
IBM MobileFirst Platform Foundation
V8.0.0

IBM

Note
For up-to-date product documentation, see the IBM MobileFirst Foundation Developer Center.

Before you use this information and the product it supports, read the information in “Notices” on page A-1.

IBM MobileFirst Platform Foundation V8.0.0

This edition applies to version V8.0.0 of IBM MobileFirst Platform Foundation and to all subsequent releases and
modifications until otherwise indicated in new editions.

This edition was updated last on 24 May 2017.

This PDF document is made available for convenience and on an "as is" basis only. The master and controlling
document can be found in Knowledge Center at http://ibm.biz/knowctr#SSHS8R_8.0.0/wl_welcome.html. This
PDF document may contain uncontrollable formatting errors or differences from the master version in Knowledge
Center.

© Copyright IBM Corporation 2006, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/all-tutorials/?utm_source=knowledgecenter&utm_medium=banner&utm_campaign=KCbanner
http://ibm.biz/knowctr#SSHS8R_8.0.0/wl_welcome.html

Contents

IBM MobileFirst Platform Foundation
V8.0.0 documentation 1-1

Product overview 2-1
Product main capabilities 2-1
Product components 2-3
System requirements 2-7
Licensing in MobileFirst Server 2-8
Downloading IBM MobileFirst Platform Foundation
V8.0.0 2-9
Matrix of features and platforms. 2-10
Accessibility features for IBM MobileFirst Platform
Foundation 2-10

Release notes 3-1
What's new in V8.0.0 3-1

What's new in building apps 3-1
What's new in MobileFirst APIs 3-3
What's new in MobileFirst security 3-6
What's new in operating system support . . . 3-9
What's new in deploying and managing apps 3-10
What's new in MobileFirst Server 3-12
What's new in IBM MobileFirst Analytics . . . 3-13
What's new in push notifications 3-14

What's new in V8.0.0 interim fixes 3-15
Licensing 3-16
Web applications 3-16
Adapters 3-16
Cordova applications 3-17
Deprecated features and API elements 3-17
Discontinued features and API elements 3-19
Known issues 3-25
Known limitations 3-25

Tutorials and additional resources . . 4-1

Upgrading to IBM MobileFirst Platform
Foundation V8.0.0 5-1
Migrating apps from earlier releases 5-1

Client API changes in V8.0.0 5-4
Server-side API changes in V8.0.0 5-14
Migrating client applications to IBM
MobileFirst Platform Foundation V8.0.0 . . . 5-17
Migrating existing adapters to work under
MobileFirst Server V8.0.0 5-51
Migrating to push notifications from event
source-based notifications 5-54
Migrating apps storing mobile data in
Cloudant with IMFData or Cloudant SDK . . 5-80

Applying a fix pack to IBM MobileFirst Platform
Server 5-104

Installing and configuring server-side
components 6-1
Installation overview 6-1
Installing IBM MobileFirst Platform Server. . . . 6-2

MobileFirst Server overview 6-2
Tutorials about MobileFirst Server installation 6-4
Installing MobileFirst Server for a production
environment 6-39
Installing and configuring for token licensing 6-150

Configuring MobileFirst Server 6-164
Endpoints of the MobileFirst Server
production server 6-164
Configuring MobileFirst Server to enable TLS
V1.2 6-165
Configuring user authentication for
MobileFirst Server administration 6-166
List of JNDI properties of the MobileFirst
Server web applications 6-171
Configuring data sources 6-190
Configuring logging and monitoring
mechanisms 6-194
Configuring license tracking 6-195
WebSphere Application Server SSL
configuration and HTTP adapters 6-197

Installing and configuring the MobileFirst
Analytics Server 6-198
Installing and configuring the Application Center 6-198

Installing Application Center with IBM
Installation Manager 6-199
Installing the Application Center with Ant
tasks. 6-204
Manually installing Application Center . . . 6-207
Configuring Application Center after
installation 6-233

Installation reference 6-268
Ant configuredatabase task reference . . . 6-268
Ant tasks for installation of MobileFirst
Operations Console, MobileFirst Server
artifacts, MobileFirst Server administration,
and live update services 6-274
Ant tasks for installation of MobileFirst Server
push service 6-287
Ant tasks for installation of MobileFirst
runtime environments 6-293
Ant tasks for installation of Application
Center 6-304
Ant tasks for installation of MobileFirst
Analytics 6-309
Internal runtime databases 6-315
Sample configuration files 6-318
Sample configuration files for MobileFirst
Analytics 6-319

Developing applications 7-1
Development concepts and overview 7-2

© Copyright IBM Corp. 2006, 2016 iii

Applications 7-2
MobileFirst Server 7-4
Adapters 7-6
MobileFirst Operations Console overview . . . 7-6
Client app development environments 7-8

Setting up the development environment 7-9
Getting started with MobileFirst development 7-9
The IBM MobileFirst Platform Foundation
Developer Kit 7-9
Setting up the MobileFirst Development Server 7-12
The MobileFirst command-line interface (CLI) 7-13
Setting up an internal Maven repository for
offline development 7-23

Developing the client side of a MobileFirst
application 7-24

Developing MobileFirst applications 7-24
Getting started with a sample MobileFirst
application 7-25
Acquiring the MobileFirst SDK from the
MobileFirst Operations Console 7-26
Developing native applications for iOS in
Xcode. 7-27
Developing native applications in Android
Studio 7-52
Developing native C# applications for
Windows 10 Universal Windows Platform and
Windows 8 Universal 7-65
Developing web applications 7-73
Developing Cordova applications 7-83
JSONStore 7-134
Certificate pinning 7-185

Developing the server side of a MobileFirst
application 7-187

Adapters overview 7-187
Adapters as Apache Maven projects 7-189
MobileFirst Java adapters. 7-192
MobileFirst JavaScript adapters 7-204
Configuring adapters 7-227
Tools for testing and debugging adapters 7-230
Client access to adapters 7-231
Troubleshooting an error when an application
or an adapter is pushed to a MobileFirst
Server 7-233

Updating Cordova client apps directly 7-235
The Direct Update lifecycle 7-236
Creating and deploying updated web
resources to MobileFirst Server 7-237
Implementing secure Direct Update on the
client side 7-239
Default Direct Update user interface 7-240
Serving Direct Update requests from a CDN 7-241
Customizing the Direct Update user interface
and process 7-244

Push notification 7-248
Push notification architecture 7-250
Getting started with push notifications . . . 7-250
Security for push notification clients 7-251
Setting up push notifications 7-253
Broadcast notifications. 7-256
Tag-based notifications 7-257
Unicast notifications 7-257

Sending push notifications 7-258
Sending SMS notifications 7-264
REST Services APIs 7-264
Troubleshooting push notification problems 7-265

MobileFirst security framework. 7-265
Overview of the MobileFirst security
framework 7-265
OAuth resource protection 7-271
Confidential clients 7-279
Security checks 7-281
Access tokens. 7-303
Client security APIs 7-305
Configuring IBM WebSphere DataPower as
the OAuth authorization server. 7-314
Configuring the MobileFirst Server keystore 7-316

API reference 8-1
MobileFirst client-side API 8-1

JavaScript client-side API 8-1
JavaScript client-side push API. 8-4
JavaScript web analytics client-side API. . . . 8-4
Objective-C client-side API for iOS apps . . . 8-5
Objective-C client-side push API for iOS apps 8-5
Objective-C client-side API for hybrid apps . . 8-5
Java client-side API for Android apps 8-5
Java client-side push API for Android apps . . 8-6
C# client-side API for Windows 10 Universal
Windows Platform and Windows 8 Universal
apps 8-6
C# client-side push API for Windows 10
Universal Windows Platform and Windows 8
Universal apps 8-6

MobileFirst server-side API 8-6
JavaScript server-side API 8-7
Java server-side API 8-7

MobileFirst Java Token Validator API 8-7
REST API for the MobileFirst Server administration
service 8-7

Adapter (GET) 8-7
Adapter (DELETE) 8-10
Adapter (POST) 8-13
Adapters (GET) 8-17
Adapter Configuration (GET) 8-20
Adapter configuration (PUT) 8-22
Application Authenticity (DELETE) 8-27
Application Configuration (GET) 8-30
Application Configuration (PUT) 8-32
Application Descriptor (GET) 8-37
Application Environment (GET) 8-39
Application (GET) 8-41
Application (POST) 8-43
Applications (GET) 8-48
Application License Configuration (POST) . . 8-51
Application license configuration (GET) . . . 8-54
Application Version (GET) 8-56
Application Version (DELETE) 8-58
Audit (GET) 8-61
Confidential Clients (GET) 8-62
Confidential Clients (PUT) 8-64
Create Subscription (POST) 8-68
Create Tag (POST) 8-69

iv IBM MobileFirst Platform Foundation V8.0.0

Delete APNs settings (DELETE) 8-70
Delete GCM settings (DELETE) 8-71
Delete WNS settings (DELETE) 8-72
Delete Message (DELETE) 8-73
Delete Subscription (DELETE) 8-74
Delete Tag (DELETE) 8-75
Deploy (POST) 8-76
Deploy Application Authenticity Data (POST) 8-80
Deploy a web resource (POST) 8-83
Device Application Status (PUT) 8-86
Device Status (PUT) 8-90
Device (DELETE) 8-93
Devices (GET) 8-96
Diagnostic Service (GET) 8-100
Export adapter resources (GET). 8-103
Export adapters (GET). 8-105
Export application environment (GET) . . . 8-106
Export application environment resources
(GET) 8-107
Export application resources (GET) 8-109
Export applications (GET) 8-110
Export resources (GET) 8-111
Export runtime resources (GET) 8-113
Farm topology members (GET) 8-114
Farm topology members (DELETE) 8-116
Get Message (GET) 8-118
Get Tags (GET) 8-119
Get APNs Settings (GET) 8-122
Get GCM Settings (GET) 8-123
Get WNS Settings (GET) 8-125
Global Configuration (GET) 8-127
Keystore (GET) 8-129
Keystore (POST) 8-130
Keystore (DELETE) 8-133
License configuration (DELETE) 8-136
Push Device Registration (GET) 8-139
Push Device Registration (DELETE) 8-142
Push Device Subscription (GET) 8-143
Register Application with Push Service (POST) 8-145
Remove Subscription (DELETE) 8-147
Retrieve Device Registration (GET) 8-148
Retrieve Tag (GET) 8-150
Retrieve Web Resource (GET) 8-152
Retrieve Subscription to Push Service. (GET) 8-154
Runtime Configuration (GET) 8-155
Runtime configuration (PUT) 8-157
Runtime (GET) 8-161
Runtime (DELETE) 8-166
Runtime Lock (GET) 8-167
Runtime Lock (DELETE) 8-168
Runtimes (GET) 8-170
Send Bulk Messages (POST) 8-172
Send Message (POST) 8-177
Transaction (GET) 8-182
Transactions (GET) 8-185
Remove Subscription (DELETE) 8-188
Update Device Registration (PUT) 8-190
Update APNs settings (PUT) 8-191
Update GCM settings (PUT) 8-193
Update WNS Settings (PUT). 8-194
Update Tag Information (PUT) 8-196

REST API for the MobileFirst Server push service 8-197
Push Device Registration (DELETE) 8-197
Push Device Registration (GET) 8-198
Push Device Registration (POST) 8-200
Push Device Registrations (GET) 8-202
Push Device Registration (PUT) 8-205
Push Device Subscription (DELETE) 8-207
Push Device Subscription (GET) 8-208
Push Device Subscription (POST) 8-210
Push Device Subscriptions (GET) 8-212
Push Tags (GET). 8-214
Push Applications (GET) 8-217
Push Application (POST) 8-218
Push Application (GET) 8-220
Push Application (DELETE) 8-221
Push Application Settings (GET) 8-222
Push APNS Settings (GET) 8-223
Push APNS settings (PUT) 8-225
Push APNS settings (DELETE) 8-226
Push GCM Settings (GET) 8-227
Push GCM Settings (PUT) 8-228
Push GCM Settings (DELETE) 8-230
Push WNS Settings (GET) 8-231
Push WNS Settings (PUT) 8-232
Push WNS settings (DELETE) 8-234
Push Application (PUT) 8-235
Push Message (POST) 8-236
Push Message (GET) 8-243
Push Message (DELETE) 8-245
Push SMS Settings (GET) 8-245
Push SMS Settings (PUT) 8-247
Push SMS settings (DELETE) 8-250
Push Tags (GET). 8-250
Push Tag (POST) 8-253
Push Tag (GET) 8-255
Push Tag (PUT) 8-256
Push Tag (DELETE) 8-258
Push Webhooks (POST) 8-259
Push Webhooks (PUT) 8-261
Push Webhook (DELETE). 8-263
Push Health Checker (GET) 8-264
Bulk Push Messages (POST) 8-264

REST API for the MobileFirst runtime 8-270
REST API for MobileFirst Analytics and Logger 8-270

Deploying MobileFirst Server to the
cloud 9-1
Deploying to the cloud 9-1

IBM MobileFirst Platform Foundation on cloud 9-1
Deploying MobileFirst Server on IBM
PureApplication System 9-44

Installing IBM MobileFirst Platform Foundation
System Pattern. 9-47
Token licensing requirements for IBM
MobileFirst Platform Foundation System
Pattern 9-48
Deploying MobileFirst Server on a single-node
WebSphere Application Server Liberty profile
server. 9-49

Contents v

Deploying MobileFirst Server on a
multiple-node WebSphere Application Server
Liberty profile server 9-54
Deploying MobileFirst Server on a single-node
WebSphere Application Server full profile
server. 9-59
Deploying MobileFirst Server on a
multiple-node WebSphere Application Server
full profile server 9-64
Deploying MobileFirst Server on clusters of
WebSphere Application Server Network
Deployment servers 9-70
Deploying MobileFirst Application Center on a
single-node WebSphere Application Server
Liberty profile server 9-79
Deploying MobileFirst Application Center on a
single-node WebSphere Application Server full
profile server 9-82
Configuring MobileFirst administration security
with an external LDAP repository 9-86
Configuring an external database with a IBM
MobileFirst Platform Foundation System
Pattern 9-91
Deploying and configuring MobileFirst
Analytics 9-92
Predefined templates for MobileFirst Platform
Pattern 9-98
Script packages for MobileFirst Server . . . 9-108
Upgrading IBM MobileFirst Platform
Foundation System Pattern 9-126

Administering MobileFirst
applications. 10-1
Deploying MobileFirst applications to test and
production environments 10-2

Deploying or updating an adapter to a
production environment 10-2
Configuring SSL between MobileFirst adapters
and back-end servers by using self-signed
certificates 10-3
Building an application for a test or production
environment 10-4
Registering an application to a production
environment 10-6
Transferring server-side artifacts to a test or
production server. 10-7
Updating MobileFirst apps in production 10-14

Administering MobileFirst applications through
the MobileFirst Operations Console 10-15

Mobile-application management 10-15
Application status and token licensing . . . 10-20
Error log of operations on runtime
environments 10-20
Audit log of administration operations . . . 10-21

Administering MobileFirst applications through
Ant 10-23

Calling the mfpadm Ant task 10-24
Commands for general configuration 10-27
Commands for adapters 10-30
Commands for apps 10-34
Commands for devices 10-41

Commands for troubleshooting 10-44
Administering MobileFirst applications through
the command line 10-47

Calling the mfpadm program 10-48
Commands for general configuration 10-54
Commands for adapters 10-57
Commands for apps 10-61
Commands for devices 10-68
Commands for troubleshooting 10-70

Federal standards support in IBM MobileFirst
Platform Foundation 10-74

FDCC and USGCB support 10-75
FIPS 140-2 support 10-75

License tracking 10-80
Setting the application license information 10-80
License Tracking report 10-81
Token license validation 10-83
Integration with IBM License Metric Tool 10-84

Analytics and Logger. 11-1
Major features 11-1
MobileFirst Analytics Server installation guide 11-2

System requirements. 11-2
Capacity considerations 11-3
Installing MobileFirst Analytics on WebSphere
Application Server Liberty 11-4
Installing MobileFirst Analytics on Tomcat . . 11-6
Installing MobileFirst Analytics on WebSphere
Application Server 11-7
Installing MobileFirst Analytics with Ant tasks 11-10
Installing MobileFirst Analytics Server V8.0.0
on servers running previous versions 11-12
Configuration guide 11-14

Configuring analytics from the MobileFirst
Operations Console 11-23

Enabling or disabling data collection from the
MobileFirst Operations Console. 11-23
Role-based access control 11-23
Setting Log Filters from the MobileFirst
Operations Console 11-24
Custom charts 11-25
Alerts 11-30

Developing the analytics client 11-35
Analytics SDK 11-35
Logger SDK 11-37

Analytics workflows 11-42
App usage analytics 11-42
Crash capture. 11-45
Custom analytics 11-48

Troubleshooting Analytics and Logger 11-49

Integrating with other IBM products 12-1

Application Center 13-1
Concept of Application Center 13-1
Specific platform requirements 13-2
General architecture 13-3
Preliminary information 13-5
Preparations for using the mobile client 13-6

vi IBM MobileFirst Platform Foundation V8.0.0

Importing and building the project (Android,
iOS, Windows Phone) 13-8
Customizing features (for experts): Android,
iOS, Windows Phone 13-9
Microsoft Windows 8: Building the project 13-11
Deploying the mobile client in Application
Center 13-12

Push notifications of application updates . . . 13-12
Configuring push notifications for application
updates. 13-13
Configuring the Application Center server for
connection to Google Cloud Messaging . . . 13-14
Configuring the Application Center server for
connection to Apple Push Notification
Services 13-16
Building a version of the mobile client that
does not depend on the GCM API. 13-18

The Application Center console. 13-18
Starting the Application Center console . . . 13-19
Troubleshooting a corrupted login page
(Apache Tomcat) 13-20
Troubleshooting a corrupted login page in
Safari browsers 13-21
Application Management 13-21
Adding a mobile application 13-22
Adding an application from a public app store 13-24
Application properties 13-27
Editing application properties 13-29
Upgrading a mobile application in MobileFirst
Server and the Application Center 13-31
Downloading an application file 13-35
Viewing application reviews 13-35
User and group management 13-36
Access control 13-39
Managing access control 13-39
Device Management 13-41
Application enrollment tokens in Windows 8
Universal 13-44
Signing out of the Application Center console 13-45

Command-line tool for uploading or deleting an
application 13-45

Using the stand-alone tool to upload an
application 13-46
Using the stand-alone tool to delete an
application 13-47
Using the stand-alone tool to clear the LDAP
cache 13-48
Ant task for uploading or deleting an
application 13-49

The mobile client 13-51
Installing the client on an Android mobile
device 13-51
Installing the client on an iOS mobile device 13-54
Installing the client on Windows 8 Universal 13-58
The Login view 13-61
Views in the Application Center client . . . 13-62
Installing an application on an Android device 13-66
Installing an application on an iOS device 13-68
Installing an application on a Windows Phone
device 13-70

Installing a Windows Store application on a
Windows device 13-72
Installing applications through public app
stores 13-77
Removing an installed application 13-78
Showing details of a specific application
version 13-79
Updating an application 13-80
Upgrading the Application Center client
automatically 13-80
Reverting an installed application 13-84
Marking or unmarking a favorite app . . . 13-85
Submitting a review for an installed
application 13-85
Viewing reviews. 13-86

Setting logging and tracing for Application
Center on the application server 13-87

Enabling logging and tracing in WebSphere
Application Server full profile 13-87
Enabling logging and tracing in WebSphere
Application Server Liberty 13-87
Enabling logging and tracing in Apache
Tomcat 13-88
JNDI properties for controlling trace output 13-88

Troubleshooting 14-1

Glossary 15-1
A 15-1
B 15-2
C 15-2
D 15-4
E 15-4
F 15-4
G 15-5
H 15-5
I 15-5
J 15-5
K 15-6
L 15-6
M 15-7
N 15-7
O 15-8
P 15-8
R 15-9
S 15-9
T 15-10
U 15-11
V 15-11
W 15-11
X 15-11

Support and comments. 16-1

Notices A-1
Trademarks A-3
Terms and conditions for product documentation A-3
IBM Online Privacy Statement A-4

Index X-1

Contents vii

viii IBM MobileFirst Platform Foundation V8.0.0

IBM MobileFirst Platform Foundation V8.0.0 documentation

Welcome to the IBM MobileFirst™ Platform Foundation V8.0.0 documentation,
where you can find information about how to install, maintain, and use the IBM
MobileFirst Platform Foundation.

Getting started

“Product overview” on page 2-1
IBM MobileFirst Platform Foundation is an integrated platform that helps you
extend your business to mobile devices.
“Notices” on page A-1
“Release notes” on page 3-1
You can identify the latest information about this product release and all its fix
packs.
“Tutorials and additional resources” on page 4-1
Tutorials help you get started with and learn about IBM MobileFirst Platform
Foundation. Use them to evaluate what the product can do for you.
“Installation overview” on page 6-1
IBM MobileFirst Platform Foundation provides development tools and
server-side components that you can install on-premises or deploy to the cloud
for test or production use. Review the installation topics appropriate for your
installation scenario.
“Configuring MobileFirst Server” on page 6-164
Consider your backup and recovery policy, optimize your MobileFirst Server
configuration, and apply access restrictions and security options.
“System requirements” on page 2-7
System requirements for IBM MobileFirst Platform Foundation include
operating systems, SDKs, and other software.
Common tasks

“Developing applications” on page 7-1
The process for developing applications has steps that are common to all
environments: setting up a server, creating an initial server registration and
corresponding configuration files, creating a new (or opening an existing)
project in your chosen IDE, and adding the necessary SDK files to your IDE
project. Also, server-side adapters can be developed as needed for the
application.
“Deploying MobileFirst Server to the cloud” on page 9-1
You can deploy MobileFirst Server to the cloud. Review the various options to
run MobileFirst Server on the cloud.
“Administering MobileFirst applications” on page 10-1
Run and maintain MobileFirst applications in production.
“Application Center” on page 13-1
Learn about the Application Center: what it is for, the different components and
features, and how to use the console and the client.
Troubleshooting and support

“Troubleshooting” on page 14-1
You can find advice on how to troubleshoot problems, and more information
about known limitations and technotes (Troubleshooting).

© Copyright IBM Corp. 2006, 2016 1-1

“Known issues” on page 3-25
You can identify the latest known issues and their resolutions, for this product
release and all its fix packs, by browsing this dynamic list of documents.
“Accessibility features for IBM MobileFirst Platform Foundation” on page 2-10
Accessibility features assist users who have a disability, such as restricted
mobility or limited vision, to use information technology content successfully.

IBM Support home for IBM MobileFirst Platform Foundation

IBM Software Support home page
More information

Latest version of this PDF file

Online knowledge center for this documentation

Mobile Application Developer skills

1-2 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/entry/portal/product/other_software/ibm_mobilefirst_platform_foundation
http://www.ibm.com/support/entry/portal/overview/software/software_support_(general)
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mobilefirst_platform_foundation_doc.pdf
http://www.ibm.com/support/knowledgecenter/SSHS8R_8.0.0/wl_welcome.html
https://www-304.ibm.com/services/learning/ites.wss/zz-en?pageType=page&c=S921477Y16151E06

Product overview

IBM MobileFirst Platform Foundation is an integrated platform that helps you
extend your business to mobile devices.

IBM MobileFirst Platform Foundation includes a comprehensive development
environment, mobile-optimized runtime middleware, a private enterprise
application store, and an integrated management and analytics console, all
supported by various security mechanisms.

With IBM MobileFirst Platform Foundation, your organization can efficiently
develop, connect, run, and manage rich mobile applications (apps) that can access
the full capabilities of your target mobile devices. IBM MobileFirst Platform
Foundation can help reduce time-to-market, cost, and complexity of development,
and enables an optimized customer and employee user experience across multiple
environments.

As part of this comprehensive mobile solution, IBM MobileFirst Platform
Foundation can be integrated with application lifecycle, security, management, and
analytics capabilities to help you address the unique mobile needs of your
business.

Product main capabilities
With IBM MobileFirst Platform Foundation, you can use capabilities such as
development, testing, back-end connections, push notifications, offline mode,
update, security, analytics, monitoring, and application publishing.

Development

IBM MobileFirst Platform Foundation provides a framework that enables the
development, optimization, integration, and management of secure mobile
applications (apps). IBM MobileFirst Platform Foundation does not introduce a
proprietary programming language or model that users must learn.

You can develop apps by using HTML5, CSS3, and JavaScript. You can optionally
write native code (Java™ or Objective-C). IBM MobileFirst Platform Foundation
provides an SDK that includes libraries that you can access from native code.

Back-end connections

Some mobile applications run strictly offline with no connection to a back-end
system, but most mobile applications connect to existing enterprise services to
provide the critical user-related functions. For example, customers can use a mobile
application to shop anywhere, at any time, independent of the operating hours of
the store. Their orders must still be processed by using the existing e-commerce
platform of the store. To integrate a mobile application with enterprise services,
you must use middleware such as a mobile gateway. IBM MobileFirst Platform
Foundation can act as this middleware solution and make communication with
back-end services easier.

© Copyright IBM Corp. 2006, 2016 2-1

Push notifications

With push notifications, enterprise applications can send information to mobile
devices, even when the application is not being used. IBM MobileFirst Platform
Foundation includes a unified notification framework which provides a consistent
mechanism for such push notifications. With this unified notification framework,
you can send push notifications without having to know the details of each
targeted device or platform because each mobile platform has a different
mechanism for push notification.

Offline mode

In terms of connectivity, mobile applications can operate offline, online, or in a
mixed mode. IBM MobileFirst Platform Foundation uses a client/server
architecture that can detect whether a device has network connectivity, and the
quality of the connection. Acting as a client, mobile applications periodically
attempt to connect to the server and to assess the strength of the connection. An
offline-enabled mobile application can be used when a mobile device lacks
connectivity but some functions can be limited. When you create an offline-enabled
mobile application, it is useful to store information about the mobile device that
can help preserve its functionality in offline mode. This information typically
comes from a back-end system, and you must consider data synchronization with
the back end as part of the application architecture. IBM MobileFirst Platform
Foundation includes a feature that is called JSONStore for data exchange and
storage. With this feature, you can create, read, update, and delete data records
from a data source. Each operation is queued when operating offline. When a
connection is available, the operation is transferred to the server and each
operation is then performed against the source data.

Update

IBM MobileFirst Platform Foundation simplifies version management and mobile
application compatibility. Whenever a user starts a mobile application, the
application communicates with a server. By using this server, IBM MobileFirst
Platform Foundation can determine whether a newer version of the application is
available, and if so, give information to the user about it, or push an application
update to the device. The server can also force an upgrade to the latest version of
an application to prevent continued use of an outdated version.

Security

Protecting confidential and private information is critical for all applications within
an enterprise, including mobile applications. Mobile security applies at various
levels, such as mobile application, mobile application services, or back-end service.
You must ensure customer privacy and protect confidential data from being
accessed by unauthorized users. Dealing with privately owned mobile devices
means giving up control on certain lower levels of security, such as the mobile
operating system.

IBM MobileFirst Platform Foundation provides secure, end-to-end communication
by positioning a server that oversees the flow of data between the mobile
application and your back-end systems. With IBM MobileFirst Platform
Foundation, you can define custom security handlers for any access to this flow of
data. Because any access to data of a mobile application has to go through this
server instance, you can define different security handlers for mobile applications,
web applications, and back-end access. With this kind of granular security, you can

2-2 IBM MobileFirst Platform Foundation V8.0.0

define separate levels of authentication for different functions of your mobile
application. You can also prevent mobile applications from accessing sensitive
information.

Analytics

The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage, or to detect problems.

In addition to reports that summarize app activity, IBM MobileFirst Platform
Foundation includes a scalable operational analytics platform accessible in the
MobileFirst Operations Console. The analytics feature enables enterprises to search
across logs and events that are collected from devices, apps, and servers for
patterns, problems, and platform usage statistics. You can enable analytics, reports,
or both, depending on your needs.

Monitoring

IBM MobileFirst Platform Foundation includes a range of operational analytics and
reporting mechanisms for collecting, viewing, and analyzing data from your IBM
MobileFirst Platform Foundation applications and servers, and for monitoring
server health.

Application publishing

IBM MobileFirst Platform Foundation Application Center is an enterprise
application store. With the Application Center, you can install, configure, and
administer a repository of mobile applications for use by individuals and groups
across your enterprise. You can control who in your organization can access the
Application Center and upload applications to the Application Center repository,
and who can download and install these applications onto a mobile device. You
can also use the Application Center to collect feedback from users and access
information about devices on which applications are installed.

The concept of the Application Center is similar to the concept of the Apple public
App Store or the Google Play store, except that it targets the development process.

The Application Center provides a repository for storing the mobile application
files and a web-based console for managing that repository. The Application Center
also provides a mobile client application to allow users to browse the catalog of
applications that are stored by the Application Center, install applications, leave
feedback for the development team, and expose production applications to IBM®

Endpoint Manager. Access to download and install applications from the
Application Center is controlled by using access control lists (ACLs).

Product components
IBM MobileFirst Platform Foundation consists of the following components:
MobileFirst Platform CLI, MobileFirst Server, client-side runtime components,
MobileFirst Operations Console, Application Center, and IBM MobileFirst Platform
Foundation System Pattern.

Product overview 2-3

Component overview

The following figure shows the components of IBM MobileFirst Platform
Foundation:

MobileFirst Platform CLI

You can use the IBM MobileFirst Platform Command Line Interface (CLI) to
develop and manage applications, in addition to using the IBM MobileFirst
Platform Operations Console. Some aspects of the MobileFirst development process
must be done with the CLI.

The commands, all prefaced with mfpdev, support the following types of tasks:
v Registering apps with the MobileFirst Server
v Configuring your app
v Creating, building, and deploying adapters
v Previewing and updating Cordova apps

For more information, see “The MobileFirst command-line interface (CLI)” on page
7-13

Figure 2-1. IBM MobileFirst Platform Foundation architecture

2-4 IBM MobileFirst Platform Foundation V8.0.0

MobileFirst Server

The MobileFirst Server provides secured backend connectivity, application
management, push notification support and analytics capabilities and monitoring
to MobileFirst applications. It is not an application server in the Java Platform,
Enterprise Edition (Java EE) sense. It acts as a container for IBM MobileFirst
Platform Foundation application packages, and is in fact a collection of web
applications, optionally packaged as an EAR (enterprise archive) file that run on
top of traditional application servers.

MobileFirst Server integrates into your enterprise environment and uses existing
resources and infrastructure. This integration is based on adapters that are
server-side software components responsible for channeling back-end enterprise
systems and cloud-based services to the user device. You can use adapters to
retrieve and update data from information sources, and to allow users to perform
transactions and start other services and applications.
v For more information about using the MobileFirst Server in a development

environment, see “Setting up the MobileFirst Development Server” on page 7-12
v For more information about installing the MobileFirst Server on-premises, see

“Installing IBM MobileFirst Platform Server” on page 6-2
v For more information about deploying the MobileFirst Server to the cloud, see

“Deploying MobileFirst Server to the cloud” on page 9-1

Client-side runtime components

IBM MobileFirst Platform Foundation provides client-side runtime code that
embeds server functionality within the target environment of deployed apps. These
runtime client APIs are libraries that are integrated into the locally stored app
code. You use them to add MobileFirst features to your client apps. The APIs and
libraries can be installed with the IBM MobileFirst Platform Foundation Developer
Kit or you can download them from repositories for your development platform.
v For more information about iOS SDKs, see “Developing native applications for

iOS in Xcode” on page 7-27
v For more information about Android SDKs, see “Developing native applications

in Android Studio” on page 7-52
v For more information about Windows SDKs, see “Developing native C#

applications for Windows 10 Universal Windows Platform and Windows 8
Universal” on page 7-65

v For more information about Cordova plug-ins, see “Developing Cordova
applications” on page 7-83

MobileFirst Operations Console

The MobileFirst Operations Console is used for the control and management of the
mobile applications. The MobileFirst Operations Console is also an entry point to
learn about IBM MobileFirst Platform development. From the console, you can
download code examples, tools, and SDKs.

You can use the MobileFirst Operations Console for the following tasks:
v Monitor and configure all deployed applications, adapters, and push notification

rules from a centralized, web-based console.
v Remotely disable the ability to connect to MobileFirst Server by using

preconfigured rules of app version and device type.

Product overview 2-5

v Customize messages that are sent to users on application launch.
v Collect user statistics from all running applications.
v Generate built-in, pre-configured reports about user adoption and usage

(number and frequency of users that are engaging with the server through the
applications).

v Configure data collection rules for application-specific events.

For more information about using the console for development, see “MobileFirst
Operations Console overview” on page 7-6.

For more information about using the console for application management, see
“Administering MobileFirst applications” on page 10-1

IBM MobileFirst Analytics

IBM MobileFirst Platform Foundation includes a scalable operational analytics
feature that is accessible from the MobileFirst Operations Console. The analytics
feature enables enterprises to search across logs and events that are collected from
devices, apps, and servers for patterns, problems, and platform usage statistics.

The data for operational analytics includes the following sources:
v Crash events of an application on iOS and Android devices (crash events for

native code and JavaScript errors).
v Interactions of any application-to-server activity (anything that is supported by

the MobileFirst client/server protocol, including push notification).
v Server-side logs that are captured in traditional MobileFirst log files.

For more information about IBM MobileFirst Analytics, see “Analytics and Logger”
on page 11-1.

Application Center

With the Application Center, you can share mobile applications that are under
development within your organization in a single repository of mobile
applications. Development team members can use the Application Center to share
applications with members of the team. This process facilitates collaboration
between all the people who are involved in the development of an application.

Your company can typically use the Application Center as follows:
1. The development team creates a version of an application.
2. The development team uploads the application to the Application Center,

enters its description, and asks the extended team to review and test it.
3. When the new version of the application is available, a tester runs the

Application Center installer application, which is the mobile client. Then, the
tester locates this new version of the application, installs it on their mobile
device, and tests it.

4. After the tests, the tester rates the application and submits feedback, which is
visible to the developer from the Application Center console.

The Application Center is aimed for private use within a company, and you can
target some mobile applications to specific groups of users. You can use the
Application Center as an enterprise application store.

2-6 IBM MobileFirst Platform Foundation V8.0.0

For more information, see “Application Center” on page 13-1

IBM MobileFirst Platform Foundation System Pattern

With the MobileFirst Platform Pattern, you can deploy MobileFirst Server on IBM
PureApplication® System or IBM PureApplication Service on SoftLayer®. With
these patterns, administrators and corporations can respond quickly to changes in
the business environment by taking advantage of on-premises Cloud technologies.
This approach simplifies the deployment process, and improves the operational
efficiency to cope with increased mobile demand. The demand accelerates iteration
of solutions that exceed traditional demand cycles. Using MobileFirst Platform
Pattern also gives access to best practices and built-in expertise, such as built-in
scaling policies.

PureApplication System
IBM PureApplication System is an integrated, highly scalable system that is
based on IBM X-Architecture, providing an application-centric computing
model in a cloud environment.

An application-centric system is an efficient way to manage complex
applications and the tasks and processes that are invoked by the
application. The entire system implements a diverse virtual computing
environment, in which different resource configurations are automatically
tailored to different application workloads. The application management
capabilities of the IBM PureApplication System platform make deployment
of middleware and other application components quick, easy, and
repeatable.

IBM PureApplication System provides virtualized workloads and a scalable
infrastructure that is delivered in one integrated system.

Virtual System Patterns
Virtual system patterns are a logical representation of a recurring topology
for a set of deployment requirements.

Virtual system patterns enable efficient and repeatable deployments of
systems that include one or more virtual machine instances, and the
applications that run on them. You can completely automate the
deployment and eliminate the need to perform multiple time-consuming
manual tasks. Such a deployment eliminates problems that are introduced
by error-prone, manual configuration processes, especially in complex
production topologies such as server farms, and accelerates solution
deployment.

System requirements
System requirements for IBM MobileFirst Platform Foundation include operating
systems, SDKs, and other software.

IBM MobileFirst Platform Foundation has a number of system requirements that
must be met for you to install and configure the product successfully. The system
requirements include the following items:
v Operating systems that support IBM MobileFirst Platform Foundation, including

mobile device operating systems
v Supported software development kits (SDKs)
v Application servers, database management systems, and other software that are

required or supported by IBM MobileFirst Platform Foundation

Product overview 2-7

System requirements by type (high-level)

The requirements in the following links are organized by high-level categories:
v Operating systems
v Software

System requirements by platform (detail)

The requirements in the following links are organized by installation target
platform:
v AIX®

v Linux
v Mac OS
v Mobile OS
v Windows

System requirements by component (detail)

The requirements in the following links are organized by product component:
v IBM MobileFirst Platform Command Line Interface (CLI)
v IBM Mobile Foundation for Bluemix®

v IBM MobileFirst Platform Application Center
v IBM MobileFirst Platform Operational Analytics
v IBM MobileFirst Platform Server
v IBM MobileFirst Platform Device Runtime

Licensing in MobileFirst Server
The IBM MobileFirst Platform Server supports three different licensing methods
based on what you have purchased.

Application or Addressable Device licenses

If you have purchased Application or Addressable Device licenses, you can
consume what you have purchased and verify your usage and compliance through
the License tracking page in the MobileFirst Operations Console and through
License Tracking report.

Processor value unit (PVU) licensing

Processor value unit (PVU) licensing is available if you have purchased IBM
MobileFirst Platform Foundation Extension (see http://www.ibm.com/software/
sla/sladb.nsf/lilookup/C154C7B1C8C840F38525800A0037B46E?OpenDocument),
but only after the purchase of IBM WebSphere® Application Server Network
Deployment, IBM API Connect™ Professional, or IBM API Connect Enterprise.

The PVU license pricing structure is responsive to both the type and number of
processors that are available to installed products. Entitlements can be full capacity
or subcapacity. Under the processor value unit licensing structure, you license
software based on the number of value units assigned to each processor core.

