere/library/techarticles/0611_totapally/0611_totapally.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0611_totapally/0611_totapally.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_dep_jndi.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_dep_jndi.html


About this task

You must be a registered Apple developer to successfully configure your iOS
project with Apple Push Notification Services (APNs). In the company, the
administrative role responsible for Apple development requests APNs enablement.
The response to this request should provide you with an APNs-enabled
provisioning profile for your iOS application bundle; that is, a string value that is
defined in the configuration page of your Xcode project. This provisioning profile
is used to generate a signature certificate file.

Two kinds of provisioning profile exist: development and production profiles,
which address development and production environments respectively.
Development profiles address Apple development APNs servers exclusively.
Production profiles address Apple production APNs servers exclusively. These
kinds of servers do not offer the same quality of service.

Procedure
1. Obtain the APNs-enabled provisioning profile for the Application Center Xcode

project. The result of your administrator's APNs enablement request is shown
as a list accessible from https://developer.apple.com/ios/my/bundles/
index.action. Each item in the list shows whether or not the profile has APNs
capabilities. When you have the profile, you can download and install it in the
Application Center client Xcode project directory by double-clicking the profile.
The profile is then automatically installed in your keystore and Xcode project.

2. If you want to test or debug the Application Center on a device by launching it
directly from XCode, in the "Xcode Organizer" window, go to the "Provisioning
Profiles" section and install the profile on your mobile device.

3. Create a signature certificate used by the Application Center services to secure
communication with the APNs server. This server will use the certificate for
purposes of signing each and every push request to the APNs server. This
signature certificate is produced from your provisioning profile.
a. Open the "Keychain Access" utility and click the My Certificates category in

the left pane.
b. Find the certificate you want to install and disclose its contents. You see

both a certificate and a private key; for the Application Center, the
certificate line contains the Application Center application bundle
com.ibm.imf.AppCenter.

c. Select File > Export Items to select both the certificate and the key and
export them as a Personal Information Exchange (.p12) file. This .p12 file
contains the private key required when the secure handshaking protocol is
involved to communicate with the APNs server.

d. Copy the .p12 certificate to the computer responsible for running the
Application Center services and install it in the appropriate place. Both the
certificate file and its password are needed to create the secure tunneling
with the APNs server. You also require some information that indicates
whether a development certificate or a production certificate is in play. A
development provisioning profile produces a development certificate and a
production profile gives a production certificate. The Application Center
services web application uses JNDI properties to reference this secure data.
The examples in the table show how the JNDI properties are defined in the
server.xml file of the Apache Tomcat server.

Administering MobileFirst applications 11-75

https://developer.apple.com/ios/my/bundles/index.action
https://developer.apple.com/ios/my/bundles/index.action


Table 11-111. JNDI properties

JNDI Property Type and description Example for Apache Tomcat server

ibm.appcenter.apns.p12
.certificate.location

A string value that
defines the full path to
the .p12 certificate.

<Environment name="ibm.appcenter.apns.p12
.certificate.location"
override="false" type="java.lang.String" value=
"/Users/someUser/someDirectory/apache-tomcat
/conf/AppCenter_apns_dev_cert.p12"/>

ibm.appcenter.apns.p12
.certificate.password

A string value that
defines the password
needed to access the
certificate.

<Environment name="ibm.appcenter.apns.p12
.certificate.password" override="false"
type="java.lang.String"
value="this_is_a_secure_password"/>

ibm.appcenter.apns.p12
.certificate
.isDevelopmentCertificate

A boolean value
(identified as true or
false) that defines
whether or not the
provisioning profile
used to generate the
authentication certificate
was a development
certificate.

<Environment name="ibm.appcenter.apns.p12
.certificate.isDevelopmentCertificate"
override="false" type="java.lang.String"
value="true"/>

See “List of JNDI properties for the Application Center” on page 6-223 for a
complete list of JNDI properties that you can set.

The Application Center console
With the Application Center console, you can manage the repository of the
Application Center and your applications.

The Application Center console is a web application to manage the repository of
the Application Center. The Application Center repository is the central location
where you store the mobile applications that can be installed on mobile devices.

Use the Application Center console to:
v Upload applications written for iOS.
v Manage several different versions of mobile applications.
v Review the feedback of testers of mobile applications.
v Define the users who have the rights to list and install an application on the

mobile devices.
v Track which applications are installed on which devices.

Note:

Only users with the administrator role can log in to the Application Center
console.

Multicultural support: the user interface of the Application Center console has not
been translated.

Starting the Application Center console
You can start the Application Center with your web browser and log in if you have
the administrator role.

Procedure
1. Start a web browser session on your desktop.

11-76 IBM MobileFirst Platform Foundation for iOS V7.0.0



2. Contact your system administrator to obtain the address and port of the server
where the Application Center is installed.

3. Enter the following URL: http://server/appcenterconsole
Where server is the address and port of the server where the Application Center
is installed.
http://localhost:9080/appcenterconsole

4. Log in to the Application Center console
Contact your system administrator to get your credentials so that you can log
in to the Application Center console.

Note:

Only users with the administrator role can log in to the Application Center
console.

Troubleshooting a corrupt login page (Apache Tomcat)
You can recover from a corrupt login page of the Application Center console when
the Application Center is running in Apache Tomcat.

Symptom

When the Application Center is running in Apache Tomcat, the use of a wrong
user name or password might corrupt the login page of the Application Center
console.

Figure 11-10. Login of the Application Center console

Administering MobileFirst applications 11-77



When you try to log in to the console with an incorrect user name or an incorrect
password, you receive an error message. When you correct the user name or
password, instead of a successful login, you have one of the following errors; the
message depends on your web browser.
v The same error message as before
v The message “The connection was reset”
v The message “The time allowed for login exceeded”

Cause

The behavior is linked to the management by Apache Tomcat of the
j_security_check servlet. This behavior is specific to Apache Tomcat and does not
occur in any of the WebSphere Application Server profiles.

Solution

The workaround is to click the refresh button of the browser to refresh the web
page after a login failure. Then, enter the correct credentials.

Application Management
You can use Application Management to add new applications and versions and to
manage those applications.

The Application Center enables you to add new applications and versions and to
manage those applications.

Click Applications to access Application Management.

Application Center installed on WebSphere Application Server Liberty
profile or on Apache Tomcat

Installations of the Application Center on these application servers, during
installation of IBM MobileFirst Platform Foundation for iOS with the IBM
Installation Manager package, have two different users defined that you can use to
get started.
v User with login demo and password demo
v User with login appcenteradmin and password admin

WebSphere Application Server full profile

If you installed the Application Center on WebSphere Application Server full
profile, one user named appcenteradmin is created by default with the password
indicated by the installer.

11-78 IBM MobileFirst Platform Foundation for iOS V7.0.0



Adding a mobile application
Add applications to the repository on the server by using the Application Center
console. These applications can then be installed on mobile devices by using the
mobile client.

About this task

In the Applications view, you can add applications to Application Center. Initially
the list of applications is empty and you must upload an application file.
Application files are described in this procedure.

Procedure

To add an application to make it available to be installed on mobile devices:
1. Click Add Application.
2. Click Upload.
3. Select the application file to upload to the Application Center repository.

iOS

The application file extension is ipa for normal iOS applications.

The application file extension is zip for instrumented iOS applications
for use in IBM MobileFirst Platform Test Workbench.

4. Click Next to access the properties to complete the definition of the application.
5. Complete the properties to define the application. See Application properties

for information about how to complete property values.
6. Click Finish.

Figure 11-11. Available applications

Administering MobileFirst applications 11-79



Adding an application from a public app store
Application Center supports adding to the catalog applications that are stored in
third-party application stores, such as Google play or Apple iTunes.

About this task

Applications from third-party app stores appear in the Application Center catalog
like any other application, but users are directed to the corresponding public app
store to install the application. You add an application from a public app store in
the console, in the same place as you add an application created within your own
enterprise. See “Adding a mobile application” on page 11-79.

Figure 11-12. Application properties, adding an application

11-80 IBM MobileFirst Platform Foundation for iOS V7.0.0



Instead of providing the application executable, you must provide a URL to the
third party application store where the application is stored. To make it easy to
find the correct application link, the console provides direct links in the “Add an
application” page to the supported third-party application store web sites.

The Apple iTunes store address is https://linkmaker.itunes.apple.com/; use the
linkmaker site rather than the iTunes site, because you can search this site for all
kinds of iTunes items, including songs, podcasts, and other items supported by
Apple. Only selecting iOS applications provides you with compatible links to
create application links.

Procedure
1. Click the URL of the public app store that you want to browse.
2. Copy the URL of the application in the third-party app store to the Application

URL text field in the “Add an application” page of the Application Center
console.
v Apple iTunes:

a. When the list of items is returned in the search result, select the item that
you want.

b. On the right, click “iPhone App Link” to open the application details
page.

c. Copy the address bar URL.
3. When the application link is in the Application URL text field of the console,

click Next to validate the creation of the application link. If the validation is
successful, this action will display the application properties.
If the validation is unsuccessful, an error message will be displayed in the
“Add an application” page. You can either try another link or cancel the
attempt to create the current link.
If the validation of the application link is successful, you can modify the
application description in the application properties before performing the next
step.

4. Click Done to create the application link. This action makes the application
available to the corresponding version of the Application Center mobile client.
A small link icon appears on the application icon to show that this application
is stored in a public app store and is different from a binary app.

Related concepts:
Configuring WebSphere Application Server to support applications in public app
stores
Configure WebSphere Application Server full profile and Liberty profile before
access to public app stores through application links, because of the use of SSL
connections.
Related tasks:
Configuring WebSphere Application Server to support applications in Apple iTunes
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Apple iTunes.
“Installing applications through public app stores” on page 11-113
You can link from the mobile client to applications that are stored in supported
public app stores and install these applications on your compatible device by
following the normal procedure of the public app store.

Administering MobileFirst applications 11-81

https://linkmaker.itunes.apple.com/


Application properties
Applications have their own sets of properties that depend on the operating
system on the mobile device and that cannot be edited. Applications also have a
common property and editable properties.

The values of the following fields are taken from the application and you cannot
edit them.
v Package.
v Internal Version.
v Commercial Version.
v Label.
v External URL

Properties of iOS applications
v Package is the company identifier and the product name; CFBundleIdentifier

key. See the iOS SDK documentation.
v Internal Version is the build number of the application; CFBundleVersion key

of the application. See the iOS SDK documentation.
v Commercial Version is the published version of the application.
v Label is the label of the application; CFBundleDisplayName key of the application.

See the iOS SDK documentation.
v Instrumented indicates whether the uploaded application is an instrumented

application for use in IBM Mobile Test Workbench for IBM MobileFirst Platform
Foundation for iOS or a normal iOS application.

v External URL is a URL that enables you to have the mobile client of the
Application Center launched automatically in the Details view of the latest
version of the current application.

Common property

Author

The Author field is read only. It displays the user name of the user who uploads
the application.

Editable properties

You can edit the following fields:

Description

Use this field to describe the application to the mobile user.

Recommended

Select Recommended to indicate that you recommend users to install this application.
Recommended applications appear in a special list of recommended applications in
the mobile client.

Installer

For the Administrator only: This property indicates that the application is used to
install other applications on the mobile device and send feedback on an application

11-82 IBM MobileFirst Platform Foundation for iOS V7.0.0



from the mobile device to the Application Center. Usually only one application is
qualified as Installer and is called the mobile client. This application is
documented in “The mobile client” on page 11-104.

Active

Select Active to indicate that an application can be installed on a mobile device. If
you do not select Active, the mobile user will not see the application in the list of
available applications displayed on the device.

If you do not select Active, the application is inactive. In the list of available
applications in Application Management, if Show inactive is selected, the
application is disabled.

If Show inactive is not selected, the application does not appear in the list of
available applications.

Ready for production

Select Ready for production to indicate that an application can be managed by the
application store of Tivoli® Endpoint Manager. Applications with this property
selected are the only ones that are flagged to Tivoli Endpoint Manager. The
property Ready for production indicates that an application is ready to be
deployed in a production environment and is therefore suitable to be managed by
Tivoli Endpoint Manager through its application store.

Editing application properties
You can edit the properties of an application in the list of uploaded applications.

Procedure

To edit the properties of an uploaded application:
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Click the version of the application to edit the properties: Application Details.
3. Edit any of the editable properties that you want. See “Application properties”

on page 11-82 for details about these properties. The name of the current
application file is shown below the properties.
Important: If you want to update the file, it must belong to the same package
and be the same version number. If either of these properties is not the same
you must go back to the application list and add the new version first.

4. Click OK to save your changes and return to Available Applications or Apply
to save and keep Application Details open.

Administering MobileFirst applications 11-83



Figure 11-13. Application properties for editing

11-84 IBM MobileFirst Platform Foundation for iOS V7.0.0



Upgrading a mobile application in MobileFirst Server and the
Application Center
You can easily upgrade deployed mobile applications by using a combination of
MobileFirst Operations Console and the Application Center.

Before you begin

The mobile client of the Application Center must be installed on the mobile device.
The HelloWorld application must be installed on the mobile device and must
connect to MobileFirst Server when the application is running.

About this task

You can use this procedure to update iOS applications that have been deployed on
MobileFirst Server and also in the Application Center. In this task, the application
HelloWorld version 1.0 is already deployed on MobileFirst Server and in the
Application Center.

Procedure

HelloWorld version 2.0 is released and you would like users of version 1.0 to
upgrade to the later version. To deploy the new version of the application:
1. Deploy HelloWorld 2.0 in the Application Center. See “Adding a mobile

application” on page 11-79.
2. From the Application Details page, copy the setting of the external URL.

3. When the external URL is copied to the clipboard, open the MobileFirst
Operations Console.

4. Change the access rule of HelloWorld version 1.0 to “Access Disabled”.
5. Paste the external URL into the URL field.
Running the client: When a mobile device connects to MobileFirst Server to try to
run HelloWorld version 1.0, the device user is requested to upgrade the version of

Figure 11-14. Copying the external URL from Application Details

Administering MobileFirst applications 11-85



the application.

Figure 11-15. Remotely disabling an old version of an application

11-86 IBM MobileFirst Platform Foundation for iOS V7.0.0



6. Click Upgrade to open the Application Center client. When the login details are
correctly completed, you access the Details page of HelloWorld version 2.0
directly.

Administering MobileFirst applications 11-87



Figure 11-16. Details of HelloWorld 2.0 in the Application Center client

11-88 IBM MobileFirst Platform Foundation for iOS V7.0.0



Downloading an application file
You can download the file of an application registered in the Application Center.

Procedure
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Tap the version of the application under Application Details.
3. Tap the file name in the "Application File" section.

Viewing application reviews
In the Application Center console, you can see reviews about mobile application
versions sent by users.

About this task

Users of mobile applications can write a review, which includes a rating and a
comment, and submit the review through the Application Center client. Reviews
are available in the Application Center console and the client. Individual reviews
are always associated with a particular version of an application.

Procedure

To view reviews from mobile users or testers about an application version:
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Select the version of the application.
3. In the menu, select Reviews.

Administering MobileFirst applications 11-89



The rating is an average of the ratings in all recorded reviews. It consists of one
to five stars, where one star represents the lowest level of appreciation and five
stars represent the highest level of appreciation. The client cannot send a zero
star rating.
The average rating gives an indication of how the application satisfies the
intended use of the application.

4. Click the two arrow heads 
 

on the right to expand the comment that is part
of the review and to view the details of the mobile device where the review is
generated.
For example, the comment can give the reason for submitting the review, such
as failure to install.
If you want to delete the review, click the trash can on the right.

User and group management
You can use users and groups to define who has access to some features of the
Application Center, such as installing applications on mobile devices.

Purpose

Use users and groups in the definition of access control lists (ACL).

Managing registered users

To manage registered users, click the Users/Groups tab and select Registered
users. You obtain a list of registered users of the Application Center that includes:

Figure 11-17. Reviews of application versions

11-90 IBM MobileFirst Platform Foundation for iOS V7.0.0



v Mobile client users
v Console users
v Local group members
v Members of an access control list

If the Application Center is connected to an LDAP repository, you cannot edit the
user display names. If the repository is not LDAP, you can change a user display
name by selecting it and editing it.

To register new users, click Register User, enter the login name and the display
name, and click OK.

To unregister a user, click the trash icon next to the user name.

Unregistering a user from the Application Center has the effect of:
v Removing feedback given by the user
v Removing the user from the access control lists
v Removing the user from local groups

Note:

When you unregister a user, the user is not removed from the application server or
the LDAP repository.

Managing local groups

To manage local groups, click the Users/Groups tab and select User group.

Figure 11-18. List of registered users of the Application Center

Administering MobileFirst applications 11-91



To create a local group, click Create group. Enter the name of the new group and
click OK.

If the Application Center is connected to an LDAP repository, the search includes
local groups as well as the groups defined in the LDAP repository. If the repository
is not LDAP, only local groups are available to the search.

To delete a group, click the trash icon next to the group name. The group is also
removed from the access control lists.

To add or remove members of a group, click the Edit members link of the group.

Figure 11-19. Local user groups

11-92 IBM MobileFirst Platform Foundation for iOS V7.0.0



To add a new member, search for the user by entering the user display name,
select the user, and click Add.

If the Application Center is connected to an LDAP repository, the search for the
user is performed in the LDAP repository. If the repository is not LDAP, the search
is performed in the list of registered users.

To remove a member from a group, click the cross on the right of the user name.

Access control
You can decide whether installation of an application on mobile devices is open to
any users or whether you want to restrict the ability to install an application.

Installation of applications on a mobile device can be limited to specific users or
available to any users.

Access control is defined at the application level and not at the version level.

By default, after an application is uploaded, any user has the right to install the
application on a mobile device.

The current access control for an application is displayed in Available Applications
for each application. The unrestricted or restricted access status for installation is
shown as a link to the page for editing access control.

Installation rights are only about the installation of the application on the mobile
device. If access control is not enabled, everybody has access to the application.

Managing access control
You can add or remove access for users or groups to install an application on
mobile devices.

Figure 11-20. Managing group membership

Administering MobileFirst applications 11-93



Procedure

You can edit access control:
1. In Application Management under Available Applications, click the unrestricted

or restricted state of Installation of an application.

2. Select Access control enabled to enable access control.
3. Add users or groups to the access list.

To add a single user or group, enter a name, select the entry in the matching
entries found, and click Add.
If the Application Center is connected to an LDAP repository, you can search
for users and groups in the repository as well as locally defined groups. If the
repository is not LDAP, you can search only local groups and registered users.
Local groups are exclusively defined in the Users/Groups tab. When you use
the Liberty profile federated registry, you can only search for users by using the
login name; the result is limited to a maximum of 15 users and 15 groups
(instead of 50 users and 50 groups).
To register a user at the same time as you add the user to the access list, enter
the name and click Add. Then you must specify the login name and the
display name of the user.
To add all the users of an application, click Add users from application and
select the appropriate application.

11-94 IBM MobileFirst Platform Foundation for iOS V7.0.0



To remove access from a user or group, click the cross on the right of the name.

Device Management
You can see the devices that connected to the Application Center from the
Application Center mobile client and their properties.

Device Management shows under the Registered Devices the list of devices that
have connected to the Application Center at least once from the Application Center
mobile client.

Figure 11-21. Adding users to the access list

Administering MobileFirst applications 11-95



Device properties

Click a device in the list of devices to view the properties of the device or the
applications installed on that device.

Figure 11-22. The device list

11-96 IBM MobileFirst Platform Foundation for iOS V7.0.0



Select Properties to view the device properties.

Name

The name of the device. You can edit this property.

Note: on iOS, the user can define this name in the settings of the device in
Settings > General > Information > Name. The same name is displayed on
iTunes.

User Name

The name of the first user who logged into the device.

Manufacturer

The manufacturer of the device.

Model

The model identifier.

Operating System

Figure 11-23. Device properties

Administering MobileFirst applications 11-97



The operating system of the mobile device.

Unique identifier

The unique identifier of the mobile device.

If you edit the device name, click OK to save the name and return to Registered
Devices or Apply to save and keep Edit Device Properties open.

Applications installed on device

Select Applications installed on device to list all the applications installed on the
device.

Signing out of the Application Center console
For security purposes, you must sign out of the console when you have finished
your administrative tasks.

Purpose

To log out of the secure sign-on to the Application Center console..

To sign out of the Application Center console, click Sign out next to the Welcome
message that is displayed in the banner of every page.

Command-line tool for uploading or deleting an application
To deploy applications to the Application Center through a build process, use the
command-line tool.

Figure 11-24. Applications installed on a device

11-98 IBM MobileFirst Platform Foundation for iOS V7.0.0



You can upload an application to the Application Center by using the web
interface of the Application Center console. You can also upload a new application
by using a command-line tool.

This is particularly useful when you want to incorporate the deployment of an
application to the Application Center into a build process. This tool is located at:

installDir/ApplicationCenter/tools/applicationcenterdeploytool.jar

The tool can be used for application files with extension IPA. It can be used stand
alone or as an ant task.

The tools directory contains all the files required to support the use of the tool.
v applicationcenterdeploytool.jar: the upload tool.
v json4j.jar: the library for the JSON format required by the upload tool.
v build.xml: a sample ant script that you can use to upload a single file or a

sequence of files to the Application Center.
v acdeploytool.sh and acdeploytool.bat: Simple scripts to call java with

applicationcenterdeploytool.jar.

Using the stand-alone tool to upload an application
To upload an application, call the stand-alone tool from the command line.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload [options] [files]

You can pass any of the available options in the command line.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

-d description The description of the
application to be uploaded.

-l label The fallback label. Normally
the label is taken from the
application descriptor stored
in the file to be uploaded. If
the application descriptor
does not contain a label, the
fallback label is used.

-isActive true or false The application is stored in
the Application Center as an
active or inactive application.

Administering MobileFirst applications 11-99



Option Content indicated by Description

-isInstaller true or false The application is stored in
the Application Center with
the “installer” flag set
appropriately.

-isReadyForProduction true or false The application is stored in
the Application Center with
the “ready-for-production”
flag set appropriately.

-isRecommended true or false The application is stored in
the Application Center with
the “recommended” flag set
appropriately.

-e Shows the full exception
stack trace on failure.

-f Force uploading of
applications, even if they
exist already.

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

The files parameter can specify files of type iOS application (.ipa) files.
In this example user demo has the password demopassword. Use this command
line.

java com.ibm.appcenter.Upload -s http://localhost:9080 -c applicationcenter -u demo -p demopassword -f app1.ipa app2.ipa

Using the stand-alone tool to delete an application
To delete an application from the Application Center, call the stand-alone tool from
the command line.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload -delete [options] [files or applications]

You can pass any of the available options in the command line.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

11-100 IBM MobileFirst Platform Foundation for iOS V7.0.0



Option Content indicated by Description

-u user The user credentials to access
the Application Center.

-p password The password of the user.

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

You can specify files or the application package, operating system, and version.
If files are specified, the package, operating system and version are determined
from the file and the corresponding application is deleted from the Application
Center. If applications are specified, they must have one of the following
formats:
package@os@version: This exact version is deleted from the Application Center.
The version part must specify the “internal version”, not the “commercial
version” of the application.
package@os: All versions of this application are deleted from the Application
Center.
package: All versions of all operating systems of this application are deleted
from the Application Center.

Example

In this example, user demo has the password demopassword. Use this command line
to delete the iOS application demo.HelloWorld with internal version 3.0.

java com.ibm.appcenter.Upload -delete -s http://localhost:9080 -c applicationcenter -u demo -p
demopassword demo.HelloWorld@iOS@3.0

Using the stand-alone tool to clear the LDAP cache
Use the stand-alone tool to clear the LDAP cache and make changes to LDAP users
and groups visible immediately in the Application Center.

About this task

When the Application Center is configured with LDAP, changes to users and
groups on the LDAP server become visible to the Application Center after a delay.
The Application Center maintains a cache of LDAP data and the changes only
become visible after the cache expires. By default, the delay is 24 hours. If you do
not want to wait for this delay to expire after changes to users or groups, you can
call the stand-alone tool from the command line to clear the cache of LDAP data.
By using the stand-alone tool to clear the cache, the changes become visible
immediately.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.

Administering MobileFirst applications 11-101



2. Call the upload tool from the command line:
java com.ibm.appcenter.Upload -clearLdapCache [options]

You can pass any of the available options in the command line.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

Example

In this example, user demo has the password demopassword.
java com.ibm.appcenter.Upload -clearLdapCache -s http://localhost:9080 -c applicationcenter -u
demo -p demopassword

Ant task for uploading or deleting an application
You can use the upload and delete tools as an Ant task and use the Ant task in
your own Ant script.

Apache Ant is required to run these tasks. The minimum supported version of
Apache Ant is listed in “System requirements” on page 2-7.

For convenience, Apache Ant 1.8.4 is included in IBM MobileFirst Platform Server.
In the product_install_dir/shortcuts/ directory, the following scripts are
provided:
v ant for UNIX / Linux
v ant.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

When you use the upload tool as an Ant task, the classname value of the upload
Ant task is com.ibm.appcenter.ant.UploadApps. The classname value of the delete
Ant task is com.ibm.appcenter.ant.DeleteApps.

Parameters of
Ant task Description

serverPath To connect to the Application Center. The default value is
http://localhost:9080.

11-102 IBM MobileFirst Platform Foundation for iOS V7.0.0



Parameters of
Ant task Description

context The context of the Application Center. The default value is
/applicationcenter.

loginUser The user name with permissions to upload an application.

loginPass The password of the user with permissions to upload an application.

forceOverwrite If set to true, the Ant task attempts to overwrite applications in the
Application Center when it uploads an application that is already
present. This parameter is available only in the upload Ant task.

file The .ipa file to be uploaded to the Application Center or to be deleted
from the Application Center. This parameter has no default value.

fileset To upload or delete multiple files.

application The package name of the application; this parameter is available only in
the delete Ant task.

os The operating system of the application. This parameter is available
only in the delete Ant task.

version The internal version of the application; this parameter is available only
in the delete Ant task. Do not use the commercial version here, because
the commercial version is unsuitable to identify the version exactly.

Example

You can find an extended example in the ApplicationCenter/tools/build.xml
directory.

The following example shows how to use the Ant task in your own Ant script.
<?xml version="1.0" encoding="UTF-8"?>
<project name="PureMeapAntDeployTask" basedir="." default="upload.AllApps">

<property name="install.dir" value="../../" />
<property name="workspace.root" value="../../" />

<!-- Server Properties -->
<property name="server.path" value="http://localhost:9080/" />
<property name="context.path" value="applicationcenter" />
<property name="upload.file" value="" />
<property name="force" value="true" />

<!-- Authentication Properties -->
<property name="login.user" value="appcenteradmin" />
<property name="login.pass" value="admin" />
<path id="classpath.run">
<fileset dir="${install.dir}/ApplicationCenter/tools/">
<include name="applicationcenterdeploytool.jar" />
<include name="json4j.jar"/>

</fileset>
</path>
<target name="upload.init">
<taskdef name="uploadapps" classname="com.ibm.appcenter.ant.UploadApps">
<classpath refid="classpath.run" />

</taskdef>
</target>
<target name="upload.App" description="Uploads a single application" depends="upload.init">
<uploadapps serverPath="${server.path}"
context="${context.path}"
loginUser="${login.user}"
loginPass="${login.pass}"
forceOverwrite="${force}"
file="${upload.file}" />

</target>
<target name="upload.AllApps" description="Uploads all found APK and IPA files" depends="upload.init">
<uploadapps serverPath="${server.path}"
loginUser="${login.user}"
loginPass="${login.pass}"
forceOverwrite="${force}"
context="${context.path}" >
<fileset dir="${workspace.root}">
<include name="**/*.ipa" />

Administering MobileFirst applications 11-103



</fileset>
</uploadapps>

</target>
</project>

This sample Ant script is in the tools directory. You can use it to upload a single
application to the Application Center.
ant upload.App -Dupload.file=sample.ipa

You can also use it to upload all applications that are found in a directory
hierarchy.
ant upload.AllApps -Dworkspace.root=myDirectory

Properties of the sample Ant script

Property Comment

install.dir Defaults to ../../

server.path The default value is http://localhost:9080.

context.path The default value is applicationcenter.

upload.file This property has no default value. It must include the exact file path.

workspace.root Defaults to ../../

login.user The default value is appcenteradmin.

login.pass The default value is admin.

force The default value is true.

To specify these parameters by command line when you call Ant, add -D before
the property name. For example:
-Dserver.path=http://localhost:8888/

The mobile client
You can install applications on your mobile device with the Application Center
mobile client.

The Application Center mobile client is the application that runs on your iOS
device. You use the mobile client to list the catalog of available applications in the
Application Center. You can install these applications on your device. The mobile
client is sometimes referred to as the Application Center installer. This application
must be present on your device if you want to install on your device applications
from your private application repository.

Prerequisites

Your system administrator must give you a user name and password before you
can download and install the mobile client. The user name and password are
required whenever you start the mobile client on your device. For security reasons,
do not disseminate these credentials. These credentials are the same credentials
used to log in to the Application Center console.

Installing the client on an iOS mobile device
You can install the mobile client, or any signed application marked with the
installer flag, on your iOS mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

11-104 IBM MobileFirst Platform Foundation for iOS V7.0.0



Before you begin

Important: To install applications on iOS devices, you must first configure the
Application Center server with SSL. See “Configuring Secure Sockets Layer (SSL)”
on page 6-219.

▌For experts▐

The ibm.appcenter.ios.plist.onetimeurl JNDI property of the IBM Application
Center Services controls whether One-Time URLs are used when the mobile client
is installed on an iOS mobile device. Set this property to false for maximal
security. When you set this property to false, users must enter their credentials
several times when they install the mobile client: once when they select the client
and once when they install the client.

When you set the property to true, users enter their credentials only once. A
temporary download URL with a cryptographic hash is generated when the user
enters the credentials. This temporary download URL is valid for one hour and
does not require additional authentication. This solution is a compromise between
security and ergonomy.

The steps to specify the ibm.appcenter.ios.plist.onetimeurl JNDI property are
similar to the steps for the ibm.appcenter.proxy.host property. See “Defining the
endpoint of the application resources” on page 6-214.

Procedure

Installing the mobile client on an iOS device is similar to installing it on Android,
but with some differences. The installer is automatically launched directly after
download. Your user name and password credentials are requested for almost all
the installation steps.
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/applicationcenter/installers.html

Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the client
on a mobile device: http://hostname:portnumber/applicationcenter/inst.html.
The page of this URL works better with some older or some nonstandard
mobile web browsers. If the page installers.html does not work on your
mobile device, you can use inst.html. This page is provided in English only
and is not translated into other languages.

3. Select an item in the list of available applications to display the application
details.

4. Tap Install Now to download the mobile client.
5. Enter your credentials to authorize the downloader transaction.
6. To authorize the download, tap Install.

Administering MobileFirst applications 11-105



7. Enter your credentials to authorize the installation.
If you entered valid credentials, the browser will close and you can watch the
download progress.

Results

Installing an application on a device requires a provisioning profile that enables
the application to be installed on the selected device. If you accidentally try to
install an application that is not valid for your device, iOS version 6 or earlier
gives an error message. Some versions of iOS 7 might try to install the application
in an endless loop without ever succeeding or indicating any error. The application
icon that shows the progress of the installation appears on the home screen, but,
because of the endless loop, it is difficult to delete this application icon to stop the
endless loop. A workaround is to put the device into Airplane mode. In this mode,
the endless loop is stopped and you can delete the application icon by following
the normal steps to delete apps on iOS devices.

What to do next

After the mobile client is installed on the device, you can open it.

Figure 11-25. Confirm app to be installed

11-106 IBM MobileFirst Platform Foundation for iOS V7.0.0



In general, iOS applications can be installed on the device only if they are signed
with a provisioning profile. See “Importing and building the project” on page
11-70.

Since iOS 9, when a company application is opened, depending on the type of the
provisioning profile, an Untrusted Enterprise Developer message might display.
This message explains that the provisioning profile is not yet trusted on this
device. In this case, the application does not open, unless trust is established for
this provisioning profile. Establishing trust must be done only once per
provisioning profile.

To establish trust for a provisioning profile after the application is installed:

Until iOS 9.1

1. Go to Settings > General > Profiles.
Under the Enterprise apps heading, you see the provisioning profile of
the app.

2. Tap on the profile and confirm the trust.

Since iOS 9.2

1. Go to Settings > General > Profiles > Device Management or Profiles
& Device Management.
Under the Enterprise apps heading, you see the provisioning profile of
the app.

2. Tap on the profile and confirm the trust.

After the trust is confirmed, no application that uses that provisioning profile
shows the Untrusted Enterprise Developer message. For more information, see the
Apple web site at https://support.apple.com/en-us/HT204460.

The Login view
In the Login view, you can access the fields that are required to connect to the
server to view the list of applications available for your device.

Use the Login view to enter your credentials to connect to the Application Center
server to view the list of applications available for your device.

The Login view presents all the mandatory fields for the information required to
connect to the server.

When the application is started the Login page is displayed. The login credentials
are required to connect to the server.

On iOS devices, the credentials are saved in the keychain. After you successfully
log in to the Application Center server, when you start the application
subsequently, the login page is not displayed and the previous credentials are
used. If the login cannot be performed, the login view is displayed.

SSL is mandatory on iOS devices. Therefore, this option is not displayed in the
login view.

User name and password
Enter your credentials for access to the server. These are the same user
name and password granted by your system administrator for
downloading and installing the mobile client.

Administering MobileFirst applications 11-107

https://support.apple.com/en-us/HT204460


Application Center server address
The Application Center server address is composed of:
v Host name or IP address.
v Port, which is optional if the default port is used.
v Context, which is optional if the Application Center is installed at the

root of the server.

On a phone, a field is available for each part of the address.

On a tablet, a single field that contains a preformatted example address is
displayed. Use it as a model for entering the correct server address to
avoid formatting errors. See “Preparations for using the mobile client” on
page 11-69 for information on filling parts of the address in advance, or
hardcode the address and hide the associated fields.

Connecting to the server

To connect to the server:
1. Enter your user name and password.
2. Enter your Application Center server address.
3. Tap Log in to connect to the server.

If this login is successful, the user name and server address are saved to fill the
fields when you subsequently start the client.

Views in the Application Center client
The client provides views that are adapted to the various tasks that you want to
perform.

After a successful login, you can choose among these views.

These views enable you to communicate with a server to send or retrieve
information about applications or to manage the applications located on your
device.

Here are descriptions of the different views.

Catalog

This view shows the applications that can be installed on a device.

Favorites

This view shows the list of applications that you marked as favorites.

Updates

Figure 11-26. Views in the client application

11-108 IBM MobileFirst Platform Foundation for iOS V7.0.0



This view shows all applications that you marked as favorite apps and that have a
later version available in Application Center than the version, if any, installed on
the device.

When you first start the mobile client, it opens the Login view for you to enter
your user name, password, and the address of the Application Center server. This
information is mandatory.

Displays on different device types

Different device types might have quite different page displays. On the phone, a
list is displayed. On a tablet, a grid of applications is used.

Figure 11-27. Catalog view on a phone

Administering MobileFirst applications 11-109



Features of the views

On a tablet, you can sort the lists by tapping one of the sort criteria.

Sort criteria are available through the sort button.

Applications that are marked as favorites are indicated by a star superposed on the
application icon.

The average rating of the latest version of an application is shown by using a
number of stars and the number of ratings received. See “Preparations for using
the mobile client” on page 11-69 for how to show the rating of all versions of the
application instead of the latest version only.

Tapping an application in the list navigates to the Details view of the latest
installed version of this application.

To refresh the view, tap the refresh button: .

To return to the login page:

v Tap the logout button. 

The Details view

Tapping an application in the Catalog, Favorites, or Updates view navigates to the
Details view where you can see details of the application properties. Details of the
application version are displayed in this view.
v The name of the application.
v Commercial version: the published version of the application.
v Internal version: on iOS, the build number of the application; See “Application

properties” on page 11-82 for technical details concerning this property.
v Update date.
v Approximate size of the application file.
v Rating of the version and number of ratings received.
v Description of the application.

You can perform several actions in this view.

Figure 11-28. Catalog view on a tablet

11-110 IBM MobileFirst Platform Foundation for iOS V7.0.0



v Install, upgrade, downgrade, or uninstall an application version.
v Cancel the current operation in progress (if available).
v Rate the application version if it is installed on the device.
v List the reviews of the this version or of all versions of the application.
v Show details of a previous version.
v Mark or unmark the application as a favorite app.
v Refresh the view with the latest changes from the Application Center server.

Installing an application on an iOS device
From the Details view, you can install an application version on your iOS mobile
device.

About this task

Important: To install applications on iOS devices, you must first configure the
Application Center server with SSL. See “Configuring Secure Sockets Layer (SSL)”
on page 6-219.

Procedure
1. In the Details view, tap Install. You are requested to confirm the download and

installation of the application version.

Figure 11-29. Details view of an app version shown on your iOS device

Administering MobileFirst applications 11-111



2. Tap Install to confirm download and installation of the application version or
Cancel to cancel the installation.

Depending on the action taken, the application is installed or not. When the
application is successfully installed, it is also marked as a favorite app.
Installing an application on a device requires a provisioning profile that enables
the application to be installed on the selected device. If you accidentally try to
install an application that is not valid for your device, iOS version 6 or earlier
gives an error message.

Results

Unlike the Android client, after the installation is finished, the Install button in the
Details view does not change its label to Uninstall. In iOS, there is no Uninstall
button. It is only possible to uninstall applications through the home screen.

Some versions of iOS 7 might try to install the application in an endless loop
without ever succeeding or indicating any error. The application icon that shows
the progress of the installation appears on the home screen, but, because of the
endless loop, it is difficult to delete this application icon to stop the endless loop. A
workaround is to put the device into Airplane mode. In this mode, the endless

Figure 11-30. Canceling application installation on your iOS device

11-112 IBM MobileFirst Platform Foundation for iOS V7.0.0



loop is stopped and you can delete the application icon by following the normal
steps to delete apps on iOS devices.

What to do next

After the application is installed on the device, you can open it.

In general, iOS applications can be installed on the device only if they are signed
with a provisioning profile. See “Importing and building the project” on page
11-70.

Since iOS 9, when a company application is opened, depending on the type of the
provisioning profile, an Untrusted Enterprise Developer message might display.
This message explains that the provisioning profile is not yet trusted on this
device. In this case, the application does not open, unless trust is established for
this provisioning profile. Establishing trust must be done only once per
provisioning profile.

To establish trust for a provisioning profile after the application is installed:

Until iOS 9.1

1. Go to Settings > General > Profiles.
Under the Enterprise apps heading, you see the provisioning profile of
the app.

2. Tap on the profile and confirm the trust.

Since iOS 9.2

1. Go to Settings > General > Profiles > Device Management or Profiles
& Device Management.
Under the Enterprise apps heading, you see the provisioning profile of
the app.

2. Tap on the profile and confirm the trust.

After the trust is confirmed, no application that uses that provisioning profile
shows the Untrusted Enterprise Developer message. For more information, see the
Apple web site at https://support.apple.com/en-us/HT204460.

Installing applications through public app stores
You can link from the mobile client to applications that are stored in supported
public app stores and install these applications on your compatible device by
following the normal procedure of the public app store.

About this task

The Application Center administrator can create links to selected applications
stored in supported public app stores and make them available to users of the
Application Center mobile client on the operating systems that match these
applications. See “Adding an application from a public app store” on page 11-80.
You can install these applications through the mobile client on your compatible
device.

Links to iOS applications stored in Apple iTunes are listed in the application list on
the device along with the binary files of private applications created within your
enterprise.

Administering MobileFirst applications 11-113

https://support.apple.com/en-us/HT204460


Procedure
1. Select an application stored in a public app store from the application list to see

the application details. Instead of Install, you see Go to Store.
2. Tap Go to Store to open Apple iTunes.

3. Follow the usual procedure of the public app store to install the application.

Removing an installed application
You can remove an application that is installed on your mobile device.

About this task

You can remove applications only from the iOS Home screen, and not through the
Application Center client. Use the normal iOS procedure for removing an
application.

Showing details of a specific application version
Select a version of an application to show its details.

Procedure
1. Show details of a specific application version on a mobile device by selecting

the appropriate procedure to follow for your device.
v A phone; see step 2.
v A tablet; see step 3 on page 11-115.

2. Show details of a specific application version on an iOS phone.
a. Tap Select a version to navigate to the version list view.

Figure 11-31. Accessing an application in Apple iTunes from the mobile client on the device

11-114 IBM MobileFirst Platform Foundation for iOS V7.0.0



b. Tap the required version of the application. The Details view is updated
and shows the details of the selected application version.

3. Tablet devices only: Show details of a specific application version on a tablet.
a. Tap Select version.
b. In the pop-up menu, select the required version of the application. The

Details view is updated and shows the details of the selected application
version.

Updating an application
You can update an application that is installed on your device if a new version is
available in the Application Center.

About this task

Follow this procedure to make the latest versions of favorite and recommended
apps available on your device. Applications that are marked as favorites and that
have an updated version are listed in the Updates view. The applications that are
marked as recommended by the Application Center server administrator are also
listed in the Updates view, even if they are not favorites.

If a more up-to-date version of an installed application is available on the server, it
is listed under Update or Recommended.

Procedure
1. In the Updates view, navigate to the Details view.
2. In the Details view, select a newer version of the application or take the latest

available version.
3. On iOS devices, tap Install latest.
4. Follow the appropriate application installation procedure. “Installing an

application on an iOS device” on page 11-111.

Upgrading the Application Center client automatically
You can enable automatic detection of new versions of the client application. Then,
you can choose whether to download and install the new version on your mobile
device.

Before you begin

Start the Application Center client.

Figure 11-32. Specific version of an application selected in the list of versions on an iOS phone

Administering MobileFirst applications 11-115



About this task

New versions of the mobile client application that are available on the Application
Center server can be detected automatically. When this feature is enabled, a more
recent version of the application, if it exists, can be detected at start up or each
time that the Available applications view is refreshed.

If a later version of the application is detected, you are requested to download and
install the later version.

Automatic upgrade of the Application Center client application is enabled by
default with the appCenterAutoUpgrade property set to true. This property is
located in the MobileFirst project for the Application Center: IBMAppCenter/apps/
AppCenter/common/js/appcenter/config.json.

If you want to disable automatic upgrade, you must set this property to false and
rebuild the project for the required platforms.

Procedure
1. When a later version of the client is detected, tap OK to start the download

and installation sequence.

11-116 IBM MobileFirst Platform Foundation for iOS V7.0.0



2. Tap Install to install the later version of the application.

Figure 11-33. Detection of a later version of the client application available on the server

Administering MobileFirst applications 11-117



3. Tap Open to start the updated application.

Figure 11-34. Confirm installation of the updated version of the application

11-118 IBM MobileFirst Platform Foundation for iOS V7.0.0



Results

You must log in to the updated version of the application to run it.

Figure 11-35. Starting the updated application

Administering MobileFirst applications 11-119



Note: To upgrade the Application Center client, the following conditions apply:
v The new Application Center client must use the same package name or bundle

identifier as the old client.
v The new Application Center client must be signed with the same provisioning

profile as the old client.

Reverting an installed application
You can revert the version of an installed application if an earlier version exists on
the server.

Purpose

To replace the currently installed version of an application with an earlier version,
from the Catalog, Updates, or Favorites view, navigate to the Details view. In the
Details view, select an earlier version. See “Showing details of a specific

Figure 11-36. Logging in to the new version of the client application

11-120 IBM MobileFirst Platform Foundation for iOS V7.0.0



application version” on page 11-114 for information about how to display details of
a specific application version on a mobile device.

See “Preparations for using the mobile client” on page 11-69 for information about
how to disable reverting to earlier versions of an application.

On iOS

Use the normal procedure of the operating system to remove the application.

Tap Install to install the earlier version of the application. Follow the procedure
documented in “Installing an application on an iOS device” on page 11-111.

Marking or unmarking a favorite app
Mark your favorite apps or unmark an app to have it removed from the favorites
list.

An application marked as a favorite on your device indicates that you are
interested in this application. This application is then listed in the list of favorite
apps to make locating it easier. This application is displayed on every device
belonging to you that is compatible with the application. If a later version of the
app is available in the Application Center, the application is listed in the Updates
view.

To mark or unmark an application as a favorite app, tap the Favorites icon 
 

in
the header of the Details view.

An installed application is automatically marked as a favorite app.

Submitting a review for an installed application
You can review an application version installed on your mobile device; the review
must include a rating and a comment.

About this task

You can only submit a review of a version of an application if that version is
installed on your mobile device.

Procedure
1. In the Details view, initiate your review:
v On iOS phones and tablets, tap Review version X.

2. Enter a nonzero star rating:
v On mobile devices with touch screens, tap a star, from 1 to 5, to represent

your approval rating of the version of the application.

One star represents the lowest level of appreciation and five stars represent the
highest level of appreciation.

3. Enter a comment about this version of the application.
4. Tap Submit to send your review to the Application Center.

Viewing reviews
You can view reviews of a specific version of an application or of all versions of an
application.

Administering MobileFirst applications 11-121



Purpose

To view reviews of application versions; reviews are displayed in descending order
from the most recent review. If the number of reviews fills more than one screen,
tap Load more to show more reviews.

Viewing reviews of a specific version

The Details view always shows the details of a specific version. On a phone, the
reviews are for that version.

In the Details view of an application version:

On a phone
Tap View Reviews to navigate to the Reviews view.

On a tablet
Tap Reviews xx, where xx is the displayed version of the application.

Viewing reviews of all versions of an application

In the Details view of an application version:

On a phone
Tap View Reviews to navigate to the Reviews view. Then tap the settings

icon , tap All versions, and confirm the selection.

On a tablet
Tap All Reviews.

Federal standards support in IBM MobileFirst Platform Foundation for
iOS

IBM MobileFirst Platform Foundation for iOS supports Federal Desktop Core
Configuration (FDCC), and United States Government Configuration Baseline
(USGCB) specifications. IBM MobileFirst Platform Foundation for iOS also
supports the Federal Information Processing Standards (FIPS) 140-2, which is a
security standard that is used to accredit cryptographic modules.

For more information about the Federal Desktop Core Configuration and United
States Government Configuration Baseline, see FDCC and USGCB.

For more information about the Federal Information Processing Standards 140-2,
see FIPS 140-2 support.

FDCC and USGCB support
The United States federal government mandates that federal agency desktops that
run on Microsoft Windows platforms adopt Federal Desktop Core Configuration
(FDCC) or the newer United States Government Configuration Baseline (USGCB)
security settings.

IBM Worklight V5.0.6 was tested by using the USGCB and FDCC security settings
via a self-certification process. Testing includes a reasonable level of testing to
ensure that installation and core features function on this configuration.

11-122 IBM MobileFirst Platform Foundation for iOS V7.0.0



References

For more information, see USGCB.

FIPS 140-2 support
Federal Information Processing Standards (FIPS) are standards and guidelines that
are issued by the United States National Institute of Standards and Technology
(NIST) for federal government computer systems. FIPS Publication 140-2 is a
security standard that is used to accredit cryptographic modules.

FIPS 140-2 on the MobileFirst Server, and SSL communications
with the MobileFirst Server

The IBM MobileFirst Platform Foundation for iOS server runs in an application
server, such as the WebSphere Application Server. The WebSphere Application
Server can be configured to enforce the use of FIPS 140-2 validated cryptographic
modules for inbound and outbound Secure Socket Layer (SSL) connections. The
cryptographic modules are also used for the cryptographic operations that are
performed by the applications by using the Java™ Cryptography Extension (JCE).
Since the MobileFirst Server is an application that runs on the application server, it
uses the FIPS 140-2 validated cryptographic modules for the inbound and
outbound SSL connections.

When an IBM MobileFirst Platform Foundation for iOS client transacts a Secure
Socket Layer (SSL) connection to a MobileFirst Server, which is running on an
application server that is using the FIPS 140-2 mode, the results are the successful
use of the FIPS 140-2 approved cipher suite. If the client platform does not support
one of the FIPS 140-2 approved cipher suites, the SSL transaction fails and the
client is not able to establish an SSL connection to the server. If successful, the
client uses a FIPS 140-2 approved cipher suite. Specifically, the client and server are
using the same cipher suite (SSL_RSA_WITH_AES_128_CBC_SHA for example),
but the client side cryptographic module perhaps did not go through the FIPS
140-2 validation process, whereas the server side is using FIPS 140-2 certified
modules.

See “References” for links to documentation to enable FIPS 140-2 mode in
WebSphere Application Server.

References

For information about how to enable FIPS 140-2 mode in WebSphere Application
Server, see Federal Information Processing Standard support.

For the WebSphere Application Server Liberty profile, no option is available in the
administrative console to enable FIPS 140-2 mode. But you can enable FIPS 140-2
by configuring the Java runtime environment to use the FIPS 140-2 validated
modules. For more information, see Java Secure Socket Extension (JSSE) IBMJSSE2
Provider Reference Guide.

Administering MobileFirst applications 11-123

http://usgcb.nist.gov/
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rovr_fips.html
http://ibm.biz/knowctr#SSYKE2_5.0.0/com.ibm.java.security.component.doc.50/secguides/jsse2Docs/JSSE2RefGuide.html
http://ibm.biz/knowctr#SSYKE2_5.0.0/com.ibm.java.security.component.doc.50/secguides/jsse2Docs/JSSE2RefGuide.html


11-124 IBM MobileFirst Platform Foundation for iOS V7.0.0



Monitoring and mobile operations

IBM MobileFirst Platform Foundation for iOS includes a range of operational
analytics and reporting mechanisms for collecting, viewing, and analyzing data
from your IBM MobileFirst Platform Foundation for iOS applications and servers,
and for monitoring server health.

Logging and monitoring mechanisms
IBM MobileFirst Platform Foundation for iOS reports errors, warnings, and
informational messages into a log file. The underlying logging mechanism varies
by application server.

IBM MobileFirst Platform Server

MobileFirst Server uses the standard java.util.logging package. By default, all
MobileFirst logging goes into the application server log files. You can control
MobileFirst Server logging by using the standard tools available in each
application server. If, for example, you want to activate trace logging in Liberty,
add a trace element to the server.xml file. To activate trace logging in WebSphere
Application Server, use the logging screen in the console and enable trace for
MobileFirst logs. MobileFirst logs all begin with "com.worklight".