For example, processor type A is assigned 80 value units per core and processor
type B is assigned 100 value units per core. If you license a product to run on two

2-8 IBM MobileFirst Platform Foundation V8.0.0

https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/osForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/prereqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatform=AIX
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatform=Linux
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatform=Mac%20OS
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatform=Mobile%20OS
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatform=Windows
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CWindows&duComponentIds=D011&mandatoryCapIds=1%7C13%7C132%7C26&optionalCapIds=30%7C9%7C121%7C26
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CWindows&duComponentIds=S012&mandatoryCapIds=1%7C13%7C132%7C26&optionalCapIds=30%7C9%7C121
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CWindows&duComponentIds=S002&mandatoryCapIds=1%7C13%7C132%7C26&optionalCapIds=30%7C9%7C121%7C26
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CWindows&duComponentIds=S003&mandatoryCapIds=1%7C13%7C132%7C26&optionalCapIds=30%7C9%7C121%7C26
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CWindows&duComponentIds=S004&mandatoryCapIds=1%7C13%7C132%7C26&optionalCapIds=30%7C9%7C121%7C26
https://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=366EEBA00BA011E5A377F80D5A43BD22&osPlatforms=AIX%7CLinux%7CMac%20OS%7CMobile%20OS%7CWindows&duComponentIds=M007&mandatoryCapIds=1%7C13%7C132%7C26&optionalCapIds=30%7C9%7C121%7C26
http://www.ibm.com/software/sla/sladb.nsf/lilookup/C154C7B1C8C840F38525800A0037B46E?OpenDocument
http://www.ibm.com/software/sla/sladb.nsf/lilookup/C154C7B1C8C840F38525800A0037B46E?OpenDocument

type A processors, you must acquire an entitlement for 160 value units per core. If
the product is to run on two type B processors, the required entitlement is 200
value units per core.

For more information on PVU licensing see https://www.ibm.com/support/
knowledgecenter/SS8JFY_9.2.0/com.ibm.lmt.doc/Inventory/overview/
c_processor_value_unit_licenses.html.

Token Licensing

If you have purchased Token licenses, configure your MobileFirst Server to
communicate with a remote token license server.

In a token environment, every product consumes a predefined token value per
license, compared to a traditional floating environment where a predefined
quantity per license is consumed. The license key has a pool of tokens from which
the license server calculates the tokens that are checked in and checked out. Tokens
are either consumed or released when a product checks in or checks out licenses
from the license server.

Your licensing contract defines whether you might be able to use token licensing,
the number of tokens available, and features that are validated by tokens. See
“Token license validation” on page 10-83.

If you have purchased token-based licenses, install a version of the MobileFirst
Server that supports token licenses and configure your application server so that
your server can communicate with the remote token server. See “Installing and
configuring for token licensing” on page 6-150.

With token licensing, you can specify the license app type in the application
descriptor of each one of your apps before deploying them. The license app type
can be either APPLICATION or ADDITIONAL_BRAND_DEPLOYMENT. For testing, you can
set the value of the license app type to NON_PRODUCTION. For more information, see
“Setting the application license information” on page 10-80.

The Rational® License Key Server Administration and Reporting tool that is
released with Rational License Key Server 8.1.4.9 can administer and generate
reports for the license consumed by IBM MobileFirst Platform Foundation. You can
identify the relevant parts of the report by the following display names: Mobile
First Platform Foundation Application or Mobile First Platform Additional
Brand Deployment. These names refer to the license app type for which the tokens
are consumed. For more information, see Rational License Key Server
Administration and Reporting Tool overview and Rational License Key Server Fix
Pack 9 (8.1.4.9).

For information on planning to use token licensing with MobileFirst Server, see
“Planning for the use of token licensing” on page 6-150.

To obtain the license keys for IBM MobileFirst Platform Foundation, you need to
access IBM Rational License Key Center. For more information about generating
and managing your license keys, see IBM Support - Licensing.

Downloading IBM MobileFirst Platform Foundation V8.0.0
The first step for you to work with IBM MobileFirst Platform Foundation V8.0.0 is
to download the artifacts that are required for its installation.

Product overview 2-9

https://www.ibm.com/support/knowledgecenter/SS8JFY_9.2.0/com.ibm.lmt.doc/Inventory/overview/c_processor_value_unit_licenses.html
https://www.ibm.com/support/knowledgecenter/SS8JFY_9.2.0/com.ibm.lmt.doc/Inventory/overview/c_processor_value_unit_licenses.html
https://www.ibm.com/support/knowledgecenter/SS8JFY_9.2.0/com.ibm.lmt.doc/Inventory/overview/c_processor_value_unit_licenses.html
https://www.ibm.com/support/knowledgecenter/SSSTWP_8.1.4/com.ibm.rational.license.doc/topics/c_rlks_admin_tool_overview.html
https://www.ibm.com/support/knowledgecenter/SSSTWP_8.1.4/com.ibm.rational.license.doc/topics/c_rlks_admin_tool_overview.html
http://www.ibm.com/support/docview.wss?uid=swg24040300
http://www.ibm.com/support/docview.wss?uid=swg24040300
http://www.ibm.com/software/rational/support/licensing/

You can download the artifacts of IBM MobileFirst Platform Foundation V8.0.0 in
multiple ways, depending on how you purchased this product.

For detailed instructions on how to download the product artifacts that you need
for its installation, see the product Download page.

Matrix of features and platforms
IBM MobileFirst Platform Foundation provides many features and supports many
platforms.

The Mobile OS feature mapping for IBM MobileFirst Platform Foundation technote
on the IBM Support Portal lists the features that are available on each of the
platforms that IBM MobileFirst Platform Foundation supports.

Accessibility features for IBM MobileFirst Platform Foundation
Accessibility features assist users who have a disability, such as restricted mobility
or limited vision, to use information technology content successfully.

Accessibility features

IBM MobileFirst Platform Foundation includes the following major accessibility
features:
v Keyboard-only operation
v Operations that support the use of a screen reader

IBM MobileFirst Platform Foundation uses the latest W3C Standard, WAI-ARIA 1.0
(http://www.w3.org/TR/wai-aria/), to ensure compliance to US Section 508
(http://www.access-board.gov/guidelines-and-standards/communications-and-it/
about-the-section-508-standards/section-508-standards), and Web Content
Accessibility Guidelines (WCAG) 2.0 (http://www.w3.org/TR/WCAG20/). To take
advantage of accessibility features, use the latest release of your screen reader in
combination with the latest web browser that is supported by this product.

The IBM MobileFirst Platform Foundation online product documentation in IBM
Knowledge Center is enabled for accessibility. The accessibility features of IBM
Knowledge Center are described at: http://www.ibm.com/support/
knowledgecenter/doc/kc_help.html#accessibility.

Keyboard navigation

This product uses standard navigation keys.

Interface information

The IBM MobileFirst Platform Foundation user interfaces do not have content that
flashes 2 - 55 times per second.

You can use a screen reader with a digital speech synthesizer to hear what is
displayed on your screen. Consult the documentation with your assistive
technology for details about how to use it with this product and its documentation.

MobileFirst Platform CLI
By default, status messages that are displayed by the MobileFirst Platform
CLI use various colors to indicate success, errors, and warnings. You can

2-10 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/docview.wss?uid=swg2C4000039
http://www.ibm.com/support/docview.wss?uid=swg27039422
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.ibm.com/support/knowledgecenter/doc/kc_help.html#accessibility
http://www.ibm.com/support/knowledgecenter/doc/kc_help.html#accessibility

use the --no-color option on any MobileFirst Platform CLI command to
suppress the use of these colors for that command. When --no-color is
specified, output is displayed in the text display colors that are set for your
operating system console.

Web interface
The IBM MobileFirst Platform Foundation web user interfaces rely on
cascading style sheets to render content properly and to provide a usable
experience. The application provides an equivalent way for low-vision
users to use a user’s system display settings, including high-contrast mode.
You can control font size by using the device or web browser settings.

You can navigate through the different MobileFirst environments and their
documentation by using keyboard shortcuts. Eclipse provides accessibility
features for its development environments. Internet browsers also provide
accessibility features for web applications, such as the IBM MobileFirst
Platform Operations Console, the IBM MobileFirst Analytics Console, the
IBM MobileFirst Platform Application Center console, and the IBM
MobileFirst Platform Application Center mobile client.

The IBM MobileFirst Platform Foundation web user interface includes WAI-ARIA
navigational landmarks that you can use to quickly navigate to functional areas in
the application.

Installation and configuration

There are two ways to install and configure IBM MobileFirst Platform Foundation:
by graphical user interface (GUI), or by command-line.

Although the graphical user interface (IBM Installation Manager in wizard mode
or Server Configuration Tool) does not provide information about user interface
objects, equivalent function is available with the command-line interface. All the
functions in the GUI are supported through the command-line, and some
particular installation and configuration features are only available with the
command-line. You can read about the accessibility features of IBM Installation
Manager in the IBM Knowledge Center.

The following topics provide you with the information on how the installation and
configuration can be done without GUI:
v “Working with sample response files for IBM Installation Manager” on page 6-48

This method enables silent installation and configuration of MobileFirst Server
and Application Center. You have the possibility to not install Application
Center by using the response file named install-no-appcenter.xml. You can
then use Ant task to install it at a later stage. See “Installing the Application
Center with Ant tasks” on page 6-204. In this case, the installation and the
upgrading of Application Center can be done independently.

v “Installing with Ant Tasks” on page 6-110
v “Installing the Application Center with Ant tasks” on page 6-204

Vendor software

IBM MobileFirst Platform Foundation includes certain vendor software that is not
covered under the IBM license agreement. IBM makes no representation about the
accessibility features of these products. Contact the vendor for the accessibility
information about its products.

Product overview 2-11

http://www.ibm.com/support/knowledgecenter/SSDV2W/im_family_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSDV2W/im_family_welcome.html?lang=en

Related accessibility information

In addition to standard IBM help desk and support websites, IBM has established
a TTY telephone service for use by deaf or hard of hearing customers to access
sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility

For more information about the commitment that IBM has to accessibility, see IBM
Accessibility (www.ibm.com/able).

2-12 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/able
http://www.ibm.com/able
http://www.ibm.com/able

Release notes

You can identify the latest information about this product release and all its fix
packs.

What's new in V8.0.0
IBM MobileFirst Platform Foundation V8.0.0 brings significant changes that
modernize your MobileFirst application development, deployment, and
management experience.

What's new in building apps
The IBM MobileFirst Platform Foundation SDK and command-line interface have
been redesigned to give you greater flexibility and efficiency when developing
your apps. Also, you can now use any of your preferred Cordova tools when you
develop cross-platform apps.

Review the following sections to learn what is new for developing your apps.

New development and deployment process

Starting with IBM MobileFirst Platform Foundation V8.0.0, you no longer create a
project WAR file that needs to be installed in the application server. Instead, the
MobileFirst Server is installed once, and you upload the server-side configuration
of your apps, of the resource security or of the push service to the server. You can
modify the configuration of your apps with the MobileFirst Operations Console.

MobileFirst projects no longer exist. Instead, you develop your mobile app with
the development environment of your choice.

You can modify the server-side configuration of your apps and adapters without
stopping the MobileFirst Server.

For more information about the new development process, see “Development
concepts and overview” on page 7-2

For more information about the migration of existing applications, see “Migrating
apps from earlier releases” on page 5-1.

For more information about administering MobileFirst applications, see
“Administering MobileFirst applications” on page 10-1.

Web applications

You can now use the MobileFirst client-side JavaScript API to develop web
applications with your preferred tools and IDE. You can register your web
application to MobileFirst Server to add security capabilities to the application. See
What's new in web-applications security.

You can also use the new client-side JavaScript web analytics API, which is
provided as part of the new web SDK, to add IBM MobileFirst Analytics
capabilities to your web application.

© Copyright IBM Corp. 2006, 2016 3-1

For more information about developing MobileFirst web applications, see
“Developing web applications” on page 7-73.

Develop cross-platform apps with your preferred Cordova tools

Starting with IBM MobileFirst Platform Foundation V8.0.0, you can now use your
preferred Cordova tools (such as Apache Cordova CLI or Ionic Framework) to
develop your cross-platform hybrid apps. You obtain these tools independently of
IBM MobileFirst Platform Foundation, and then add MobileFirst plug-ins to
provide MobileFirst back-end capabilities. For more information, see “Developing
Cordova applications” on page 7-83.

You can also take advantage of additional new security features for Cordova apps.

You can install the IBM MobileFirst Platform Foundation Studio Eclipse plug-in to
manage your cross-platform Cordova apps that are enabled with IBM MobileFirst
Platform Foundation in the Eclipse development environment. The IBM
MobileFirst Platform Foundation Studio plug-in also provides additional IBM
MobileFirst Platform Command Line Interface (CLI) commands that you can run
from within the Eclipse environment. For more information, see “IBM MobileFirst
Studio plug-in for managing Cordova projects in Eclipse” on page 7-114.

SDK componentization

Previously MobileFirst client SDK was delivered as a single framework or JAR file.
You can now choose to include or exclude specific functionalities. In addtion to the
core SDK, each MobileFirst API has its own set of optional components. See
“Adding optional iOS frameworks” on page 7-31, “Adding the optional
MobileFirst components with Gradle” on page 7-56, “Adding MobileFirst features
to an existing Cordova app” on page 7-91 and “Adding the optional MobileFirst
components by using NuGet” on page 7-67.

New, improved development command-line interface (CLI)

The IBM MobileFirst Platform Command Line Interface (CLI) has been redesigned
for greater development efficiency, including for use in automated scripts.
Commands now start with the prefix mfpdev. The CLI is included in the IBM
MobileFirst Platform Foundation Developer Kit, or you can quickly download the
latest version of the CLI from npm. For more information, see “The MobileFirst
command-line interface (CLI)” on page 7-13.

Migration assistance tool

A migration assistance tool simplifies the procedure of migrating your existing
apps to IBM MobileFirst Platform Foundation version 8.0. The tool scans your
existing MobileFirst apps and creates a list of the APIs that are used in the file that
are either removed, deprecated, or replaced in version 8.0. When you run the
migration assistance tool on Apache Cordova applications that were created with
the IBM MobileFirst Platform Foundation, it creates a new Cordova structure for
the app that is compliant with version 8.0. For more information about the
migration assistance tool, see “Scanning existing MobileFirst native iOS apps to
prepare for MobileFirst version 8.0” on page 5-17, “Scanning existing MobileFirst
native Android apps to prepare for MobileFirst version 8.0” on page 5-25,
“Scanning existing MobileFirst native Windows apps to prepare for MobileFirst
version 8.0” on page 5-30, “Starting the Cordova app migration with the migration
assistance tool” on page 5-38.

3-2 IBM MobileFirst Platform Foundation V8.0.0

Cordova Crosswalk WebView

Starting with Cordova 4.0 the pluggable WebView allows the default web runtime
to be replaced. Crosswalk is now supported by Cordova applications with IBM
MobileFirst Platform Foundation. Using the Crosswalk WebView for Android
allows high performance and consistent user experience across a wide range of
mobile devices. To take advantage of the Crosswalk capabilities, apply the Cordova
Crosswalk plug-in. For more information see “Crosswalk WebView (Android)” on
page 7-133.

Distributing MobileFirst SDK for Windows 8 and Windows 10
Universal apps with NuGet

The MobileFirst SDK for Windows 8 and Windows 10 Universal apps is available
from NuGet at https://www.nuget.org/packages. To get started, see the following
topics:
v “Adding the MobileFirst SDK by using NuGet” on page 7-66
v “Methods of setting up your environment” on page 7-65

org.apache.http replaced by okHttp

org.apache.http has been removed from the Android SDK. okHttp will be used as
the http dependency. For details on the SDK changes see org.apache.http removal.

Application Samples

IBM MobileFirst Platform Foundation now includes sample applications that you
can use as a starting point for developing your own apps. Samples for iOS,
Android, Windows, web, and Cordova are provided. You can download the
sample apps from the MobileFirst Operations Console. For more information, see
“Getting started with a sample MobileFirst application” on page 7-25.

WKWebView support for iOS hybrid Cordova apps

From IBM MobileFirst Platform Foundation V8.0.0, you can replace the default
UIWebView in cordova apps with WKWebView. To get started with WKWebView
for your hybrid iOS cordova applications, refer “WKWebView (iOS)” on page
7-133.

What's new in MobileFirst APIs
New features improve and extend the APIs that you can use to develop mobile
applications. Use the latest APIs to take advantage of new, improved, or changed
functions in IBM MobileFirst Platform Foundation.

In addition to the MobileFirst APIs that were updated and improved, some APIs
are deprecated or discontinued.
v “Deprecated features and API elements” on page 3-17
v “Discontinued features and API elements” on page 3-19

Updated JavaScript server-side API

In V8.0.0, back-end invocation functions are supported only for adapter types that
are supported. Currently, only HTTP and SQL adapters are supported, so back-end
invokers WL.Server.invokeHttp and WL.Server.invokeSQL are supported, too.

Release notes 3-3

https://www.nuget.org/packages

New Java server-side API

IBM MobileFirst Platform Foundation V8.0.0 provides new Java server-side API,
which you can use to extend MobileFirst Server.

New Java server-side API for security
The new security API package, com.ibm.mfp.server.security.external, and
its contained packages, include the interfaces that are required for
developing security checks and adapters that use the security-check
context. See “Java server-side API” on page 8-7.

New Java server-side API for client registration data
The new client registration-data API package,
com.ibm.mfp.server.registration.external, and its contained packages,
include an interface for providing access to persistent MobileFirst client
registration data. See “Java server-side API” on page 8-7.

Application getJaxRsApplication()

With this new API, you can return the JAX-RS application for the adapter.

String getPropertyValue (String propertyName)

With this new API, you can get the value from the adapter configuration
(or default value).

For more information, see “MobileFirst server-side API” on page 8-6.

Updated Java server-side API

IBM MobileFirst Platform Foundation V8.0.0 also includes updated Java server-side
API, which you can use to extend MobileFirst Server.

getMFPConfigurationProperty(String name)

The signature of this new API has not changed in this version. However,
its behavior is now identical to that of String getPropertyValue (String
propertyName), which is described in “New Java server-side API.”

WLServerAPIProvider
In V7.0.0 and V7.1.0, the Java API was accessible through the
WLServerAPIProvider interface. For example:
WLServerAPIProvider.getWLServerAPI.getConfigurationAPI();

and
WLServerAPIProvider.getWLServerAPI.getSecurityAPI();

These static interfaces are still supported in V8.0.0, to allow adapters that
were developed in previous versions of the product to compile and deploy.
Old adapters that do not use push notifications or the previous security
API continue to work in V8.0.0. Adapters that do use push notifications or
the previous security API break.

For more information, see “MobileFirst server-side API” on page 8-6.

JavaScript client-side APIs for web applications

The JavaScript client-side API that is used for development of cross-platform
Cordova applications is now available also for development of web applications,

3-4 IBM MobileFirst Platform Foundation V8.0.0

with slight variations in the initialization method. Note that not all functions of the
JavaScript API are applicable to web applications. For a full API reference, see the
JavaScript client-side API reference.

In addition, a new JavaScript client-side web analytics API is provided for adding
IBM MobileFirst Analytics capabilities to your web application. For a full API
reference, see “JavaScript web analytics client-side API” on page 8-4.

For more information about using these APIs to develop MobileFirst web
applications, see “Developing web applications” on page 7-73.

Updated C# client-side API for Windows 8 Universal and
Windows Phone 8 Universal

The C# client-side API for Windows 8 Universal and Windows Phone 8 Universal
have changed. For more information, see “C# client-side API for Windows 10
Universal Windows Platform and Windows 8 Universal apps” on page 8-6.

New Java client-side APIs for Android

public void getDeviceDisplayName(final DeviceDisplayNameListener listener);

public void setDeviceDisplayName(String deviceDisplayName,final
WLRequestListener listener);

With this new method, you can set the display name of a device in the
MobileFirst Server registration data.

New Objective-C client-side APIs for iOS

(void) getDeviceDisplayNameWithCompletionHandler:(void(^)(NSString
*deviceDisplayName , NSError *error))completionHandler;

With this new method, you can get the display name of a device from the
MobileFirst Server registration data.

(void) setDeviceDisplayName:(NSString*)deviceDisplayName
WithCompletionHandler:(void(^)(NSError* error))completionHandler;

With this new method, you can set the display name of a device in the
MobileFirst Server registration data.

New push client-side APIs

Push client-side API is supported with IBM MobileFirst Platform Foundation
V8.0.0.

To use push API for Android apps, see “Java client-side push API for Android
apps” on page 8-6.

To use push API for iOS apps, see “Objective-C client-side push API for iOS apps”
on page 8-5.

Updated REST API for the administration service

The REST API for the administration service is partly refactored. In particular, the
API for beacons and mediators is removed and most REST services for push
notification are now part of the REST API for the push service. For more
information, see “REST API for the MobileFirst Server administration service” on
page 8-7 and “REST API for the MobileFirst Server push service” on page 8-197.

Release notes 3-5

Updated REST API for the runtime

The REST API for the MobileFirst runtime now provides several services for
mobile clients and confidential clients to call adapters, obtain access tokens, get
Direct Update content, and more. Most of the REST API endpoints are protected by
OAuth. On a development server, you can view the Swagger doc for the runtime
API at:
http(s)://<server_ip>:<server_port>/<context_root>/doc

For more information, see “REST API for the MobileFirst runtime” on page 8-270.

What's new in MobileFirst security
The security framework in IBM MobileFirst Platform Foundation was entirely
redesigned. New security features were introduced, and some modifications were
made to existing features.

Security framework overhaul

The MobileFirst security framework was redesigned and reimplemented to
improve and simplify security development and administration tasks. The
framework is now inherently based on the OAuth model, and the implementation
is session-independent. See “Overview of the MobileFirst security framework” on
page 7-265.
On the server side, the multiple building blocks of the framework were replaced
with security checks (implemented in adapters), allowing for simplified
development with new APIs. Sample implementations and predefined security
checks are provided. See “Security checks” on page 7-281. Security checks can be
configured in the adapter descriptor, and customized by making runtime adapter
or application configuration changes, without redeploying the adapter or
disrupting the flow. The configurations can be done from the redesigned
MobileFirst Operations Console security interfaces. You can also edit the
configuration files manually, or use the MobileFirst Platform CLI or mfpadm tools.
See “Security-checks configuration” on page 7-297.
See the other security release notes for specific changes and additions that are also
the result of the security-framework redesign.

Application-authenticity security check

MobileFirst application-authenticity validation is now implemented as a predefined
security check that replaces the previous "extended application authenticity
checking". You can dynamically enable, disable, and configure
application-authenticity validation by using either MobileFirst Operations Console
or mfpadm. A stand-alone MobileFirst application-authenticity Java tool
(mfp-app-authenticity-tool.jar) is provided for generating an
application-authenticity file. See “Application-authenticity security check” on page
7-282.

Confidential clients

The support for confidential clients was redesigned and reimplemented using the
new OAuth security framework. See “Confidential clients” on page 7-279.

3-6 IBM MobileFirst Platform Foundation V8.0.0

Web-applications security

The revised OAuth-based security framework supports web applications. You can
now register web applications with MobileFirst Server to add security capabilities
to your application and protect access to your web resources. For more information
about developing MobileFirst web applications, see “Developing web applications”
on page 7-73. The application-authenticity security check is not supported for web
applications.

Cross-platform applications (Cordova apps), new and changed
security features

Additional security features are available to help protect your Cordova app. These
features include the following:
v Web resources encryption: Use this feature to encrypt the web resources in your

Cordova package to help prevent someone from modifying the package. For
more information, see “Encrypting the web resources of your Cordova
packages” on page 7-112.

v Web resources checksum: Use this feature to run a checksum test that compares
the current statistics of the web resources of the app with the baseline statistics
that were established when it was first opened. This check helps to prevent
someone from modifying the app after it is installed and opened. For more
information, see “Enabling the web resources checksum feature” on page 7-113.

v Certificate pinning: Use this feature to associate the certificate of an app with a
certificate on the host server. This feature helps to prevent information that is
passed between the app and the server from being viewed or modified. For
more information, see “Certificate pinning” on page 7-185.

v Support for the Federal Information Processing Standard (FIPS) 140-2: Use this
feature to ensure that data that is transferred is compliant with the FIPS 140-2
cryptography standard. For more information, see “Enabling FIPS 140-2” on
page 10-77.

v OpenSSL: To use OpenSSL data encryption and decryption with your Cordova
app for the iOS platform, you can use the cordova-plugin-mfp-encrypt-utils
Cordova plug-in. For more information, see “Cordova plug-ins for MobileFirst
features” on page 7-87 and “Enabling OpenSSL for Cordova iOS” on page 7-126.

Device Single Sign-On (SSO)

Device single sign-on (SSO) is now supported by way of the new predefined
enableSSO security-check application-descriptor configuration property. See
“Configuring device single sign-on (SSO)” on page 7-301.

Direct Update

In contrast to earlier versions of MobileFirst, starting with V8.0.0:
v If a client application accesses an unprotected resource, the application does not

receive updates, even if an update is available on MobileFirst Server. See
“Updating Cordova client apps directly” on page 7-235.

v After it has been activated, Direct Update is enforced on every request for a
protected resource.

Release notes 3-7

External-resources Protection

The supported method and provided artifacts for protecting resources on external
servers were modified:
v A new, configurable MobileFirst Java Token Validator access-token validation

module is provided for using the MobileFirst security framework to protect
resources on any external Java server. The module is provided as a Java library
(mfp-java-token-validator-8.0.0.jar), and replaces the use of the obsolete
MobileFirst Server token-validation endpoint to create a custom Java validation
module. See “MobileFirst Java Token Validator” on page 7-274.

v The MobileFirst OAuth Trust Association Interceptor (TAI) filter, for protecting
Java resources on an external WebSphere Application Server or WebSphere
Application Server Liberty server, is now provided as a Java library
(com.ibm.imf.oauth.common_8.0.0.jar). The library uses the new Java Token
Validator validation module, and the configuration of the provided TAI changed.
See “MobileFirst OAuth Trust Association Interceptor (TAI) for protecting
resources on WebSphere Java servers” on page 7-275.
The server-side MobileFirst OAuth TAI API is no longer required and was
removed.

v The passport-mfp-token-validation MobileFirst Node.js framework, for
protecting Java resources on an external Node.js server, was modified to support
the new security framework. See “MobileFirst Node.js resource protection” on
page 7-275.

v You can also write your own custom filter and validation module, for any type
of resource server, which uses the new introspection endpoint of the
authorization server. See “External resources protection” on page 7-274.

Integration with WebSphere DataPower® as an authorization
server

You can now select to use WebSphere DataPower as the OAuth authorization
server, instead of the default MobileFirst Server authorization server. You can
configure DataPower to integrate with the MobileFirst security framework. See
“Configuring IBM WebSphere DataPower as the OAuth authorization server” on
page 7-314.

LTPA-based single sign-on (SSO) security check

Support for sharing user authentication among servers that use WebSphere
light-weight third-party authentication (LTPA) is now provided by using the new
predefined LTPA-based single sign-on (SSO) security check. This check replaces the
obsolete MobileFirst LTPA realm, and eliminates the previous required
configuration. See “LTPA-based single sign-on (SSO) security check” on page 7-285.

Mobile-application management with MobileFirst Operations
Console

Some changes were made to the support for tracking and managing mobile
applications, users, and devices from IBM MobileFirst Platform Operations
Console.
Blocking device or application access is applicable only to attempts to access
protected resources.
See “Mobile-application management” on page 10-15.

3-8 IBM MobileFirst Platform Foundation V8.0.0

MobileFirst Server keystore

A single MobileFirst Server keystore is used for signing OAuth tokens and Direct
Update packages, and for mutual HTTPS (SSL) authentication. You can
dynamically configure this keystore by using either MobileFirst Operations Console
or mfpadm. See “Configuring the MobileFirst Server keystore” on page 7-316.

Native encryption and decryption for iOS

OpenSSL has been removed from the main framework for iOS and replaced by a
native encryption/decryption. OpenSSL can be added as a separate framework. See
“Enabling OpenSSL for iOS” on page 7-47. For iOS Cordova JavaScript, OpenSSL is
still embedded in the main framework. For both APIs, both native and OpenSSL
encryption are available.

What's new in operating system support
IBM MobileFirst Platform Foundation V8.0.0 introduces support for Windows 10
Universal apps as well as Apple watchOS 2.

Support for universal applications for Windows 10 Native

With IBM MobileFirst Platform Foundation, you can now write native C#
Universal App Platform applications to use the MobileFirst SDK within your app.

To get started with writing your native C# Universal App Platform applications for
the MobileFirst SDK, see the following topics:
v “Developing MobileFirst applications” on page 7-24
v “Developing native C# applications for Windows 10 Universal Windows

Platform and Windows 8 Universal” on page 7-65
v “Client property file for Windows 10 Universal Windows Platform and Windows

8 Universal” on page 7-72

Windows 10 UWP support for Windows hybrid environments

Windows 10 Universal Windows Platform (UWP) support for Windows hybrid
environments. For more information on how to get started, see “Developing
Cordova apps for Windows” on page 7-128.

BlackBerry end of support

The BlackBerry environment is no longer supported in IBM MobileFirst Platform
Foundation.

Bitcode

Bitcode builds are now supported for iOS projects. However, the MobileFirst
application-authenticity security check is not supported for apps built with bitcode.
For more information, see “Working with bitcode in iOS apps” on page 7-48.

Apple watchOS 2

Apple watchOS 2 is now supported and requires bitcode builds. See “Developing
for watchOS 2” on page 7-48.

Release notes 3-9

What's new in deploying and managing apps
IBM MobileFirst Platform FoundationV8.0.0 comes with capabilities to help you
deploy and manage your apps. You can now update your apps and adapters
without restarting MobileFirst Server.

Improved DevOps support

MobileFirst Server has been significantly redesigned to better support your
DevOps environment. MobileFirst Server is installed once into your application
server environment, and no changes to the application server configuration are
required when you upload an application or change the MobileFirst Server
configuration.

You do not need to restart MobileFirst Server when you update your apps or any
adapters that your apps depend on. You can perform configuration operations, or
upload a new version of an adapter or register a new application while the server
is still handling traffic.

Configuration changes and development operations are protected by security roles.
For details, see “Configuring user authentication for MobileFirst Server
administration” on page 6-166.

You can upload development artifacts to the server in various ways to give you
more operational flexibility:
v MobileFirst Operations Console is enhanced: In particular, you can now use it to

register an application or a new version of an application, to manage app
security parameters, and to deploy certificates, create push notification tags, and
send push notifications. The console now also includes contextual help guides.
For details, see “MobileFirst Operations Console overview” on page 7-6.

v Command-line tool
v For details, see “Administering MobileFirst applications through the command

line” on page 10-47.
v REST API calls: For details, see “REST API for the MobileFirst Server

administration service” on page 8-7.

Development artifacts that you upload to the server include adapters and their
configuration, security configurations for your apps, push notification certificates,
and log filters.

For more information about the new MobileFirst Server design, see “Deploying
MobileFirst applications to test and production environments” on page 10-2 and
“Development concepts and overview” on page 7-2.

Running applications that were created on IBM Bluemix on IBM
MobileFirst Platform Foundation

Developers can migrate IBM Bluemix applications to run on IBM MobileFirst
Platform Foundation. Migration requires that you make configuration changes to
your client application to match IBM MobileFirst Platform Foundation APIs.

IBM MobileFirst Platform Foundation as a service on IBM
Bluemix

You can now use the IBM Mobile Foundation for Bluemix service on IBM Bluemix
to create and run your enterprise mobile apps. For more information, see

3-10 IBM MobileFirst Platform Foundation V8.0.0

Deploying the MobileFirst Server to the cloud.

No .wlapp files

In previous versions, applications were deployed to MobileFirst Server by
uploading a .wlapp file. The file contained data that described the application and,
in the case of hybrid applications, the required web resources also. In V8.0.0,
instead of the .wlapp file:
v You register an app in MobileFirst Server by deploying an application descriptor

JSON file. For more information, see “Developing applications” on page 7-1.
v To update Cordova applications by using Direct Update, you upload an archive

(.zip file) of the modified web resource to the server. The archive file no longer
contains the web preview files or skins that were possible in previous versions
of IBM MobileFirst Platform Foundation. These have been discontinued. The
archive contains only the web resources that are sent to the clients, as well as
checksums for Direct Update validations. For more information, see Updating
Cordova client apps directly.

To enable Direct Update of client Cordova apps that are installed on end-user
devices, you must now deploy the modified web resources as an archive (.zip file)
to the server. To enable secure Direct Update, a user-defined keystore file must be
deployed in MobileFirst Server and a copy of the matching public key must be
included in the deployed client application. For more information about Direct
Update, see “Updating Cordova client apps directly” on page 7-235.

Adapters

Adapters are Apache Maven projects
Starting from V8.0.0, MobileFirst adapters are treated as Maven projects.
You can create, build, and deploy adapters by using standard
command-line Maven commands or using any IDE that supports Maven,
such as Eclipse and IntelliJ. For more information, see “Adapters as
Apache Maven projects” on page 7-189.

Adapter configuration and deployment in DevOps environments

v Starting with V8.0.0 of MobileFirst Server, administrators can use the
MobileFirst Operations Console to modify the behavior of an adapter
that has been deployed. After reconfiguration, the changes take effect in
the server immediately, without the need to redeploy the adapter, or
restart the server. For more information see “Configuring adapters” on
page 7-227.

v Starting with V8.0.0, you can "hot deploy" adapters, meaning deploy,
undeploy, and redeploy them at run time, while MobileFirst Server is
still serving traffic.

Changes in the adapter descriptor file
The adapter.xml descriptor file for V8.0.0 has changed slightly.
v For more information on the structure of the adapter descriptor file for

Java adapters, see “The Java adapter-descriptor file” on page 7-194.
v For more information on the structure of the adapter descriptor file for

JavaScript adapters, see “The JavaScript adapter-descriptor file” on page
7-206.

Integration with Swagger UI
Starting from V8.0.0, MobileFirst Server integrates with Swagger UI. For
any adapter, you can view the associated API by clicking View Swagger

Release notes 3-11

http://engtest01w.francelab.fr.ibm.com:9090/support/knowledgecenter/SSHS8R_8.0.0/com.ibm.worklight.dev.doc/dev/c_configuring_customizing_direct_update.html?lang=en-us#c_configuring_customizing_direct_update
http://engtest01w.francelab.fr.ibm.com:9090/support/knowledgecenter/SSHS8R_8.0.0/com.ibm.worklight.dev.doc/dev/c_configuring_customizing_direct_update.html?lang=en-us#c_configuring_customizing_direct_update

Docs in the Resources tab in the MobileFirst Operations Console. The
feature is available in development environments only.

Support for JavaScript adapters
V8.0.0 supports JavaScript adapters with HTTP and SQL connectivity
types, only.

Support for JAX-RS 2.0
JAX-RS 2.0 introduces new server-side functionality: server-side
asynchronous HTTP, filters and interceptors. MobileFirst adapters can now
exploit these new features. For more information see “Implementing the
JAX-RS service of the adapter” on page 7-200.

IBM MobileFirst Platform Foundation on IBM Containers

IBM MobileFirst Platform Foundation on IBM Containers released for V8.0.0 is
available on the IBM Passport Advantage® site. This version of IBM MobileFirst
Platform Foundation on IBM Containers is production ready and supports
enterprise dashDB™ transactional database on IBM Bluemix.

Note: See the prerequisites for deploying IBM MobileFirst Platform Foundation on
IBM Containers .

Learn more about Deploying to the cloud in an IBM Container.

Deploying MobileFirst Server V8.0.0 on IBM PureApplication
System

You can now deploy and configure MobileFirst Server V8.0.0 to the supported IBM
MobileFirst Platform Foundation System Pattern on IBM PureApplication System.

All supported IBM MobileFirst Platform Foundation System Pattern now include
support for an existing IBM DB2® database.

IBM MobileFirst Platform Application Center is now supported on a Virtual
System Pattern.

Learn more about Deploying MobileFirst Server on IBM PureApplication System.

What's new in MobileFirst Server
MobileFirst Server has been redesigned to help reduce the time and cost of
deploying and updating your apps. In addition to the redesign of the MobileFirst
Server, IBM MobileFirst Platform Foundation expands the number of installation
methods available.

The new MobileFirst Server design introduces two new components, MobileFirst
Server live update service and MobileFirst Server artifacts.

MobileFirst Server live update service is designed to help reduce the time and cost
of incremental updates for your apps. It manages and stores the server-side
configuration data of the apps and adapters. You can change or update various
parts of your app with rebuilding or redeploying your app:
v Dynamically change or update app behavior based on user segments that you

define.
v Dynamically change or update server-side business logic.
v Dynamically change or update app security

3-12 IBM MobileFirst Platform Foundation V8.0.0

http://www-01.ibm.com/software/passportadvantage/

v Externalize and dynamically change app configuration.

MobileFirst Server artifacts provide resources for MobileFirst Operations Console.
For more information about how the components function, see “MobileFirst Server
overview” on page 6-2.

Along with the redesign of MobileFirst Server, more installation options are now
provided. In addition to the manual installation, IBM MobileFirst Platform
Foundation gives you two options to install MobileFirst Server in a server farm.
You can also install MobileFirst Server in Liberty collective.

Starting with V8.0, you can now install the MobileFirst Server components in a
server farm by using Ant tasks, or with the Server Configuration Tool. For more
information, see the following topics:
v “Installing a server farm” on page 6-139
v “Tutorials about MobileFirst Server installation” on page 6-4

MobileFirst Server V8.0 also supports Liberty collective. For more information
about the server topology and various installation methods, see the following
topics:
v “Liberty collective topology” on page 6-91
v “Running the Server Configuration Tool” on page 6-106
v “Installing with Ant Tasks” on page 6-110
v “Manual installation on WebSphere Application Server Liberty collective” on

page 6-121

What's new in IBM MobileFirst Analytics
IBM MobileFirst Analytics introduces a redesigned console with information
presentation improvements and role-based access controls. The console is also now
available in a number of different languages.

The MobileFirst Analytics Console was redesigned to present information in an
intuitive and more meaningful fashion, and uses summarized data for some event
types.

You can now sign out of the MobileFirst Analytics Console by clicking on the gear
icon.

The MobileFirst Analytics Console is now available in the following languages:
v German
v Spanish
v French
v Italian
v Japanese
v Korean
v Portuguese (Brazilian)
v Russian
v Simplified Chinese
v Traditional Chinese

Release notes 3-13

The MobileFirst Analytics Console now shows different content based on the
security role of the logged-in user.

For more information, see “Role-based access control” on page 11-23.

Starting with V8.0.0, the MobileFirst Analytics Server uses Elasticsearch Version
1.7.5.

For V8.0.0 Analytics support for web applications was added with the new web
analytics client-side API. See individual topics in the “Developing the analytics
client” on page 11-35 section for details of available functionality.

Some event types were changed between earlier versions of MobileFirst Analytics
Server and V8.0.0. Because of this change, any JNDI properties that were
previously configured in your server configuration file must be converted to the
new event type.

For more information, see “Migration of server properties used by previous
versions of MobileFirst Analytics Server” on page 11-12.

What's new in push notifications
With IBM MobileFirst Platform FoundationV8.0.0, the push notification service is
provided as a stand-alone service hosted on a separate web application.

Earlier versions of IBM MobileFirst Platform Foundation embedded the push
notification service as part of the application runtime.

Programming model

The programming model spans across the server to client, and you need to set up
your application for push notification service to work on your client applications.
Two types of clients would interact with push notification service:
v Mobile client applications
v Back-end server applications

Security for push notification service

IBM MobileFirst Platform Foundation authorization server enforces the OAuth
protocol to secure push notification service.

For more information, see “Security for push notification clients” on page 7-251.

Push notification service model

With IBM MobileFirst Platform Foundation V8.0.0, the event source-based model is
not supported. The push notification capability is enabled on IBM MobileFirst
Platform Foundation by the push service model.

Push REST API

You can enable back-end server applications that are deployed outside MobileFirst
Server to access push notification functions by using REST API for push in the IBM
MobileFirst Platform Foundation runtime. For information on using REST API for
push notification, see “REST API for the MobileFirst Server push service” on page
8-197.

3-14 IBM MobileFirst Platform Foundation V8.0.0

Upgrading from existing event source-based notification model

With the IBM MobileFirst Platform Foundation V8.0.0, the event source-based
model is not supported. The push notification capability is enabled entirely by the
push service model. All existing event source-based applications need to be
migrated to the new push service model. For information on migrating your push
notifications, see “Migrating to push notifications from event source-based
notifications” on page 5-54.

Sending push notifications

You can choose to send an event-source based, tag-based, or broadcast-enabled
push notification from the server.

Push notifications can be sent by using the following methods:
v Using MobileFirst Operations Console, two types of notifications can be sent: tag

and broadcast. See “Sending push notification with the MobileFirst Operations
Console” on page 7-259.

v Using “Push Message (POST)” on page 8-236 REST API, all forms of
notifications can be sent: tag, broadcast, and authenticated.

v Using “REST API for the MobileFirst Server administration service” on page 8-7,
all forms of notifications can be sent: tag, broadcast, and authenticated.

Sending SMS notifications

You can configure the push service to send a short message service (SMS)
notification to user devices.

Refer Sending SMS notifications, for more information.

Installation of the push notification service

The push notification service is packaged as a MobileFirst Server component
(MobileFirst Server push service). For more information about the architecture of
MobileFirst Server, see “MobileFirst Server overview” on page 6-2.

To find out how to install the push service and other MobileFirst Server
components, see “Installing MobileFirst Server for a production environment” on
page 6-39.

Push service model is supported on Windows Universal Platform
apps

You can now migrate native Windows Universal Platform (UWP) applications to
use the push service model to send push notifications.

Refer “Native Windows Universal applications” on page 5-75, for more
information.

What's new in V8.0.0 interim fixes
Interim fixes provide patches and updates to correct problems and keep IBM
MobileFirst Platform Foundation current for new releases of mobile operating
systems.

Release notes 3-15

Interim fixes are cumulative. When you download the latest V8.0.0 interim fix, you
get all of the fixes from earlier interim fixes.

Download and install the latest interim fix to obtain all of the fixes that are
described in the following sections. If you install earlier fixes, you might not get all
of the fixes described here.

Where an APAR number is listed, you can confirm that an interim fix has that
feature by searching the interim fix README file for that APAR number.

Licensing
PVU licensing

A new offering, IBM MobileFirst Platform Foundation Extension V8.0.0, is available
through PVU (processor value unit) licensing. For more information on PVU
licensing for IBM MobileFirst Platform Foundation Extension, see Licensing
MobileFirst.

Web applications
Registering web applications from the MobileFirst Platform CLI
(APAR PI65327)

You can now register client web applications to MobileFirst Server by using the
IBM MobileFirst Platform Command Line Interface (CLI) (mfpdev) as an alternative
to registration from the IBM MobileFirst Platform Operations Console. For more
information, see “Registering web applications from the MobileFirst Platform CLI”
on page 7-80.

Adapters
Added mfpdev push and pull commands for Java and JavaScript
adapter configurations

You can use IBM MobileFirst Platform Command Line Interface (CLI) to push Java
and JavaScript adapter configurations to the MobileFirst Server and pull adapter
configurations from the MobileFirst Server. See “Pushing Java adapter
configurations” on page 7-199, “Pulling Java adapter configurations” on page
7-199, “Pushing JavaScript adapter configurations” on page 7-217, and “Pulling
JavaScript adapter configurations” on page 7-217 for more information.

Commands for building or deploying multiple adapters

You can build all of the adapters within a directory by using the mfpdev adapter
build all command. For more information about this command, see “Building
JavaScript adapters” on page 7-215 or “Building Java adapters” on page 7-197.

You can deploy all of the adapters within a directory by using the mfpdev adapter
deploy all command. For more information about this command, see “Deploying
JavaScript adapters” on page 7-216 or “Deploying Java adapters” on page 7-198.

3-16 IBM MobileFirst Platform Foundation V8.0.0

Cordova applications
Opening the native IDE for a Cordova project from Eclipse with
the Studio plug-in

With the Studio plug-in installed in your Eclipse IDE, you can open an existing
Cordova project in Android Studio or Xcode from the Eclipse interface to build
and run the project. For more information, see “Opening a Cordova project in a
platform development environment” on page 7-120.

Deprecated features and API elements
New releases of IBM MobileFirst Platform Foundation might introduce features or
API elements that supersede features and API elements from past releases.
Superseded features and API elements are deprecated and they might be removed
in future releases.

Review the following deprecated features and API elements to determine the
impact that these deprecations might have on your your IBM MobileFirst Platform
Foundation environment.

API elements deprecated in V8.0.0
v For more information about deprecated server-side API elements, see Java API

elements deprecated in V8.0.0.
v For more information about deprecated client-side JavaScript API elements, see

Deprecated JavaScript APIs.
v For more information about discontinued and deprecated Windows C# API

elements, see Deprecated Windows C# API elements.

Features deprecated in V7.1.0

Table 3-1. Features deprecated in V7.1.0.

Category Deprecation Recommended Action

iOS 6 The iOS 6 environment is
deprecated.

IBM MobileFirst Mobile
Patterns

IBM MobileFirst Mobile
Patterns are deprecated in
MobileFirst Studio.

Features deprecated in V7.0.0

Table 3-2. Features deprecated in V7.0.0.

Category Deprecation Recommended Action

BlackBerry 6 and BlackBerry
7 environments

BlackBerry 6 and BlackBerry
7 environments are
deprecated.

Release notes 3-17

Table 3-2. Features deprecated in V7.0.0 (continued).

Category Deprecation Recommended Action

Analytics Reports database The Reports database, often
referenced as WLREPORT in the
documentation, is deprecated
in IBM MobileFirst Platform
Foundation V7.0.0.

Use IBM MobileFirst
Analytics instead. Note that
setting up the Reports
database is optional in this
release and prior releases.
Also note that the use of the
Reports database is
redundant with MobileFirst
Analytics in this release and
recent prior releases.

Analytics BIRT predefined
reports

The predefined BIRT reports
are deprecated.

Use IBM MobileFirst
Analytics console and
custom chart support
instead.

The JAR files and JavaScript
libraries that enable SSO
between IBM MobileFirst
Platform Foundation and
other external services

The external-server-
libraries directory and its
contents are deprecated. The
following API URLs are also
deprecated:

<application root
context>/oauth/*

Use the MobileFirst
OAuth-based security model
instead. For more
information about this
model, see “Overview of the
MobileFirst security
framework” on page 7-265.

API elements deprecated in V7.0.0

Table 3-3. API elements deprecated in V7.0.0.

Category Deprecation Recommended Action

Objective-
C:
WLClient

[WLCLient lastAccessToken] Use [WLAuthorizationManager
cachedAuthorizationHeader] instead.

[WLCLient lastAccessTokenForScope] Use [WLAuthorizationManager
cachedAuthorizationHeader] instead.

[WLCLient
obtainAccessTokenForScope]

Use [WLAuthorizationManager
obtainAuthorizationHeaderForScope]
instead.

Objective-
C:
WLResponse

[WLResponse getResponseJson] Use the responseJson property
instead.

Java WLClient.obtainAccessToken (String
scope, WLResponseListener
responseListener)

Use the WLAuthorizationManager
class instead.

WLClient.getLastAccessToken Use the WLAuthorizationManager
class instead.

WLClient.obtainAccessToken (String
scope, WLResponseListener
responseListener, WLRequestOptions
requestOptions)

Use the WLAuthorizationManager
class instead.

WLClient.getRequiredAccessTokenScope
(int status, String header)

Use the WLAuthorizationManager
class instead.

WLClient.logActivity Use the Logger class instead.

3-18 IBM MobileFirst Platform Foundation V8.0.0

Table 3-3. API elements deprecated in V7.0.0 (continued).

Category Deprecation Recommended Action

JavaScript WLClient.obtainAccessToken Use the WLAuthorizationManager
class instead.

WLClient.getRequiredAccessTokenScope Use the WLAuthorizationManager
class instead.

WLClient.getLastAccessToken Use the WLAuthorizationManager
class instead.

WLClient.logActivity Use the WLLogger class instead.

Features deprecated in V6.3.0

Table 3-4. Features deprecated in V6.3.0.

Category Deprecation Recommended action

Sencha Touch tools Sencha Touch tools are
deprecated in MobileFirst
Studio.

Discontinued features and API elements
Consider carefully how removed features and API elements affect your IBM
MobileFirst Platform Foundation environment.

Features that are discontinued in V8.0.0 and features that are not
included in V8.0.0

IBM MobileFirst Platform Foundation V8.0.0 is radically simplified compared to
the previous version. As a result of this simplification, some features that were
available in V7.1 are discontinued in V8.0.0. In most cases, an alternative way to
implement the features is suggested. These features are marked discontinued. Some
other features that exist in V7.1. are not in V8.0.0, but not as a consequence of the
new design of V8.0.0. To distinguish these excluded features from the features that
are discontinued from V8.0.0, they are marked not in V8.0.0.

Release notes 3-19

Table 3-5. Features that are discontinued in V8.0.0 and features that are not included in
V8.0.0

Feature Status and replacement path

MobileFirst Studio is replaced by
MobileFirst Studio plug-in for Eclipse.

Replaced by MobileFirst Studio plug-in for
Eclipse empowered by standard and
community-base Eclipse plug-ins.

You can develop hybrid applications directly
with the Apache Cordova CLI or with a Cordova
enabled IDE such as Visual Studio Code, Eclipse,
IntelliJ, and others.For more information about
using eclipse as a Cordova enabled IDE, see
“IBM MobileFirst Studio plug-in for managing
Cordova projects in Eclipse” on page 7-114. You
can develop adapters with Apache Maven or a
maven-enabled IDE such as Eclipse, IntelliJ, and
others. For more information about developing
adapters, see “Adapters as Apache Maven
projects” on page 7-189. For more information
about using Eclipse as a Maven enabled IDE,
read the Developing Adapters in Eclipse tutorial.

Install IBM MobileFirst Platform Foundation
Developer Kit to test adapters and applications
with MobileFirst Development Server. You can
also access MobileFirst development tools and
SDKs if you do not want to download them from
Internet-based repositories such as NPM, Maven,
Cocoapod, or NuGet. For more information about
IBM MobileFirst Platform Foundation Developer
Kit, see “The IBM MobileFirst Platform
Foundation Developer Kit” on page 7-9.

Skins, Shells, the Setting page,
minification, and JavaScript UI elements
are discontinued for hybrid
applications.

Discontinued.

Hybrid applications are developed directly with
the Apache Cordova. For more information about
replacing skins, shells, the Setting page, and
minification, see “Removed components” on page
5-49 and “Comparison of Cordova apps
developed with V8.0.0 versus V7.1.0 and before”
on page 5-34.

For more information about replacing the
JavaScript UI elements, see Discontinued
JavaScript UI elements.

Sencha Touch can no longer be
imported into MobileFirst projects for
hybrid applications.

Discontinued.

MobileFirst hybrid applications are developed
directly with the Apache Cordova, and the
MobileFirst features are provided as Cordova
plug-ins. Refer to the Sencha Touch
documentation to integrate Sencha Touch and
Cordova. For more information about using IBM
MobileFirst Platform Foundation with Cordova,
see “Developing Cordova applications” on page
7-83.

3-20 IBM MobileFirst Platform Foundation V8.0.0

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/developing-adapters/
https://docs.sencha.com/cmd/6.x/cordova_phonegap.html
https://docs.sencha.com/cmd/6.x/cordova_phonegap.html

Table 3-5. Features that are discontinued in V8.0.0 and features that are not included in
V8.0.0 (continued)

Feature Status and replacement path

The encrypted cache is discontinued. Discontinued

To store encrypted data locally, use JSONStore.
For more information about JSONStore, see
“JSONStore overview” on page 7-134.

A sample that shows how to set up
Touch ID support for JSONStore is not
in V8.0.0.

Not in V8.0.0.
Note: You can use the example that is provided
in the documentation of version 7.1 and adapt it
to the code of your client application. For more
information about the example in version 7.1, see
Setting up Touch ID support for JSONStore
(version 7.1).

Triggering Direct Update on demand is
not in V8.0.0. The client application
checks for Direct Update when it
obtains the OAuth token for a session.
You cannot program a client application
to check for direct updates at a different
point in time in V8.0.0.

Not in V8.0.0.
Note: For more information about customizing
Direct Update, see “Customizing the Direct
Update user interface and process” on page
7-244.

Adapters with session-dependency
configuration. In V7.1.0, you can
configure MobileFirst Server to work in
session-independent mode (default) or
in session-dependent mode. Beginning
with V8.0.0, session-dependent mode is
no longer supported. The server is
inherently independent of the HTTP
session, and no related configuration is
required.

Discontinued.

Attribute store over IBM WebSphere
eXtreme Scale is not supported in
V8.0.0.

Not in V8.0.0.

Service discovery and adapter
generation for IBM® Business Process
Manager (IBM BPM) process
applications, Microsoft Azure
Marketplace DataMarket, OData
RESTful APIs, RESTful resources,
Services that are exposed by an SAP
Netweaver Gateway, and Web Services
is not in V8.0.0.

Not in V8.0.0.

The JMS JavaScript adapter is not in
V8.0.0.

Not in V8.0.0.

The SAP Gateway JavaScript adapter is
not in V8.0.0.

Not in V8.0.0.

The SAP JCo JavaScript adapter is not
in V8.0.0.

Not in V8.0.0.

The Cast Iron® JavaScript adapter in not
in V8.0.0.

Not in V8.0.0.

The OData and Microsoft Azure OData
JavaScript adapters are not in V8.0.0.

Not in V8.0.0.

Release notes 3-21

https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.dev.doc/devref/t_setting_up_touch_id_jsonstore.html
https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.dev.doc/devref/t_setting_up_touch_id_jsonstore.html

Table 3-5. Features that are discontinued in V8.0.0 and features that are not included in
V8.0.0 (continued)

Feature Status and replacement path

Push notification support for USSD is
not supported in V8.0.0.

Discontinued

JMS-based push notification is not
supported in V8.0.0.

Discontinued

Event-based push notifications is not
supported in V8.0.0.

Discontinued. Use the push notification service.
For more information on migrating to push
notification service, see topic “Migrating to push
notifications from event source-based
notifications” on page 5-54.

Security: User-certificate authentication.
V8.0.0 does not include any predefined
security check to authenticate users
with X.509 client-side certificates.

Not in V8.0.0.

Security: Simple data sharing. The
WLSimpleDataSharing API is not
included in V8.0.0. Therefore, using
simple data sharing to configure device
single sign-on with a reverse proxy (for
example to exchange LTPA tokens
between applications) is also not
supported in V8.0.0.

Not in V8.0.0.

Security: Integration with IBM
Trusteer®. V8.0.0 does not include any
predefined security check or challenge
to test IBM Trusteer risk factors.

Not in V8.0.0.

Use IBM Trusteer Mobile SDK.

Security: Device provisioning and
device auto-provisioning.

Discontinued.
Note: Device provisioning is handled in the
normal authorization flow. Device data is
automatically collected during the registration
process of the security flow. For more
information about the security flow, see
“End-to-end authorization flow” on page 7-266

Security: Configuration file for
obfuscating Android code with
ProGuard. V8.0.0 does not include the
predefined proguard-project.txt
configuration file for Android ProGuard
obfuscation with a MobileFirst Android
application.

Not in V8.0.0.

Security: Adapter based authentication
is replaced. Authentication uses the
OAuth protocol and is implemented
with security checks.

Replaced by a security check based
implementation.
Note: For an introduction to the authentication
and security in V8.0.0, see Authorization
Concepts.

3-22 IBM MobileFirst Platform Foundation V8.0.0

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/authorization-concepts/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/authorization-concepts/

Table 3-5. Features that are discontinued in V8.0.0 and features that are not included in
V8.0.0 (continued)

Feature Status and replacement path

Security: LDAP login. V8.0.0 does not
include any predefined security check
to authenticate users with an LDAP
server.

Instead, for WebSphere Application
Server or WebSphere Application Server
Liberty use the application server or a
gateway to map an Identity Provider
such as LDAP to LTPA, and generate an
OAuth token for the user by using an
LTPA security check.

Not in V8.0.0. Replaced by an LTPA security
check for WebSphere Application Server or
WebSphere Application Server Liberty.
Note: For an example of security-check that uses
LDAP and LTPA with MobileFirst Server running
on WebSphere Application Server or WebSphere
Application Server Liberty, read the Working
with LDAP and LTPA in IBM MobileFirst
Platform Foundation 8.0 blog.
Note: For more information about the predefined
LTPA security check, see “LTPA-based single
sign-on (SSO) security check” on page 7-285.

Authentication configuration of the
HTTP adapter. The predefined HTTP
adapter does not support the
connection as a user to a remote server.
Note: For more information about the
HTTP adapter configuration, see “HTTP
adapter connectionPolicy element” on
page 7-209.

Not in V8.0.0.

Edit the source code of the HTTP adapter and
add the authentication code. Use
MFP.Server.invokeHttp to add identification
tokens to the HTTP request's header.

Security Analytics, the ability to
monitor MobileFirst security
framework's events with MobileFirst
Analytics Console is not in V8.0.0.

Not in V8.0.0.

The event source-based model for push
notifications is discontinued and
replaced by the tag-based push service
model.

Discontinued and replaced by the tag-based push
service model.

For more information about migrating event
source-based notifications to the push service
model, see “Migrating to push notifications from
event source-based notifications” on page 5-54.

Unstructured Supplementary Service
Data (USSD) support is not in V8.0.0.

Not in V8.0.0.

Cloudant® used as a database for
MobileFirst Server in not supported in
V8.0.0.

Not in V8.0.0.

Geolocation: The geolocation support is
discontinued in IBM MobileFirst
Platform Foundation V8.0.0. The REST
API for beacons and for mediators is
discontinued. The client-side and
server-side API WL.Geo and WL.Device
are discontinued.

Discontinued.

Use the native device API or third-party Cordova
plug-ins for geolocation.

The MobileFirst Data Proxy feature is
discontinued. The Cloudant IMFData
and CloudantToolkit APIs are also
discontinued.

Discontinued.

For more information about replacing the
IMFData and CloudantToolkit APIs in your apps,
see “Migrating apps storing mobile data in
Cloudant with IMFData or Cloudant SDK” on
page 5-80.

Release notes 3-23

https://mobilefirstplatform.ibmcloud.com/blog/2016/04/21/using-ldap-as-user-registry/
https://mobilefirstplatform.ibmcloud.com/blog/2016/04/21/using-ldap-as-user-registry/
https://mobilefirstplatform.ibmcloud.com/blog/2016/04/21/using-ldap-as-user-registry/

Table 3-5. Features that are discontinued in V8.0.0 and features that are not included in
V8.0.0 (continued)

Feature Status and replacement path

The IBM Tealeaf® SDK is no longer
bundled with IBM MobileFirst Platform
Foundation.

Discontinued.

Use IBM Tealeaf SDK. For more information, see
Tealeaf installation and implementation in an
Android application and Tealeaf iOS Logging
Framework Installation and Implementation in
the IBM Tealeaf Customer Experience
documentation.

IBM MobileFirst Platform Test
Workbench is not bundled with IBM
MobileFirst Platform Foundation

Discontinued.

BlackBerry, Adobe AIR, Windows
Silverlight are not supported by IBM
MobileFirst Platform Foundation V8.0.0.
No SDK is provided for these
platforms.

Discontinued.

Discontinued API elements in V8.0.0
v For more information about discontinued client-side API, see “Client API

changes in V8.0.0” on page 5-4.
v For more information about discontinued server-side API, see “Server-side API

changes in V8.0.0” on page 5-14.

Features discontinued in V7.1.0

No features were removed in V7.1.0.

Features discontinued in V7.0.0

Table 3-6. Features discontinued in V7.0.0

Feature

The JAR files and JavaScript libraries that enable SSO between IBM MobileFirst Platform
Foundation and other external services are removed. Use the MobileFirst OAuth-based
security model instead.

For more information about the OAuth-based security model, see “Overview of the
MobileFirst security framework” on page 7-265.

The “shake to refresh” feature is removed in IBM MobileFirst Platform Foundation V7.0.0.

Features discontinued in V6.3.0

Table 3-7. Features discontinued in V6.3.0

Feature

The IBM Worklight® Application Framework (beta) set of tools is removed in IBM
MobileFirst Platform Foundation V6.3.0.

3-24 IBM MobileFirst Platform Foundation V8.0.0

https://www.ibm.com/support/knowledgecenter/TLSDK/AndroidGuide1010/CFs/TLAnddLggFrwkInstandImpl/TealeafAndroidLoggingFrameworkInstallationAndImplementation.dita?cp=SS2MBL_9.0.2%2F5-0-1-0&lang=en
https://www.ibm.com/support/knowledgecenter/TLSDK/AndroidGuide1010/CFs/TLAnddLggFrwkInstandImpl/TealeafAndroidLoggingFrameworkInstallationAndImplementation.dita?cp=SS2MBL_9.0.2%2F5-0-1-0&lang=en
https://www.ibm.com/support/knowledgecenter/TLSDK/iOSGuide1010/CFs/TLiOSLggFrwkInstandImpl/TealeafIOSLoggingFrameworkInstallationAndImplementation.dita?cp=SS2MBL_9.0.2%2F5-0-3-1&lang=en
https://www.ibm.com/support/knowledgecenter/TLSDK/iOSGuide1010/CFs/TLiOSLggFrwkInstandImpl/TealeafIOSLoggingFrameworkInstallationAndImplementation.dita?cp=SS2MBL_9.0.2%2F5-0-3-1&lang=en

Known issues
You can identify the latest known issues and their resolutions, for this product
release and all its fix packs, by browsing this dynamic list of documents.

Click the following link to receive a dynamically generated list of documents for
this specific release and all its fix packs, including known issues and their
resolutions, and relevant downloads: http://www.ibm.com/support/
search.wss?tc=SSVNUQ&tc=SSHT2F&atrn=SWVersion&atrv=8.0

Known limitations
General limitations apply to IBM MobileFirst Platform Foundation as detailed here.
Limitations that apply to specific features are explained in the topics that describe
these features.

In this documentation, you can find the description of IBM MobileFirst Platform
Foundation known limitations in different locations:
v When the known limitation applies to a specific feature, you can find its

description in the topic that explains this specific feature. You can then
immediately identify how it affects the feature.

v When the known limitation is general, that is, applies to different and possibly
not directly related topics, you can find its description here.

Note: For more information about product known limitations or issues, see
“Known issues.”

Globalization

If you are developing globalized apps, the following restrictions apply:
v Partial translation: Part of the product IBM MobileFirst Platform Foundation

V8.0.0, including its documentation, is translated in the following languages:
Simplified Chinese, Traditional Chinese, French, German, Italian, Japanese,
Korean, Portuguese (Brazil), Russian, and Spanish. User-facing text is translated.

v Bidirectional support: The applications that are generated by IBM MobileFirst
Platform Foundation are not fully bidirectional enabled. Mirroring of the graphic
user interface (GUI) elements and the control of the text direction are not
provided by default. However, no hard dependency exists from the generated
applications on this limitation. It is possible for the developers to achieve full
bidi compliance by manual adjustments in the generated code.
Although translation into Hebrew is provided for IBM MobileFirst Platform
Foundation core functionality, some GUI elements are not mirrored.

v Constraints on adapter names: Names of adapters must be valid names to create
a Java class name. In addition, they must be composed only of the following
characters:
– Uppercase and lowercase letters (A-Z and a-z)
– Digits (0-9)
– Underscore (_)

v Unicode characters: Unicode characters outside the Basic Multilingual Plane are
not supported.

v Language sensitivity and Unicode Normalization Forms: In the following use
cases, queries do not consider language sensitivity such as normal matching,

Release notes 3-25

http://www.ibm.com/support/search.wss?tc=SSVNUQ&tc=SSHT2F&atrn=SWVersion&atrv=8.0
http://www.ibm.com/support/search.wss?tc=SSVNUQ&tc=SSHT2F&atrn=SWVersion&atrv=8.0

accent-insensitive, case-insensitive, and 1-to-2 mapping for the search function to
run correctly in different languages, and search on data does not use
Normalization Form C (NFC).
– From the MobileFirst Analytics Console, when you create a custom filter for a

custom chart. However, in this console, the message property uses
Normalization Form C (NFC) and considers language sensitivity.

– From the MobileFirst Operations Console, when you search for an application
in the Browse Applications page, for an adapter in the Browser Adapters
page, for a tag in the Push page, or a device on the Devices page.

– In the Find functions for the JSONStore API.

IBM MobileFirst Analytics
The IBM MobileFirst Analytics has the following limitations:
v Security analytics (data on requests failing security checks) is not

supported.
v In MobileFirst Analytics Console, the format for numbers does not

follow the International Components for Unicode (ICU) rules.
v In MobileFirst Analytics Console, the numbers do not use the user's

preferred number script.
v In MobileFirst Analytics Console, the format for dates, times, and

numbers are displayed according to the language setting of the
operating system rather than the locale of Microsoft Internet Explorer.

v When you create a custom filter for a custom chart, the numerical data
must be in base 10, Western, or European numerals, such as 0, 1, 2, 3, 4,
5, 6, 7, 8, 9.

v When you create an alert in the Alert Management page of MobileFirst
Analytics Console, the numerical data must be in base 10, Western, or
European numerals, such as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

v The Analytics page of the MobileFirst Operations Console supports the
following browsers:
– Microsoft Internet Explorer version 10 or later
– Mozilla Firefox ESR or later
– Apple Safari on iOS version 7.0 or later
– Google Chrome latest version

v The Analytics client SDK is not available for Windows.

IBM MobileFirst Platform Application Center mobile client

The Application Center mobile client follows the cultural conventions of
the running device, such as the date formatting. It does not always follow
the stricter International Components for Unicode (ICU) rules.

IBM MobileFirst Platform Operations Console
The MobileFirst Operations Console has the following limitations:
v Provides only partial support for bidirectional languages.
v The text direction cannot be changed when notification messages are

sent to an Android device:
– If the first letters typed are in a right-to-left language, such as Arabic

and Hebrew, the whole text direction is automatically right-to-left.
– If the first letters typed are in a left-to-right language, the whole text

direction is automatically left-to-right.

The sequence of characters and text alignment do not match cultural
fashion in the bidirectional language.

3-26 IBM MobileFirst Platform Foundation V8.0.0

v The numeric fields do not parse numeric values according to the
formatting rules of the locale. The console displays formatted numbers
but accept as input only raw (unformatted) numbers. For example: 1000,
not 1 000, or 1,000.

Server Configuration Tool
The Server Configuration Tool has the following restrictions:
v The descriptive name of a server configuration can contain only

characters that are in the system character set. On Windows, it is the
ANSI character set.

v Passwords that contain single quotation mark or double quotation mark
characters might not work correctly.

v The console of the Server Configuration Tool has the same globalization
limitation as the Windows console to display strings that are out of the
default code page.

You might also experience restrictions or anomalies in various aspects of
globalization because of limitations in other products, such as browsers, database
management systems, or software development kits in use. For example:
v You must define the user name and password of the Application Center with

ASCII characters only. This limitation exists because WebSphere Application
Server (full or Liberty profiles) does not support non-ASCII passwords and user
names. See Characters that are valid for user IDs and passwords.

v On Windows:
– To see any localized messages in the log file that the test server creates, you

must open this log file with the UTF8 encoding.

These limitations exist because of the following causes:
– The test server is installed on WebSphere Application Server Liberty profile,

which creates log file with the ANSI encoding except for its localized
messages for which it uses the UTF8 encoding.

v In Java 7.0 Service Refresh 4-FP2 and previous versions, you cannot paste
Unicode characters that are not part of the Basic Multilingual Plane into the
input field. To avoid this issue, create the path folder manually and choose that
folder during the installation.

v Custom title and button names for the alert, confirm, and prompt methods must
be kept short to avoid truncation at the edge of the screen.

v JSONStore does not handle normalization. The Find functions for the JSONStore
API do not take account of language sensitivity such as accent insensitive, case
insensitive, and 1-to-2 mapping.

Adapters and third-party dependencies

The following known issues pertain to interactions between dependencies and
classes in the application server, including the MobileFirst shared library.

Apache HttpClient
IBM MobileFirst Platform Foundation uses Apache HttpClient internally. If
you add an Apache HttpClient instance as a dependency to a Java adapter,
the following APIs do not work properly in the adapter:
AdaptersAPI.executeAdapterRequest, AdaptersAPI.getResponseAsJSON,
and AdaptersAPI.createJavascriptAdapterRequest. The reason is that the
APIs contain Apache HttpClient types in their signature. The workaround
is to use the internal Apache HttpClient but to change the dependency
scope in the pom.xml to provided.

Release notes 3-27

http://ibm.biz/knowctr#SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/csec_chars.html

Bouncy Castle cryptographic library
IBM MobileFirst Platform Foundation uses Bouncy Castle itself. It might be
possible to use another version of Bouncy Castle in the adapter, but the
consequences need to be carefully tested: sometimes, the MobileFirst
Bouncy Castle code populates certain static Singleton fields of the
javax.security package classes and might prevent the version of Bouncy
Castle that is inside an adapter from using features that rely on those
fields.

Apache CXF implementation of JAR files
CXF is used in the MobileFirst JAX-RS implementation, thus preventing
you from adding Apache CXF JAR files to an adapter.

Application Center mobile client: refresh issues on Android 4.0.x

Android 4.0.x WebView component is known to have several refresh issues.
Updating devices to Android 4.1.x should provide a better user experience.

If you build the Application Center client from sources, disabling the hardware
acceleration at the application level in the Android manifest should improve the
situation for Android 4.0.x. In that case, the application must be built with Android
SDK 11 or later.

Application Center requires MobileFirst Studio V7.1 for importing
and building the Application Center mobile client

To build the Application Center mobile client, you need MobileFirst Studio V 7.1.
You can download MobileFirst Studio from the Downloads page of the Developer
Center website. Click the Previous MobileFirst Platform Foundation releases tab
for the download link. For installation instructions, see Installing MobileFirst
Studio in the IBM Knowledge Center for 7.1. For more information about building
the Application Center mobile client, see “Preparations for using the mobile client”
on page 13-6.

Application Center and Microsoft Windows Phone 8.1

Application Center supports the distribution of applications as Windows Phone
application package (.xap) files for Microsoft Windows Phone 8.0 and Microsoft
Windows Phone 8.1. With Microsoft Windows Phone 8.1, Microsoft introduced a
new universal format as app package (.appx) files for Windows Phone. Currently,
Application Center does not support the distribution of app package (.appx) files
for Microsoft Windows Phone 8.1, but is limited to Windows Phone application
package (.xap) files only.

Application Center supports the distribution of app package (.appx) files for
Microsoft Windows Store (Desktop applications) only.

Administering MobileFirst applications through Ant or through
the command line

The mfpadm tool is not available if you download and install only the IBM
MobileFirst Platform Foundation Developer Kit. The mfpadm tool is installed with
the MobileFirst Server with the installer.

3-28 IBM MobileFirst Platform Foundation V8.0.0

https://mobilefirstplatform.ibmcloud.com/downloads/
https://mobilefirstplatform.ibmcloud.com/downloads/
https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.installconfig.doc/devenv/t_installing_ibm_worklight_studi.html
https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.installconfig.doc/devenv/t_installing_ibm_worklight_studi.html

Direct Update

Direct Update on Windows is not supported in V8.0.0.

FIPS 140-2 feature limitations

The following known limitations apply when you use the FIPS 140-2 feature in
IBM MobileFirst Platform Foundation:
v This FIPS 140-2 validated mode applies only to the protection (encryption) of

local data that is stored by the JSONStore feature and protection of HTTPS
communications between the MobileFirst client and the MobileFirst Server.
– For HTTPS communications, only the communications between the

MobileFirst client and the MobileFirst Server use the FIPS 140-2 libraries on
the client. Direct connections to other servers or services do not use the FIPS
140-2 libraries.

v This feature is only supported on the iOS and Android platforms.
– On Android, this feature is only supported on devices or simulators that use

the x86 or armeabi architectures. It is not supported on Android using armv5
or armv6 architectures. The reason is because the OpenSSL library used did
not obtain FIPS 140-2 validation for armv5 or armv6 on Android. FIPS 140-2 is
not supported on 64-bit architecture even though the MobileFirst library does
support 64-bit architecture. FIPS 140-2 can be run on 64-bit devices if the
project includes only 32-bit native NDK libraries.

– On iOS, it is supported on i386, x86_64, armv7, armv7s, and arm64
architectures.

v This feature works with hybrid applications only (not with native applications).
v For native iOS, FIPS is enabled through the iOS FIPS libraries and is enabled by

default. No action is required to enable FIPS 140-2.
v The use of the user enrollment feature on the client is not supported by the FIPS

140-2 feature.
v The Application Center client does not support the FIPS 140-2 feature.

For more information about this feature, see “FIPS 140-2 support” on page 10-75.

Installation of a fix pack or interim fix to the Application Center
or the MobileFirst Server

When you apply a fix pack or an interim fix to Application Center or MobileFirst
Server, manual operations are required, and you might have to shut down your
applications for some time.

JSONStore supported architectures

For Android, JSONStore supports the following architectures: ARM, ARM v7, and
x86 32-bit. Other architectures are not currently supported. Trying to use other
architectures leads to exceptions and potential application crashes.

JSON Store is not supported for Windows native applications.

For more information about JSONStore, see “JSONStore overview” on page 7-134.

Release notes 3-29

Liberty server limitations

If you use the Liberty server on a 32-bit JDK 7, Eclipse might not start, and you
might receive the following error: Error occurred during initialization of VM.
Could not reserve enough space for object heap. Error: Could not create the
Java Virtual Machine. Error: A fatal exception has occurred. Program will
exit.

To fix this issue, use the 64-bit JDK with the 64-bit Eclipse and 64-bit Windows. If
you use the 32-bit JDK on a 64-bit computer, you might configure JVM preferences
to mx512m and Xms216m.

LTPA token limitations

An SESN0008E exception occurs when an LTPA token expires before the user session
expires.

An LTPA token is associated with the current user session. If the session expires
before an LTPA token expires, a new session is created automatically. However,
when an LTPA token expires before a user session expires, the following exception
occurs:

com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException: SESN0008E:
A user authenticated as anonymous has attempted to access a session owned by {user name}

To resolve this limitation, you must force the user session to expire when the LTPA
token expires.
v On WebSphere Application Server Liberty, set the httpSession attribute

invalidateOnUnauthorizedSessionRequestException to true in the server.xml
file.

v On WebSphere Application Server, add the session management custom
property InvalidateOnUnauthorizedSessionRequestException with the value
true to fix the issue.

Note: On certain versions of WebSphere Application Server or WebSphere
Application Server Liberty, the exception is still logged, but the session is correctly
invalidated. For more information, see APAR PM85141.

Microsoft Windows Phone 8

For Windows Phone 8.1 environments, x64 architecture is not supported.

Microsoft Windows 10 UWP apps

Application authenticity feature does not work on MobileFirst Windows 10 UWP
apps when the MobileFirst SDK is installed through the NuGet package. As a
workaround, developers can download the NuGet package and add the
MobileFirst SDK references manually.

MobileFirst Operations Console

Analytics page
Response times in the Analytics page of the MobileFirst Operations
Console depend on several factors, such as hardware (RAM, CPUs),
quantity of accumulated analytics data, and IBM MobileFirst Analytics
clustering. Consider testing your load before you integrate IBM MobileFirst
Analytics into production.

3-30 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/docview.wss?uid=swg1PM85141

Nested projects can result in unpredictable results with the CLI

Do not nest projects inside one another when using the IBM MobileFirst Platform
Command Line Interface (CLI). Otherwise, the project that is acted upon might not
be the one that you expect.

Previewing Cordova web resources with the Mobile Browser
Simulator

You can preview your web resources with Mobile Browser Simulator, but not all
MobileFirst JavaScript APIs are supported by the simulator. In particular, the
OAuth protocol is not fully supported. However, you can test calls to adapters
with WLResourceRequest. For more information, see “Previewing Cordova web
resources with the Mobile Browser Simulator” on page 7-109.

Physical iOS device required for testing extended app
authenticity

The testing of the extended app authenticity feature requires a physical iOS device,
because an IPA cannot be installed on an iOS simulator.

Support of Oracle 12c by MobileFirst Server

The installation tools of the MobileFirst Server (Installation Manager, Server
Configuration Tool, and Ant tasks) support installation with Oracle 12c as a
database.

The users and tables can be created by the installation tools but the database, or
databases, must exist before you run the installation tools.

Support for push notification

Non-secured push is supported in Cordova (on iOS and Android).

Updating the cordova-ios platform

To update the cordova-ios platform of a Cordova app, you must uninstall and
reinstall the platform by completing the following steps:
1. Navigate to the project directory for the app by using the command-line

interface.
2. Run the cordova platform rm ios command to remove the platform.
3. Run the cordova platform add ios@version command to add the new platform

to the app, where version is the version of the Cordova iOS platform.
4. Run the cordova prepare command to integrate the changes.

The update fails if you use the cordova platform update ios command.

WKWebView support for iOS Cordova applications

App notifications and Direct Update features might not work well in iOS Cordova
apps with WKWebView.

This limitation is due to the defect file:// url XmlHttpRequests are not allowed in
WKWebViewEgine in cordova-plugin-wkwebview-engine.

Release notes 3-31

https://issues.apache.org/jira/browse/CB-10143
https://issues.apache.org/jira/browse/CB-10143

To circumvent this issue, run the following command in your Cordova project.
cordova plugin add https://github.com/apache/cordova-plugins.git#master:wkwebview-engine-localhost

Executing this command would run a local web server in your Cordova
application, you can then host and access your local files instead of using the file
URI scheme (file://) to work with local files.