Application Center logs begin with “com.ibm.puremeap”.

For more information about the logging models of each server platform, including
the location of the log files, see the documentation for the relevant platform, as
shown in the following table.

Table 12-1. Documentation for different server platforms

Server platform Location of documentation

Apache Tomcat http://tomcat.apache.org/tomcat-7.0-doc/
logging.html#Using_java.util.logging_(default)

WebSphere Application
Server Version 7.0

http://ibm.biz/knowctr#SSEQTP_7.0.0/
com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html

WebSphere Application
Server Version 8.0

http://ibm.biz/knowctr#SSEQTP_8.0.0/
com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html

WebSphere Application
Server Version 8.5 full profile

http://ibm.biz/knowctr#SSEQTP_8.5.5/
com.ibm.websphere.base.doc/ae/ttrb_trcover.html

WebSphere Application
Server Version 8.5 Liberty
profile

http://ibm.biz/knowctr#SSEQTP_8.5.5/
com.ibm.websphere.wlp.doc/ae/
rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0

Log level mappings

MobileFirst Server uses java util logging. The logging levels map to the following
levels:
v WL.Logger.debug: FINE
v WL.Logger.info: INFO
v WL.Logger.warn: WARNING

© Copyright IBM Corp. 2006, 2016 12-1

http://tomcat.apache.org/tomcat-7.0-doc/logging.html#Using_java.util.logging_(default)
http://tomcat.apache.org/tomcat-7.0-doc/logging.html#Using_java.util.logging_(default)
http://ibm.biz/knowctr#SSEQTP_7.0.0/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_7.0.0/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.0.0/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.0.0/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0


v WL.Logger.error: SEVERE

Log monitoring tools

For Apache Tomcat, you can use IBM Operations Analytics - Log Analysis or other
industry standard log file monitoring tools to monitor logs and highlight errors
and warnings.

For WebSphere Application Server, use the log viewing facilities that are described
in the IBM Knowledge Center at the URLs that are listed in the table in the
MobileFirst Server section.

Back-end connectivity

To enable trace to monitor back-end connectivity, see the documentation for your
specific application server platform in the table in the MobileFirst Server section.
The packages to be enabled for trace are com.worklight.adapters and
com.worklight.integration. Set the log level to FINEST for each package.

Audit log for administration operations

MobileFirst Operations Console stores an audit log for login, logout, and for all
administration operations, such as deploying apps or adapters or locking apps. The
audit log can be disabled by setting the JNDI property ibm.worklight.admin.audit
on the web application of the MobileFirst Administration service
(worklightadmin.war) to false.

When the audit log is enabled, you can download it from MobileFirst Operations
Console by clicking the Audit log link in the footer of the page.

Audit logs for adapters

To write log information for auditing adapter calls, activate the audit logs by
setting audit="true" in your adapter.xml file in the procedure definition.

Login and authentication issues

To diagnose login and authentication issues, enable the package
com.worklight.auth for trace and set the log level to FINEST.

Vitality queries for checking server health
Use MobileFirst vitality queries to run a health check of your server, and determine
the vitality status of your server.

You generally use the MobileFirst vitality queries from a load balancer or from a
monitoring app (for example, Patrol).

You can run vitality queries for the server as a whole, for a specific adapter, for a
specific app, or for a combination of. The following table shows some examples of
vitality queries.

12-2 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/software/products/en/ibm-operations-analytics---log-analysis


Table 12-2. Examples of queries that help determine server vitality

Query Purpose

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality

Checks the server as a whole.

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality?app=MyApp

Checks the server and the MyApp application.

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality?app=MyApp&adapter=MyAdapter

Checks the server, the MyApp application, and
the MyAdapter adapter.

Note: Do not include the /<publicWorkLightContext> part of the URL if you use
IBM MobileFirst Platform Foundation Developer Edition. You must add this part of
the URL only if MobileFirst Server is running on another application server, such
as Apache Tomcat or WebSphere Application Server (full profile or Liberty profile).

Vitality queries return an XML content that contains a series of <ALERT> tags, one
for each test.

Example query and response

By running the http://<server>:<port>/ws/rest/vitality?app=MyApp query, you
might have the following successful response, with an <ALERT> tag for each of the
three tests:
<ROOT>

<ALERT>
<DATE> 2011-05-17T15:31:35.583+0300 </DATE>
<EVENTID>0</EVENTID>
<SUBJECT>SRV</SUBJECT>
<TYPE>I</TYPE>
<COMPUTER>worklight.acme.com</COMPUTER>
<DESCRIPTION>Server is running</DESCRIPTION>

</ALERT>
<ALERT>
<DATE> 2011-05-17T15:31:35.640+0300 </DATE>
<EVENTID>0</EVENTID>
<SUBJECT>APPL</SUBJECT>
<TYPE>I</TYPE>
<COMPUTER>worklight.acme.com</COMPUTER>
<DESCRIPTION>Application 'MyApp’ is deployed</DESCRIPTION>

</ALERT>
<ALERT>
<DATE>2014-07-08T11:39:42.622+0300</DATE>
<EVENTID>0</EVENTID>
<SYSTEM>WRKL</SYSTEM>
<SUBJECT>BUILD</SUBJECT>
<COMPUTER>192.168.218.1</COMPUTER>
<DESCRIPTION>6.2.0.00.20140707-1736</DESCRIPTION>

</ALERT>
</ROOT>

Return values

The following table lists the attributes that might be returned, and their possible
values.

Monitoring and mobile operations 12-3



Table 12-3. Return values and values

Return attribute Possible values

DATE Date value in JavaScript™ format

EVENTID 0 for the running server, deployed adapter,
or deployed application

1 for not deployed adapter

2 for not deployed application

3 for malfunctioning server

SUBJECT SRV for MobileFirst Server

ADPT for adapter

APPL for application

BUILD for the version of the MobileFirst
Server

TYPE I – valid

E – error

COMPUTER Reporting computer name

DESCRIPTION Status description in plain text

The returning XML contains more attributes, which are undocumented constants
that you must not use.

Setting logging and tracing for Application Center on the
application server

You can set logging and trace parameters for particular application servers and use
JNDI properties to control output on all supported application servers.

You can set the logging levels and the output file for tracing operations for
Application Center in ways that are specific to particular application servers. In
addition, IBM MobileFirst Platform Foundation for iOS provides Java Naming and
Directory Interface (JNDI) properties to control the formatting and redirection of
trace output, and to print generated SQL statements.

Enabling logging and tracing in WebSphere Application Server
full profile
You can set the logging levels and the output file for tracing operations on the
application server.

About this task

When you try to diagnose problems in the Application Center (or other
components of IBM MobileFirst Platform Foundation for iOS), it is important to be
able to see the log messages. To print readable log messages in log files, you must
specify the applicable settings as Java virtual machine (JVM) properties.

Procedure
1. Open the administrative console of WebSphere Application Server.
2. Select Troubleshooting > Logs and Trace.

12-4 IBM MobileFirst Platform Foundation for iOS V7.0.0



3. In “Logging and tracing”, select the appropriate application server and then
select “Change log detail levels”.

4. Select the required packages and their corresponding detail level. For example,
in this way you can select following packages and set the detail level. This
example enables logging for IBM MobileFirst Platform Foundation for iOS,
including Application Center, with level FINEST (equivalent to ALL)
com.ibm.puremeap.*=all
com.ibm.worklight.*=all
com.worklight.*=all

Where:
v com.ibm.puremeap.* is for Application Center.
v com.ibm.worklight.* and com.worklight.* are for other MobileFirst

components.
The traces are sent to a file called trace.log. Note that they are not sent to
SystemOut.log or to SystemErr.log.
For more details, see Configuring Java logging using the administrative
console.

Enabling logging and tracing in WebSphere Application Server
Liberty profile
You can set the logging levels and the output file for tracing operations for
Application Center on the Liberty profile application server.

When you try to diagnose problems in the Application Center, it is important to be
able to see the log messages. To print readable log messages in log files, you must
specify the applicable settings.

To enable logging for IBM MobileFirst Platform Foundation for iOS, including
Application Center, with level FINEST (equivalent to ALL), add a line to the
server.xml file. For example:

<logging traceSpecification="com.ibm.puremeap.*=all:com.ibm.worklight.*=all:com.worklight.*=all"/>

Where multiple entries of a package and its logging level are separated by a colon
(:).

The traces are sent to a file called trace.log. Note that they are not sent to
messages.log or to console.log.

For more details, see Liberty profile: Logging and Trace.

Enabling logging and tracing in Apache Tomcat
You can set the logging levels and the output file for tracing operations undertaken
on the Apache Tomcat application server.

When you try to diagnose problems in the Application Center, it is important to be
able to see the log messages. To print readable log messages in log files, you must
specify the applicable settings.

To enable logging for IBM MobileFirst Platform Foundation for iOS, including
Application Center, with level FINEST (equivalent to ALL), edit the
conf/logging.properties file. For example, add lines similar to these lines:
com.ibm.puremeap.level = ALL
com.ibm.worklight.level = ALL
com.worklight.level = ALL

Monitoring and mobile operations 12-5

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_configjavalog.html
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_configjavalog.html
http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0


For more details, see Logging in Tomcat.

JNDI properties for controlling trace output
On all supported platforms, you can use Java Naming and Directory Interface
(JNDI) properties to format and redirect trace output for Application Center, and to
print generated SQL statements.

The following table shows the applicable properties and settings.

Table 12-4. JNDI property settings for controlling trace output

Property settings Description

ibm.appcenter.logging.formatjson=true This setting uses white space to
format the JSON output for easier
reading in log files.

ibm.appcenter.logging.tosystemerror=true This setting prints all log messages
to system error in log files. It
enables you to turn on logging
globally.

ibm.appcenter.openjpa.Log=DefaultLevel=WARN,
Runtime=INFO, Tool=INFO, SQL=TRACE

This setting prints all the generated
SQL statements in the log files.

Analytics
The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage or detect problems.

IBM MobileFirst Platform Foundation for iOS includes a scalable operational
analytics feature that is accessible from the MobileFirst Operations Console. The
analytics feature enables enterprises to search across logs and events that are
collected from devices, apps, and servers for patterns, problems, and platform
usage statistics.

The data for operational analytics includes the following sources:
v Interactions of any app-to-server activity (anything that is supported by the

MobileFirst client/server protocol, including push notification).
v Client-side logs and crashes.
v Server-side logs that are captured in traditional MobileFirst log files.

The operational analytics feature is accessible from the MobileFirst Operations
Console and includes these capabilities:

Interactive web-based usage.

Dashboard view
These features include interaction support to see the full device
usage across the platform for the last 30, 60 or 90 days. You can
drill down to specific apps and app versions.

Devices view
View device information, including session activity, network
activity, and JSONStore analytics. Search is provided to view
information about a particular device.

12-6 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://tomcat.apache.org/tomcat-7.0-doc/logging.html


Adapters view
View information about adapters such as invocation frequency and
network latency. You can drill down to a specific adapter or
procedure.

Servers view
View analytics information about individual servers in a cluster.
Download server logs.

Activities view
View analytics data on custom activities that are created with the
client-side logging features.

Search view
Provides a text search for client and server-side logs. Allows
filtering by application, version, environment, severity, and so on.

Comparison of operational analytics and reports features
Compare the reports and operational analytics features to know why and how to
best use each.

Note: The Reports database and the sample BIRT Reports are deprecated in IBM
MobileFirst Platform Foundation for iOS V7.0.0. You should use “Operational
analytics” on page 12-8 instead.

With the introduction of the IBM MobileFirst Platform Operational Analytics,
enabling the BIRT feature is redundant. A comparison of the capabilities of these
two features can help clarify the strengths of each, and help determine how you
can best use them.

The data that is collected by the “Reports database” on page 12-74 feature is a
subset of the total data that is collected as part of the Operational “Analytics” on
page 12-6 feature. You can use the reports database and the operational analytics
feature simultaneously, but usage of both in a production environment is
redundant. Use the reports feature in cases where you want direct access to the
Reports database to run custom queries. An example of a scenario where direct
database access is needed is the use of BIRT or a customized online analytics
processing (OLAP) system that runs database queries directly against the Reports
database.

Table 12-5. Comparison of analytics and reports features. This table lists a comparison of
analytics and reports features.

Operational analytics
feature Reports feature

Primary usage Problem determination,
device usage summary,
geographic view of mobile
activity

Device usage summary

Typical user Administrator, operational
support personnel,
developer, analyst

Administrator, analyst

Data used in analytics App crash from clients,
MobileFirst Server log,
MobileFirst app to server
interaction activities

MobileFirst app to server
interaction activities

Monitoring and mobile operations 12-7



Table 12-5. Comparison of analytics and reports features (continued). This table lists a
comparison of analytics and reports features.

Operational analytics
feature Reports feature

Data storage mechanism Files on the IBM MobileFirst
Platform Operational
Analytics

Relational database

Analytics mechanism Each log event is treated as a
JSON document. The data in
the document is indexed so
that it can be searched by
keyword in the document
and presented in a canonical
form that shows the app,
version, some device data,
location (if enabled), time
stamp, adapter (if present in
the document) and other
data.

Each log event is treated as a
row in the raw Reports
database table and then
aggregated for statistics into
the app_activities database
table, summarized to app,
device operating system, and
time stamp relationships.

Access mechanism MobileFirst Operations
Console

BIRT or other reporting tools
that can understand data
cubes

Extendable Extending the published
reports is not supported.

Data can be extracted from
the database tables by using
any means that you desire,
including but not limited to,
BIRT.

Search across logs Yes No

Optional Yes Yes

In addition to an at-a-glance view of your mobile and web application analytics,
the operational analytics includes the capability to perform raw search against
server logs, client activities, captured client crash data. The operational analytics
feature can also search any additional data that you explicitly provide through
client and server-side API function calls that feed into the IBM MobileFirst
Platform Operational Analytics.

Operational analytics
The operational analytics platform collects data about applications, adapters,
devices, and logs to give a high-level view of the client interaction with the
MobileFirst Server and to enable problem detection.

The data for operational analytics includes the following sources:
v Crash events of an application on iOS devices (crash events for native code

errors).
v Interactions of any application-to-server activity (anything that is supported by

the MobileFirst client/server protocol, including push notification).
v Server-side logs that are captured in traditional MobileFirst log files.

The operational analytics feature is accessible from the MobileFirst Operations
Console and includes the following capabilities:
v Near real-time analytics for client activity with the MobileFirst Server.
v Analytics for adapter hits.

12-8 IBM MobileFirst Platform Foundation for iOS V7.0.0



v Network latency analytics.
v Client log search and download.
v Server log search and download.
v Crash and stack trace search.

All data collected by the analytics platform can be visualized through the
Operational Analytics console. The console also provides the ability to create
custom charts based on data collected by the analytics platform. In addition to an
at-a-glance view of your mobile and web application analytics, the analytics feature
includes the capability to perform a raw search against server and client logs,
captured client crash data, and any extra data you explicitly provide through client
and server API function calls that feed into the IBM MobileFirst Platform
Operational Analytics.

Data capture
When the IBM MobileFirst Platform Operational Analytics is deployed and the
MobileFirst Server is properly configured, data begins to flow from the MobileFirst
Server to the IBM MobileFirst Platform Operational Analytics. Some types of data
are captured automatically without extra client or server configurations. Some
types of data require changes to be made in the client application to capture or
forward the data to the MobileFirst Server.

Analytics event types

The following image shows the analytics data flow:

All data that is sent from the MobileFirst Server to the IBM MobileFirst Platform
Operational Analytics is categorized by its type. This section briefly describes the
different types of analytics data that is captured and analyzed.

App Activities
All IBM MobileFirst Platform Foundation for iOS client/server network
communication is considered to be an app activity. An app activity is sent
to the IBM MobileFirst Platform Operational Analytics when:
v A client device begins a new session with the MobileFirst Server.
v A client device makes an adapter request.

When the client communicates with the MobileFirst Server through one of
the previously mentioned events, it also sends metadata about the device,
including:

Monitoring and mobile operations 12-9



v Device environment (iOS, and so on).
v Device model (iPhone3,3, iPad4,4, and so on).

Note: MobileFirst Operational Analytics logs the iPhone model number.
On iOS, two different values are reported for the device model: the
generation and the hardware identifier string. The hardware identifier
string comes from Cordova, while the generation comes from the app
instance registration. Due to this difference, you might see some iOS
device models in the Analytics Console being referred to by either string.

v Device OS version (6.2, 4.2.2, and so on).

Extra information that is captured during a client/network communication
includes:
v Response times for adapter calls.
v Response payload sizes for adapter calls.

Server Logs
Normal MobileFirst Server activity produces log messages that are saved to
the disk. These messages are also forwarded to the IBM MobileFirst
Platform Operational Analytics and can be searched.

Client Logs
Client devices can be configured to capture log data and crash events to be
forwarded to the MobileFirst Server. For more information, see “Manually
captured data.”

Notification Activities
Upon a successful push notification, a notification activity is automatically
sent to the IBM MobileFirst Platform Operational Analytics.

Note: No data is sent to the MobileFirst Server until the application is connected
to the server. A connection to the server can be achieved by calling
WL.Client.connect(). A connection to the server is also done automatically on the
first successful call to an adapter in the MobileFirst Server.

Manually captured data

The following data must be captured manually by changing the client application.

Client Logs
The following example shows how to create client logs to be sent to the
IBM MobileFirst Platform Operational Analytics.

Native iOS applications:
#import "OCLogger.h"

// Set logging level (default level is FATAL).
[OCLogger setLevel:OCLogger_DEBUG];

// Create a new instance of the logger and log the message.
OCLogger *logger = [OCLogger getInstanceWithPackage:@"MyPackage"];
[logger debug:@"This message is persisted locally until it is sent to the server"];

// Call the ’send’ method explicitly to send the logs to the MobileFirst Server
[OCLogger send];

For more information about capturing client-side logs, see “Client-side log
capture configuration from MobileFirst Operations Console” on page 8-305.

12-10 IBM MobileFirst Platform Foundation for iOS V7.0.0



All persisted client-side logs are sent automatically upon a successful
initialization (successful session start) with the MobileFirst Server. An
explicit API is provided if you want to send the logs more frequently.

Client Network Activities
Network activities for client devices are captured and persisted on the
device automatically. However, they are only sent when the client
successfully initializes with the MobileFirst Server (successful session start).

Collecting Analytics for Network Connections to other servers
All network communications to the MobileFirst Server are logged and
collected for analytics as part of MobileFirst Operational Analytics. To
enable collection of network analytics to servers other than the MobileFirst
Server, use WLResourceRequest provided in IBM MobileFirst Platform
Foundation for iOS. This API exists for native iOS, native Android, and
hybrid applications. For example:

//Android

WLResourceRequest resourceRequest = null;

try{

/**
* No java.util.logging.Logger method calls are captured until the
* com.worklight.common.Logger.setContext(Context) method is called
*/

//Logger.setContext(activity);

resourceRequest = new WLResourceRequest(new URI("http://myserverurl.com/"), "GET");

resourceRequest.send(new WLHttpResponseListener() {
@Override
public void onSuccess(HttpResponse httpResponse) {

String responseBody = null;

try {

responseBody = EntityUtils.toString(httpResponse.getEntity());

} catch (IOException e) {}

}

@Override
public void onFailure(HttpResponse httpResponse, Exception e) {

// request completed with an error
});

} catch (URISyntaxException e) {}

Analytics Logging
The client-logging feature enables developers to create logs to help debug
problems and capture errors. A separate API exists for creating logs that
are not meant for problem detection and capture:
WL.Analytics.log( object, message );

For example:
WL.Analytics.log( { "hello": "world" } , "This is an analytics log" );

Logs that are created by the client-side logger are only captured based on
the logging level that is set. For example, DEBUG logs are not captured

Monitoring and mobile operations 12-11



when the logging level is set to FATAL. However, logs that are produced
by WL.Analytics.log are always captured, despite the current logging
level.

The metadata object that is passed into this method is searchable. However
the Analytics console does not make further use of the object beyond the
custom activities that are shown next. The primary purpose of the
metadata object is to allow you to log custom JSON objects if you want to
export analytics data into their own custom tool.

Crash reports
If you want uncaught exceptions recorded and sent to IBM MobileFirst
Platform Operational Analytics in your native iOS application, you can do
so by registering an uncaught exception handler.
NSSetUncaughtExceptionHandler(&unCaughtExceptionHandler);

Then you can implement your uncaught exception handler, utilizing
OCLogger to record information about the exception.

static void unCaughtExceptionHandler(NSException *e) {
[[OCLogger getInstanceWithPackage:@"example.package"] fatal:@"Uncaught Exception: %@. Reason: %@", e.name, e.reason];

}

Note that the logs will not get sent to the server until the application is
restarted and connects to the MobileFirst Server.

Custom Activities
The operational analytics console provides a page to view analytics for
custom activities. These activities can be created on the client-side by the
WL.Analytics API. Using the _activity key in the object for the
WL.Analytics call creates a new activity on the server. For example:
WL.Analytics.log( { "_activity" : "myCustomActivity" } );

creates a new activity in the IBM MobileFirst Platform Operational
Analytics that can be searched on the Activities page of the analytics
console.

Client configurations

No additional client configurations are needed for client devices to forward
analytics data to the MobileFirst Server.

The Analytics Optional Feature is not required to be enabled on the client for
analytics in IBM MobileFirst Platform Foundation for iOS V7.0.0.

The analyticsEnabled flag in the initOptions.js file is not required to be enabled
on the client for analytics in IBM MobileFirst Platform Foundation for iOS V7.0.0.

These configurations are only necessary if you are using the previous analytics
platform (IBM SmartCloud Analytics Embedded). If you are using the new IBM
MobileFirst Platform Operational Analytics in IBM MobileFirst Platform
Foundation for iOS V7.0.0, then these properties can be ignored.

Event types
Data that is sent to the MobileFirst Operational Analytics is categorized into an
event type.

Operational Analytics contains the following event types:

12-12 IBM MobileFirst Platform Foundation for iOS V7.0.0



v Application Activities
v Custom Activities
v Client Logs
v Network Activities
v Notification Activities
v Security Activities
v Server Logs

Application Activities

Table 12-6. Application Activity Properties

Property Name Description

activity Name of the activity being logged. Only
populated when the logActivity method is
called

adapter Name of the adapter

deviceId Unique device identifier

deviceModel Device model name. For example: iPhone3,3

deviceOs Device operating system version. For
example: 7.0

environment Device environment. For example: iPhone

gadgetName Name of the MobileFirstapplication

gadgetVersion Version of the MobileFirst application

ipAddress IP address of the client

procedure Name of the adapter procedure called

sessionId Unique identifier for the HTTP session made
with the server

serverContext.context Context root of the MobileFirst Server

serverContext.ip Host name and address of the MobileFirst
Server

timestamp Time that the event was reported in
milliseconds

useragent User agent header

Custom Activities

Table 12-7. Custom Activity Properties

Property Name Description

deviceId Unique device identifier

deviceModel Device model name. For example: iPhone3,3

deviceOs Device operating system version. For
example: 7.0

environment Device environment. For example: iPhone

gadgetName Name of the MobileFirst application

gadgetVersion Version of the MobileFirst application

sessionId Unique identifier for the HTTP session made
with the server

Monitoring and mobile operations 12-13



Table 12-7. Custom Activity Properties (continued)

Property Name Description

serverContext.context Context root of the MobileFirst Server

serverContext.ip Host name and address of the MobileFirst
Server

timestamp Time that the event was reported in
milliseconds

In addition to the default properties logged, any custom events sent to the
MobileFirst Operational Analytics by the WL.Analytics.log method will also
become a property of the custom activities event.

Client Logs

Table 12-8. Client Log Properties

Property Name Description

deviceId Unique device identifier

deviceModel Device model name. For example: iPhone3,3

deviceOs Device operating system version. For
example: 7.0

environment Device environment. For example: iPhone

gadgetName Name of the MobileFirstapplication

gadgetVersion Version of the MobileFirst application

level Level at which the log was recorded. For
example: WARN, DEBUG

message Message content of the log event

package Package the log was recorded from

sessionId Unique identifier for the HTTP session made
with the server

serverContext.context Context root of the MobileFirst Server

serverContext.ip Host name and address of the MobileFirst
Server

timestamp Time that the event was reported in
milliseconds

Network Activities

Table 12-9. Network Activity Properties

Property Name Description

adapter Name of the adapter. null if the activity was
not a result of an adapter request

bytesReceived The number of bytes that were returned
from the server to the client

deviceId Unique device identifier

deviceModel Device model name. For example: iPhone3,3

deviceOs Device operating system version. For
example: 7.0

12-14 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 12-9. Network Activity Properties (continued)

Property Name Description

endTime The time stamp of the return of the network
request to the client

environment Device environment. For example: iPhone

gadgetName Name of the MobileFirstapplication

gadgetVersion Version of the MobileFirst application

path Context path of network request. This can
contain the full URL.

procedure Name of the adapter procedure called. null
if the activity was not a result of an adapter
request

responseTime Time taken for an adapter call to complete

sessionId Unique identifier for the HTTP session made
with the server

serverContext.context Context root of the MobileFirst Server

serverContext.ip Host name and address of the MobileFirst
Server

startTime The time stamp of the start of the network
request to the client

timestamp Time that the event was reported in
milliseconds

trackingid Global tracking identifier used to correlate
the client request to the backend request

Notification Activities

Table 12-10. Notification Activity Properties

Property Name Description

gadgetName Name of the MobileFirstapplication

gadgetVersion Version of the MobileFirst application

mediator Name of the push service (APNS, GCM,
MPNS)

serverContext.context Context root of the MobileFirst Server

serverContext.ip Host name and address of the MobileFirst
Server

timestamp Time that the event was reported in
milliseconds

eventSource The eventsource of the notification as
configured by the client

Security Validations

Table 12-11. Security Validation Properties

Property Name Description

deviceId Unique device identifier

deviceModel Device model name. For example: iPhone3,3

Monitoring and mobile operations 12-15



Table 12-11. Security Validation Properties (continued)

Property Name Description

deviceOs Device operating system version. For
example: 7.0

endTime The time stamp of the return of the network
request to the client

environment Device environment. For example: iPhone

gadgetName Name of the MobileFirstapplication

gadgetVersion Version of the MobileFirst application

authenticator Package and class name of the authenticator

clientId Unique client identifier

globalTrackingId Unique network tracking identifier

loginModule Package and class name of login module

loginModuleName Name of the login module

origin Origin of the reported event

realmName Name of the realm that is protecting the
event

resourceUrl The URL used to access the protected
resource

securityTestName Name of the security test

sessionId Unique identifier for the HTTP session made
with the server

serverContext.ip Host name and address of the MobileFirst
Server

success Boolean indicating if the authentication to
the protected resource was successful

timestamp Time that the event was reported in
milliseconds

validationCode A detailed code representing the success or
failure of validation, often providing a
reason for the failure

Server Logs

Table 12-12.

Property Name Description

log.sourceClass Name of the class that recorded the log

log.sourceMethodName Name of the method that recorded the log

log.level Level at which the log was recorded. For
example: WARN, DEBUG

log.loggerName Name of the logger used to record the log

log.message Message content of the log event

log.throwable.stacktrace Stack trace associated with the log event

log.throwable.message Message content associated with the
throwable log event

serverContext.context Context root of the MobileFirst Server

12-16 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 12-12. (continued)

Property Name Description

serverContext.ip Host name and address of the MobileFirst
Server

timestamp Time that the event was reported in
milliseconds

Navigating the Analytics console
Learn how to use features provided by the MobileFirst Operational Analytics
console.

Administration:

Learn about the administrative aspects of the IBM MobileFirst Platform
Operational Analytics.

Cluster information:

The Cluster information section provides a list of properties about the state of the
cluster.

Table 12-13. Cluster information properties

Property Name Description

Cluster Name The unique name of the cluster that this
node is a member of. Any node that joins
the cluster must have the same cluster name
set.

Cluster Status Indicates the status of the cluster as GREEN,
YELLOW, or RED. Green means all shards
and replicas have been assigned and
allocated. Yellow indicates that all primary
shards have been allocated but some replicas
have not. Red indicates that a shard has not
been allocated in the cluster.

Number of Nodes Total number of nodes in the cluster.

Number of Master Nodes Total number of master eligible nodes in the
cluster.

Number of Data Nodes Total number of non-master eligible nodes in
the cluster (only holds data and processes
queries, cannot be elected as a master node).

Number of Active Shards Number of primary and replica shards that
have been assigned.

Number of Primary Shards Number of primary shards (not including
replicas).

Number of Unassigned Shards Number of shards that have not yet been
allocated. This number will be greater than
zero if there are too many replica shards.

Monitoring and mobile operations 12-17



Update Settings:

The Update Settings page allows you to change settings dynamically. Typically
these settings would need to be set via JNDI properties and require a server
restart.

You can change these settings dynamically:
v Replicas Per Shard
v Document Time To Live settings

For more information about the Replicas Per Shard setting, see “Properties and
configurations” on page 12-71.

For more information about Time To Live settings, see “Data purging.”

Multi-tenancy:

Learn about multi-tenancy in the IBM MobileFirst Platform Operational Analytics.

Several MobileFirst Server instances can be configured to send analytics data to the
same analytics cluster. All of the data is indexed together, which means that all
charts and queries that are performed on the analytics server reflect data that was
sent from every MobileFirst Server. If you want to use the same analytics cluster
for multiple MobileFirst Server instances, but also want the data to be indexed
separately so that it can be searched and viewed separately, you can add a tenant.

Servers can be configured to send their data to a new tenant on the analytics
cluster so that the data can be viewed separately, even though all of the data lives
on the same cluster.

To forward data to a different tenant, append the following format to the
wl.analytics.url property on the MobileFirst Server:
?tenant=<tenant-name>

For example, if you want to send data to the default tenant, set the
wl.analytics.url property as follows:
wl.analytics.url=http://host.ibm.com/analytics-service/data

If you want to send data to a new tenant that is named test, set the
wl.analytics.url property as follows:
wl.analytics.url=http://host.ibm.com/analytics-service/data?tenant=test

To view the analytics data for a specific tenant, append the same format to the
URL for the analytics console:
http://host.ibm.com/analytics/console?tenant=test

Data purging:

Learn about data purging in the IBM MobileFirst Platform Operational Analytics.

By default, data that is stored in the Analytics Platform is not automatically
deleted. To enable automatic purging of data, the time to live (TTL) property must
be set for each data type.

12-18 IBM MobileFirst Platform Foundation for iOS V7.0.0



The TTL for analytics data types that are stored in the Analytics Platform can be
set by using JNDI properties. For more information about analytics data types, see
“Operational analytics” on page 12-8.

The following table shows the TTL properties:

Table 12-14. TTL properties for purging data that is stored in the Analytics Platform. This
table lists TTL property names and description for purging data that is stored in the
Analytics Platform.

Property Name Description

app_activities_ttl Time to live for app activities, such as
session starts, adapter hits, and network hits.

notification_activities_ttl Time to live for notification activities, such
as push notifications.

client_logs_ttl Time to live for client logs, such as
client-side captured logs, and stack traces.

server_logs_ttl Time to live for server logs.

Note: All JNDI properties must be preceded with the analytics/ string. For more
information about JNDI properties, see “JNDI properties” on page 12-71.

By default, the format for the TTL is in milliseconds. TTL can also be set by using
a number followed by a character that represents the time interval:
v d (days)
v m (minutes)
v h (hours)
v ms (milliseconds)
v w (weeks)

The following example shows how to set the app activities data TTL to one day in
milliseconds:
<jndiEntry jndiName="analytics/app_activities_ttl" value="86400000" />

The following example shows how to set the client logs data TTL to five days:
<jndiEntry jndiName="analytics/client_logs_ttl" value="5d" />

The following example shows how to set the server logs TTL to one week:
<jndiEntry jndiName="analytics/server_logs_ttl" value="1w" />

Note: The TTL properties are not applied to data that already exists in the
Analytics Platform. You must set the TTL properties before you add data.

Exporting raw reports:

Learn about exporting raw reports in the IBM MobileFirst Platform Operational
Analytics.

Exporting from the Administration page

You can export all of the data that is stored in the analytics platform from the
Administration page in one of the following formats:
v JSON

Monitoring and mobile operations 12-19



v CSV
v XML

This page is a user interface that displays the export feature and allows for the
following options:

Table 12-15.

Option name Description

Event Type Name of the event that data is exported
from. For specific information about each of
the events, see “Event types” on page 12-12.

Date Range Start and end date for exporting data.

Limit Number of analytics documents returned.

Offset Number of documents to skip before you
export.

Data Format Format data is exported in (JSON, CSV, or
XML).

When an event type is selected from the user interface, you can select Advanced
Settings. You can apply extra filters to the data you are exporting.

Exporting from a URL

Raw analytics data can be exported from the IBM MobileFirst Platform Operational
Analytics for the following types of data:
v Application session data
v Adapter invocation data
v JSONStore operation data

This data can be exported through a REST API that is exposed by the IBM
MobileFirst Platform Operational Analytics. Currently, the supported export
formats include JSON and CSV.

Exporting application sessions

The following example shows the format for exporting analytics data for
application sessions:

/export/{tenant}/sessions/{days}/{gadgetName}/{gadgetVersion}/{env}/{model}/{os}/{limit}/{offset}/{accept}

You can place a * character for {gadgetName}, {gadgetVersion}, {env}, {model}, and
{os} only. Explicit values for {tenant}, {days}, {limit}, {offset}, and {accept}
must be provided.

If the analytics console is hosted here:
http://hostname.ibm.com:9080/analytics

Then, session data can be exported by invoking the following link:
http://hostname.ibm.com:9080/analytics/data/export/{tenant}/sessions/{days}/{gadgetName}/
{gadgetVersion}/{env}/{model}/{os}/{limit}/{offset}/{accept}

For example, by using the curl command-line tool:
curl "http://hostname.ibm.com:9080/analytics/data/export/worklight/sessions/30/TestApp/*/iphone/*/7.0/100/0/csv"

This previous curl command exports data from the tenant that is named worklight
for all versions of the application that is called TestApp for the last 30 days. It

12-20 IBM MobileFirst Platform Foundation for iOS V7.0.0



returns only data for the iPhone environment, for all models of the iPhone, and
only for iOS 7.0. It returns the first 100 results that are found and start with the
first result (limit = 100, offset = 0).

Note:

v The default tenant is worklight. If you did not configure a specific tenant for the
IBM MobileFirst Platform Operational Analytics, then use worklight.

Exporting adapter invocations

The following example shows the format for exporting analytics data for adapter
invocations:

/export/{tenant}/adapters/{days}/{adapter}/{procedure}/{gadgetName}/{gadgetVersion}/{env}/
{model}/{os}/{limit}/{offset}/{accept}

You can place a * character for {adapter}, {procedure}, {gadgetName},
{gadgetVersion}, {env}, {model}, and {os} only. Explicit values for {tenant},
{days}, {limit}, {offset}, and {accept} must be provided.

For example, by using the curl command-line tool:
curl "http://hostname.ibm.com:9080/analytics/data/export/worklight/adapters/10/UploadAdapter/uploadProcedure/TestApp/1.0/iphone/iphone 5/4.4/10/0/csv"

Exporting JSONStore operation data

The following example shows the format for exporting analytics data for
JSONStore operation data:

/export/{tenant}/jsonstore/{days}/{gadgetName}/{gadgetVersion}/{env}/{model}/{os}/{collection}
/{operation}/{limit}/{offset}/{accept}

You can place a * character for {gadgetName}, {gadgetVersion}, {env}, {model},
{os}, {collection}, and {operation} only. Explicit values for {tenant}, {days},
{limit}, {offset}, and {accept} must be provided.

For example, by using the curl command-line tool:
curl "http://hostname.ibm.com:9080/analytics/data/export/worklight/jsonstore/100/*/*/iphone/*/*/people/add/100/50/csv"

Custom Analytics:

Starting with V7.0.0, you can visualize the collected analytics data in your analytics
repository. This is a powerful way to inspect data for specific use cases. You can
create charts with data already collected by Operational Analytics in addition to
custom data you report.

The ability to report custom data (custom key-value pairs) from the IBM
MobileFirst Platform Foundation for iOS has been present since V6.1.0, and now
you can extract that data in raw form, as well as render custom charts from that
raw data.

Creating a custom chart:

MobileFirst Operational Analytics has several pre-made charts with useful
visualizations. Starting with V7.0.0, you can create a different chart type or run a
specific query to render into a table.

Monitoring and mobile operations 12-21



About this task

In this scenario, you create a bar chart for all active Android Galaxy devices.

Procedure

1. Click on the Custom Charts tab from the Dashboard section of the console.

2. Click the Add New Chart button. This opens a Chart Definition tab where you
specify your visualization parameters.

a. Enter a chart title.
b. Choose the event type. For this scenario, choose Network Activities.
c. Choose a chart type. For this scenario, choose Bar Graph.
d. Select Axis as Timeline for the x-axis.
e. Select Unique Count for the y-axis.
f. Select Device Id for the property.

3. Click on the Filters tab to specify filters for the data.

a. Select the data type to filter. For this scenario, choose Device Model.
b. Select the value to filter on. For this scenario, choose galaxy.
c. Click the Add Filter button.

Repeat steps 1-3 for all filters you want to apply. For this scenario, we do not
need any more filters.

What to do next

For more advanced usage, see “Patterns for visualizing custom data” on page
12-37.

Custom chart types:

The IBM MobileFirst Platform Operations Console offers the following chart types
for data visualization.
v Bar Graph
v Flow Chart
v Line Graph
v Metric Group
v Pie Chart
v Table

Note: The following sections only contain information about custom chart types
that may not be familiar.

Figure 12-1. Analytics Dashboard

Figure 12-2. Chart Definition

Figure 12-3. Filters

12-22 IBM MobileFirst Platform Foundation for iOS V7.0.0



Flow Chart:

The flow chart can be used to show relationships between two different properties.

Three selections must be made to use the flow chart:
v A source key
v A destination key
v A value from either the source or destination keys

If you want to see the relationship between an adapter and its procedures, you
select Adapter Name as the source and Procedure Name as the destination. You
then select one of the adapters as the value.

Figure 12-4. Adapter-Procedure chart definition

Monitoring and mobile operations 12-23



The CheckoutAdapter adapter is the source on the left and its three procedures are
on the right. The line next to each procedure represents a relationship between the
source and each of its destinations. The length of this line is relative to the
frequency at which that procedure was invoked. In this case, all three of the
CheckoutAdapter procedures were called about the same number of times. A table
is displayed below with the exact values of each relationship.

The flow chart is best used with custom data. In this example, you have several
pages in your application and would like to know about how your users are
navigating between each page. You can add the following calls to your application:
function pageTransition1(){

var event = {
src: ’page1’
dst: ’page2’

};

WL.Analytics.log(event, ’Custom event for page transition’);
}

function pageTransition2(){

Figure 12-5. Adapter-Procedure Flow Chart

12-24 IBM MobileFirst Platform Foundation for iOS V7.0.0



var event = {
src: ’page2’
dst: ’page3’

};

WL.Analytics.log(event, ’Custom event for page transition’);
}

You can use this information to create a flow chart representing how users
navigated through your application. The keys used for your source and destination
fields will automatically show up as an option after selecting the Custom Activities
event type.

Figure 12-6. Page Transition Chart Definition

Monitoring and mobile operations 12-25



The chart displays the relationships between page transitions with 'page3' as the
main value. Notice that 'page3' is both a source and a destination. This means you
can see how users got to page 3 in addition to what pages users went to after
leaving page 3. You can see in this example that most users came to 'page3' from
'page2.' After that, some users moved to 'page4' but others went back to 'page2.'

Metric Group:

The Metric Group chart is used to display a single numerical value.

This value can be:
v A total or sum of events
v An average of a specified property
v A unique count

Figure 12-7. Page Transition Flow Chart

12-26 IBM MobileFirst Platform Foundation for iOS V7.0.0



If you want to see an at-a-glance view of how many unique devices have contacted
your server, you can make the following selections.

The following chart is created:

In this example, you would like to know the average amount of time a user
spends on a particular page of your application. When the user enters a page, you
begin recording the start time. When the user exits, you make the following
method call:
function logPageTime(pageTime){

var event = {
pageTimeInSeconds: pageTime

Figure 12-8. Unique Devices chart definition

Figure 12-9. Unique Devices Metric Group Chart

Monitoring and mobile operations 12-27



};

WL.Analytics.log(event, ’Custom event time spent on page’);
}

MobileFirst Operational Analytics contains several of these events with varying
numbers that depend on the amount of time each user has spent on a particular
page. You can use the metric group chart to calculate the average for all of the
events stored:

Filters:

When creating a custom chart, you can apply filters to the results from the Filters
tab.

Figure 12-10. Page Time chart definition

Figure 12-11. Page Time Metric Group Chart

12-28 IBM MobileFirst Platform Foundation for iOS V7.0.0



As discussed in “Event types” on page 12-12, each event type has a set of
properties. You can apply the following filters for any of these properties:
v Equals/Not Equals
v Exists/Not Exists
v Greater Than/Greater Than or Equal
v Less Than/Less Than or Equal

You create a bar chart displaying the number of application activities for each day.
You want to see the number of activities that were made by iPhone devices. You
can apply the 'Equals' filter to your chart:

Custom Filters

Several filters can be applied to the same chart, but all of these filters are applied.
For example, if you wanted to see application activities for iPhone and Android
devices, and you added an Equals filter for both environments, the resulting query
would search for activities where the environment is iPhone and the environment
is Android. This query returns zero results since each activity can only have one
environment property. To create more complex predicates for queries, you must
use the custom filters feature.

The following filter only selects documents where the environment is iPhone:
doc[’environment’].value==’iphone’

Conversely, this filter will do the opposite and only select documents where the
environment is not iPhone:

doc[’environment’].value!=’iphone’

You can do other logical comparisons, like greater than and less than:
doc[’timestamp’].value<1418277600000

In additional to logical expressions, you can combine filters using Boolean
expressions. You can filter on documents where the environment is Android or
iPhone:

doc[’environment’].value==’android’ || doc[’environment’].value==’iphone’

You can further group these filters using parenthesis. You can combine the last
filter with a limitation to retrieve all documents before a certain date:

doc[’timestamp’].value<1418277600000 && (doc[’environment’].value==’android’ || doc[’environment’].value==’iphone’)

Figure 12-12. Environment Filter

Figure 12-13. Custom Filters

Monitoring and mobile operations 12-29



You can extract other data from a document field besides its value. For example,
doc[’field_name’].values is the native array values of the field, and
doc[’field_name’].empty is a Boolean indicating if the field has no values within
the document. For a detailed description of all the documents and their fields, refer
to. For a list of all available expressions, see Elastic Search scripting documentation

Patterns for creating custom charts:

Each of the following sections contains a subsection explaining how to populate
data, which typically involves calling some APIs on the client.

For more information about the different types of data that are collected, see
“Event types” on page 12-12.

Note: Some APIs, such as connect and invokeProcedure will send analytics
information automatically without having to use the analytics send API. However,
this is only true if you call connect and invokeProcedure 60 seconds apart. This is
done to limit the number of requests to the server. For example, when calling
multiple adapters in the span of a single minute, it is better to "batch send" the
analytics information. For testing purposes, it is recommended to always call the
analytics send API explicitly.

Client Logs:

Client logs contain log information sent with the platform's Logger API. This also
includes contextual information about the device, including environment,
application name, and application version.

Before you begin

If you are using the WL.Client.logActivity API, replace those calls with
WL.Analytics.log, otherwise you will not be able to create custom charts from the
information you are logging.

Note: The steps that follow use JavaScript APIs. If you are using a native
application, you must use the native versions of these APIs.

About this task

In this example, you will use client log data to create a flow chart. The final graph
will show the distribution of log levels in a specific application. You will also have
the following data available to show in a chart:
v Specific data

– Log level
– Message
– Package

v Message data
– Timestamp

v Environment Contextual data
– Application name
– Application version
– Environment

v Device Contextual data

12-30 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-scripting.html#_document_fields


– Device Id
– Device model
– Device OS version

Procedure

1. Create a new hybrid application.
2. Populate data by calling WL.Logger.log(’Hello world!’) or any of the other

Logger APIs. Then call WL.Logger.send().
3. Go to the Analytics console and select the Custom Charts tab. This allows you

to create a chart based on the analytics messages you sent to the server.
4. Select + Add New Chart to create a custom chart.
5. Provide the following values when adding the new chart:
v Chart Title: Application and Log Levels
v Event Type: Client Logs
v Chart Type: Flow Chart
v Source: Application Name
v Destination: Level
v Property: your application name

6. Click Save New Chart.

Results

Network Activities:

Network activities contain information about network requests such as network
request time and bytes received by the client. This also includes contextual
information about the device, such as environment, application name, and
application version.

About this task

In this example, you will use network activity data to create a line chart. The
graph will show how the number of bytes received from the client on the server
changes over time. All the values in a single day are averaged. You will also have
the following data available to show in a chart:
v Specific data

– Adapter name
– Procedure name
– Adapter response time (in milliseconds)
– Bytes received
– Server (for example: dallas.ibm.com/9.64.77.98)
– URL path (for example: /wlproj/apps/services/api/wlapp/iphone/query)

v Message data
– Timestamp

v Environment Contextual data
– Application name

Figure 12-14. Application and Log Levels

Monitoring and mobile operations 12-31



– Application version
– Environment

v Device Contextual data
– Device Id
– Device model
– Device OS version

Procedure

1. Create a new hybrid application.
2. Populate data

a. Call WL.Client.connect().
b. Create an adapter with a procedure.
v helloWorldAdapter-impl.js

function sayHello() {
return {hello: ’world’};

}

v helloWorldAdapter.xml
<procedure name="sayHello"/>

c. Call WL.Client.invokeProcedure() to invoke a procedure on the newly
created adapter. The parameters include anything required to contact your
adapter. The example below uses an adapter that returns a simple {hello:
'world'} object when invoked from the client.
v main.js

WL.Client.invokeProcedure({
adapter : ’helloWorldAdapter’,
procedure : ’sayHello’,
parameters : []

})
.then(function (res) {

console.log(JSON.stringify(res, null, ’ ’));
})

d. Call WL.Analytics.send().
3. Go to the Analytics console and select the Custom Charts tab. This allows you

to create a chart based on the analytics messages you sent to the server.
4. Select + Add New Chart to create a custom chart.
5. Provide the following values when adding the new chart:
v Chart Title: Average Bytes Received
v Event Type: Network Activities
v Chart Type: Line Graph
v X-Axis: Timeline
v Y-Axis: Average
v Property: Bytes Received

6. Click Save New Chart.

Results

Figure 12-15. Average Bytes Received

12-32 IBM MobileFirst Platform Foundation for iOS V7.0.0



Notification Activities:

Notification activities contain information about push notifications.

About this task

In this example, you will use the notification activities information to create a
table. The table will show a timestamp and the mediator (for example, APNS is
Apple Push Notification Service). You will also have the following data available to
show in a chart:
v Specific data

– Mediator (APNS, MPNS, GCM)
– Event source

v Message data
– Timestamp

Procedure

1. Create a new hybrid application.
2. Set up push notifications. For more information, see “Setting up push

notifications” on page 8-206.
3. Go to the Analytics console and select the Custom Charts tab. This allows you

to create a chart based on the analytics messages you sent to the server.
4. Select + Add New Chart to create a custom chart.
5. Provide the following values when adding the new chart:
v Chart Title: Table of Push Notifications
v Event Type: Notification Activities
v Chart Type: Table

6. Add the following columns: Timestamp and Mediator
7. Click Save New Chart.

Results

Security Validations:

Security activities contain information about network requests such as network
request time and bytes received by the client.

About this task

In this example, you will use the security activity information to create a pie chart.
The graph will show the realms being hit by a specific application. You will also
have the following data available to show in a chart:
v Specific data

– Authenticator name
– Client ID
– Login Module class
– Login Module name
– Origin

Figure 12-16. Table of Push Notifications

Monitoring and mobile operations 12-33



– Realm name
– Security Test name
– Success (true/false)
– Tracking ID
– Validation code
– Server (for example: dallas.ibm.com/9.64.77.98)
– Resource URL (for example: http://dallas.ibm.com:10080/wlproj/apps/

services/api/wlapp/iphone/heartbeat)
v Message data

– Timestamp
v Environment Contextual data

– Application name
– Application version
– Environment

v Device Contextual data
– Device Id
– Device model
– Device OS version

Procedure

1. Create a new hybrid application.
2. Populate data

a. Call WL.Client.connect().
b. Create an adapter with a procedure.
c. Call WL.Client.invokeProcedure() to invoke a procedure on the newly

created adapter. The parameters include anything required to contact your
adapter. The example below uses an adapter that returns a simple {hello:
'world'} object when invoked from the client.
v helloWorldAdapter-impl.js

function sayHello() {
return {hello: ’world’};

}

v helloWorldAdapter.xml
<procedure name="sayHello"/>

v main.js
WL.Client.invokeProcedure({

adapter : ’helloWorldAdapter’,
procedure : ’sayHello’,
parameters : []

})
.then(function (res) {

console.log(JSON.stringify(res, null, ’ ’));
})

d. Call WL.Analytics.send().
3. Go to the Analytics console and select the Custom Charts tab. This allows you

to create a chart based on the analytics messages you sent to the server.
4. Select + Add New Chart to create a custom chart.
5. Provide the following values when adding the new chart:
v Chart Title: Realms called for [your application name]

12-34 IBM MobileFirst Platform Foundation for iOS V7.0.0



v Event Type: Security Activities
v Chart Type: Pie Chart
v Property: Realm name

6. Click the Filters tab and select the following:
v Filter Application name
v Operator: Equals
v Value: [your application name]

7. Click Add Filter.

Note: You can use the filter section to exclude the default realms (the realms
that start with wl_). For example, to exclude wl_anonymousUserRealm, add a
filter for Realm Name with an operator of Equals and a value of
wl_anonymousUserRealm.

8. Click Save New Chart.

Results

Server Logs:

Server logs contain internal server logs.