Note: This Cordova plug-in is not published to the Node package manager (npm).

cordova-plugin-statusbar does not work with Cordova
application loaded with cordova-plugin-mfp.

cordova-plugin-statusbar will not work with Cordova application loaded with
cordova-plugin-mfp.

To circumvent this issue, the developer will have to set CDVViewController as the
root view controller. Replacing the code snippet in the
wlInitDidCompleteSuccessfully method as suggested below in the
MFPAppdelegate.m file of the Cordova iOS project.

Existing code snippet:
(void)wlInitDidCompleteSuccessfully
{
UIViewController* rootViewController = self.window.rootViewController;
// Create a Cordova View Controller
CDVViewController* cordovaViewController = [[CDVViewController alloc] init] ;
cordovaViewController.startPage = [[WL sharedInstance] mainHtmlFilePath];
// Adjust the Cordova view controller view frame to match its parent view bounds
cordovaViewController.view.frame = rootViewController.view.bounds;
// Display the Cordova view [rootViewController addChildViewController:cordovaViewController];
[rootViewController.view addSubview:cordovaViewController.view];
[cordovaViewController didMoveToParentViewController:rootViewController];
}

Recommended code snippet with workaround for the limitation:
(void)wlInitDidCompleteSuccessfully
{
// Create a Cordova View Controller
CDVViewController* cordovaViewController = [[CDVViewController alloc] init] ;
cordovaViewController.startPage = [[WL sharedInstance] mainHtmlFilePath];
[self.window setRootViewController:cordovaViewController];
[self.window makeKeyAndVisible];
}

Raw IPV6 address not supported in Android applications

During the configuration of mfpclient.properties for your native Android
application, if your MobileFirst Server is on a host with IPV6 address, then use a
mapped host name for the IPV6 address to configure the wlServerHost property in
mfpclient.properties. Configuring the wlServerHost with raw IPV6 address fails
the application's attempt to connect to the MobileFirst Server.

3-32 IBM MobileFirst Platform Foundation V8.0.0

https://github.com/apache/cordova-plugins.git#master:wkwebview-engine-localhost

Tutorials and additional resources

Tutorials help you get started with and learn about IBM MobileFirst Platform
Foundation. Use them to evaluate what the product can do for you.

Tutorials

For you to get started with the most important features of IBM MobileFirst
Platform Foundation, tutorials are available on the All Tutorials page of the
Developer Center website.

Additional documentation

The Learn More page of the Developer Center website for IBM MobileFirst
Platform provides useful links, including the Scalability and Hardware Sizing
document and its accompanying hardware calculator spreadsheet.

You can find further helpful community resources here:
v The Blog page of the Developer Center website for IBM MobileFirst Platform.
v The Help page of the Developer Center website for IBM MobileFirst Platform,

where you can post questions to Stack Overflow website, and get answers, by
using the following tags:
– mobilefirst
– worklight for past releases

v The dW Answers website, where you can post questions and get answers, by
using the following tags:
– mobilefirst
– worklight for past releases

© Copyright IBM Corp. 2006, 2016 4-1

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/all-tutorials
https://mobilefirstplatform.ibmcloud.com/learn-more
https://mobilefirstplatform.ibmcloud.com/blog
https://mobilefirstplatform.ibmcloud.com/help
http://stackoverflow.com/questions/tagged/mobilefirst
http://stackoverflow.com/questions/tagged/worklight
https://developer.ibm.com/answers
https://developer.ibm.com/answers/search.html?f=&type=question&redirect=search_search&sort=relevance&q=mobilefirst
https://developer.ibm.com/answers/search.html?f=&type=question&redirect=search_search&sort=relevance&q=worklight

4-2 IBM MobileFirst Platform Foundation V8.0.0

Upgrading to IBM MobileFirst Platform Foundation V8.0.0

This section contains the instructions for migrating the applications that you
created with IBM MobileFirst Platform Foundation V6.2 or later to IBM MobileFirst
Platform Foundation V8.0.0.

Migrating apps from earlier releases
IBM MobileFirst Platform Foundation V8.0 introduces new concepts for application
development and deployment, and some API changes. Learn about these changes
to prepare and plan for the migration of your MobileFirst applications.

At a glance
1. Learn about the development and deployment process in V8.0.0. See “Changes

in the development and deployment process.”
2. Learn about the migration assistance tool. Depending on your platform, see

“Starting the Cordova app migration with the migration assistance tool” on
page 5-38, “Scanning existing MobileFirst native iOS apps to prepare for
MobileFirst version 8.0” on page 5-17, “Scanning existing MobileFirst native
Android apps to prepare for MobileFirst version 8.0” on page 5-25, or
“Scanning existing MobileFirst native Windows apps to prepare for MobileFirst
version 8.0” on page 5-30.

3. Migrate your application. See “Migrating a Cordova or hybrid application” on
page 5-2 or “Migrating a native application” on page 5-2.

4. Migrate adapters and security. See “Migrating adapters and security” on page
5-3.

5. Migrate push notifications. See “Migrating push notification support” on page
5-3.

Changes in the development and deployment process

For a quick hands-on experience of the development process with IBM MobileFirst
Platform Foundation V8.0.0, you can review the Quick Start tutorials.

In this version of the product, you no longer create a project WAR file that needs
to be installed in the application server that is running MobileFirst Server before
you can upload your apps. Instead, MobileFirst Server is installed once, and you
upload the server-side configuration of your apps, of the resource security, or of
the push service to the server. You can modify the configuration of your apps with
the MobileFirst Operations Console. You can also upload a new configuration file
for your apps by using a command-line tool or the server REST API.

MobileFirst projects no longer exist. Instead, you develop your mobile app with
the development environment of your choice. You develop the server-side of your
application separately, in Java or in JavaScript. For more information about
development environments for the client-side of your application, see “Client app
development environments” on page 7-8. You can develop adapters with Apache
Maven or a Maven enabled IDE such as Eclipse, IntelliJ, and others. For more
information about developing adapters, see “Adapters as Apache Maven projects”
on page 7-189. For more information about using Eclipse as a Maven enabled IDE,
read the Developing Adapters in Eclipse tutorial.

© Copyright IBM Corp. 2006, 2016 5-1

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/quick-start/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/developing-adapters/

In previous versions, applications were deployed to the server by uploading a
.wlapp file. The file contained data that described the application and for hybrid
applications, the web resources. In V8.0.0, the .wlapp file is replaced by an
application descriptor JSON file for registering an app to the server. For Cordova
applications that use Direct Update, instead of uploading a new version of the
.wlapp, you now upload a web resource archive to the server.

When you develop your app, you use the IBM MobileFirst Platform Command
Line Interface (CLI) for many tasks, such as registering an app to its target server
or uploading its server-side configuration. For more information, see “Getting
started with the MobileFirst CLI” on page 7-22.

Discontinued features and replacement path

IBM MobileFirst Platform Foundation V8.0.0 is radically simplified compared to
the previous version. As a result of this simplification, some features that were
available in V7.1 are discontinued in V8.0.0. For more information about
discontinued features and replacement path, see “Features that are discontinued in
V8.0.0 and features that are not included in V8.0.0” on page 3-19.

Migrating a Cordova or hybrid application

You start developing Cordova apps with the Apache Cordova command-line tool
or with a Cordova enabled IDE such as Visual Studio Code, Eclipse, IntelliJ, and
others.For more information about using eclipse as a Cordova enabled IDE, see
“IBM MobileFirst Studio plug-in for managing Cordova projects in Eclipse” on
page 7-114.

Add support for the MobileFirst features by adding the MobileFirst plug-ins to
your app. For more information about the differences between V7.1 Cordova or
hybrid apps and V8.0 Cordova apps, see “Comparison of Cordova apps developed
with V8.0.0 versus V7.1.0 and before” on page 5-34.

To migrate a Cordova or hybrid app, you need to
v For planning purpose, run the migration assistance tool on your existing project.

Review the generated report and assess the effort required for migration. For
more information, see “Starting the Cordova app migration with the migration
assistance tool” on page 5-38.

v Replace the client-side APIs that are discontinued or not in V8.0.0. For a list of
API changes, see “Upgrading the WebView” on page 5-45.

v Modify the call to client resources that use the classic security model. For
example, use the WLResourceRequest API, instead of
WLClient.invokeProcedure, which is deprecated.

v If you use Direct Update, review “Migrating Direct Update” on page 5-44.

For more information about migrating Cordova or hybrid apps, see “Migrating
existing Cordova and hybrid applications” on page 5-33.

Note: The migration of push notification support requires client-side and
server-side changes and is described later on in “Migrating push notification
support” on page 5-3.

Migrating a native application

To migrate native application, you need to follow these steps:

5-2 IBM MobileFirst Platform Foundation V8.0.0

v For planning purpose, run the migration assistance tool on your existing project.
Review the generated report and assess the effort required for migration.

v Update your project to use the SDK from IBM MobileFirst Platform Foundation
V8.0.0

v Replace the client-side APIs that are discontinued or not in V8.0.0. The migration
assistance tool can scan your code and generate reports of the APIs to replace.

v Modify the call to client resources that use the classic security model. For
example, use the WLResourceRequest API, instead of
WLClient.invokeProcedure, which is deprecated.

For more information about migrating native iOS apps, see “Migrating existing
native iOS applications” on page 5-17.

For more information about migrating native Android apps, see “Migrating
existing native Android applications” on page 5-24.

For more information about migrating native Windows apps, see “Migrating
existing native Windows applications” on page 5-29.

Note: The migration of push notification support requires client-side and
server-side changes and is described later on in “Migrating push notification
support.”

Migrating adapters and security

Starting with V8.0.0, adapters are Maven projects. The MobileFirst security
framework is based on OAuth, security scopes, and security checks. Security
scopes define the security requirements to access a resource. Security checks define
how a security requirement is verified. Security checks are written as Java or
JavaScript adapters. For a hands-on experience with adapters and security, see the
tutorials Creating Java and JavaScript Adapters and Authorization concepts.

MobileFirst Server operates only in session-independent mode and adapters should
not store a state locally to a Java virtual machine (JVM).

You can externalize adapter properties to configure adapters for the context where
they run, for example a test server or a production server. But the values of these
properties are no longer included in a property file of a project WAR file. Instead,
you define them from the MobileFirst Operations Console, or by using a
command-line tool or the server REST API.

For more information about migrating adapters, see “Migrating existing adapters
to work under MobileFirst Server V8.0.0” on page 5-51.

For more information about server-side API changes, see “Server-side API changes
in V8.0.0” on page 5-14.

For an introduction to Apache Maven used to develop adapters, see “Adapters as
Apache Maven projects” on page 7-189.

Migrating push notification support

The event-source-based model is no longer supported. Instead, use tag-based
notification. To learn more about migrating push notification for your client apps

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-3

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/creating-adapters/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/authorization-concepts/

and your server-side components, see “Migrating to push notifications from event
source-based notifications” on page 5-54 and “Migration scenarios” on page 5-56.

Starting with V8.0.0, you configure the push service on the server side. The push
certificates are stored on the server. You can set them from the MobileFirst
Operations Console or you can automate certificate uploads by using a
command-line tool or the push service REST API. You can also send push
notifications from the MobileFirst Operations Console.

The push service is protected by the OAuth security model. You must configure
server-side components that use the push service REST API must be configured as
confidential clients of MobileFirst Server.

Changes in the server databases and in the server structure

MobileFirst Server enables changes to app security, connectivity and push without
code change, app rebuild or redeployment. But these changes imply changes in the
database schemas, the data stored in the database, and the installation process.

Because of these changes, IBM MobileFirst Platform Foundation does not include
automated scripts to migrate your databases from earlier versions to V8.0.0 or to
upgrade an existing server installation. To move new versions of your apps to
V8.0.0, install a new server that you can run side by side with your previous
server. Then, upgrade your apps and adapters to V8.0.0 and deploy them to the
new server.

Storing mobile data in Cloudant

Storing mobile data in Cloudant with the IMFData framework or CloudantToolkit
is no longer supported. For an alternative API, see “Migrating apps storing mobile
data in Cloudant with IMFData or Cloudant SDK” on page 5-80.

Client API changes in V8.0.0
The following changes in the APIs are relevant to migrating your MobileFirst client
application.

The following tables list the discontinued client-side API elements in V8.0.0,
deprecated client-side API elements in V8.0.0, and suggested migration paths. For
more information about migrating client applications, see “Migrating client
applications to IBM MobileFirst Platform Foundation V8.0.0” on page 5-17.

JavaScript APIs

These JavaScript APIs that affect the user interface are no longer supported in v8.0.
They can be replaced with available third-party Cordova plug-ins, or by creating
custom Cordova plug-ins.

5-4 IBM MobileFirst Platform Foundation V8.0.0

Table 5-1. Discontinued JavaScript UI elements

API element Migration path

WL.BusyIndicator

WL.OptionsMenu

WL.TabBar

WL.TabBarItem

Use Cordova plug-ins or HTML 5 elements.

WL.App.close() Handle this event outside of MobileFirst.

WL.App.copyToClipboard() Use Cordova plug-ins providing this
functionality.

WL.App.openUrl(url, target, options) Use Cordova plug-ins providing this
functionality.
Note: For your information, the Cordova
InAppBrowser plug-in provides this feature..

WL.App.overrideBackButton(callback)

WL.App.resetBackButton()

Use Cordova plug-ins providing this
functionality.
Note: For your information, the Cordova
backbutton plug-in provides this feature..

WL.App.getDeviceLanguage()
Use Cordova plug-ins providing this
functionality.
Note: For your information, the Cordova
cordova-plugin-globalization plug-in
provides this feature.

WL.App.getDeviceLocale()
Use Cordova plug-ins providing this
functionality.
Note: For your information, the Cordova
cordova-plugin-globalization plug-in
provides this feature.

WL.App.BackgroundHandler To run a custom handler function, use the
standard Cordova pause event listener. Use
a Cordova plug-in that provides privacy and
prevents iOS and Android systems and
users from taking snapshots or screen
captures. For more information, see the
description of the PrivacyScreenPlugin at
https://github.com/devgeeks/
PrivacyScreenPlugin.

WL.Client.close()

WL.Client.restore()

WL.Client.minimize()

The functions were provided to support the
Adobe AIR platform, which is not supported
by IBM MobileFirst Platform V8.0.0.

WL.Toast.show(string) Use Cordova plug-ins for Toast.

This set of APIs is no longer supported in V8.0.0.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-5

https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-globalization/index.html
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-globalization/index.html
https://github.com/devgeeks/PrivacyScreenPlugin
https://github.com/devgeeks/PrivacyScreenPlugin

Table 5-2. Other Discontinued JavaScript elements

API Migration path

WL.Client.checkForDirectUpdate(options) No replacement.
Note: You can call
WLAuthorizationManager.obtainAccessToken to
trigger a direct update if one is available. The
access to a security token triggers a direct update if
one is available on the server. But you cannot
trigger Direct Update on demand. For more
information about customizing the Direct Update
user interface and process, see “Customizing the
Direct Update user interface and process” on page
7-244.

WL.Client.setSharedToken({key: myName, value: myValue})

WL.Client.getSharedToken({key: myName})

WL.Client.clearSharedToken({key: myName})

No replacement.

WL.Client.isConnected()

connectOnStartup init option

Use WLAuthorizationManager.obtainAccessToken
to check connectivity to the server and apply
application management rules.

WL.Client.setUserPref(key,value, options)

WL.Client.setUserPrefs(userPrefsHash, options)

WL.Client.deleteUserPrefs(key, options)

No replacement. You can use an adapter and the
MFP.Server.getAuthenticatedUser API to manage
user preferences.

WL.Client.getUserInfo(realm, key)

WL.Client.updateUserInfo(options)

No replacement.

WL.Client.logActivity(activityType) Use WL.Logger. For more information, see “Logger
SDK” on page 11-37.

WL.Client.login(realm, options) Use WLAuthorizationManager.login. To get started
with authentication and security, see the
Authentication and Security tutorials.

WL.Client.logout(realm, options) Use WLAuthorizationManager.logout.

WL.Client.obtainAccessToken(scope, onSuccess, onFailure) Use WLAuthorizationManager.obtainAccessToken.

WL.Client.transmitEvent(event, immediate)

Wl.Client.purgeEventTransmissionBuffer()

Wl.Client.setEventTransmissionPolicy(policy)

Create a custom adapter for receiving notifications
of these events.

WL.Device.getContext()

WL.Device.startAcquisition(policy, triggers, onFailure)

WL.Device.stopAcquisition()

WL.Device.Wifi

WL.Device.Geo.Profiles

WL.Geo

Use native API or third-party Cordova plug-ins for
GeoLocation.

WL.Client.makeRequest (url, options) Create a custom adapter that provides the same
functionality

5-6 IBM MobileFirst Platform Foundation V8.0.0

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/

Table 5-2. Other Discontinued JavaScript elements (continued)

API Migration path

WLDevice.getID(options) Use Cordova plug-ins providing this functionality.
Note: For your information, device.uuid from the
cordova-plugin-device plug-in provides this feature.

WL.Device.getFriendlyName() Use WL.Client.getDeviceDisplayName

WL.Device.setFriendlyName() Use WL.Client.setDeviceDisplayName

WL.Device.getNetworkInfo(callback) Use Cordova plug-ins providing this functionality.
Note: For your information, the
cordova-plugin-network-information plug-in
provides this feature.

WLUtils.wlCheckReachability() Create a custom adapter to check server availability.

WL.EncryptedCache
Use JSONStore to store encrypted data locally.
JSONStore is in the cordova-plugin-mfp-jsonstore
plug-in. For more information, see “JSONStore” on
page 7-134.

WL.SecurityUtils.remoteRandomString(bytes) Create a custom adapter that provides the same
functionality.

WL.Client.getAppProperty(property) You can retrieve the app version property by using
the cordova plugin add cordova-plugin-
appversion plug-in. The version that is returned is
the native app version (Android and iOS only).

WL.Client.Push.* Use “JavaScript client-side push API” on page 8-4
from the cordova-plugin-mfp-push plug-in. For
more information, see “Migrating to push
notifications from event source-based notifications”
on page 5-54.

WL.Client.Push.subscribeSMS(alias, adapterName,
eventSource, phoneNumber, options)

Use MFPPush.registerDevice(org.json.JSONObject
options, MFPPushResponseListener listener) to
register the device for push and SMS.

WLAuthorizationManager.obtainAuthorizationHeader(scope) Use WLAuthorizationManager.obtainAccessToken
to obtain a token for the required scope. For more
information about implementing a custom resource
request, see “JavaScript custom resource-request
implementation sample” on page 7-311.

WLClient.getLastAccessToken(scope) Use WLAuthorizationManager.obtainAccessToken

WLClient.getLoginName()

WL.Client.getUserName(realm)

No replacement

WL.Client.getRequiredAccessTokenScope(status, header) Use
WLAuthorizationManager.isAuthorizationRequired
and WLAuthorizationManager.getResourceScope.

WL.Client.isUserAuthenticated(realm) No replacement

WLUserAuth.deleteCertificate(provisioningEntity) No replacement

WL.Trusteer.getRiskAssessment(onSuccess, onFailure) No replacement

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-7

Table 5-2. Other Discontinued JavaScript elements (continued)

API Migration path

WL.Client.createChallengeHandler(realmName) To create a challenge handler for handling custom
gateway challenges, use
WL.Client.createGatewayChallengeHandler(gatewayName).
To create a challenge handler for handling
MobileFirst security-check challenges, use
WL.Client.createSecurityCheckChallengeHandler(securityCheckName).
For more information about the V8.0.0
challenge-handler APIs, see “Client security APIs”
on page 7-305.

WL.Client.createWLChallengeHandler(realmName) Use
WL.Client.createSecurityCheckChallengeHandler(securityCheckName).
For more information about the V8.0.0
challenge-handler APIs, see “Client security APIs”
on page 7-305.

challengeHandler.isCustomResponse() where challengeHandler
is a challenge-handler object that is returned by
WL.Client.createChallengeHandler()

Use
gatewayChallengeHandler.canHandleResponse()
where gatewayChallengeHandler is a
challenge-handler object that is returned by
WL.Client.createGatewayChallengeHandler().

wlChallengeHandler.processSucccess() where
wlChallengeHandler is a challenge-handler object that is
returned by WL.Client.createWLChallengeHandler()

Use securityCheckChallengeHandler.handleSuccess()
where securityCheckChallengeHandler is a
challenge-handler object that is returned by
WL.Client.createSecurityCheckChallengeHandler().

WL.Client.AbstractChallengeHandler.submitAdapterAuthentication()Implement similar logic in your challenge handler.
For custom gateway challenge handlers, use a
challenge-handler object that is returned by
WL.Client.createGatewayChallengeHandler. For
MobileFirst security-check challenge handlers, use a
challenge-handler object that is returned by
WL.Client.createSecurityCheckChallengeHandler.

WL.Client.AbstractChallengeHandler.submitFailure(err) Use
WL.Client.AbstractChallengeHandler.cancel()WL.Client.AbstractChallengeHandler.cancel().

WL.Client.createProvisioningChallengeHandler() No replacement. Device provisioning is now
handled automatically by the security framework.

Table 5-3. Deprecated JavaScript APIs

API Migration path

WLClient.invokeProcedure(WLProcedureInvocationData
invocationData,WLResponseListener responseListener)

WL.Client.invokeProcedure(invocationData, options)

WLClient.invokeProcedure(WLProcedureInvocationData
invocationData, WLResponseListener responseListener,
WLRequestOptions requestOptions)

WLProcedureInvocationResult

Use the WLResourceRequest instead.
Note: The implementation of invokeProcedure uses
WLResourceRequest.

WLClient.getEnvironment Use Cordova plug-ins providing this functionality.
Note: For your information, the device.platform plug-in
provides this feature.

5-8 IBM MobileFirst Platform Foundation V8.0.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.AbstractChallengeHandler.html#cancel

Table 5-3. Deprecated JavaScript APIs (continued)

API Migration path

WLClient.getLanguage Use Cordova plug-ins providing this functionality.
Note: For your information, the cordova-plugin-
globalization plug-in provides this feature.

WL.Client.connect(options) Use WLAuthorizationManager.obtainAccessToken to
check connectivity to the server and apply application
management rules.

Android APIs

Table 5-4. Discontinued Android API elements

API element Migration path

WLConfig WLClient.getConfig() No replacement.

WLDevice WLClient.getWLDevice()

WLClient.transmitEvent(org.json.JSONObject event)

WLClient.setEventTransmissionPolicy(WLEventTransmissionPolicy policy)

WLClient.purgeEventTransmissionBuffer()

Use Android API or third-party
packages for GeoLocation.

WL.Client.getUserInfo(realm, key)

WL.Client.updateUserInfo(options)

No replacement.

WL.Client.getUserInfo(realm, key

WL.Client.updateUserInfo(options)

No replacement

WLClient.checkForNotifications() Use
WLAuthorizationManager.obtainAccessToken("",
listener) to check connectivity to the
server and apply application
management rules.

WLClient.login(java.lang.String realmName, WLRequestListener listener,
WLRequestOptions options)

WLClient.login(java.lang.String realmName, WLRequestListener listener)

Use AuthorizationManager.login()

WLClient.logout(java.lang.String realmName, WLRequestListener
listener, WLRequestOptions options)

WLClient.logout(java.lang.String realmName, WLRequestListener
listener)

Use AuthorizationManager.logout().

WLClient.obtainAccessToken(java.lang.String scope,WLResponseListener
responseListener)

Use
WLAuthorizationManager.obtainAccessToken(String,
WLAccessTokenListener) to check
connectivity to the server and apply
application management rules.

WLClient.getLastAccessToken()

WLClient.getLastAccessToken(java.lang.String scope)

Use AuthorizationManager.

WLClient.getRequiredAccessTokenScope(int status, java.lang.String
header)

Use AuthorizationManager.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-9

https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-globalization/index.html
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-globalization/index.html

Table 5-4. Discontinued Android API elements (continued)

API element Migration path

WLClient.logActivity(java.lang.String activityType) Use com.worklight.common.Logger .
For more information, see “Logger
SDK” on page 11-37.

WLAuthorizationPersistencePolicy No replacement. To implement
authorization persistence, store the
authorization token in the
application code and create custom
HTTP requests. For more
information, see “Java custom
resource-request implementation
sample” on page 7-309.

WLSimpleSharedData.setSharedToken(myName, myValue)

WLSimpleSharedData.getSharedToken(myName)

WLSimpleSharedData.clearSharedToken(myName)

Use the Android APIs to share
tokens across applications.

WLUserCertificateManager.deleteCertificate(android.content.Context
context)

No replacement

BaseChallengeHandler.submitFailure(WLResponse wlResponse) Use BaseChallengeHandler.cancel().

ChallengeHandler For custom gateway challenges, use
GatewayChallengeHandler. For
MobileFirst security-check
challenges, use
SecurityCheckChallengeHandler. For
more information about the V8.0.0
challenge-handler APIs, see “Client
security APIs” on page 7-305.

WLChallengeHandler Use
SecurityCheckChallengeHandler. For
more information about the V8.0.0
challenge-handler APIs, see “Client
security APIs” on page 7-305.

ChallengeHandler.isCustomResponse() Use
GatewayChallengeHandler.canHandleResponse().

ChallengeHandler.submitAdapterAuthentication Implement similar logic in your
challenge handler. For custom
gateway challenge handlers, use
GatewayChallengeHandler. For
MobileFirst security-check challenge
handlers, use
SecurityCheckChallengeHandler.

Table 5-5. Deprecated Android API elements

API Migration path

WLClient.invokeProcedure(WLProcedureInvocationData
invocationData, WLResponseListener responseListener) Deprecated. Use WLResourceRequest

Note: The implementation of invokeProcedure uses
WLResourceRequest.

WLClient.connect(WLResponseListener
responseListener)

WLClient.connect(WLResponseListener
responseListener,WLRequestOptions options)

Use WLAuthorizationManager.obtainAccessToken("",
listener) to check connectivity to the server and apply
application management rules.

5-10 IBM MobileFirst Platform Foundation V8.0.0

Table 5-6. Android APIs depending on the legacy org.apach.http APIs are no longer supported

API element Migration path

org.apache.http.Header[] is now deprecated. Therefore,
the following methods are removed:

org.apache.http.Header[]
WLResourceRequest.getAllHeaders()

Use instead the new Map<String, List<String>>
WLResourceRequest.getAllHeaders() API.

WLResourceRequest.addHeader(org.apache.http.Header
header)

Use instead the new
WLResourceRequest.addHeader(String name, String
value) API.

org.apache.http.Header[]
WLResourceRequest.getHeaders(java.lang.String
headerName)

Use instead the new List<String>
WLResourceRequest.getHeaders(String headerName)
API.

org.apache.http.Header
WLResourceRequest.getFirstHeader(java.lang.String
headerName)

Use instead the new
WLResourceRequest.getHeaders(String headerName)
API.

WLResourceRequest.setHeaders(org.apache.http.Header[]
headers)

Instead, use the new
WLResourceRequest.setHeaders(Map<String,
List<String>> headerMap) API.

WLResourceRequest.setHeader(org.apache.http.Header
header)

Instead, use the new
WLResourceRequest.setHeaders(Map<String,
List<String>> headerMap) API.

org.apache.http.client.CookieStore
WLClient.getCookieStore()

Replaced with java.net.CookieStore getCookieStore
WLClient.getCookieStore()

java.net.CookieStore getCookieStore WLClient.getCookieStore()

WLClient.setAllowHTTPClientCircularRedirect(boolean
isSet)

No replacement. MFP Client allows circular redirects.

WLHttpResponseListenerWLResourceRequest, all methods
that take WLHttpResponseListener:

WLResourceRequest.send(java.util.HashMap
formParameters,WLHttpResponseListener listener)

WLResourceRequest.send(org.json.JSONObject json,
WLHttpResponseListener listener)

WLResourceRequest.send(byte[] data,
WLHttpResponseListener listener)

WLResourceRequest.send(java.lang.String
requestBody,WLHttpResponseListener listener)

WLResourceRequest.send(WLHttpResponseListener
listener)

WLClient.sendRequest(org.apache.http.client.methods.
HttpUriRequest request,WLHttpResponseListener
listener)

WLClient.sendRequest(org.apache.http.client.methods.
HttpUriRequest request, WLResponseListener listener)

Removed due to deprecated Apache HTTP Client
dependencies. Create your own request to have full
control over the request and response.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-11

The com.worklight.androidgap.api package provides the Android platform
functionality for Cordova apps. In MobileFirst, a number of changes were made to
accommodate the Cordova integration.

Table 5-7. Discontinued Android gap elements (com.worklight.androidgap.api)

API element Migration path

The Android activity was replaced with the
Android context.

static
WL.createInstance(android.app.Activity
activity)

static
WL.createInstance(android.content.Context
context)

Creates a shared instance.

static WL.getInstance() static WL.getInstance()

Gets an instance of the WL class. This method
cannot be called before
WL.createInstance(Context).

Objective C API

Table 5-8. Discontinued iOS Objective C APIs

API element Migration path

[WLClient getWLDevice][WLClient transmitEvent:]

[WLClient setEventTransmissionPolicy]

[WLClient purgeEventTransmissionBuffer]

Geolocation removed. Use native iOS or
third-party packages for GeoLocation.

WL.Client.getUserInfo(realm, key)

WL.Client.updateUserInfo(options)

No replacement.

WL.Client.deleteUserPref(key, options) No replacement. You can use an adapter and the
MFP.Server.getAuthenticatedUser API to manage
user preferences.

[WLClient getRequiredAccessTokenScopeFromStatus] Use WLAuthorizationManager
obtainAccessTokenForScope.

[WLClient login:withDelegate:] Use WLAuthorizationManager login.

[WLClient logout:withDelegate:] Use WLAuthorizationManager logout.

[WLClient lastAccessToken]

[WLClient lastAccessTokenForScope:]

Use WLAuthorizationManager
obtainAccessTokenForScope.

[WLClient obtainAccessTokenForScope:withDelegate:]

[WLClient getRequiredAccessTokenScopeFromStatus:
authenticationHeader:]

Use WLAuthorizationManager
obtainAccessTokenForScope.

[WLClient isSubscribedToAdapter:(NSString *)
adaptereventSource:(NSString *) eventSource

Use “Objective-C client-side push API for iOS
apps” on page 8-5 from the
IBMMobileFirstPlatformFoundationPush
framework. For more information, see “Migrating
to push notifications from event source-based
notifications” on page 5-54.

5-12 IBM MobileFirst Platform Foundation V8.0.0

Table 5-8. Discontinued iOS Objective C APIs (continued)

API element Migration path

[WLClient - (int) getEventSourceIDFromUserInfo:
(NSDictionary *) userInfo]

Use “Objective-C client-side push API for iOS
apps” on page 8-5 from the
IBMMobileFirstPlatformFoundationPush
framework. For more information, see “Migrating
to push notifications from event source-based
notifications” on page 5-54.

[WLClient invokeProcedure: (WLProcedureInvocationData *)] Deprecated. Use WLResourceRequest instead.

[WLClient sendUrlRequest:delegate:] Use [WLResourceRequest
sendWithDelegate:delegate] instead.

[WLClient (void) logActivity:(NSString *) activityType] Removed. Use an Objective C logger.

[WLSimpleDataSharing setSharedToken: myName value:
myValue]

[WLSimpleDataSharing getSharedToken: myName]]

[WLSimpleDataSharing clearSharedToken: myName]

Use the OS APIs to share tokens across
applications.

BaseChallengeHandler.submitFailure(WLResponse *)challenge Use BaseChallengeHandler.cancel().

BaseProvisioningChallengeHandler No replacement. Device provisioning is now
handled automatically by the security framework.

ChallengeHandler For custom gateway challenges, use
GatewayChallengeHandler. For MobileFirst
security-check challenges, use
SecurityCheckChallengeHandler. For more
information about the V8.0.0 challenge-handler
APIs, see “Client security APIs” on page 7-305.

WLChallengeHandler Use SecurityCheckChallengeHandler. For more
information about the V8.0.0 challenge-handler
APIs, see “Client security APIs” on page 7-305.

ChallengeHandler.isCustomResponse() Use
GatewayChallengeHandler.canHandleResponse().

ChallengeHandler.submitAdapterAuthentication Implement similar logic in your challenge
handler. For custom gateway challenge handlers,
use GatewayChallengeHandler. For MobileFirst
security-check challenge handlers, use
SecurityCheckChallengeHandler.

Windows C# API

Table 5-9. Deprecated Windows C# API elements.

Category Description Recommended action

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-13

Table 5-9. Deprecated Windows C# API elements (continued).

Category Description Recommended action

C# API Classes ChallengeHandler For custom gateway challenges, use
GatewayChallengeHandler. For MobileFirst
security-check challenges, use
SecurityCheckChallengeHandler. For more
information about the V8.0.0 challenge-handler
APIs, see “Client security APIs” on page 7-305.

ChallengeHandler.
isCustomResponse()

Use
GatewayChallengeHandler.canHandleResponse().

ChallengeHandler.submitAdapterAuthenticationImplement similar logic in your challenge
handler. For custom gateway challenge
handlers, use GatewayChallengeHandler. For
MobileFirst security-check challenge handlers,
use SecurityCheckChallengeHandler.

ChallengeHandler.submitFailure(WLResponse
wlResponse)

For custom gateway challenge handlers, use
GatewayChallengeHandler.Shouldcancel(). For
MobileFirst security-check challenge handlers,
use
SecurityCheckChallengeHandler.ShouldCancel().

WLAuthorizationManager Use
WorklightClient.WorklightAuthorizationManager
instead.

WLChallengeHandler Use SecurityCheckChallengeHandler. For more
information about the V8.0.0 challenge-handler
APIs, see “Client security APIs” on page 7-305.

WLChallengeHandler.submitFailure(WLResponse
wlResponse)

Use
SecurityCheckChallengeHandler.ShouldCancel().

WLClient Use WorklightClient instead.

WLErrorCode Not supported.

WLFailResponse Use WorklightResponse instead.

WLResponse

WLProcedureInvocationData Use WorklightProcedureInvocationData instead.

WLProcedureInvocationFailResponse Not supported.

WLProcedureInvocationResult Not supported.

WLRequestOptions Not supported.

WLResourceRequest Use WorklightResourceRequest instead.

C# API Interfaces WLHttpResponseListener Not supported.

WLResponseListener The response will be available as a
WorklightResponse object

WLAuthorizationPersistencePolicy Not supported.

Server-side API changes in V8.0.0
To migrate the server side of your MobileFirst application, take into account the
changes to the APIs.

The following tables list the discontinued server-side API elements in V8.0.0,
deprecated server-side API elements in V8.0.0, and suggested migration paths. For
more information about migrating the server side of your application, see

5-14 IBM MobileFirst Platform Foundation V8.0.0

“Migrating existing adapters to work under MobileFirst Server V8.0.0” on page
5-51 and “Migrating to push notifications from event source-based notifications”
on page 5-54.

Table 5-10. JavaScript API elements discontinued in V8.0.0.

Category API Element Replacement path

Security WL.Server.getActiveUser Use
MFP.Server.getAuthenticatedUser
instead.

WL.Server.getCurrentUserIdentity

WL.Server.getCurrentDeviceIdentity

WL.Server.setActiveUser

WL.Server.getClientId

WL.Server.getClientDeviceContext

WL.Server.setApplicationContext

Event source WL.Server.createEventSource To migrate from Event
source-based notifications to
tag-based notifications, see
“Migrating to push notifications
from event source-based
notifications” on page 5-54.

WL.Server.setEventHandlers

WL.Server.createEventHandler

WL.Server.createSMSEventHandler To send SMS messages, use the
push service REST API. For more
information, see “Sending SMS
notifications” on page 7-264.

WL.Server.createUSSDEventHandlerIntegrate USSD by using
third-party services.

Push WL.Server.getUserNotificationSubscriptionTo migrate from Event
source-based notifications to
tag-based notifications, see
“Migrating to push notifications
from event source-based
notifications” on page 5-54.

WL.Server.notifyAllDevices

WL.Server.sendMessage

WL.Server.notifyDevice

WL.Server.notifyDeviceSubscription

WL.Server.notifyAll

WL.Server.createDefaultNotification

WL.Server.submitNotification

WL.Server.subscribeSMS Use the REST API Push Device
Registration (POST) to register the
device. To send and receive SMS
notifications, provide the
phoneNumber in the payload while
invoking the API.

WL.Server.unsubscribeSMS Use the REST API Push Device
Registration (DELETE) to
unregister the device.

WL.Server.getSMSSubscription Use the REST API Push Device
Registration GET) to get the
device registrations.

Location services WL.Geo.* Integrate Location services by
using third-party services.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-15

Table 5-10. JavaScript API elements discontinued in V8.0.0 (continued).

Category API Element Replacement path

WS-Security WL.Server.signSoapMessage Use the WS-Security capabilities
of WebSphere Application Server.

Table 5-11. Java API elements discontinued in V8.0.0.

Category API Element Replacement path

Security SecurityAPI.getSecurityContext Use
AdapterSecurityContext
instead.

Push PushAPI.sendMessage(INotification
notification, String applicationId)

To migrate from Event
source-based
notifications to
tag-based notifications,
see “Migrating to push
notifications from event
source-based
notifications” on page
5-54.

INotification
PushAPI.buildNotification();

To migrate from Event
source-based
notifications to
tag-based notifications,
see “Migrating to push
notifications from event
source-based
notifications” on page
5-54.

UserSubscription
PushAPI.getUserSubscription(String
eventSource, String userId)

To migrate from Event
source-based
notifications to
tag-based notifications,
see “Migrating to push
notifications from event
source-based
notifications” on page
5-54.

5-16 IBM MobileFirst Platform Foundation V8.0.0

Table 5-12. Java API elements deprecated in V8.0.0.

Category Deprecation Replacement path

Java AdaptersAPI interface in the
com.worklight.adapters.rest.api
package

Use the AdaptersAPI interface in
the com.ibm.mfp.adapter.api
package instead.

AnalyticsAPI interface in the
com.worklight.adapters.rest.api
package

Use the AnalyticsAPI interface in
the com.ibm.mfp.adapter.api
package instead.

ConfigurationAPI interface in the
com.worklight.adapters.rest.api
package

Use the ConfigurationAPI interface
in the com.ibm.mfp.adapter.api
package instead.

OAuthSecurity annotation in the
com.worklight.core.auth package

Use the OAuthSecurity annotation
in the com.ibm.mfp.adapter.api
package instead.

MFPJAXRSApplication class in the
com.worklight.wink.extensions
package

Use the MFPJAXRSApplication
class in the
com.ibm.mfp.adapter.api package
instead.

WLServerAPI interface in the
com.worklight.adapters.rest.api
package

Use the JAX-RS Context annotation
to access the MobileFirst API
interfaces directly.

WLServerAPIProvider class in the
com.worklight.adapters.rest.api
package

Use the JAX-RS Context annotation
to access the MobileFirst API
interfaces directly.

Migrating client applications to IBM MobileFirst Platform
Foundation V8.0.0

Migrate your existing client applications to IBM MobileFirst Platform Foundation
V8.0.0.

Read the following topics to learn how to migrate your client application from IBM
MobileFirst Platform Foundation V7.1 to V8.0.0. To learn more about changes in
the development process, in the MobileFirst security framework and push service,
and more, see “Migrating apps from earlier releases” on page 5-1.

Migrating existing native iOS applications
To migrate an existing native iOS project that was created with IBM MobileFirst
Platform Foundation version 6.2.0 or later, you must modify the project to use the
SDK from the current version. Then you replace the client-side APIs that are
discontinued or not in V8.0.0. The migration assistance tool can scan your code
and generate reports of the APIs to replace.

Scanning existing MobileFirst native iOS apps to prepare for MobileFirst
version 8.0:

The migration assistance tool helps you prepare your apps that were created with
previous versions of IBM MobileFirst Platform Foundation for migration by
scanning the sources of the native iOS apps that were developed by using Swift or
Objective-C and generating a report of APIs that are deprecated or discontinued in
version 8.0.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-17

Before you begin

The following information is important to know before you use the migration
assistance tool:
v You must have an existing IBM MobileFirst Platform Foundation native iOS

application.
v You must have internet access.
v You must have node.js version 4.0.0 or later installed.
v Review and understand the limitations of the migration process. For more

information, see “Migrating apps from earlier releases” on page 5-1.

About this task

Apps that were created with earlier versions of IBM MobileFirst Platform
Foundation are not supported in IBM MobileFirst Platform Foundation version 8.0
without some changes. The migration assistance tool simplifies the process by
scanning the source files in the existing version app and identifies APIs that are
deprecated, no longer supported, or modified in version 8.0.

The migration assistance tool does not modify or move any developer code or
comments of your app.

Procedure

1. Download the migration assistance tool by using one of the following methods:
v Download the .tgz file from the Jazzhub repository.
v Download the Developer Kit, which contains the migration assistance tool as

a file named mfpmigrate-cli.tgz, from the Download page. For more
information about the Developer Kit, see “The IBM MobileFirst Platform
Foundation Developer Kit” on page 7-9.

v Download the tool by using the instructions that are provided in “Opening
the MobileFirst Operations Console” on page 7-12.

2. Install the migration assistance tool.
a. Change to the directory where you downloaded the tool.
b. Use NPM to install the tool by entering the following command:

npm install -g

3. Scan the IBM MobileFirst Platform Foundation app by entering the following
command:
mfpmigrate scan --in source_directory --out destination_directory
--type ios

source_directory
The current location of the version project.

destination_directory
The directory where the report is created.

When it is used with the scan command, the migration assistance tool identifies
APIs in the existing IBM MobileFirst Platform Foundation app that are
removed, deprecated, or changed in version 8.0 and saves them in the
identified destination directory.

5-18 IBM MobileFirst Platform Foundation V8.0.0

https://hub.jazz.net/project/ibmmfpf/mfp-migrator-tool
http://www.ibm.com/support/docview.wss?uid=swg2C4000039

Migrating an existing iOS project to version V8.0.0 manually:

Migrate your existing native iOS project manually within your Xcode project and
continue developing with IBM MobileFirst Platform Foundation V8.0.0.

Before you begin

Before you begin you must:
v be working in Xcode 7.0 (iOS 9) or later.
v have an existing native iOS project that was created with IBM MobileFirst

Platform Foundation 6.2.0 or later.
v have access to a copy of the V8.0.0 MobileFirst iOS SDK files. See “Acquiring the

MobileFirst SDK from the MobileFirst Operations Console” on page 7-26.

Procedure

1. Delete all of the existing references to the static library
libWorklightStaticLibProjectNative.a in the Link Binary With Libraries tab
of Build Phases section.

2. Delete the Headers folder from the WorklightAPI folder.
3. In the Build Phases section, link the main required framework

IBMMobileFirstPlatformFoundation.framework file in the Link Binary With
Libraries tab.
This framework provides core MobileFirst functionality. Similarly, you can add
other frameworks for optional functionality (see Table 7-6 on page 7-32).

4. Similar to the preceding step, link the following resources to your project in the
Link Binary With Libraries section of the Build Phases tab.
v SystemConfiguration.framework

v MobileCoreServices.framework

v Security.framework

v

Note: Some frameworks might already be linked.
v libstdc++.6.tbd

v libz.tbd

v libc++.tbd

5. Remove $(SRCROOT)/WorklightAPI/include from the header search path.
6. Replace all of the existing MobileFirst imports of headers with a single entry of

the following new umbrella header:
v Objective C:

#import <IBMMobileFirstPlatformFoundation/IBMMobileFirstPlatformFoundation.h>

v Swift:
import IBMMobileFirstPlatformFoundation

Results

Your application is now upgraded to work with the IBM MobileFirst Platform
Foundation, V8.0.0 iOS SDK.

What to do next

v Replace the client-side APIs that are discontinued or not in V8.0.0. For more
information about the changes in the client-side API, see “Updating the iOS

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-19

code” on page 5-23. For more information about the migration assistance tool,
see “Scanning existing MobileFirst native iOS apps to prepare for MobileFirst
version 8.0” on page 5-17.

v Before you can access server resources, you must register your app. See
“Registering iOS applications to MobileFirst Server” on page 7-37. For details
about the mfpclient.plist file, see “iOS client properties file” on page 7-41.

Migrating an existing native iOS projects to version V8.0.0 with CocoaPods:

Migrate your existing native iOS project to work with V8.0.0 by getting the IBM
MobileFirst Platform Foundation iOS SDK using CocoaPods and making changes
in the project configuration.

Before you begin

Note: MobileFirst development is supported in Xcode from version 7.1 by using
iOS 8.0 and later.

You must have:
v CocoaPods installed in your development environment. For more information,

see the "Getting Started" guide for CocoaPods installation.
v Xcode 7.1 with iOS 8.0 or higher for your development environment.
v An app integrated with MobileFirst 6.2 or later.

About this task

The SDK contains required and optional SDKs. Each required or optional SDK has
its own pod.

The required IBMMobileFirstPlatformFoundation pod is the core of the system. It
implements client-to-server connections, handles security, analytics, and application
management.

The following optional pods provide additional features.

Table 5-13. Pods for installing optional frameworks

Pod Feature

IBMMobileFirstPlatformFoundationPush Adds the
IBMMobileFirstPlatformFoundationPush
framework for enabling Push. For more
information, see “Push notification” on page
7-248.

IBMMobileFirstPlatformFoundationJSONStore Implements the JSONStore feature. Include
this pod in your Podfile if you intend to use
the JSONStore feature in your app. See
“JSONStore” on page 7-134.

IBMMobileFirstPlatformFoundationOpenSSLUtilsContains the MobileFirst embedded
OpenSSL feature and loads automatically the
openssl framework. Include this pod in your
Podfile if you intend to use the OpenSSL
provided by MobileFirst. For more
information on OpenSSL options, see
“Enabling OpenSSL for iOS” on page 7-47.

5-20 IBM MobileFirst Platform Foundation V8.0.0

http://guides.cocoapods.org/using/getting-started.html

Procedure

1. Open your project in Xcode.
2. Delete the WorklightAPI folder from your Xcode project (move it to trash).
3. Modify your existing code in the following ways:

a. Remove $(SRCROOT)/WorklightAPI/include from the header search path.
b. Remove $(PROJECTDIR)/WorklightAPI/frameworks from the frameworks

search path.
c. Remove any references to the static

librarylibWorklightStaticLibProjectNative.a.
4. In the Build Phases tab, remove the links to the following frameworks and

libraries (these are re-added automatically by CocoaPods):
v libWorklightStaticLibProjectNative.a

v SystemConfiguration.framework

v MobileCoreServices.framework

v CoreData.framework

v CoreLocation.framework

v Security.framework

v sqlcipher.framework

v libstdc++.6.dylib

v libz.dylib

5. Close Xcode.
6. Get the IBM MobileFirst Platform Foundation iOS SDK from CocoaPods. To

get the SDK, complete the following steps:
a. Open Terminal at the location of your new Xcode project.
b. Run the pod init command to create a Podfile file.
c. Open the Podfile file that is in the root of the project with a text editor.
d. Comment out or remove the existing content.
e. Add the following lines and save the changes, including the iOS version:

use_frameworks!
platform :ios, 9.0
pod ’IBMMobileFirstPlatformFoundation’

f. Specify additional pods in the file from the list above, if your app needs to
use the additional functionality that they provide. For example, if your app
uses OpenSSL, the Podfile might look like this:
use_frameworks!
platform :ios, 9.0
pod ’IBMMobileFirstPlatformFoundation’
pod ’IBMMobileFirstPlatformFoundationOpenSSLUtils’

For a list of optional pods, see Table 7-7 on page 7-34.

Note:

The previous syntax imports the latest version of the
IBMMobileFirstPlatformFoundation pod. If you are not using the latest
version of MobileFirst, you need to add the full version number, including
the major, minor, and patch numbers. The patch number is in the format
YYYYMMDDHH. For example, for importing the specific patch version
8.0.2016021411 of the IBMMobileFirstPlatformFoundation pod the line
would look like this:
pod ’IBMMobileFirstPlatformFoundation’, ’8.0.2016021411’

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-21

Or to get the last patch for the minor version number the syntax such is
pod ’IBMMobileFirstPlatformFoundation’, ’~>8.0.0’

g. Verify that the Xcode project is closed.
h. Run the pod install command.

This command installs the MobileFirst SDK
IBMMobileFirstPlatformFoundation.framework and any other frameworks
that are specified in the Podfile and their dependencies. It then generates
the pods project, and integrates the client project with the MobileFirst
SDK.

7. Open your ProjectName.xcworkspace file in Xcode by typing open
ProjectName.xcworkspace from a command line. This file is in the same
directory as the ProjectName.xcodeproj file.

8. Replace all of the existing MobileFirst imports of headers with a single entry
of the following new umbrella header:
v Objective C:

#import <IBMMobileFirstPlatformFoundation/IBMMobileFirstPlatformFoundation.h>

v Swift:
import IBMMobileFirstPlatformFoundation

If you are using Push or JSONStore, you need to include an independent
import.

Push

v For Objective C:
#import
<IBMMobileFirstPlatformFoundationPush/IBMMobileFirstPlatformFoundationPush.h>

v For Swift:
import IBMMobileFirstPlatformFoundationPush

JSONStore

v For Objective C:
#import <IBMMobileFirstPlatformFoundationJSONStore/IBMMobileFirstPlatformFoundationJSONStore.h>

v For Swift:
import IBMMobileFirstPlatformFoundationJSONStore

9. In the Build Settings tab, under Other Linker Flags, add $(inherited) at the
beginning of the -ObjC flag. For example:

10. Beginning with Xcode 7, TLS must be enforced, see “Enforcing TLS-secure
connections in iOS apps” on page 7-46.

Figure 5-1. Adding $(inherited) to ObjC flag in Xcode Build Settings

5-22 IBM MobileFirst Platform Foundation V8.0.0

Results

Your application is now upgraded to work with the IBM MobileFirst Platform
Foundation, V8.0.0 iOS SDK.

What to do next

v Replace the client-side APIs that are discontinued or not in V8.0.0. For more
information about the changes in the client-side API, see “Updating the iOS
code.” For more information about the migration assistance tool, see “Scanning
existing MobileFirst native iOS apps to prepare for MobileFirst version 8.0” on
page 5-17.

v Before you can access server resources, you must register your app. See
“Registering iOS applications to MobileFirst Server” on page 7-37. For details
about the mfpclient.plist file, see “iOS client properties file” on page 7-41.

Migrating encryption in iOS:

If your iOS application used OpenSSL encryption, you might want to migrate your
app to the new V8.0.0 native encryption. Also, if you want to continue using
OpenSSL, you must install some additional frameworks.

For more information on the iOS encryption options for migration, see “Enabling
OpenSSL for iOS” on page 7-47.

Updating the iOS code:

After updating the iOS framework and making necessary configuration changes, a
number of issues can be relevant to your specific application code.

The iOS API changes are listed in the Table 1.

For some sample code for creating the client and accessing the server with the new
V8.0.0 client for iOS, see “Creating some initial code in iOS” on page 7-42.

Table 5-14. Discontinued iOS Objective C APIs

API element Migration path

[WLClient getWLDevice][WLClient transmitEvent:]

[WLClient setEventTransmissionPolicy]

[WLClient purgeEventTransmissionBuffer]

Geolocation removed. Use native iOS or
third-party packages for GeoLocation.

WL.Client.getUserInfo(realm, key)

WL.Client.updateUserInfo(options)

No replacement.

WL.Client.deleteUserPref(key, options) No replacement. You can use an adapter and the
MFP.Server.getAuthenticatedUser API to manage
user preferences.

[WLClient getRequiredAccessTokenScopeFromStatus] Use WLAuthorizationManager
obtainAccessTokenForScope.

[WLClient login:withDelegate:] Use WLAuthorizationManager login.

[WLClient logout:withDelegate:] Use WLAuthorizationManager logout.

[WLClient lastAccessToken]

[WLClient lastAccessTokenForScope:]

Use WLAuthorizationManager
obtainAccessTokenForScope.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-23

Table 5-14. Discontinued iOS Objective C APIs (continued)

API element Migration path

[WLClient obtainAccessTokenForScope:withDelegate:]

[WLClient getRequiredAccessTokenScopeFromStatus:
authenticationHeader:]

Use WLAuthorizationManager
obtainAccessTokenForScope.

[WLClient isSubscribedToAdapter:(NSString *)
adaptereventSource:(NSString *) eventSource

Use “Objective-C client-side push API for iOS
apps” on page 8-5 from the
IBMMobileFirstPlatformFoundationPush
framework. For more information, see “Migrating
to push notifications from event source-based
notifications” on page 5-54.

[WLClient - (int) getEventSourceIDFromUserInfo:
(NSDictionary *) userInfo]

Use “Objective-C client-side push API for iOS
apps” on page 8-5 from the
IBMMobileFirstPlatformFoundationPush
framework. For more information, see “Migrating
to push notifications from event source-based
notifications” on page 5-54.

[WLClient invokeProcedure: (WLProcedureInvocationData *)] Deprecated. Use WLResourceRequest instead.

[WLClient sendUrlRequest:delegate:] Use [WLResourceRequest
sendWithDelegate:delegate] instead.

[WLClient (void) logActivity:(NSString *) activityType] Removed. Use an Objective C logger.

[WLSimpleDataSharing setSharedToken: myName value:
myValue]

[WLSimpleDataSharing getSharedToken: myName]]

[WLSimpleDataSharing clearSharedToken: myName]

Use the OS APIs to share tokens across
applications.

BaseChallengeHandler.submitFailure(WLResponse *)challenge Use BaseChallengeHandler.cancel().

BaseProvisioningChallengeHandler No replacement. Device provisioning is now
handled automatically by the security framework.

ChallengeHandler For custom gateway challenges, use
GatewayChallengeHandler. For MobileFirst
security-check challenges, use
SecurityCheckChallengeHandler. For more
information about the V8.0.0 challenge-handler
APIs, see “Client security APIs” on page 7-305.

WLChallengeHandler Use SecurityCheckChallengeHandler. For more
information about the V8.0.0 challenge-handler
APIs, see “Client security APIs” on page 7-305.

ChallengeHandler.isCustomResponse() Use
GatewayChallengeHandler.canHandleResponse().

ChallengeHandler.submitAdapterAuthentication Implement similar logic in your challenge
handler. For custom gateway challenge handlers,
use GatewayChallengeHandler. For MobileFirst
security-check challenge handlers, use
SecurityCheckChallengeHandler.

Migrating existing native Android applications
To migrate an existing native Android project that was created with IBM
MobileFirst Platform Foundation version 6.2.0 or later, you must modify the project
to use the SDK from the current version. Then you replace the client-side APIs that
are discontinued or not in V8.0.0. The migration assistance tool can scan your code
and generate reports of the APIs to replace.

5-24 IBM MobileFirst Platform Foundation V8.0.0

Scanning existing MobileFirst native Android apps to prepare for MobileFirst
version 8.0:

The migration assistance tool helps you prepare your apps that were created with
a previous version of IBM MobileFirst Platform Foundation for migration by
scanning the sources of the native Android app and generating a report of APIs
that are deprecated or discontinued in version 8.0.

Before you begin

The following information is important to know before you use the migration
assistance tool:
v You must have an existing IBM MobileFirst Platform Foundation native Android

application.
v You must have internet access.
v You must have node.js version 4.0.0 or later installed.
v Review and understand the limitations of the migration process. For more

information, see “Migrating apps from earlier releases” on page 5-1.

About this task

Apps that were created with previous versions of IBM MobileFirst Platform
Foundation are not supported in version 8.0 without some changes. The migration
assistance tool simplifies the process by scanning the source files in the existing
app and identifies APIs that are deprecated, no longer supported, or modified in
version 8.0.

The migration assistance tool does not modify or move any developer code or
comments of your app.

Procedure

1. Download the migration assistance tool by using one of the following methods:
v Download the .tgz file from the Jazzhub repository.
v Download the Developer Kit, which contains the migration assistance tool as

a file named mfpmigrate-cli.tgz, from the Download page. For more
information about the Developer Kit, see “The IBM MobileFirst Platform
Foundation Developer Kit” on page 7-9.

v Download the tool by using the instructions that are provided in “Opening
the MobileFirst Operations Console” on page 7-12.

2. Install the migration assistance tool.
a. Change to the directory where you downloaded the tool.
b. Use NPM to install the tool by entering the following command:

npm install -g

3. Scan the IBM MobileFirst Platform Foundation app by entering the following
command:
mfpmigrate scan --in source_directory --out destination_directory
--type android

source_directory
The current location of the project.

destination_directory
The directory where the report is created.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-25

https://hub.jazz.net/project/ibmmfpf/mfp-migrator-tool
http://www.ibm.com/support/docview.wss?uid=swg2C4000039

When it is used with the scan command, the migration assistance tool identifies
APIs in the existing IBM MobileFirst Platform Foundation app that are
removed, deprecated, or changed in version 8.0 and saves them in the
identified destination directory.

Migrating an Android project with Gradle:

Migrate your Android application with MobileFirst SDK using Gradle.

Before you begin

Ensure that your Android Studio and the Android SDK are set up properly. For
more information about how to set up your system, see Android Studio Overview.
Your project must conform to the Android Studio/Gradle setup and compile
without errors before you upgrade to IBM MobileFirst Platform Foundation.

Note: This task assumes that the Android project is created with Android Studio
and that the MobileFirst SDK is added with as described in Adding the IBM
MobileFirst Platform Foundation SDK to a new or existing application with
Android Studio (7.1). If you need to create a new project, see “Methods of setting
up your environment” on page 7-53 instead.

About this task

If your Android Studio project was set up to add a previous version of MobileFirst
SDK, remove the compile group from the build.gradle dependencies enclosure.
For example, if you are upgrading from 7.1, remove this group:
compile group: ’com.ibm.mobile.foundation’,

name:’ibmmobilefirstplatformfoundation’,
version:’7.1.0.0’,
ext: ’aar’,
transitive: true

You can now add the V8.0.0 SDK and configuration, by using local or remote SDK
files. See “Setting up Android Studio projects with Gradle” on page 7-53.

Note: After you import the new SDK, you need to import the Javadoc files
manually. See “Registering Javadocs to an Android Studio Gradle project” on page
7-57.

Results

You can now start developing your native Android application with the
MobileFirst SDK. You might need to adapt your code to changes in the V8.0.0 API
(see “Updating the Android code” on page 5-27).

What to do next

v Replace the client-side APIs that are discontinued or not in V8.0.0. For more
information about the changes in the client-side API, see “Updating the Android
code” on page 5-27. For more information about the migration assistance tool,
see “Scanning existing MobileFirst native Android apps to prepare for
MobileFirst version 8.0” on page 5-25.

v Before you can access server resources, you must register your app. See
“Registering Android applications to MobileFirst Server” on page 7-59. For
information about the mfpclient.plist file, see “Android client properties file”
on page 7-62.

5-26 IBM MobileFirst Platform Foundation V8.0.0

http://developer.android.com/tools/studio/index.html
https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.dev.doc/dev/t_dev_new_w_gradle.html
https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.dev.doc/dev/t_dev_new_w_gradle.html
https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.dev.doc/dev/t_dev_new_w_gradle.html

Updating the Android code:

MobileFirstV8.0.0 introduces a number of changes to the Android SDK that might
require changes to apps developed in earlier versions.

The tables below list changes in the MobileFirst Android SDK.

For some sample code for creating the client and accessing the server with the new
V8.0.0 client for Android, see “Some initial code for accessing the server” on page
7-63.

Table 5-15. Discontinued Android API elements

API element Migration path

WLConfig WLClient.getConfig() No replacement.

WLDevice WLClient.getWLDevice()

WLClient.transmitEvent(org.json.JSONObject event)

WLClient.setEventTransmissionPolicy(WLEventTransmissionPolicy policy)

WLClient.purgeEventTransmissionBuffer()

Use Android API or third-party
packages for GeoLocation.

WL.Client.getUserInfo(realm, key)

WL.Client.updateUserInfo(options)

No replacement.

WL.Client.getUserInfo(realm, key

WL.Client.updateUserInfo(options)

No replacement

WLClient.checkForNotifications() Use
WLAuthorizationManager.obtainAccessToken("",
listener) to check connectivity to the
server and apply application
management rules.

WLClient.login(java.lang.String realmName, WLRequestListener listener,
WLRequestOptions options)

WLClient.login(java.lang.String realmName, WLRequestListener listener)

Use AuthorizationManager.login()

WLClient.logout(java.lang.String realmName, WLRequestListener
listener, WLRequestOptions options)

WLClient.logout(java.lang.String realmName, WLRequestListener
listener)

Use AuthorizationManager.logout().

WLClient.obtainAccessToken(java.lang.String scope,WLResponseListener
responseListener)

Use
WLAuthorizationManager.obtainAccessToken(String,
WLAccessTokenListener) to check
connectivity to the server and apply
application management rules.

WLClient.getLastAccessToken()

WLClient.getLastAccessToken(java.lang.String scope)

Use AuthorizationManager.

WLClient.getRequiredAccessTokenScope(int status, java.lang.String
header)

Use AuthorizationManager.

WLClient.logActivity(java.lang.String activityType) Use com.worklight.common.Logger .
For more information, see “Logger
SDK” on page 11-37.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-27

Table 5-15. Discontinued Android API elements (continued)

API element Migration path

WLAuthorizationPersistencePolicy No replacement. To implement
authorization persistence, store the
authorization token in the
application code and create custom
HTTP requests. For more
information, see “Java custom
resource-request implementation
sample” on page 7-309.

WLSimpleSharedData.setSharedToken(myName, myValue)

WLSimpleSharedData.getSharedToken(myName)

WLSimpleSharedData.clearSharedToken(myName)

Use the Android APIs to share
tokens across applications.

WLUserCertificateManager.deleteCertificate(android.content.Context
context)

No replacement

BaseChallengeHandler.submitFailure(WLResponse wlResponse) Use BaseChallengeHandler.cancel().

ChallengeHandler For custom gateway challenges, use
GatewayChallengeHandler. For
MobileFirst security-check
challenges, use
SecurityCheckChallengeHandler. For
more information about the V8.0.0
challenge-handler APIs, see “Client
security APIs” on page 7-305.

WLChallengeHandler Use
SecurityCheckChallengeHandler. For
more information about the V8.0.0
challenge-handler APIs, see “Client
security APIs” on page 7-305.

ChallengeHandler.isCustomResponse() Use
GatewayChallengeHandler.canHandleResponse().

ChallengeHandler.submitAdapterAuthentication Implement similar logic in your
challenge handler. For custom
gateway challenge handlers, use
GatewayChallengeHandler. For
MobileFirst security-check challenge
handlers, use
SecurityCheckChallengeHandler.

Table 5-16. Android APIs depending on the legacy org.apach.http APIs are no longer supported

API element Migration path

org.apache.http.Header[] is now deprecated. Therefore,
the following methods are removed:

org.apache.http.Header[]
WLResourceRequest.getAllHeaders()

Use instead the new Map<String, List<String>>
WLResourceRequest.getAllHeaders() API.

WLResourceRequest.addHeader(org.apache.http.Header
header)

Use instead the new
WLResourceRequest.addHeader(String name, String
value) API.

5-28 IBM MobileFirst Platform Foundation V8.0.0

Table 5-16. Android APIs depending on the legacy org.apach.http APIs are no longer supported (continued)

API element Migration path

org.apache.http.Header[]
WLResourceRequest.getHeaders(java.lang.String
headerName)

Use instead the new List<String>
WLResourceRequest.getHeaders(String headerName)
API.

org.apache.http.Header
WLResourceRequest.getFirstHeader(java.lang.String
headerName)

Use instead the new
WLResourceRequest.getHeaders(String headerName)
API.

WLResourceRequest.setHeaders(org.apache.http.Header[]
headers)

Instead, use the new
WLResourceRequest.setHeaders(Map<String,
List<String>> headerMap) API.

WLResourceRequest.setHeader(org.apache.http.Header
header)

Instead, use the new
WLResourceRequest.setHeaders(Map<String,
List<String>> headerMap) API.

org.apache.http.client.CookieStore
WLClient.getCookieStore()

Replaced with java.net.CookieStore getCookieStore
WLClient.getCookieStore()

java.net.CookieStore getCookieStore WLClient.getCookieStore()

WLClient.setAllowHTTPClientCircularRedirect(boolean
isSet)

No replacement. MFP Client allows circular redirects.

WLHttpResponseListenerWLResourceRequest, all methods
that take WLHttpResponseListener:

WLResourceRequest.send(java.util.HashMap
formParameters,WLHttpResponseListener listener)

WLResourceRequest.send(org.json.JSONObject json,
WLHttpResponseListener listener)

WLResourceRequest.send(byte[] data,
WLHttpResponseListener listener)

WLResourceRequest.send(java.lang.String
requestBody,WLHttpResponseListener listener)

WLResourceRequest.send(WLHttpResponseListener
listener)

WLClient.sendRequest(org.apache.http.client.methods.
HttpUriRequest request,WLHttpResponseListener
listener)

WLClient.sendRequest(org.apache.http.client.methods.
HttpUriRequest request, WLResponseListener listener)

Removed due to deprecated Apache HTTP Client
dependencies. Create your own request to have full
control over the request and response.

Migrating existing native Windows applications
To migrate an existing native Windows project that was created with IBM
MobileFirst Platform Foundation version 6.2.0 or later, you must modify the project
to use the SDK from the current version. Then you replace the client-side APIs that
are discontinued or not in V8.0.0. The migration assistance tool can scan your code
and generate reports of the APIs to replace.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-29

Scanning existing MobileFirst native Windows apps to prepare for MobileFirst
version 8.0:

The migration assistance tool helps you prepare your apps that were created with
earlier versions of IBM MobileFirst Platform Foundation for migration by scanning
the sources of the native Windows app and generating a report of APIs that are
deprecated or discontinued in version 8.0.

Before you begin

The following information is important to know before you use the migration
assistance tool:
v You must have an existing IBM MobileFirst Platform Foundation native

Windows application.
v You must have internet access.
v You must have node.js version 4.0.0 or later installed.
v Review and understand the limitations of the migration process. For more

information, see “Migrating apps from earlier releases” on page 5-1.

About this task

Apps that were created with earlier versions of IBM MobileFirst Platform
Foundation are not supported in version 8.0 without some changes. The migration
assistance tool simplifies the process by scanning the source files in the existing
native Windows app and identifies APIs that are deprecated, no longer supported,
or modified in version 8.0.

The migration assistance tool does not modify or move any developer code or
comments of your app.

Procedure

1. Download the migration assistance tool by using one of the following methods:
v Download the .tgz file from the Jazzhub repository.
v Download the Developer Kit, which contains the migration assistance tool as

a file named mfpmigrate-cli.tgz, from the Download page. For more
information about the Developer Kit, see “The IBM MobileFirst Platform
Foundation Developer Kit” on page 7-9.

v Download the tool by using the instructions that are provided in “Opening
the MobileFirst Operations Console” on page 7-12.

2. Install the migration assistance tool.
a. Change to the directory where you downloaded the tool.
b. Use NPM to install the tool by entering the following command:

npm install -g

3. Scan the IBM MobileFirst Platform Foundation app by entering the following
command:
mfpmigrate scan --in source_directory --out destination_directory
--type windows

source_directory
The current location of the project.

destination_directory
The directory where the report is created.

5-30 IBM MobileFirst Platform Foundation V8.0.0

https://hub.jazz.net/project/ibmmfpf/mfp-migrator-tool
http://www.ibm.com/support/docview.wss?uid=swg2C4000039

When it is used with the scan command, the migration assistance tool identifies
APIs in the existing IBM MobileFirst Platform Foundation app that are
removed, deprecated, or changed in version 8.0 and saves them in the
identified destination directory.

Migrating a Windows project:

To work with existing native Windows project that was created with IBM
MobileFirst Platform Foundation V6.2.0 or later, you must modify the project.

About this task

MobileFirst V8.0.0 only supports Windows Universal environments, that is
Windows 10 Universal Windows Platform (UWP) and Windows 8 Universal
(Desktop and Phone). Windows Phone 8 Silverlight is not supported.

You can upgrade your Visual Studio project to V8.0.0 manually. MobileFirstV8.0.0
introduces a number of changes to the Visual Studio SDK that may require
changes to apps developed in earlier versions. For information on the API's that
have changed, see “Updating the Windows code” on page 5-32.

Procedure

1. Update your MobileFirst SDK to V8.0.0.
a. Remove the MobileFirst SDK packages manually. This includes the

wlclient.properties file, as well as the following references:
v Newtonsoft.Json

v SharpCompress

v worklight-windows8

Note: If your app uses the application authenticity or extended authenticity
feature, you must add either Microsoft Visual C++ 2013 Runtime Package
for Windows or Microsoft Visual C++ 2013 Runtime Package for Windows
Phone as a reference to your app. To so do, in Visual Studio, right-click on
the references of your native project and complete one of the following
choices depending on which environment you added to your native API
app:
v For Windows desktops and tablets: Right click References > Add

reference > Windows 8.1 > Extensions > Microsoft Visual C++ 2013
Runtime Package for Windows > OK.

v For Windows Phone 8 Universal: Right click References > Add reference
> Windows 8.1 > Extensions > Microsoft Visual C++ 2013 Runtime
Package for Windows Phone > OK.

v For Windows 10 Universal Windows Platform (UWP): Right click
References > Add reference > Windows 8.1 > Extensions > Microsoft
Visual C++ 2013 Runtime Package for Windows Universal > OK.

b. Add the MobileFirst V8.0.0 SDK packages through NuGet. See “Adding the
MobileFirst SDK by using NuGet” on page 7-66.

2. Updating your application code to use MobileFirst V8.0.0 API's.
a. For earlier releases, the Windows API's were part of the

IBM.Worklight.namespace. These API's are now obsolete and have been
replaced by equivalent WorklightNamespace API in the. You need to modify
the app to replace all references to the IBM.Worklight.namespace with the
corresponding equivalent in the WorklightNamespace.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-31

For example, the following snippet is an example of using the
WLResourceRequest request = new WLResourceRequest

(new Uri(uriBuilder.ToString()), "GET", "accessRestricted");
request.send(listener);

The snippet updated with the new API would be :
WorklightResourceRequest request = newClient.ResourceRequest

(new Uri(uriBuilder.ToString(), UriKind.Relative), "GET", "accessRestricted");
WorklightResponse response = await request.Send();

b. All methods that performed asynchronous operations previously used a
Response listener call back model. These have been replaced by the
await/async model.

Results

You can now start developing your native Windows application with the
MobileFirst SDK. You might need to update your code to reflect the changes for
MobileFirstV8.0.0 API.

What to do next

v Replace the client-side APIs that are discontinued or not in V8.0.0. For more
information about the changes in the client-side API, see “Updating the
Windows code.” For more information about the migration assistance tool, see
“Scanning existing MobileFirst native Windows apps to prepare for MobileFirst
version 8.0” on page 5-30.

v You need to register your app before you can access server resources. See
“Registering Windows applications to MobileFirst Server” on page 7-68. Also see
“Client property file for Windows 10 Universal Windows Platform and Windows
8 Universal” on page 7-72 for information on the mfpclient.resw file.

Updating the Windows code:

MobileFirstV8.0.0 introduces a number of changes to the Windows SDK that might
require changes to apps developed in earlier versions.

Table 5-17. Deprecated Windows C# API elements.

Category Description Recommended action

5-32 IBM MobileFirst Platform Foundation V8.0.0

Table 5-17. Deprecated Windows C# API elements (continued).

Category Description Recommended action

C# API Classes ChallengeHandler For custom gateway challenges, use
GatewayChallengeHandler. For MobileFirst
security-check challenges, use
SecurityCheckChallengeHandler. For more
information about the V8.0.0 challenge-handler
APIs, see “Client security APIs” on page 7-305.

ChallengeHandler.
isCustomResponse()

Use
GatewayChallengeHandler.canHandleResponse().

ChallengeHandler.submitAdapterAuthenticationImplement similar logic in your challenge
handler. For custom gateway challenge
handlers, use GatewayChallengeHandler. For
MobileFirst security-check challenge handlers,
use SecurityCheckChallengeHandler.

ChallengeHandler.submitFailure(WLResponse
wlResponse)

For custom gateway challenge handlers, use
GatewayChallengeHandler.Shouldcancel(). For
MobileFirst security-check challenge handlers,
use
SecurityCheckChallengeHandler.ShouldCancel().

WLAuthorizationManager Use
WorklightClient.WorklightAuthorizationManager
instead.

WLChallengeHandler Use SecurityCheckChallengeHandler. For more
information about the V8.0.0 challenge-handler
APIs, see “Client security APIs” on page 7-305.

WLChallengeHandler.submitFailure(WLResponse
wlResponse)

Use
SecurityCheckChallengeHandler.ShouldCancel().

WLClient Use WorklightClient instead.

WLErrorCode Not supported.

WLFailResponse Use WorklightResponse instead.

WLResponse

WLProcedureInvocationData Use WorklightProcedureInvocationData instead.

WLProcedureInvocationFailResponse Not supported.

WLProcedureInvocationResult Not supported.

WLRequestOptions Not supported.

WLResourceRequest Use WorklightResourceRequest instead.

C# API Interfaces WLHttpResponseListener Not supported.

WLResponseListener The response will be available as a
WorklightResponse object

WLAuthorizationPersistencePolicy Not supported.

Migrating existing Cordova and hybrid applications
To migrate an existing Cordova or hybrid application that was created with IBM
MobileFirst Platform Foundation version 6.2.0 or later, you must create a Cordova
project that uses the plug-ins from the current version. Then you replace the
client-side APIs that are discontinued or not in V8.0.0. The migration assistance
tool can help you in this task.

To migrate a Cordova or hybrid app, you need to

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-33

v Update your project to V8.0.0. The migration assistance tool can help you in this
task. For more information, see “Migrating existing hybrid or cross-platform
apps to Cordova apps supported by MobileFirst version 8.0” on page 5-38.

v Replace the client-side APIs that are discontinued or not in V8.0.0. The migration
assistance tool can scan your code and generate reports of the APIs to replace.
For a list of API changes, see “Upgrading the WebView” on page 5-45.

v If you use Direct Update, review “Migrating Direct Update” on page 5-44.

Comparison of Cordova apps developed with V8.0.0 versus V7.1.0 and before:

Compare Cordova apps developed with IBM MobileFirst Platform Foundation
V8.0.0 and Cordova and hybrid apps developed with IBM MobileFirst Platform
Foundation V7.1.

Table 5-18. Cordova developed with IBM MobileFirst Platform Foundation V8.0.0 versus Cordova and hybrid apps
developed with IBM MobileFirst Platform Foundation V7.1.

Feature

Cordova app with IBM
MobileFirst Platform
Foundation V8.0.0

Cordova app with IBM
MobileFirst Platform
Foundation V7.1

MobileFirst hybrid app with
IBM MobileFirst Platform
Foundation V7.1

IDE Eclipse Studio

Eclipse plug-in and
integration

Yes. For more information,
see “IBM MobileFirst Studio
plug-in for managing
Cordova projects in Eclipse”
on page 7-114.

Unsupported Yes (Proprietary)

Application
Components

Yes (Cordova)
Note: Create your own
Cordova plug-ins to manage
application components in
your organization. For more
information, see Apache
Cordova Plugin Development
Guide.

Yes (Cordova)
Note: Create your own
Cordova plug-ins to manage
application components in
your organization. For more
information, see Apache
Cordova Plugin Development
Guide.

Yes (Proprietary)

Project Templates Yes (Cordova)
Note:

Use the Apache Cordova
cordova create --template
command.

Yes (Cordova)
Note:

Use mfp cordova create
--template or the Apache
Cordova command cordova
create --copy-from

Yes (Proprietary)

Dojo and jQuery IDE
instrumentation

Yes
Note: Dojo and jQuery
Mobile are JavaScript
frameworks that you can use
in Cordova apps. For more
information, see Dojo
Documentation and jQuery
Mobile documentation.

Yes
Note: Dojo and jQuery
Mobile are JavaScript
frameworks that you can use
in Cordova apps. For more
information, see Dojo
Documentation and jQuery
Mobile documentation.

Yes

Mobile UI Patterns Unsupported Unsupported Deprecated

Application sub
types

5-34 IBM MobileFirst Platform Foundation V8.0.0

http://cordova.apache.org/docs/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
http://cordova.apache.org/docs/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
http://cordova.apache.org/docs/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
http://cordova.apache.org/docs/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
http://cordova.apache.org/docs/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
http://cordova.apache.org/docs/en/edge/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide
https://dojotoolkit.org/documentation/
https://dojotoolkit.org/documentation/
http://demos.jquerymobile.com/1.1.1/
http://demos.jquerymobile.com/1.1.1/
https://dojotoolkit.org/documentation/
https://dojotoolkit.org/documentation/
http://demos.jquerymobile.com/1.1.1/
http://demos.jquerymobile.com/1.1.1/

Table 5-18. Cordova developed with IBM MobileFirst Platform Foundation V8.0.0 versus Cordova and hybrid apps
developed with IBM MobileFirst Platform Foundation V7.1. (continued)

Feature

Cordova app with IBM
MobileFirst Platform
Foundation V8.0.0

Cordova app with IBM
MobileFirst Platform
Foundation V7.1

MobileFirst hybrid app with
IBM MobileFirst Platform
Foundation V7.1

Shell Component Unsupported
Note: If the previous Hybrid
app used shells and inner
applications, it is
recommended to adopt
Cordova design patterns and
implement the shell
components as Cordova
plug-ins, that can be shared
across applications.