About this task

In this example, you will use the server log information to create a metric group.
The metric will show the number of log messages on the server that are
categorized as severe by their corresponding log level property. You will also have
the following data available to show in a chart:
v Specific data

– Log level
– Message
– Logger name
– Source class
– Server (for example: dallas.ibm.com/9.64.77.98)
– Source
– Source method
– Thread Id
– URL path (for example: /wlproj/apps/services/api/wlapp/iphone/query)

v Message data
– Timestamp

Procedure

1. Create a new hybrid application.
2. Populate data

a. Call WL.Client.connect().
b. Create an adapter with a procedure.
v helloWorldAdapter-impl.js

Figure 12-17. Realms Called for WLApp

Monitoring and mobile operations 12-35



function sayHello() {
return {hello: ’world’};

}

v helloWorldAdapter.xml
<procedure name="sayHello"/>

c. Call WL.Client.invokeProcedure() to invoke a procedure on the newly
created adapter. The parameters include anything required to contact your
adapter. The example below uses an adapter that returns a simple {hello:
'world'} object when invoked from the client.
v main.js

WL.Client.invokeProcedure({
adapter : ’helloWorldAdapter’,
procedure : ’sayHello’,
parameters : []

})
.then(function (res) {

console.log(JSON.stringify(res, null, ’ ’));
})

d. Call WL.Analytics.send().
3. Go to the Analytics console and select the Custom Charts tab. This allows you

to create a chart based on the analytics messages you sent to the server.
4. Select + Add New Chart to create a custom chart.
5. Provide the following values when adding the new chart:
v Event Type: Metric Group
v Metric Title: Total Severe Log Count

6. Click Add Metric.
7. Click the Filters tab and select the following:
v Filter: Level
v Operator: Equals
v Value: SEVERE

8. Click Add Filter.
9. Click Save New Chart.

Results

Creating a custom chart with custom data:

To collect custom data, configure your application codebase with the Analytics API.

About this task

In this scenario, you will create a pie chart representing the relative frequency of
user button clicks.

Procedure

1. Create a MobileFirst application. For this scenario, attach functions to the
JavaScript onClick event listeners for buttons in your user interface. These
functions will be instrumented to report analytics. The WL.Analytics.log
method takes an object and a message as parameters. The message is used for

Figure 12-18. Total Severe Log Count

12-36 IBM MobileFirst Platform Foundation for iOS V7.0.0



searching for this custom event in the Search page of the Analytics console.
The object is used to collect data for custom analytics charting.
function buttonA(){

var event = {buttonPress: ’buttonA’};
WL.Analytics.log(event, ’Custom event for button A press’);

}

function buttonB(){
var event = {buttonPress: ’buttonB’};
WL.Analytics.log(event, ’Custom event for button B press’);

}

function buttonC(){
var event = {buttonPress: ’buttonC’};
WL.Analytics.log(event, ’Custom event for button C press’);

}

function buttonD(){
var event = {buttonPress: ’buttonD’};
WL.Analytics.log(event, ’Custom event for button D press’);

}

function sendAnalytics(){
WL.Analytics.send();

}

The sendAnalytics function is a convenience for demonstration purposes only.
The values for keys passed to the WL.Analytics.log method can only be strings
and numbers. Objects and arrays can be passed as values, but will not be used
when creating custom charts. The event object in each method is used to create
custom charts. buttonPress is the key used to generate data for each chart. The
values for this key are buttonA, buttonB, buttonC, and buttonD.

2. Create a custom chart. For more information on custom charts, see “Creating a
custom chart” on page 12-21
When a device sends the analytics to the server, the key becomes available in

the Select Property field for chart creation and filters.

Patterns for visualizing custom data:

You can instrument your IBM MobileFirst Platform Foundation for iOS V7.0.0
applications to collect and visualize analytics data, allowing you to continuously
understand application usage and target improvements.

Prerequisites

Ensure that you are familiar with the WL.Analytics API and “Operational
analytics” on page 12-8.

Patterns

When developing mobile applications, you can track key actions over time that can
provide useful insight. The patterns below will explain how to track various
interesting data points and chart them in different ways.

Many visualizations can be created following two patterns. The first pattern
involves recording and sending information as it gets created. For example, a user

Figure 12-19. Chart Definition

Monitoring and mobile operations 12-37



completes a registration form. The second pattern involves accumulating and
calculating information on the client-side before calling the analytics API to record
and send that information to the server. For example, the amount of time elapsed
between two actions.

Single events:

The single event pattern involves sending a single piece of information as it
becomes available.

One example of a single event pattern is tracking new user registrations. After the
user has successfully completed the application's registration form, tracking this
gives insight about how many people are registering for your application over
time.

New User Registrations Over Time:
Procedure

1. Create a new MobileFirst hybrid application. These instructions use the
JavaScript versions of the log and send APIs. If you want to work with a native
application instead, use the native versions of log and send.

2. Write the following code to generate four newSignup events:
WL.Analytics.log({ newSignup: ’username’ + Math.random() }, ’newSignup’);
WL.Analytics.log({ newSignup: ’username’ + Math.random() }, ’newSignup’);
WL.Analytics.log({ newSignup: ’username’ + Math.random() }, ’newSignup’);
WL.Analytics.log({ newSignup: ’username’ + Math.random() }, ’newSignup’);

This locally stores a JSON object with information about the new registrations,
which is a few random user names in this case. The second parameter in the
log function is a useful string to search for log messages. However, for the
creation of custom charts, this parameter is irrelevant. The example uses the
same key as the object being recorded.

3. Send analytics data to the server with the following function:
WL.Analytics.send();

This function detects all analytics messages that are locally stored, sends them
to the server, and removes the local copy after successfully sending them.

4. In the MobileFirst Operational Analytics console, click the Custom Charts tab.
This allows you to create a chart based on the analytics messages that were
sent to the server.

5. Click + Add New Chart to create a new custom chart.
6. Provide the following values:
v Chart Title: New Registrations
v Event Type: Custom Activities
v Chart Type: Line Graph
v X-Axis: Timeline
v Y-Axis: Unique
v Property: newSignup

7. Click Save New Chart.

12-38 IBM MobileFirst Platform Foundation for iOS V7.0.0



Results

New Registrations and Environment Table:
Before you begin

Complete steps 1-5 in “New User Registrations Over Time” on page 12-38.

About this task

In this example, you will create a table of new registered users and what
environment they are using.

Procedure

1. Provide the following values when adding the new chart:
v Chart Title: New Registrations and Environment Table
v Event Type: Custom Activities
v Chart Type: Table

2. Add the following columns to the table: newSignup and Environment
3. Click Save New Chart.

Figure 12-20. New User Registrations Over Time

Monitoring and mobile operations 12-39



Results

What to do next

At this point, you can export the data shown in the table to use with other
applications. For more information on exporting data, see “Exporting custom data”
on page 12-47.

New Registrations Metric:

Another way to represent new user registration data is with a metric group chart.

Before you begin

Complete steps 1-5 in “New User Registrations Over Time” on page 12-38.

Procedure

1. Provide the following values when adding the new chart:
v Event Type: Custom Activities
v Chart Type: Metric Group

2. Add the following Metric information:
v Metric Title: Registrations
v Metric Type: Unique
v Metric Property: newSignup

3. Click Add Metric.
4. Click Save New Chart.
5. Use theData Filters drop-down menu on the Custom Charts page to see the

number of registrations for a specific time interval. For example, the last 14
days.

Figure 12-21. New Registrations and Environment Table

12-40 IBM MobileFirst Platform Foundation for iOS V7.0.0



The filter applies to all the data being presented in the Analytics Console, not
just the Metric in this particular example.

Results

Check-out Results:
About this task

You can also visualize data as a pie chart. This example shows the percentage of
successful check-outs and failure check-outs.

Procedure

1. Create a new MobileFirst hybrid application.
2. Write the following code to generate four successful check-out events and two

failures:
WL.Analytics.log({checkout: ’success’}, ’checkout’);
WL.Analytics.log({checkout: ’success’}, ’checkout’);
WL.Analytics.log({checkout: ’success’}, ’checkout’);
WL.Analytics.log({checkout: ’success’}, ’checkout’);
WL.Analytics.log({checkout: ’failure’}, ’checkout’);
WL.Analytics.log({checkout: ’failure’}, ’checkout’);

3. Provide the following values when adding the new chart:
v Chart Title: Check-out Result
v Event Type: Custom Activities
v Chart Type: Pie Chart
v Property: checkout

4. Click Save New Chart.

Figure 12-22. Data Filters menu

Figure 12-23. New Registrations Metric Group

Monitoring and mobile operations 12-41



Results

Composed events:

Some pieces of information are only meaningful after doing certain calculations on
them.

Examples of composed events are tracking the length of a user session and how
long it took a user to complete a specific task. The client portion of the application
must record an initial value, such as the current date, wait for the user to complete
the task of interest, and then record the amount of time that has passed between
the initial value and the final value. The client then sends the result of that
computation to the server.

The key difference between composed events and single events is that you cannot
log sessionStartTime and sessionEndTime as they occur and have the server
calculate the time spent between the two intervals to generate a meaningful chart.

In addition to time-based information, another use case for composed events is
recording the source and destination page of a user's navigation through the
application.

You can also record information about the user and augment analytics events that
are sent to the server. For example, recording the users that used the application
more than a certain number of times are considered active users. You can send
information about the session, such as what country the user is in, and then filter
by active users.

Session Length:
About this task

In this example, you will take all the values recorded in single day, calculate the
average, and plot them on a graph.

Procedure

1. Define what you consider a session. A session can be defined as the time
interval that starts when the user logs in until the user logs out. Another way
to define a session is to start the session when the user begins a process and

Figure 12-24. Check-out Results

12-42 IBM MobileFirst Platform Foundation for iOS V7.0.0



end the session when the process is complete. For this example, a session starts
when the application enters the foreground and ends when the application goes
into the background.

2. The application lifecycle callback methods depend on which environments you
want to support. You can use the native versions of Analytics API for those
environments. For simplicity, this example will log the amount of time spent on
the session using the JavaScript API.

3. Add this code to your application:
function getSessionTotalTime(currentTime, startTime) {

return currentTime - startTime;
}

WL.Analytics.log({’totalSessionTime’ : getSessionTotalTime()}, ’totalSessionTime’);

4. Send the analytics data to the server:
WL.Analytics.send();

5. From the Custom Charts tab of the Analytics console, click + Add New Chart.
6. Provide the following values:
v Chart Title: Average Session Times
v Event Type: Custom Activities
v Chart Type: Bar Graph
v X-Axis: Axis as Timeline
v Y-Axis: Average
v Property: totalSessionTime

7. Click the Chart Properties tab and add a new threshold line with the following
values:
v Threshold Label: SessionTimeGoal
v Threshold Value: 300

This will create a line at the value specified with the label. The goal is to show
the daily average session time that is greater than 300 units of time.

Results

Page Flow:

You can gain insight about how users of your application reach and leave certain
pages by tracking the source page and the destination page.

Figure 12-25. Session Length

Monitoring and mobile operations 12-43



About this task

In this example, you are recording how the user reaches the cart page of an
application, and what pages the user moves to after leaving that page.

Procedure

1. Create a new hybrid application.
2. Make the following calls to the log function.

WL.Analytics.log({sourcePage : ’home’, destinationPage: ’cart’}, ’pageFlow’);
WL.Analytics.log({sourcePage : ’home’, destinationPage: ’cart’}, ’pageFlow’);
WL.Analytics.log({sourcePage : ’product’, destinationPage: ’cart’}, ’pageFlow’);
WL.Analytics.log({sourcePage : ’product’, destinationPage: ’cart’}, ’pageFlow’);
WL.Analytics.log({sourcePage : ’cart’, destinationPage: ’home’}, ’pageFlow’);
WL.Analytics.log({sourcePage : ’cart’, destinationPage: ’checkout’}, ’pageFlow’);

3. Add a new chart and provide the following values:
v Chart Title: Cart Page Flow
v Event Type: Custom Activities
v Chart Type: Flow Chart
v Source: sourcePage
v Destination: destinationPage
v Property: cart

4. Click Save New Chart.

Results

Regular Users and Geolocation:

Figure 12-26. Cart Page Flow

12-44 IBM MobileFirst Platform Foundation for iOS V7.0.0



About this task

In this example, you show the geographical locations of an application's regular
users.

Procedure

1. Define different types of users that are relevant to your application. For this
example, use the following types of users:
v New: The user has used the application less than 5 times.
v Regular: The user has used the application 5 or more times.

2. When the application is started, you need to persist a counter with how many
times the user has opened the application. This example uses HTML5 local
storage, but you can use something more powerful, such as JSONStore. Use the
following code to obtain the type of user:
var userVisit = localStorage.getItem(’userVisit’);
localStorage.setItem(’userVisit’, userVisit + 1);
var typeOfUser = (userVisit > 5) ? ’Regular’ : ’New’;

3. Send the following log messages:
WL.Analytics.log({type : ’New’, geographicLocation: ’USA’}, ’visit’);
WL.Analytics.log({type : ’New’, geographicLocation: ’Mexico’}, ’visit’);
WL.Analytics.log({type : ’New’, geographicLocation: ’USA’}, ’visit’);
WL.Analytics.log({type : ’Regular’, geographicLocation: ’Mexico’}, ’visit’);
WL.Analytics.log({type : ’Regular’, geographicLocation: ’Canada’}, ’visit’);
WL.Analytics.log({type : ’Regular’, geographicLocation: ’USA’}, ’visit’);
WL.Analytics.log({type : ’Regular’, geographicLocation: ’USA’}, ’visit’);

In a real application, do not hardcode values for type and geographicLocation.
When getting the location, use strings instead of latitude longitude values.

4. Add a new chart with the following values:
v Chart Title: Regular Users and Location
v Event Type: Custom Activities
v Chart Type: Flow Chart
v Source: type
v Destination: geographicLocation
v Property: Regular

5. Save the chart.

Monitoring and mobile operations 12-45



Results

New Users and Location:
About this task

In this example, the chart will use the same information presented in “Regular
Users and Geolocation” on page 12-44, but will show new users instead of regular
users. Unlike that task, this example uses filters to limit the amount of information
shown and uses a pie chart instead of a flow chart.

Procedure

1. Follow steps 1-3 from “Regular Users and Geolocation” on page 12-44.
2. Add a new chart with the following values:
v Chart Title: New Users and Location
v Event Type: Custom Activities
v Chart Type: Pie Chart
v Property: geographicLocation

3. Go to the Filters tab and select the following:
v Filter: type
v Operator: Equals
v Value: New

4. Save the chart.

Figure 12-27. Regular Users and Location

12-46 IBM MobileFirst Platform Foundation for iOS V7.0.0



Results

Exporting custom data:

The data from each custom chart can be exported into JSON, XML, or CSV format.

The structure of the exported data depends on the chart that is being exported. To
export data, click the export icon at the upper right of the custom chart.

Exporting and importing custom chart definitions:

If you are using the latest interim fix of MobileFirst, you can import and export
custom chart definitions programmatically or manually in the IBM MobileFirst
Platform Operational Analytics Console.

Before you begin

Ensure that you have at least one custom chart in the IBM MobileFirst Platform
Operational Analytics Console.

About this task

In this example, you manually export and import custom chart definitions.

Procedure

1. In the MobileFirst Analytics Console, click the Custom Charts tab in the
Dashboard page.

2. To export the custom chart definitions, click Export Charts. This action displays
a dialog to save a customChartsDefinition.json file.

3. Choose a location to save the file.
4. Click the Delete Chart icon next to each custom chart to delete all custom

charts.
5. To import a custom chart definition, click Import Charts. This action displays a

dialog to choose a file.

Figure 12-28. New Users and Location

Figure 12-29. Exporting chart data

Monitoring and mobile operations 12-47



6. Choose the customChartsDefinition.json file that you previously exported to
open.

Results

You exported and imported a custom chart definition manually in the MobileFirst
Analytics Console.

What to do next

You can also export and import custom chart definitions programmatically by
using your HTTP client of choice (for example, CURL or postman). The GET
endpoint for export is http://<hostname>:<port>/<context-root>/data/
customCharts/apps/{appId}/exportChartDefinitions. The POST endpoint for
import is http://<hostname>:<port>/<context-root>/data/customCharts/apps/
{appid}/importChartDefinitions. For example, if the context root was not changed
from the default of analytics-service, the export endpoint is
http://myHost.com:9080/analytics-service/data/customCharts/apps/{appid}/
exportChartDefinitions and the import endpoint is http://myHost.com:9080/
analytics-service/data/customCharts/apps/{appid}/importChartDefinitions. If
the application is protected by basic authorization, all security requirements apply.

Note: If you import a custom chart definition that exists, you end up with
duplicate definitions, which also means that the MobileFirst Analytics Console
shows duplicate custom charts.

Security Analytics:

Starting with V7.0.0, the MobileFirst Operational Analytics includes a Security tab.

Overview of IBM MobileFirst Platform Foundation for iOS security

Applications and adapter procedures can be protected by a security test. The test
includes one or more realms. Each Realm represents a specific security check. Some
realms are already provided. For example, wl_antiXSRFRealm is used to avoid
cross-site request forgery attacks. Other realms are defined by the developer based
on their security needs.

The realms contain two key pieces of functionality: an Authenticator and a Login
Module. The Authenticator gets some information from the user or device, such as
a user name and password. The Login Module gets information from the
Authenticator and validates it. An example of validation is checking the user name
and password against a user registry.

For more information about security, see “MobileFirst security overview” on page
10-79.

Example use case

1. A developer creates an adapter procedure. The procedure returns account
information for a specific user.

2. Only valid users can access account information, so the developer protects the
procedure with a security test. That adapter procedure is now a protected
resource.

12-48 IBM MobileFirst Platform Foundation for iOS V7.0.0



3. You can determine if a user is valid by contacting a user registry. The developer
creates a realm and makes the authenticator the FormBasedAuthenticator. That
authenticator will send a login form to the client and expect a response with
the user name and password.

4. The Login Module is a Java class implemented by the developer. It contains
code to contact a user registry on the backend using the credentials gathered by
the FormBasedAuthenticator. There are two possible outcomes now:
a. If the user is valid, the security test passes and access to the protected

resource (account information for the user) is granted.
b. If the security test fails, then the user is unable to access the protected

resource. The cause of the failure might be incorrect credentials, failure to
access the user registry due to a network error, exception on the server, or
other causes.

5. If the user is valid, the security test passes and access to the protected resource
(i.e. account information for the user) is granted. b) If the security test fails then
the user is unable to access the protected resource. The cause of the failure
might be one of the following: wrong credentials, failure to access the user
registry due to a network error, exception on the server, among others.

Potential use cases

The platform can be used to develop a banking application. The application allows
users to log in using their bank's credentials. Successfully authenticated users can
access their account information and perform various actions (such as transferring
money between accounts). This authentication flow is similar to the flow described
in the previous section.

Network issues

If an application gets popular, more people are trying to access a protected
resource (such as their account information). Using the Security tab of the
Operational Analytics console, you notice a high failure rate on one of the realms.
That realm is part of the security test used to allow users to log in and view their
account information. The most common error under Authenticator Failures is an
internal server error. One reason for this error is that the backend infrastructure
(the number of servers) needs improvement to meet the increase in demand.

Security threats

You notice that there is a high failure rate on one of the protected resources (such
as account information). Looking at the Authenticator Failures, you notice the
most common error is invalid credentials. That error gets returned when the client
supplies an invalid user name or password. This might mean a hacker is
attempting to access a protected resource by trying different credentials within
short time intervals. Based on this information, you conclude that you should not
allow users to try different credentials indefinitely. With the data provided by the
analytics console, you decide to let users attempt 5 wrong credentials before asking
users to wait a specific amount of time before allowing them to try again. The goal
is to limit the effectiveness of a brute force attack.

Application usability issues

In addition to using their user name and password to access the application and
view their account balances, users also need to supply their bank's pin number to
transfer money between accounts. You notice a high failure rate in the realm that

Monitoring and mobile operations 12-49



asks for the pin number. Looking at the Authenticator Failures, you notice the
most common error is client interaction required. This means the server is
expecting credentials (the pin number) but is not receiving them. This can be
caused by a high percentage of users inability to understand the user interface. The
users are not noticing that they need to send their pin number. Based on these
findings, the page should be redesigned to solve that issue.

Development defects

You are viewing security information from the last 24 hours and notice the failure
rate for one of the realms is 100%, meaning that it always fails. This might result
from a recent change introducing a regression that broke one of the realms.
Another possibility, based on the realms provided by the platform, is that
wl_directUpdateRealm is failing. This happens because of an issue with direct
update. A third possibility is evident when an entry with [Unknown Realm] is
displayed in the list of realms. This happens when there is a failure before one of
the realms is reached. Having this information is especially useful when running
an application in production.

Securing the Operational Analytics server
Learn about security with the IBM MobileFirst Platform Operational Analytics.

Protecting the analytics data entry point with basic authentication:

IBM MobileFirst Platform Operational Analytics is configured to protect the data
entry point by using basic authentication.

Default path protection

Data is sent from the MobileFirst Server to the IBM MobileFirst Platform
Operational Analytics when the following IBM MobileFirst Platform Foundation
for iOS property is set:
wl.analytics.url=http://<hostname>:<port>/analytics-service/data

The IBM MobileFirst Platform Operational Analytics exposes this path and it is
protected by default using basic authentication (user name and password).

Configuration of basic authentication

In the analytics-service WAR file, basic authentication is configured in the
WEB-INF/web.xml file. The default configuration has the following structure:
<!-- SECURITY ROLES -->
<security-role>
<role-name>worklightadmin</role-name>
</security-role>
<security-role>
<role-name>worklightdeployer</role-name>
</security-role>
<security-role>
<role-name>worklightmonitor</role-name>
</security-role>
<security-role>
<role-name>worklightoperator</role-name>
</security-role>

<!-- SECURITY CONSTRAINTS -->
<security-constraint>
<web-resource-collection>
<web-resource-name>allAccess</web-resource-name>

12-50 IBM MobileFirst Platform Foundation for iOS V7.0.0



<url-pattern>/data/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>worklightadmin</role-name>
<role-name>worklightdeployer</role-name>
<role-name>worklightmonitor</role-name>
<role-name>worklightoperator</role-name>
</auth-constraint>
<user-data-contraint>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
</security-constraint>

<!-- AUTHENTICATION METHOD: basic auth -->
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>worklightRealm</realm-name>
</login-config>

Four roles are created (worklightadmin, worklightdeployer, worklightmonitor,
worklightoperator) and the data endpoint is protected from all requests made by
authenticated users not belonging to one of these roles.

Note: These role names also exist in the analytics-ui WAR file, which must also
be edited if roles are added or changed.

Basic authentication credentials

In the worklight.properties file, set the wl.analytics.username and
wl.analytics.password values for basic authentication. For more information about
encrypting sensitive information in the worklight.properties file, see “Storing
properties in encrypted format” on page 10-56. After this configuration, the IBM
MobileFirst Platform Operational Analytics will not accept any incoming data
unless the request also contains the correct credentials. When the
wl.analytics.username and wl.analytics.password values are set, the MobileFirst
Server uses these credentials when it forwards data to the IBM MobileFirst
Platform Operational Analytics. For more information about IBM MobileFirst
Platform Foundation for iOS properties, see “MobileFirst properties” on page
12-71.

Note: This configuration protects only the /data path that accepts incoming data.
It does not protect the console.

Ports that are used by the IBM MobileFirst Platform Operational Analytics:

When the IBM MobileFirst Platform Operational Analytics is started, it listens on
port 9600.

Port 9500 - HTTP Port
This port can be used for HTTP requests that are made directly to the IBM
MobileFirst Platform Operational Analytics. It is not required to be open
and should not be accessible from outside the cluster. It is important to
protect this port because foreign commands can be sent directly to the IBM
MobileFirst Platform Operational Analytics through this port. This port is
closed by default. You can open this port by setting the http.enabled JNDI
property to true. For more information, see “Properties and
configurations” on page 12-71.

Port 9600 - Transport Port
This port is used for communication between nodes in a cluster. This port

Monitoring and mobile operations 12-51



should be open to other nodes in the cluster for node communication to
work properly. This port should also not be accessible from outside the
cluster. This port is open by default.

These ports can be changed by using the following JNDI properties:
v httpport

v transportport

The following example shows how you can modify the ports.
<jndiEntry jndiName="analytics/httpport" value="9700" />
<jndiEntry jndiName="analytics/transportport" value="9800" />

Production deployment and clustering
Most of the clustering functionality and logic is handled by the IBM MobileFirst
Platform Operational Analytics. It is not necessary to do any additional work to
cluster the application server that the IBM MobileFirst Platform Operational
Analytics is running on. The application servers are only necessary to host the IBM
MobileFirst Platform Operational Analytics and do not require special
configuration for clustering.

Creating an IBM MobileFirst Platform Operational Analytics cluster can be scoped
down to the following steps:
1. Configure the master node or nodes.
2. Set the number of shards.
3. Set the number of replicas.
4. Add a node to the cluster.
5. Point the new node to the master node or nodes.

It is important to fully understand how the clustering works for the IBM
MobileFirst Platform Operational Analytics before you create the cluster.

Clustering terminology:

Learn about clustering terminology for the IBM MobileFirst Platform Operational
Analytics.

Cluster
A collection of one or more master and data nodes.

Master Node
Coordinator of the cluster. Manages the distribution of shards and keeps
track of all nodes in the cluster. There can be more than one master node.
If a master node fails, then a new node that is marked as a master node is
automatically elected as a new master node. The cluster cannot operate
without at least one master node.

Data Node
Workhorse of the cluster. Stores data and processes incoming search and
index requests. A node can act as both a data node and a master node.

Shard Each data node stores data in a shard. For more information about shards,
see “Understanding shards” on page 12-53.

Replica shard
Each shard can have any number of replicas. Replicas are used to ensure
high availability in the case that a node is no longer available. For more
information about replicas, see “Understanding replicas” on page 12-59.

12-52 IBM MobileFirst Platform Foundation for iOS V7.0.0



The following image shows a basic clustering topology:

Note: Data can be forwarded from the MobileFirst Server to any node in the
server. The MobileFirst Server does not have to point to a master node.

In development, a cluster that contains one node and one shard is sufficient. The
single node acts as the master and data nodes.

In production, it is ideal to have multiple nodes that perform specific functions to
ensure high availability and performance.

Understanding shards:

Learn about shards in the IBM MobileFirst Platform Operational Analytics.

It is important to carefully consider setting the number of shards when you set up
a cluster. The number of shards can be set only once, by the first node in the
cluster. If the number of shards must be changed later, you must completely
reindex all of the data that is stores in the IBM MobileFirst Platform Operational
Analytics.

Ideally, the number of shards is equal to the maximum number of nodes that the
cluster eventually expands to. Because the maximum number of nodes that are
needed is often unknown at installation time, it is a common practice to create
more shards than needed.

The following images show how sharding works.

Here is a cluster with one node and six shards. Because there is only one node, all
six shards live on the same node. The single node handles all requests and data

Monitoring and mobile operations 12-53



processing.

After several months of use, requests that are made to the cluster begin to perform
poorly. It is determined that a single node is no longer adequate to handle
processing for all of the incoming data. A new node is added to the cluster.

After a new node is added, the shards are automatically evenly distributed across
all of the nodes.

12-54 IBM MobileFirst Platform Foundation for iOS V7.0.0



Now when a request comes in to either node, the request is forwarded to the node
that has the shard that contains the data. The data indexing and processing is now
split between the two nodes. Because the requests and data processing is now split
between the nodes, the performance and response times improve.

Monitoring and mobile operations 12-55



After several months, requests begin to slow down again, and it is determined that
a third node is required.

12-56 IBM MobileFirst Platform Foundation for iOS V7.0.0



The shards are split between the three nodes.

Monitoring and mobile operations 12-57



This process repeats itself until there are six nodes, which each contains one shard.
It is now no longer possible to add more nodes because each shard contains only
one node.

12-58 IBM MobileFirst Platform Foundation for iOS V7.0.0



If it is determined that six nodes are no longer sufficient to handle the incoming
data load, a new cluster must be set up. The data must then be reindexed with a
larger shard limit.

It is important to understand that the distribution of the shards happens
automatically. The only configuration that must be made for shards is specifying
the number of shards at installation time.

A small performance hit comes with having more than one shard per node.
Although this performance hit is often negligible, the cluster should not be
configured with an arbitrarily large number of shards.

Understanding replicas:

Learn about replicas in the IBM MobileFirst Platform Operational Analytics.

Shards contain the actual data that is sent from the MobileFirst Server. The master
node keeps track of which shards are on which nodes so that it can evenly
distribute incoming requests. Because of the way shards are distributed among
nodes, performance can be increased by adding another node and allowing the
shards to be distributed.

But what happens if a node fails? The data that was stored in the lost shards is no
longer available. Incoming analytics data might no longer be indexable. Search
requests for data on a particular shard fail. To increase shard availability to avoid
these problems, you can create a replica of each shard. By using JNDI properties,

Monitoring and mobile operations 12-59



you can tell the IBM MobileFirst Platform Operational Analytics to create a
specified number of replicas for each shard.

The following images show how replicas work.

Here is a cluster with one node, three shards, and one replica for each shard.

In this case, the replicas are redundant. Because there is only one node, having a
replica exist on the same node does not accomplish anything. If the single node
fails, the shards and replicas are all lost.

Now two more nodes are added to the cluster to improve performance:

12-60 IBM MobileFirst Platform Foundation for iOS V7.0.0



Notice that the shards and replicas are both automatically distributed evenly
among the nodes. Now consider the scenario where a node fails due to a network
or hardware issue.

Monitoring and mobile operations 12-61



The analytics cluster can still operate normally because a replica of the lost shards
still exists on one of the remaining nodes.

12-62 IBM MobileFirst Platform Foundation for iOS V7.0.0



Monitoring and mobile operations 12-63



When the failed node comes back online and rejoins the cluster, the shards and
replicas are again evenly distributed. The cluster returns to the state it was in
before one of the nodes failed.

But what happens when two of the nodes fail simultaneously?

12-64 IBM MobileFirst Platform Foundation for iOS V7.0.0



The cluster cannot operate normally. Even with one replica per shard, if two nodes
were to fail, you would still lose information that was stored in the lost shards.

The answer to this problem is to use two replicas per shard.

Monitoring and mobile operations 12-65



Now even when two nodes fail, all of the data is available and the cluster can still
operate normally.

Having replica shards can also increase performance because an incoming request
can be handled by either a primary or replica shard.

The ideal number of replicas for each shard varies based on several factors such as:
v Hardware limitations.
v Availability requirements.
v Clustering topology.

Setting up a production cluster:

You can set up a production cluster for operational analytics.

Before you begin

For a production cluster, do not run the IBM MobileFirst Platform Operational
Analytics on the same server as the MobileFirst Server. The IBM MobileFirst
Platform Operational Analytics uses a large amount of the computer's processor
and memory resources. Each node should run on a separate server.

If you are deploying to a WebSphere Application Server cluster, also see
“Deploying in a clustered WebSphere Application Server environment” on page
12-68.

12-66 IBM MobileFirst Platform Foundation for iOS V7.0.0



About this task

To set up your production cluster, follow these steps.

Procedure

1. Set the heap size for the application server. The heap size has a very significant
impact on the performance of the IBM MobileFirst Platform Operational
Analytics. The heap size must be set on each application server that is hosting
a node. The -Xms Java option sets the minimum heap size value. The -Xmx Java
option sets the maximum heap size value. For example, to reserve 8 GB of
memory for the IBM MobileFirst Platform Operational Analytics, set the
following Java options:
-Xms8G -Xmx8G

Note:

v The minimum heap size for a production server is 8 GB.
v Do not allocate more than half of the system memory to the application

server that is running the IBM MobileFirst Platform Operational Analytics.
v Set the minimum and maximum heap size to the same value for an

application server that is hosting the IBM MobileFirst Platform Operational
Analytics.

For an IBM MobileFirst Platform Operational Analytics that runs on a server
with 32 GB of RAM, the optimal heap size is:
-Xms16G -Xmx16G

2. Configure the first node in the cluster. The first node in the cluster is important
because some properties can be set only by this node. It is important to ensure
that the settings for the node are present before you start the application
servers. The first node in a cluster must be a master node. A master node can
also act as a data node.
a. Configure the node to be a master node. Set the nodetype JNDI property to

master.
<jndiEntry jndiName="analytics/nodetype" value="master" />

Note: By default, a node acts as a master and data node. If you want to
create a node that acts as both a master and a data node, the node type
does not need to be set.

b. Set the number of shards. Set the shards JNDI property to the number of
shards you want.
<jndiEntry jndiName="analytics/shards" value="10" />

c. Set the number of replicas. Set the replicas_per_shard JNDI property to the
number of replicas you want.
<jndiEntry jndiName="analytics/replicas_per_shard" value="2" />

After all of the JNDI properties are set, the application server can be started.
3. Add a node to an existing cluster.

a. Set the node type. Set the nodetype JNDI property to either master or data.
<jndiEntry jndiName="analytics/nodetype" value="master" />
<jndiEntry jndiName="analytics/nodetype" value="data" />

Note: By default, a node acts as a master and data node. If you want to
create a node that acts as both a master and a data node, the node type
does not need to be set.

Monitoring and mobile operations 12-67



Note: If you are deploying to a WebSphere Application Server cluster, do
not set the nodetype JNDI property. All nodes in the WebSphere Application
Server cluster must act as master and data nodes.

b. Provide a list of the master nodes. Set the masternodes JNDI property to a
comma delimited list of host names for the master node.
<host>:<transport-port>,<host>:<transport-port>

The default transport port is 9600. You can change this value by using a
JNDI property. For more information about the transport port, see “Ports
that are used by the IBM MobileFirst Platform Operational Analytics” on
page 12-51.
For example:
<jndiEntry jndiName="analytics/masternodes"

value="master1.ibm.com:9600,master2.ibm.com:9600" />

4. Configure the worklight.properties file. Set the wl.analytics.url property to
point to any of the nodes (can point to a master or data node).
wl.analytics.url=http://<hostname>:<port>/analytics-service/data

Results

You have set up a production cluster.

Note:

A node that is set as a pure data node cannot run on its own without a master
node. The masternodes JNDI property must be set and must point to an active
master node.

A node that is set as a pure master node cannot store data. Any attempts to store
or view data from a master node fails until a data node connects to it.

Data nodes are active, which makes them more prone to network and hardware
failures. If a data node fails, the cluster can still operate normally if the other data
nodes are alive. If the master node or nodes fail, then the cluster cannot operate.
Data nodes can communicate with only each other through master nodes. This
behavior is why it is important to consider having separate master nodes that can
run on servers with fewer chances for failure.

The same version of Java must be installed on all nodes in the cluster. Using
different versions of Java for different nodes causes the cluster to fail.

Deploying in a clustered WebSphere Application Server environment:

You can deploy the Analytics Platform in a clustered WebSphere Application
Server environment.

Before you begin

Note: In previous topics, the term node is used as a general term to define a
separate machine that runs an instance of the Analytics Platform. The term node is
used here to identify a node in a WebSphere Application Server cluster.

About this task

All clustering is handled by the Analytics Platform regardless of the topology that
is configured in WebSphere Application Server. You must determine which

12-68 IBM MobileFirst Platform Foundation for iOS V7.0.0



machines in the cluster you want to be the master nodes and define them through a
JNDI property. The list of master nodes are passed down to the WAR file, where
the distribution of analytics data within the cluster is handled.

To use the Analytics Platform in a clustered environment on WebSphere
Application Server, follow these steps.

Procedure

1. Identify the machines in the cluster that you want to be the master nodes and
record their IP addresses or host names.

2. Deploy the analytics WAR file to the WebSphere Application Server cluster. Do
not start the web application yet.

3. Set the JNDI property for masternodes to a comma-separated list of the nodes
in the cluster that you want to be the host name. The following example shows
possible values for the JNDI property:
<hostname>:<port>,<hostname>:<port>,<hostname>:<port>

192.168.1.32:9600,192.168.1.8:9600

clusterhost1:9600,clusterhost2:9600,clusterhost3:9600

Note: The port value is the transport port, which by default is 9600. You can
change this port through the JNDI property. For more information, see “Ports
that are used by the IBM MobileFirst Platform Operational Analytics” on page
12-51.
The following image shows the environment entries for web modules:

4. Set the remaining JNDI properties. For more information about the JNDI
properties, see “Properties and configurations” on page 12-71.

Monitoring and mobile operations 12-69



5. Open the analytics console page on each cluster. When the console is accessed,
each node in the cluster establishes a connection with each node listed in the
masternodes list.

Results

You deployed the Analytics Platform in a clustered WebSphere Application Server
environment.

Note: When you install analytics on WebSphere Application Server, a profile can
contain multiple servers. Each server can have multiple analytics WAR files. By
default, each of these WAR files points to the same directory to store analytics
data. Normally, a JNDI property is used to change the location of the directory that
is used to store analytics data. However, in this case, each server shares the same
JNDI property. Because of this scenario, you must use WebSphere Application
Server variables to define the location of the data directory when you set the JNDI
property for the analytics data folder. The following example shows how you can
set the JNDI property with the variables:
${USER_INSTALL_ROOT}/MFPAnalyticsDir/${WAS_SERVER_NAME}/AnalyticsData

Performance tuning:

Learn about performance tuning for the IBM MobileFirst Platform Operational
Analytics.

Java virtual machine (JVM) swapping

The underlying technology that is used by the IBM MobileFirst Platform
Operational Analytics is called Elasticsearch. Elasticsearch performs poorly when
the JVM starts swapping. To ensure that the JVM never swaps, the following JNDI
property can be set to true:
<jndiEntry jndiName="analytics/bootstrap.mlockall" value="true" />

Setting the Field Cache Size

The underlying technology used by the analytics platform loads several field
values into memory to provide fast access to those documents. This is known as
the field cache. By default, the amount of data loaded into memory by the field
cache is unbounded. If the field cache becomes too large, it can cause an out of
memory exception and crash the analytics platform. You can put an upper limit on
the field cache to prevent this from happening. The field cache can be set using the
following JNDI property:
<jndiEntry jndiName="analytics/indices.fielddata.cache.size" value="80%"/>
<jndiEntry jndiName="analytics/indices.fielddata.cache.size" value="10GB"/>

Note: The field cache can be set using a hardcoded value (such as 10GB) or it can
be set to a percentage of the heap (such as 80%).

Placing an upper limit on the cache will prevent the field cache from causing an
out of memory exception. However, when the limit is reached, the analytics
platform will begin to take longer to perform search queries. At this point, you can
either add additional memory to your machine or add an additional node to your
cluster.

12-70 IBM MobileFirst Platform Foundation for iOS V7.0.0



Properties and configurations
Learn about the properties and configurations that are used for configuring the
MobileFirst Server and IBM MobileFirst Platform Operational Analytics.

MobileFirst properties

These properties can be set on the MobileFirst Server in the worklight.properties
file. The server must be restarted for these properties to take effect.

Note: All properties in the worklight.properties file can also be set by using
JNDI properties. For more information about JNDI properties, see “Configuring a
MobileFirst project in production by using JNDI environment entries” on page
10-60.

For more information about the IBM MobileFirst Platform Operational Analytics
properties, see “Analytics” on page 10-53.

JNDI properties

JNDI environment properties can bet set on the application server. For a clustered
environment, some properties can be set only on the first node in the cluster. For
more information, see “Setting up a production cluster” on page 12-66. The
Analytics runtime web application must be restarted for any changes in these
properties to take effect. It is not necessary to restart the entire application server.

All JNDI properties are namespaced with analytics/.

The following example shows how to set the datapath JNDI property in Liberty:
<jndiEntry jndiName="analytics/datapath" value="/opt/IBM/analytics/data" />

The following example shows how to set the datapath JNDI property in Tomcat:
<Environment name="analytics/datapath"

value="/opt/IBM/analytics/data"
type="java.lang.String"
override="false" />

Note: For Tomcat, the JNDI property must include the override="false" attribute
to work properly.

The following table shows the JNDI properties:

Table 12-16. JNDI properties for the IBM MobileFirst Platform Operational Analytics. This
table lists the JNDI property names, default values, and descriptions for the IBM MobileFirst
Platform Operational Analytics.

Property Name Default Value Description

nodetype None. Defines the node type. Valid
values are master and data.
If this JNDI property is not
set, then the node acts as a
master node and a data node
by default.

Monitoring and mobile operations 12-71



Table 12-16. JNDI properties for the IBM MobileFirst Platform Operational
Analytics (continued). This table lists the JNDI property names, default values, and
descriptions for the IBM MobileFirst Platform Operational Analytics.

Property Name Default Value Description

shards 5 The number of shards per
index that the cluster creates.
This value can be set only by
the first node in a cluster.
This value can never be
changed after the first node
in the cluster starts.

replicas_per_shard 1 The number of replicas for
each shard in the cluster.
This value can be set only by
the first node in a cluster.

masternodes None. A comma-delimited string
that contains the host name
and ports of the master
nodes. For more information
about this property, see
“Setting up a production
cluster” on page 12-66.

clustername worklight Name of the cluster. Set this
value if you plan to have
multiple clusters and want to
uniquely identify them.

nodename Randomly generated. Name of a node in a cluster.
A node that joins a cluster
randomly generates a name
to uniquely identify itself.
You can specify your own
name by using this property.

datapath ./analyticsData The path that analytics data
is saved to on the file
system. By default, a folder
that is named analyticsData
is created.

settingspath None. Specifies the path to an extra
settings file. For more
information, see
“Elasticsearch properties” on
page 12-73.

transportport 9600 Port that is used for
node-to-node
communication. For more
information, see “Ports that
are used by the IBM
MobileFirst Platform
Operational Analytics” on
page 12-51.

12-72 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 12-16. JNDI properties for the IBM MobileFirst Platform Operational
Analytics (continued). This table lists the JNDI property names, default values, and
descriptions for the IBM MobileFirst Platform Operational Analytics.

Property Name Default Value Description

httpport 9500 Port that is used for HTTP
communication to the IBM
MobileFirst Platform
Operational Analytics. For
more information, see “Ports
that are used by the IBM
MobileFirst Platform
Operational Analytics” on
page 12-51.

http.enabled false Controls whether
Elasticsearch can be queried
directly by using the HTTP
Port. If false, the port that is
specified by the JNDI value
httpport is not opened, and
Elasticsearch is not accessible
by using HTTP.

app_activities_ttl None. The TTL for automatic
deletion of app activities
data.

notification_activities_ttl None. The TTL for automatic
deletion of notification
activities data.

client_logs_ttl None. The TTL for automatic
deletion of client logs data.

server_logs_ttl None. The TTL for automatic
deletion of server logs data.

serviceProxyURL None This property enables the
IBM MobileFirst Platform
Operational Analytics
console to locate the
Analytics REST services. The
value of this property must
be specified as the external
address and context root of
the worklight-analytics-
service.war web application.

Elasticsearch properties

Elasticsearch is the underlying technology that is used by IBM MobileFirst
Platform Operational Analytics. Elasticsearch provides several extra properties for
performance tuning. The JNDI properties that are exposed and documented here
are abstractions around the properties that are provided by Elasticsearch. Normally,
these properties are set in a custom settings file.

If you are familiar with Elasticsearch and the format of its properties files, you can
specify the path to the settings file by using the settingspath JNDI property:
<jndiEntry jndiName="analytics/settingspath"

value="/home/system/elasticsearch.yml" />

Monitoring and mobile operations 12-73



All properties that are provided by Elasticsearch can also be set by using a JNDI
property with the analytics/ string added before the property name. For example,
threadpool.search.queue_size is a property that is provided by Elasticsearch that
is used for performance tuning. This property can be set by using a JNDI property
as follows:
<jndiEntry jndiName="analytics/threadpool.search.queue_size" value="100" />

Backing up Operational Analytics data
Learn about how to back up your MobileFirst Operational Analytics data.

The data for MobileFirst Operational Analytics is stored as a set of files on the
MobileFirst Operational Analytics Server file system. The location of this folder is
specified by the datapath JNDI property in the MobileFirst Operational Analytics
Server configuration. For more information about the JNDI properties, see
“Properties and configurations” on page 12-71.

The MobileFirst Operational Analytics Server configuration is also stored on the
file system, and is called server.xml.

You can back up these files by using any existing server backup procedures that
you might already have in place. No special procedure must be used when you
back up these files, other than ensuring that the MobileFirst Operational Analytics
Server is stopped. Otherwise, the data might change while the backup is occurring,
and the data that is stored in memory might not yet be written to the file system.
To avoid inconsistent data, stop the MobileFirst Operational Analytics Server
before you start your backup.

Reports database
IBM MobileFirst Platform Foundation for iOS provides an extensible mechanism
for enterprises to use to integrate reporting tools with IBM MobileFirst Platform
Foundation for iOS.

Note: The Reports database and the sample BIRT Reports are deprecated in IBM
MobileFirst Platform Foundation for iOS V7.0.0. You should use “Operational
analytics” on page 12-8 instead.

IBM MobileFirst Platform Foundation for iOS provides raw data reports and a
number of device reports that are aggregated from the raw data report table. IBM
MobileFirst Platform Foundation for iOS also comes bundled with a third-party
Business Intelligence Report Tools (BIRT) feature, which provides a range of
predefined report templates. To understand the similarities and differences
between the existing reports feature and the new operational analytics feature, see
“Comparison of operational analytics and reports features” on page 12-7.

Note: Enabling the BIRT feature is redundant if you already use the IBM
MobileFirst Platform Operational Analytics.

IBM MobileFirst Platform Foundation for iOS provides three reporting
mechanisms:

Raw data feeds
IBM MobileFirst Platform Foundation for iOS emits raw data, which
enables an OLAP system to extract the required information and present it
through corporate reporting mechanisms. For more information, see “Using
raw data reports” on page 12-76.

12-74 IBM MobileFirst Platform Foundation for iOS V7.0.0



Device usage reports
IBM MobileFirst Platform Foundation for iOS provides reports about
device usage. Device usage reports are default aggregations that are based
on raw data, and are provided for the benefit of organizations that do not
have OLAP systems or choose not to integrate IBM MobileFirst Platform
Foundation for iOS with an OLAP system. For more information, see
“Device usage reports” on page 12-80.

Note: Device usage reports are functional only in IBM MobileFirst
Platform Foundation for iOS Customer Edition and IBM MobileFirst
Platform Foundation for iOS Enterprise Edition.

BIRT reports
IBM MobileFirst Platform Foundation for iOS comes bundled with
predefined BIRT report to use either as they are or as templates to modify.
For more information, see “Predefined BIRT Reports” on page 12-82.

Monitoring and mobile operations 12-75



The reports architecture diagram shows how the raw data feed comes from three
devices into the MobileFirst Server and then into the IBM MobileFirst Platform
Foundation for iOS database, the Reports database, or both. From the Reports
database, data then becomes aggregated data and is filtered out into the BIRT
reports or to other reporting tools.

Important: When you work with report generation, you must update the
.rptdesign file with your reports database user name and password, which are
considered sensitive information. You are responsible for protecting it against
unauthorized access.

Using raw data reports
You can use the raw data reports feature to extract raw data to different databases
and view it in the form of reporting tables.

Figure 12-30. High-level overview of the reports architecture

12-76 IBM MobileFirst Platform Foundation for iOS V7.0.0



About this task

Note: The Reports database and the sample BIRT Reports are deprecated in IBM
MobileFirst Platform Foundation for iOS V7.0.0. You should use “Operational
analytics” on page 12-8 instead.

Raw data reports provide you with analytics information about your applications
and adapter usage, such as activity type, device information, and application
version. Use the following steps to enable the raw data reports feature:

Procedure
1. Ensure that the IBM MobileFirst Platform Server application server is not

running.
2. Create a separate database or a new schema for reports. This action is not

mandatory but is useful because the raw data table is rapidly populated. For
information about creating databases in a development environment, see
“Runtime database setup for development mode” on page 10-50. For
information about creating databases and schemas in a production
environment, see “Creating and configuring the databases manually” on page
10-17.

3. When you work in a development environment, complete the following steps.
a. Edit the worklight.properties file. Uncomment the reports.exportRawData

property and set its value to true.
b. Modify the wl.reports.db properties to contain your database settings as

shown in the following example.
#################################################
# Raw reports
#################################################
reports.exportRawData=true
# jndi name; empty value means Apache DBCP data source
#wl.reports.db.jndi.name=${wl.db.jndi.name}
# Default values for DBCP connection pool
#wl.reports.db.initialSize=${wl.db.initialSize}
#wl.reports.db.maxActive=${wl.db.maxActive}
#wl.reports.db.maxIdle=${wl.db.maxIdle}
#wl.reports.db.testOnBorrow=${wl.db.testOnBorrow}
wl.reports.db.url=jdbc:mysql://localhost:3306/wlreport
wl.reports.db.username=worklight
wl.reports.db.password=worklight

c. Ensure that the wl.reports.db.url property contains the URL of the
database you are planning to use for raw data.

4. When you work in a production environment, connect to the reports database
by using JNDI environment entries in addition to editing the
worklight.properties file, as described in the previous step. See “Configuring
a MobileFirst project in production by using JNDI environment entries” on
page 10-60.

5. Restart your application server.
The app_activity_report table of the raw data database is populated with data
as you use your applications and adapters.

Monitoring and mobile operations 12-77



The raw data app_activity_report table contains the following information:

Column Description

ACTIVITY_TIMESTAMP UTC time of entry

GADGET_NAME MobileFirst Application name

GADGET_VERSION Application version

ACTIVITY Activity type

ENVIRONMENT Application environment name (iPhone, and
so on)

SOURCE User identifier

ADAPTER MobileFirst adapter name

PROC MobileFirst adapter procedure name

USERAGENT User agent from HTTP header of client
device

SESSION_ID A unique identifier for the user's session on
the server

IP_ADDRESS IP address of the client

DEVICE_ID A unique device ID

DEVICE_MODEL Manufacturer model, for example iPhone 5

DEVICE_OS Device operating system version

LONGITUDE The longitude of the device. Requires that
ongoing acquisition is enabled for Geo.

LATITUDE The latitude of the device. Requires that
ongoing acquisition is enabled for Geo.

POS_USER_TIME The local time on the device when the latest
position information (longitude and latitude)
were updated. Requires that ongoing
acquisition is enabled for Geo.