Unsupported Yes

Inner Hybrid
Application

Unsupported
Note: If the previous Hybrid
app used shells and inner
applications, it is
recommended to adopt
Cordova design patterns and
implement the shell
components as Cordova
plug-ins, that can be shared
across applications.

Unsupported Yes

Application Features

Mobile OS iOS 8 or higher, Android 4.1
or higher, Windows Phone
8.1, Windows Phone 10. For
more information, see
“System requirements” on
page 2-7.

iOS 7 or higher, Android 4 or
higher. For more information,
see IBM MobileFirst Platform
Foundation V7.1 system
requirements.

iOS, Android, and Windows
Phone 8

Web applications Yes, as a JavaScript
application developed
without Apache Cordova. For
more information, see
“Developing web
applications” on page 7-73.

Unsupported Yes, as a desktopbrowser or
mobilewebapp environment.

Direct Update Yes. For more information,
see “Updating Cordova client
apps directly” on page 7-235.

Yes Yes

MobileFirst Security
Framework

Yes Yes Yes

Application
Authenticity

Yes. For more information,
see “Enabling the
application-authenticity
security check” on page
7-282.

Yes Yes

Certificate pinning Yes. For more information,
see “Certificate pinning” on
page 7-185.

No Yes

JSONStore Yes. Use the
cordova-plugin-mfp-jsonstore
plug-in.

Yes Yes

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-35

https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.getstart.doc/start/r_supported_operating_systems_an.html
https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.getstart.doc/start/r_supported_operating_systems_an.html
https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.getstart.doc/start/r_supported_operating_systems_an.html

Table 5-18. Cordova developed with IBM MobileFirst Platform Foundation V8.0.0 versus Cordova and hybrid apps
developed with IBM MobileFirst Platform Foundation V7.1. (continued)

Feature

Cordova app with IBM
MobileFirst Platform
Foundation V8.0.0

Cordova app with IBM
MobileFirst Platform
Foundation V7.1

MobileFirst hybrid app with
IBM MobileFirst Platform
Foundation V7.1

FIPS 140-2 Yes. Use the
cordova-plugin-mfp-fips
plug-in.
Restriction: FIPS is
supported for Android and
iOS. FIPS is not supported for
Windows. For more
information, see “Enabling
FIPS 140-2” on page 10-77.

No Yes

Encryption of web
resources that are
associated with the
application within the
application binary
file.

Yes. For more information,
see “Encrypting the web
resources of your Cordova
packages” on page 7-112.

No Yes

Verification of the
integrity of web
resources by using a
checksum each time
the app starts
running.

Yes. For more information,
see “Enabling the web
resources checksum feature”
on page 7-113.

Unsupported Yes

Specification of the
app's target category
(B2E or B2C) for
addressable device
license tracking.

Yes. For more information,
see “Setting the application
license information” on page
10-80.

No Yes

Simple data sharing No Yes Yes

Single sign-on Yes
Note: Device single sign-on
(SSO) is now supported by
way of the new predefined
enableSSO security-check
application-descriptor
configuration property. For
more information, see
“Configuring device single
sign-on (SSO)” on page 7-301.

Yes Yes

MobileFirst
application skins

No
Note: To detect and handle
different device screen sizes,
use standard web
development practices such
as responsive web design.

No
Note: To detect and handle
different device screen sizes,
use standard web
development practices such
as responsive web design.

Yes

Environment
optimizations

Yes (Cordova). Use the
merges directory to define
web resources specific to a
platform. For more
information, see Using merges
to Customize Each Platform
in the Apache Cordova
documentation.

Yes (Cordova). Use the
merges directory to define
web resources specific to a
platform. For more
information, see Using merges
to Customize Each Platform
in the Apache Cordova
documentation.

Yes (Proprietary)

5-36 IBM MobileFirst Platform Foundation V8.0.0

https://cordova.apache.org/docs/en/latest/guide/cli/index.html
https://cordova.apache.org/docs/en/latest/guide/cli/index.html
https://cordova.apache.org/docs/en/latest/guide/cli/index.html
https://cordova.apache.org/docs/en/latest/guide/cli/index.html

Table 5-18. Cordova developed with IBM MobileFirst Platform Foundation V8.0.0 versus Cordova and hybrid apps
developed with IBM MobileFirst Platform Foundation V7.1. (continued)

Feature

Cordova app with IBM
MobileFirst Platform
Foundation V8.0.0

Cordova app with IBM
MobileFirst Platform
Foundation V7.1

MobileFirst hybrid app with
IBM MobileFirst Platform
Foundation V7.1

Push Notifications Yes. Use the
cordova-plugin-mfp-push
plug-in.
Restriction: You can map
predefined MobileFirst
security checks only to the
push.mobileclient scope.
Custom security checks are
not supported because
JavaScript challenge handlers
are not called.

Yes
Note: For Android, you must
add the cordova-plugin-mfp-
push plug in. You don't need
this plug in for iOS because
the push client-side support
for iOS is included in the core
mfp plugin.

Yes

Cordova plug-ins
management

Yes Yes No

Mobile Browser
Simulator

Yes
Restriction: Not all
MobileFirst JavaScript APIs
are supported by the
simulator but you can test
calls to adapters with
WLResourceRequest. For
more information, see
“Previewing Cordova web
resources with the Mobile
Browser Simulator” on page
7-109.

Yes Yes

Cordova platform
management

Yes (Cordova) Yes (Cordova) Yes (Proprietary)

MESSAGES (i18n) Yes Yes Yes

Token licensing Yes Yes Yes

Application
optimizations

Minification Yes (Cordova)
Note: Use common open
source tools. For more
information, see
“Minification” on page 5-51.

Yes (Cordova)
Note: Use common open
source tools.

Yes (Proprietary)

Concatenation of JS
and CSS

Yes (Cordova)
Note: Use common open
source tools.

Yes (Cordova)
Note: Use common open
source tools.

Yes (Proprietary)

Obfuscation Yes (Cordova)
Note: Use common open
source tools.

Yes (Cordova)
Note: Use common open
source tools.

Yes (Proprietary)

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-37

Table 5-18. Cordova developed with IBM MobileFirst Platform Foundation V8.0.0 versus Cordova and hybrid apps
developed with IBM MobileFirst Platform Foundation V7.1. (continued)

Feature

Cordova app with IBM
MobileFirst Platform
Foundation V8.0.0

Cordova app with IBM
MobileFirst Platform
Foundation V7.1

MobileFirst hybrid app with
IBM MobileFirst Platform
Foundation V7.1

Android Pro Guard Yes
Note: IBM MobileFirst
Platform Foundation V8.0.0
does not include the
predefined
proguard-project.txt
configuration file for Android
ProGuard obfuscation with a
MobileFirst Android
application.

Yes
Note: See Android
documentation to enable Pro
Guard.

Yes

Migrating existing hybrid or cross-platform apps to Cordova apps supported by
MobileFirst version 8.0:

You can migrate existing hybrid or cross-platform (Cordova) apps that were
developed with IBM MobileFirst Platform Foundation version 6.2 or later to
Cordova apps that are supported by IBM MobileFirst Platform Foundation V8.0.0.

Starting the Cordova app migration with the migration assistance tool:

The migration assistance tool helps you prepare your cross-platform apps that
were created with earlier versions of IBM MobileFirst Platform Foundation for
migraiton by identifying APIs that are no longer valid and copying the projects
into Cordova apps that are supported by version 8.0.

Before you begin

The following information is important to know before you use the migration
assistance tool:
v You must have an existing IBM MobileFirst Platform Foundation hybrid

application or a Cordova application that you created with the mfp cordova
create command.

v You must have internet access.
v You must have node.js version 4.0.0 or later installed.
v You must have the Cordova Command-Line Interface (CLI) installed, and any

prerequisites installed that are required for using the Cordova CLI for your
target platforms. For more information, see The Command-Line Interface at the
Apache Cordova website.

v Review and understand the limitations of the migration process. For more
information, see “Migrating apps from earlier releases” on page 5-1.

About this task

Cross-platform apps that were created with earlier versions of IBM MobileFirst
Platform Foundation commands or the Cordova with IBM MobileFirst Platform
Foundation commands are not supported in version 8.0 without some changes.
The migration assistance tool simplifies the process with the following functions:

5-38 IBM MobileFirst Platform Foundation V8.0.0

http://cordova.apache.org/docs/en/5.1.1/guide/cli/index.html

v Scans the JavaScript files in the existing hybrid app or Cordova with IBM
MobileFirst Platform Foundation app and identifies APIs that are deprecated, no
longer supported, or modified in version 8.0.

v Copies the structure, script, and configuration files of the initial hybrid app or
Cordova with IBM MobileFirst Platform Foundation app to a Cordova structure
that is supported in version 8.0.

The migration assistance tool does not modify or move any developer code or
comments of your app. You must continue the migration process with either
“Completing migration of a MobileFirst hybrid app” on page 5-41 or “Completing
migration of a MobileFirst Cordova app” on page 5-43 after you run this tool.

Procedure

1. Download the migration assistance tool by using one of the following methods:
v Download the .tgz file from the Jazzhub repository.
v Download the Developer Kit, which contains the migration assistance tool as

a file named mfpmigrate-cli.tgz, from the Download page. For more
information about the Developer Kit, see “The IBM MobileFirst Platform
Foundation Developer Kit” on page 7-9.

v Download the tool by using the instructions that are provided in “Opening
the MobileFirst Operations Console” on page 7-12.

2. Install the migration assistance tool.
a. Change to the directory where you downloaded the .tgz file.
b. Use NPM to install the tool by entering the following command:

npm install -g tgz_filename

3. Scan and copy the IBM MobileFirst Platform Foundation app by entering the
following command:
mfpmigrate client --in source_directory --out destination_directory

source_directory
The current location of the initial project.

destination_directory
The directory where the new version 8.0 compatible Cordova structure
is output.

When it is used with the client command, the migration assistance tool
completes the following actions:
v Identifies APIs in the existing IBM MobileFirst Platform Foundation app that

are removed, deprecated, or changed in version 8.0.
v Creates a Cordova structure based on the structure of the initial app.
v Copies or adds the following items, when applicable:

– Android operating system
– iPhone and iPad operating system
– Windows operating system
– Cordova-mfp-plugin
– Cordova-plugin-mfp-jsonstore plug-in, if the JSONStore feature was

installed on the old project.
– Cordova-plugin-mfp-fips plug-in, if the FIPS feature was installed on the

old project.
– Cordova-plugin-mfp-push plug-in, if the push notification feature was

installed on the old project.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-39

https://hub.jazz.net/project/ibmmfpf/mfp-migrator-tool
http://www.ibm.com/support/docview.wss?uid=swg2C4000039

– Hybrid certificates, if certificate pinning was enabled on the old project.
– Application, script, and XML files

Important: The migration assistance tool does not copy developer code or
commented text into the new structure.

4. Resolve the API issues in the new Cordova app.
a. Review the api-report.html file that is created in the

destination_directory directory. Each row of the table in this file identifies
a deprecated, changed, or removed API that is used in the app that is not
compatible with version 8.0. This file also specifies the replacement for
removed APIs, when one is available.

Table 5-19. Example of a table in the api-report.html file

File path
Line
number API Line content

Category of
API change

Description of
change with
instructions
about how to
resolve the API
change.

c:\local\
Cordova\
www\js\
index.js

15 Wl.Client.getAppProperty document.getElementById
('app_version')
textContent=
WL.Client.getAppProperty
("APP_VERSION");

Not
supported

Removed from
8.0. Use Cordova
plug-in to get
app version. No
replacement API.
More
information.

b. Address the API issues that are identified in the api-report.html file.
5. Manually copy the developer code from the initial app structure into the

correct location in the new Cordova structure. Copy the content in the
following directories, according to the type of the source IBM MobileFirst
Platform Foundation app:

IBM MobileFirst Platform Foundation hybrid app
Copy the contents of the common directory of the source app to the www
directory in your new Cordova app.

Cordova with IBM MobileFirst Platform Foundation app
Copy the contents of the www directory of the source app to the www
directory in your new Cordova app.

6. Run the migration assistance tool with the scan command on your new app to
confirm that your API changes are complete.
a. Enter the following command to run the scan:

mfpmigrate scan --in source_directory
--out destination_directory --type hybrid

source_directory
The current location of the files to scan. In an IBM MobileFirst
Platform Foundation hybrid app, this location is the common
directory of your app. In an IBM MobileFirst Platform Foundation
version 8.0 Cordova cross-platform app, this location is the www
directory.

destination_directory
The directory where your scan results are output.

5-40 IBM MobileFirst Platform Foundation V8.0.0

scan_type
The type of project to scan.

b. Address any remaining API issues that are identified in the
api-report.html file.

7. Repeat step 6 on page 5-40 to run the scan tool on the new Cordova app until
all of the issues are resolved.

What to do next

Complete the migration by completing the steps in one of the following topics,
depending on the type of app that you are migrating:
v If you are migrating an IBM MobileFirst Platform Foundation hybrid app,

continue with “Completing migration of a MobileFirst hybrid app.”
v If you are migrating a Cordova app with IBM MobileFirst Platform Foundation,

continue with “Completing migration of a MobileFirst Cordova app” on page
5-43.

Completing migration of a MobileFirst hybrid app:

After you use the migration assistance tool, you must modify some portions of
your code manually to complete the migration process.

Before you begin

v You must have already run the mfpmigrate migration assistance tool on your
existing hybrid app. For more information, see “Starting the Cordova app
migration with the migration assistance tool” on page 5-38.

v You must have the Cordova Command-Line Interface (CLI) installed, and any
prerequisites installed that are required for using the Cordova CLI for your
target platforms if you need to install any additional Cordova plug-ins. (See step
6.) For more information, see The Command-Line Interface at the Apache
Cordova web site.

v You must have internet access if you need to download a new version of JQuery
(step 1c) or if you need to install any additional Cordova plug-ins (step 6).

v You must have node.js version 4.0.0 or later installed if you need to install
additional Cordova plug-ins (step 6).

About this task

Complete the steps in this task to finish migrating your MobileFirst hybrid
application from IBM MobileFirst Platform Foundation 7.1 to a Cordova
application that includes support for IBM MobileFirst Platform Foundation 8.0.

After you complete the migration, your app can use Cordova platforms and
plug-ins that you obtain independently of IBM MobileFirst Platform Foundation,
and you can continue to develop the app with your preferred Cordova
development tools.

Procedure

1. Update the www/index.html file.
a. Add the following CSS code to the head of your index.html file, before

your CSS code that is already there.
<link rel="stylesheet" href="worklight/worklight.css">
<link rel="stylesheet" href="css/main.css">

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-41

http://cordova.apache.org/docs/en/5.1.1/guide/cli/index.html

Note: The worklight.css file sets the body attribute to relative. If this
affects the style of your app, then declare a different value for the position
in your own CSS code. For example:
body {
position: absolute;

}

b. Add Cordova JavaScript to the head of the file after the CSS definitions.
<script type="text/javascript" src="cordova.js"></script>

c. Remove the following line of code if it is present.
<script>window.$ = window.jQuery = WLJQ;</script>

You can download your own version of JQuery, and load it as shown in the
following code line.
<script src="lib/jquery.min.js"></script>

You do not have to move the optional jQuery addition to the lib folder. You
can move this addition anywhere you want to, but you must correctly
reference it in the index.html file.

2. Update the www/js/InitOptions.js file to call WL.Client.init automatically.
a. Remove the following code from InitOptions.js.

The function WL.Client.init is called automatically with the global variable
wlInitOptions.
if (window.addEventListener) {
window.addEventListener(’load’, function() { WL.Client.init(wlInitOptions); }, false);

} else if (window.attachEvent) {
window.attachEvent(’onload’, function() { WL.Client.init(wlInitOptions); });

}

3. Optional: Update the www/InitOptions.js to call WLClient.init manually.
a. Edit the config.xml file and set the <mfp:clientCustomInit> element's

enabled attribute to true.
b. If you are using the MobileFirst hybrid default template, replace this code:

if (window.addEventListener) {
window.addEventListener(’load’, function() { WL.Client.init(wlInitOptions); }, false);

} else if (window.attachEvent) {
window.attachEvent(’onload’, function() { WL.Client.init(wlInitOptions); });

}

with the following code:
if (document.addEventListener) {
document.addEventListener(’mfpready’, function() { WL.Client.init(wlInitOptions); }, false);

} else if (window.attachEvent) {
document.attachEvent(’mfpready’, function() { WL.Client.init(wlInitOptions); });

}

4. Optional: If you have logic specific to a hybrid environment, for example in
Your app/iphone/js/main.js, copy the function wlEnvInit() and append it at
the end of www/main.js.
// This wlEnvInit method is invoked automatically by MobileFirst runtime after successful initialization.
function wlEnvInit() {

wlCommonInit();
if (cordova.platformId === "ios") {

// Environment initialization code goes here for ios
} else if (cordova.platformId === "android") {

// Environment initialization code goes here for android
}

}

5-42 IBM MobileFirst Platform Foundation V8.0.0

5. Optional: If your original application uses the FIPS feature, change the JQuery
event listener to a JavaScript event listener that listens to the WL/FIPS/READY
event. For more information about FIPS, see “FIPS 140-2 support” on page
10-75.

6. Optional: If your original application uses any third-party Cordova plug-ins
that are not replaced or supplied by the migration assistance tool, manually
add the plug-ins to the Cordova app with the cordova plugin add command.
For information about which plug-ins are replaced by the tool, see “Starting the
Cordova app migration with the migration assistance tool” on page 5-38.

Results

You now have a Cordova app that you can continue to develop with your
preferred Cordova tools, but that also includes MobileFirst functionality.

What to do next

Register your app to a MobileFirst Server. For more information, see “Registering
Cordova applications from the MobileFirst Platform CLI” on page 7-107.

Completing migration of a MobileFirst Cordova app:

After you use the migration assistance tool, you must modify some portions of
your code manually to complete the migration process.

Before you begin

v You must have already run the mfpmigrate migration assistance tool on your
existing Cordova app. For more information, see “Starting the Cordova app
migration with the migration assistance tool” on page 5-38.

v You must have the Cordova Command-Line Interface (CLI) installed, and any
prerequisites installed that are required for using the Cordova CLI for your
target platforms. For more information, see The Command-Line Interface at the
Apache Cordova web site.

v You must have internet access.
v You must have node.js version 4.0.0 or later installed.

About this task

The Cordova app that you created with mfp cordova create uses the Cordova
platform and plug-in versions that were supplied with IBM MobileFirst Platform
Foundation previous version. After you complete the migration, your migrated app
can use Cordova platforms and plug-ins that you obtain independently of IBM
MobileFirst Platform Foundation. This is the only type of support for Cordova
applications that is available with IBM MobileFirst Platform Foundation V8.0.0.

To migrate, you run the migration assistance tool and then make other
modifications to your app.

Procedure

1. With the Cordova development tool of your choice, add any Cordova plug-ins
other than Cordova plug-ins that enable MobileFirst features that were in your
original application. For example, with the Cordova CLI, to add the plug-ins
cordova-plugin-file and cordova-plugin-file-transfer, enter:
cordova plugin add cordova-plugin-file cordova-plugin-file-transfer

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-43

http://cordova.apache.org/docs/en/5.1.1/guide/cli/index.html

Note: The mfpmigrate migration assistance tool added the Cordova plug-ins for
MobileFirst features, so you do not have to add them. For more information
about these plug-ins, see “Cordova plug-ins for MobileFirst features” on page
7-87.

2. Optional: If your original application uses the FIPS feature, change the JQuery
event listener to a JavaScript event listener that listens to the WL/FIPS/READY
event. For more information about FIPS, see “FIPS 140-2 support” on page
10-75.

3. Optional: If your original application uses any third-party Cordova plug-ins
that are not replaced or supplied by the migration assistance tool, manually
add the plug-ins to the Cordova app with the cordova plugin add command.
For information about which plug-ins are replaced by the tool, see “Starting the
Cordova app migration with the migration assistance tool” on page 5-38.

4. Optional: (Only for apps that include the iOS platform, and that use OpenSSL.)
Add the cordova-plugin-mfp-encrypt-utils plug-in to your app. The
cordova-plugin-mfp-encrypt-utils plug-in provides iOS OpenSSL frameworks
for encryption for Cordova applications with the iOS platform. For more
information, see “Enabling OpenSSL for Cordova iOS” on page 7-126 and
“Adding MobileFirst features to an existing Cordova app” on page 7-91.

Results

You now have a Cordova app that you can continue to develop with your
preferred Cordova tools, but that also includes MobileFirst functionality.

What to do next

Register your app to a MobileFirst Server. For more information, see “Registering
Cordova applications from the MobileFirst Platform CLI” on page 7-107.

Migrating encryption for iOS Cordova:

If your iOS Hybrid or Cordova application used OpenSSL encryption, you may
want to migrate your app to the new V8.0.0 native encryption. If you want to
continue using OpenSSL you need to add an additional Cordova plug-in.

For more information on the iOS Cordova encryption options for migration see
“Migration options” on page 7-126 section within the “Enabling OpenSSL for
Cordova iOS” on page 7-126 topic.

Migrating Direct Update:

Learn how to migrate Direct Update for V8.0.0. Direct Update is triggered after the
first access to a protected resource. The process to deploy new web resources has
changed in V8.0.0.

Unlike in previous versions, in V8.0.0, if an application does not access a secure
MobileFirst resource, the client application does not receive updates, even if
updates are available on the server. A resource might be unprotected, for example
because OAuth has been disabled by the annotation @OAuth(security=false) or by
configuration. You can work around this risk in one of the following ways:
v Explicitly obtain an access token. See the obtainAccessToken API in the class.
v Call another protected resource. See the class.

5-44 IBM MobileFirst Platform Foundation V8.0.0

To use Direct Update: Starting with V8.0.0, you no longer upload a .wlapp file to
MobileFirst Server. Instead, you upload a smaller web resource archive (.zip file).
The archive file no longer contains the web preview files or skins that were widely
used in previous versions. These have been discontinued. The archive contains
only the web resources that are sent to the clients, as well as checksums for Direct
Update validations. For more information, see “Updating Cordova client apps
directly” on page 7-235.

Upgrading the WebView:

IBM MobileFirst Platform Foundation V8.0.0 Cordova SDK (JavaScript) introduced
numerous changes that require adaptations of your code.

The manual migration process involves a few stages:
v Creating a new Cordova MobileFirst project
v Replacing the necessary web resource elements with the code from your

previous version
v Making the necessary changes to your JavaScript code to conform to SDK

changes

Many MobileFirst API elements were removed in V8.0.0. Removed elements are
clearly marked as non-existent in an IDE that supports autocorrect for JavaScript.

For more information about IDEs for editing JavaScript with autocomplete, see
“Editing WebView (JavaScript) code” on page 7-129.

Table 1 lists those API elements that require removal, with suggestions on how to
replace the functionality. Many of the removed elements are UI elements that can
be replaced with Cordova plug-ins or HTML 5 elements. Some methods have
changed.

For examples of some sample code for creating the client and accessing the server
with the new V8.0.0 client for JavaScript, see “Some initial WebView code for
connecting to the server” on page 7-130.

Table 5-20. Discontinued JavaScript UI elements

API element Migration path

WL.BusyIndicator

WL.OptionsMenu

WL.TabBar

WL.TabBarItem

Use Cordova plug-ins or HTML 5 elements.

WL.App.close() Handle this event outside of MobileFirst.

WL.App.copyToClipboard() Use Cordova plug-ins providing this
functionality.

WL.App.openUrl(url, target, options) Use Cordova plug-ins providing this
functionality.
Note: For your information, the Cordova
InAppBrowser plug-in provides this feature..

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-45

Table 5-20. Discontinued JavaScript UI elements (continued)

API element Migration path

WL.App.overrideBackButton(callback)

WL.App.resetBackButton()

Use Cordova plug-ins providing this
functionality.
Note: For your information, the Cordova
backbutton plug-in provides this feature..

WL.App.getDeviceLanguage()
Use Cordova plug-ins providing this
functionality.
Note: For your information, the Cordova
cordova-plugin-globalization plug-in
provides this feature.

WL.App.getDeviceLocale()
Use Cordova plug-ins providing this
functionality.
Note: For your information, the Cordova
cordova-plugin-globalization plug-in
provides this feature.

WL.App.BackgroundHandler To run a custom handler function, use the
standard Cordova pause event listener. Use
a Cordova plug-in that provides privacy and
prevents iOS and Android systems and
users from taking snapshots or screen
captures. For more information, see the
description of the PrivacyScreenPlugin at
https://github.com/devgeeks/
PrivacyScreenPlugin.

WL.Client.close()

WL.Client.restore()

WL.Client.minimize()

The functions were provided to support the
Adobe AIR platform, which is not supported
by IBM MobileFirst Platform V8.0.0.

WL.Toast.show(string) Use Cordova plug-ins for Toast.

Table 5-21. Other Discontinued JavaScript elements

API Migration path

WL.Client.checkForDirectUpdate(options) No replacement.
Note: You can call
WLAuthorizationManager.obtainAccessToken to
trigger a direct update if one is available. The
access to a security token triggers a direct update if
one is available on the server. But you cannot
trigger Direct Update on demand. For more
information about customizing the Direct Update
user interface and process, see “Customizing the
Direct Update user interface and process” on page
7-244.

WL.Client.setSharedToken({key: myName, value: myValue})

WL.Client.getSharedToken({key: myName})

WL.Client.clearSharedToken({key: myName})

No replacement.

WL.Client.isConnected()

connectOnStartup init option

Use WLAuthorizationManager.obtainAccessToken
to check connectivity to the server and apply
application management rules.

5-46 IBM MobileFirst Platform Foundation V8.0.0

https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-globalization/index.html
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-globalization/index.html
https://github.com/devgeeks/PrivacyScreenPlugin
https://github.com/devgeeks/PrivacyScreenPlugin

Table 5-21. Other Discontinued JavaScript elements (continued)

API Migration path

WL.Client.setUserPref(key,value, options)

WL.Client.setUserPrefs(userPrefsHash, options)

WL.Client.deleteUserPrefs(key, options)

No replacement. You can use an adapter and the
MFP.Server.getAuthenticatedUser API to manage
user preferences.

WL.Client.getUserInfo(realm, key)

WL.Client.updateUserInfo(options)

No replacement.

WL.Client.logActivity(activityType) Use WL.Logger. For more information, see “Logger
SDK” on page 11-37.

WL.Client.login(realm, options) Use WLAuthorizationManager.login. To get started
with authentication and security, see the
Authentication and Security tutorials.

WL.Client.logout(realm, options) Use WLAuthorizationManager.logout.

WL.Client.obtainAccessToken(scope, onSuccess, onFailure) Use WLAuthorizationManager.obtainAccessToken.

WL.Client.transmitEvent(event, immediate)

Wl.Client.purgeEventTransmissionBuffer()

Wl.Client.setEventTransmissionPolicy(policy)

Create a custom adapter for receiving notifications
of these events.

WL.Device.getContext()

WL.Device.startAcquisition(policy, triggers, onFailure)

WL.Device.stopAcquisition()

WL.Device.Wifi

WL.Device.Geo.Profiles

WL.Geo

Use native API or third-party Cordova plug-ins for
GeoLocation.

WL.Client.makeRequest (url, options) Create a custom adapter that provides the same
functionality

WLDevice.getID(options) Use Cordova plug-ins providing this functionality.
Note: For your information, device.uuid from the
cordova-plugin-device plug-in provides this feature.

WL.Device.getFriendlyName() Use WL.Client.getDeviceDisplayName

WL.Device.setFriendlyName() Use WL.Client.setDeviceDisplayName

WL.Device.getNetworkInfo(callback) Use Cordova plug-ins providing this functionality.
Note: For your information, the
cordova-plugin-network-information plug-in
provides this feature.

WLUtils.wlCheckReachability() Create a custom adapter to check server availability.

WL.EncryptedCache
Use JSONStore to store encrypted data locally.
JSONStore is in the cordova-plugin-mfp-jsonstore
plug-in. For more information, see “JSONStore” on
page 7-134.

WL.SecurityUtils.remoteRandomString(bytes) Create a custom adapter that provides the same
functionality.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-47

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/

Table 5-21. Other Discontinued JavaScript elements (continued)

API Migration path

WL.Client.getAppProperty(property) You can retrieve the app version property by using
the cordova plugin add cordova-plugin-
appversion plug-in. The version that is returned is
the native app version (Android and iOS only).

WL.Client.Push.* Use “JavaScript client-side push API” on page 8-4
from the cordova-plugin-mfp-push plug-in. For
more information, see “Migrating to push
notifications from event source-based notifications”
on page 5-54.

WL.Client.Push.subscribeSMS(alias, adapterName,
eventSource, phoneNumber, options)

Use MFPPush.registerDevice(org.json.JSONObject
options, MFPPushResponseListener listener) to
register the device for push and SMS.

WLAuthorizationManager.obtainAuthorizationHeader(scope) Use WLAuthorizationManager.obtainAccessToken
to obtain a token for the required scope. For more
information about implementing a custom resource
request, see “JavaScript custom resource-request
implementation sample” on page 7-311.

WLClient.getLastAccessToken(scope) Use WLAuthorizationManager.obtainAccessToken

WLClient.getLoginName()

WL.Client.getUserName(realm)

No replacement

WL.Client.getRequiredAccessTokenScope(status, header) Use
WLAuthorizationManager.isAuthorizationRequired
and WLAuthorizationManager.getResourceScope.

WL.Client.isUserAuthenticated(realm) No replacement

WLUserAuth.deleteCertificate(provisioningEntity) No replacement

WL.Trusteer.getRiskAssessment(onSuccess, onFailure) No replacement

WL.Client.createChallengeHandler(realmName) To create a challenge handler for handling custom
gateway challenges, use
WL.Client.createGatewayChallengeHandler(gatewayName).
To create a challenge handler for handling
MobileFirst security-check challenges, use
WL.Client.createSecurityCheckChallengeHandler(securityCheckName).
For more information about the V8.0.0
challenge-handler APIs, see “Client security APIs”
on page 7-305.

WL.Client.createWLChallengeHandler(realmName) Use
WL.Client.createSecurityCheckChallengeHandler(securityCheckName).
For more information about the V8.0.0
challenge-handler APIs, see “Client security APIs”
on page 7-305.

challengeHandler.isCustomResponse() where challengeHandler
is a challenge-handler object that is returned by
WL.Client.createChallengeHandler()

Use
gatewayChallengeHandler.canHandleResponse()
where gatewayChallengeHandler is a
challenge-handler object that is returned by
WL.Client.createGatewayChallengeHandler().

wlChallengeHandler.processSucccess() where
wlChallengeHandler is a challenge-handler object that is
returned by WL.Client.createWLChallengeHandler()

Use securityCheckChallengeHandler.handleSuccess()
where securityCheckChallengeHandler is a
challenge-handler object that is returned by
WL.Client.createSecurityCheckChallengeHandler().

5-48 IBM MobileFirst Platform Foundation V8.0.0

Table 5-21. Other Discontinued JavaScript elements (continued)

API Migration path

WL.Client.AbstractChallengeHandler.submitAdapterAuthentication()Implement similar logic in your challenge handler.
For custom gateway challenge handlers, use a
challenge-handler object that is returned by
WL.Client.createGatewayChallengeHandler. For
MobileFirst security-check challenge handlers, use a
challenge-handler object that is returned by
WL.Client.createSecurityCheckChallengeHandler.

WL.Client.AbstractChallengeHandler.submitFailure(err) Use
WL.Client.AbstractChallengeHandler.cancel()WL.Client.AbstractChallengeHandler.cancel().

WL.Client.createProvisioningChallengeHandler() No replacement. Device provisioning is now
handled automatically by the security framework.

Table 5-22. Deprecated JavaScript APIs

API Migration path

WLClient.invokeProcedure(WLProcedureInvocationData
invocationData,WLResponseListener responseListener)

WL.Client.invokeProcedure(invocationData, options)

WLClient.invokeProcedure(WLProcedureInvocationData
invocationData, WLResponseListener responseListener,
WLRequestOptions requestOptions)

WLProcedureInvocationResult

Use the WLResourceRequest instead.
Note: The implementation of invokeProcedure uses
WLResourceRequest.

WLClient.getEnvironment Use Cordova plug-ins providing this functionality.
Note: For your information, the device.platform plug-in
provides this feature.

WLClient.getLanguage Use Cordova plug-ins providing this functionality.
Note: For your information, the cordova-plugin-
globalization plug-in provides this feature.

WL.Client.connect(options) Use WLAuthorizationManager.obtainAccessToken to
check connectivity to the server and apply application
management rules.

Removed components:

The Cordova project created by MobileFirst 7.1 Studio included many resources
that supported propriety functionality. However in V8.0.0 only pure Cordova is
supported and the MobileFirst API no longer supports these features.

Skins

MobileFirst application skins provided a way of optimizing the UI for adapting to
different devices and formats and is no longer supported in V8.0.0.

To replace this type of functionality it is recommended to adopt responsive web
design methods provided by Cordova and HTML 5.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-49

https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-globalization/index.html
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-globalization/index.html

Shells

Shells allowed the development of a set of functionalities to be used by and
shared among applications. In this way developers who were more experienced
with the native environment could provide a set of core functions. These shells
were bundled into inner applications and used by developers who are involved
with business logic or UI development.

If the previous hybrid app used shells and inner applications, it is recommended
to adopt Cordova design patterns and implement the shell components as Cordova
plug-ins, that can be shared across applications. Developers may find ways to
reuse parts of shell code and migrate them to Cordova plug-ins.

For example, if a customer has a set of web resources (JavaScript, css files,
graphics, html) that are common across all their apps they can create a Cordova
plug-in that copies these resources into the app's www folder.

Let's say these resources are within the src/www/acme/ folder:

src/www/acme/js/acme.js

src/www/acme/css/acme.css

src/www/acme/img/acme-logo.png

src/www/acme/html/banner.html

src/www/acme/html/footer.html

plugin.xml

The plugin.xml file contains the <asset> tag, containing the source and target for
copying the resources:
<?xml version="1.0" encoding="UTF-8"?>
<plugin

xmlns="http://apache.org/cordova/ns/plugins/1.0"
xmlns:rim="http://www.blackberry.com/ns/widgets"
xmlns:android="http://schemas.android.com/apk/res/android"
id="cordova-plugin-acme"
version="1.0.1">

<name>ACME Company Shell Component</name>
<description>ACME Company Shell Component</description>
<license>MIT</license>
<keywords>cordova,acme,shell,components</keywords>
<issue>https://www.acme.com/support</issue>
<asset src="src/www/acme" target="www/acme"/>
</plugin>

After the plugin.xml is added to the Cordova config.xml file, the resources listed
in the asset src are copied to the asset target during compilation.

Then in their index.html file or anywhere inside their app they can reuse these
resources.
<link rel="stylesheet" type="text/css" href="acme/css/acme.css">
<script type="text/javascript" src="acme/js/acme.js"></script>
<div id="banner"></div>
<div id="app"></div>
<div id="footer"></div>

5-50 IBM MobileFirst Platform Foundation V8.0.0

<script type="text/javascript">
$("#banner").load("acme/html/banner.html");
$("#footer").load("acme/html/footer.html");

</script>

Settings page

The settings page was a UI available in the MobileFirst hybrid app that allowed
the developer to change the server URL at runtime for testing purposes. The
developer can now use existing MobileFirst Client API to change the server URL at
runtime. For more information, see WL.App.setServerUrl.

Minification

MobileFirst Studio 7.1 provided an OOTB method of reducing the size of your
JavaScript code by removing all unnecessary characters before compilation. This
removed functionality can be replaced by adding Cordova hooks to your project.

Many hooks are available for minifying your Javascript and css files and can be
placed in the config.xml at the before_prepare event.

Here are some recommended hooks:
v https://www.npmjs.com/package/uglify-js
v https://www.npmjs.com/package/clean-css

These hooks can be defined in either a plug-in file or in the app's config.xml file,
using the <hook> elements.

In this example, using the before_prepare hook event, a script is run for minifying
before cordova prepare copies the files to each platform's www/ folder:
<hook type="before_prepare" src="scripts/uglify.js" />

Migrating existing adapters to work under MobileFirst Server
V8.0.0

Starting with V8.0.0 of MobileFirst Server, adapters are Maven projects. Learn how
to upgrade adapters that were developed under earlier versions of MobileFirst
Server.

Before you begin

This page describes the steps to take to migrate adapters that were developed to
work with MobileFirst Server V6.2 or later so that they work with MobileFirst
Server V8.0.0.

To start, study the changes in adapter APIs that are described in “Deprecated
features and API elements” on page 3-17 and “Server-side API changes in V8.0.0”
on page 5-14.
v Under certain conditions, existing adapters work as-is with MobileFirst Server

V8.0.0. See “Using older adapters as-is under MobileFirst Server V8.0.0” on page
5-52.

v In most cases, you need to upgrade the adapters. For Java adapters, see
“Migrating Java adapters to Maven projects for MobileFirst Server V8.0.0” on
page 5-52. For JavaScript adapters, see “Migrating JavaScript adapters to Maven
projects for MobileFirst Server V8.0.0” on page 5-54.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-51

https://www.npmjs.com/package/uglify-js
https://www.npmjs.com/package/clean-css

Using older adapters as-is under MobileFirst Server V8.0.0
About this task

An existing adapter can be deployed as-is under MobileFirst Server V8.0.0, unless
it matches any of the following criteria:

Table 5-23. Adapter conditions.

Adapter type Condition

Java Uses the PushAPI or SecurityAPI interfaces

JavaScript Was built using IBM Worklight V6.2 or earlier

Uses a connection type that is not HTTP or SQL

Contains procedures with securityTest customization

Contains procedures that use the user identity to
connect to the back end

Uses any of the following APIs:

v WL.Device.*

v WL.Geo.*

v WL.Server.readSingleJMSMessage

v WL.Server.readAllJMSMessages

v WL.Server.writeJMSMessage

v WL.Server.requestReplyJMSMessage

v WL.Server.getActiveUser

v WL.Server.setActiveUser

v WL.Server.getCurrentUserIdentity

v WL.Server.getCurrentDeviceIdentity

v WL.Server.createEventSource

v WL.Server.createDefaultNotification

v WL.Server.getUserNotificationSubscription

v WL.Server.notifyAllDevices

v WL.Server.notifyDeviceToken

v WL.Server.notifyDeviceSubscription

v WL.Server.sendMessage

v WL.Server.createEventHandler

v WL.Server.setEventHandlers

v WL.Server.setApplicationContext

v WL.Server.fetchNWBusinessObject

v WL.Server.createNWBusinessObject

v WL.Server.deleteNWBusinessObject

v WL.Server.updateNWBusinessObject

v WL.Server.getBeaconsAndTriggers

v WL.Server.signSoapMessage

v WL.Server.createSQLStatement

Migrating Java adapters to Maven projects for MobileFirst Server
V8.0.0
Procedure
1. Create a Maven adapter project with the archetype adapter-maven-archetype-

java. When setting the parameter artifactId use the adapter name and for the

5-52 IBM MobileFirst Platform Foundation V8.0.0

parameter package use the same package as the one in the existing Java
adapter. For more information, see “Creating adapters with Maven” on page
7-196.

2. Overwrite the adapter-descriptor file (adapter.xml) under src/main/adapter-
resources in the created project from the existing Java adapter. For more details
about the descriptor, see “The Java adapter-descriptor file” on page 7-194.

3. Remove all the files under src/main/java in the created project from the
existing Java adapter, then copy all the Java files under the old adapter's src
folder, but preserve the same folder structure. Copy all the non-Java files under
the src folder of the old adapter to the src/main/resources of the new adapter.
By default, src/main/resources does not exist, so if the adapter contains
non-Java files, create it. For the changes in Java adapter APIs, see “Server-side
API changes in V8.0.0” on page 5-14. The following diagrams illustrate the
structure of adapters up to V7.1 and Maven adapters, starting from V8.0:

Figure 5-2. Adapter folder structure up to V7.1

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-53

4. Using either of the following methods, add any JAR files that are not in the
Maven repository:
v Add the JAR files to a local repository, as described in Guide to installing

third-party JARs, then add them to dependencies element.
v Add the JAR files to the dependencies element by using the systemPath

element. For more information, see Introduction to the Dependency
Mechanism.

Migrating JavaScript adapters to Maven projects for MobileFirst
Server V8.0.0
Procedure
1. Create a Maven adapter project with the archetype adapter-maven-archetype-

http or adapter-maven-archetype-sql. When setting the parameter artifactId
use the adapter name. For more information, see “Creating adapters by using
Maven” on page 7-214.

2. Overwrite the adapter-descriptor file (adapter.xml) under src/main/adapter-
resources in the created project from the existing JavaScript adapter. For details
about the descriptor, see “The JavaScript adapter-descriptor file” on page 7-206.

3. Overwrite the JavaScript files src/main/adapter-resources/js in the created
project from the existing JavaScript adapter JavaScript files.

Migrating to push notifications from event source-based
notifications

From IBM MobileFirst Platform Foundation V8.0.0, the event source-based model is
not supported, and push notifications capability is enabled entirely by the push
service model. For existing event source-based applications on earlier versions of
MobileFirst to be moved to V8.0.0, they must be migrated to the new push service
model.

Figure 5-3. Maven adapter structure, starting from V8.0.0

5-54 IBM MobileFirst Platform Foundation V8.0.0

https://maven.apache.org/guides/mini/guide-3rd-party-jars-local.html
https://maven.apache.org/guides/mini/guide-3rd-party-jars-local.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

About this task

During migration, keep in mind that it is not about using one API instead of
another, but more about using one model/approach versus another.

For example, in the event source-based model, if you were to segment your mobile
application users to send notifications to specific segments, you would model
every segment as a distinct event source. In the push service model, you would
achieve the same by defining tags that represents segments and have users
subscribe to the respective tags. Tag-based notifications is a replacement to event
source-based notifications.

Table 5-24 provides you with a comparison between the two models.

Table 5-24. Event source-based model versus push service model

User requirement Event source model Push service model

To enable your application
with push notifications

v Create an Event Source
Adapter and within it
create an EventSource.

v Configure or setup your
application with push
credentials.

v Configure or setup your
application with push
credentials.

To enable your mobile client
application with push
notifications

v Create WLClient

v Connect to the MobileFirst
Server

v Get an instance of push
client

v Subscribe to the Event
source

v Instantiate push client

v Initialize push client

v Register the mobile device

To enable your mobile client
application for notifications
based on specific tags

Not supported. Subscribe to the tag (that
uses tag name) that is of
interest.

To receive and handle
notifications in your mobile
client applications

Register a listener
implementation.

Register a listener
implementation.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-55

Table 5-24. Event source-based model versus push service model (continued)

User requirement Event source model Push service model

To send push notifications to
mobile client applications

v Implement adapter
procedures that internally
call the WL.Server APIs to
send push notifications.

v WL Server APIs provide
means to send
notifications:

– By user

– By device

– Broadcasts (all devices)

v Backend server
applications can then
invoke the adapter
procedures to trigger push
notification as part of their
application logic.

v Backend server
applications can directly
call the messages REST
API. However, these
applications must register
as confidential client with
the MobileFirst Server and
obtain a valid OAuth
access token that must be
passed in the
Authorization header of
the REST API.

v The REST API provides
options to send
notifications:

– By user

– By device

– By platform

– By tags

– Broadcasts (all devices)

To trigger push notifications
as regular time periods
(polling intervals)

Implement the function to
send push notifications
within the event-source
adapter and this as part of
the createEventSource
function call.

Not supported.

To register a hook with the
name, URL, and the even
types.

Implement hooks on the path
of a device subscribing or
unsubscribing to push
notifications.

Not supported.

Migration scenarios
Starting from IBM MobileFirst Platform FoundationV8.0.0, the event source-based
model will not be supported and push notifications capability will be enabled on
IBM MobileFirst Platform Foundation entirely by the push service model, which is
a more simple and agile alternative to event source model.

Existing event source-based applications on earlier versions of IBM MobileFirst
Platform Foundation need to be migrated to V8.0.0, to the new push service model.

For more information, see “Migrating to push notifications from event
source-based notifications” on page 5-54

Hybrid applications:

Examples of migration scenarios cover applications that use a single event sources
or multiple sources, broadcast or Unicast notification, or tag notification.

Scenario 1: Existing applications using single event source in their application:

Applications have used single event source over the earlier versions of MobileFirst
as it supported push only through event source-based model.

5-56 IBM MobileFirst Platform Foundation V8.0.0

Client

To migrate this in V8.0.0, convert this model to Unicast notification.
1. Initialize the MobileFirst push client instance in your application and in the

success callback register the callback method that should receive the
notification.
MFPPush.initialize(function(successResponse){
MFPPush.registerNotificationsCallback(notificationReceived); },
function(failureResponse){alert("Failed to initialize”);

}
);

2. Implement the notification callback method.
var notificationReceived = function(message) {

alert(JSON.stringify(message));
};

3. Register the mobile device with the push notification service.
MFPPush.registerDevice(function(successResponse) {

alert("Successfully registered");
},

function(failureResponse) {
alert("Failed to register");

}
);

4. (Optional) Un-register the mobile device from the push notification service.
MFPPush.unregisterDevice(function(successResponse) {

alert("Successfully unregistered");
},

function(failureResponse) {
alert("Failed to unregister");

}
);

5. Remove WL.Client.Push.isPushSupported() (if used) and use.
MFPPush.isPushSupported (function(successResponse) {

alert(successResponse);
},

function(failureResponse) {
alert("Failed to get the push suport status");

}
);

6. Remove the following WL.Client.Push APIs, since there will be no event source
to subscribe to and register notification callbacks.
a. registerEventSourceCallback()
b. subscribe()
c. unsubscribe()
d. isSubscribed()
e. onReadyToSubscribe()

Server

1. Remove the following WL.Server APIs (if used), in your adapter:
v notifyAllDevices()
v notifyDevice()
v notifyDeviceSubscription()
v createEventSource()

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-57

Complete the following steps for every application that was using the same event
source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.
3. Create tags to enable push notifications to be sent to subscribers. See “Creating

tags for push notification” on page 7-260.
4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

Scenario 2: Existing applications using multiple event sources in their application:

Applications using multiple event sources requires segmentation of users based on
subscriptions.

Client

This maps to tags which segments the users/devices based on topic of interest. To
migrate this, this model can be converted to tag-based notification.
1. Initialize the MFPPush client instance in your application and in the success

callback register the callback method that should receive the notification.
MFPPush.initialize(function(successResponse){

MFPPush.registerNotificationsCallback(notificationReceived); },
function(failureResponse){
alert("Failed to initialize”);
}

);

2. Implement the notification callback method.
var notificationReceived = function(message) {

alert(JSON.stringify(message));
};

3. Register the mobile device with the push notification service.
MFPPush.registerDevice(function(successResponse) {

alert("Successfully registered");
},

function(failureResponse) {
alert("Failed to register");

}
);

4. (Optional) Unregister the mobile device from the push notification service.
MFPPush.unregisterDevice(function(successResponse) {

alert("Successfully unregistered");
},

function(failureResponse) {
alert("Failed to unregister");

}
);

5. Remove WL.Client.Push.isPushSupported() (if used) and use.
MFPPush.isPushSupported (function(successResponse) {

alert(successResponse);
},

5-58 IBM MobileFirst Platform Foundation V8.0.0

function(failureResponse) {
alert("Failed to get the push suport status");

}
);

6. Remove the following WL.Client.Push APIs since there will be no event source
to subscribe to and register notification callbacks.
a. registerEventSourceCallback()
b. subscribe()
c. unsubscribe()
d. isSubscribed()
e. onReadyToSubscribe()

7. Subscribe to tags.
var tags = [’sample-tag1’,’sample-tag2’]

MFPPush.subscribe(tags, function(successResponse) {
alert("Successfully subscribed");

},
function(failureResponse) {
alert("Failed to subscribe");

}
);

8. (Optional) Unsubscribe from tags.
MFPPush.unsubscribe(tags, function(successResponse) {

alert("Successfully unsubscribed");
},

function(failureResponse) {
alert("Failed to unsubscribe");

}
);

Server

Remove the following WL.Server APIs (if used) in your adapter:
v notifyAllDevices()

v notifyDevice()

v notifyDeviceSubscription()

v createEventSource()

Complete the following steps for every application that was using the same event
source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.
3. Create tags to enable Push notifications to be sent to subscribers. See “Creating

tags for push notification” on page 7-260.
4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-59

Scenario 3: Existing applications using broadcast/Unicast notification in their application:

Client

1. Initialize the MFPPush client instance in your application and in the
success callback register the callback method that should receive the
notification.
MFPPush.initialize(function(successResponse){

MFPPush.registerNotificationsCallback(notificationReceived); },
function(failureResponse){
alert("Failed to initialize”);

}
);

2. Implement the notification callback method.
var notificationReceived = function(message) {

alert(JSON.stringify(message));
};

3. Register the mobile device with the push notification service.
MFPPush.registerDevice(function(successResponse) {

alert("Successfully registered");
},

function(failureResponse) {
alert("Failed to register");

}
);

4. (Optional) Unregister the mobile device from the push notification
service.
MFPPush.unregisterDevice(function(successResponse) {

alert("Successfully unregistered");
},

function(failureResponse) {
alert("Failed to unregister");

}
);

5. Remove WL.Client.Push.isPushSupported() (if used) and use.
MFPPush.isPushSupported (function(successResponse) {

alert(successResponse);
},

function(failureResponse) {
alert("Failed to get the push suport status");

}
);

6. Remove the following WL.Client.Push APIs:
a. onReadyToSubscribe()
b. onMessage()

Server

Remove WL.Server.sendMessage() (if used) in your adapter.

Complete the following steps for every application that was using the
same event source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings
(PUT)” on page 8-193 REST API, for Android applications or “Update
APNs settings (PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.

5-60 IBM MobileFirst Platform Foundation V8.0.0

3. Create tags to enable push notifications to be sent to subscribers. See
“Creating tags for push notification” on page 7-260.

4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications

to subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with

userId/deviceId.

Scenario 4: Existing applications using tag notifications in their application:

Client

1. Initialize the MFPPush client instance in your application and in the success
callback register the callback method that should receive the notification.
MFPPush.initialize(function(successResponse){

MFPPush.registerNotificationsCallback(notificationReceived); },
function(failureResponse){
alert("Failed to initialize”);
}

);

2. Implement the notification callback method.
var notificationReceived = function(message) {

alert(JSON.stringify(message));
};

3. Register the mobile device with the push notification service.
MFPPush.registerDevice(function(successResponse) {

alert("Successfully registered");
},

function(failureResponse) {
alert("Failed to register");

}
);

4. (Optional) Un-register the mobile device from push notification service.
MFPPush.unregisterDevice(function(successResponse) {

alert("Successfully unregistered");
},

function(failureResponse) {
alert("Failed to unregister");

}
);

5. Remove WL.Client.Push.isPushSupported() (if used) and use:
MFPPush.isPushSupported (function(successResponse) {

alert(successResponse);
},

function(failureResponse) {
alert("Failed to get the push suport status");

}
);

6. Remove the following WL.Client.Push APIs:
a. subscribeTag()
b. unsubscribeTag()
c. isTagSubscribed()
d. onReadyToSubscribe()
e. onMessage()

7. Subscribe to tags:

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-61

var tags = [’sample-tag1’,’sample-tag2’]
MFPPush.subscribe(tags, function(successResponse) {

alert("Successfully subscribed");
},

function(failureResponse) {
alert("Failed to subscribe");

}
);

8. (Optional) Unsubscribe from tags:
MFPPush.unsubscribe(tags, function(successResponse) {

alert("Successfully unsubscribed");
},

function(failureResponse) {
alert("Failed to unsubscribe");

}
);

Server

Remove the following WL.Server.sendMessage() (if used) in your adapter.

Complete the following steps for every application that was using the same event
source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.
3. Create tags to enable push notifications to be sent to subscribers. See “Creating

tags for push notification” on page 7-260.
4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

Native Android applications:

Examples of migration scenarios cover applications that use a single event sources
or multiple sources, broadcast or Unicast notification, or tag notification.

Scenario 1: Existing applications using single event source in their application:

Applications have used single event source over the earlier versions of MobileFirst
as it supported push only through event source-based model.

Client

To migrate this in V8.0.0, convert this model to Unicast notification.
1. Initialize the MFPPush client instance in your application.

MFPPush push = MFPPush.getInstance();
push.initialize(_this);

2. Implement the interface MFPPushNotificationListener and define onReceive().

5-62 IBM MobileFirst Platform Foundation V8.0.0

@Override
public void onReceive(MFPSimplePushNotification message) {

Log.i("Push Notifications", message.getAlert());
}

3. Register the mobile device with the push notification service.
push.registerDevice(new MFPPushResponseListener<String>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i("Push Notifications", "Failed to register");
}

@Override
public void onSuccess(String arg0) {

Log.i("Push Notifications", "Registered successfully");

}

});

4. (Optional) Un-register the mobile device from the push notification service.
push.unregisterDevice(new MFPPushResponseListener<String>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i("Push Notifications", "Failed to unregister");

}
@Override
public void onSuccess(String arg0) {

Log.i("Push Notifications", "Unregistered successfully");
}

});

5. Remove WLClient.Push.isPushSupported() (if used) and use
push.isPushSupported();.

6. Remove the following WLClient.Push APIs since there will be no event source
to subscribe to and register notification callbacks:
a. registerEventSourceCallback()
b. subscribe()
c. unsubscribe()
d. isSubscribed()
e. WLOnReadyToSubscribeListener and WLNotificationListener

implementation

Server

Remove the following WL.Server APIs (if used) in your adapter:
v notifyAllDevices()
v notifyDevice()
v notifyDeviceSubscription()
v createEventSource()

Complete the following steps for every application that was using the same event
source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-63

2. Add the scope push.mobileclient in Scope Elements Mapping.
3. Create tags to enable push notifications to be sent to subscribers. See “Creating

tags for push notification” on page 7-260.
4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

Scenario 2: Existing applications using multiple event sources in their application:

Applications using multiple event sources requires the segmentation of users based
on the subscriptions.

Client

This maps to tags which segments the users/devices based on topic of interest. To
migrate this in MobileFirst V8.0.0, convert this model to tag based notification.
1. Initialize the MFPPush client instance in your application:

MFPPush push = MFPPush.getInstance();
push.initialize(_this);

2. Implement the interface MFPPushNotificationListener and define onReceive().
@Override

public void onReceive(MFPSimplePushNotification message) {
Log.i("Push Notifications", message.getAlert());

}

3. Register the mobile device with the push notification service.
push.registerDevice(new MFPPushResponseListener<String>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i("Push Notifications", "Failed to register");
}

@Override
public void onSuccess(String arg0) {

Log.i("Push Notifications", "Registered successfully");

}

});

4. (Optional) Un-register the mobile device from the push notification service:
push.unregisterDevice(new MFPPushResponseListener<String>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i("Push Notifications", "Failed to unregister");

}
@Override
public void onSuccess(String arg0) {

Log.i("Push Notifications", "Unregistered successfully");
}

});

5. Remove WLClient.Push.isPushSupported() (if used) and use
push.isPushSupported();.

6. Remove the following WLClient.Push APIs since there will be no event source
to subscribe to and register notification callbacks:
a. registerEventSourceCallback()

5-64 IBM MobileFirst Platform Foundation V8.0.0

b. subscribe()
c. unsubscribe()
d. isSubscribed()
e. WLOnReadyToSubscribeListener and WLNotificationListener

Implementation
7. Subscribe to tags:

String[] tags = new String[2];
tags[0] ="sample-tag1";
tags[1] ="sample-tag2";

push.subscribe(tags, new MFPPushResponseListener<String[]>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i(“Failed to subscribe");
}

@Override
public void onSuccess(String[] arg0) {

Log.i("Subscribed successfully");
}

});

8. (Optional) Unsubscribe from tags:
String[] tags = new String[2];

tags[0] ="sample-tag1";
tags[1] ="sample-tag2";

push.unsubscribe(tags, new MFPPushResponseListener<String[]>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i("Push Notifications", "Failed to unsubscribe");

}

@Override
public void onSuccess(String[] arg0) {

Log.i("Push Notifications", "Unsubscribed successfully");

}

});

Server

Remove the following WL.Server APIs (if used) in your adapter:
v notifyAllDevices()
v notifyDevice()
v notifyDeviceSubscription()
v createEventSource()

Complete the following steps for every application that was using the same event
source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-65

3. Create tags to enable push notifications to be sent to subscribers. See “Creating
tags for push notification” on page 7-260.

4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

Scenario 3: Existing applications using broadcast/Unicast notification in their application:

Client

1. Initialize the MFPPush client instance in your application:
MFPPush push = MFPPush.getInstance();

push.initialize(_this);

2. Implement the interface MFPPushNotificationListener and define onReceive().
@Override

public void onReceive(MFPSimplePushNotification message) {
Log.i("Push Notifications", message.getAlert());

}

3. Register the mobile device with push notification service.
push.registerDevice(new MFPPushResponseListener<String>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i("Push Notifications", "Failed to register");
}

@Override
public void onSuccess(String arg0) {

Log.i("Push Notifications", "Registered successfully");

}

});

4. (Optional) Un-register the mobile device from push notification service.
push.unregisterDevice(new MFPPushResponseListener<String>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i("Push Notifications", "Failed to unregister");

}
@Override
public void onSuccess(String arg0) {

Log.i("Push Notifications", "Unregistered successfully");
}

});

5. Remove WLClient.Push.isPushSupported() (if used) and use
push.isPushSupported();.

6. Remove the following WLClient.Push APIs:
v registerEventSourceCallback()
v WLOnReadyToSubscribeListener and WLNotificationListener Implementation

Server

Remove WL.Server.sendMessage() (if used) in your adapter.

Complete the following steps for every application that was using the same event
source:

5-66 IBM MobileFirst Platform Foundation V8.0.0

1. Set up the credentials by using the MobileFirst Operations Console. See
“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.
3. Create tags to enable push notifications to be sent to subscribers. See “Creating

tags for push notification” on page 7-260.
4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

Scenario 4: Existing applications using tag notifications in their application:

Client

1. Initialize the MFPPush client instance in your application:
MFPPush push = MFPPush.getInstance();

push.initialize(_this);

2. Implement the interface MFPPushNotificationListener and define onReceive().
@Override

public void onReceive(MFPSimplePushNotification message) {
Log.i("Push Notifications", message.getAlert());

}

3. Register the mobile device with the push notification service.
push.registerDevice(new MFPPushResponseListener<String>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i("Push Notifications", "Failed to register");
}

@Override
public void onSuccess(String arg0) {

Log.i("Push Notifications", "Registered successfully");

}

});

4. (Optional) Un-register the mobile device from the push notification service.
push.unregisterDevice(new MFPPushResponseListener<String>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i("Push Notifications", "Failed to unregister");

}
@Override
public void onSuccess(String arg0) {

Log.i("Push Notifications", "Unregistered successfully");
}

});

5. Remove WLClient.Push.isPushSupported() (if used) and use
push.isPushSupported();

6. Remove the following WLClient.Push API's:
a. subscribeTag()
b. unsubscribeTag()

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-67

c. isTagSubscribed()
d. WLOnReadyToSubscribeListener and WLNotificationListener

Implementation
7. Subscribe to tags:

String[] tags = new String[2];
tags[0] ="sample-tag1";
tags[1] ="sample-tag2";

push.subscribe(tags, new MFPPushResponseListener<String[]>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i(“Failed to subscribe");
}

@Override
public void onSuccess(String[] arg0) {

Log.i("Subscribed successfully");
}

});

8. (Optional) Unsubscribe from tags:
String[] tags = new String[2];

tags[0] ="sample-tag1";
tags[1] ="sample-tag2";

push.unsubscribe(tags, new MFPPushResponseListener<String[]>(){

@Override
public void onFailure(MFPPushException arg0) {

Log.i("Push Notifications", "Failed to unsubscribe");

}

@Override
public void onSuccess(String[] arg0) {

Log.i("Push Notifications", "Unsubscribed successfully");

}
});

Server

Remove WL.Server.sendMessage() (if used) in your adapter.

Complete the following steps for every application that was using the same event
source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.
3. Create tags to enable push notifications to be sent to subscribers. See “Creating

tags for push notification” on page 7-260.
4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

5-68 IBM MobileFirst Platform Foundation V8.0.0

Native iOS applications:

Examples of migration scenarios cover applications that use a single event sources
or multiple sources, broadcast or Unicast notification, or tag notification.

Scenario 1: Existing applications using single event source in their application:

Applications have used single event source over the earlier versions of MobileFirst
as it supported push only through event source-based model.

Client

To migrate this in V8.0.0, convert this model to Unicast notification.
1. Initialize the MFPPush client instance in your application.

[[MFPPush sharedInstance] initialize];

2. Implement the notification processing in the didReceiveRemoteNotification().
3. Register the mobile device with the push notification service.

[[MFPPush sharedInstance] registerDevice:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to register");
}else{

NSLog(@"Successfullyregistered");

}
}];

4. (Optional) Un-register the mobile device from the push notification service.
[MFPPush sharedInstance] unregisterDevice:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to unregister");
}else{

NSLog(@"Successfully unregistered");

}
}];

5. Remove WLClient.Push.isPushSupported() (if used) and use:
[[MFPPush sharedInstance] isPushSupported]

6. Remove the following WLClient.Push API's since there will be no event source
to subscribe to and register notification callbacks:
a. registerEventSourceCallback()
b. subscribe()
c. unsubscribe()
d. isSubscribed()
e. WLOnReadyToSubscribeListener implementation

7. Call sendDeviceToken() in didRegisterForRemoteNotificationsWithDeviceToken.
[[MFPPush sharedInstance] sendDeviceToken:deviceToken];

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-69

Server

1. Remove the following WL.Server API's (if used) in your adapter:
v notifyAllDevices()
v notifyDevice()
v notifyDeviceSubscription()
v createEventSource()

Complete the following steps for every application that was using the same event
source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.
3. Create tags to enable push notifications to be sent to subscribers. See “Creating

tags for push notification” on page 7-260.
4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

Scenario 2: Existing applications using multiple event sources in their application:

Applications using multiple event sources requires segmentation of users based on
subscriptions.

Client

This maps to tags which segments the users/devices based on topic of interest. To
migrate this to MobileFirstV8.0.0, convert this model to tag based notification.
1. Initialize the MFPPush client instance in your application.

[[MFPPush sharedInstance] initialize];

2. Implement the notification processing in the didReceiveRemoteNotification().
3. Register the mobile device with the push notification service:

[[MFPPush sharedInstance] registerDevice:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to register");
}else{

NSLog(@"Successfullyregistered");

}
}];

4. (Optional) Un-register the mobile device from the push notification service:
[MFPPush sharedInstance] unregisterDevice:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to unregister");

5-70 IBM MobileFirst Platform Foundation V8.0.0

}else{

NSLog(@"Successfully unregistered");

}
}];

5. Remove WLClient.Push.isPushSupported() (if used) and use:
[[MFPPush sharedInstance] isPushSupported]

6. Remove the following WLClient.Push API's since there will be no event source
to subscribe to and register notification callbacks:
a. registerEventSourceCallback()
b. subscribe()
c. unsubscribe()
d. isSubscribed()
e. WLOnReadyToSubscribeListener Implementation

7. Call sendDeviceToken() in didRegisterForRemoteNotificationsWithDeviceToken.
8. Subscribe to tags:

NSMutableArray *tags = [[NSMutableArray alloc]init];
[tags addObject:@"sample-tag1"];

[tags addObject:@"sample-tag2"];
[MFPPush sharedInstance] subscribe:tags completionHandler:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to unregister");
}else{

NSLog(@"Successfully unregistered");

}
}];

9. (Optional) Unsubscribe from tags:
NSMutableArray *tags = [[NSMutableArray alloc]init];

[tags addObject:@"sample-tag1"];
[tags addObject:@"sample-tag2"];

[MFPPush sharedInstance] unsubscribe:tags completionHandler:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to unregister");
}else{

NSLog(@"Successfully unregistered");

}
}];

Server

1. Remove the following WL.Server API's (if used) in your adapter:
v notifyAllDevices()
v notifyDevice()
v notifyDeviceSubscription()

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-71

v createEventSource()

Complete the following steps for every application that was using the same event
source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.
3. Create tags to enable push notifications to be sent to subscribers. See “Creating

tags for push notification” on page 7-260.
4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

Scenario 3: Existing applications using broadcast/Unicast notification in their application:

Client

1. Initialize the MFPPush client instance in your application:
[[MFPPush sharedInstance] initialize];

2. Implement the notification processing in the didReceiveRemoteNotification().
3. Register the mobile device with the push notification service:

[[MFPPush sharedInstance] registerDevice:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to register");
}else{

NSLog(@"Successfullyregistered");

}
}];

4. (Optional) Un-register the mobile device from the push notification service.
[MFPPush sharedInstance] unregisterDevice:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to unregister");
}else{

NSLog(@"Successfully unregistered");

}
}];

5. Remove WLClient.Push.isPushSupported() (if used) and use:
[[MFPPush sharedInstance] isPushSupported]

6. Remove the following WLClient.Push API's:
v registerEventSourceCallback()
v WLOnReadyToSubscribeListener Implementation

5-72 IBM MobileFirst Platform Foundation V8.0.0

Server

Remove WL.Server.sendMessage (if used) in your adapter.

Complete the following steps for every application that was using the same event
source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.
3. Create tags to enable push notifications to be sent to subscribers. See “Creating

tags for push notification” on page 7-260.
4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

Scenario 4: Existing applications using tag notifications in their application:

Client

1. Initialize the MFPPush client instance in your application:
[[MFPPush sharedInstance] initialize];

2. Implement the notification processing in the didReceiveRemoteNotification().
3. Register the mobile device with the push notification service:

[[MFPPush sharedInstance] registerDevice:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to register");
}else{

NSLog(@"Successfullyregistered");

}
}];

4. (Optional) Un-register the mobile device from the push notification service:
[MFPPush sharedInstance] unregisterDevice:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to unregister");
}else{

NSLog(@"Successfully unregistered");

}
}];

5. Remove WLClient.Push.isPushSupported() (if used) and use [[MFPPush
sharedInstance] isPushSupported].

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-73

6. Remove the following WLClient.Push API's since there will be no Event source
to subscribe to and register notification callbacks:
a. registerEventSourceCallback()
b. subscribeTag()
c. unsubscribeTag()
d. isTagSubscribed()
e. WLOnReadyToSubscribeListener Implementation

7. Call sendDeviceToken() in didRegisterForRemoteNotificationsWithDeviceToken.
8. Subscribe to tags:

NSMutableArray *tags = [[NSMutableArray alloc]init];
[tags addObject:@"sample-tag1"];

[tags addObject:@"sample-tag2"];
[MFPPush sharedInstance] subscribe:tags completionHandler:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to unregister");
}else{

NSLog(@"Successfully unregistered");

}
}];

9. (Optional) Unsubscribe from tags:
NSMutableArray *tags = [[NSMutableArray alloc]init];

[tags addObject:@"sample-tag1"];
[tags addObject:@"sample-tag2"];

[MFPPush sharedInstance] unsubscribe:tags completionHandler:^(WLResponse *response, NSError *error) {

if(error){

NSLog(@"Failed to unregister");
}else{

NSLog(@"Successfully unregistered");

}
}];

Server

Remove the WL.Server.sendMessage (if used), in your adapter.

Complete the following steps for every application that was using the same event
source:
1. Set up the credentials by using the MobileFirst Operations Console. See

“Configuring push notification settings” on page 7-259.
You can also set up the credentials by using “Update GCM settings (PUT)” on
page 8-193 REST API, for Android applications or “Update APNs settings
(PUT)” on page 8-191 REST API, for iOS applications.

2. Add the scope push.mobileclient in Scope Elements Mapping.
3. Create tags to enable push notifications to be sent to subscribers. See “Creating

tags for push notification” on page 7-260.

5-74 IBM MobileFirst Platform Foundation V8.0.0

4. You can use either of the following methods to send notifications:
v The MobileFirst Operations Console. See “Sending push notifications to

subscribers” on page 7-262.
v The “Push Message (POST)” on page 8-236 REST API with userId/deviceId.

Native Windows Universal applications:

Examples of migration scenarios cover applications that use a single event sources
or multiple sources, broadcast or Unicast notification, or tag notification.

Scenario 1: Existing applications using single event source in their application:

Applications have used single event source over the earlier versions of MobileFirst
as it supported push only through event source-based model.

Client

To migrate this in V8.0.0, convert this model to Unicast notification.
1. Initialize the MFPPush client instance in your application.

MFPPush push = MFPPush.GetInstance();
push.Initialize();

2. Implement the interface MFPPushNotificationListener and define onReceive().
class Pushlistener : MFPPushNotificationListener
{

public void onReceive(String properties, String payload)
{

Debug.WriteLine("Push Notifications\n properties:" + properties + "\n payload:" + payload);
}

}

3. Register the mobile device with the push notification service.
MFPPushMessageResponse Response = await push.RegisterDevice(null);
if (Response.Success == true)
{

Debug.WriteLine("Push Notifications Registered successfully");
}
else
{

Debug.WriteLine("Push Notifications Failed to register");
}

4. (Optional) Un-register the mobile device from the push notification service.
MFPPushMessageResponse Response = await push.UnregisterDevice();
if (Response.Success == true)
{

Debug.WriteLine("Push Notifications Failed to unregister");
}
else
{

Debug.WriteLine("Push Notifications Unregistered successfully");
}

5. Remove WLClient.Push.IsPushSupported() (if used) and use
push.IsPushSupported();.

6. Remove the following WLClient.Push APIs since there will be no event source
to subscribe to and register notification callbacks:
a. registerEventSourceCallback()
b. subscribe()
c. unsubscribe()

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-75

d. isSubscribed()
e. WLOnReadyToSubscribeListener and WLNotificationListener

implementation

Server

Remove the following WL.Server APIs (if used) in your adapter:
v notifyAllDevices()
v notifyDevice()
v notifyDeviceSubscription()
v createEventSource()

Complete the following steps for every application that was using the same event
source:
1. Set up the WNS credentials in the Push Settings page of MobileFirst

Operations Console or use WNS Settings REST API.
2. Add the scope push.mobileclient in Map Scope Elements to security checks

section in the Security tab of MobileFirst Operations Console.
3. You can also use the “Push Message (POST)” on page 8-236 REST API with

userId/deviceId, to send message.

Scenario 2: Existing applications using multiple event sources in their application:

Applications using multiple event sources requires segmentation of users based on
subscriptions.

Client

This maps to tags which segments the users/devices based on topic of interest. To
migrate this in MobileFirst V8.0.0, convert this model to tag based notification.
1. Initialize the MFPPush client instance in your application:

MFPPush push = MFPPush.GetInstance();
push.Initialize();

2. Implement the interface MFPPushNotificationListener and define onReceive().
class Pushlistener : MFPPushNotificationListener
{

public void onReceive(String properties, String payload)
{

Debug.WriteLine("Push Notifications\n properties:" + properties + "\n payload:" + payload);
}

}

3. Register the mobile device with the IMFPUSH service.
MFPPushMessageResponse Response = await push.RegisterDevice(null);
if (Response.Success == true)
{

Debug.WriteLine("Push Notifications Registered successfully");
}
else
{

Debug.WriteLine("Push Notifications Failed to register");
}

4. (Optional) Un-register the mobile device from the IMFPUSH service:
MFPPushMessageResponse Response = await push.UnregisterDevice();
if (Response.Success == true)
{

5-76 IBM MobileFirst Platform Foundation V8.0.0

Debug.WriteLine("Push Notifications Failed to unregister");
}
else
{

Debug.WriteLine("Push Notifications Unregistered successfully");
}

5. Remove WLClient.Push.IsPushSupported() (if used) and use
push.IsPushSupported();.

6. Remove the following WLClient.Push APIs since there will be no Event Source
to subscribe to and register notification callbacks:
a. registerEventSourceCallback()
b. subscribe()
c. unsubscribe()
d. isSubscribed()
e. WLOnReadyToSubscribeListener and WLNotificationListener

implementation
7. Subscribe to tags:

String[] Tag = { "sample-tag1", "sample-tag2" };
MFPPushMessageResponse Response = await push.Subscribe(Tag);
if (Response.Success == true)
{

Debug.WriteLine("Subscribed successfully");
}
else
{

Debug.WriteLine("Failed to subscribe");
}

8. (Optional) Unsubscribe from tags:
String[] Tag = { "sample-tag1", "sample-tag2" };

MFPPushMessageResponse Response = await push.Unsubscribe(Tag);
if (Response.Success == true)
{

Debug.WriteLine("Unsubscribed successfully");
}
else
{

Debug.WriteLine("Failed to unsubscribe");
}

Server

Remove the following WL.Server APIs (if used) in your adapter:
v notifyAllDevices()
v notifyDevice()
v notifyDeviceSubscription()
v createEventSource()

Complete the following steps for every application that was using the same event
source:
1. Set up the WNS credentials in the Push Settings page of MobileFirst

Operations Console or use WNS Settings REST API.
2. Add the scope push.mobileclient in Map Scope Elements to security checks

section in the Security tab of MobileFirst Operations Console.
3. Create Push tags in the Tags page of MobileFirst Operations Console.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-77

4. You can also use the “Push Message (POST)” on page 8-236 REST API with
userId/deviceId/tagNames as target, to send notifications.

Scenario 3: Existing applications using broadcast/Unicast notification in their application:

Client

1. Initialize the MFPPush client instance in your application:
MFPPush push = MFPPush.GetInstance();
push.Initialize();

2. Implement the interface MFPPushNotificationListener and define onReceive().
class Pushlistener : MFPPushNotificationListener
{

public void onReceive(String properties, String payload)
{

Debug.WriteLine("Push Notifications\n properties:" + properties + "\n payload:" + payload);
}

}

3. Register the mobile device with the push notification service.
MFPPushMessageResponse Response = await push.RegisterDevice(null);
if (Response.Success == true)
{

Debug.WriteLine("Push Notifications Registered successfully");
}
else
{

Debug.WriteLine("Push Notifications Failed to register");
}

4. (Optional) Un-register the mobile device from the push notification service.
MFPPushMessageResponse Response = await push.UnregisterDevice();
if (Response.Success == true)
{

Debug.WriteLine("Push Notifications Failed to unregister");
}
else
{

Debug.WriteLine("Push Notifications Unregistered successfully");
}

5. Remove WLClient.Push.isPushSupported() (if used) and use
push.IsPushSupported();.

6. Remove the following WLClient.Push APIs:
v registerEventSourceCallback()
v WLOnReadyToSubscribeListener and WLNotificationListener implementation

Server

Remove WL.Server.sendMessage() (if used) in your adapter.

Complete the following steps for every application that was using the same event
source:
1. Set up the WNS credentials in the Push Settings page of MobileFirst

Operations Console or use WNS Settings REST API.
2. Add the scope push.mobileclient in Map Scope Elements to security checks

section in the Security tab of MobileFirst Operations Console.
3. Create push tags in the Tags page of MobileFirst Operations Console.
4. You can also use the “Push Message (POST)” on page 8-236 REST API with

userId/deviceId/tagNames as target, to send notifications.

5-78 IBM MobileFirst Platform Foundation V8.0.0

Scenario 4: Existing applications using tag notifications in their application:

Client

1. Initialize the MFPPush client instance in your application:
MFPPush push = MFPPush.GetInstance();
push.Initialize();

2. Implement the interface MFPPushNotificationListener and define onReceive().
class Pushlistener : MFPPushNotificationListener
{

public void onReceive(String properties, String payload)
{

Debug.WriteLine("Push Notifications\n properties:" + properties + "\n payload:" + payload);
}

}

3. Register the mobile device with the push notification service.
MFPPushMessageResponse Response = await push.RegisterDevice(null);
if (Response.Success == true)
{

Debug.WriteLine("Push Notifications Registered successfully");
}
else
{

Debug.WriteLine("Push Notifications Failed to register");
}

4. (Optional) Un-register the mobile device from push notification service.
MFPPushMessageResponse Response = await push.UnregisterDevice();
if (Response.Success == true)
{

Debug.WriteLine("Push Notifications Failed to unregister");
}
else
{

Debug.WriteLine("Push Notifications Unregistered successfully");
}

5. Remove WLClient.Push.IsPushSupported() (if used) and use
push.IsPushSupported();

6. Remove the following WLClient.Push API's:
a. subscribeTag()
b. unsubscribeTag()
c. isTagSubscribed()
d. WLOnReadyToSubscribeListener and WLNotificationListener

implementation
7. Subscribe to tags:

String[] Tag = { "sample-tag1", "sample-tag2" };
MFPPushMessageResponse Response = await push.Subscribe(Tag);
if (Response.Success == true)
{

Debug.WriteLine("Subscribed successfully");
}
else
{

Debug.WriteLine("Failed to subscribe");
}

8. (Optional) Unsubscribe from tags:
String[] Tag = { "sample-tag1", "sample-tag2" };

MFPPushMessageResponse Response = await push.Unsubscribe(Tag);
if (Response.Success == true)
{

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-79

Debug.WriteLine("Unsubscribed successfully");
}
else
{

Debug.WriteLine("Failed to unsubscribe");
}

Server

Remove WL.Server.sendMessage() (if used) in your adapter.