WIFI_APS The access points visible on the device.
Requires that ongoing acquisition is enabled
for WiFi.

12-78 IBM MobileFirst Platform Foundation for iOS V7.0.0



Column Description

WIFI_CONNECTED_SSID The SSID (network identification) of the
connected WiFi access point. Requires that
ongoing acquisition is enabled for WiFi.

WIFI_CONNECTED_MAC The MAC address of the connected WiFi
access point. Requires that ongoing
acquisition is enabled for WiFi.

WIFI_USER_TIME The local time on the device when the latest
WiFi information was updated. Requires that
ongoing acquisition is enabled for WiFi.

APP_CONTEXT The application context, as set by
WL.Server.setApplicationContext.

The following activities can be included in reports:

Activity Description

Init Application initialization

Login Successful authentication in using the
application

Adoption New Not supported in IBM Worklight V5.0

Adoption Not supported in IBM Worklight V5.0

Query Procedure call to an adapter

Logout User logout

Event An event handler was called

In addition to predefined activity types, custom activities can be logged by
using WL.Client.logActivity("custom-string") APIs.
When the activity is Event, the reporting information comes from the event
device context instead of WL.Server.getClientDeviceContext. Also, when the
activity is Event the PROC column gives the name of the event handler function
that was called.

Important: MobileFirst raw data feed can increase rapidly. The data is typically
used by a BI system such as Cognos® or Business Objects. It is the
administrator's responsibility to purge built-in tables periodically. For example,
the following commands delete Oracle database rows that are more than 30
days old from the activities_cube and app_activity_report tables. For other
databases such as MySQL, modify the syntax appropriately.

To delete rows from activities_cube that are more than 30 days old (assuming
ACTIVITY_DATE is a DATE type field):

DELETE FROM ACTIVITIES_CUBE WHERE ACTIVITY_DATE <= TRUNC(SYSDATE) - 30

To delete rows from app_activity_report that are more than 30 days old
(assuming ACTIVITY_TIMESTAMP is a TIMESTAMP type field):

DELETE FROM APP_ACTIVITY_REPORT WHERE ACTIVITY_TIMESTAMP <= TO_TIMESTAMP(TRUNC(SYSDATE) - 30)

Purging data by deleting rows might fail on heavily loaded systems. An
alternative approach is to use database table partitions to facilitate the purging
of accumulated data. For more information, see “Optimization of MobileFirst
Server project databases” on page 6-108.
In addition to the app_activity_report table, the raw data engine also
populates the notification_report table. This raw data table contains

Monitoring and mobile operations 12-79



information about notifications that are sent from SMS event sources.

Device usage reports
For simpler and faster access to the reports data, IBM MobileFirst Platform Server
runs an analytics data processor task at a default time interval of every 24 hours.

Note: The Reports database and the associated APP_ACTIVITY_REPORT table
described below are deprecated in IBM MobileFirst Platform Foundation for iOS
V7.0.0. Use “Operational analytics” on page 12-8 instead. Note that setting up the
Reports database is optional in this release and prior releases.

The analytics data processor task retrieves raw entries for the specified time
interval from the app_activity_report table and processes them to populate the
fact_activities table.

Note: The fact_activities table is only populated with usage data from hybrid
and native applications from actual devices. Usage data from MobileFirst mobile
web applications that are running on actual devices or from a browser, such as
when you are using preview, is not populated into this table.

12-80 IBM MobileFirst Platform Foundation for iOS V7.0.0



The fact_activities table contains a total activity count (number of logged
actions) per application, application version, device, and environment. The
fact_activities data is also processed and put into the activities_cube table.
This table has the same structure as the fact_activities table and only contains
records for the last 30 days.

Monitoring and mobile operations 12-81



Each time the data processing is done, a time stamp is added to a proc_report
table with the processing result (time stamp and number of processed entries).

In addition, notification_report table data is also processed to populate the
notification_activities table with consolidated data. The table is populated in
the same way as the fact_activities table. Every time the notification_report
table data is processed, an entry is added to the notification_proc_report table,
which is similar to the proc_report table.

The processing interval can be modified by adding the following property to your
worklight.properties file and setting the required interval in seconds.
# Default interval value for analytics processing task
wl.db.factProcessingInterval=86400

The processing interval can also be disabled by setting this property to a negative
value.
# Set to a negative value to disable the analytics processing task
wl.db.factProcessingInterval=-1

Predefined BIRT Reports
You can use predefined BIRT reports to generate and display information about
mobile devices and usage.

12-82 IBM MobileFirst Platform Foundation for iOS V7.0.0



Note: The predefined BIRT reports and the Reports database and associated tables
such as APP_ACTIVITY_REPORT are deprecated in IBM MobileFirst Platform
Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8 instead. Note
that setting up the Reports database is optional in this release and prior releases.

IBM MobileFirst Platform Foundation for iOS generates raw reports, which are
stored in an app_activity_report table. IBM MobileFirst Platform Foundation for
iOS also includes device usage reports, which are aggregations of data from the
app_activity_report, and are described in “Device usage reports” on page 12-80
and “Using raw data reports” on page 12-76. Users can view or extract data from
the app_activity_report table or from the device usage reports, and process it
using their own business intelligence systems.

For users with no existing business intelligence analysis system, IBM MobileFirst
Platform Foundation for iOS provides a selection of predefined Business
Intelligence Reporting Tool (BIRT) reports. BIRT is a third-party tool, and is not
created or supported by IBM. IBM MobileFirst Platform Foundation for iOS
provides several *.rptdesign files that contain logic to connect to the reports
database, pull data from device usage tables, process, and display the data.

IBM MobileFirst Platform Foundation Consumer Edition and MobileFirst
Enterprise Edition include the following predefined BIRT reports:

Table 12-17. Predefined BIRT reports

Report Name Description Report file name

Active Users Active users in last 30 days. report_active_users.rptdesign

Daily Hits The daily aggregated hits for
last 30 days. Any action from
the user/device that caused a
request to the server is
counted as a hit. This
number, aggregated over a
day, equals the daily hits.

report_daily_hits.rptdesign

Daily Visits The number of discreet visits
by separate user/device in
last 30 days. All actions by a
user/device that caused one
or more requests to the
server within a day is
counted as a visit.

report_daily_visits.rptdesign

Environment Usage Application version and
application environment
used: number of visits that
were recorded in the last 30
days.

report_environment_usage.rptdesign

New Devices A record of unique devices
that were connected in the
last 30 days.

report_new_devices.rptdesign

Notification
Messages Per Day

Number of messages sent
each day in the past 90 days
per data source.

report_notification_messages_per_day.rptdesign

Notification
Messages Per
Source

Total number of messages
that were sent in the last 90
days per data source.

report_notification_messages_per_source.rptdesign

Monitoring and mobile operations 12-83



Table 12-17. Predefined BIRT reports (continued)

Report Name Description Report file name

License Total New
Device Count

A record of unique devices
that were connected over a
specified period (90 days as
default), for licensing
purposes.

report_license_total_device_count.rptdesign

There are several ways of viewing predefined reports, by using one of the
following options.
v The Eclipse report designer plug-in. For instructions, see “BIRT in Eclipse” on

page 12-91
v The BIRT Viewer application that is installed on your Tomcat, WebSphere Full

Profile or WebSphere Liberty Profile application server.

Installing BIRT on Apache Tomcat
You can use the Business Intelligence Reporting Tool (BIRT) to generate and render
report content. You can view this content either by using an Eclipse plug-in, or an
application server and browser.

About this task

Note: The predefined BIRT reports and the Reports database and associated tables
such as APP_ACTIVITY_REPORT are deprecated in IBM MobileFirst Platform
Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8 instead. Note
that setting up the Reports database is optional in this release and prior releases.

Figure 12-31. An example of a report generated by BIRT, in this case report_license_total_device_count.rptdesign

12-84 IBM MobileFirst Platform Foundation for iOS V7.0.0



The MobileFirst installation contains a number of predefined BIRT reports. These
reports are configurable XML files that are designed to retrieve and present data
from the MobileFirst reports database tables. These files have an .rptdesign
extension.

Complete the following steps to set up the BIRT Reports for viewing in an Apache
Tomcat application server. For information about how to set up the BIRT Reports
on other application servers, refer to the BIRT Reports website at Birt Tools.

Procedure
1. Ensure that your Tomcat instance is not running.
2. Download the BIRT Reports runtime archive from Birt Report Downloads.
3. Extract the BIRT Reports runtime archive.
4. Copy the WebViewerExample folder to the webapps folder of your Tomcat server.
5. Rename the WebViewerExample folder to birt (this step isan option, and is just

to simplify later execution).
6. Copy your database jdbc connector JAR file package to the Tomcat \lib

folder (if you are using the same Tomcat instance that is running IBM
MobileFirst Platform Server the jdbc connector package is already in the \lib
folder).

7. In some cases, Tomcat might not have enough memory allocated to run BIRT
Reports. To resolve this problem, edit the catalina.bat file under your Tomcat
\bin folder and add the following line at the start of it. You might want to
consult with your IT manager about exact settings.

8. Restart your Tomcat.
9. Go to theTomcat manager application at http://your-server/manager/ to

verify that the BIRT Reports application started.

10. Your BIRT Reports viewer application is accessible at http://your-server/
birt/.

11. You can test the BIRT Reports installation by going to http://your-server/
birt/frameset?__report=test.rptdesign&sample=my+parameter.

Monitoring and mobile operations 12-85

http://www.eclipse.org/birt/phoenix/
http://download.eclipse.org/birt/downloads/


Installing BIRT on WebSphere Application Server Liberty profile
Complete these steps to install Business Intelligence Reporting Tools on the
WebSphere Application Server Liberty profile.

About this task

Note: The predefined BIRT reports and the Reports database and associated tables
such as APP_ACTIVITY_REPORT are deprecated in IBM MobileFirst Platform
Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8 instead. Note
that setting up the Reports database is optional in this release and prior releases.

Procedure
1. Verify that your WebSphere Application Server Liberty profile instance is not

running.
2. Go to your WebSphere Application Server Liberty profile folder and create

two folders as follows:
v apps
v libs

3. Locate the jdbc connector driver that you are using and copy it to the libs
folder.

4. Download the latest release of BIRT run time from http://
download.eclipse.org/birt/downloads/

5. Extract the downloaded file and go to the extracted folder.
6. Rename WebViewerExample folder to birt.
7. Go to the folder birt\WEB-INF\lib and delete the following files.
v org.apache.xerces*.jar
v org.apache.xml.resolver*.jar
v org.apache.xml.serializer*.jar

Set up the BIRT Viewer application on a Liberty instance by following these
steps.

8. Copy the birt folder to {your-liberty-instance}\usr\servers\{your-
server-name}\apps\

9. Update the server.xml file of your Liberty server profile.
10. Make sure that the JSP feature is enabled.
11. Add an application definition.

12-86 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://download.eclipse.org/birt/downloads/
http://download.eclipse.org/birt/downloads/


12. Add classloader definition with a privateLibrary definition that is
configured to point to your JDBC connector driver.
<server description="new server">

<featureManager>
<feature>jsp-2.2</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9080"
httpsPort="9443" />

<application id="birt"
name="birt"
type="war"
location="${server.config.dir}/apps/birt"
context-root="/birt">

<classloader delegation="parentLast">
<privateLibrary>

<fileset dir="${server.config.dir}/libs"
includes="mysql-connector*.jar" />

</privateLibrary>
</classloader>

</application>
</server>

13. Start your Liberty instance.
14. Browse to http://server:port/birt. The BIRT Viewer landing page opens.

15. Click View Example link.
16. If you see the following error message, refresh your page.

Monitoring and mobile operations 12-87



17. The BIRT Viewer sample report appears.

Note test.rptdesign in the page URL. You can replace this text with the
name of other rptdesign files, as shown here for example:

Installing BIRT on WebSphere Application Server full profile
Complete these steps to install Business Intelligence Reporting Tools (BIRT) on
WebSphere Application Server full profile.

12-88 IBM MobileFirst Platform Foundation for iOS V7.0.0



About this task

Note: The predefined BIRT reports and the Reports database and associated tables
such as APP_ACTIVITY_REPORT are deprecated in IBM MobileFirst Platform
Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8 instead. Note
that setting up the Reports database is optional in this release and prior releases.

Procedure
1. Download the BIRT package and extract the contents.
2. From the folder birt-runtime-version\WebViewerExample\WEB-INF\lib, delete

(or remove) the following packages:
v org.apache.xerces.jar

v org.apache.resolver.jar

v org.apache.serializer.jar

3. Use a .war command to package the directory WebViewerExample into a WAR
file named birt.war

4. Start the WebSphere Server.
5. Open the console web page.
6. Log in.
7. From the console, install BIRT package by installing birt.war from the

runtime download.
8. Click Enterprise Applications in left menu.
9. Click the name of the deployed application, birt_war, to enter the

configuration page.
10. Under the heading Modules, click Manage Modules.
11. In the Module list, click Eclipse BIRT Report Viewer.
12. In the General Properties page, under Class loader order, select the Classes

loaded with parent class loader first option.
13. Click OK.

Figure 12-32. Deleting three files

Monitoring and mobile operations 12-89



14. Save the Master Configuration.

Configuring BIRT reports for your application server by using
Ant
You can update your BIRT reports with your web application server settings by
using Ant.

About this task

Note: The predefined BIRT reports and the Reports database and associated tables
such as APP_ACTIVITY_REPORT are deprecated in IBM MobileFirst Platform
Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8 instead. Note
that setting up the Reports database is optional in this release and prior releases.

To use BIRT reports, you must update them with your web application server
settings and install them in your server web applications folder. The easiest way to
do this is to specify a <reports> element in the Ant script that invokes the
<configureapplicationserver> Ant task.

Procedure
1. Ensure that the <configureapplicationserver> invocation has the inner

element <reports todir=”web applications directory”/>. See “Ant tasks for
installation of MobileFirst runtime environments” on page 14-16 for more
details.

2. Invoke the Ant script, which copies the report templates from the
WorklightServer/report-templates/ directory to the web applications directory,
adjusting the <data-sources> element as needed.

3. Verify that the BIRT Viewer application is installed and running on your
application server.

4. To view or edit a BIRT Report, go to the path http://your-server/birt/
frameset?__report=[report name].rptdesign., in which [report
name].rtpdesign represents one of the following files:
report_active_users.rptdesign
report_daily_hits.rptdesign
report_daily_visits.rptdesign
report_environment_usage.rptdesign
report_license_total_device_count.rptdesign
report_new_devices.rptdesign
report_notification_messages_per_day.rptdesign
report_notification_messages_per_source.rptdesign

Manually configuring BIRT Reports for your application server
To use BIRT reports, you must update them with your web application server
settings.

About this task

Note: The predefined BIRT reports and the Reports database and associated tables
such as APP_ACTIVITY_REPORT are deprecated in IBM MobileFirst Platform
Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8 instead. Note
that setting up the Reports database is optional in this release and prior releases.

Before using the BIRT Viewer application to see predefined reports, you must edit
them to adjust the reports database settings, and then copy the reports to a specific
folder on the application server.

12-90 IBM MobileFirst Platform Foundation for iOS V7.0.0



Procedure
1. Go to your IBM MobileFirst Platform Server installation folder created by the

IBM Installation Manager.
2. Locate the \report-templates\ folder, which contains a set of .rptdesign files.
3. Copy all of the files with the .rptdesign extension from the

\report-templates\ folder to your server web applications folder.
4. Edit each .rptdesign file as needed and adjust the <data-sources> element

with the properties of your reports database.
<data-sources>

<oda-data-source extensionID="org.eclipse.birt.report.data.oda.jdbc" ...>
<list-property name="privateDriverProperties">

<ex-property>
<name>metadataBidiFormatStr</name>
<value>ILYNN</value>

</ex-property>
<ex-property>

<name>disabledMetadataBidiFormatStr</name>
</ex-property>
<ex-property>

<name>contentBidiFormatStr</name>
<value>ILYN</value>

</ex-property>
<ex-prperty>

<name>disabledContentBidiFormatStr</name>
</ex-property>

</list-property>
<property name="odaDriverClass">WLREPORT_DRIVER_CLASS</property>
<property name="odaURL">WLREPORT_JDBC_URI</property>
<property name="odaUser">WLREPORT_DBUSERNAME</property>
<encrypted-property name="odaPassword" encryptionID="base64">

WLREPORT_DBPASSWORD_BASE64
</encrypted-property>

</oda-data-source>
</data-sources>

5. Make sure that BIRT Viewer application is installed and running on your
application server

6. To view or edit a BIRT Report, go to the path http://your-server/birt/
frameset?__report=[report name].rptdesign., where [report name].rtpdesign
represents one of the following files:
v report_active_users.rptdesign

v report_daily_hits.rptdesign

v report_daily_visits.rptdesign

v report_environment_usage.rptdesign

v report_license_total_device_count.rptdesign

v report_new_devices.rptdesign

v report_notification_messages_per_day.rptdesign

v report_notification_messages_per_source.rptdesign

BIRT in Eclipse
When BIRT is installed in Eclipse, it displays reports through the Eclipse interface.

Note: The predefined BIRT reports and the Reports database and associated tables
such as APP_ACTIVITY_REPORT are deprecated in IBM MobileFirst Platform
Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8 instead. Note
that setting up the Reports database is optional in this release and prior releases.

Monitoring and mobile operations 12-91



You can install Business Intelligence Reporting Tools (BIRT) as either a stand-alone
instance of Eclipse, or as a plug-in added to your existing IBM MobileFirst
Platform Foundation for iOS Eclipse instance, or any other instance of Eclipse.
Each of these choices has potential advantages, depending on your needs.

Installing a stand-alone Eclipse instance means having a dedicated tool for creating
reports. This option involves downloading an Eclipse installer that comes with
BIRT included.

Installing BIRT as a plug-in to your existing Eclipse instance that is running IBM
MobileFirst Platform Foundation for iOS can provide you with a more integrated
interface, for both IBM MobileFirst Platform Foundation for iOS and reports. Use
the following links to select the option you want to install.

Installing BIRT in stand-alone Eclipse:

You can install BIRT including the BIRT Report Designer in a stand-alone instance
of Eclipse as a dedicated reporting tool.

About this task

To use the BIRT Report Designer in a stand-alone, dedicated instance of Eclipse,
follow these steps:

Procedure

1. In your web browser, go to http://www.eclipse.org/downloads/
2. Download the Eclipse IDE for Java and Report Developers
3. Follow the Eclipse installation instructions in the installation package. Eclipse

and the BIRT components, including the Report Designer, are installed along
with Eclipse.

Installing BIRT in MobileFirst Eclipse:

You can install BIRT in the instance of Eclipse on which IBM MobileFirst Platform
Foundation for iOS is running, and use the Report Designer as an integrated tool.

About this task

To install BIRT in the existing instance of Eclipse that is running IBM MobileFirst
Platform Foundation for iOS, follow these steps:

Procedure

1. Click Help > Install new software

2. In Work with..., select http://download.eclipse.com/release/juno
3. Select Business Intelligence Reporting and Charting
4. Click Next and follow the installation instructions. When the installation is

completed, you must install the reports.
5. Click Window > Open perspective > Other...

6. Select the Report Design perspective
7. Click File > New > Project

8. Select Report project and click Next

9. Enter a project name and click Finish

12-92 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.eclipse.org/downloads/


10. Using the import command, go to your MobileFirst Server installation folder
created by IBM Installation Manager.

11. Locate the \report-templates\ folder, which contains a set of .rptdesign files.
12. Import all files with the suffix .rptdesign from the \report-templates\ folder

into the Eclipse project. Eclipse comes with a bundled driver for Apache
Derby database. If you use another database type, you must add a JDBC
connector driver manually.

13. Click Manage Drivers...

14. Click Add... and add the JDBC connector driver package to communicate with
your MobileFirst reports database

15. Select Driver Class and adjust the rest of your database settings
16. Click Test Connection... to validate that database settings are correct.

Viewing BIRT reports in Eclipse:

With BIRT installed in Eclipse, you can view reports through the Eclipse interface.

About this task

To view BIRT reports in Eclipse, follow these steps:

Procedure

1. Click the black arrow next to View Report.

2. Select the output format for your report
3. View the report.

Monitoring and mobile operations 12-93



Notification reports database schema
IBM MobileFirst Platform Foundation for iOS uses a database schema to store the
notification reports data derived from the raw data.

Note: The predefined BIRT reports and the Reports database and associated tables
such as NOTIFICATION_ACTIVITIES are deprecated in IBM MobileFirst Platform
Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8 instead. Note
that setting up the Reports database is optional in this release and prior releases.

A notification activities table is populated to simplify the use of report
construction. This notification activities table, NOTIFICATION_ACTIVITIES, is
populated as part of the analytics setup.

Figure 12-33. NOTIFICATION_ACTIVITIES schema

12-94 IBM MobileFirst Platform Foundation for iOS V7.0.0



Mobile application management
The Mobile Application Management feature enables mobile operators and
administrators to securely track, search, and control access to users through the
mobile applications that are used on their devices, all from the MobileFirst
Operations Console.

The MobileFirst Server runtime tracks devices that access your mobile
infrastructure by the MobileFirst apps that are used by your users. Each user,
whether employee, customers, suppliers, or business partners, can use several
devices to access your mobile environment through one or more apps that you
deployed. IBM MobileFirst Operations Console now provides a view into this
mapping of user to devices through the apps that are used to access your
MobileFirst Server. Mobile operators and administrators can use the console to not
only search for registered users by name, but also block access to a specific app
from a specific user's device. They can also block any MobileFirst App that is
installed on the device from connecting to the MobileFirst Server.

When multiple applications from the same enterprise are installed to the same
device, it is desirable to disable access for all of the applications at once when the
device is lost, stolen, or its security compromised. When these applications on the
same device are authenticated to and routing traffic through a MobileFirst Server,
administrators can disable access for all MobileFirst applications on that device.

In some cases, it might not be desirable to block access for every MobileFirst
application that is installed on the device. MobileFirst application management
features allow the administrator to view each individual application that is
installed on a user’s device and select which applications to block access.

When a MobileFirst application requires a certificate from the user to authenticate,
the serial number of the certificate is recorded on the MobileFirst Server. In
addition to viewing each application installed on a device, the certificate serial
number can also be viewed in the MobileFirst Operations Console. This feature
allows administrators to revoke access to an application installed on the device by
using the serial number to locate and revoke the certificate.

IBM MobileFirst Platform Foundation for iOS maintains a database table of device
IDs, among other device-related metadata, to enable this feature. In addition to the
device ID column in the database, a status column is also kept. The possible status
values are:
v active
v lost
v stolen
v expired (the device has not connected to this MobileFirst Server in 90 days) -

configurable
v disabled

When a MobileFirst application from a device attempts to connect through the
MobileFirst Server, the device ID is stored in the in-memory session data on the
server. This device ID is checked against the database before any further
processing of the inbound message. If the status column for this device ID is any
value other than active, a 401 forbidden is returned. If the status is lost, stolen,
or disabled, only an administrator with access to the MobileFirst Operations
Console or direct database access can restore the status to the active state.

Monitoring and mobile operations 12-95



User to device mapping and control
Starting in IBM Worklight V6.1.0, the MobileFirst Server tracks the devices that
access the system as part of the core runtime database. You can now enable the
user to device mapping feature, which provides the ability for mobile operators or
administrators to query their mobile systems by user. A device friendly name can
also be established to see the devices that are mapped to a user. Further, specific
controls can be applied to a user-app-device mapping to either disable that link or
reactivate that link to address common situations. For example, a user loses a
device and must block all access from that device. Another example is the
requirement to block access to an app across all devices, or block access to an app
on a device, when a user changes departments. Reactivation is available for all of
these disablement control actions.

For the user to device mapping feature to work, a security realm must exist that
establishes the user identity. The user identity is then used to associate the
MobileFirst Device ID with the user. Developers can create custom challenge
handlers or specific API calls to set a device friendly name as preferred by the
user, programmatically. This feature helps in querying the device by its friendly
name.

The following list shows what a mobile operator or admin can do with this set of
features:
v Search for a device by friendly name or search by user name.
v A matching search yields all devices that belong to that user or the single device

and the associated user, along with device model and information.
v The apps that are used on the device to access this system are also displayed.

The following list shows the available actions that can be taken for a queried
device:
v Disable the specific device, marking the state as lost or stolen so that access from

any of the apps on that device is blocked.
v Re-enable a disabled device so that access from the device to the MobileFirst

Server is allowed.
v Disable a specific app, marking the state as disabled so that access from the

specific app on that device is blocked.
v Re-enable that specific app on the device so that access from the specific app on

the device to the MobileFirst Server is allowed.

Device access management in the MobileFirst Operations
Console

In the MobileFirst Operations Console, administrators can search for devices that
access the MobileFirst Server and can manage access rights.

In the search field, devices can be searched for by either the user ID (the ID that
was used to log in to the Authentication Realm), or the friendly name (a name that
is associated with the device to distinguish it from other devices that share the
user ID)..

When a valid device is found, all devices that match the user ID or friendly name
are listed.

12-96 IBM MobileFirst Platform Foundation for iOS V7.0.0



The Status column contains the current access rights of the device. Any device
with the column marked as “Stolen”, “Lost”, or “Disabled” is not allowed to access
MobileFirst Server. The “Expired” status is used only for licensing purposes. After
successful connection to the server, any device with the status marked as
“Expired” is allowed to access MobileFirst Server and its status is changed to
“Active”. For more information about licensing, see “License Tracking report” on
page 12-116.

Clicking the + icon in the column shows a list of all applications that this device
accessed.

Each row in the table contains the name of the application, the certificate serial
number for this device-application pair (if enabled), and a status menu that is used
to disable an application's access to the MobileFirst Server for this device.

Figure 12-34. User or friendly name search

Figure 12-35. List of applications that are accessed by a device

Monitoring and mobile operations 12-97



Enabling the device access management features
All devices that access the MobileFirst Server are recorded in the runtime database
without any additional configurations. However, IBM MobileFirst Platform
Foundation for iOS does not enforce the device access settings that are set from the
MobileFirst Operations Console unless you enable a property on the MobileFirst
Server.

About this task

More processing is required on the MobileFirst Server when this property is
enabled to enforce access management on devices. Appropriate performance
testing must be done before production to measure how enabling this feature
impacts the server’s performance.

Procedure
1. Set the wl.device.enableAccessManagement=true property on the MobileFirst

Server (this value is false by default). The wl.device.tracking.enabled=true
property must also be set (this value is true by default).

2. Capture the UserID. The user ID is recorded for the device automatically when
the user logs in to an authentication realm that is marked as isInternalUserID.
The following example shows a sample authentication configuration file:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<tns:loginConfiguration xmlns:tns="http://www.worklight.com/auth/config"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- Licensed Materials - Property of IBM

5725-G92 (C) Copyright IBM Corp. 2006, 2013. All Rights Reserved.
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp. -->

<securityTests>
<customSecurityTest name="DummyAdapter-securityTest">

<test isInternalUserID="true" realm="SampleAppRealm" />
</customSecurityTest>

</securityTests>

<realms>
<realm loginModule="StrongDummy" name="SampleAppRealm">

<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>
</realm>

</realms>

<loginModules>
<loginModule name="StrongDummy">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

</loginModules>

</tns:loginConfiguration>

Since a security test can include several realms that require a user ID, only the
realm that has the isInternalUserID property is recorded for the device in the
runtime database. For a mobileSecurityTest, the realm that is set by the
testUser element is used. For more information about security tests, see
“Security tests” on page 8-249.
If the user is authenticated through the UserCertificateAuthenticator, the
serial number that is generated for the certificate that is sent to the device is
automatically saved in the runtime database.

12-98 IBM MobileFirst Platform Foundation for iOS V7.0.0



Performance implications for the server
You must consider two questions when you measure the Mobile Application
Management feature and its impact on performance.
1. Does IBM MobileFirst Platform Foundation for iOS save information about a

device when it accesses the server?
2. Does IBM MobileFirst Platform Foundation for iOS enforce access rights when

a device tries to access the server?

Saving device information

The MobileFirst administrator can control whether the server saves device
information to the internal database when a device connects to the MobileFirst
Server. This behavior is controlled by the following flag in the
worklight.properties file:
wl.device.tracking.enabled=true

When this flag is enabled, the MobileFirst Server attempts to store information
about the device each time a device begins a new session with the server. In terms
of performance, this behavior results in a potential database write each time that a
device starts a new session.

Note: This flag is enabled by default in production, and is used for license
tracking. Do not disable this flag unless you fully understand the implications. For
more information about licensing, see “License tracking” on page 12-115.

Enforcing access rights

The MobileFirst Server tries to save the device information only on the first request
of a session from the device. However, IBM MobileFirst Platform Foundation for
iOS must enforce access rights on every request that is made to the server from the
device. This behavior ensures that the rights that are set by the MobileFirst
administrator take effect immediately. This feature can be controlled by the
following flag in the worklight.properties file:
wl.device.enableAccessManagement=true

From a performance perspective, this behavior results in an extra database read
that occurs each time that the device tries to access a resource on the server. The
performance hit for the read is smaller than the write for saving device
information. Administrators must consider the fact that this read occurs every time
that a device tries to connect to the server. When this flag is disabled, the
administrator can still view the devices in the database from the MobileFirst
Operations Console. However, they cannot block access from the device to the
MobileFirst Server.

Space limitations for the database

Database administrators must consider how enabling the Mobile Application
Management feature can affect the Worklight runtime database size. The Mobile
Application Management feature does not affect the Worklight raw reports
database. The following example shows a typical database row entry for a single
device:

(’db7abddf-3d5f-4b03-b3b8-f706e56e8306’, ’Lucas’, ’Tillman’, ’6.2’, ’iPad2,5’,’2013-10-08 15:12:32’, 3)

For each application that the device uses, another entry is created as follows:

Monitoring and mobile operations 12-99



(db7abddf-3d5f-4b03-b3b8-f706e56e8306, 12, 0)

The size impact for each device is small. However, administrators must consider
the potential size increases if their MobileFirst Server serves thousands of devices
that use multiple applications that are hosted by the server. Devices can be deleted
from the runtime database in the MobileFirst Operations Console, but each device
entry has a Last Accessed time stamp column. That time stamp gives
administrators the ability to clear out old rows that are no longer being used, by
creating custom queries.

Note: Database rows that contain device information are used for licensing
purposes. Database administrators must not delete data from these rows if the
action of deleting the data affects licensing.

User certificate authentication
Enterprises can now use X.509 client-side certificates to authenticate users, by
applying a new user authentication realm to their existing security tests. This new
realm is called UserCertificateAuthRealm. This feature allows enterprises to enroll
users to their enterprise certificate authority (CA) directly from their mobile
devices. The traffic between the MobileFirst application on the device and the
MobileFirst Server in the enterprise can be secured over HTTPS with client-side
certificates that are issued to the users as part of the initial enrollment process.

This feature is not supported with the FIPS 140-2 feature.

User certificate authentication overview
The User Certificate Authentication feature is a newly introduced user
authentication realm in IBM Worklight V6.1 that establishes user identity with an
X.509 client certificate.

With the User Certificate Authentication feature, IBM MobileFirst Platform
Foundation for iOS provides a mechanism for enterprises to easily integrate their
mobile infrastructure and existing public key infrastructure (PKI). With this new
added function, enterprises can now authenticate users that are trying to access
sensitive backend systems through mobile devices with X.509 client side
certificates. Mobile clients can now present an X.509 certificate to establish a secure
client identity over the transport layer security (TLS) protocol.

This feature allows enterprises to use their existing PKI to obtain full control of the
user authentication and user enrollment process. An embedded PKI
implementation is provided, which allows enterprises without their own PKI to
quickly set it up. With the embedded PKI option, IBM MobileFirst Platform
Foundation for iOS internally signs certificates and manages the validation and
enrollment process.

More specifically, mobile clients are now able to present an X.509 client certificate
to establish a secure connection over the transport layer security (TLS) protocol.
Users are enrolled to the enterprise certificate authority (CA) directly from their
device. The client certificate is then used to authenticate and establish a user
identity on subsequent requests.

12-100 IBM MobileFirst Platform Foundation for iOS V7.0.0



How it works

The MobileFirst Server can be configured to protect an application or adapter with
the user certificate authentication user realm (UserCertificateAuthRealm). This
realm requires the use of a PKI for managing X.509 client certificates. An existing
PKI can be used by implementing the PKI bridge interface that is provided for
you. The PKI bridge interface serves as the bridge between IBM MobileFirst
Platform Foundation for iOS and your PKI. Another option is to use the embedded
PKI that is provided with this feature for testing and development purposes.

The first time a user accesses a protected application or adapter procedure from a
device, the server initiates the applicable challenges and starts the user enrollment
process. The user enrollment process consists of having the user enroll into the
configured PKI and then provisioning the device with an X.509 certificate for
future use. Users enroll into existing PKIs through the help of a dependent user
authentication realm. After the user is authenticated through the dependent realm,
IBM MobileFirst Platform Foundation for iOS, through the PKI, generates the client
certificate and provisions the device with the certificate that is issued to the user.
The server enrolls the user after successfully establishing the user identity by using
one of the pre-existing login modules. This process results in an X.509 certificate
that is issued to the user and installed securely on the device.

The following figure shows the user enrollment flow:

Subsequent calls from that MobileFirst application use this X.509 certificate to
establish a secure connection over HTTPS, authenticate the user, and establish the
user identity on the server. Users need to log in only once for the life of the
certificate. When the certificate expires or is revoked by the PKI, the enrollment
process is initiated again. You can allow user enrollment to continue, ban the user,
or allow the user to log in only through the dependent realm.

Both the client and the server runtimes enforce certificate verification, ensuring that
the client certificate is valid and is issued to a known user. The client certificate is

Monitoring and mobile operations 12-101



valid if it is issued by a trusted CA, is not expired and is not revoked, and its
validity period is current. The server also verifies the client certificate's subject
against a user registry to ensure that the client certificate was issued to a known
user. Support for certificate revocation lists (CRL) is provided by the underlying
Java Platform, Enterprise Edition server, and JVM. For more information about
how to enable CRL support in WebSphere Application Server, see SSL
configurations.

Note: Not all JVMs provide CRL support.

The following figure shows the client certificate authentication flow:

User certificate authentication on the server
Both the MobileFirst Server and its hosting application server must be configured
to use the User Certificate Authentication feature. The application server must be
configured for client-side SSL. The MobileFirst Server must be configured with a
PKI bridge and an appropriate security test to use the feature.

SSL configuration
The User Certificate Authentication feature depends on the use of the Secure
Sockets Layer (SSL) for authentication purposes. You can host your application
only on HTTPS, unless a reverse proxy is being used.

For more information about how to configure SSL, see “WebSphere Application
Server and Liberty profile requirements” on page 12-109.

The User Certificate Authentication feature requires integration with a public key
infrastructure (PKI). For the embedded PKI option, you must provide a certificate
authority (CA) that can be used to generate the client X.509 certificates.

12-102 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/csec_sslconfigs.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/csec_sslconfigs.html


Certificates and CAs

Client certificates that are issued to the user by the User Certificate Authentication
feature can be signed by a custom CA or a well-trusted CA through your PKI.
Server-side certificates can be signed by either type of CA.

If you encounter errors with certificates that are not signed by well-trusted CAs,
see “Configuring SSL by using untrusted certificates” on page 6-136.

Restriction: Self-signed certificates are not supported.

For more information about how to use and create an intermediate CA to sign both
the server and client certificates, see the tutorials on the Getting Started page.

Certificate chains, keystore, and truststore

You must set the server certificate as the MobileFirst Server keystore. Also, set the
client’s certificate-signing CA as part of the truststore so that the server can trust
the client certificates. For more information about setting up the server with these
certificates, see “WebSphere Application Server and Liberty profile requirements”
on page 12-109.

Note: If you use intermediate custom CAs, ensure that you concatenate the server
certificate with the certificate chain. When you create the server certificate, use the
following order:
Server certificate -> intermediate(s) in order -> trust anchor

The following example works in Mac OS X, and concatenates the server certificate
with one intermediate CA and the trust anchor (root CA):
cat server/server.crt signingca/signing_ca.crt rootca/root_ca.crt > server_chain.crt

PKI bridge configuration
The PKI bridge is an interface between the MobileFirst Server and a business'
public key infrastructure (PKI). Each realm definition that uses the
WorklightCertificateAuthenticator must have a PKI bridge that is defined in its
configuration.

User certificate identity versus standard MobileFirst user identity

The standard MobileFirst user identity contains basic user details and is built after
a user realm is authenticated. The identity contains user name, display name, and
extra attributes. The identity can be requested for each realm in a security test by
authenticated resources, such as an adapter. For user certificate authentication,
more details might be required, such as device ID and application name. These
details are provided in the user certificate identity object that is sent to the PKI
bridge.

A user certificate identity instance contains the following elements:
v Standard MobileFirst user identity

– User name
– Display name
– Attributes

v Device ID
v Application name

Monitoring and mobile operations 12-103

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-native-ios-development-7-0/


Embedded PKI bridge:

The embedded PKI bridge is an included PKI bridge that can be used with user
certificate authentication. The embedded PKI bridge is available with the
com.worklight.core.auth.ext.UserCertificateEmbeddedPKI class name and is
configured by adding parameters to the realm definition.

The embedded PKI bridge is useful for developers without direct access to the
business’ PKI during testing. Administrators that are interested in testing the user
certificate authentication feature without implementing their own PKI bridge can
also use the embedded PKI bridge. The embedded PKI bridge is not recommended
or supported for production environments.

Requirements for use

For the embedded PKI bridge, a certificate authority (CA) certificate and private
key must be available. The certificate and private key must be added to a keystore
manually. The keystore must be in the PKCS #12 file format, such as a .p12 file. A
password to access the keystore can be supplied optionally in plaintext form. If the
.p12 file does not exist, cannot be read, or is supplied an invalid password, an
error is thrown in the server trace. The following example shows a realm definition
for wl_userCertificateAuthRealm with the embedded PKI:
<realm name="wl_userCertificateAuthRealm"

loginModule="UserCertificateLoginModule">
<className>com.worklight.core.auth.ext.UserCertificateAuthenticator</className>
<parameter name="dependent-user-auth-realm"

value="WASLTPARealm" />
<parameter name="pki-bridge-class"

value="com.worklight.core.auth.ext.UserCertificateEmbeddedPKI" />
<parameter name="embedded-pki-bridge-ca-p12-password"

value="capassword" />
<parameter name="embedded-pki-bridge-ca-p12-file-path"

value="/opt/ssl_ca/ca.p12" />
<parameter name="embedded-pki-bridge-organization"

value="IBM Worklight" />
<parameter name="embedded-pki-bridge-add-cert-extensions"

value="true" />
</realm>

Configuration parameters

The following embedded PKI bridge parameters are available.

embedded-pki-bridge-ca-p12-file-path
Required

Full file path of the .p12 file for the CA that signs user certificate requests.

embedded-pki-bridge-ca-p12-password
Optional

Password in plaintext that is used to decode the CA .p12 file that is
specified. No password is used if not specified.

embedded-pki-bridge-organization
Optional

Organization name that is added to the distinguished name (DN) inside a
signed certificate (O=<organization name specified>). If not specified, no
organization is added to the DN.

embedded-pki-bridge-add-cert-extensions
Optional

12-104 IBM MobileFirst Platform Foundation for iOS V7.0.0



Add non-critical MobileFirst custom certificate extensions to the user
certificate before it is signed. This parameter provides more details to user
identity attributes on subsequent runs. These details include device ID,
group ID, and application name that is stored in the certificate. By default,
this parameter is false. You can enable the parameter by using the true
value. This parameter is not always supported and may not work for your
configured server configuration. You must test this option first on your
infrastructure to ensure that a certificate is not marked invalid if extensions
are enabled. When this parameter is enabled, the device ID is added with
the OID 1.3.6.1.4.1.2.6.256.1 and the app name is added with the OID
1.3.6.1.4.1.2.6.256.2. These OIDs are not formally registered and may
change.

embedded-pki-bridge-days-before-expire
Optional

Configure the length of time the generated certificate is valid. This setting
defaults to one year (365 days).

embedded-pki-bridge-crl-uri
Optional

Configure an optional CRL for your certificate authority. If the certificate
that is generated exists on a client’s device and is revoked in the CRL, the
client is required to generate a certificate.

External/adapter-based PKI bridge:

The adapter-based PKI bridge is an included PKI bridge that can be used with user
certificate authentication. The adapter-based PKI bridge is available with the
com.worklight.core.auth.ext.UserCertificateAdapterBasedPKI class name, and is
configured by adding parameters to the realm definition. An adapter is required
for this PKI bridge to work, and must be uploaded before any user connects with
this configuration. The adapter-based PKI bridge is useful if your PKI can be
accessed with an adapter (such as a REST API).

Requirements for use

For the adapter-based PKI bridge, an adapter must be added in the console and
the parameters for the bridge must be configured in the realm definition. The
following example shows a realm definition for wl_userCertificateAuthRealm with
the adapter-based PKI that uses an adapter that is called PKIAdapter:

<realm name="wl_userCertificateAuthRealm"
loginModule="UserCertificateLoginModule">

<className>com.worklight.core.auth.ext.UserCertificateAuthenticator</className>
<parameter name="dependent-user-auth-realm"

value="WASLTPARealm" />
<parameter name="pki-bridge-class"

value="com.worklight.core.auth.ext.UserCertificateAdapterBasedPKI" />
<parameter name="adapter-pki-bridge-init-procedure"

value="PKIAdapter.init" />
<parameter name="adapter-pki-bridge-identity-validation-procedure"

value="PKIAdapter.validateIdentity" />
<parameter name="adapter-pki-bridge-csr-requirements-procedure"

value="PKIAdapter.getCSRRequirements" />
<parameter name="adapter-pki-bridge-csr-validation-procedure"

value="PKIAdapter.validateCSR" />
<parameter name="adapter-pki-bridge-certificate-generation-procedure"

value="PKIAdapter.generateCertificate" />
<parameter name="adapter-pki-bridge-identity-from-certificate-procedure"

Monitoring and mobile operations 12-105



value="PKIAdapter.getIdentityFromCertificate" />
<parameter name="adapter-pki-bridge-certificate-validation-procedure"

value="PKIAdapter.validateCertificate" />
</realm>

Configuration parameters

The following adapter-based PKI bridge parameters are available.

adapter-pki-bridge-init-procedure
Required

An adapter procedure that is called to initialize the PKI bridge on each
call. Requires a single parameter for the configuration that is available in
the realm definition. The following example shows a sample value of this
parameter:

{"adapter-pki-bridge-csr-validationprocedure":"
PKIBridgeAdapter.validateCSR","adapter-pki-bridge-identity-fromcertificate-
procedure":"PKIBridgeAdapter.identityFromCertificate","pkibridgeclass":"
com.worklight.core.auth.ext.UserCertificateAdapterBasedPKI","adapterpki-
bridge-identity-validationprocedure":"
PKIBridgeAdapter.identityVerify","adapter-pki-bridge-csrrequirements-
procedure":"PKIBridgeAdapter.csrRequirements","adapter-pkibridge-
certificate-generationprocedure":"
PKIBridgeAdapter.generateCertificate","adapter-pki-bridgecertificate-
validationprocedure":"
PKIBridgeAdapter.certificateVerify","adapter-pki-bridge-initprocedure":"
PKIBridgeAdapter.init","dependent-user-authrealm":"
WASLTPARealm"}

adapter-pki-bridge-identity-validation-procedure
Optional

An adapter procedure that is called that allows the adapter to determine
whether the user identity from the dependent realm is allowed to generate
a certificate. This procedure is optional. By default, the PKI bridge always
returns YES. Requires a single userIdentity parameter. The following
example shows a sample value of this parameter:

{"deviceId":"C146B473-DA25-46A7-8A79-E8CE5E9270EE","userIdentity":
{"userName":"user@ibm.com","attributes":
{"LtpaToken":"dHwRqHp61ukJCkEFBMRd6g63uV1bDg0rmGBU2cuBrinFp+7L7BVb
+4OebyIRMOoKLhHldLxj9JIPiWH4s16tHtNjddBxxbd9rdjZUgnicVY8+6GM8uTEwleRW
+lVzzwJX0Htvfa2iOQD9KAWLXkNHgneiELIANjAUxGsMzJGGg2K8LYYWeBhE0JGqJcb8WFFLYH4T5
Cgb9C+qXpre/KF/MNTrv2WQF9kWjPmMlPuT1Lh1tY9oSSqN20DNNZ8VcQ8p26po5yBMvtDMtn4/
EzfdhKYeTNFzQEmQpR66caQJlRV++m/
Oq4EiZBBzkOY6zpBVtmUzcH3D2xh5PYYVcFO8g=="},"displayName":""},"appId":"UserCert"}

The procedure must return an object with the following format:
{valid: "YES"}

Options for valid:
v YES - The user is allowed to generate a certificate.
v NO_USE_DEPENDENT_REALM_ONLY - The user is allowed to log in to the

dependent realm, but is not allowed to generate a certificate.
v NO - The user is not allowed to log in at all, and is not allowed to

generate a certificate.

adapter-pki-bridge-csr-requirements-procedure
Optional

Build a set of requirements that must be in a CSR that the client generates.
This procedure is optional. By default, the CSR requirements include the

12-106 IBM MobileFirst Platform Foundation for iOS V7.0.0



commonName that is equal to the user name from the dependent realm user
identity. The procedure has a single parameter that is called userIdentity
with the following format:

{"deviceId":"C146B473-DA25-46A7-8A79-E8CE5E9270EE","userIdentity":
{"userName":"user@ibm.com","attributes":
{"LtpaToken":"dHwRqHp61ukJCkEFBMRd6g63uV1bDg0rmGBU2cuBrinFp+7L7BVb
+4OebyIRMOoKLhHldLxj9JIPiWH4s16tHtNjddBxxbd9rdjZUgnicVY8+6GM8uTEwleRW
+lVzzwJX0Htvfa2iOQD9KAWLXkNHgneiELIANjAUxGsMzJGGg2K8LYYWeBhE0JGqJcb8WFFLYH4T5
Cgb9C+qXpre/KF/MNTrv2WQF9kWjPmMlPuT1Lh1tY9oSSqN20DNNZ8VcQ8p26po5yBMvtDMtn4/
EzfdhKYeTNFzQEmQpR66caQJlRV++m/
Oq4EiZBBzkOY6zpBVtmUzcH3D2xh5PYYVcFO8g=="},"displayName":""},"appId":"UserCert"}

This procedure must return a JSON object in the following format:
{ commonName: "user@ibm.com", additionalSubject: { "O": "IBM" }, additionalAttributes: {} }

v commonName - This attribute is a required entry that is used as the CN
attribute in the CSR. This value must match a user in the user registry of
the application server.

v additionalSubject - This attribute is a required JSON object that contains
key/value pairs for each additional attribute that must be in the subject
of the CSR, such as O for organization. If no additional attributes are
required, use an empty JSON object.

v additionalAttributes - This attribute is a required JSON object that
contains key/value pairs for each additional attribute that must be
included in the CSR. If no additional attributes are required, use an
empty JSON object.

adapter-pki-bridge-csr-validation-procedure
Optional

This procedure is called after a client sends a CSR that follows a request. It
is responsible for ensuring that all of the CSR attributes that were
requested in the requirements exist in the CSR. This procedure is optional.
By default, the PKI bridge always returns YES. The procedure has a single
parameter csr that contains a JSON object with the following format:

{"csr":"MIICXzCCAUcCADAbMRkwFwYDVQQDFBBsaXpldEB1cy5pYm0uY29tMIIBIjANBgkqhkiG9w0
BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLCCGEBCUQAgNPZKcf3wW2LhQ75
MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv81+wHaTIu2QggqpBMFPhvBdTbS
93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQABoAAwDQYJKoZIhvcNAQEFBQADggEBAHHOJbrGBCZCiDi3hXzVzji7
1euKMf8IUjGe+sfr+Sy5sfx9k
+icvKixImHCxSy0PeKp4QICSgfZxk2xQzHhYVgdeB0Uv2WT7FjPngRjAgLL1jxu7LIkEMKWgiGiJMPg
54gOx8kWuj5uE9vqpWGRK0dGuPNlnQxh50pSgZi4PhRGz2nCBF6WdQFNmHDqssijk//
CUHWbNvMTIWyuHhXEhtwkplc0dAp1b3hHBywYM9Vae9fUmfpbHDb0yvjBjCHvceRjwkoQG6ABfh9
9ucE1NWO51Rc03XqGnHKsnk16BlqSH0YpM/sVWYrmio/F9h75aNX+Sz5EhkB7t/n4301aPOo="}

Note: csr is the CSR in DER format and is represented in base64.

The procedure must return a JSON object with the following format:
{valid: "YES"}

or
{valid: "NO"}

Options for valid:
v YES - The CSR meets the requirements from the PKI.
v NO - The CSR does not meet the requirements from the PKI.

Authentication fails.

Monitoring and mobile operations 12-107



adapter-pki-bridge-certificate-generation-procedure
Required

This procedure is responsible for requesting a certificate from the PKI and
returning a certificate. This procedure is required and has one required
parameter csr, which has the following format:

{"deviceId":"C146B473-DA25-46A7-8A79-
E8CE5E9270EE","csr":"MIICXzCCAUcCADAbMRkwFwYDVQQDFBBsaXpldEB1cy5pYm0uY29tMIIBIjA
NBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLCCGEBCUQAgNPZK
cf3wW2LhQ75MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv81+wHaTIu2Qggq
pBMFPhvBdTbS93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQABoAAwDQYJKoZIhvcNAQEFBQADggEBAHHOJbrGBCZCiDi3hXzVzji7
1euKMf8IUjGe+sfr+Sy5sfx9k
+icvKixImHCxSy0PeKp4QICSgfZxk2xQzHhYVgdeB0Uv2WT7FjPngRjAgLL1jxu7LIkEMKWgiGiJMPg
54gOx8kWuj5uE9vqpWGRK0dGuPNlnQxh50pSgZi4PhRGz2nCBF6WdQFNmHDqssijk//
CUHWbNvMTIWyuHhXEhtwkplc0dAp1b3hHBywYM9Vae9fUmfpbHDb0yvjBjCHvceRjwkoQG6ABfh9
9ucE1NWO51Rc03XqGnHKsnk16BlqSH0YpM/sVWYrmio/F9h75aNX+Sz5EhkB7t/
n4301aPOo=","userIdentity":{"userName":"lizet@us.ibm.com","attributes":
{"LtpaToken":"dHwRqHp61ukJCkEFBMRd6g63uV1bDg0rmGBU2cuBrinFp+7L7BVb
+4OebyIRMOoKLhHldLxj9JIPiWH4s16tHtNjddBxxbd9rdjZUgnicVY8+6GM8uTEwleRW
+lVzzwJX0Htvfa2iOQD9KAWLXkNHgneiELIANjAUxGsMzJGGg2K8LYYWeBhE0JGqJcb8WFFLYH4T5
Cgb9C+qXpre/KF/MNTrv2WQF9kWjPmMlPuT1Lh1tY9oSSqN20DNNZ8VcQ8p26po5yBMvtDMtn4/
EzfdhKYeTNFzQEmQpR66caQJlRV++m/
Oq4EiZBBzkOY6zpBVtmUzcH3D2xh5PYYVcFO8g=="},"displayName":""},"appId":"UserCert"}

Note: csr is the CSR in DER format and is represented in base64.

The procedure must return a base64 string of the X.509 certificate in DER
format in a JSON object with the following format:
{ certificateBase64: "<BASE64 STRING OF THE X.509 CERTIFICATE>" }

adapter-pki-bridge-certificate-validation-procedure
Optional

This procedure is responsible for validating a user’s certificate when it is
first received. This procedure is optional. If it is not used, the PKI bridge
always returns YES. The procedure has one parameter certificate that is
in the same format as the procedure in the adapter-pki-bridge-identity-
from-certificate-procedure parameter.

The procedure is required to return a JSON object that states the validity of
the certificate:
{valid: "YES"}

or
{valid: "NO"}

Options for valid:
v YES - The certificate is considered valid by the PKI.
v NO - The certificate is not considered valid by the PKI, and the client is

required to start the enrollment process over.

adapter-pki-bridge-identity-from-certificate-procedure
Required

This procedure is responsible for creating a user certificate identity from a
certificate that is passed by the user. The procedure must have one
parameter certificate with the following format:

12-108 IBM MobileFirst Platform Foundation for iOS V7.0.0



{"publicKey":
{"base64":"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLC
CGEBCUQAgNPZKcf3wW2LhQ75MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv8
1+wHaTIu2QggqpBMFPhvBdTbS93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQAB","algorithm":"RSA"},"signature":
{"base64":"cONA8EKOQBiIKtdhAzG68pm0FMRkNfbVAIyZlttp+J9nXYmjO/
aGOEJk37oGzEPTO5uA/
eDArvQ9WF3BtzOdF9hw4j3ACJjo5oEnD7UTXbPzK2k1w3INX4cuOInLi7EJEKb
+CuO5uMy1mUOjx1aj/WaK
+E2KroFKNPyXdHAL7mwpkZO0aSYxUYYwcu8IAureMWZGps196Swk1YptboIEUSd5r3j07rBZX81B
AX5awqEx3tpbP3qpIJIK+6xoiu2tL67mKqJj9l1/Yb/
qQmUg6ouJtt9fWYUO7p1wJgUm9N0eixXftKttJ32Fp/
s0B7R72ntO9pGPrkYt8IUkzSq22Q==","algorithm":"SHA1withRSA"},"subjectUniqueId":"","version"
:1,"issuer":{"dn":"CN=Worklight Test Beta Signing CA,OU=Security Division,O=IBM
Worklight,L=Austin,ST=TX,C=US","cn":"Worklight Test Beta Signing
CA","uniqueId":""},"dn":"CN=user@us.ibm.com","cn":"user@us.ibm.com","valid":{"notBefore":
1381193593,"notAfter":
1382403193},"serialNumber":"efa7b0e3f0d9cef0","base64":"MIIDIzCCAgsCCQDvp7Dj8NnO8DA
NBgkqhkiG9w0BAQUFADCBizELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAlRYMQ8wDQYDVQQHEwZ
BdXN0aW4xFjAUBgNVBAoTDUlCTSBXb3JrbGlnaHQxGjAYBgNVBAsTEVNlY3VyaXR5IERpdmlzaW9u
MSowKAYDVQQDEyFXb3JrbGlnaHQgR2FycmljayBCZXRhIFNpZ25pbmcgQ0EwHhcNMTMxMDA4M
DA1MzEzWhcNMTMxMDIyMDA1MzEzWjAbMRkwFwYDVQQDFBBsaXpldEB1cy5pYm0uY29tMIIBIjA
NBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLCCGEBCUQAgNPZK
cf3wW2LhQ75MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv81+wHaTIu2Qggq
pBMFPhvBdTbS93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQABMA0GCSqGSIb3DQEBBQUAA4IBAQBw40DwQo5AGIgq12EDMbry
mbQUxGQ19tUAjJmW22n4n2ddiaM79oY4QmTfugbMQ9M7m4D94MCu9D1YXcG3M50X2HDiPcA
ImOjmgScPtRNds/MraTXDcg1fhy44icuLsQkQpv4K47m4zLWZQ6PHVqP9Zor4TYqugUo0/
Jd0cAvubCmRk7RpJjFRhjBy7wgC6t4xZkamzX3pLCTVim1uggRRJ3mvePTusFlfzUEBflrCoTHe2ls/
eqkgkgr7rGiK7a0vruYqomP2XX9hv+pCZSDqi4m2319ZhQ7unXAmBSb03R6LFd+0q20nfYWn
+zQHtHvae072kY+uRi3whSTNKrbZ"}

Note: base64 is the DER formatted certificate. publicKey is also encoded in
base64.

The procedure must return a JSON object in the following format:
{ userName:"user@us.ibm.com",displayName:"",attributes:{},appID:"UserCert",deviceId:"C146B473-DA25-46A7-8A79-E8CE5E9270EE” }

The goal of the JSON object that is returned is to form the original user
identity of the user that is provided by the dependent realm during
generation.

Note: appId and deviceId are optional in this step. If not used, use an
empty string as the value.

Custom PKI bridge:

A custom PKI bridge can be implemented by extending the
com.org.auth.ext.UserCertificatePKIBridge abstract class.

The API for the PKI bridge abstract class can be found at UserCertificatePKIBridge.

WebSphere Application Server and Liberty profile requirements
User certificate authentication uses standard SSL X.509 User Certificates, which
requires the use of an SSL channel.

There are a few requirements around SSL that must be configured in order for user
certificate authentication to work.

Monitoring and mobile operations 12-109



v The SSL channel for WebSphere Application Server or the Liberty profile must
be configured to include the certificate authority (CA) in the trust store that is
used to sign user certificates.

v The application server must be configured to allow a user certificate, but not
require it. This configuration is important so that IBM MobileFirst Platform
Foundation for iOS can send unauthenticated challenges to the device when the
device does not provide a user certificate.

v The user registry for the application server must be defined. The name that is
used to authenticate a user against that user registry must match the common
name (CN) in a generated user certificate.

v The User Certificate Authentication feature requires the server to be configured
to require a valid X.509 client certificate. The feature also requires an alternate
fallback authentication mechanism when a certificate does not yet exist on the
client. WebSphere Application Server Liberty Profile Versions 8.5.5.0 and 8.5.5.1
allow a basic authentication, or a HTTP 401 status code, as a fallback to
authenticate a user. However, a MobileFirst client cannot handle this
configuration. If you want to protect the MobileFirst Server with the WebSphere
Application Server Liberty Profile security mechanisms, you must install a fix for
APAR PI10103 for Liberty Versions 8.5.5.0 and 8.5.5.1. For more information, see
PI10103: Support certificate authentication to fail over to a form-based login.

Configuring the Liberty profile:

You must enable an HTTPS endpoint in WebSphere Application Server Liberty
profile that uses the server's certificate, and trusts the client certificates.

Before you begin

Ensure that you understand the documentation at Enabling SSL communication for
the Liberty profile. To set up the MobileFirst Server, see the WebSphere Application
Server Liberty profile documentation about setting up SSL for the server at Liberty
profile: SSL configuration attributes.

About this task

The application server requirements can be configured on the WebSphere
Application Server Liberty profile in the server.xml file.

Procedure

1. Install a server certificate for use by the SSL channel, and configure the SSL
channel.

2. Add a truststore to the configuration that contains a keystore with the CA
certificate that is used to sign user certificates. Add the following element to the
server.xml file:
<keyStore id="defaultTrustStore" location="trust.jks" type="JKS" password="defaultPWD" />

3. Enable the client authentication support by adding the
clientAuthenticationSupported="true" attribute to the SSL element in the
server.xml file.

4. Access the MobileFirst Operations Console over SSL. You are presented with a
trusted website that asks for an optional user certificate.

Updating the server authentication configuration
A requirement to enable the User Certificate Authentication feature is to configure
the authentication configuration on the MobileFirst Server.

12-110 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/docview.wss?uid=swg24037078
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html


About this task

You must update the authenticationConfig.xml file to configure your server to
use the User Certificate Authentication feature. User certificate authentication uses
standard MobileFirst authentication mechanisms: authenticator and login modules.
The com.worklight.core.auth.ext.UserCertificateAuthenticator and the
com.worklight.core.auth.ext.UserCertificateLoginModule modules are bundled
with the core MobileFirst Server library.

Procedure
1. From within your server configuration, open the authenticationConfig.xml file

for editing.
2. Add a realm definition inside the <realms> attribute in your

authenticationConfig.xml file.
<realm name="wl_userCertificateAuthRealm"

loginModule="UserCertificateLoginModule">
<className>com.worklight.core.auth.ext.UserCertificateAuthenticator</className>
<parameter name="dependent-user-auth-realm"

value="<DEPENDENT REALM NAME HERE>" />
<parameter name="pki-bridge-class"

value="<PKI BRIDGE CLASS>" />
</realm>

3. Modify this realm definition by supplying your own dependent realm by
specifying its name for the dependent-user-auth-realm parameter and a PKI
bridge implementation (full Java class path) for the pki-bridge-class
parameter. You can use the included PKI bridge classes such as embedded
(“Embedded PKI bridge” on page 12-104) or adapter-based
(“External/adapter-based PKI bridge” on page 12-105) or supply your own
custom PKI bridge implementation (“Custom PKI bridge” on page 12-109).

4. Add your custom parameters to this realm definition based on your PKI bridge
implementation. Bundled PKI bridge implementations such as Embedded
(“Embedded PKI bridge” on page 12-104) or Adapter-Based
(“External/adapter-based PKI bridge” on page 12-105) have extra required
parameters that must be added.

5. Add the following login module definition, as-is, to your <loginModules>
element in the authenticationConfig.xml file.
<loginModule name="UserCertificateLoginModule">

<className>com.worklight.core.auth.ext.UserCertificateLoginModule</className>
</loginModule>

6. Add the wl_userCertificateAuthRealm realm as a test in the security test that
you want to use for your application or environment.

7. Add the security test to the resource you want to protect. To protect an adapter
procedure, add the securityTest attribute for the procedure. For more
information, see “Structure of the adapter XML file” on page 8-96 and “Security
tests” on page 8-249. To protect an application environment, define a security
test for each environment in the application-descriptor.xml file, by using the
securityTest="your_test_name" property. If no security test is defined for a
specific environment, only a minimal set of default platform tests are run.
<securityTest name="your_test_name">

<testUser realm="wl_userCertificateAuthRealm" />
<testDeviceId provisioningType="none" />

</securityTest>

Note: To protect your application or adapter procedure, reference your security
test in your application descriptor file.
<iphone bundleId="com.UserCertApp" version="1.0" securityTest="your_test_name">

Monitoring and mobile operations 12-111



User certificate authentication on the client
The User Certificate Authentication feature requires little configuration on the
client side. The MobileFirst client run time takes care of most of the heavy lifting
on your behalf. There are however, a few things you need to be aware of to ensure
successful and secure communication with your server.

Establishing trust

Because the User Certificate Authentication feature requires communication over
HTTPS, the first thing you must ensure is that your client device trusts the server's
credentials that are sent on the SSL handshake.

Each mobile platform comes with a predefined set of trusted certificate authorities
(CAs) that are deemed trustworthy by the platform. Trust is easily established if
your server uses a server certificate that is signed by one of these trusted CAs.

However, if your server uses a CA that is unknown to your device, you must do
some extra work on the client side to establish appropriate trust. To establish trust,
you must install the trust anchor certificate on the client device. The trust anchor is
either the root CA, or the root certificate if you are using a self-signed certificate.
For more information, see “Configuring SSL by using untrusted certificates” on
page 6-136.

Dependent user realm

The first time a user attempts to connect to the server, IBM MobileFirst Platform
Foundation for iOS tries to enroll the user into the PKI and provision the device
with the user certificate. To enroll the user, IBM MobileFirst Platform Foundation
for iOS requires the help of a dependent user authentication realm. This behavior
is all configured on the server. But you must ensure that your application has the
appropriate challenge handlers that are required to handle the challenges that
come from the server. The dependent realm challenge handlers do not require any
additional configuration. For more information, see the appropriate section of this
user documentation or getting started modules for instructions on how to write the
respective challenge handlers for your dependent user realm.

Group support

User certificates are issued by default to a user on a specific application and
device. Group support allows a certificate to be issued to the user on a specific
device and to a group of applications. The same user certificate can be shared
among a group of applications that are installed on the device, allowing the user to
only authenticate through a dependent realm once, and not for every application.

In this case, the user enrollment process that requires the user to log in to a
dependent realm happens the first time that the user attempts to log in to the
server on a particular device. After the device is provisioned with the necessary
certificate, all subsequent authentications to the server from any of the MobileFirst
applications that are designated by you use the same certificate to authenticate to
the server.

To configure the sharing of user certificates among a group of applications, see
“Configuring user certificate authentication for a group of applications” on page
12-113.

12-112 IBM MobileFirst Platform Foundation for iOS V7.0.0



Clearing certificates on the chain

Certificates on the client are managed by the MobileFirst client run time. They are
installed and removed from the device as needed. However, there might be
situations when you want the ability to clear the certificates that are installed on
the device. The API allows the application to remove the certificates at more
convenient times, like during test and development, or when the device is
transferred to a new user.

On iOS only, if you would like to delete the certificate that is associated with a
specific group of applications, use the following API:
WL.UserAuth.deleteCertificate("yourGroupNameHere");

Security considerations

This new feature introduces a powerful and ITU-T X.509 standards-based way to
authenticate users. It also introduces a password-less login mechanism. The
identity is established by the MobileFirst client run time as part of the application
that presents the certificate as part of the server-side connection. Although this
behavior greatly simplifies the user experience, the following precautions must be
taken by the enterprise. These precautions ensure that there is adequate protection
on the device to ensure cases where the user loses the device or when the device is
stolen.
1. Single user is required. The device is owned and used only by a single user

and not accessible to others.
2. Device must be maintained under a device passcode lock or PIN to ensure that

only the designated user can access the device and applications.

Configuring user certificate authentication for a group of
applications
You can configure the User Certificate Authentication feature to issue a certificate
to a user on a device for a group or family of applications that are protected by the
user certificate authentication realm. This configuration allows a user to
authenticate once and be automatically authenticated to a set of applications on the
device (single sign-on). This single sign-on option among a family of applications
can be achieved with the Simple Data Sharing feature. The Simple Data Sharing
feature allows the User Certificate Authentication feature to provision a device
with a user certificate that applies to, and is used by, all applications in the same
specified MobileFirst family.

About this task

You can configure the User Certificate Authentication feature to provision the
device with a user certificate that is shared among a group of applications. This
configuration allows a group of applications to authenticate with the same X.509
client certificate.

Note: The iOS x509AccessGroup property is deprecated since IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use the Simple Data Sharing feature instead.

Procedure
1. Enable the Simple Data Sharing feature.

a. For iOS applications, follow the steps in “Enabling the Simple Data Sharing
feature for iOS native applications” on page 8-254.

Monitoring and mobile operations 12-113



2. Ensure that you select the user certificate authentication group support option
in the application descriptor file.

Troubleshooting the User Certificate Authentication feature
Find solutions to problems with the User Certificate Authentication feature.

Table 12-18. User Certificate Authentication troubleshooting guidelines. This table lists possible problems and actions
to take to troubleshoot the User Certificate Authentication feature.

Problem Actions to take

The server is not responding even though it is accessible
through the browser when it uses a certificate that is
signed by a private CA.

Make sure that you can reach the MobileFirst Server on
your device. For example, go to the MobileFirst
Operations Console on the device's internet browser. If
you can reach it, then the most likely error is that the
client is not trusting the server's certificate. The server’s
certificate is most likely a certificate that is signed by a
private CA. To fix this problem, you must install the root
CA on the device so that it is trusted. For more
information, see “Establishing trust” on page 12-112.

WLSecureRequest:sendRequestToServerWithURL A
connection failure occured: SSL Problem (Possible
causes may include a bad/expired/self-signed
certificate, clock set to the wrong date) on iOS.

One of the certificates was not trusted. Usually it is
because the server did not send the server certificate
with the whole certificate chain in the right order, when
it uses an intermediate CA. For more information, see
“SSL configuration” on page 12-102. Another explanation
can be that the certificate was revoked by the certificate
revocation list (CRL), and the PKI did not allow the
device to renew the certificate.

Authentication fails with an exception in the PKI. There was an exception somewhere in the PKI bridge. To
see more information about the exception, make sure
that the MobileFirst Server has trace that is enabled for
com.worklight.*=all, and search for UserCertificate*
in the trace file. Possible reasons include a syntax or
runtime error in the adapter when you use the
adapter-based PKI bridge, or a configuration error in the
embedded PKI.

The client certificate is expired or not yet valid. If the certificate is expired or not yet valid, the client logs
this information in the client's logs. The client then
proceeds with the authentication as if it did not have a
certificate. The PKI then decides whether it allows the
user to renew the certificate or not. In the ’certificate not
yet valid’ scenario, verify that the device and the server
clocks are set correctly.

12-114 IBM MobileFirst Platform Foundation for iOS V7.0.0



License tracking
IBM MobileFirst Platform Foundation for iOS is available in Enterprise (B2E) and
Consumer (B2C) editions, and the license terms vary depending on which edition
was sold.

License tracking is enabled by default in IBM MobileFirst Platform Foundation for
iOS, which tracks metrics relevant to the licensing policy such as active client
devices and installed apps.

This information helps determine if the current usage of IBM MobileFirst Platform
Foundation for iOS is within the license entitlement levels and can prevent
potential license violations.

Also, by tracking the usage of client devices, and determining whether the devices
are active, MobileFirst administrators can decommission devices that are no longer
accessing the IBM MobileFirst Platform. This situation might arise if an employee
has left the company, for example.

License tracking details are gathered by specifying configuration properties in
JNDI, and the data that is gathered is displayed in a License Tracking report that is
accessed from the IBM MobileFirst Platform Operations Console.

Configuring your license tracking details
Administrators can set Java Naming and Directory Interface (JNDI) configuration
properties to gather data that relates to license terms for devices that are accessing
the MobileFirst platform. This data can be displayed in the License Tracking report,
which is accessed from the IBM MobileFirst Platform Operations Console.

About this task

Administrators can specify the following JNDI configuration properties, which
enable the administrators to gather the required data:

wl.device.decommission.when
The number of days of inactivity after which a client device is decommissioned
by the device decommissioning task. The default value is 90 days.

wl.device.archiveDecommissioned.when
A value, in days, that defines when client devices that were decommissioned
will be placed in an archive file when the decommissioning task is run. The
archived client devices are written to a file in the IBM MobileFirst Platform
Server home\devices_archive directory. The name of the file contains the time
stamp when the archive file is created. The default value is 90 days.

wl.device.tracking.enabled
A value that is used to enable or disable device tracking in IBM MobileFirst
Platform Foundation for iOS. For performance reasons, you can disable this
flag when IBM MobileFirst Platform Foundation for iOS is running only
Business-to-Consumer (B2C) apps. When device tracking is disabled, the
license reports are also disabled and no license metrics are generated.

For more information about specifying JNDI properties, see Configuring an IBM
MobileFirst project in production by using JNDI environment entries.

The decommissioning task is run daily, as a MobileFirst Server task in the
background. This task performs the following actions:

Monitoring and mobile operations 12-115



v Decommissions inactive devices, based on the wl.device.decommission.when
setting.

v Optionally, archives older decommissioned devices, based on the
wl.device.archiveDecommissioned.when setting.

v Generates the License Tracking report.

Active client devices are those devices whose status is not decommissioned;
inactive client devices have a decommissioned status.

Procedure
1. Specify the required properties as JNDI properties.
2. View the data in the License Tracking report in the MobileFirst Operations

Console. For more information, see “License Tracking report.”

License Tracking report
IBM MobileFirst Platform Foundation for iOS provides a report that shows how
many client devices accessed the platform, and whether they are active or
decommissioned. The report also provides historical data.

The License Tracking report shows the following data:
v The number of applications deployed in the IBM MobileFirst Platform Server
v The number of client devices, both active and decommissioned
v The highest number of client devices reported over the last n days, where n is

the number of days of inactivity after which a client device is decommissioned.

Administrators might want to analyze data further. For this purpose, the number
of active client devices per application, the generated report details, and an
historical listing of license metrics are captured in a CSV file that can be
downloaded for further analysis.

The data is gathered by using the following JNDI configuration properties:
v wl.device.decommission.when

v wl.device.archiveDecommissioned.when

v wl.device.tracking.enabled

For more information, see Configuring your license tracking details.

To access the License Tracking report, click the License tracking link in a runtime
environment in the IBM MobileFirst Platform Operations Console.

12-116 IBM MobileFirst Platform Foundation for iOS V7.0.0



To obtain a CSV file from the License Tracking report, click DOWNLOAD
REPORT.

Integration with IBM License Metric Tool
IBM MobileFirst Platform Foundation for iOS generates IBM Software License
Metric Tag (SLMT) files. Versions of IBM License Metric Tool that support IBM
Software License Metric Tag can generate License Consumption Reports. Read this
section to interpret these reports for MobileFirst Server, and to configure the
generation of the IBM Software License Metric Tag files.

If you have not installed a version of IBM License Metric Tool that supports IBM
Software License Metric Tag, you can review the license usage with the License
Tracking reports of MobileFirst Operations Console. For more information, see
“License Tracking report” on page 12-116.

Each instance of a running MobileFirst runtime environment generates an IBM
Software License Metric Tag file. The metrics monitored are CLIENT_DEVICE and
APPLICATION. Their values are refreshed every 24 hours.

About the CLIENT_DEVICE metric

The CLIENT_DEVICE metric can have the following subtypes:

Active Devices
The number of client devices that used the MobileFirst runtime
environment, or another MobileFirst runtime instance belonging to the

Figure 12-36. License tracking information for applications, devices, and decommissioning

Monitoring and mobile operations 12-117



same cluster or server farm, and that were not decommissioned. For more
information about decommissioned devices, see “Configuring your license
tracking details” on page 12-115.

Inactive Devices
The number of client devices that used the MobileFirst runtime
environment, or another MobileFirst runtime instance belonging to the
same cluster or server farm, and that were decommissioned. For more
information about decommissioned devices, see “Configuring your license
tracking details” on page 12-115.

The following cases are specific:
v If the decommissioning period of the device is set to a small period, the subtype

"Inactive Devices" is replaced by the subtype "Active or Inactive Devices".
v If device tracking was disabled, only one entry is generated for CLIENT_DEVICE,

with the value 0, and the metric subtype "Device Tracking Disabled".
v If the MobileFirst runtime environment is running in a development server, and

device tracking is not disabled, only one entry is generated for CLIENT_DEVICE.
This entry has the sum of active and decommissioned devices as its value, and
"Development Server" as its metric subtype.

About the APPLICATION metric

The APPLICATION metric has no subtype unless the MobileFirst runtime
environment is running in a development server.

The value reported for this metric is the number of applications that are deployed
in the MobileFirst runtime environment. Each application is counted as one unit,
whether it is a new application, an additional brand deployment, or an additional
type of an existing application (for example native, hybrid, or web).

This number of applications is monitored even if wl.device.tracking.enabled is
set to false.

The following cases are specific:
v If the MobileFirst runtime environment is running in a development server, the

metric Application is reported with the subtype "Development Server".

Configuring IBM License Metric Tool log files

By default, the IBM Software License Metric Tag files are in the following
directories:
v On Windows: %ProgramFiles%\ibm\common\slm
v On UNIX and UNIX-like operating systems: /var/ibm/common/slm

If the directories are not writable, the files are created in the log directory of the
application server that runs the MobileFirst runtime environment.

You can configure the location and management of those files with the following
properties:
v license.metric.logger.output.dir: Location of the IBM Software License Metric

Tag files
v license.metric.logger.file.size: Maximum size of an SLMT file before a

rotation is performed. The default size is 1 MB.

12-118 IBM MobileFirst Platform Foundation for iOS V7.0.0



v license.metric.logger.file.number: Maximum number of SLMT archive files to
keep in rotations. The default number is 10.

To change the default values, you must create a Java property file, with the format
key=value, and provide the path to the properties file through the
license_metric_logger_configuration JVM property.
Related tasks:
“Configuring your license tracking details” on page 12-115
Administrators can set Java Naming and Directory Interface (JNDI) configuration
properties to gather data that relates to license terms for devices that are accessing
the MobileFirst platform. This data can be displayed in the License Tracking report,
which is accessed from the IBM MobileFirst Platform Operations Console.

Monitoring and mobile operations 12-119



12-120 IBM MobileFirst Platform Foundation for iOS V7.0.0



Integrating with other IBM products

IBM MobileFirst Platform Foundation for iOS integrates with other IBM products.

You can find samples and more documentation about such integration for
developers and administrators on the Integration page of the Developer Center
website for IBM MobileFirst Platform.

Introduction to MobileFirst integration capabilities
As a developer or administrator, you can use IBM MobileFirst Platform Foundation
for iOS integration capabilities to connect specific IBM products to existing
back-end systems and other Internet or intranet sources.

IBM MobileFirst Platform Foundation Enterprise Edition and IBM MobileFirst
Platform Foundation Consumer Edition provide capabilities to integrate with IBM
Endpoint Manager for Mobile Devices and IBM WebSphere® Cast Iron® for
enterprise and application security.

IBM MobileFirst Platform Foundation for iOS also provides a flexible
authentication framework to support existing security requirements through
authenticator or login modules. For more information, see “MobileFirst security
framework” on page 8-221.

Figure 1 gives a high-level view of the topology context for an app on a device
that connects to IBM MobileFirst Platform Foundation for iOS.

Figure 2 shows where other IBM products fit within the typical MobileFirst
topology diagram in Figure 1.

Item Description

A App

D Device

N Network

I/i Internet or intranet

MFP IBM MobileFirst Platform Foundation for
iOS

EBE Existing back ends

I Other Internet sources

© Copyright IBM Corp. 2006, 2016 13-1

https://developer.ibm.com/mobilefirstplatform/documentation/integration-7-0/


Figure 13-2 shows where these products fit within the typical MobileFirst topology
diagram in Figure 13-1.

Integration with Cast Iron
You can use IBM WebSphere Cast Iron to enable enterprise connectivity within a
MobileFirst environment.

IBM MobileFirst Platform Foundation for iOS supports the following adapters:
v SQL
v HTTP
v Cast Iron
v Java Message Service (JMS)

The Cast Iron adapter provides first-class integration with all of the cloud-based,
hardware appliance, or software-based hypervisor editions of IBM WebSphere Cast
Iron.

Figure 13-1. Overall Topology

Figure 13-2. Integration Points

13-2 IBM MobileFirst Platform Foundation for iOS V7.0.0



By using IBM WebSphere Cast Iron, companies can integrate applications,
regardless of whether the applications are located on-premises or in public or
private clouds. With WebSphere Cast Iron, you do not need any programming
knowledge to integrate applications. You can build integration flows in WebSphere
Cast Iron Studio, which is a graphical development environment that is installed
on a personal computer. With Cast Iron Studio, you can create an integration
project that contains one or more orchestrations. Each orchestration is built with a
number of activities that define the flow of data. You can define the details of an
activity from the configuration panes within Cast Iron Studio.

Figure 1 shows how the topology changes to reflect the use of Cast Iron.

For more information about Cast Iron adapters, see the tutorial on the Getting
Started page and “Typical topologies of a MobileFirst instance in an extranet
infrastructure” on page 6-239.

Integration and authentication with a reverse proxy
You can use a reverse proxy to enable enterprise connectivity within a MobileFirst
environment and to provide authentication to IBM MobileFirst Platform
Foundation for iOS.

General architecture

Reverse proxies typically front MobileFirst runtimes as part of the deployment, as
shown in Figure 1, and follow the gateway pattern.

The gateway icon (GW) represents a reverse proxy such as WebSphere DataPower
or IBM Security Access Manager. In addition to protecting MobileFirst resources

Figure 13-3. Integration with Cast Iron

Figure 13-4. Integration with reverse proxy

Integrating with other IBM products 13-3

https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/
https://developer.ibm.com/mobilefirstplatform/documentation/getting-started-7-0/


from the Internet, the reverse proxy provides termination of SSL connections and
authentication. The reverse proxy can also act as a policy enforcement point (PEP).

When a gateway is used, app (A) on device (D) uses the public URI that is
advertised by the gateway instead of the internal MobileFirst URI. The public URI
can be exposed as a setting within the app or can be built in during promotion of
the app to production before the app is published to public or private app stores.

Authentication at the gateway

If authentication ends at the gateway, IBM MobileFirst Platform Foundation for iOS
can be informed of the authenticated user by a shared context, such as a custom
HTTP header or a cookie. By using the extensible authentication framework, you
can configure IBM MobileFirst Platform Foundation for iOS to use the user identity
from one of these mechanisms and establish a successful login. Figure 13-5 shows a
typical authentication flow.

This configuration was tested with DataPower and IBM Security Access Manager
for header-based authentication and LTPA-based authentication.

Header-based authentication

v On successful authentication, the gateway forwards a custom HTTP
header with the user name or ID to IBM MobileFirst Platform
Foundation for iOS.

v IBM MobileFirst Platform Foundation for iOS is configured to use
HeaderAuthenticator and HeaderLoginModule on either Tomcat or
WebSphere Application Server.

LTPA-based authentication

Figure 13-5. Authentication flow

13-4 IBM MobileFirst Platform Foundation for iOS V7.0.0



v On successful authentication, the gateway forwards an LTPA token (in
the form of an HTTP cookie) toIBM MobileFirst Platform Foundation for
iOS

v IBM MobileFirst Platform Foundation for iOS on WebSphere Application
Server is configured to use WebSphereFormBasedAuthenticator and
WebSphereLoginModule.

Integration with IBM Endpoint Manager
In a MobileFirst environment, you can implement an IBM Endpoint Manager
architecture to make your enterprise devices and applications benefit from
endpoint management features such as data security, compliance, and unified
infrastructure.

IBM Endpoint Manager for Mobile Devices
The features and architecture of IBM Endpoint Manager for Mobile Devices are
described here.

Features

With IBM MobileFirst Platform Foundation for iOS, you can integrate the security
features that IBM Endpoint Manager provides. The purpose of IBM Endpoint
Manager is to deliver a unified solution for the management of systems and
security, for all enterprise devices.

IBM Endpoint Manager for Mobile Devices provides security capabilities in the
following areas:
v Enterprise Access Management: Configuration of email, VPN, and Wi-Fi.
v Policy and security management: Password policies, device encryption, jailbreak,

and root detection.
v Management actions: Selective wipe, full wipe, deny email access, remote lock,

user notification, clear passcode.

Integrating with other IBM products 13-5



v Application management: Application inventory, enterprise app store,
whitelisting, blacklisting, Apple Volume Purchase Program (VPP).

v Container solution: Enterproid Divide provides a secure and manageable
container for BYOD (Bring Your Own Device) devices. The Divide app provides
a workspace that mimics device capabilities. Because this workspace is isolated
from the rest of the device, Divide can manage information separately and
safely.

Architecture

IBM Endpoint Manager for Mobile Devices uses two approaches to manage those
devices:
v An agent-based, Mobile Device Management (MDM) API-based approach that is

supported on iOS devices through the IBM Mobile Client. This approach
provides the full set of capabilities through the usage of Apple’s MDM APIs and
the Push Notification Server infrastructure (APNS).

v An email-based management through Exchange (Active Sync) and Lotus®

Traveler (IBM Sync). In this approach, iOS is supported, but the functionality is
limited and includes the ability to wipe a device, deny email access, and set
password policies. You cannot see individual device details, perform application
management, configure Wi-Fi or VPN connections, or provide advance
restrictions as in the agent–based, MDM API-based approach.

v Container management is available through Enterproid Divide, as indicated in
“Features” on page 13-5.

v PIM is available through NitroDesk TouchDown.

The following diagram shows an architectural overview of a production-level,
agent-based, MDM API-based implementation with IBM Endpoint Manager for
Mobile Devices.

13-6 IBM MobileFirst Platform Foundation for iOS V7.0.0



End-point management with IBM Endpoint Manager
IBM Endpoint Manager for Mobile Devices provides features to manage devices in
a MobileFirst environment.

IBM MobileFirst Platform Foundation for iOS provides app management
capabilities as part of the platform. IBM Endpoint Manager provides specific
device management capabilities. The app can also use certain device functions,
which leads to an overlap in some of the management aspects between IBM
MobileFirst Platform Foundation for iOS and IBM Endpoint Manager for Mobile
Devices, as shown in Figure 13-6.

For devices that must be managed as enterprise assets and devices that must be
controlled across applications, IBM Endpoint Manager provides the following
mobile device management capabilities:
v Safeguard of enterprise data
v Flexible management
v Maintained compliance
v Unified infrastructure

Safeguard of enterprise data

v Selectively wipes enterprise data when devices are lost or stolen.
v Configures and enforces passcode policies, encryption, VPN, and more.

Flexible management

v Secures and manages employee-owned and corporate-owned mobile
devices by a combination of email-based and agent-based management,
while preserving the native device experience.

Figure 13-6. IBM MobileFirst Platform Foundation for iOS and IBM Endpoint Manager management capabilities

Integrating with other IBM products 13-7



Maintained compliance

v Automatically identifies non-compliant devices.
v Denies email access or issues user notifications until corrective actions

are implemented.

Unified infrastructure

v Uses a single infrastructure to manage and secure all your enterprise
devices; that is, smartphones, tablets, desktops, notebooks, and servers.

Integration with IBM Tealeaf
The use of IBM Tealeaf® is described here.

IBM Tealeaf CX Mobile helps customers apply the power of Tealeaf powerful
solutions for customer experience management to their mobile websites, and native
applications, including support for HTML5. IBM Tealeaf gives customers visibility
where they do not have it today, helping to deliver winning mobile services. IBM
Tealeaf CX Mobile is an add-on to the Tealeaf CX platform.IBM Tealeaf is provided
as a set of libraries. To use it, you must take steps on both your client and your
server.

For more information, see the Integration pages.

IBM Tealeaf client-side integration
To make the IBM Tealeaf client SDK available for development, follow the iOS
specific instructions for IBM Tealeaf to place the libraries and configuration files in
the appropriate location of your MobileFirst project file system for each supported
environment.

Procedure

Manually edit the application-descriptor.xml file to manage this optional feature.

Results

After the libraries and configuration files are in the correct directory, the IBM
Tealeaf client-side API is on your Java class path and available in XCode
(Objective-C), and the TLT global variable is available in your JavaScript code.

Important:

Be aware of the following effects:
v Removing the IBM Tealeaf SDK from inclusion in your application by removing

the optional feature item removes existing IBM Tealeaf artifacts from your
project, including any you placed manually.

Therefore, you can place specific versions of the IBM Tealeaf SDK artifacts
manually and avoid managing the placement of IBM Tealeaf artifacts in your
project in the application descriptor editor.

For more information about how to edit the pList file and how to use the IBM
Tealeaf CX Mobile API, see the Tealeaf documentation indicated in the Tealeaf CX
Mobile page of the Developer Center website for IBM MobileFirst Platform.

13-8 IBM MobileFirst Platform Foundation for iOS V7.0.0

https://developer.ibm.com/mobilefirstplatform/documentation/
https://developer.ibm.com/mobilefirstplatform/documentation/integration-7-0/tealeaf-cx-mobile/
https://developer.ibm.com/mobilefirstplatform/documentation/integration-7-0/tealeaf-cx-mobile/


IBM Tealeaf server-side integration
To aggregate the data that is collected in client applications by the IBM Tealeaf
client SDK, you must install the IBM Tealeaf Mobile CX server.

For more information about installation, configuration, and usage, see Tealeaf CX
Mobile.

Integration with IBM Trusteer
You can use IBM Trusteer to collect mobile device risk factors. By providing these
to your mobile app, you can restrict mobile app functionality by risk levels.

IBM MobileFirst Platform Foundation for iOS supports the following versions of
IBM Trusteer Mobile SDK:
v IBM Trusteer Mobile SDK Version 3.6 and later fix packs
v IBM Trusteer Mobile SDK Version 4.0 and later fix packs

IBM MobileFirst Platform Foundation for iOS supports full integration with the
IBM Trusteer Mobile SDK for iOS applications.

After the Trusteer Mobile SDK is installed, you must configure MobileFirst Server
to support it:
v “MobileFirst security overview” on page 10-79 and “MobileFirst security

configuration” on page 10-81 provide an overview of general MobileFirst
security configuration.

v “Configuring the MobileFirst Server for Trusteer” on page 10-85 provides steps
for configuring MobileFirst Server to support Trusteer.

For more information, see the Integration pages.

Integrating IBM Trusteer for iOS
You might want to integrate Trusteer with IBM MobileFirst Platform Foundation
for iOS.

Before you begin
v If you are using a Trusteer compressed archive:

1. Make sure that you have the following files:
– Trusteer Mobile iOS library: libtas_full.a.
– A MobileFirst-compatible Trusteer license file: tas.license
– A Trusteer configuration package: default_conf.rpkg
– A Trusteer Application Security Manifest: manifest.rpkg

Note: You might need to generate the manifest manually. For more
information, see the Trusteer documentation.

If any of these items is missing, consult your local IBM representative.
2. In your file system, create a tas folder and place in it the files that are listed

previously.
3. Continue from step 1.

Note: Starting with its version 4.0, Trusteer supports the arm64 architecture. Earlier
versions of Trusteer do not.

Integrating with other IBM products 13-9

http://www.ibm.com/software/products/en/cx-mobile
http://www.ibm.com/software/products/en/cx-mobile
https://developer.ibm.com/mobilefirstplatform/documentation/


Procedure
1. In your Xcode project, drag the folder onto your project navigator.
2. Select the check box Copy items into destination group's folder (if needed).
3. Select the option Create folder references for any added folders.
4. Make sure that your target is selected, then click Finish.
5. Click the project name at the top of the tree in the Project Navigator, then

click Build Phases.
6. To link your project with the Trusteer library, drag the libtas_full.a file

from the Project Navigator to the Link Binary With Libraries list.

Note: To avoid possible link issues, arrange the items in the list so that
libWorklightStaticLibProject.a appears at the top and libtas_full.a
appears next.

7. In Build Settings > Linking > Other Linker Flags, add: -force_load
"$(SRCROOT)/tas/libtas_full.a".

8. In Build Settings > Linking > Dead Code Stripping, select NO.
9. In Build Settings > Deployment, set Strip Linked Product to NO.

10. In the Xcode Project Navigator, drag tas.license into the Resources group.
11. In the dialog box that opens, click Finish.
12. Open the tas.license file and check that the values for vendorId, clientId,

and clientKey match the licensing information that was provided by Trusteer.

Using WebSphere DataPower as a push notification proxy
You can use IBM WebSphere DataPower as a gateway for outbound connections to
facilitate monitoring and routing.

About this task

IBM MobileFirst Platform Foundation for iOS makes outbound connections to
notification mediators in order to push notifications for mobile applications. You
can set up DataPower to act as a push notification proxy for MobileFirst mobile
applications.

IBM WebSphere DataPower SOA Appliances are built for simplified deployment
and hardened security, bridging multiple protocols, and performing conversions at
wire speed. These capabilities help an organization to achieve and maintain its
security and operational polices.

DataPower can act as a reverse proxy and security gateway for handling inbound
traffic into an enterprise. In addition, in a situation where corporate policy
mandates that all outbound connections must be made through a gateway to
facilitate monitoring and routing, DataPower can also be used as a gateway for
such a requirement.

IBM MobileFirst Platform Foundation for iOS makes outbound connections to a
notification mediator, APNS (Apple Push Notification Service), in order to push
notifications for mobile applications. DataPower can act as a proxy between
MobileFirst Server and APNS.

Procedure
v For both APNS and GCM, you must configure both DataPower and the

MobileFirst Server.

13-10 IBM MobileFirst Platform Foundation for iOS V7.0.0



v For GCM, there are two possible DataPower configurations that would enable it
to act as a GCM proxy for IBM MobileFirst Platform Foundation for iOS: a TCP
proxy configuration and a web application firewall configuration.

v For more information, and detailed step-by-step instructions, see the
developerWorks article Using WebSphere DataPower as a push notification
proxy for MobileFirst mobile applications.

More about integration
More resources on integration with IBM WebSphere Cast Iron, IBM Endpoint
Manager, IBM WebSphere DataPower, and IBM Security Access Manager are
available from the product websites and IBM Redbooks® website.

For more information, use the following links:

IBM WebSphere Cast Iron

http://www.redbooks.ibm.com/redpapers/pdfs/redp4840.pdf

http://www.redbooks.ibm.com/abstracts/sg248004.html?Open

IBM Endpoint Manager

http://www.ibm.com/software/tivoli/solutions/endpoint/mdm/

IBM WebSphere DataPower

http://www.redbooks.ibm.com/abstracts/redp4790.html?Open

http://www.redbooks.ibm.com/abstracts/sg247620.html?Open

IBM Security Access Manager

http://www.redbooks.ibm.com/abstracts/redp4621.html?Open

http://www.ibm.com/support/docview.wss?uid=swg24034222

Integrating with other IBM products 13-11

http://www.ibm.com/developerworks/websphere/techjournal/1402_ramachandra/1402_ramachandra.html
http://www.ibm.com/developerworks/websphere/techjournal/1402_ramachandra/1402_ramachandra.html
http://www.redbooks.ibm.com/redpapers/pdfs/redp4840.pdf
http://www.redbooks.ibm.com/abstracts/sg248004.html?Open
http://www.ibm.com/software/tivoli/solutions/endpoint/mdm/
http://www.redbooks.ibm.com/abstracts/redp4790.html?Open
http://www.redbooks.ibm.com/abstracts/sg247620.html?Open
http://www.redbooks.ibm.com/abstracts/redp4621.html?Open
http://www.ibm.com/support/docview.wss?uid=swg24034222


13-12 IBM MobileFirst Platform Foundation for iOS V7.0.0



Reference

Reference information about Ant tasks, configuration sample files

Ant configuredatabase task reference
Reference information for the configuredatabase Ant task.

Overview

Note: The Reports database (WLREPORT below) is deprecated in IBM MobileFirst
Platform Foundation for iOS V7.0.0. Use “Operational analytics” on page 12-8
instead. Note that setting up the Reports database is optional in this release and
prior releases.

The configuredatabase Ant task creates the databases that are used by MobileFirst
Administration Services and by the MobileFirst runtime. This Ant task configures a
database for a MobileFirst project through the following actions:
v Checks whether the MobileFirst tables exist and creates them if necessary.
v If the tables exist for an older version of IBM MobileFirst Platform Foundation

for iOS, migrates them to the current version.
v If the tables exist for the current version of IBM MobileFirst Platform Foundation

for iOS, does nothing.

In addition, if one of the following conditions is met:
v The DBMS type is Derby.
v An inner element <dba> is present.
v The DBMS type is DB2, and the specified user has the permissions to create

databases.

Then, the task can have the following effects:
v Create the database if necessary (except for Oracle 12c).
v Create a user, if necessary, and grants that user access rights to the database.

In IBM Worklight Foundation V6.2.0, a new database was introduced, which is
referenced with kind WorklightAdmin for Administration Services. This database
can support one MobileFirst runtime or more, and can handle the artifacts of those
MobileFirst runtimes.

Important: If you upgrade from an IBM Worklight version earlier that V6.2.0, you
must also migrate the data from the IBM Worklight runtime to the new database
for MobileFirst Administration Services. IBM Worklight Foundation V6.2.0
introduced a new element, admindatabase, for this purpose, as shown in Table 2.

© Copyright IBM Corp. 2006, 2016 14-1



Attributes and elements for configuredatabase

The configuredatabase task has the following attributes:

Table 14-1. Attributes for the configuredatabase Ant task

Attribute Description Required Default

kind Type of database: Worklight,
WorklightReports, or WorklightAdmin

Yes None

IBM MobileFirst Platform Foundation for iOS V7.0.0 supports three kinds of
database: MobileFirst runtimes use Worklight and WorklightReports databases.
MobileFirst Administration Services use the WorklightAdmin database.

The configuredatabase task supports the following elements:

Table 14-2. Inner elements for the <configuredatabase> Ant task

Element Description Count

derby Parameters for Derby 0..1

db2 Parameters for DB2 0..1

mysql Parameters for MySQL 0..1

oracle Parameters for Oracle 0..1

driverclasspath JDBC driver class path 0..1

admindatabase Parameters for migrating data from IBM
Worklight V6.1.x runtime to IBM MobileFirst
Platform Foundation for iOS V7.0.0
Administration Services database

0..1

For each database type, you can use a <property> element to specify a JDBC
connection property for access to the database. The <property> element has the
following attributes:

Table 14-3. Attributes for the <property> element

Attribute Description Required Default

name Name of the property Yes None

value Value for the
property

Yes None

Attributes and elements for admindatabase

Use the <admindatabase> element for migrating data from a MobileFirst runtime
database to the MobileFirst Administration Services database. This element is
mandatory when you migrate yourIBM Worklight runtime projects from V6.1.x
and the kind attribute of configuredatabase is Worklight.

The admindatabase element has the following attribute.

Table 14-4. Attribute for the <admindatabase> element

Attribute Description Required Default

runtimeContextRoot Context root of the
MobileFirst runtime

Yes None

14-2 IBM MobileFirst Platform Foundation for iOS V7.0.0



Because the MobileFirst Administration Services can handle one or more
MobileFirst runtimes, you must reference a specific context root for each runtime.
Use the runtimeContextRoot attribute to specify this context root. After MobileFirst
data is migrated, you cannot change the context root of the MobileFirst runtime,
unless the MobileFirst Administration Services database is removed and a new
database is created.

The <admindatabase> element supports the following elements.

Table 14-5. Inner elements for the <admindatabase> element

Element Description Count

derby Parameters for Derby 0..1

db2 Parameters for DB2 0..1

driverclasspath JDBC driver class path 0..1

mysql Parameters for MySQL 0..1

oracle Parameters for Oracle 0..1

Apache Derby

The <derby> element has the following attributes:

Table 14-6. Attributes for the <derby> element

Attribute Description Required Default

database Database name No WRKLGHT, WLREPORT, or
WLADMIN, depending on kind.

datadir Directory that
contains the
databases

Yes None

schema Schema name No WORKLIGHT, WORKLIGHT, or
WLADMINISTRATOR, depending
on kind

The <derby> element supports the following elements:

Table 14-7. Inner elements for the <derby> element

Element Description Count

property JDBC connection property 0..∞

For the available properties, see Setting attributes for the database connection URL.

DB2

The <db2> element has the following attributes:

Table 14-8. Attributes for the <db2> element

Attribute Description Required Default

database Database name No WRKLGHT, WLREPORT, or
WLADMIN, depending on kind

server Host name of the
database server

Yes None

Reference 14-3

http://db.apache.org/derby/docs/10.8/ref/rrefattrib24612.html


Table 14-8. Attributes for the <db2> element (continued)

Attribute Description Required Default

port Port on the database
server

No 50000

user User name for
accessing databases

Yes None

password Password for
accessing databases

No Queried interactively

instance Name of the DB2
instance

No Depends on the server

schema Schema name No Depends on the user

For more information about DB2 user accounts, see DB2 security model overview.

The <db2> element supports the following elements:

Table 14-9. Inner elements for the <db2> element

Element Description Count

property JDBC connection property 0..∞

dba Database administrator
credentials

0..1

For the available properties, see Properties for the IBM Data Server Driver for
JDBC and SQLJ.

The inner element <dba> specifies credentials for database administrators. This
element has the following attributes:

Table 14-10. Attributes for the <dba> element for DB2 databases

Attribute Description Required Default

user User name for accessing database Yes None

password Password or accessing database No Queried interactively

The user that is specified in a <dba> element must have the SYSADM or SYSCTRL DB2
privilege. For more information, see Authorities overview.

The <driverclasspath> element must contain JAR files for the DB2 JDBC driver
and for the associated license. You can retrieve those files in one of the following
ways:
v Download DB2 JDBC drivers from the DB2 JDBC Driver Versions page
v Or fetch the db2jcc4.jar file and its associated db2jcc_license_*.jar files from

the DB2_INSTALL_DIR/java directory on the DB2 server.

You cannot specify details of table allocations, such as the table space, by using the
Ant task. To control the table space, you must use the manual instructions in
section “Configuring the DB2 databases manually” on page 10-17.

14-4 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0021804.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html
http://www.ibm.com/support/docview.wss?uid=swg21363866


MySQL

The element <mysql> has the following attributes:

Table 14-11. Attributes for the <mysql> element

Attribute Description Required Default

database Database name No WRKLGHT, WLREPORT,
or WLADMIN,
depending on kind

server Host name of the database server Yes None

port Port on the database server No 3306

user User name for accessing databases Yes None

password Password for accessing databases No Queried interactively

For more information about MySQL user accounts, see MySQL User Account
Management.

The <mysql> element supports the following elements:

Table 14-12. Inner elements for the <mysql> element

Element Description Count

property JDBC connection property 0..∞

dba Database administrator
credentials

0..1

client The host that is allowed to
access the database

0..∞

For the available properties, see Driver/Datasource Class Names, URL Syntax and
Configuration Properties for Connector/J.

The inner element <dba> specifies database administrator credentials. This element
has the following attributes:

Table 14-13. Attributes for the <dba> element for MySQL databases

Attribute Description Required Default

user User name for accessing databases Yes None

password Password for accessing databases No Queried interactively

The user that is specified in a <dba> element must be a MySQL superuser account.
For more information, see Securing the Initial MySQL Accounts.

Each <client> inner element specifies a client computer or a wildcard for client
computers. These computers are allowed to connect to the database. This element
has the following attributes:

Reference 14-5

http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/refman/5.5/en/default-privileges.html


Table 14-14. Attributes for the <client> element for MySQL databases

Attribute Description Required Default

hostname Symbolic host name, IP address, or
template with % as a placeholder

Yes None

For more information about the hostname syntax, see Specifying Account Names.

The <driverclasspath> element must contain a MySQL Connector/J JAR file. You
can download that file from the Download Connector/J page.

Alternatively, you can use the <mysql> element with the following attributes:

Table 14-15. Alternative attributes for the <mysql> element

Attribute Description Required Default

url Database connection URL Yes None

user User name for accessing databases Yes None

password Password for accessing databases No Queried interactively

Note: If you specify the database with the alternative attributes, this database must
exist, the user account must exist, and the database must already be accessible to
the user. In this case, the configuredatabase task does not attempt to create the
database or the user, nor does it attempt to grant access to the user. The
configuredatabase task ensures only that the database has the required tables for
the current MobileFirst Server version. You do not have to specify the inner
elements <dba> or <client>.

Oracle

The element <oracle> has the following attributes:

Table 14-16. Attributes for the <oracle> element

Attribute Description Required Default

database Database name, or Oracle service
name
Note: You must always use a service
name to connect to a PDB database.

No ORCL

server Host name of the database server Yes None

port Port on the database server No 1521

user User name for accessing databases.
See the note under this table.

Yes None

password Password for accessing databases No Queried interactively

sysPassword Password for the user SYS No Queried interactively if
the database does not
yet exist

14-6 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://dev.mysql.com/doc/refman/5.5/en/account-names.html
http://www.mysql.com/downloads/connector/j/


systemPassword Password for the user SYSTEM No Queried interactively if
the database or the user
does not exist yet

Note: For the user attribute, use preferably a user name in uppercase letters.
Oracle user names are generally in uppercase letters. Unlike other database tools,
the configuredatabase Ant task does not convert lowercase letters to uppercase
letters in the user name. If the configuredatabase Ant task fails to connect to your
database, try to enter the value for the user attribute in uppercase letters.

For more information about Oracle user accounts, see Overview of Authentication
Methods.

The <oracle> element supports the following elements:

Table 14-17. Inner elements for the <oracle> element

Element Description Count

property JDBC connection property 0..∞

dba Database administrator
credentials

0..1

For information about the available connection properties, see Class OracleDriver.

The inner element <dba> specifies database administrator credentials. This element
has the following attributes:

Table 14-18. Attributes for the <dba> element for Oracle databases

Attribute Description Required Default

user User name for accessing databases Yes None

password Password for accessing databases No Queried interactively

The <driverclasspath> element must contain an Oracle JDBC driver JAR file. You
can download Oracle JDBC drivers from JDBC, SQLJ, Oracle JPublisher and
Universal Connection Pool (UCP).

You cannot specify details of table allocation, such as the table space, by using the
Ant task. To control the table space, you can create the user account manually and
assign it a default table space before running the Ant task. To control other details,
you must use the manual instructions in section “Configuring the Oracle databases
manually” on page 10-33.

Alternatively, you can use the <oracle> element with the following attributes:

Table 14-19. Alternative attributes for the <oracle> element

Attribute Description Required Default

url Database connection URL Yes None

user User name for accessing databases Yes None

password Password for accessing databases No Queried interactively

Reference 14-7

http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/E11882_01/appdev.112/e13995/oracle/jdbc/OracleDriver.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html


Note: If you specify the database with the alternative attributes, this database must
exist, the user account must exist, and the database must already be accessible to
the user. In this case, the task does not attempt to create the database or the user,
nor does it attempt to grant access to the user. The configuredatabase task ensures
only that the database has the required tables for the current MobileFirst Server
version. You do not have to specify the inner element <dba>.

Customizing the database connection with JDBC properties
You can customize the database connection with JDBC properties. This can be used
to define the security (SSL) of the connection to the database server, timeouts, or
JDBC traces.

About this task

To customize the database connection, you must add <property> elements to the
database elements for the tasks configuredatabase, configureapplicationserver,
and installworklightadmin. The JDBC properties are used by the Ant tasks when
connecting to the database, and by the application server data source installed by
configureapplicationserver and installworklightadmin.

You can find in the following procedure an example that defines the properties to
set the command timeout for DB2 for the connection to the administration
database.

Procedure
1. From the “Sample configuration files” on page 14-35, select the file

configure-liberty-db2.xml, and copy it to your working directory.
2. Review the Properties for the IBM Data Server Driver for JDBC and SQLJ in the

DB2 for Linux UNIX and Windows user documentation.
3. Edit the Ant file to add the relevant JDBC properties in configuredatabase,

configureapplicationserver, and intallworklightadmin.
<target name="admdatabases">

<configuredatabase kind="WorklightAdmin">
<db2 database="${database.db2.wladmin.dbname}"

server="${database.db2.host}"
instance="${database.db2.instance}"
user="${database.db2.wladmin.username}"
port= "${database.db2.port}"
schema = "${database.db2.wladmin.schema}"
password="${database.db2.wladmin.password}">

<property name="commandTimeout" value="10"/>

</db2>

(...)

<target name="adminstall">
<installworklightadmin>
<console install="${wladmin.console.install}"/>
<jmx/>
<applicationserver>

<websphereapplicationserver installdir="${appserver.was.installdir}"
profile="${appserver.was.profile}">

<server name="${appserver.was85liberty.serverInstance}"/>
</websphereapplicationserver>

</applicationserver>
<user name="${wladmin.default.user}"

14-8 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html


role="worklightadmin"
password="${wladmin.default.user.initialpassword}"/>

<database kind="WorklightAdmin">
<db2 database="${database.db2.wladmin.dbname}"

server="${database.db2.host}"
user="${database.db2.wladmin.username}"
port= "${database.db2.port}"
schema = "${database.db2.wladmin.schema}"
password="${database.db2.wladmin.password}">

<property name="commandTimeout" value="10"/>

</db2>

(...)

Encrypting database password with Ant tasks for Liberty
You can use Ant tasks to encrypt database passwords for the WebSphere
Application Server Liberty server with the aes algorithm.

About this task

By default, Ant tasks encrypt passwords for the WebSphere Application Server
Liberty server with the xor algorithm. You can encrypt them with the aes
algorithm, and specify an aes key if your server does not use the default aes key.

If you want to use passwords that are already encrypted as input for the Ant tasks,
for example if the Ant tasks are used by persons that should not have access to
database production passwords, you can perform the following actions.

Procedure
1. From the “Sample configuration files” on page 14-35 select the file

configure-liberty-<database>.xml, and copy it to your working directory.
2. Add a libertyEncoding attribute with the value none in the

websphereapplicationserver element of the configureApplicationServer and
installWorklightAdmin Ant tasks. For more information, see table 6 of “Ant
tasks for installation of MobileFirst runtime environments” on page 14-16.

3. For each database element of configureApplicationServer and
installWorklightAdmin, add an attribute validate with the value false.

4. Put the encrypted values in the properties for the database passwords. For
more information about the parameters of Ant tasks, see “Ant tasks for
installation of MobileFirst runtime environments” on page 14-16 and “Ant tasks
for installation of MobileFirst Operations Console and Administration Services”
on page 14-10.

What to do next

See also:
v “Deploying the MobileFirst Operations Console and Administration Services

with Ant tasks” on page 6-55
v “Deploying a project WAR file and configuring the application server with Ant

tasks” on page 10-14

Reference 14-9



Ant tasks for installation of MobileFirst Operations Console and
Administration Services

The <installworklightadmin>, <updateworklightadmin>, and
<uninstallworklightadmin> Ant tasks are provided for the installation of the
MobileFirst Operations Console and Administration Services.

Task effects

<installworklightadmin>

The <installworklightadmin> task configures an application server to run
an Administration Services WAR file as a web application and, optionally,
to install the MobileFirst Operations Console. This task has the following
effects:
v It declares the Administration Services web application in the specified

context root, by default /worklightadmin.
v It declares data sources and – on WebSphere Application Server Full

Profile – JDBC providers for Administration Services.
v It deploys the Administration Services on the application server.
v Optionally, it declares the MobileFirst Operations Console as a web

application in the specified context root, by default /worklightconsole. If
the MobileFirst Operations Console instance is specified, the Ant task
declares the appropriate JNDI environment entry to communicate with
the corresponding management service. For example:

<target name="adminstall">
<installworklightadmin servicewar="${worklight.service.war.file}">

<console install="${wladmin.console.install}" warFile="${worklight.console.war.file}"/>

v Optionally, it deploys the MobileFirst Operations Console WAR file on
the application server.

v It configures configuration properties for the Administration Services by
using JNDI environment entries. These JNDI environment entries also
give some additional information about the application server topology,
for example whether the topology is a stand-alone configuration, a
cluster, or a server farm.

v Optionally, it configures users that it maps to roles used by the
MobileFirst Operations Console and Administration Services web
applications.

v It configures the application server for use of JMX.
v On WebSphere Application Server, it configures the necessary custom

property for the web container.

<updateworklightadmin>

The <updateworklightadmin> task updates an already-configured
MobileFirst web application on an application server. This task has the
following effects:
v It updates the Administration Services WAR file. This file must have the

same base name as the corresponding WAR file that was previously
deployed.

v It updates the MobileFirst Operations Console WAR file. This file must
have the same base name as the corresponding WAR file that was
previously deployed.

14-10 IBM MobileFirst Platform Foundation for iOS V7.0.0



The task does not change the application server configuration, that is, the
web application configuration, data sources, JNDI environment entries,
user-to-role mappings, and JMX configuration.

Note: On WebSphere Application Server Liberty profile, the task does not
change the features, which leaves a potential non-minimal list of features
in the server.xml file for the installed application.

<uninstallworklightadmin>

The <uninstallworklightadmin> Ant task undoes the effects of an earlier run of
<installworklightadmin>. This task has the following effects:
v It removes the configuration of the Administration Services web application with

the specified context root. As a consequence, the task also removes the settings
that were added manually to that application.

v It removes the Administration Services WAR file and the MobileFirst Operations
Console WAR file from the application server as an option.

v It removes the data sources and – on WebSphere Application Server Full Profile
– the JDBC providers for Administration Services.

v It removes the database drivers that were used by Administration Services from
the application server.

v It removes the associated JNDI environment entries.
v It removes the users configured by the installworklightadmin invocation.
v It removes the JMX configuration.

Attributes and elements

The <installworklightadmin>, <updateworklightadmin>, and
<uninstallworklightadmin> tasks have the following attributes:

Table 14-20. Attributes for the <installworklightadmin>, <updateworklightadmin>, and <uninstallworklightadmin> Ant
tasks

Attribute Description Required Default

contextroot Common prefix for URLs to admin services, to
get information about MobileFirst runtime
environments, applications, and adapters

No /worklightadmin

id Distinguishes different deployments No Empty

environmentId Distinguishes different MobileFirst
environments

No Empty

servicewar The WAR file for the Administration Services No The worklightadmin.war file
is in the same directory as
the worklight-ant-
deployer.jar file.

shortcutsDir Directory where to place shortcuts No None

wasStartingWeight Start order for WebSphere Application Server.
Lower values start first.

No 1

contextroot and id

The contextroot and id attributes distinguish different deployments of
MobileFirst Operations Console and Administration Services.

In WebSphere Application Server Liberty profiles and in Tomcat
environments, the contextroot parameter is sufficient for this purpose. In

Reference 14-11



WebSphere Application Server Full profile environments, the id attribute is
used instead. Without this id attribute, two WAR files with the same
context roots might conflict and these files would not be deployed.

environmentId
Use the environmentId attribute to distinguish several environments,
consisting each of MobileFirst Server administration and MobileFirst
runtime web applications, that must operate independently. For example,
with this option you can host a test environment, a pre-production
environment, and a production environment on the same server or in the
same WebSphere Application Server Network Deployment cell. This
environmentId attribute creates a suffix that is added to MBean names that
the Administration Services and the MobileFirst runtime projects use when
they communicate through Java Management Extensions (JMX).

servicewar
Use the servicewar attribute to specify a different directory for the
Administration Services WAR file. You can specify the name of this WAR
file with an absolute path or a relative path.

shortcutsDir
The shortcutsDir attribute specifies where to place shortcuts to the
MobileFirst Operations Console. If you set this attribute, you can add the
following files to that directory:
v mobilefirst-console.url: This file is a Windows shortcut. It opens the

MobileFirst Operations Console in a browser.
v mobilefirst-console.sh: This file is a UNIX shell script and opens the

MobileFirst Operations Console in a browser.
v worklight-admin-service.url: This file is a Windows shortcut. It opens

in a browser and calls a REST service that returns a list of the
MobileFirst projects that can be managed in JSON format. For each listed
MobileFirst project, some details are also available about their artifacts,
such as the number of applications, the number of adapters, the number
of active devices, the number of decommissioned devices. The list also
indicates whether the MobileFirst project runtime is running or idle.

v worklight-admin-service.sh: This file is a UNIX shell script that
provides the same output as the worklight-admin-service.url file.

wasStartingWeight
Use the wasStartingWeight attribute to specify a value that is used in
WebSphere Application Server as a weight to ensure that a start order is
respected. As a result of the start order value, the Administration Services
web application is deployed and started before any other MobileFirst
runtime projects. If MobileFirst projects are deployed or started before the
web application, the JMX communication is not established and the
runtime cannot synchronize with the administration database and cannot
handle server requests.

The <installworklightadmin>, <updateworklightadmin>, and
<uninstallworklightadmin> tasks support the following elements:

Table 14-21. Inner elements for the <installworklightadmin>, <updateworklightadmin>, and <uninstallworklightadmin>
Ant tasks

Element Description Count

applicationserver Application server 1

console Administration console 0..1

14-12 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 14-21. Inner elements for the <installworklightadmin>, <updateworklightadmin>, and <uninstallworklightadmin>
Ant tasks (continued)

Element Description Count

database Databases 1

jmx Enable Java Management Extensions 1

property Properties 0..∞

user User to be mapped to a security role 0..∞

To specify a MobileFirst Operations Console

The <console> element collects information to customize the installation of the
MobileFirst Operations Console. This element has the following attributes:

Table 14-22. Attributes of the <console> element

Attribute Description Required Default

contextroot URI of the MobileFirst
Operations Console

No /worklightconsole

install Indicates whether the
MobileFirst Operations
Console must be
installed

No Yes

warfile Console WAR file No The worklightconsole.war file is in the same
directory as the worklight-ant-deployer.jar
file.

The <console> element supports the following element:

Table 14-23. Inner element for the <console> element

Element Description Count

property Properties 0..∞

The <property> element specifies a deployment property to be defined in the
application server. It has the following attributes:

Table 14-24. Attributes for the <property> element

Attribute Description Required Default value

name Name of the property Yes None

value Value of the property Yes None

By using this element, you can define your own JNDI properties or override the
default value of the JNDI properties that are provided by the Administration
Services and the MobileFirst Operations Console WAR files.

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server administration” on page 6-86.

Reference 14-13



To specify an application server

Use the <applicationserver> element to define the parameters that depend on the
underlying application server. The <applicationserver> element supports the
following elements. The attributes and inner elements of these elements are
described in tables 6 through 13 of “Ant tasks for installation of MobileFirst
runtime environments” on page 14-16.

Table 14-25. Inner elements of the <applicationserver> element

Attribute Description Count

websphereapplicationserver
or was

The parameters for WebSphere Application
Server.

0..1

tomcat The parameters for Apache Tomcat. 0..1

To specify JMX communication between the MobileFirst Server
administration and the MobileFirst projects

Use the <jmx> element to ensure that a JMX connection can be established between
the MobileFirst Server administration and the MobileFirst runtime projects. The
<jmx> element has the following attributes, which depend on the underlying
application server.

Table 14-26. Attributes of the <jmx> element

Attribute Description Required Default

libertyAdminUser The administrator (for Liberty only) No None

libertyAdminPassword The administrator password (for
Liberty only).

No None

CreateLibertyAdmin Whether the admin user must be
created in the basic registry, if it does
not exist (for Liberty only).

No true

tomcatRMIPort The RMI port that Apache Tomcat
uses to connect to MobileFirst projects
(for Tomcat only)

No 8686

tomcatSetEnvConfig Prevents automatic modification of
setenv.bat and setenv.sh scripts.
The valid values are manual and auto.

No auto

Note: The libertyAdminUser and libertyAdminPassword attributes are not
mandatory, but if you define one of these attributes, you must also define the
other.

libertyAdminUser
libertyAdminCreate
libertyAdminPassword

You use these attributes to create an admin user in the server.xml file,
which is the configuration file for Liberty, in the basic registry section.

tomcatRMIPort
If the default port 8686 is not available on the system, you use this
attribute to specify a different port for JMX communication between the
MobileFirst Server administration and the managed MobileFirst projects. In
this case, the port values range from 1 to 65535.

tomcatSetEnvConfig

14-14 IBM MobileFirst Platform Foundation for iOS V7.0.0



You use this attribute to allow or prevent the <installworklightadmin>
and <uninstallworklightadmin> Ant tasks from adding or removing
contents to the setenv.sh or setenv.bat script, in the
<TomcatRootInstallDir>/bin directory.

Important: Security warning. The default value auto does not secure the
JMX communication. This setting is not suitable for production
environments. In production environments, you must manually configure
JMX with authentication, as described in the Enabling JMX Remote page of
the Apache Tomcat user documentation.
Use the following values for this attribute:
v manual: The <installworklightadmin> and <uninstallworklightadmin>

Ant tasks do not update the setenv.bat and setenv.sh script for JMX
usage.
If you select the value manual, you must update the scripts manually to
define the RMI port that is used for JMX communications internally
between the Administration Services and the MobileFirst runtime
environment, whether this connection must be secured or not with user
or role authentication, or SSL. For more information, see the
documentation of the JVM that you are using.

v auto: The <installworklightadmin> and <uninstallworklightadmin> Ant
tasks update the setenv.bat and setenv.sh script automatically, for JMX
usage. If these scripts do not exist, they are created before they are
updated.
If you select the auto value, the following modifications are made to
extend the CATALINA_OPTS environment variable:
– For setenv.bat:

REM Allow to inspect the MBeans through jconsole
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote

REM Configure JMX.
set CATALINA_OPTS=%CATALINA_OPTS% -Djava.rmi.server.hostname=localhost
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.port=8686
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.authenticate=false
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.ssl=false

– For setenv.sh:
# Allow to inspect the MBeans through jconsole
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote"

# Configure JMX.
CATALINA_OPTS="$CATALINA_OPTS -Djava.rmi.server.hostname=localhost"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.port=8686"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.authenticate=false"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.ssl=false"

To specify a connection to the administration database

The <database> element collects the parameters that specify a data source
declaration in an application server to access the administration database.

You must declare a single database: <database kind="WorklightAdmin">. You
specify the <database> element similarly to the <configuredatabase> Ant task,
except that the <database> element does not have the <dba> and <client>
elements. It might have <property> elements.

The <database> element has the following attributes:

Reference 14-15

http://tomcat.apache.org/tomcat-7.0-doc/monitoring.html#Enabling_JMX_Remote


Table 14-27. Attributes of the <database> element

Attribute Description Required Default

kind The kind of database
(WorklightAdmin)

Yes None

validate To validate whether the database is
accessible

No True

The <database> element supports the following elements. For more information
about the configuration of these database elements, see 18 through 28 in “Ant tasks
for installation of MobileFirst runtime environments.”

Table 14-28. Inner elements for the <applicationserver> element

Element Description Count

db2 Parameter for DB2 databases 0..1

derby Parameter for Apache Derby databases 0..1

mysql Parameter for MySQL databases 0..1

oracle Parameter for Oracle databases 0..1

driverclasspath Parameter for JDBC driver class path 0..1

To specify a user and a security role

The <user> element collects the parameters about a user to include in a certain
security role for an application.

Table 14-29. Attributes of the <user> element

Attribute Description Required Default

role A valid security role for the
application

Yes None

name The user name Yes None

password The password if the user
needs to be created

No None

After you defined users by using the <user> element, you can map them to any of
the following roles for authentication in the MobileFirst Operations Console.
v worklightmonitor

v worklightoperator

v worklightdeployer

v worklightadmin

For information about which authorizations are implied by the specific roles, see
the chapter about the “REST Services API” on page 9-4.

Tip: If users exist in an external LDAP directory, set only the role and name
attributes but do not define any passwords.

Ant tasks for installation of MobileFirst runtime environments
Reference information for the <configureapplicationserver>,
<updateapplicationserver>, and <unconfigureapplicationserver> Ant tasks.

14-16 IBM MobileFirst Platform Foundation for iOS V7.0.0



Task effects

<configureapplicationserver>

The <configureapplicationserver> Ant task configures an application
server to run a MobileFirst project WAR file as a web application. This task
has the following effects.
v It declares the MobileFirst web application in the specified context root,

by default /worklight.
v It deploys the project WAR file on the application server.
v It declares data sources and â€“ on WebSphere Application Server full

profile â€“ JDBC providers for runtime and reports.
v It deploys the MobileFirst Server runtime file worklight-jee-

library.jar and the database drivers in the application server.
v It sets MobileFirst configuration properties through JNDI environment

entries. These JNDI environment entries override the MobileFirst project
default values that are contained in the worklight.properties file inside
the WAR file.

v On WebSphere Application Server, it configures a web container custom
property.

<updateapplicationserver>

The <updateapplicationserver> Ant task updates an already-configured
MobileFirst web application on an application server. This task has the
following effects.
v It updates the project WAR file. The file must have the same base name

as the project WAR file that was previously deployed.
v It updates the MobileFirst Server runtime worklight-jee-library.jar

library file.

The task does not change the application server configuration, that is, the
web application configuration, data sources, and JNDI environment entries.

Note: On WebSphere Application Server Liberty profile, the task does not
change the features, which leaves a potential non-minimal list of features
in the server.xml file for the installed application.

<unconfigureapplicationserver>
The <unconfigureapplicationserver> Ant task undoes the effects of an
earlier <configureapplicationserver> run. This task has the following
effects.
v It removes the configuration of the MobileFirst web application with the

specified context root. The task also removes the settings that have been
added manually to that application.

v It removes the project WAR file from the application server.
v It removes the data sources and â€“ on WebSphere Application Server

full profile â€“ the JDBC providers for runtime and reports.
v It removes the MobileFirst Server runtime worklight-jee-library.jar

library file and the database drivers from the application server.
v It removes the associated JNDI environment entries.

Attributes and elements

The <configureapplicationserver>, <updateapplicationserver>, and
<unconfigureapplicationserver> tasks have the following attributes:

Reference 14-17



Table 14-30. Attributes for the <configureapplicationserver>, <updateapplicationserver>, and
<unconfigureapplicationserver> Ant tasks

Attribute Description Required Default

contextroot Common prefix in URLs to the application
(context root)

No /worklight

id Distinguishes different deployments No Empty

environmentId Distinguishes different MobileFirst
environments

No Empty

wasStartingWeight Start order for WebSphere Application Server.
Lower values start first.

No 2

shortcutsDir Directory where to place shortcuts No None

contextroot and id

The contextroot and id attributes distinguish different MobileFirst
projects. By default, when a project is created in V6.0.0 of this product and
higher, its context root is the name of the project. The default value of
/worklight was chosen to facilitate compatibility with IBM Worklight V5.x
applications.

In WebSphere Application Server Liberty profiles and in Tomcat
environments, the contextroot parameter is sufficient for this purpose. In
WebSphere Application Server full profile environments, the id attribute is
used instead.

environmentId
Use the environmentId attribute to distinguish several environments,
consisting each of MobileFirst Server administration and MobileFirst
runtime web applications, that must operate independently. You must set
this attribute to the same value for the runtime application as the one that
was set in the <installworklightadmin> invocation, for the Administration
Services application.

wasStartingWeight
Use the wasStartingWeight attribute to specify a value that is used in
WebSphere Application Server as a weight to ensure that a start order is
respected. As a result of the start order value, the MobileFirst
Administration Services web application is deployed and started before
any other MobileFirst runtime projects. If MobileFirst projects are deployed
or started before the web application, the JMX communication is not
established and you cannot manage your MobileFirst projects.

shortcutsDir
The shortcutsDir attribute for the <unconfigureApplicationServer> Ant
task specifies where to expect the shortcuts to the MobileFirst Operations
Console if it was installed by a version of the
<configureApplicationServer> Ant task older than V6.2.0. If you set this
attribute, the Ant task might remove the following files from that directory:
worklight-console.url, worklight-console.sh, and worklight-
console.html.

The <configureapplicationserver>, <updateapplicationserver>, and
<unconfigureapplicationserver> tasks support the following elements:

14-18 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 14-31. Inner elements for the <configureapplicationserver>, <updateapplicationserver>, and
<unconfigureapplicationserver> Ant tasks

Element Description Count

project Project 1

property Properties 0..â⌂⌂

applicationserver Application server 1

reports Reports
Note: The predefined BIRT reports
are deprecated in V7.0.0. Use
“Operational analytics” on page
12-8 instead.

0..1

database Databases 2

The <project> element specifies details about the project to deploy to the
application server. It has the following attributes:

Table 14-32. Attributes for the <project> element

Attribute Description Required Default

warfile Project WAR file Yes None

libraryfile File name of worklight-jee-
library.jar

No In the same directory as
worklight-ant-deployer.jar

migrate Whether to automigrate the WAR file
to the current MobileFirst Server
version

No True

migratedWarBackupFile Where to store a backup of the
migrated WAR file

No None

To create the warfile attribute, run the <war-builder> Ant task. See “Building a
project WAR file with Ant” on page 10-4.

By default, the WAR file is automatically migrated to the current MobileFirst
Server version. In this case, you can request a backup of the migrated WAR file on
disk before it is deployed in the application server. To do so, specify a value for the
migratedWarBackupFile attribute. If you set the migrate attribute to false, the
WAR file is not migrated and, if the MobileFirst version that produced the WAR
file is not suitable for the MobileFirst Server version, the deployment fails.

The <property> element specifies a deployment property to be defined in the
application server. It has the following attributes:

Table 14-33. Attributes for the <property> element

Attribute Description Required Default value

name Name of the property Yes None

value Value for the property Yes None

For general information about MobileFirst properties, or for a list of properties that
you can set, see “Configuration of MobileFirst applications on the server” on page
10-48.

Reference 14-19



The <applicationserver> element describes the application server to which the
MobileFirst application is deployed. It is a container for one of the following
elements:

Table 14-34. Inner elements for the <applicationserver> element

Element Description Count

websphereapplicationserver or was Parameters for WebSphere
Application Server

0..1

tomcat Parameters for Apache Tomcat 0..1

The <websphereapplicationserver> element (or <was> in its short form) denotes a
WebSphere Application Server instance, version 7.0 or newer. WebSphere
Application Server full profile (Base, and Network Deployment) are supported, as
is Liberty profile (Core). Liberty profile Network Deployment is not yet supported.
The <websphereapplicationserver> element has the following attributes:

Table 14-35. Attributes for the <websphereapplicationserver> or <was> element

Attribute Description Required Default

installdir WebSphere Application Server installation
directory.

Yes None

profile WebSphere Application Server profile, or Liberty Yes None

user WebSphere Application Server administrator
name

Yes, except for
Liberty

None

password WebSphere Application Server administrator
password

No Queried
interactively

libertyEncoding Algorithm to encode data source passwords for
WebSphere Application Server Liberty. The
possible values are none, xor, and aes.
Note: aes is no supported for WebSphere
Application Server Liberty V8.5.0.x.

On WebSphere Application Server Liberty 8.5.5.x,
if the aes encoding is requested, the clear
password is passed as argument to the
sercurityUtility program, which is called
through an external process. You can see the
password with a ps command, or in the /proc
file system on UNIX operating systems.

No xor

libertyAESKey AES key to encode data source passwords for
WebSphere Application Server Liberty with the
AES algorithm, and with a key that is different
from the default key. You must use this
parameter only if a Liberty server is configured
to use a non-default AES key.
Note: Enter 12 asterisk symbols (************)
to be prompted interactively for the key.

No The default key
from the Liberty
install

It supports the following elements for single-server deployment:

14-20 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 14-36. Inner elements for the <was> element (single-server deployment)

Element Description Count

server A single server 0..1

The <server> element, which is used in this context, has the following attributes:

Table 14-37. Inner elements for the <server> element (single-server deployment)

Attribute Description Required Default

name Server name Yes None

It supports the following elements for Network Deployment:

Table 14-38. Inner elements for the <was> element (network deployment)

Element Description Count

cell The entire cell 0..1

cluster All servers of a cluster 0..1

node All servers in a node, clusters
excluded

0..1

server A single server 0..1

The <cell> element has no attributes.

The <cluster> element has the following attributes:

Table 14-39. Attributes for the <cluster> element (network deployment)

Attribute Description Required Default

name Cluster name Yes None

The <node> element has the following attributes:

Table 14-40. Attributes for the <node> element (network deployment)

Attribute Description Required Default

name Node name Yes None

The <server> element, which is used in a Network Deployment context, has the
following attributes:

Table 14-41. Attributes for the <server> element (network deployment)

Attribute Description Required Default

nodeName Node name Yes None

serverName Server name Yes None

The <tomcat> element denotes an Apache Tomcat server. It has the following
attributes:

Reference 14-21



Table 14-42. Attributes of the <tomcat> element

Attribute Description Required Default

installdir Tomcat installation directory. For a Tomcat
installation that is split between a CATALINA_HOME
directory and a CATALINA_BASE directory, specify the
value of the CATALINA_BASE environment variable.

Yes None

The <reports> element specifies what set of BIRT *.rptdesign report files to
instantiate for access to the database of reports.

The <reports> element has the following attribute:

Note: The predefined BIRT reports are deprecated in V7.0.0. Use “Operational
analytics” on page 12-8 instead.

Table 14-43. Attributes of the <reports> element

Attribute Description Required Default

todir Destination directory Yes None

The <reports> element supports the following element:

Table 14-44. Inner elements for the <reports> element

Element Description Count

fileset Set of files to copy and process 0..â⌂⌂

A <reports> element without any inner <fileset> element instantiates all the
report templates that are provided in the WorklightServer/report-templates/
directory in the MobileFirst Server distribution.

The <database> element specifies what information is necessary to access a
particular database. Two databases must be declared: <database
kind=â€⌂Worklightâ€⌂> and <database kind=â€⌂WorklightReportsâ€⌂>. The
<database> element is specified like the <configuredatabase> Ant task, except that
it does not have the <dba> and <client> elements. It might, however, have
<property> elements. The <database> element has the following attributes:

Note: The Reports database, referenced below as WorklightReports and WLREPORT,
is deprecated in V7.0.0. Use “Operational analytics” on page 12-8 instead. Note
that setting up the Reports database is optional in this release and prior releases.

Table 14-45. Attributes of the <database> element

Attribute Description Required Default

kind The kind of database: Worklight or
WorklightReports

Yes None

validate To validate whether the database is accessible or
not. The possible values are true or false.

No true

The <database> element supports the following elements:

14-22 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 14-46. Inner elements for the <database> element

Element Description Count

derby Parameters for Derby 0..1

db2 Parameters for DB2 0..1

mysql Parameters for MySQL 0..1

oracle Parameters for Oracle 0..1

driverclasspath JDBC driver class path 0..1

To specify an Apache Derby database

The <derby> element has the following attributes:

Table 14-47. Attributes of the <derby> element

Attribute Description Required Default

database Database name No WRKLGHT or WLREPORT, depending
on the kind

datadir Directory that contains the databases Yes None

schema Schema name No WORKLIGHT

The <derby> element supports the following element:

Table 14-48. Inner element for the <derby> element

Element Description Count

property Data source property or JDBC
connection property

0..sâ⌂⌂

For more information about the available properties, see the documentation for
Class EmbeddedDataSource40. See also the documentation for Class
EmbeddedConnectionPoolDataSource40.

For more information about the available properties for a Liberty server, see the
documentation for properties.derby.embedded at Liberty profile: Configuration
elements in the server.xml file.

When the worklight-ant-deployer.jar file is used within the installation directory
of IBM MobileFirst Platform Foundation for iOS, a<driverclasspath> element is
not necessary.

To specify a DB2 database

The <db2> element has the following attributes:

Table 14-49. Attributes of the <db2> element

Attribute Description Required Default

database Database name No WRKLGHT or WLREPORT, depending
on the kind

server Host name of the database server Yes None

Reference 14-23

http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedDataSource40.html
http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedConnectionPoolDataSource40.html
http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedConnectionPoolDataSource40.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html


port Port on the database server No 50000

user User name for accessing databases. This user does
not need extended privileges on the databases. If
you implement restrictions on the database, you
can set a user with the restricted privileges that are
listed in “Restricting database user permissions for
IBM MobileFirst Platform Server runtime
operations” on page 6-20.

Yes None

password Password for accessing databases No Queried interactively

schema Schema name No Depends on the user

For more information about DB2 user accounts, see DB2 security model overview.

The <db2> element supports the following element:

Table 14-50. Inner elements for the <db2> element

Element Description Count

property Data source property or JDBC
connection property

0..â⌂⌂

For more information about the available properties, see Properties for the IBM
Data Server Driver for JDBC and SQLJ.

For more information about the available properties for a Liberty server, see the
properties.db2.jcc section at Liberty profile: Configuration elements in the
server.xml file.

The <driverclasspath> element must contain JAR files for the DB2 JDBC driver
and the associated license. You can download DB2 JDBC drivers from DB2 JDBC
Driver Versions.

To specify a MySQL database

The <mysql> element has the following attributes:

Table 14-51. Attributes of the <mysql> element

Attribute Description Required Default

database Database name No WRKLGHT or WLREPORT,
depending on kind

server Host name of the database server Yes None

port Port on the database server No 3306

14-24 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0021804.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866


user User name for accessing databases. This user does
not need extended privileges on the databases. If
you implement restrictions on the database, you
can set a user with the restricted privileges that are
listed in “Restricting database user permissions for
IBM MobileFirst Platform Server runtime
operations” on page 6-20.

Yes None

password Password for accessing databases No Queried interactively

Instead of database, server, and port, you can also specify a URL. In this case, use
the following attributes:

Table 14-52. Alternative elements for the <mysql> element

Attribute Description Required Default

url URL for connection to the database Yes None

user User name for accessing databases. This user does
not need extended privileges on the databases. If
you implement restrictions on the database, you
can set a user with the restricted privileges that are
listed in “Restricting database user permissions for
IBM MobileFirst Platform Server runtime
operations” on page 6-20.

Yes None

password Password for accessing databases No Queried interactively

For more information about MySQL user accounts, see MySQL User Account
Management.

The <mysql> element supports the following element:

Table 14-53. Inner elements for the <mysql> element

Element Description Count

property Data source property or JDBC
connection property

0..â⌂⌂

For more information about the available properties, see the documentation at
Driver/Datasource Class Names, URL Syntax and Configuration Properties for
Connector/J.

For more information about the available properties for a Liberty server, see the
properties section at Liberty profile: Configuration elements in the server.xml file.

The <driverclasspath> element must contain a MySQL Connector/J JAR file. You
can download it from Download Connector/J.

Reference 14-25

http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://www.mysql.com/downloads/connector/j/


To specify an Oracle database

The <oracle> element has the following attributes:

Table 14-54. Attributes of the <oracle> element

Attribute Description Required Default

database Database name, or Oracle service name
Note: You must always use a service name to
connect to a PDB database.

No ORCL

server Host name of the database server Yes None

port Port on the database server No 1521

user User name for accessing databases. This user
does not need extended privileges on the
databases. If you implement restrictions on the
database, you can set a user with the restricted
privileges that are listed in “Restricting
database user permissions for IBM MobileFirst
Platform Server runtime operations” on page
6-20.

See the note under this table.

Yes None

password Password for accessing databases No Queried interactively

Note: For the user attribute, use preferably a user name in uppercase letters.
Oracle user names are generally in uppercase letters. Unlike other database tools,
the configureapplicationserver Ant task does not convert lowercase letters to
uppercase letters in the user name. If the configureapplicationserver Ant task
fails to connect to your database, try to enter the value for the user attribute in
uppercase letters.

Instead of database, server, and port, you can also specify a URL. In this case, use
the following attributes:

Table 14-55. Alternative attributes of the <oracle> element

Attribute Description Required Default

url URL for connection to the database Yes None

user User name for accessing databases. This user does
not need extended privileges on the databases. If
you implement restrictions on the database, you
can set a user with the restricted privileges that are
listed in “Restricting database user permissions for
IBM MobileFirst Platform Server runtime
operations” on page 6-20.

See the note under this table.

Yes None

password Password for accessing databases No Queried interactively

Note: For the user attribute, use preferably a user name in uppercase letters.
Oracle user names are generally in uppercase letters. Unlike other database tools,

14-26 IBM MobileFirst Platform Foundation for iOS V7.0.0



the configureapplicationserver Ant task does not convert lowercase letters to
uppercase letters in the user name. If the configureapplicationserver Ant task
fails to connect to your database, try to enter the value for the user attribute in
uppercase letters.

For more information about Oracle user accounts, see Overview of Authentication
Methods.

For more information about Oracle database connection URLs, see the Database
URLs and Database Specifiers section at Data Sources and URLs.

It supports the following elements:

Table 14-56. Inner elements for the <oracle> element

Element Description Count

property Data source property or JDBC
connection property

0..â⌂⌂

For more information about the available properties, see the Data Sources and
URLs section at Data Sources and URLs.

For more information about the available properties for a Liberty server, see the
properties.oracle section at Liberty profile: Configuration elements in the
server.xml file.

The <driverclasspath> element must contain an Oracle JDBC driver JAR file. You
can download Oracle JDBC drivers from JDBC, SQLJ, Oracle JPublisher and
Universal Connection Pool (UCP).

The <property> element, which can be used inside <derby>, <db2>, <mysql>, or
<oracle> elements, has the following attributes:

Table 14-57. Attributes for the <property> element in a database-specific element

Attribute Description Required Default

name Name of the property Yes None

type Java type of the property values, usually
java.lang.String/Integer/Boolean

No java.lang.String

value Value for the property Yes None

Ant tasks for installation of MobileFirst Data Proxy
Reference information for the <installdataproxy>, <updatedataproxy>, and
<uninstalldataproxy> Ant tasks.

About the Ant tasks for installing MobileFirst Data Proxy

The purpose of these Ant Tasks is to configure the MobileFirst Data Proxy on an
application server so that it can communicate with the following components:
v a Cloudant database (either Cloudant Managed or Cloudant Local)
v an Authorization Server that is embedded in a MobileFirst runtime environment.

Reference 14-27

http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm
http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html


For a Liberty server, and a stand-alone WebSphere Application Server, these Ant
tasks install a Trust Association Interceptor (TAI), which acts as the front end for
performing OAuth authentication of incoming requests to the MobileFirst Data
Proxy.

Note: None of these Ant tasks install, update, or uninstall a MobileFirst runtime
environment.

For more information about how to use these Ant tasks, see “Installing the
MobileFirst Data Proxy with Ant tasks” on page 6-153.

For more information about installing a MobileFirst runtime environment, see
“Installing the MobileFirst runtime environment” on page 6-97.

Important:

v The MobileFirst Data Proxy is not supported on Apache Tomcat, or on versions
of WebSphere Application Server Liberty profile earlier than V8.5.5.0.

v You must install the TAI manually on WebSphere Application Server Network
Deployment.

Task effects

<installdataproxy>

The <installdataproxy> Ant task configures an application server to run a
MobileFirst Data Proxy. This task has the following effects:
v It deploys the MobileFirst Data Proxy WAR file on the application

server.
v It configures a TAI on WebSphere Application Server Liberty and

WebSphere Application Server standalone, and copies the requested files
in the application server in the appropriate locations. On WebSphere
Application Server standalone, it creates a configuration file for this TAI
if that is required.

v It declares the MobileFirst web application in the specified context root,
by default /imf-data-proxy.

v It sets MobileFirst Data Proxy configuration properties through JNDI
environment entries.

v On WebSphere Application Server Liberty, it configures the web
container.

<updatedataproxy>

The <updatedataproxy> Ant task updates the MobileFirst Data Proxy web
application, which is already configured, on an application server. This task
has the following effects.
v It updates the project WAR file. The file must have the same base name

as the project WAR file that was previously deployed.
v It updates the TAI files on WebSphere Application Server Liberty and

WebSphere Application Server stand-alone.

The task does not change the application server configuration, which
includes the web application configuration, data sources, and JNDI
environment entries.

<uninstalldataproxy>
The <uninstalldataproxy> Ant task undoes the effects of an earlier
<installdataproxy> run. This task has the following effects.

14-28 IBM MobileFirst Platform Foundation for iOS V7.0.0



v It removes the configuration of the MobileFirst Data Proxy web
application with the specified context root.

v It removes the MobileFirst Data Proxy WAR file from the application
server.

v It removes the associated JNDI environment entries.

Note: It does not remove the TAI JAR and feature manifest files from the
application server.

Attributes and elements

The <installdataproxy>, <updatedataproxy>, and <uninstalldataproxy> tasks have
the following attributes:

Table 14-58. Attributes for the <installdataproxy>, <updatedataproxy>, and <uninstalldataproxy> Ant tasks

Attribute Description Required Default

contextroot Common prefix in URLs to the application
(context root)

No /imf-data-proxy

id Distinguishes different deployments No Empty

serviceWar The WAR file for the MobileFirst Data Proxy. No The imf-data-proxy WAR
file is in the directory
Datastore, at the same level
than the WorklightServer
directory.

DBAccount Cloudant database account, or host name of
the MobileFirst Cloudant Local server.

Yes None

DBAccountUser User name for accessing the database. Yes None

DBAccountPassword Password for accessing the database. Yes Queried interactively

validate To validate whether the Cloudant database is
accessible or not. The possible values are true
or false.

No true

cloudantPort Port to access Cloudant. No 443 or 80

useHttps To indicate whether the access to Cloudant
must use https. The possible values are true
or false.

No true

contextroot and id

The contextroot and id attributes distinguish different MobileFirst
projects.

In WebSphere Application Server Liberty profiles, the contextroot
parameter is sufficient for this purpose. In WebSphere Application Server
full profile environments, the id attribute is used instead.

serviceWar
Use the serviceWar attribute to specify a different directory for the
MobileFirst Data Proxy WAR file. You can specify the name of this WAR
file with an absolute path or a relative path.

DBAccount

The DBAccount attribute identifies either an Cloudant Managed account
name or a user name defined in the configuration of a MobileFirst
Cloudant Local database.

Reference 14-29



DBAccountUser
Use the DBAccountUser attribute to specify the name of a user to connect to
Cloudant.

This user name can be an administrator or a non-administrator user. In all
cases, the user name you provide must exist in Cloudant as the Ant task
does not create it.

DBAccountPassword

Use the DBAccountPassword attribute to specify the password associated to
the user specified with attribute DBAccountUser.

validate

When set to true, the validate attribute enables you to check that the
Cloudant database identified by attribute DBAccount is on a reachable
system and can be accessed using the credentials provided with attributes
DBAcountUser and DBAcountPassword. By default, this validation is enabled.

cloudantPort

With the cloudantPort attribute, you can specify a port to access a
Cloudant database directly, or a Load Balancer port if a Cloudant haproxy
service is used to access the Cloudant database. If this attribute is not
specified, the default port is set to 443, unless the useHttps attribute is set
to false. In this case, the default port is set to 80.

useHttps

With the useHttps attribute, you can indicate which of the http or https
protocol the MobileFirst Data Proxy must use to connect to the Cloudant
database. The default protocol used is https.

The <installdataproxy>, <updatedataproxy>, and <uninstalldataproxy> tasks
support the following elements:

Table 14-59. Inner elements for the <installdataproxy>, <updatedataproxy>, and <uninstalldataproxy> Ant tasks

Element Description Count

authenticate TAI 0 for WebSphere Application Server Network
Deployment

1 for WebSphere Application Server Liberty
profile and WebSphere Application Server full
profile

applicationserver application server 1

Important: You cannot specify an authenticate element for WebSphere
Application Server Network Deployment environments.

To install a TAI

Use the <authentication> element to define the TAI and, optionally, the location of
the files that implement it. The attributes of this element are described in Table 3.

14-30 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 14-60. Attributes for the <authentication> element

Attribute Description Count Required Default

serverURL The
Authorization
Server URL

1 Yes None

taiJAR The TAI JAR
file

0..1 No File
com.ibm.worklight.oauth.tai_1.0.0.jar
located in a subdirectory
external-server-libraries of the directory
where you find worklight-ant-
deployer.jar

libertyFeatureManifest The TAI
feature
manifest (for
Liberty only)

0..1 No File OauthTai-1.0.mf located in a
subdirectory external-server-libraries of
the worklight-ant-deployer.jar location

Note: The tairJAR and libertyFeatureManifest attributes are not mandatory. For
WebSphere Application Server full profile environments, you might want to specify
a taiJAR attribute. For Liberty profile environments, if you specify one of these
attributes, you must also specify the other.

serverURL

Use the serverURL attribute to specify the URL of a MobileFirst project in
the form http[s]://hostname:port/context-root, where <context-root> is
the context root of a MobileFirst project.

taiJAR

Use the taiJAR attribute to specify a different directory for the MobileFirst
Data Proxy TAI JAR file. You can specify the name of this JAR file with an
absolute path or a relative path. By default, the Ant task uses the file
com.ibm.worklight.oauth.tai_1.0.0.jar that is in a subdirectory
external-server-libraries of the directory where worklight-ant-
deployer.jar is.

libertyFeatureManifest

Use the libertyFeatureManifest attribute to specify a different directory
for the Liberty feature manifest file. You can specify the name of this file
with an absolute path or a relative path. By default, the Ant task uses the
file OauthTai-1.0.mf that is in a subdirectory external-server-libraries
of the worklight-ant-deployer.jar location.

To specify an application server

Use the <applicationserver> element to define the parameters that depend on the
underlying application server. The <applicationserver> element supports the
following element. The attributes and inner elements of this element are described
in tables 6 through 12 of “Ant tasks for installation of MobileFirst runtime
environments” on page 14-16.

Note: You cannot specify Apache Tomcat, as this application server is not
supported by MobileFirst Data Proxy.

Reference 14-31



Table 14-61. Inner elements for the <applicationserver> element

Element Description Count

websphereapplicationserver
or was

The parameters for WebSphere
Application Server.

1

Internal runtime database tables
You can access a database of common tables from the MobileFirst Server. The
database must not be written to, and it might change from one release to another.

The following table provides a list of common runtime database tables, their
description, and how they are used.

Name Description Order of Magnitude

CLIENT_INSTANCES Stores instances of client applications
that have registered with the OAuth
server.

1 row per device/application pair.

CLUSTER_SYNC Internal cluster synchronization tasks. 10s of rows.

DEVICES Tracks devices that access the
platform. The devices are recorded as
active or inactive, based on the
configured decommissioning policy,
and other information may be stored
for them.

1 row per device that accesses the
platform in the last n days, where n
is the sum of the values for the
wl.device.decommission.when and
wl.device.archiveDecommissioned
parameters.

GADGET_DEVICE_ASSOC Stores relationships between a device
and the applications that the device
has used.

1 row per device/application pair.

GADGET_USER_PREF User preferences according to unique
user identifier. No user preferences
are ready for immediate use. The
App developer can add preferences.

If used, this table can contain 1 row
per preference, per user.

LICENSE_TERMS Stores the various license metrics
captured every time the device
decommissioning task is run.

10s of rows. Will not exceed the
value set by the property
wl.device.decommission.when.

PUSH_DEVICES Push notification table. Stores a
record per device.

1 row per device.

PUSH_SUBSCRIPTIONS Push notification table. Stores a
record per tag subscription or user
subscription to event sources.

1 row per device subscription.

SSO_LOGIN_CONTEXTS Stores the active sessions that use the
SSO feature.

Depends if SSO is enabled. If
enabled, there is one entry per
session.

WORKLIGHT_VERSION The product version. 1 row.

The following table provides a list of common reports database tables and their
usage.

Note: The Reports database and all the tables listed below are deprecated in IBM
MobileFirst Platform Foundation for iOS V7.0.0. Use “Operational analytics” on
page 12-8 instead. Note that setting up the Reports database is optional in this
release and prior releases.

14-32 IBM MobileFirst Platform Foundation for iOS V7.0.0



Name Description Order of Magnitude

ACTIVITIES_CUBE A materialized table of the 4
dimensional data cube.

Populated every night, based on the
last 30 days of data. Can be used by
BIRT or other reporting tools.

Size depends on app and device
usage, but is limited to the last 30
days for faster access to the last 30
days of activities.

APP_ACTIVITY_REPORT The reports row data. Data is
aggregated by either our aggregation
task or by the customer aggregation
task.

For more information about using the
row data, see “Using raw data
reports” on page 12-76.

The size depends on application. The
customer is responsible for purging
older entries after aggregating to
Data Warehouse.

FACT_ACTIVITIES Summarization of activities that are
used for device analytics.

Updated by MobileFirst Server every
24 hours with data from the
APP_ACTIVITY_REPORT table. Primarily
used by BIRT reports and by other
reporting tools. The update interval
can be configured with the
wl.db.factProcessingInterval
property. The processing and update
can also be disabled by setting the
wl.db.factProcessingInterval property
to a negative value if only the raw
data from the APP_ACTIVITY_REPORT
table is of interest. For more
information about the property, see
“Device usage reports” on page
12-80.

Size depends on app/device usage.

NOTIFICATION_ACTIVITIES Summarization of activities that are
used for notification analytics.

Updated with data from the
NOTIFICATION_REPORT table. Primarily
used by BIRT reports and by other
reporting tools.

Size depends on app/notification
usage.

NOTIFICATION_PROC_REPORT Internal table to store raw notification
data. The data is aggregated by an
aggregation task.

1 row per notification.

NOTIFICATION_REPORT Each time the data processing is
done, a time stamp is added to the
PROC_REPORT table with the processing
result (timestamp and number of
processed entries).

About 72 rows per day.

OPENJPA_SEQUENCE_TABLE Internal table created for JPA. Not
used, and will be removed in the
future.

n/a

PROC_REPORT Internal table that is used for
housekeeping and maintaining the
state of the scheduler tasks.

About 72 rows per day.

Reference 14-33



The following table provides a list of common administration database tables, their
description, and how they are used.

Name Description Order of Magnitude

ADAPTERS Stores the adapter deployable
elements. This table is used to
synchronize the adapter deployable
elements between cluster nodes.
Many-to-many relationships with the
PROJECTS table.

10s of rows.

APPLICATIONS Stores the application deployable
elements. This table is used to
synchronize the application
deployable elements between cluster
nodes. Many-to-many relationships
with the PROJECTS table.

10s of rows.

APPLICATIONS_ENVIRONMENTS Environments (for example, iPhone)
of deployed applications.
Many-to-one relationships with the
APPLICATIONS table.

10s of rows.

APP_VERSION_ACCESS_DATA Stores the applications that have the
remote disable mode to block or
notify. References the
APPLICATIONS_ENVIRONMENTS table.

10s of rows.

AUDIT_TRAIL Stores an audit trail of all
administrative actions performed on
the administration server.

1,000s of rows.

BEACONS Stores information about registered
beacons.

1 row per registered beacon.

BEACON_TRIGGERS Stores information about the action
that is triggered when the user's
mobile device comes in the vicinity
of an associated beacon.

10s of rows.

BEACON_TRIGGER_ASSOC Stores the association between
beacons and triggers. Many-to-many
relationship between beacons and
beacon-triggers.

1 row for each association between a
registered beacon and a
beacon-trigger.

CONFIG_PROFILES Stores custom logging configuration
profiles that have been created by the
server administrator.

1 row per configuration profile.
Usually no more than 5-10 rows in
total.

DIFFERENTIAL_DIRECT_UPDATE Stores information on differential
direct updates and their binaries.

1 row per environment per
deployment.

FARM_CONFIG Stores the configuration of farm
nodes if a server farm is used.

10s of rows (empty if no server farm
is used).

PROJECT Stores the names of the deployed
projects.

10s of rows.

PROJECT_ADAPTERS Bidirectional association between
projects and adapters.

10s of rows.

PROJECT_APPLICATIONS Bidirectional association between
projects and applications.

10s of rows.

PROJECT_LOCK Internal cluster synchronization tasks. 10s of rows.

PUSH_ENVIRONMENTS Push notification table. Stores details
of push environments.

10s of rows.

14-34 IBM MobileFirst Platform Foundation for iOS V7.0.0



Name Description Order of Magnitude

PUSH_TAGS Push notification table. Stores details
of tags defined.

10s of rows.

TRANSACTIONS Internal cluster synchronization table
storing the state of all current
administrative actions.

10s of rows.

WORKLIGHTMGT_VERSION The product version. 1 row.

Sample configuration files
IBM MobileFirst Platform Foundation for iOS includes a number of sample
configuration files to help you get started with the Ant tasks to install the
MobileFirst Server administration and the MobileFirst runtime environment.

The easiest way to get started with the <configuredatabase>,
<installworklightadmin> and <configureapplicationserver> Ant tasks is by
working with the sample configuration files provided in the WorklightServer/
configuration-samples/ directory of the MobileFirst Server distribution.

Step 1

Pick the appropriate sample configuration file. The following files are provided

Table 14-62. Sample configuration files provided with IBM MobileFirst Platform Foundation
for iOS

Task Derby DB2 MySQL Oracle

Create databases
with database
administrator
credentials

create-
database-
derby.xml

create-
database-
db2.xml

create-
database-
mysql.xml

create-
database-
oracle.xml

Install
MobileFirst
Server
administration
and MobileFirst
runtime
environment on
Liberty

configure-
liberty-
derby.xml

configure-
liberty-db2.xml

configure-
liberty-
mysql.xml (See
Note on MySQL)

configure-
liberty-
oracle.xml

Install
MobileFirst
Server
administration
and MobileFirst
runtime
environment on
WebSphere
Application
Server full
profile, single
server

configure-was-
derby.xml

configure-was-
db2.xml

configure-was-
mysql.xml (See
Note on MySQL)

configure-was-
oracle.xml

Reference 14-35



Table 14-62. Sample configuration files provided with IBM MobileFirst Platform Foundation
for iOS (continued)

Task Derby DB2 MySQL Oracle

Install
MobileFirst
Server
administration
and MobileFirst
runtime
environment on
WebSphere
Application
Server Network
Deployment

(See Note on
configuration
files)

configure-
wasnd-cluster-
derby.xml

configure-
wasnd-server-
derby.xml

configure-
wasnd-node-
derby.xml

configure-
wasnd-cell-
derby.xml

configure-
wasnd-cluster-
db2.xml

configure-
wasnd-server-
db2.xml

configure-
wasnd-node-
db2.xml

configure-
wasnd-cell-
db2.xml

configure-
wasnd-cluster-
mysql.xml (See
Note on MySQL)

configure-
wasnd-server-
mysql.xml (See
Note on MySQL)

configure-
wasnd-node-
mysql.xml (See
Note on MySQL)

configure-
wasnd-cell-
mysql.xml

configure-
wasnd-cluster-
oracle.xml

configure-
wasnd-server-
oracle.xml

configure-
wasnd-node-
oracle.xml

configure-
wasnd-cell-
oracle.xml

Install
MobileFirst
Server
administration
and MobileFirst
runtime
environment on
Apache Tomcat

configure-
tomcat-
derby.xml

configure-
tomcat-db2.xml

configure-
tomcat-
mysql.xml

configure-
tomcat-
oracle.xml

Install or
upgrade IBM
Worklight V5.0.6
on Liberty

redeploy506-
liberty-
derby.xml

redeploy506-
liberty-db2.xml

redeploy506-
liberty-
mysql.xml (See
Note on MySQL)

redeploy506-
liberty-
oracle.xml

Install or
upgrade IBM
Worklight V5.0.6
on WebSphere
Application
Server full
profile, single
server

redeploy506-
was-derby.xml

redeploy506-
was-db2.xml

redeploy506-
was-mysql.xml
(See Note on
MySQL)

redeploy506-
was-oracle.xml

Install or
upgrade IBM
Worklight V5.0.6
on WebSphere
Application
Server Network
Deployment

(See Note on
configuration
files)

redeploy506-
wasnd-cluster-
derby.xml

redeploy506-
wasnd-server-
derby.xml

redeploy506-
wasnd-node-
derby.xml

redeploy506-
wasnd-cell-
derby.xml

redeploy506-
wasnd-cluster-
db2.xml

redeploy506-
wasnd-server-
db2.xml

redeploy506-
wasnd-node-
db2.xml

redeploy506-
wasnd-cell-
db2.xml

redeploy506-
wasnd-cluster-
mysql.xml (See
Note on MySQL)

redeploy506-
wasnd-server-
mysql.xml (See
Note on MySQL)

redeploy506-
wasnd-node-
mysql.xml (See
Note on MySQL)

redeploy506-
wasnd-cell-
mysql.xml

redeploy506-
wasnd-cluster-
oracle.xml

redeploy506-
wasnd-server-
oracle.xml

redeploy506-
wasnd-node-
oracle.xml

redeploy506-
wasnd-cell-
oracle.xml

14-36 IBM MobileFirst Platform Foundation for iOS V7.0.0



Table 14-62. Sample configuration files provided with IBM MobileFirst Platform Foundation
for iOS (continued)

Task Derby DB2 MySQL Oracle

Install or
upgrade IBM
Worklight V5.0.6
on Apache
Tomcat

redeploy506-
tomcat-
derby.xml

redeploy506-
tomcat-db2.xml

redeploy506-
tomcat-
mysql.xml

redeploy506-
tomcat-
oracle.xml

Note on MySQL: : MySQL in combination with WebSphere Application Server
Liberty profile or WebSphere Application Server full profile is not classified as a
supported configuration. For more information, see WebSphere Application Server
Support Statement. Consider using IBM DB2 or another database that is supported
by WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Note on configuration files for WebSphere Application Server Network
Deployment: The configuration files for wasnd contain a scope that can be set to
cluster, node, server, or cell. For example, for configure-wasnd-cluster-
derby.xml, the scope is cluster. These scope types define the deployment target as
follows:
v cluster: To deploy to a cluster.
v server: To deploy to a single server that is managed by the deployment

manager.
v node: To deploy to all the servers that are running on a node, but that do not

belong to a cluster.
v cell: To deploy to all the servers on a cell.

Step 2

Change the file access rights of the sample file to be as restrictive as possible. Step
3 requires that you supply some passwords. If you must prevent other users on the
same computer from learning these passwords, you must remove the read
permissions of the file for users other than yourself. You can use a command, such
as the following examples:
v On UNIX:

chmod 600 configure-file.xml

v On Windows:
cacls configure-file.xml /P Administrators:F %USERDOMAIN%\%USERNAME%:F

Step 3

Similarly, if the server is a WebSphere Application Server Liberty profile or Apache
Tomcat server, and the server is meant to be started only from your user account,
you must also remove the read permissions for users other than yourself from the
following file:
v For WebSphere Application Server Liberty profile: wlp/usr/servers/<server>/

server.xml

v For Apache Tomcat: conf/server.xml

Reference 14-37

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311


Step 4

Replace the placeholder values for the properties at the top of the file.

Note: The following special characters need to be escaped when used in values in
Ant XML scripts:
v The dollar sign ($) must be written as $$, unless you explicitly want to reference

an Ant variable through the syntax ${variable}, as described in Properties in
the Apache Ant Manual.

v The ampersand character (&) must be written as &amp;, unless you explicitly
want to reference an XML entity.

v Double quotation marks (") must be written as &quot;, except when inside a
string that is enclosed in single quotation marks.

Step 5

In the <configureapplicationserver> and <unconfigureapplicationserver>
invocations (in target install and uninstall), define MobileFirst properties. For a
list of properties that can be set, see “Configuration of MobileFirst applications on
the server” on page 10-48. In production, you must often define the following
specific properties:
v publicWorkLightHostname

v publicWorkLightProtocol

v publicWorkLightPort

Step 6

Run the commands:
ant -f configure-file.xml admdatabases
ant -f configure-file.xml databases

These commands ensure that the designated databases exist and contain the
required tables for IBM MobileFirst Platform Foundation for iOS. The target
admdatabases must be run before the target databases. This is especially important
in the case of an upgrade where management data is migrated from the runtime
database to the administration database, which needs to have been initialized first
by the target admdatabases.

For an initial installation, and if a DBA has not created the databases manually, use
the file in row “Create databases with database administrator credentials” of
Table 14-62 on page 14-35. These files add special parameters to the
configuredatabase Ant task (the DBA credentials). The parameters enable the Ant
task to create a database and a user if required.

Step 7

Run the command:
ant -f configure-file.xml adminstall

This command installs your Administration Services and MobileFirst Operations
Console components onto the application server.

14-38 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://ant.apache.org/manual/properties.html


To install updated Administration Services and MobileFirst Operations Console
components (for example, to apply a MobileFirst Server fix pack), run the
command:
ant -f configure-file.xml minimal-admupdate

To reverse the installation step, run the command:
ant -f configure-file.xml admuninstall

This command uninstalls the Administration Services and MobileFirst Operations
Console components.

Step 8

Run the command:
ant -f configure-file.xml install

This command installs your MobileFirst runtime environment as a .war file onto
the application server.

To install an updated MobileFirst runtime environment onto the application server,
run the command:
ant -f configure-file.xml minimal-update

To reverse the installation step, run the command:
ant -f configure-file.xml uninstall

This command uninstalls the MobileFirst runtime environment.

At least for WebSphere Application Server, it is a good idea to keep the modified
configure-file.xml for later use when you install updates of the MobileFirst
project's .war file. This file makes it possible to redeploy an updated .war file with
the same MobileFirst properties. If you use the WebSphere Application Server
administrative console to update the .war file, all properties that are configured for
this web application are lost.

Reference 14-39



14-40 IBM MobileFirst Platform Foundation for iOS V7.0.0



Glossary

This glossary provides terms and definitions for IBM MobileFirst Platform
Foundation software and documentation.

The following cross-references are used in this glossary:
v See refers you from a nonpreferred term to the preferred term or from an

abbreviation to the spelled-out form.
v See also refers you to a related or contrasting term.

For other terms and definitions, see the IBM Terminology website (opens in new
window).

“A” “B” on page 15-2 “C” on page 15-2 “D” on page 15-4 “E” on page 15-4 “F” on
page 15-4 “G” on page 15-5 “H” on page 15-5 “I” on page 15-5 “J” on page 15-5
“K” on page 15-6 “L” on page 15-6 “M” on page 15-7 “N” on page 15-7 “O” on
page 15-8 “P” on page 15-8 “R” on page 15-9 “S” on page 15-9 “T” on page 15-10
“U” on page 15-11 “V” on page 15-11 “W” on page 15-11 “X” on page 15-11

A
acquisition policy

A policy that controls how data is collected from a sensor of a mobile
device. The policy is defined by application code.

adapter
The server-side code of a MobileFirst application. Adapters connect to
enterprise applications, deliver data to and from mobile applications, and
perform any necessary server-side logic on sent data.

administration database
The database of the MobileFirst Operations Console and of the
Administration Services. The database tables define elements such as
applications, adapters, projects with their descriptions and orders of
magnitude.

Administration Services
An application that hosts the REST services and administration tasks. The
Administration Services application is packaged in its own WAR file.

alias An assumed or actual association between two data entities, or between a
data entity and a pointer.

Android
A mobile operating system created by Google, most of which is released
under the Apache 2.0 and GPLv2 open source licenses. See also mobile
device.

API See application programming interface.

app A web or mobile device application. See also web application.

Application Center
A MobileFirst component that can be used to share applications and
facilitate collaboration between team members in a single repository of
mobile applications. See also Company Hub.

© Copyright IBM Corporation 2015, 2016 © IBM 2006, 2016 15-1

http://www.ibm.com/software/globalization/terminology/


Application Center installer
An application that lists the catalog of available applications in the
Application Center. The Application Center Installer must be present on a
device so that one can install applications from a private application
repository.

application descriptor file
A metadata file that defines various aspects of an application.

application programming interface (API)
An interface that allows an application program that is written in a
high-level language to use specific data or functions of the operating
system or another program.

authentication
A security service that provides proof that a user of a computer system is
genuinely who that person claims to be. Common mechanisms for
implementing this service are passwords and digital signatures. See also
credential.

authentication realm
A combination of one authenticator and one login module. Each
authentication realm defines its authentication flow. An authentication
realm must have a corresponding challenge handler.

authenticator

1. A server-side component that issues a sequence of challenges on the
server side and responds on the client side. See also challenge handler.

2. In the Kerberos protocol, a string of data that is generated by the client
and sent with a ticket that is used by the server to certify the identity
of the client.

B
Base64

A plain-text format that is used to encode binary data. Base64 encoding is
commonly used in User Certificate Authentication to encode X.509
certificates, X.509 CSRs, and X.509 CRLs. See also DER encoded, PEM
encoded.

binary Pertaining to something that is compiled, or is executable.

BlackBerry OS
A closed source, proprietary mobile operating system created by Research
in Motion. See also mobile device.

block A collection of several properties (such as adapter, procedure, or
parameter).

broadcast notification
A notification that is targeted to all of the users of a specific MobileFirst
application. See also tag-based notification.

build definition
An object that defines a build, such as a weekly project-wide integration
build.

C
CA See certificate authority.

15-2 IBM MobileFirst Platform Foundation for iOS V7.0.0



callback function
Executable code that allows a lower-level software layer to call a function
defined in a higher-level layer.

catalog
A collection of apps.

certificate
In computer security, a digital document that binds a public key to the
identity of the certificate owner, thereby enabling the certificate owner to
be authenticated. A certificate is issued by a certificate authority and is
digitally signed by that authority. See also certificate authority.

certificate authority (CA)
A trusted third-party organization or company that issues the digital
certificates. The certificate authority typically verifies the identity of the
individuals who are granted the unique certificate. See also certificate.

certificate authority enterprise application
A company application that provides certificates and private keys for its
client applications.

certificate revocation list (CRL)
A list of certificates that have been revoked before their scheduled
expiration date. Certificate revocation lists are maintained by the certificate
authority and used, during a Secure Sockets Layer (SSL) handshake to
ensure that the certificates involved have not been revoked.

challenge
A request for certain information to a system. The information, which is
sent back to the server in response to this request, is necessary for client
authentication.

challenge handler
A client-side component that issues a sequence of challenges on the server
side and responds on the client side. See also authenticator.

client A software program or computer that requests services from a server.

client-side authentication component
A component that collects client information, then uses login modules to
verify this information.

clone An identical copy of the latest approved version of a component, with a
new unique component ID.

cluster
A collection of complete systems that work together to provide a single,
unified computing capability.

company application
An application that is designed for internal use inside a company.

Company Hub
An application that can distribute other specified applications to be
installed on a mobile device. For example, Application Center is a
Company Hub. See also Application Center.

component
A reusable object or program that performs a specific function and works
with other components and applications.

Glossary 15-3



credential
A set of information that grants a user or process certain access rights.

CRL See certificate revocation list.

D
data source

The means by which an application accesses data from a database.

deployment
The process of installing and configuring a software application and all its
components.

DER encoded
Pertaining to a binary form of an ASCII PEM formatted certificate. See also
Base64, PEM encoded.

device See mobile device.

device context
Data that is used to identify the location of a device. This data can include
geographical coordinates, WiFi access points, and timestamp details. See
also trigger.

device enrollment
The process of a device owner registering their device as trusted.

documentify
A JSONStore command used to create a document.

E
emulator

An application that can be used to run an application meant for a platform
other than the current platform.

encryption
In computer security, the process of transforming data into an
unintelligible form in such a way that the original data either cannot be
obtained or can be obtained only by using a decryption process.

enterprise application
See company application.

entity A user, group, or resource that is defined to a security service.

environment
A specific instance of a configuration of hardware and software.

event An occurrence of significance to a task or system. Events can include
completion or failure of an operation, a user action, or the change in state
of a process.

event source
An object that supports an asynchronous notification server within a single
Java virtual machine. Using an event source, the event listener object can
be registered and used to implement any interface.

F
facet An XML entity that restricts XML data types.

15-4 IBM MobileFirst Platform Foundation for iOS V7.0.0



farm node
A networked server that is housed in a server farm.

fire In object-oriented programming, to cause a state transition.

fragment
A file that contains HTML tags that can be appended to a parent element.

G
gateway

A device or program used to connect networks or systems with different
network architectures.

geocoding
The process of identifying geocodes from more traditional geographic
markers (addresses, postal codes, and so on). For example, a landmark can
be located at the intersection of two streets, but the geocode of that
landmark consists of a number sequence. See also geolocation.

geofence
A circle or a polygon that defines a geographical area.

geolocation
The process of pinpointing a location based on the assessment of various
types of signals. In mobile computing, often WLAN access points and cell
towers are used to approximate a location. See also geocoding, location
services.

H
homogeneous server farm

A server farm in which all application servers are of the same type, level,
and version.

hybrid application
An application that is primarily written in web-oriented languages
(HTML5, CSS, and JS), but is wrapped in a native shell so that the app
behaves like, and provides the user with all the capabilities of, a native
app.

I
in-house application

See company application.

inner application
An application that contains the HTML, CSS, and JavaScript parts that run
within a shell component. Inner applications must be packaged within a
shell component to create a full hybrid application.

J
Java Management Extensions (JMX)

A means of doing management of and through Java technology. JMX is a
universal, open extension of the Java programming language for
management that can be deployed across all industries, wherever
management is needed.

Glossary 15-5



JMX See Java Management Extensions.

K
key

1. One or more characters within an item of data that are used to
uniquely identify a record and establish its order with respect to other
records.

2. A cryptographic mathematical value that is used to digitally sign,
verify, encrypt, or decrypt a message. See also private key, public key.

keychain
A password management system for Apple software. A keychain acts as a
secure storage container for passwords that are used by multiple
applications and services.

key pair
In computer security, a public key and a private key. When the key pair is
used for encryption, the sender uses the receiver's public key to encrypt
the message, and the recipient uses their private key to decrypt the
message. When the key pair is used for signing, the signer uses their
private key to encrypt a representation of the message, and the recipient
uses the sender's public key to decrypt the representation of the message
for signature verification.

L
library

1. A system object that serves as a directory to other objects. A library
groups related objects, and allows users to find objects by name.

2. A collection of model elements, including business items, processes,
tasks, resources, and organizations.

load balancing
A computer networking method for distributing workloads across multiple
computers or a computer cluster, network links, central processing units,
disk drives, or other resources. Successful load balancing optimizes
resource use, maximizes throughput, minimizes response time, and avoids
overload.

local store
An area on a device where applications can locally store and retrieve data
without the need for a network connection.

location services
A feature that can be used to create differentiated services that are based
on a user location. Location services involve collecting geolocational and
WiFi data and transmitting this data to a server, where it can be used for
executing business logic and analytics. Changes in the location data result
in triggers being activated, which cause application logic to execute. See
also geolocation.

login module
A server-side entity that is responsible for verifying the user credentials
and for creating a user identity object that holds the user properties for the
remainder of the session.

15-6 IBM MobileFirst Platform Foundation for iOS V7.0.0



M
Managed Bean (MBean)

In the Java Management Extensions (JMX) specification, the Java objects
that implement resources and their instrumentation.

MBean
See Managed Bean.

mobile
See mobile device.

mobile client
See Application Center installer.

mobile device (mobile)
A telephone, tablet, or personal digital assistant that operates on a radio
network. See also Android, BlackBerry OS.

MobileFirst adapter
See adapter.

MobileFirst Data Proxy
A server-side component to the IMFData SDK that can be used to secure
mobile application calls to Cloudant by using MobileFirst Platform OAuth
security capabilities. The MobileFirst Data Proxy requires an authentication
through the trust association interceptor.

MobileFirst Operations Console
A web-based interface that is used to control and manage MobileFirst
runtime environments that are deployed in MobileFirst Server, and to
collect and analyze user statistics.

MobileFirst runtime environment
A mobile-optimized server-side component that runs the server side of
your mobile applications (back-end integration, version management,
security, unified push notification). Each runtime environment is packaged
as a web application (WAR file).

MobileFirst Server
A MobileFirst component that handles security, back-end connections, push
notifications, mobile application management, and analytics. The
MobileFirst Server is a collection of apps that run on an application server
and acts as a runtime container for MobileFirst runtime environments.

MobileFirst Studio
A MobileFirst component that is an integrated development environment
(IDE) that can be used to develop and test mobile applications.

N
native app

An app that is compiled into binary code for use on the mobile operating
system on the device.

node A logical group of managed servers.

notification
An occurrence within a process that can trigger an action. Notifications can
be used to model conditions of interest to be transmitted from a sender to
a (typically unknown) set of interested parties (the receivers).

Glossary 15-7



O
OAuth

An HTTP-based authorization protocol that gives third-party applications
scoped access to a protected resource on behalf of the resource owner, by
creating an approval interaction between the resource owner, client, and
resource server.

P
page navigation

A browser feature that enables users to navigate backwards and forwards
in a browser.

PEM encoded
Pertaining to a Base64 encoded certificate. See also Base64, DER encoded.

PKI See public key infrastructure.

PKI bridge
A MobileFirst Server concept that enables the User Certificate
Authentication framework to communicate with a PKI.

poll To repeatedly request data from a server.

private key
In secure communication, an algorithmic pattern used to encrypt messages
that only the corresponding public key can decrypt. The private key is also
used to decrypt messages that were encrypted by the corresponding public
key. The private key is kept on the user system and is protected by a
password. See also key, public key.

project
The development environment for various components, such as
applications, adapters, configuration files, custom Java code, and libraries.

project WAR file
A web archive (WAR) file that contains the configurations for the
MobileFirst runtime environment and is deployed on an application server.

provision
To provide, deploy, and track a service, component, application, or
resource.

proxy An application gateway from one network to another for a specific
network application such as Telnet or FTP, for example, where a firewall
proxy Telnet server performs authentication of the user and then lets the
traffic flow through the proxy as if it were not there. Function is performed
in the firewall and not in the client workstation, causing more load in the
firewall.

public key
In secure communication, an algorithmic pattern used to decrypt messages
that were encrypted by the corresponding private key. A public key is also
used to encrypt messages that can be decrypted only by the corresponding
private key. Users broadcast their public keys to everyone with whom they
must exchange encrypted messages. See also key, private key.

public key infrastructure (PKI)
A system of digital certificates, certification authorities, and other

15-8 IBM MobileFirst Platform Foundation for iOS V7.0.0



registration authorities that verify and authenticate the validity of each
party involved in a network transaction. See also public key.

push To send information from a server to a client. When a server pushes
content, it is the server that initiates the transaction, not a request from the
client.

push notification
An alert indicating a change or update that appears on a mobile app icon.

R
realm A collection of resource managers that honor a common set of user

credentials and authorizations.

reverse proxy
An IP-forwarding topology where the proxy is on behalf of the back-end
HTTP server. It is an application proxy for servers using HTTP.

root The directory that contains all other directories in a system.

S
SDK See software development kit.

security test
An ordered set of authentication realms that is used to protect a resource
such as an adapter procedure, an application, or a static URL.

server farm
A group of networked servers.

server-side authentication component
See authenticator.

service
A program that performs a primary function within a server or related
software.

session
A logical or virtual connection between two stations, software programs, or
devices on a network that allows the two elements to communicate and
exchange data for the duration of the session.

shell A component that provides custom native capabilities and security features
for applications.

sideloading
On Windows 8 environments, the process of loading a file of type appx on
a mobile device without using the Windows Store.

sign To attach a unique electronic signature, derived from the sender's user ID,
to a document or field when a document is mailed. Signing mail ensures
that if an unauthorized user creates a new copy of a user's ID, the
unauthorized user cannot forge signatures with it. In addition, the
signature verifies that no one has tampered with the data while the
message was in transit.

simulator
An environment for staging code that is written for a different platform.
Simulators are used to develop and test code in the same IDE, but then

Glossary 15-9



deploy that code to its specific platform. For example, one can develop
code for an Android device on a computer, then test it using a simulator
on that computer.

skin An element of a graphical user interface that can be changed to alter the
appearance of the interface without affecting its functionality.

slide To move a slider interface item horizontally on a touchscreen. Typically,
apps use slide gestures to lock and unlock phones, or toggle options.

software development kit (SDK)
A set of tools, APIs, and documentation to assist with the development of
software in a specific computer language or for a particular operating
environment.

subelement
In UN/EDIFACT EDI standards, an EDI data element that is part of an
EDI composite data element. For example, an EDI data element and its
qualifier are subelements of an EDI composite data element.

subscription
A record that contains the information that a subscriber passes to a local
broker or server to describe the publications that it wants to receive.

syntax The rules for the construction of a command or statement.

system message
An automated message on a mobile device that provides operational status
or alerts, for example if connections are successful or not.

T
tag-based notification

A notification that is targeted to devices that are subscribed for a specific
tag. Tags are used to represent topics that are of interest to a user. See also
broadcast notification.

TAI See trust association interceptor.

tap To briefly touch a touchscreen. Typically, apps use tap gestures to select
items (similar to a left mouse button click).

template
A group of elements that share common properties. These properties can
be defined only once, at the template level, and are inherited by all
elements that use the template.

trigger
A mechanism that detects an occurrence, and can cause additional
processing in response. Triggers can be activated when changes occur in
the device context. See also device context.

trust association interceptor (TAI)
The mechanism by which trust is validated in the product environment for
every request received by the proxy server. The method of validation is
agreed upon by the proxy server and the interceptor.

15-10 IBM MobileFirst Platform Foundation for iOS V7.0.0



U
Unstructured Supplementary Service Data (USSD)

A communication technology that is used by GSM cellular telephones to
send text messages between a mobile phone and an application program in
the network. USSD establishes a real-time session between the mobile
phone and the application that handles the service.

USSD See Unstructured Supplementary Service Data.

V
view A pane that is outside of the editor area that can be used to look at or

work with the resources in the workbench.

W
web app

See web application.

web application (web app)
An application that is accessible by a web browser and that provides some
function beyond static display of information, for instance by allowing the
user to query a database. Common components of a web application
include HTML pages, JSP pages, and servlets. See also app.

web application server
The runtime environment for dynamic web applications. A Java EE web
application server implements the services of the Java EE standard.

web resource
Any one of the resources that are created during the development of a web
application for example web projects, HTML pages, JavaServer Pages (JSP)
files, servlets, custom tag libraries, and archive files.

widget
A portable, reusable application or piece of dynamic content that can be
placed into a web page, receive input, and communicate with an
application or with another widget.

wrapper
A section of code that contains code that could otherwise not be
interpreted by the compiler. The wrapper acts as an interface between the
compiler and the wrapped code.

X
X.509 certificate

A certificate that contains information that is defined by the X.509
standard.

Glossary 15-11



15-12 IBM MobileFirst Platform Foundation for iOS V7.0.0



Support and comments

For the entire IBM MobileFirst Platform documentation set, training material and
online forums where you can post questions, see the IBM website at:

http://www.ibm.com/mobile-docs

Support

Software Subscription and Support (also referred to as Software Maintenance) is
included with licenses purchased through Passport Advantage and Passport
Advantage Express. For additional information about the International Passport
Advantage Agreement and the IBM International Passport Advantage Express
Agreement, visit the Passport Advantage website at:

http://www.ibm.com/software/passportadvantage

If you have a Software Subscription and Support in effect, IBM provides you
assistance for your routine, short duration installation and usage (how-to)
questions, and code-related questions. For additional details, consult your IBM
Software Support Handbook at:

http://www.ibm.com/support/handbook

Comments

We appreciate your comments about this publication. Please comment on specific
errors or omissions, accuracy, organization, subject matter, or completeness of this
document. The comments you send should pertain to only the information in this
manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact
your IBM branch office, your IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you. IBM or any other organizations will only use the personal
information that you supply to contact you about the issues that you state.

Thank you for your support.

If you would like a response from IBM, please provide the following information:
v Name
v Address
v Company or Organization
v Phone No.
v Email address

© Copyright IBM Corp. 2006, 2016 16-1

http://www.ibm.com/mobile-docs
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/support/handbook


16-2 IBM MobileFirst Platform Foundation for iOS V7.0.0



Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2006, 2016 A-1



websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

A-2 IBM MobileFirst Platform Foundation for iOS V7.0.0



Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Node.js is a trademark of Joyent, Inc. and is used with its permission. This
documentation is not formally endorsed by or affiliated with Joyent.

Other company products or service names may be trademarks or service marks of
others.

This document may not be reproduced in whole or in part without the prior
written permission of IBM.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Notices A-3

http://www.ibm.com/legal/us/en/copytrade.shtml


Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies that collect session information (generated by the application
server). These cookies contain no personally identifiable information and are
required for session management. Additionally, persistent cookies may be
randomly generated to recognize and manage anonymous users. These cookies
also contain no personally identifiable information and are required.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent. For more information about the use of various technologies, including
cookies, for these purposes, see IBM’s Privacy Policy at http://www.ibm.com/
privacy and IBM’s Online Privacy Statement at http://www.ibm.com/privacy/
details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

A-4 IBM MobileFirst Platform Foundation for iOS V7.0.0

http://www.ibm.com/privacy
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy


Index

Special characters
2-7, 6-168, 6-252, 8-232
configuring

Ant tasks 14-27
JMS adapters 8-134
Oracle database

creating for MobileFirst Server
administration 6-45

A
access

JavaScript adapters 8-160
Access Control List

Application Center 6-198, 6-200
access for users and groups

Application Center 6-198, 6-200,
6-201, 6-202

access tokens 8-229
accessibility 8-300
ACL

Application Center 6-198, 6-200
ACL management for Application Center

with LDAP
WebSphere Application Server

V8 6-202
Ad Hoc Distribution 11-66
adapter 8-114

SAP JCo 8-147
adapter access 8-158, 8-160
adapter code

Java, debugging 8-93
adapter concurrency 8-122
adapter configuration files

exporting 10-78
adapter invocation 8-160
adapter procedures

implementing 8-149
adapter sandboxing 8-85
adapter timeout 8-122
adapter XML file 8-122

attributes 8-96
elements 8-96
sub-elements 8-96

adapter XML file structure 8-96
adapter XML schema 8-122
adapter-based authenticator 8-274
adapters 8-114, 10-69, 10-73

See also HTTP adapters
administering in console 10-77
anatomy 8-94
back-end responses 8-130
building

Ant task 10-69
Cast Iron 8-148
configuring 8-87, 8-112
configuring and implementing custom

device provisioning 8-289
connectivity to back end 8-112
creating 8-87, 8-112

adapters (continued)
deleting 10-79
deploying

Ant task 10-69, 10-74
from MobileFirst Studio 8-156
from the console 10-79

deploying between
environments 10-1, 10-2

developing 8-112
Java 3-2
JavaScript, RESTful access 3-2
modifying 10-79
overview 8-85
replacing 10-79
See JMS adapters 8-134, 8-135
SQL 8-133

adapters API 8-91
administering

applications 11-1
apps and adapters

in MobileFirst Operations
Console 10-77

administration 6-44, 6-45, 12-17, 12-18,
12-19

administration components and runtimes
asymmetric deployment 6-8
symmetric deployment 6-8

administration databases 6-43
administration services

Ant tasks
to deploy MobileFirst Operations

Console and administration
services 6-55

deploying with Ant tasks 6-55
Administration Services

installing during an upgrade 7-33
preparing the installation 7-9

Advanced application authentication
checking 3-2

AES specification
encryption algorithm 10-56

analytics 6-146, 6-151, 12-6, 12-7, 12-8,
12-9, 12-12, 12-17, 12-18, 12-19, 12-21,
12-22, 12-23, 12-26, 12-29, 12-30, 12-31,
12-33, 12-35, 12-36, 12-37, 12-38, 12-39,
12-40, 12-41, 12-42, 12-44, 12-46, 12-47,
12-48, 12-50, 12-51, 12-52, 12-53, 12-59,
12-70, 12-71, 12-74

cluster deployment 12-68
configuring 6-151
installing 6-146, 6-147
product main features 2-1
production cluster setup 12-66

analytics console 2-1
android 8-124
Android

application authenticity 8-248
configuring SSL with untrusted

certificates 6-136
push notification from Application

Center 11-72

Android (continued)
specific requirements 11-66

ANPS
SSL certificate in application

descriptor 8-4
ANT Grunt 8-15
Ant tasks

application servers 14-35
building adapters 10-69
building and deploying adapters and

applications 10-69
building applications 10-69
configuring application

servers 10-14, 10-16, 14-17, 14-35
WebSphere Application Server

Network Deployment 10-16
configuring databases 10-13, 14-1
deploying adapters 10-74
deploying applications 10-74
deploying projects 10-69
for beacons and beacon

triggers 11-23
for building projects 10-4
for IBM MobileFirst Platform

Foundation for iOS
installation 14-10

for product upgrades 7-11
installing 14-27
reference 14-35
sample configuration files 14-35
to create and configure databases for

MobileFirst Server 6-53
updating deployment scripts 7-52

anti 8-252
Apache 10-28
Apache Tomcat 6-86

topologies 6-8, 6-11
Apache Tomcat server

manual configuration 6-71, 6-182,
10-38

API 8-255
API reference 9-1
API, OAuth TAI 9-4
app authenticity checks

enabling 10-51
extended 10-51

app thinning support 3-7
App Transport Security (ATS)

TLS 8-13
app transport security support 3-7
Apple

Ad Hoc Distribution 11-66
Apple provisioning profiles 11-66
Apple Push Notification Service (APNS)

push notification for iOS
devices 8-206

Apple Swift
creating a project 8-9

Apple watchOS 2 8-14
Application Center 6-22, 6-183, 6-281

© Copyright IBM Corp. 2006, 2016 X-1



Application Center (continued)
access for users and groups 6-198,

6-200, 6-201, 6-202
application version numbers 11-66
configuring Derby manually on

Tomcat 6-175
configuring Liberty profile for Oracle

manually 6-180
configuring Tomcat for DB2

manually 6-171
configuring WebSphere Application

Server for DB2 manually 6-169
configuring WebSphere Application

Server for Derby manually 6-173
configuring WebSphere Application

Server manually 6-185
deploying WAR files 6-183
installing manually 6-167
LDAP and WebSphere Application

Server V7 6-198
LDAP and WebSphere Application

Server V8 6-200, 6-201
managing and installing self-signed

CA certificates in a test
environment 6-221

manual configuration of DB2 6-169
product main features 2-1
setting up your Derby database

manually 6-172
setting up your MySQL database

manually 6-175
settting up your DB2 database

manually 6-168
updating production apps 10-98

Application Center Access Control List
Virtual Member Manager 6-200

Application Center access control with
LDAP on WebSphere Application Server
V8 6-202

Application Center client
configuring for push

notification 11-72
application descriptors

for native applications for iOS 8-4
application server 6-23, 6-47, 6-50, 7-1,

7-4, 7-7
configuring

Ant task 10-14, 10-16, 14-35
Ant tasks 14-17
reference 14-35

application servers
supported for server farm

configuration 6-98
application store 2-1
applications

See also recommended applications
administering 11-1
authenticity 8-248
building

Ant task 10-69
creating 8-2
deploying

Ant task 10-69, 10-74
developing 8-2
developing and publishing

product main features 2-1
hybrid 8-2

applications (continued)
installing on an iOS mobile

device 11-105, 11-111
native 8-2
protecting traffic with

DataPower 6-122
storing properties in encrypted

format 10-56
version numbers in Application

Center 11-66
web 8-2

apps 8-15
administering in console 10-77
deleting 10-78
deploying 10-78
deploying between

environments 10-1, 10-2
production apps

best practices 10-98
submitting 10-78
updating in production 10-98

architecture
push notification 8-204

ARM-based tablets
Windows executable files 11-66

asymmetric deployment
plan for administration components

and runtimes 6-8
WebSphere Application Server

Network Deployment 6-15
authentication 6-281

HTTP basic 6-127
of mobile devices 8-257
Secure Sockets Layer (SSL) 12-102
through a reverse proxy

header-based or LTPA-based 13-3
to protect application traffic 6-122

authentication configuration
attributes of login modules 8-282
authentication realms 8-252
authenticators 8-257
configuring

authenticators 8-262
realms 8-262

header login module 8-284
LDAP login module 8-286
login modules 8-257

attributes 8-282
header 8-284
LDAP 8-286
non-validating 8-283
single identity 8-284
WASLTPAModule 8-285

non-validating login module 8-283
single identity login module 8-284
WASLTPAModule login

module 8-285
authentication configuration file 8-260
authentication realms 8-252
authenticationConfig.xml 8-260
authenticators 8-257

adapter-based 8-274
configuring 8-262
customizing 8-269
form-based 8-263, 8-265
header 8-274
LTPA 8-281

authenticators (continued)
persistent cookie 8-274

authenticity
of MobileFirst applications 8-248

authenticity checks
disabling 10-51
enabling 10-51
extended 10-51

auto-provisioning 8-257

B
back end

method for push notification
architecture 8-204

polling method
JMS, for push notification 8-204

back-end connections
product main features 2-1

back-end services 8-114
BPM 8-114
REST 8-114
SAP 8-114
WSDL 8-114

backward-compatibility 7-1
basic registry 6-281
BasicAuthenticator 8-263
beacon triggers

Ant task 11-23
beacons

Ant task 11-23
benefits of adapters 8-94
best practices

for design and architecture
decisions 5-1

samples
terms and conditions of use 5-1

BIRT
installing on Apache Tomcat 12-84
installing on WebSphere Application

Server Liberty profile 12-86
bit code support 3-7
Bitcode

build options 8-14
BlackBerry

push notification from Application
Center 11-72

specific requirements 11-66
broadcast notifications

sending to the device 8-214
unsubscription 8-207

building a project
Ant task 10-4

building adapters
Ant task 10-69

building applications
Ant task 10-69, 10-73

building from IBM Worklight
V6.0.0 10-73

Business Intelligence Reporting Tools
(BIRT)

installing on WebSphere Application
Server full profile 12-89

X-2 IBM MobileFirst Platform Foundation for iOS V7.0.0



C
CA certificates 8-288

file name extensions 6-221
Cast Iron

integration with IBM MobileFirst
Platform Foundation for iOS 13-2

Cast IRON adapter
connectionPolicy 8-99
elements 8-99

Cast IRON adapter XML file 8-99
Cast IRON adapter XML file

structure 8-99
Cast Iron adapters 8-148
certificate authority (CA) 8-289

definition 6-136
for Secure Sockets Layer (SSL)

configuration 12-102
certificate keys

for application authenticity 8-248
certificate signing request (CSR)

in custom device provisioning 8-289
to implement client-side components

for custom device
provisioning 8-290

to implement client-side components
for native iOS 8-292

certificates
See also CA certificates
errors 12-102
self-signed

to configure SSL 6-135
untrusted

configuring SSL 6-136
X.509 12-102
X509 certificate 8-257

challenge handling for application
security 8-248

changes 3-1
chart types 12-22
classic security

overview 8-243
CLI 8-15
CLI commands 8-16, 8-22, 8-28, 8-34,

8-39, 8-45, 8-51, 8-56, 8-62, 8-68, 8-74,
8-79

client access
adapters 8-158

client configuration 12-112
client property file 8-124
client property files

for native iOS applications 8-6
client side

authentication certificates 12-102
components for custom device

provisioning 8-290
components for native iOS 8-292

client-side
API 9-183

client-side API
iOS 9-2
Objective-C and Apple Swift

language 9-2
Cloudant 9-183
cluster information 12-17
clustering 12-52
clusters

and application authenticity 8-248

clusters (continued)
installing a fix pack 7-56
Security Socket Layer (SSL)

provided by the MobileFirst
instance 6-240

tuning back-end connections for
MobileFirst Server 6-105

collecting data 12-36
command 8-15
command-line interface

commands 8-16, 8-22, 8-28, 8-34,
8-39, 8-45, 8-51, 8-56, 8-62, 8-68, 8-74,
8-79

Company Hub
Windows Phone 8 applications 11-66

compatibility 7-1
completing

configuration 7-58
IBM MobileFirst Platform Foundation

for iOS 7-58
configuration 10-81

security 6-117
configuration API 8-91
configuration files

for server farms 6-98
sample files 6-55

configurations 12-71
supported for LTPA security 10-90

configureapplicationserver
Ant task 14-17

configuredatabase
Ant task 14-1

configuring 10-28
adapters 8-87, 8-112
Apache 10-28
Apache Tomcat 6-47, 6-63, 6-67, 6-77
application server 6-47
authenticators 8-262
custom device provisioning 8-289
Derby 10-28
device auto provisioning 8-288
implementing

custom device provisioning 8-289
MobileFirst Server

MySQL 6-144
realms 8-262
server farms 6-98
single sign-on 8-298, 8-299
user authentication 6-83, 6-84, 6-85,

6-86
WebSphere Application Server 6-50
WebSphere Application Server Liberty

profile 6-47
WebSphere Application Server

Network Deployment 6-50
Configuring

DB2 HADR seamless failover 6-22
MobileFirst Data Proxy 6-153

configuring LDAP for Application Center
WebSphere Application Center

V8 6-201
WebSphere Application Server

V7 6-198
connectionPolicy

attributes 8-99, 8-101, 8-104, 8-109,
8-110

elements 8-99, 8-101, 8-104, 8-110

console
administering apps and

adapters 10-77
context root 14-17
create adapters

BPM 8-115
RESTful 8-116
SAP 8-118
WSDL 8-119

creating
adapters 8-87, 8-112
administration database 6-43
applications 8-2

creating adapters
BPM 8-115
Business Process Manager create

adapters 8-115
RESTful 8-116
SAP Gateway 8-118
Web Service Definition

Language 8-119
creating the Oracle database 6-45
Cross Origin Resource Sharing (CORS)

JNDI properties 6-86
cross site 8-252
cross-site 8-252
CSRF 8-252
custom chart definitions 3-8
custom charts 12-12, 12-21, 12-22, 12-23,

12-26, 12-29, 12-30, 12-31, 12-33, 12-35,
12-36, 12-37, 12-38, 12-39, 12-40, 12-41,
12-42, 12-44, 12-46, 12-47

custom device provisioning
client-side and server-side

implementation 8-289
client-side components 8-290
configuring 8-289

custom requests to resources, with
Objective-C 8-242

custom security tests
to implement client-side components

for custom device
provisioning 8-290

to implement client-side components
for native iOS 8-292

custome certificate authorities
(CA) 12-102

customizing
authenticators 8-269
login modules 8-269

customSecurityTest 8-249

D
data

stored as large objects (LOBs) 6-108
data capture 12-9
Data Management Zone (DMZ)

in MobileFirst topologies 6-240
data purging 12-18
data sharing

See simple data sharing
data sources 6-22
Database user permissions for MobileFirst

Server runtime operations 6-20
databases

configuring 10-17

Index X-3



databases (continued)
Ant task 10-14, 10-16, 14-1, 14-35

configuring by using Ant tasks 10-13
creating 10-17
creating and configuring for

MobileFirst Server by using Ant
tasks 6-53

DB2
failure to create 6-281

optimizing and tuning 6-108
upgrading for runtime and

reports 7-36
DataPower

used as security gateway to protect
application traffic 6-122

DB2 6-60
configuring manually for Application

Center on Tomcat 6-171
configuring Tomcat manually 10-23
configuring WebSphere Application

Server Liberty manually for
MobileFirst Server 6-57

configuring WebSphere Application
Server manually for Application
Center 6-169

configuring WebSphere Application
Server manually for MobileFirst
Server 6-58

setting up your database
manually 10-18

setting up your database manually for
Application Center 6-168

setting up your database manually for
MobileFirst Server 6-56

DB2 database
created by the installer 6-44

DB2 databases
failure to create 6-281

DB2 SQL Error 6-145, 6-222
Debugging Java adapter code 8-93
default security domain 6-157
deleting

adapters 10-79
apps 10-78

deploying
adapters 10-1, 10-2

from MobileFirst Studio 8-156
from the console 10-79

apps 10-1, 10-2, 10-78
MobileFirst Server

by using the Server Configuration
Tool 10-9

project WAR file 10-5
updated apps 10-98

deploying adapters
Ant task 10-69, 10-74

deploying applications
Ant task 10-69, 10-73, 10-74

deploying projects
Ant task 10-69

deployment scripts
deploying 7-52

deprecated API 3-9
deprecated features 3-8, 3-9
Derby 6-63, 10-28

configuring manually for Application
Center on Tomcat 6-175

Derby (continued)
configuring WebSphere Application

Server manually 10-26
configuring WebSphere Application

Server manually for Application
Center 6-173

configuring WebSphere Application
Server manually for MobileFirst
Server 6-62

configuring your database manually
for MobileFirst Server 6-61

not supported for production 6-53
setting up the database manually for

Application Center 6-172
setting up your database

manually 10-24
Derby databases 6-61

manual configuration 6-61
not supported by server farms 6-98
WebSphere Application Server Liberty

profile server 6-61
developing

applications 8-2
developing applications

product main features 2-1
Developing Java adapters 8-87
development environment 2-1, 7-1, 7-4,

7-7
device

management 12-95, 12-96, 12-98,
12-99

device access management 12-96
device auto provisioning

configuring 8-288
devices

authentication 8-257
configuring for push

notification 11-72
provisioning 8-257

disabling an app 11-3
distribution structure 6-39

MobileFirst Server 6-39

E
Eclipse 6-1

supported versions 2-7
editors 8-15
enabling 8-254, 12-98
encryption

for storing properties 10-56
endpoint

test token 8-241
token validation 8-238

Endpoint Manager
overview 13-5

endpoints 8-158
environments 8-2

production 10-1
QA 10-1
test 10-1

error
configuration 6-49
deploying with Application Center

console 6-222
deploying with MobileFirst

console 6-145

error (continued)
jmx configuration 6-49
transaction log full 6-145, 6-222

event types 12-12
event-source based notifications

sending to the device 8-214
examples 8-185
exporting

adapter configuration files 10-78
exporting data 12-47
extended application authentication

checking 3-2

F
failure 8-171
favorite applications

push notification 11-72
feature comparison 12-7
feature table 2-8
feature-platform matrix 2-8
federal 11-122
Federal Desktop Core

Configuration 11-122
Federal Information Processing Standards

(FIPS)
security standards 11-123

files
of native API applications for iOS,

copying 8-7
filters 12-29
fix pack 7-53, 7-54, 7-55, 7-58
fix packs

installing in a new cluster 7-56
flow chart 12-23
for downloading to get started

tutorials
to get started 5-1

for iOS native applications
simple data sharing 8-254

form-based authenticator 8-263
form-based authenticators

implementing 8-265
FormBasedAuthenticator 8-263
framework

JavaScript adapter 8-94

G
generating 8-114
Generating adapters

BPM 8-115
RESTful services 8-116
SAP 8-118
WSDL 8-119

getting started 5-1
glossary 15-1

H
handling

interactive push notification
hybrid 8-209
ios 8-209
native 8-209

X-4 IBM MobileFirst Platform Foundation for iOS V7.0.0



handling (continued)
silent push notification

hybrid 8-211
ios 8-211
native 8-211

hardware calculator 5-1
header authenticator 8-274
header login module 8-284
header-based authentication

through reverse proxy 13-3
HeaderAuthenticator 8-274
HeaderLoginModule 8-284
heap size

setting for the JVM 6-105
homogeneous server farms

supported 6-98
how to

invoke SAP JCo adapter 8-148
start SAP JCo adapter 8-148

HTTP
adapters 8-114
basic authentication, rules 6-127
Strict Transport Security

standards 6-86
HTTP adapter

connectionPolicy 8-101
elements 8-101

HTTP adapter XML file 8-101
HTTP adapter XML file structure 8-101
HTTP adapters 8-127, 8-128

and WebSphere Application Server
SSL configuration 10-54

encoding a SOAP XML
envelope 8-125

HTTP connections
tuning 6-105

HTTP plug-in file 7-59
HTTPS protocol

JNDI properties 6-86
hybrid applications

accessibility 8-300
hybrid development 2-1
hybrid mixed development 2-1

I
IBM Cloudant database

JNDI properties 6-86
IBM Installation Manager 6-1, 6-29
IBM MobileFirst Platform Foundation for

iOS 7-53, 8-15
classic security 8-243
integrating IBM Endpoint

Manager 13-5
OAuth 8-221
security

IBM Endpoint Manager 13-5
IBM Tealeaf

client-side integration 13-8
IBM WebSphere Application Server 7-55
ID tokens 8-229
IDE 8-15
implementing

adapter procedures 8-149
in-place upgrade

versus rolling upgrade 7-16

install
fix pack 7-55

installation 6-1, 6-4, 6-29, 6-146, 6-151,
6-281

Ant tasks 14-10
of MobileFirst Server, tutorial 6-23

installdataproxy
Ant task 14-27

installing
Administration Services 6-43

preparation tasks 7-9
fix pack 7-56
IBM MobileFirst Platform Foundation

for iOS 7-56
MobileFirst Operations Console 6-43

preparation tasks 7-9
MobileFirst Server

administration 6-43
by using the Server Configuration

Tool 6-51
Installing

Manually 6-154
MobileFirst Data Proxy 6-153, 6-154
MobileFirst OAuth Trust Association

Interceptor 6-157, 6-158
installworklightadmin

Ant task 14-10
integrating

Trusteer for iOS 13-9
integration

IBM Tealeaf 13-8, 13-9
interactive notifications 8-209
interface 8-15
invalid server farm configurations 6-98
invoke

SAP JCo adapter 8-148
Invoking an SAP JCo adapter 8-148
iOS

application authenticity 8-248
application descriptor 8-4
client property file for native

applications 8-6
configuring SSL with untrusted

certificates 6-136
developing native applications 8-4

creating a Swift project 8-9
push notification from Application

Center 11-72
specific requirements 11-66

iOS applications
Objective-C client-side API 9-2

iOS devices
installing applications 11-111
installing the client 11-105
iOS 9, establishing trust on a

provisioning file 11-105, 11-111
iOS examples 8-185
iOS native applications

single sign-on (SSO) 8-295
ips 9 support 3-7

J
Java adapter code 8-87
Java adapters

benefits 8-85
developing 8-87

Java Management Extensions (JMX)
configuring for Tomcat 6-47
JNDI properties 6-86

Java Message Service (JMS)
polling method for push

notification 8-204
Java Persistence API (JPA)

JNDI properties 6-86
Java Runtime Environment (JRE)

trusstores 10-54
java server side API 8-91
Java virtual machine (JVM)

setting the heap size 6-105
JavaScript

E4X 8-125
for adapter-based

authenticators 8-274
reserved words 8-4
Rhino container 8-150
to configure and implement custom

device provisioning 8-289
JavaScript adapter framework 8-94
JavaScript adapters

benefits 8-94
overview 8-94

JavaScript frameworks
accessibility 8-300

JAX-RS service 8-87
JMS adapter

connectionPolicy 8-104
elements 8-104

JMS adapter XML file 8-104
JMS adapter XML file structure 8-104
JMS adapters

connecting to a Liberty profile
server 8-135

connecting to a WebSphere
Application Server messaging
provider 8-134

connecting to WebSphere MQ 8-137
JNDI properties 6-86

encoding 10-56
IBM Cloudant database 6-86
MobileFirst projects,

configuring 10-61
to install a mobile client on an iOS

mobile device 11-105
to install applications on an iOS

mobile device 11-111
JSON objects

formatting, JNDI property 6-86
JSONStore 8-161, 8-184, 8-185

advanced 8-178
API 8-165
concurrency 8-181
error codes 8-171
errors 8-170
examples 8-174
Federal Information Processing

Standards (FIPS) 11-123
general terminology 8-162
multiple user support 8-179
Objective-C 8-175
overview 8-161, 8-169
performance 8-179
security 8-178
sync 8-181

Index X-5



JSONStore (continued)
troubleshooting 8-168, 8-169

K
Keychain Access Group

single sign-on (SSO) on for native iOS
applications 8-295

keys
See certificate keys. 8-248

keystores
for server certificates 12-102

Keytool
for self-signed certificates 6-135

known issues 3-10, 4-1
known limitations 4-1

L
large objects (LOBs)

constraining size of 6-108
LDAP

Application Center on WebSphere
Application Server V7 6-198

Application Center on WebSphere
Application Server V8 6-200, 6-201,
6-202

LDAP login module 8-286
LdapLoginModule 8-286
Liberty profile 12-110, 12-113

configuring endpoint 6-81
configuring for DB2 manually for

MobileFirst Server 6-57
configuring for Oracle for Application

Center 6-180
configuring manually 10-40
configuring manually for Application

Center 6-169, 6-183
JMS adapters 8-135
Oracle

configuring Liberty profile
manually for Application
Center 6-180

property encryption 10-56
setting JVM memory options 6-105
tuning HTTP connections 6-105

libraries
of native API applications for iOS,

copying 8-7
license tracking 12-115
Lightweight Directory Access Protocol

Application Center on WebSphere
Application Server V7 6-198

Application Center on WebSphere
Application Server V8 6-200, 6-201,
6-202

limitations
of the Server Configuration Tool 6-3
Server Configuration Tool 10-9

line 8-15
local test servers

and command-line interface
(CLI) 8-16, 8-22, 8-28, 8-34, 8-39,
8-45, 8-51, 8-56, 8-62, 8-68, 8-74, 8-79

logger API 8-91
logging 12-1

logging (continued)
JNDI properties 6-86

login modules 8-257
attributes 8-282
customizing 8-269
header 8-284
LDAP 8-286
non-validating 8-283
single identity 8-284
WASLTPAModule 8-285

logs
location 12-1
monitoring 12-1
of local test servers 8-16, 8-22, 8-28,

8-34, 8-39, 8-45, 8-51, 8-56, 8-62, 8-68,
8-74, 8-79

LOGSECOND 6-145, 6-222
LTPA 10-81, 10-83, 10-84, 10-94

advanced security features 10-94
supported configurations 10-90

LTPA authenticator 8-281
LTPA-based authentication

through reverse proxy 13-3

M
management console 2-1
management operations 7-55
manual configuration

configuring DB2 for MobileFirst
Server on WebSphere Application
Server Liberty 6-57

configuring DB2 for MobileFirst
Server on Tomcat 6-60

configuring DB2 for on Tomcat 10-23
configuring WebSphere Application

Server for Derby 10-26
configuring WebSphere Application

Server for Derby for MobileFirst
Server 6-62

configuring WebSphere Application
Server for Derby sfor Application
Center 6-173

configuring your Derby database for
MobileFirst Server 6-61

DB2 for Application Center on
WebSphere Application Server
Liberty profile 6-169

DB2 for WebSphere Application
Server 10-20

DB2 for WebSphere Application
Server for MobileFirst Server 6-58

DB2 for WebSphere Application
Server manually for Application
Center 6-169

of WebSphere Application
Server 10-42

Oracle database 6-179
Oracle databases 10-34
setting up your DB2 database 10-18
setting up your DB2 database for

Application Center 6-168
setting up your DB2 database for

MobileFirst Server 6-56
setting up your Derby

database 10-24

manual configuration (continued)
setting up your Derby database

Application Center 6-172
setting up your MySQL

database 10-29
setting up your MySQL database for

Application Center 6-175
setting up your MySQL database for

MobileFirst Server 6-64
setting up your Oracle database for

MobileFirst Server 6-68
Tomcat for DB2 for Application

Center 6-171
WebSphere Application Server for

Application Center 6-185
WebSphere Application Server Liberty

profile 10-40
WebSphere Application Server Liberty

profile for Application Center 6-183
manual configuration of WebSphere

Application Server Liberty 6-183
manual installation

Application Center 6-167
Manual installation 6-154
manually 6-63, 6-67
memory options

setting for MobileFirst Server
optimization 6-105

metric group 12-26
migrating 7-1
migrating existing apps 7-3
migrating existing projects 7-3
migration 7-1, 7-3, 7-4, 7-7
mobile applications 2-1
mobile client

installing on an iOS mobile
device 11-105

mobile devices
See devices

mobile operations 8-252, 12-100, 12-102,
12-103, 12-104, 12-105, 12-109, 12-110,
12-111, 12-112, 12-113, 12-114

mobile security tests
to implement client-side components

for custom device
provisioning 8-290

to implement client-side components
for native iOS 8-292

MobileFirst
classic security overview 8-243
OAuth overview 8-221
security configuration 10-81

MobileFirst applications
accessibility 8-300

MobileFirst Command Line Interface
Project 7-3

MobileFirst Data Proxy 6-153, 6-154
MobileFirst Operations Console

Access Disabled 11-3
Active 11-3
administering apps and

adapters 10-77
Ant tasks

to deploy MobileFirst Operations
Console and administration
services 6-55

X-6 IBM MobileFirst Platform Foundation for iOS V7.0.0



MobileFirst Operations Console
(continued)

controlling application
authenticity 8-248

deploying with Ant tasks 6-55
installing 6-43
installing during an upgrade 7-33

MobileFirst Project Upgrader 7-3
MobileFirst projects

configuring with JNDI
properties 10-61

MobileFirst runtime environment 7-31
shutting down 7-31

MobileFirst Server 6-4, 6-19, 6-22, 6-23,
6-44, 6-45, 6-65, 7-4, 7-5, 7-53, 7-58

administration 6-63, 6-67, 6-71, 6-83,
6-84, 6-85, 6-86

configuring Tomcat for DB2
manually 6-60

configuring WebSphere Application
Server for DB2 manually 6-58

configuring WebSphere Application
Server for Derby manually 6-62

configuring WebSphere Application
Server Liberty profile 6-72

configuring your Derby database
manually 6-61

creating and configuring databases by
using Ant tasks 6-53

installation
planning, for MobileFirst

Server 6-3
installation, tutorial 6-23
keystores 12-102
migration 7-1
planning installation of 6-3
server farms, upgrading 7-39
setting up your DB2 database

manually 6-56
setting up your MySQL database

manually 6-64
setting up your Oracle database

manually 6-68
Transport Layer Security v1.2 (TLS

v1.2) 6-133
upgrade 7-1

MobileFirst Server administration 6-61,
6-65, 6-69, 6-77

configuring for DB2 manually for
WebSphere Application Server
Liberty 6-57

installing by using the Server
Configuration Tool 6-51

MobileFirst Server runtime environment
upgrading 7-38

MobileFirst ServerMobileFirst Server
internal configuration 6-105
optimizing and tuning 6-105

MobileFirst Studio
migration 7-1
upgrade path 7-1

mobileSecurityTest 8-249
modifying

adapters 10-79
monitoring 12-1

product main features 2-1
multi-tenancy 12-18

MySQL 6-67, 6-144
setting up your database

manually 10-29
setting up your database manually for

Application Center 6-175
setting up your database manually for

MobileFirst Server 6-64
stale connections 6-144

MySQL databases 6-65
created by the installation tools 6-45
manual configuration 6-65
WebSphere Application Server 6-65
WebSphere Application Server Liberty

profile server 6-65

N
native 8-15
native API applications

for iOS
application descriptor 8-4
copying files 8-7

native applications
accessibility 8-300
developing 8-4
for iOS 8-4

creating a Swift project 8-9
native development 2-1
native iOS applications

client property file 8-6
client-side components 8-292

Network Address Translation (NAT)
devices

topologies 6-240
new cluster 7-59
new features 3-1
non-validating login module 8-283
NonValidatingLoginModule 8-283
notification

broadcast 8-207
notifications

tag-based, sending 8-214
NTLM authentication

ServerIdentity 8-127
userIdentity 8-128

O
OAuth 3-2

overview 8-221
OAuth TAI API 9-4
OAuth TAI, securing with 8-230
OAuth tokens 8-229
OAuth, for WebSphere Application

Server 8-232
OAuth, for WebSphere Application Server

Liberty 8-232
Objective-C 9-183

client-side API for iOS 9-2
offline mode

product main features 2-1
One-Time URLs

controlled by a JNDI property 11-105
OpenJPA

See Java Persistence API (JPA) 6-86

operating systems
specific requirements 11-66
supported 2-7

operational 12-8, 12-74
operational analytics 12-17
optimizing MobileFirst Server

performance 6-105
optional 6-43
Oracle

setting up your database
manually 6-179, 10-34

setting up your database manually for
MobileFirst Server 6-68

Oracle Database Configuration Assistant
(DBCA)

creating an Oracle database for
MobileFirst Server
administration 6-45

Oracle databases 6-69, 6-71, 6-181, 6-182,
10-36, 10-38

Apache Tomcat server 6-71, 6-182,
10-38

manual configuration 6-69, 6-71,
6-181, 6-182, 10-36, 10-38

WebSphere Application Server 6-69,
6-181, 10-36

WebSphere Application Server Liberty
profile server 6-69

orchestrations
integrating applications with Cast

Iron 13-2
overview 8-184, 10-79

Java adapters 8-85
JavaScript adapters 8-94
rolling upgrade 7-55

P
partitions

database optimization 6-108
patterns 12-37, 12-38, 12-39, 12-40, 12-41,

12-42, 12-44, 12-46
performance 12-70, 12-99

tuning back-end connections 6-105
performande

optimizing for MobileFirst
Server 6-105

persistent cookie authenticator 8-274
PersistentCookieAuthenticator 8-274
PKI bridge 12-103, 12-104, 12-105, 12-109
planning

application server 6-23
creation 6-19
databases 6-19
rolling upgrade 7-54
topology 6-23

polling events source
configuring push notifications 8-216

ports 12-51
prerequisites 6-4
procedures

invoking 8-157
running 8-157
testing 8-157

product overview 2-1
production deployment 12-52
production environment 7-1, 7-4, 7-7

Index X-7



profiles
See Ad Hoc Distribution

project databases
optimizing and tuning 6-108

projects 8-2
building

Ant task 10-4
CLI 8-16
command line 8-16
command-line 8-16
deploying

Ant task 10-69
properties 12-71

storing in encrypted format 10-56
property files

for native iOS applications 8-6
provisioning

devices 8-288
unique device ID 8-257

proxy
See DataPower 6-122

proxy settings
for push notification 8-203

public key infrastructure (PKI)
certificates 6-136
for the User Certificate Authentication

feature 12-102
purging data 6-108
push API 8-91
push notification

architecture 8-203, 8-204
broadcast 8-207
iOS 8-206
mechanism 8-203
product main features 2-1
proxy settings 8-203
sending to the device 8-214
setting up 8-206
tag-based notification 8-210, 8-214
WebSphere DataPower as a

proxy 13-10
push notification problems 8-221
push notification problems iOS 8-221
push notifications 8-216

datasource custom property 8-216
IBM DB2 8-216
polling event source 8-216
SMS 8-215
subscribing 8-208
WebSphere Application Server 8-216

R
raw reports 12-19
realm 8-252, 10-84
realms

authentication 8-252
configuring 8-262
for application authenticity 8-248

recommended applications
push notification 11-72

reference 6-86
release notes 3-1, 3-10

known limitations 3-10
releases 7-1
remote disable 11-3

default behavior 11-3

remote disable (continued)
modifying the default behavior 11-3

remoteDisable 11-3
removed features 3-8, 3-10
replacing

adapters 10-79
replicas 12-59
Report viewer 12-84
reports 12-7

installing BIRT on WebSphere
Application Server full
profile 12-89

raw data 12-77
upgrading database schemas 7-36

resources
accessibility 8-300
custom requests using

Objective-C 8-242
REST 8-15
RESTful access

JavaScript adapters 8-158
restoring

configuration 7-62
IBM MobileFirst Platform Foundation

for iOS 7-62
restricting 6-20
reverse proxies

configuring MobileFirst Server 6-133
single sign-on configuration 8-295

reverse proxy 8-298, 8-299
deployment of topologies of server

farm and WebSphere Application
Server Network Deployment 6-18

integration and authentication 13-3
MobileFirst acting as 6-240

RFC 6797
HTTP Strict Transport Security

standards 6-86
Rhino container 8-150
roles

mapping users 14-10
rollback procedure 7-62
rolling upgrade 7-53, 7-55, 7-58, 7-62

versus in-place upgrade 7-16
root CA certificate

definition 6-136
root certificates

self-signed CA certificates in an
Application Center test
environment 6-221

rules
for HTTP basic authentication 6-127

running
IBM Installation Manager 6-29

runtime middleware 2-1

S
samples 5-1

for configuration files 6-55
sandboxing

adapters 8-85
SAP

adapters 8-114
SAP Gateway adapter

connectionPolicy 8-106

SAP JCo adapter
connectionPolicy 8-109

SAP JCo adapter XML file 8-109
SAP JCo adapter XML file

structure 8-109
SAP JCo adapters 8-147
scalability

guide to scalability and hardware
sizing 5-1

search 12-6
Secure Socket Layer (SSL) configuration

configuring in WebSphere Application
Server, HTTP adapters 10-54

Secure Sockets Layer (SSL)
to configure authentication 12-102

securing
administration

MobileFirst Server 6-117
security 10-79, 10-83, 10-84, 10-85, 10-94,

12-48, 12-50
advanced features 10-94
application authenticity 8-248
configuration 6-117
configuring a MobileFirst

instance 10-81
customizing authenticators and login

modules 8-269
DataPower features to protect

application traffic 6-122
Federal Information Processing

Standards (FIPS) 11-123
for One-Time URLs 11-105
HTTP Strict Transport Security

standards 6-86
IBM Endpoint Manager 13-5
LTPA 10-94
mapping users to roles 14-10
product main features 2-1
supported configurations for

LTPA 10-90
tests 8-249
Transport Layer Security v1.2 6-133

security API 8-91
security filter

for Node.js 8-230
security framework

overview 8-221
security tests

mobile or custom, configuring single
sign-on 8-295

security utilities 8-184, 8-185
securityTest 8-249
self-signed certificates

CA certificates, managing and
installing in an Application Center
test environment 6-221

not supported by the User Certificate
Authentication feature 12-102

to configure SSL 6-135
sending

interactive push notification 8-209
silent push notification 8-211

server configuration 12-102, 12-111
Server Configuration Tool

deploying a MobileFirst Server 10-9
installation tool for MobileFirst

Server 6-3

X-8 IBM MobileFirst Platform Foundation for iOS V7.0.0



Server Configuration Tool (continued)
installing MobileFirst Server

administration 6-51
limitations 10-9

server farm
reverse proxy 6-18

server farms 7-39
homogeneous, as opposed to

heterogeneous 6-98
installation, specific configuration 6-3
invalid configuration 6-98
not supported by the Server

Configuration Tool 6-3, 10-9
planning the configuration 6-98
when to declare 6-98

server requirements 12-109
server side

authentication certificates 12-102
servers

for local tests 8-16, 8-22, 8-28, 8-34,
8-39, 8-45, 8-51, 8-56, 8-62, 8-68, 8-74,
8-79

services discovery wizard 8-114
session affinity 7-59
setup 8-185
shards 12-53
sharing

See simple data sharing
Short Message Service (SMS)

as a form of push notification 8-203
sideloading Windows applications 11-66
silent notification 8-211
simple data sharing 8-253, 8-254, 8-255

enabling for iOS native
applications 8-254

limitations 8-256
overview 8-253
troubleshooting 8-256

single identity login module 8-284
single sign-on (SSO)

configuring for devices 8-295
SingleIdentityLoginModule 8-284
skins 8-2

adding by using the command-line
interface (CLI) 8-16, 8-22, 8-28,
8-34, 8-39, 8-45, 8-51, 8-56, 8-62, 8-68,
8-74, 8-79

SMS
push notification 8-215
two-way communication 8-219

SOAP
generating adapters 8-114
services in HTTP adapters 8-125
web services 8-114

software development kits
supported 2-7

source control 8-2
specific security domain 6-158
SQL adapter

connectionPolicy 8-110
elements 8-110

SQL adapter XML file 8-110
SQL adapter XML file structure 8-110
SQL adapters 8-133
SSL

configuring between adapters and
back-end servers 6-135

SSL (continued)
Configuring for Application

Center 6-219
configuring with untrusted

certificates 6-136
JNDI properties 6-86
security with a server farm 6-98
setting up certificate keystore 10-54
untrusted certificates

configuring SSL 6-136
SSL certificate

for native iOS applications 8-4
SSO (single sign-on) mechanism

optimization and tuning of
MobileFirst Server 6-105

stopping
management operations 7-55
runtime environments 7-31

Studio 8-15
submitting

apps 10-78
Swift 9-183

creating a project 8-9
switching

HTTP traffic 7-59
symmetric deployment

plan for administration components
and runtimes 6-8

symmetric-key algorithm
for encrypting properties 10-56

T
tablets

See ARM-based tablets
tag-based notifications

sending 8-214
sending to the device 8-214

Tealeaf
integration 13-8
server-side integration 13-9

terminology 8-254, 15-1
terms and conditions of use

for samples 5-1
test environments

managing and installing self-signed
CA certificates 6-221

test servers
local, and command-line interface

(CLI) 8-16, 8-22, 8-28, 8-34, 8-39,
8-45, 8-51, 8-56, 8-62, 8-68, 8-74, 8-79

testing adapter
CLI (command line interface) 8-157
command line interface (CLI) 8-157
Postman 8-157
studio 8-157

testing applications
product main features 2-1

tests
security 8-249

TLS v1.2
See Transport Layer Security v1.2

to MobileFirst ServerV7.0.0 7-7
tokens

for challenge handling 8-248

Tomcat
configuring Derby manually for

Application Center 6-175
configuring for DB2 manually 10-23
configuring for DB2 manually for

Application Center 6-171
configuring for DB2 manually for

MobileFirst Server 6-60
configuring for MobileFirst Server

administration manually 6-77
configuring the JMX connection 6-47
setting JVM memory options 6-105
tuning HTTP connections 6-105

tools 8-15
topologies 6-23, 10-94
topology

asymmetric deployment 6-15
MobileFirst instance 6-240
plan deployment of administration

components and runtimes 6-8
reverse proxy with server farm and

WebSphere Application Server
Network Deployment 6-18

server farm 6-11
stand-alone 6-8
WebSphere Application Server

Network Deployment 6-15
tracking licenses 12-115
traffic of mobile applications

protecting with DataPower 6-122
Transport Layer Security (TLS) 8-13
Transport Layer Security v1.2

configuring MobileFirst Server 6-133
troubleshooting 4-1, 6-281, 12-114

DB2 databases 6-281
jmx configuration 6-49
liberty profile 6-49
push notification 8-221

trusstores
and SSL configuration 10-54

Trust Association Interceptor 6-157,
6-158, 8-230

trusted certificates 6-136
Trusteer 10-81, 10-85

assessment 10-89
Trusteer for iOS

integration 13-9
truststores

for client certificates 12-102
tutorials

basic installation of MobileFirst
Server 6-23

tutorials and samples 5-1

U
unconfigureapplicationserve

Ant task 14-17
uninstallation 6-281
uninstalldataproxy

Ant task 14-27
uninstalling

IBM MobileFirst Platform Foundation
for iOS 7-62

uninstalling from
old cluster 7-62

Index X-9



uninstallworklightadmin
Ant task 14-10

unique device ID 8-257
United States Government Configuration

Baseline 11-122
Unstructured Supplementary Service

Data (USSD)
command-line option 8-16, 8-22,

8-28, 8-34, 8-39, 8-45, 8-51, 8-56, 8-62,
8-68, 8-74, 8-79

updateapplicationserver
Ant task 14-17

updatedataproxy
Ant task 14-27

updateworklightadmin
Ant task 14-10

updating
DB2 schema names 7-51

upgrade path 7-1
upgraded CLI 7-3
upgrades

from V5.0.6.x 7-11
from V6.0.0.x 7-11
in-place or rolling upgrade 7-16
installing Administration Services

and 7-33
of MobileFirst Server runtime

environments 7-38
of server farms to MobileFirst Server

V 7.0.0 7-39
to V7.0.0 7-7

upgrading 7-4, 7-5, 7-7
MobileFirst Server 7-4, 7-5

in production 7-4, 7-5
overview 7-5

upgrading to MobileFirst Server V
7.0.0 7-39

user authentication for MobileFirst
Application Center 6-202

user certificate authentication 12-100,
12-102, 12-103, 12-104, 12-105, 12-109,
12-110, 12-111, 12-112, 12-113, 12-114

User Certificate Authentication
feature 12-102

user certificate enrollment 8-252
user to device mapping 12-96

V
verifying

IBM MobileFirst Platform Foundation
for iOS 7-58

installation 7-58
version 7-1
version control 8-2
versions 7-1
versions of applications

in Application Center 11-66

Virtual Member Manager
Application Center Access Control

List 6-200
VMM

Virtual Member Manager 6-200

W
WAR files

Ant task for building a project 10-4
WAR files for MobileFirst projects

deploying 10-5
WASLTPAModule login module 8-285
web browsers

supported 2-7
web development 2-1
webSecurityTest 8-249
WebSphere 12-68
WebSphere Application Server 6-157,

6-158, 8-134
configuring for Application

Center 6-185
configuring for DB2 manually for

Application Center 6-169
configuring for DB2 manually for

MobileFirst Server 6-58
configuring for Derby

manually 10-26
configuring for Derby manually for

Application Center 6-173
configuring for Derby manually for

MobileFirst Server 6-62
configuring manually 10-42
configuring manually for DB2 10-20
Liberty profile 6-72
manual configuration 6-65, 6-69,

6-72, 6-74, 6-181, 10-36
outbound dynamic

configuration 10-54
property encryption 10-56
setting JVM memory options 6-105
SOAP XML envelope for HTTP

adapters 8-125
SSL configuration and HTTP

adapters 10-54
tuning HTTP connections 6-105

WebSphere Application Server full
profile 6-84

installing BIRT 12-89
topologies 6-8, 6-11

WebSphere Application Server Liberty
configuring manually 10-40

WebSphere Application Server Liberty
profile 6-85, 6-281

installing BIRT 12-86
topologies 6-8, 6-11

WebSphere Application Server Liberty
profile server

manual configuration 6-61, 6-65, 6-69
WebSphere Application Server Network

Deployment 6-157, 6-158
configuring application servers

Ant tasks 10-16
reverse proxy 6-18
topologies 6-15

WebSphere Application Server V7
configuring LDAP for Application

Center 6-198
WebSphere Application Server V8

configuring LDAP for Application
Center 6-201

managing ACL for Application Center
with LDAP 6-202

WebSphere DataPower
push notification proxy 13-10

WebSphere MQ
JMS adapters 8-137

WebSphereFormBasedAuthenticator 8-
281

WebSphereLoginModule 8-285
what's new 3-1, 3-2, 3-4, 3-7, 3-8, 3-9,

3-10
API 3-5
external library 3-5

Windows 8
sideloading applications 11-66
specific requirements 11-66

Windows Phone 8
application enrollment token 11-66
specific requirements 11-66

wl_unprotected 8-249
wladm

Ant task for beacon and beacon
triggers 11-23

program
beacon triggers 11-50
beacons 11-50

X
X.509 certificates 12-102

See self-signed certificates
X509 certificate

for mobile device
authentication 8-257

Xcode 8-14
XCode IDE

creating a Swift project 8-9
XML envelope

for SOAP-based services in HTTP
adapters 8-125

XSRF 8-252

X-10 IBM MobileFirst Platform Foundation for iOS V7.0.0


	Contents
	IBM MobileFirst Platform Foundation for iOS V7.0.0 documentation
	Product overview
	Introduction to mobile application development
	Product main capabilities
	Product components
	Product editions
	System requirements
	Matrix of features and platforms

	Release notes
	What's new
	Efficient and scalable app data storage
	Standards-based integration and authentication
	Core value features
	Improved MobileFirst API
	Tutorials and samples

	What's new in V7.0.0 interim fixes
	iOS 9 support
	Exporting and importing custom chart definitions for analytics
	Deprecated and removed features
	Deprecated features and API elements
	Removed features

	Known issues
	Known limitations

	Troubleshooting
	Tutorials, samples, and additional resources
	Installing and configuring
	Installation overview
	Installing command-line tools for developers
	Uninstalling command-line tools for developers
	Installing MobileFirst Server
	Planning the installation of MobileFirst Server
	Installation prerequisites
	File system prerequisites
	Introduction to the MobileFirst Server components
	Planning deployment of administration components and runtimes
	Planning the creation of the databases
	Planning the topology of the application server

	Tutorial for a basic installation of MobileFirst Server
	Running IBM Installation Manager
	Single-user versus multi-user installations
	Installing a new version of MobileFirst Server
	Upgrading MobileFirst Server from a previous release
	Command-line installation with XML response files (silent installation)
	Distribution structure of MobileFirst Server

	Installing the MobileFirst Server administration
	Optional creation of the administration database
	Configuration of the application server
	Installing MobileFirst Server administration with the Server Configuration Tool
	Using Ant tasks to install MobileFirst Server administration
	Manually installing MobileFirst Server administration
	Defining the endpoint of the MobileFirst Administration services
	Configuring user authentication for MobileFirst Server administration
	List of JNDI properties for MobileFirst Server administration
	Verifying the installation of MobileFirst Server administration
	Installing the MobileFirst runtime environment

	Installing a server farm
	Planning the configuration of a server farm
	Configuring a server farm
	Verifying a farm configuration
	Lifecycle of a server farm node


	Configuring MobileFirst Server
	Backup and recovery
	Optimization and tuning of MobileFirst Server
	Optimization of MobileFirst Server project databases
	Testing MobileFirst Server performance
	Security configuration
	Securing the MobileFirst Server administration
	Database and certificate security passwords
	Apache Tomcat security options
	Running MobileFirst Server in WebSphere Application Server with Java 2 security enabled

	Protecting your mobile application traffic by using IBM WebSphere DataPower as a security gateway
	Rules for HTTP basic authentication
	Rules for HTML form-based authentication
	Sample form login stylesheet
	Sample redirect stylesheet

	Configuring MobileFirst Server to enable TLS V1.2
	Apache Tomcat
	WebSphere Application Server Liberty profile
	WebSphere Application Server full profile

	Configuring SSL between MobileFirst adapters and back-end servers by using self-signed certificates
	Configuring SSL by using untrusted certificates
	Installing the root CA on iOS
	Updating your keystore and Liberty profile configuration to use a certificate chain

	Handling MySQL stale connections
	Managing the DB2 transaction log size

	Installing the IBM MobileFirst Platform Operational Analytics
	Installing IBM MobileFirst Platform Operational Analytics for WebSphere Application Server Liberty
	Installing IBM MobileFirst Platform Operational Analytics for WebSphere Application Server
	IBM MobileFirst Platform Operational Analytics installation for Tomcat
	Configuring the MobileFirst Server for the IBM MobileFirst Platform Operational Analytics

	Installing the MobileFirst Data Proxy
	Planning the installation of MobileFirst Data Proxy
	Installation overview of the MobileFirst Data Proxy
	Installation prerequisites for the MobileFirst Data Proxy
	File System prerequisites for MobileFirst Data Proxy

	Installing and configuring the MobileFirst Data Proxy
	Installing the MobileFirst Data Proxy with Ant tasks
	Manually installing the MobileFirst Data Proxy
	Configuring the application server to access the Cloudant database through HTTPS


	Installing and configuring the Application Center
	Installing Application Center with IBM Installation Manager
	Optional creation of databases
	Installing Application Center in WebSphere Application Server Network Deployment
	Completing the installation
	Default logins and passwords created by IBM Installation Manager for the Application Center

	Manual installation of Application Center
	Configuring the DB2 database manually for IBM MobileFirst Platform Application Center
	Configuring the Apache Derby database manually for Application Center
	Configuring the MySQL database manually for Application Center
	Configuring the Oracle database manually for IBM MobileFirst Platform Application Center
	Deploying the Application Center WAR files and configuring the application server manually

	Configuring the Application Center after installation
	Configuring WebSphere Application Server full profile
	Configuring WebSphere Application Server Liberty profile
	Configuring Apache Tomcat
	Configuring properties of DB2 JDBC driver in WebSphere Application Server
	Configuring WebSphere Application Server to support applications in public app stores
	Configuring WebSphere Application Server to support applications in Apple iTunes
	Configuring Liberty profile when IBM JDK is used

	Managing users with LDAP
	LDAP with WebSphere Application Server V7
	LDAP with WebSphere Application Server V8.x
	LDAP with Liberty profile
	LDAP with Apache Tomcat

	Defining the endpoint of the application resources
	Configuring the endpoint of the application resources (full profile)
	Configuring the endpoint of the application resources (Liberty profile)
	Configuring the endpoint of the application resources (Apache Tomcat)

	Configuring Secure Sockets Layer (SSL)
	Configuring SSL for WebSphere Application Server full profile
	Configuring SSL for Liberty profile
	Configuring SSL for Apache Tomcat
	Managing and installing self-signed CA certificates in an Application Center test environment

	Managing the DB2 transaction log size
	List of JNDI properties for the Application Center

	Predefining MobileFirst Server configuration for several deployment environments
	Creating the property file
	Using a property file in the file system
	Setting the file pointer property (WebSphere Application Server full profile)

	Using property files injected into a web archive file
	Using a shared library of JNDI properties
	Adding the shared library (WebSphere Application Server full profile)


	Typical topologies of a MobileFirst instance in an extranet infrastructure
	Setting up IBM MobileFirst Platform Foundation for iOS in WebSphere Application Server cluster environment
	Setting up an IBM HTTP Server in an IBM WebSphere Application Server Liberty profile farm
	Troubleshooting IBM HTTP Server startup

	Integrating IBM WebSphere DataPower with a cluster of instances of MobileFirst Server
	Sample dynamic routing stylesheet


	Endpoints of the IBM MobileFirst Platform Server production server
	HTTP Interface of the production server

	Troubleshooting IBM MobileFirst Platform Server
	Troubleshooting to find the cause of installation failure
	Troubleshooting failure to create the DB2 database
	Troubleshooting a MobileFirst Server upgrade with Derby as the database
	Troubleshooting failure to authenticate to Application Center and applications that use the basic registry element
	Troubleshooting server farm configuration issues


	Upgrading to IBM MobileFirst Platform Foundation for iOS V7.0.0
	Version compatibility
	Migrating projects to V7.0.0 using MobileFirst Platform Command Line Interface for iOS
	Migrating IBM SmartCloud Analytics Embedded to IBM MobileFirst Platform Operational Analytics
	Upgrading to MobileFirst Server V7.0.0 in a production environment
	Overview of the upgrade to MobileFirst Server V7.0.0 process
	Preparation for upgrades to MobileFirst Server
	Gathering information for MobileFirst Server V7.0.0 upgrades
	Planning installation of the MobileFirst Administration Services and MobileFirst Operations Console
	Identify the MobileFirst WAR file and prepare the Ant deployment script
	Review and note the Application Server configuration for MobileFirst Server and Application Center
	Verify environments of deployed apps
	In-place upgrade or rolling upgrade to MobileFirst Server V7.0.0
	Packaging change of WebSphere Application Server Liberty profile in IBM Worklight V6.x
	Become familiar with IBM Installation Manager before you start

	Starting the MobileFirst Server V7.0.0 upgrade process
	Verify the ownership of your MobileFirst Server files
	Back up your application server
	Shutting down the application server
	Stop all instances of the Application Center applications
	Back up the Application Center database

	Running IBM Installation Manager and completing the Application Center upgrade
	Upgrading from MobileFirst Server V6.3.0, or V7.0.0
	Upgrading from Worklight Server V6.0.0, V6.1.0, or V6.2.0
	Upgrading from Worklight Server V5.0.6.x
	Upgrading from Worklight Server V5.0.6.x (changing the Liberty server)
	Restore the Application Center configurations and restart the application server

	Upgrading the MobileFirst runtime environment for MobileFirst Server V7.0.0
	Stop all MobileFirst Server instances
	Shutting down the application server to be upgraded
	Installation or upgrade of MobileFirst Server Administration Services
	Back up the runtime and reports databases
	Upgrade the runtime and reports databases
	Upgrade the MobileFirst Server runtime environment
	Upgrading server farms for MobileFirst Server 7.0
	Restore the MobileFirst Server Configuration
	Restart the application server

	Additional MobileFirst Server V7.0.0 upgrade information
	Recovering from an unsuccessful upgrade to MobileFirst Server V7.0.0
	Manually installing the MobileFirst Server administration during the upgrade
	Manually upgrading the MobileFirst Server V7.0.0 databases
	Manually upgrading the application server
	Verifying and updating the HTTP redirections for MobileFirst Server V7.0.0
	Updating DB2 schema names in the case of a manual installation

	Updating deployment scripts

	Rolling upgrade procedure to apply a fix pack to IBM MobileFirst Platform Foundation for iOS V7.0.0
	Planning the rolling upgrade procedure
	Overview of the rolling upgrade procedure
	Performing a rolling upgrade to install a fix pack
	Stopping management operations
	Installing the IBM MobileFirst Platform Foundation for iOS fix pack in a new cluster
	Completing the configuration of the new installation of IBM MobileFirst Platform Foundation for iOS
	Verifying the new installation of IBM MobileFirst Platform Foundation for iOS
	Switching progressively the HTTP traffic to the new cluster, with session affinity
	Performing a rollback procedure
	Uninstalling IBM MobileFirst Platform Foundation for iOS from the old cluster


	Applying a fix pack to the MobileFirst Data Proxy

	Developing MobileFirst applications
	Artifacts produced during development cycle
	MobileFirst projects
	Integrating with source control systems

	Developing applications for iOS
	Developing native applications for iOS
	Application descriptor of iOS applications
	Client property file for iOS
	Copying files of iOS applications
	Creating a Swift project
	Using Logger in Swift Projects
	Enforcing TLS-secure connections in iOS apps
	Disabling bitcode in Xcode builds


	Updating mobile apps with IBM MobileFirst Platform Foundation for iOS and the Application Center
	MobileFirst Platform Command Line Interface for iOS
	CLI commands usage
	Commands
	A
	B
	C
	D
	H
	I
	L
	R
	S
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands
	Commands


	Developing the server side of a MobileFirst application
	MobileFirst Java adapters
	Developing Java adapters

	MobileFirst JavaScript adapters
	Structure of the adapter XML file
	Developing JavaScript adapters

	USSD Support
	Invoking a back-end service for USSD

	Deploying adapters
	Testing adapters
	Client access to adapters
	Accessing adapters from the /adapters endpoint
	Accessing adapters from the /apps/services/api/query endpoint
	Accessing adapters from the /invoke endpoint


	JSONStore
	JSONStore overview
	General JSONStore terminology
	JSONStore API concepts
	Troubleshooting JSONStore
	JSONStore troubleshooting overview
	Store internals
	JSONStore errors
	JSONStore error codes

	JSONStore examples
	Objective-C API examples

	JSONStore advanced topics
	JSONStore security
	JSONStore multiple user support
	JSONStore performance
	JSONStore concurrency
	Work with external data

	JSONStore security utilities
	JSONStore security utilities overview
	JSONStore security utilities setup
	JSONStore security utilities examples


	Storing mobile data in Cloudant
	Configuring access to Cloudant
	Configuring API keys
	Configuring OAuth security

	Obtaining the IMFData SDK
	Creating databases
	Accessing local data stores
	Creating remote data stores

	Setting user permissions
	Modeling data
	Modeling data for iOS apps
	Creating custom property serializers for iOS apps

	Performing CRUD operations
	Creating data
	Reading data
	Updating data
	Deleting data

	Creating indexes
	Querying data
	Supporting offline storage and synchronization
	Running pull replication
	Running push replication


	Push notification
	Possible MobileFirst push notification architectures
	Setting up push notifications
	Setting up push notifications for iOS

	Broadcast notifications
	Event source-based notifications
	Subscribing to an event source

	Interactive notifications
	Tag-based notification
	Silent notifications
	Unicast notifications
	Web-based SMS subscription
	Sending push notifications
	Sending SMS push notifications
	Sending push notifications from WebSphere Application Server – IBM DB2
	Configuring a polling event source to send push notifications
	Using two-way SMS communication
	Troubleshooting push notification problems

	MobileFirst security framework
	OAuth-based security model
	OAuth-based tokens
	Protecting external resources
	The test token endpoint
	Custom requests to resources using Objective-C

	Classic security model
	MobileFirst application authenticity overview
	Security tests
	Authentication realms


	Simple data sharing
	Simple data sharing overview
	Simple data sharing general terminology
	Enabling the Simple Data Sharing feature
	Enabling the Simple Data Sharing feature for iOS native applications

	Simple data sharing API concepts
	Troubleshooting simple data sharing
	Simple data sharing limitations and special considerations

	Authenticators and login modules
	Mobile device authentication
	The authentication configuration file
	Configuring authenticators and realms
	Implementing basic authenticators
	Implementing form-based authenticators
	Implementing custom authenticators
	Header authenticator
	Persistent cookie authenticator
	Implementing adapter-based authenticators
	LTPA authenticator

	Configuring login modules
	Non-validating login module
	Single identity login module
	Header login module
	WASLTPAModule login module
	LDAP login module

	Configuring device auto provisioning
	Configuring and implementing custom device provisioning
	Implementing server-side components for custom device provisioning
	Implementing client-side components for custom device provisioning


	Device single sign-on (SSO)
	Configuring device single sign-on
	Device single sign-on with the IBM Security Access Manager Web reverse proxy
	Configuring device single sign-on with a reverse proxy


	Developing accessible applications
	Client-side log capture
	Server preparation for uploaded log data
	Client-side log capture configuration from MobileFirst Operations Console

	MobileFirst Filtered Export

	API reference
	MobileFirst client-side API
	Objective-C client-side API for iOS apps

	MobileFirst server-side API
	JavaScript server-side API
	Java server-side API

	MobileFirst OAuth TAI API
	REST Services API
	Adapter Binary (GET, HEAD)
	Adapter (DELETE)
	Adapter (GET)
	Adapter (POST)
	Adapters (GET)
	Adobe Air Application Binary (GET)
	APNS Credentials (DELETE)
	APNS Credentials (GET)
	APNS Credentials (PUT)
	App Version Access Rule (PUT)
	App Version (DELETE)
	App Version Lock (PUT)
	Application Binary (GET, HEAD)
	Application (DELETE)
	Application (GET)
	Application (POST)
	Applications (GET)
	Associate beacons and triggers (DELETE)
	Associate beacons and triggers (GET)
	Associate beacons and triggers (PUT)
	Beacon Trigger (DELETE)
	Beacon Trigger (GET)
	Beacon Triggers (GET)
	Beacon Triggers (POST)
	Beacon Triggers (PUT)
	Beacons (DELETE)
	Beacons (GET)
	Beacons (PUT)
	Device Application Status (PUT)
	Device (DELETE)
	Device Status (PUT)
	Devices (GET)
	Event Source (GET)
	Event Sources (GET)
	Farm topology members (GET)
	Farm topology members (DELETE)
	GCM Credentials (DELETE)
	GCM Credentials (GET)
	GCM Credentials (PUT)
	Mediator (GET)
	Mediators (GET)
	MPNS Credentials (DELETE)
	MPNS Credentials (GET)
	MPNS Credentials (PUT)
	Push Device Registration (DELETE)
	Push Device Registration (GET)
	Push Device Subscription (DELETE)
	Push Device Subscription (GET)
	Push Devices Registration (GET)
	Push Enabled Applications (GET)
	Push Tags (DELETE)
	Push Tags (GET)
	Push Tags (POST)
	Push Tags (PUT)
	Runtime (DELETE)
	Runtime (GET)
	Runtime Lock (DELETE)
	Runtime Lock (GET)
	Runtimes (GET)
	Send Bulk Messages (POST)
	Send Message (POST)
	Transaction (GET)
	Transactions (GET)
	Unsubscribe SMS (POST)
	WNS Credentials (DELETE)
	WNS Credentials (GET)
	WNS Credentials (PUT)

	MobileFirst Cloudant API reference
	Objective-C API for MobileFirst Cloudant extensions


	Deploying MobileFirst projects
	Deploying MobileFirst applications to test and production environments
	Deploying an application from development to a test or production environment
	Building a project WAR file with Ant
	Deploying the project WAR file
	Optional creation of databases
	Deploying, updating, or undeploying MobileFirst Server by using the Server Configuration Tool
	Using Ant tasks to deploy the project WAR file
	Deploying the project WAR file manually
	Configuring multiple MobileFirst projects in different environments

	Configuration of MobileFirst applications on the server
	Configuring the IBM MobileFirst Platform Server location
	Runtime database setup for development mode
	Configuring extended app authenticity checking
	Push notification settings
	Analytics
	WebSphere Application Server SSL configuration and HTTP adapters
	SSL certificate keystore setup
	Miscellaneous Settings
	Storing properties in encrypted format
	Obsolete properties
	Declaring and using application-specific configuration properties
	Configuring a MobileFirst project in production by using JNDI environment entries
	SMS gateway configuration

	Ant tasks for building and deploying applications and adapters
	Building applications and adapters
	Building applications from IBM Worklight V6.0.0 and deploying them to MobileFirst Server
	Deploying applications and adapters

	Deploying applications and adapters to MobileFirst Server
	Administering adapters and apps in MobileFirst Operations Console
	Deploying apps
	Deleting apps
	Exporting adapter configuration files
	Deploying adapters
	Modifying adapters
	Deleting adapters

	MobileFirst security overview
	MobileFirst security configuration
	MobileFirst Security and LTPA
	Configuring the MobileFirst Server for Trusteer
	Accessing Trusteer risk assessment
	Supported configurations for LTPA
	Advanced security features
	Topologies and use cases

	High availability
	Clustering
	Configuring the load balancer
	Adding a node to the cluster
	Firewalls
	Disaster Recovery Site

	Updating MobileFirst apps in production


	Administering MobileFirst applications
	Administering MobileFirst applications with MobileFirst Operations Console
	Locking an application
	Remotely disabling application connectivity
	Displaying a notification message on application startup
	Defining administrator messages from MobileFirst Operations Console in multiple languages
	Error log of operations on runtime environments
	Audit log of administration operations

	Administering MobileFirst applications through Ant
	Calling the wladm Ant task
	Commands for adapters
	Commands for apps
	Commands for beacons
	Commands for devices
	Commands for troubleshooting
	A complex example of a wladm Ant task

	Administering MobileFirst applications through the command line
	Calling the wladm program
	Commands for adapters
	Commands for apps
	Commands for beacons
	Commands for devices
	Commands for troubleshooting

	Administering push notifications with the MobileFirst Operations Console
	Application Center
	Concept of the Application Center
	Specific platform requirements
	General architecture
	Preliminary information
	Preparations for using the mobile client
	Importing and building the project
	Customizing features (for experts)
	Deploying the mobile client in Application Center

	Push notifications of application updates
	Configuring push notifications for application updates
	Configuring the Application Center server for connection to Apple Push Notification Services

	The Application Center console
	Starting the Application Center console
	Troubleshooting a corrupt login page (Apache Tomcat)
	Application Management
	Adding a mobile application
	Adding an application from a public app store
	Application properties
	Editing application properties
	Upgrading a mobile application in MobileFirst Server and the Application Center
	Downloading an application file
	Viewing application reviews
	User and group management
	Access control
	Managing access control
	Device Management
	Signing out of the Application Center console

	Command-line tool for uploading or deleting an application
	Using the stand-alone tool to upload an application
	Using the stand-alone tool to delete an application
	Using the stand-alone tool to clear the LDAP cache
	Ant task for uploading or deleting an application

	The mobile client
	Installing the client on an iOS mobile device
	The Login view
	Views in the Application Center client
	Installing an application on an iOS device
	Installing applications through public app stores
	Removing an installed application
	Showing details of a specific application version
	Updating an application
	Upgrading the Application Center client automatically
	Reverting an installed application
	Marking or unmarking a favorite app
	Submitting a review for an installed application
	Viewing reviews


	Federal standards support in IBM MobileFirst Platform Foundation for iOS
	FDCC and USGCB support
	FIPS 140-2 support


	Monitoring and mobile operations
	Logging and monitoring mechanisms
	Vitality queries for checking server health
	Setting logging and tracing for Application Center on the application server
	Enabling logging and tracing in WebSphere Application Server full profile
	Enabling logging and tracing in WebSphere Application Server Liberty profile
	Enabling logging and tracing in Apache Tomcat
	JNDI properties for controlling trace output


	Analytics
	Comparison of operational analytics and reports features
	Operational analytics
	Data capture
	Event types
	Navigating the Analytics console
	Securing the Operational Analytics server
	Production deployment and clustering
	Properties and configurations
	Backing up Operational Analytics data

	Reports database
	Using raw data reports
	Device usage reports
	Predefined BIRT Reports
	Installing BIRT on Apache Tomcat
	Installing BIRT on WebSphere Application Server Liberty profile
	Installing BIRT on WebSphere Application Server full profile
	Configuring BIRT reports for your application server by using Ant
	Manually configuring BIRT Reports for your application server
	BIRT in Eclipse
	Notification reports database schema


	Mobile application management
	User to device mapping and control
	Device access management in the MobileFirst Operations Console
	Enabling the device access management features
	Performance implications for the server

	User certificate authentication
	User certificate authentication overview
	User certificate authentication on the server
	SSL configuration
	PKI bridge configuration
	WebSphere Application Server and Liberty profile requirements
	Updating the server authentication configuration

	User certificate authentication on the client
	Configuring user certificate authentication for a group of applications

	Troubleshooting the User Certificate Authentication feature

	License tracking
	Configuring your license tracking details
	License Tracking report
	Integration with IBM License Metric Tool


	Integrating with other IBM products
	Introduction to MobileFirst integration capabilities
	Integration with Cast Iron
	Integration and authentication with a reverse proxy
	Integration with IBM Endpoint Manager
	IBM Endpoint Manager for Mobile Devices
	End-point management with IBM Endpoint Manager

	Integration with IBM Tealeaf
	IBM Tealeaf client-side integration
	IBM Tealeaf server-side integration

	Integration with IBM Trusteer
	Integrating IBM Trusteer for iOS

	Using WebSphere DataPower as a push notification proxy
	More about integration

	Reference
	Ant configuredatabase task reference
	Customizing the database connection with JDBC properties
	Encrypting database password with Ant tasks for Liberty
	Ant tasks for installation of MobileFirst Operations Console and Administration Services
	Ant tasks for installation of MobileFirst runtime environments
	Ant tasks for installation of MobileFirst Data Proxy
	Internal runtime database tables
	Sample configuration files

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Support and comments
	Notices
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X