Complete the following steps for every application that was using the same event
source:
1. Set up the WNS credentials in the Push Settings page of MobileFirst

Operations Console or use WNS Settings REST API.
2. Add the scope push.mobileclient in Map Scope Elements to security checks

section in the Security tab of MobileFirst Operations Console.
3. Create push tags in the Tags page of MobileFirst Operations Console.
4. You can also use the “Push Message (POST)” on page 8-236 REST API with

userId/deviceId/tagNames as target, to send notifications.

Migrating apps storing mobile data in Cloudant with IMFData
or Cloudant SDK

You can store data for your mobile application in a Cloudant database. Cloudant is
an advanced NoSQL database that can handle a wide variety of data types, such as
JSON, full-text, and geospatial data. The SDK is available for Java , Objective-C,
and Swift.

CloudantToolkit and IMFData frameworks are discontinued in
IBM MobileFirst Platform Foundation V8.0.0.

Use the CDTDatastore SDK as a replacement for CloudantToolkit and IMFData
frameworks.

Use the Cloudant Sync Android SDK as a replacement for CloudantToolkit and
IMFData frameworks. With Cloudant Sync, you can persist data locally and
replicate with a remote data store.

If you want to access remote stores directly, use REST calls in your application and
refer to the Cloudant API Reference.

Cloudant versus JSONStore

You might consider using JSONStore instead of Cloudant in the following
scenarios:
v When you are storing data on the mobile device that must be stored in a FIPS

140-2 compliant manner.
v When you need to synchronize data between the device and the enterprise.
v When you are developing a hybrid application.

For more information about JSONStore, see “JSONStore” on page 7-134.

5-80 IBM MobileFirst Platform Foundation V8.0.0

https://github.com/cloudant/CDTDatastore
https://github.com/cloudant/sync-android
https://docs.cloudant.com/api.html

Integrating MobileFirst and Cloudant security

Adapter sample

To download the sample, see Sample: mfp-bluelist-on-premises.

To understand the MobileFirst adapter that is included with the Bluelist sample,
you must understand both Cloudant security and “MobileFirst security
framework” on page 7-265.

The Bluelist adapter sample has two primary functions:
v Exchange MobileFirst OAuth tokens for Cloudant session cookies
v Perform the required admin requests to Cloudant from the Bluelist sample.

The sample demonstrates how to perform API requests that require admin access
on the server where it is secure. While it is possible to place your admin
credentials on the mobile device, it is a better practice to restrict access from
mobile devices.

The Bluelist sample integrates MobileFirst security with Cloudant security. The
MobileFirst adapter sample maps a MobileFirst identity to a Cloudant identity. The
mobile device receives a Cloudant session cookie to perform non-admin API
requests. The sample uses the Couch Security model.

Enroll REST endpoint

The following diagram illustrates the integration performed by the Bluelist adapter
sample /enroll endpoint.

1. Mobile device obtains the MobileFirst OAuth token from the MobileFirst Server.

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-81

https://github.com/MobileFirst-Platform-Developer-Center/BlueList-On-Premise
https://cloudant.com/for-developers/faq/auth/

2. Mobile device calls the /enroll endpoint on the MobileFirst adapter.
3. The MobileFirst adapter sample validates the MobileFirst OAuth token with the

MobileFirst Server.
4. If valid, performs admin API requests to Cloudant . The sample checks for an

existing Cloudant user in the _users database.
v If the user exists, look up Cloudant user credentials in the _users database.
v If a new user is passed, use the Cloudant admin credentials, create a new

Cloudant user and store in the _users database.
v Generate a unique database name for the user and create a remote database

on Cloudant with that name.
v Give the Cloudant user permissions to read/write the newly created

database.
v Create the required indexes for the Bluelist application.

5. Request a new Cloudant session cookie.
6. The MobileFirst adapter sample returns a Cloudant session cookie, remote

database name, and Cloudant URL to the mobile device.
7. Mobile device makes requests directly to Cloudant until the session cookie

expires.

sessioncookie REST Endpoint

In the case of an expired session cookie, the mobile device can exchange a valid
MobileFirst OAuth token for a Cloudant session cookie with the /sessioncookie
endpoint.

Creating databases

Accessing local data stores:

You can use a local data store to store data on the client device for fast access, even
when offline.

Procedure

To create Store objects to access a local database, supply a name for the data store.

Important: The database name must be in lowercase.
BEFORE (with IMFData/CloudantToolkit):
//Get reference to data manager
IMFDataManager *manager = [IMFDataManager sharedInstance];
NSString *name = @"automobiledb";
NSError *error = nil;

//Create local store
CDTStore *store = [manager localStore:name error:&error];

let manager = IMFDataManager.sharedInstance()
let name = "automobiledb"

var store:CDTStore?
do {

store = try manager.localStore(name)
} catch let error as NSError {

// Handle error
}

5-82 IBM MobileFirst Platform Foundation V8.0.0

// Get reference to DataManager
DataManager manager = DataManager.getInstance();

// Create local store
String name = "automobiledb";

Task<Store> storeTask = manager.localStore(name);
storeTask.continueWith(new Continuation<Store, Void>() {

@Override
public Void then(Task<Store> task) throws Exception {

if(task.isFaulted()){
// Handle error

}else{
// Do something with Store
Store store = task.getResult();

}
return null;

}
});

AFTER (with Cloudant Sync):
// Get reference to datastore manager
CDTDatastoreManager *datastoreManager = existingDatastoreManager;
NSString *name = @"automobiledb";
NSError *error = nil;

//Create datastore
CDTDatastore *datastore = [datastoreManager datastoreNamed:name error:&error];

// Get reference to datastore manager
let datastoreManager:CDTDatastoreManager = existingDatastoreManager
let name:String = "automobiledb"

//Create local store
var datastore:CDTDatastore?
do{

datastore = try datastoreManager.datastoreNamed(name)
}catch let error as NSError{

// Handle error
}

// Create DatastoreManager
File path = context.getDir("databasedir", Context.MODE_PRIVATE);
DatastoreManager manager = new DatastoreManager(path.getAbsolutePath());

// Create a Datastore
String name = "automobiledb";
Datastore datastore = manager.openDatastore(name);

Creating remote data stores:

Procedure

To save data in the remote store, supply the data store name.
BEFORE (with IMFData/CloudantToolkit):
// Get reference to data manager
IMFDataManager *manager = [IMFDataManager sharedInstance];
NSString *name = @"automobiledb";

// Create remote store
[manager remoteStore:name completionHandler:^(CDTStore *createdStore, NSError *error) {

if(error){
// Handle error

}else{

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-83

CDTStore *store = createdStore;
NSLog(@"Successfully created store: %@", store.name);

}
}];

let manager = IMFDataManager.sharedInstance()
let name = "automobiledb"

manager.remoteStore(name, completionHandler: { (createdStore:CDTStore!, error:NSError!) -> Void in
if nil != error {

//Handle error
} else {

let store:CDTStore = createdStore
print("Successfully created store: \(store.name)")

}
})

// Get reference to DataManager
DataManager manager = DataManager.getInstance();

// Create remote store
String name = "automobiledb";

Task<Store> storeTask = manager.remoteStore(name);
storeTask.continueWith(new Continuation<Store, Void>() {

@Override
public Void then(Task<Store> task) throws Exception {

if(task.isFaulted()){
// Handle error

}else{
// Do something with Store
Store store = task.getResult();

}
return null;

}
});

AFTER (with Cloudant Sync):
See Cloudant REST documentation for Database Create.

Encrypting data on the device
To enable the encryption of local data stores on mobile devices, you must make
updates to your application to include encryption capabilities and create encrypted
data stores.

Encrypting data on iOS devices:

Procedure

1. Obtain the encryption capabilities with CocoaPods.
a. Open your Podfile and add the following line:

BEFORE (with IMFData/CloudantToolkit):

pod ’IMFDataLocal/SQLCipher’

AFTER (with Cloudant Sync):

pod ’CDTDatastore/SQLCipher’

For more information, see the CDTDatastore encryption documentation.
b. Run the following command to add the dependencies to your application.

pod install

5-84 IBM MobileFirst Platform Foundation V8.0.0

https://docs.cloudant.com/database.html#create
https://github.com/cloudant/CDTDatastore/blob/master/doc/encryption.md

2. To use the encryption feature within a Swift application, add the following
imports to the associated bridging header for the application: BEFORE (with
IMFData/CloudantToolkit):
#import <CloudantSync.h>
#import <CloudantSyncEncryption.h>
#import <CloudantToolkit/CloudantToolkit.h>
#import <IMFData/IMFData.h>

AFTER (with Cloudant Sync):
#import <CloudantSync.h>
#import <CloudantSyncEncryption.h>

3. Initialize your local store for encryption with a key provider.

Note: If you change the password after creating the database, an error occurs
because the existing database cannot be decrypted. You cannot change your
password after the database has been encrypted. You must delete the database
to change passwords.
BEFORE (with IMFData/CloudantToolkit):

//Get reference to data manager
IMFDataManager *manager = [IMFDataManager sharedInstance];
NSString *name = @"automobiledb";
NSError *error = nil;

// Initalize a key provider
id<CDTEncryptionKeyProvider> keyProvider = [CDTEncryptionKeychainProvider providerWithPassword: @"passw0rd" forIdentifier: @"identifier"];

//Initialize local store
CDTStore *localStore = [manager localStore: name withEncryptionKeyProvider: keyProvider error: &error];

let manager = IMFDataManager.sharedInstance()
let name = "automobiledb"

let keyProvider = CDTEncryptionKeychainProvider(password: "passw0rd", forIdentifier: "identifier")
var store:CDTStore?
do {

store = try manager.localStore(name, withEncryptionKeyProvider: keyProvider)
} catch let error as NSError {

// Handle error
}

AFTER (with Cloudant Sync):
// Get reference to datastore manager
CDTDatastoreManager *datastoreManager = existingDatastoreManager;
NSString *name = @"automobiledb";
NSError *error = nil;

// Create KeyProvider
id<CDTEncryptionKeyProvider> keyProvider = [CDTEncryptionKeychainProvider providerWithPassword: @"passw0rd" forIdentifier: @"identifier"];

//Create local store
CDTDatastore *datastore = [datastoreManager datastoreNamed:name withEncryptionKeyProvider:keyProvider error:&error];

// Get reference to datastore manager
let datastoreManager:CDTDatastoreManager = existingDatastoreManager
let name:String = "automobiledb"

//Create local store
var datastore:CDTDatastore?
let keyProvider = CDTEncryptionKeychainProvider(password: "passw0rd", forIdentifier: "identifier")
do{

datastore = try datastoreManager.datastoreNamed(name, withEncryptionKeyProvider: keyProvider)
}catch let error as NSError{

// Handle error
}

4. When you are replicating data with an encrypted local store, you must initialize
the CDTPullReplication and CDTPushReplication methods with a key provider.
BEFORE (with IMFData/CloudantToolkit):

//Get reference to data manager
IMFDataManager *manager = [IMFDataManager sharedInstance];
NSString *databaseName = @"automobiledb";

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-85

// Initalize a key provider
id<CDTEncryptionKeyProvider> keyProvider = [CDTEncryptionKeychainProvider providerWithPassword:@"password" forIdentifier:@"identifier"];

// pull replication
CDTPullReplication *pull = [manager pullReplicationForStore: databaseName withEncryptionKeyProvider: keyProvider];

// push replication
CDTPushReplication *push = [manager pushReplicationForStore: databaseName withEncryptionKeyProvider: keyProvider];

//Get reference to data manager
let manager = IMFDataManager.sharedInstance()
let databaseName = "automobiledb"

// Initalize a key provider
let keyProvider = CDTEncryptionKeychainProvider(password: "password", forIdentifier: "identifier")

// pull replication
let pull:CDTPullReplication = manager.pullReplicationForStore(databaseName, withEncryptionKeyProvider: keyProvider)

// push replication
let push:CDTPushReplication = manager.pushReplicationForStore(databaseName, withEncryptionKeyProvider: keyProvider)

AFTER (with Cloudant Sync):
Replication with an encrypted database requires no changes from replication
with an unencrypted database.

Encrypting data on Android devices:

To encrypt data on an Android device, obtain encryption capabilities by including
the correct libraries in your application. Then, you can initialize your local store for
encryption and replicate data.

Procedure

1. Add the Cloudant Toolkit library as a dependency in your build.gradle file:
BEFORE (with IMFData/CloudantToolkit):
repositories {

mavenCentral()
}

dependencies {
compile ’com.ibm.mobile.services:cloudant-toolkit-local:1.0.0’

}

AFTER (with Cloudant Sync):
repositories {

mavenLocal()
maven { url "http://cloudant.github.io/cloudant-sync-eap/repository/" }
mavenCentral()

}

dependencies {
compile group: ’com.cloudant’, name: ’cloudant-sync-datastore-core’, version:’0.13.2’
compile group: ’com.cloudant’, name: ’cloudant-sync-datastore-android’, version:’0.13.2’
compile group: ’com.cloudant’, name: ’cloudant-sync-datastore-android-encryption’, version:’0.13.2’

}

2. Download the SQLCipher for Android v3.2 .jar and .so binary files and
include them in your application in the appropriate folders within your app
structure:
a. Add libraries. Add the shared library files and SQLCipher archive to the

jniLibs folder under your Android app directory.
b. Add the required ICU compressed file to the assets folder in your app.

5-86 IBM MobileFirst Platform Foundation V8.0.0

https://www.zetetic.net/sqlcipher/open-source/

c. Add sqlcipher.jar as a file dependency. From the app folder menu in
Android studio, select the Dependencies tab under Open Module Settings.

3. Initialize your local store for encryption with a key provider.

Note: If you change the password after you create the database, an error occurs
because the existing database cannot be decrypted. You cannot change your
password after the database is encrypted. You must delete the database to
change passwords.
BEFORE (with IMFData/CloudantToolkit):
// Get reference to DataManager
DataManager manager = DataManager.getInstance();

// Initalize a key provider
KeyProvider keyProvider = new AndroidKeyProvider(getContext(),"password","identifier");

// Create local store
String databaseName = "automobiledb";
Task<Store> storeTask = manager.localStore(databaseName, keyProvider);
storeTask.continueWith(new Continuation<Store, Void >() {

@Override
public Void then(Task<Store> task) throws Exception {

if (task.isFaulted()) {
// Handle error

} else {
// Do something with Store
Store store = task.getResult();

}
return null;

}
});

AFTER (with Cloudant Sync):
// Load SQLCipher libs
SQLiteDatabase.loadLibs(context);

// Create DatastoreManager
File path = context.getDir("databasedir", Context.MODE_PRIVATE);
DatastoreManager manager = new DatastoreManager(path.getAbsolutePath());

// Create encrypted local store
String name = "automobiledb";

KeyProvider keyProvider = new AndroidKeyProvider(context,"passw0rd","identifier");
Datastore datastore = manager.openDatastore(name, keyProvider);

4. When you are replicating data with an encrypted local store, you must pass a
KeyProvider object into the pullReplicationForStore() or
pushReplicationForStore() method.
BEFORE (with IMFData/CloudantToolkit):
//Get reference to data manager
DataManager manager = DataManager.getInstance();
String databaseName = "automobiledb";

// Initalize a key provider
KeyProvider keyProvider = new AndroidKeyProvider(getContext(),"password","identifier");

// pull replication
Task<PushReplication> pullTask = manager.pullReplicationForStore(databaseName, keyProvider);

// push replication
Task<PushReplication> pushTask = manager.pushReplicationForStore(databaseName, keyProvider);

AFTER (with Cloudant Sync):

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-87

Replication with an encrypted database requires no changes from replication
with an unencrypted database.

Setting user permissions
You can set user permissions on remote databases.

Procedure

Set user permissions on the remote store.
BEFORE (with IMFData/CloudantToolkit):

// Get reference to data manager
IMFDataManager *manager = [IMFDataManager sharedInstance];

// Set permissions for current user on a store
[manager setCurrentUserPermissions: DB_ACCESS_GROUP_MEMBERS forStoreName: @"automobiledb" completionHander:^(BOOL success, NSError *error) {

if(error){
// Handle error

}else{
// setting permissions was successful

}
}];

// Get reference to data manager
let manager = IMFDataManager.sharedInstance()

// Set permissions for current user on a store
manager.setCurrentUserPermissions(DB_ACCESS_GROUP_MEMBERS, forStoreName: "automobiledb") { (success:Bool, error:NSError!) -> Void in

if nil != error {
// Handle error

} else {
// setting permissions was successful

}
}

Task<Boolean> permissionsTask = manager.setCurrentUserPermissions(DataManager.DB_ACCESS_GROUP_MEMBERS, "automobiledb");

permissionsTask.continueWith(new Continuation<Boolean, Object>() {
@Override
public Object then(Task<Boolean> task) throws Exception {

if(task.isFaulted()){
// Handle error

}else{
// setting permissions was successful

}
return null;

}
});

AFTER (with Cloudant Sync): There is no longer a way to set user permissions
from the mobile device. You must set permissions with the Cloudant dashboard or
server-side code. For a sample of how to integrate Mobile Client Access OAuth
tokens with Cloudant Security, see the Bluelist sample.
AFTER (with Cloudant Sync): You cannot set user permissions from the mobile
device. You must set permissions with the Cloudant dashboard or server-side code.
For a sample of how to integrate MobileFirst OAuth tokens with Cloudant
Security, see the Bluelist sample.

Modeling data
Cloudant stores data as JSON documents. To store data as objects in your
application, use the included data object mapper class that maps native objects to
the underlying JSON document format.

About this task

Cloudant stores data as JSON documents. The CloudantToolkit framework
provided an object mapper to map between native objects and JSON documents.

5-88 IBM MobileFirst Platform Foundation V8.0.0

https://github.ibm.com/MFPSamples/BlueList-On-Premise
https://github.ibm.com/MFPSamples/BlueList-On-Premise

The CDTDatastore API does not provide this feature. The snippets in the following
sections demonstrate how to use CDTDatastore objects to accomplish the same
operations.

Cloudant stores data as JSON documents. The CloudantToolkit API provided an
object mapper to map between native objects and JSON documents. Cloudant Sync
does not provide this feature. The snippets in the following sections demonstrate
how to use DocumentRevision objects to accomplish the same operations.

Performing CRUD operations
You can modify the content of a data store.

About this task

For more details on create, retrieve, update, and delete (CRUD) operations, see
CDTDatastore CRUD documentation.

For create, retrieve, update, and delete (CRUD) operations on a remote store, see
the Cloudant Document API

Creating data:

Procedure

Save data.
BEFORE (with IMFData/CloudantToolkit):
// Use an existing store
CDTStore *store = existingStore;

// Create your Automobile to save
Automobile *automobile = [[Automobile alloc] initWithMake:@"Toyota" model:@"Corolla" year: 2006];

[store save:automobile completionHandler:^(id savedObject, NSError *error) {
if (error) {

// save was not successful, handler received an error
} else {

// use the result
Automobile *savedAutomobile = savedObject;
NSLog(@"saved revision: %@", savedAutomobile);

}
}];

// Use an existing store
let store:CDTStore = existingStore

// Create your object to save
let automobile = Automobile(make: "Toyota", model: "Corolla", year: 2006)

store.save(automobile, completionHandler: { (savedObject:AnyObject!, error:NSError!) -> Void in
if nil != error {

//Save was not successful, handler received an error
} else {

// Use the result
print("Saved revision: \(savedObject)")

}
})

// Use an existing store
Store store = existingStore;

// Create your object to save
Automobile automobile = new Automobile("Toyota", "Corolla", 2006);

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-89

https://github.com/cloudant/CDTDatastore/blob/master/doc/crud.md
https://docs.cloudant.com/document.html

// Save automobile to store
Task<Object> saveTask = store.save(automobile);
saveTask.continueWith(new Continuation<Object, Void>() {

@Override
public Void then(Task<Object> task) throws Exception {

if (task.isFaulted()) {
// save was not successful, task.getError() contains the error

} else {
// use the result
Automobile savedAutomobile = (Automobile) task.getResult();

}
return null;

}
});

AFTER (with Cloudant Sync):
// Use an existing store
CDTDatastore *datastore = existingDatastore;

// Create document body
CDTMutableDocumentRevision * revision = [CDTMutableDocumentRevision revision];
revision.body = @{@"@datatype" : @"Automobile", @"make" :@"Toyota", @"model": @"Corolla", @"year" : @2006};

NSError *error = nil;
CDTDocumentRevision *createdRevision = [datastore createDocumentFromRevision:revision error:&error];

if (error) {
// save was not successful, handler received an error

} else {
// use the result
NSLog(@"Revision: %@", createdRevision);

}

// Use an existing store
let datastore:CDTDatastore = existingDatastore

// Create document body
let revision = CDTMutableDocumentRevision()
revision.setBody(["make":"Toyota","model":"Corolla","year":2006])

var createdRevision:CDTDocumentRevision?
do{

createdRevision = try datastore.createDocumentFromRevision(revision)
NSLog("Revision: \(createdRevision)");

}catch let error as NSError{
// Handle error

}

// Use an existing store
Datastore datastore = existingStore;

// Create document body
Map<String, Object> body = new HashMap<String, Object>();
body.put("@datatype", "Automobile");
body.put("make", "Toyota");
body.put("model", "Corolla");
body.put("year", 2006);

// Create revision and set body
MutableDocumentRevision revision = new MutableDocumentRevision();
revision.body = DocumentBodyFactory.create(body);

// Save revision to store
DocumentRevision savedRevision = datastore.createDocumentFromRevision(revision);

5-90 IBM MobileFirst Platform Foundation V8.0.0

Reading data:

You can fetch data.

Procedure

Read data.
BEFORE (with IMFData/CloudantToolkit):
CDTStore *store = existingStore;
NSString *automobileId = existingAutomobileId;

// Fetch Autombile from Store
[store fetchById:automobileId completionHandler:^(id object, NSError *error) {

if (error) {
// fetch was not successful, handler received an error

} else {
// use the result
Automobile *savedAutomobile = object;
NSLog(@"fetched automobile: %@", savedAutomobile);

}
}];

// Using an existing store and Automobile
let store:CDTStore = existingStore
let automobileId:String = existingAutomobileId

// Fetch Autombile from Store
store.fetchById(automobileId, completionHandler: { (object:AnyObject!, error:NSError!) -> Void in

if nil != error {
// Fetch was not successful, handler received an error

} else {
// Use the result
let savedAutomobile:Automobile = object as! Automobile
print("Fetched automobile: \(savedAutomobile)")

}
})

// Use an existing store and documentId
Store store = existingStore;
String automobileId = existingAutomobileId;

// Fetch the automobile from the store
Task<Object> fetchTask = store.fetchById(automobileId);
fetchTask.continueWith(new Continuation<Object, Void>() {

@Override
public Void then(Task<Object> task) throws Exception {

if (task.isFaulted()) {
// fetch was not successful, task.getError() contains the error

} else {
// use the result
Automobile fetchedAutomobile = (Automobile) task.getResult();

}
return null;

}
});

AFTER (with Cloudant Sync):
// Use an existing store and documentId
CDTDatastore *datastore = existingDatastore;
NSString *documentId = existingDocumentId;

// Fetch the CDTDocumentRevision from the store
NSError *error = nil;
CDTDocumentRevision *fetchedRevision = [datastore getDocumentWithId:documentId error:&error];

if (error) {

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-91

// fetch was not successful, handler received an error
} else {

// use the result
NSLog(@"Revision: %@", fetchedRevision);

}

// Use an existing store and documentId
let datastore:CDTDatastore = existingDatastore
let documentId:String = existingDocumentId

var fetchedRevision:CDTDocumentRevision?
do{

fetchedRevision = try datastore.getDocumentWithId(documentId)
NSLog("Revision: \(fetchedRevision)");

}catch let error as NSError{
// Handle error

}

// Use an existing store and documentId
Datastore datastore = existingStore;
String documentId = existingDocumentId;

// Fetch the revision from the store
DocumentRevision fetchedRevision = datastore.getDocument(documentId);

Updating data:

To update an object, run a save on an existing object. Because the item exists, it is
updated.

Procedure

Update objects.
BEFORE (with IMFData/CloudantToolkit):
// Use an existing store and Automobile
CDTStore *store = existingStore;
Automobile *automobile = existingAutomobile;

// Update some of the values in the Automobile
automobile.year = 2015;

// Save Autombile to the store
[store save:automobile completionHandler:^(id savedObject, NSError *error) {

if (error) {
// sasve was not successful, handler received an error

} else {
// use the result
Automobile *savedAutomobile = savedObject;
NSLog(@"saved automobile: %@", savedAutomobile);

}
}];

// Use an existing store and Automobile
let store:CDTStore = existingStore
let automobile:Automobile = existingAutomobile

// Update some of the values in the Automobile
automobile.year = 2015

// Save Autombile to the store
store.save(automobile, completionHandler: { (savedObject:AnyObject!, error:NSError!) -> Void in

if nil != error {
// Update was not successful, handler received an error

} else {
// Use the result

5-92 IBM MobileFirst Platform Foundation V8.0.0

let savedAutomobile:Automobile = savedObject as! Automobile
print("Updated automobile: \(savedAutomobile)")

}
})

// Use an existing store and Automobile
Store store = existingStore;
Automobile automobile = existingAutomobile;

// Update some of the values in the Automobile
automobile.setYear(2015);

// Save automobile to store
Task<Object> saveTask = store.save(automobile);
saveTask.continueWith(new Continuation<Object, Void>() {

@Override
public Void then(Task<Object> task) throws Exception {

if (task.isFaulted()) {
// save was not successful, task.getError() contains the error

} else {
// use the result
Automobile savedAutomobile = (Automobile) task.getResult();

}
return null;

}
});

AFTER (with Cloudant Sync):
// Use an existing store and document
CDTDatastore *datastore = existingDatastore;
CDTMutableDocumentRevision *documentRevision = [existingDocumentRevision mutableCopy];

// Update some of the values in the revision
[documentRevision.body setValue:@2015 forKey:@"year"];

NSError *error = nil;
CDTDocumentRevision *updatedRevision = [datastore updateDocumentFromRevision:documentRevision error:&error];
if (error) {

// save was not successful, handler received an error
} else {

// use the result
NSLog(@"Revision: %@", updatedRevision);

}

// Use an existing store and document
let datastore:CDTDatastore = existingDatastore
let documentRevision:CDTMutableDocumentRevision = existingDocumentRevision.mutableCopy()

// Update some of the values in the revision
documentRevision.body()["year"] = 2015

var updatedRevision:CDTDocumentRevision?
do{

updatedRevision = try datastore.updateDocumentFromRevision(documentRevision)
NSLog("Revision: \(updatedRevision)");

}catch let error as NSError{
// Handle error

}

// Use an existing store and documentId
// Use an existing store
Datastore datastore = existingStore;

// Make a MutableDocumentRevision from the existing revision
MutableDocumentRevision revision = existingRevision.mutableCopy();

// Update some of the values in the revision
Map<String, Object> body = revision.getBody().asMap();

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-93

body.put("year", 2015);
revision.body = DocumentBodyFactory.create(body);

// Save revision to store
DocumentRevision savedRevision = datastore.updateDocumentFromRevision(revision);

Deleting data:

To delete an object, pass the object that you want to delete to the store.

Procedure

Delete objects.
BEFORE (with IMFData/CloudantToolkit):

// Using an existing store and Automobile
CDTStore *store = existingStore;
Automobile *automobile = existingAutomobile;

// Delete the Automobile object from the store
[store delete:automobile completionHandler:^(NSString *deletedObjectId, NSString *deletedRevisionId, NSError *error) {

if (error) {
// delete was not successful, handler received an error

} else {
// use the result
NSLog(@"deleted Automobile doc-%@-rev-%@", deletedObjectId, deletedRevisionId);

}
}];

// Using an existing store and Automobile
let store:CDTStore = existingStore
let automobile:Automobile = existingAutomobile

// Delete the Automobile object
store.delete(automobile, completionHandler: { (deletedObjectId:String!, deletedRevisionId:String!, error:NSError!) -> Void in

if nil != error {
// delete was not successful, handler received an error

} else {
// use the result
print("deleted document doc-\(deletedObjectId)-rev-\(deletedRevisionId)")

}
})

// Use an existing store and automobile
Store store = existingStore;
Automobile automobile = existingAutomobile;

// Delete the automobile from the store
Task<String> deleteTask = store.delete(automobile);
deleteTask.continueWith(new Continuation<String, Void>() {

@Override
public Void then(Task<String> task) throws Exception {

if (task.isFaulted()) {
// delete was not successful, task.getError() contains the error

} else {
// use the result
String deletedAutomobileId = task.getResult();

}
return null;

}
});

AFTER (with Cloudant Sync):
// Use an existing store and revision
CDTDatastore *datastore = existingDatastore;
CDTDocumentRevision *documentRevision = existingDocumentRevision;

5-94 IBM MobileFirst Platform Foundation V8.0.0

// Delete the CDTDocumentRevision from the store
NSError *error = nil;
CDTDocumentRevision *deletedRevision = [datastore deleteDocumentFromRevision:documentRevision error:&error];
if (error) {

// delete was not successful, handler received an error
} else {

// use the result
NSLog(@"deleted document: %@", deletedRevision);

}

// Use an existing store and revision
let datastore:CDTDatastore = existingDatastore
let documentRevision:CDTDocumentRevision = existingDocumentRevision

var deletedRevision:CDTDocumentRevision?
do{

deletedRevision = try datastore.deleteDocumentFromRevision(documentRevision)
NSLog("Revision: \(deletedRevision)");

}catch let error as NSError{
// Handle error

}

// Use an existing store and revision
Datastore datastore = existingStore;
BasicDocumentRevision documentRevision = (BasicDocumentRevision) existingDocumentRevision;

// Delete revision from store
DocumentRevision deletedRevision = datastore.deleteDocumentFromRevision(documentRevision);

Creating indexes
To perform queries, you must create an index.

About this task

For more details, see CDTDatastore Query documentation. For query operations on
a remote store, see the Cloudant Query API.

For more details, see Cloudant Sync Query documentation. For CRUD operations
on a remote store, see Cloudant's Query API.

Procedure
v Create an index that includes the data type. Indexing with the data type is

useful when an object mapper is set on the data store.
BEFORE (with IMFData/CloudantToolkit):

// Use an existing data store
CDTStore *store = existingStore;

// The data type to use for the Automobile class
NSString *dataType = [store.mapper dataTypeForClassName:NSStringFromClass([Automobile class])];

// Create the index
[store createIndexWithDataType:dataType fields:@[@"year", @"make"] completionHandler:^(NSError *error) {

if(error){
// Handle error

}else{
// Continue application flow

}
}];

// A store that has been previously created.
let store:CDTStore = existingStore

// The data type to use for the Automobile class
let dataType:String = store.mapper.dataTypeForClassName(NSStringFromClass(Automobile.classForCoder()))

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-95

https://github.com/cloudant/CDTDatastore/blob/master/doc/query.md
https://docs.cloudant.com/cloudant_query.html
https://github.com/cloudant/sync-android/blob/master/doc/query.md
https://docs.cloudant.com/cloudant_query.html

// Create the index
store.createIndexWithDataType(dataType, fields: ["year","make"]) { (error:NSError!) -> Void in

if nil != error {
// Handle error

} else {
// Continue application flow

}
}

// Use an existing data store
Store store = existingStore;

// The data type to use for the Automobile class
String dataType = store.getMapper().getDataTypeForClassName(Automobile.class.getCanonicalName());

// The fields to index.
List<IndexField> indexFields = new ArrayList<IndexField>();
indexFields.add(new IndexField("year"));
indexFields.add(new IndexField("make"));

// Create the index
Task<Void> indexTask = store.createIndexWithDataType(dataType, indexFields);
indexTask.continueWith(new Continuation<Void, Void>() {

@Override
public Void then(Task<Void> task) throws Exception {

if(task.isFaulted()){
// Handle error

}else{
// Continue application flow

}
return null;

}
});

AFTER (with Cloudant Sync):
// A store that has been previously created.
CDTDatastore *datastore = existingDatastore;

NSString *indexName = [datastore ensureIndexed:@[@"@datatype", @"year", @"make"] withName:@"automobileindex"];
if(!indexName){

// Handle error
}

// A store that has been previously created.
let datastore:CDTDatastore = existingDatastore

// Create the index
let indexName:String? = datastore.ensureIndexed(["@datatype","year","make"], withName: "automobileindex")
if(indexName == nil){

// Handle error
}

// Use an existing store
Datastore datastore = existingStore;

// Create an IndexManager
IndexManager indexManager = new IndexManager(datastore);

// The fields to index.
List<Object> indexFields = new ArrayList<Object>();
indexFields.add("@datatype");
indexFields.add("year");
indexFields.add("make");

// Create the index
indexManager.ensureIndexed(indexFields, "automobile_index");

v Delete indexes.

5-96 IBM MobileFirst Platform Foundation V8.0.0

BEFORE (with IMFData/CloudantToolkit):
// Use an existing data store
CDTStore *store = existingStore;
NSString *indexName = existingIndexName;

// Delete the index
[store deleteIndexWithName:indexName completionHandler:^(NSError *error) {

if(error){
// Handle error

}else{
// Continue application flow

}
}];

// Use an existing store
let store:CDTStore = existingStore

// The data type to use for the Automobile class
let dataType:String = store.mapper.dataTypeForClassName(NSStringFromClass(Automobile.classForCoder()))

// Delete the index
store.deleteIndexWithDataType(dataType, completionHandler: { (error:NSError!) -> Void in

if nil != error {
// Handle error

} else {
// Continue application flow

}
})

// Use an existing data store
Store store = existingStore;
String indexName = existingIndexName;

// Delete the index
Task<Void> indexTask = store.deleteIndex(indexName);
indexTask.continueWith(new Continuation<Void, Void>() {

@Override
public Void then(Task<Void> task) throws Exception {

if(task.isFaulted()){
// Handle error

}else{
// Continue application flow

}
return null;

}
});

AFTER (with Cloudant Sync):
// Use an existing store
CDTDatastore *datastore = existingDatastore;
NSString *indexName = existingIndexName;

// Delete the index
BOOL success = [datastore deleteIndexNamed:indexName];
if(!success){

// Handle error
}

// A store that has been previously created.
let datastore:CDTDatastore = existingDatastore
let indexName:String = existingIndexName

// Delete the index
let success:Bool = datastore.deleteIndexNamed(indexName)
if(!success){

// Handle error
}

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-97

// Use an existing store
Datastore datastore = existingStore;
String indexName = existingIndexName;
IndexManager indexManager = existingIndexManager;

// Delete the index
indexManager.deleteIndexNamed(indexName);

Querying data
After you create an index, you can query the data in your database.

About this task

For more details, see CDTDatastore Query documentation.

For more details, see Cloudant Sync Query documentation.

For query operations on a remote store, see the Cloudant Query API.

Procedure
v Create and run a query on iOS.

BEFORE (with IMFData/CloudantToolkit):
// Use an existing store
CDTStore *store = existingStore;

NSPredicate *queryPredicate = [NSPredicate predicateWithFormat:@"(year = 2006)"];
CDTCloudantQuery *query = [[CDTCloudantQuery alloc] initDataType:[store.mapper dataTypeForClassName:NSStringFromClass([Automobile class])] withPredicate:queryPredicate];

[store performQuery:query completionHandler:^(NSArray *results, NSError *error) {
if(error){

// Handle error
}else{

// Use result of query. Result will be Automobile objects.
}

}];

// Use an existing store
let store:CDTStore = existingStore

let queryPredicate:NSPredicate = NSPredicate(format:"(year = 2006)")
let query:CDTCloudantQuery = CDTCloudantQuery(dataType: "Automobile", withPredicate: queryPredicate)

store.performQuery(query, completionHandler: { (results:[AnyObject]!, error:NSError!) -> Void in
if nil != error {

// Handle error
} else {

// Use result of query. Result will be Automobile objects.
}

})

AFTER (with Cloudant Sync):
// Use an existing store
CDTDatastore *datastore = existingDatastore;

CDTQResultSet *results = [datastore find:@{@"@datatype" : @"Automobile", @"year" : @2006}];
if(results){

// Use results
}

// Use an existing store
let datastore:CDTDatastore = existingDatastore

let results:CDTQResultSet? = datastore.find(["@datatype" : "Automobile", "year" : 2006])
if(results == nil){

// Handle error
}

v Create and run a query for objects on Android.

5-98 IBM MobileFirst Platform Foundation V8.0.0

https://github.com/cloudant/CDTDatastore/blob/master/doc/query.md
https://github.com/cloudant/sync-android/blob/master/doc/query.md
https://docs.cloudant.com/cloudant_query.html

To run a query for objects, create a Cloudant query with the query filters on
data type. Run the query against a Store object.
BEFORE (with IMFData/CloudantToolkit):
// Use an existing store
Store store = existingStore;

// Create data type predicate
Map<String, Object> dataTypeEqualityOpMap = new HashMap<String, Object>();
dataTypeEqualityOpMap.put("$eq", "Automobile");

Map<String, Object> dataTypeSelectorMap = new HashMap<String, Object>();
dataTypeSelectorMap.put("@datatype", dataTypeEqualityOpMap);

// Create year predicate
Map<String, Object> yearEqualityOpMap = new HashMap<String, Object>();
yearEqualityOpMap.put("$eq", 2006);

Map<String, Object> yearSelectorMap = new HashMap<String, Object>();
yearSelectorMap.put("year", yearEqualityOpMap);

// Add predicates to AND compound predicate
List<Map<String, Object>> andPredicates = new ArrayList<Map<String, Object>>();
andPredicates.add(dataTypeSelectorMap);
andPredicates.add(yearSelectorMap);

Map<String, Object> andOpMap = new HashMap<String, Object>();
andOpMap.put("$and", andPredicates);

Map<String, Object> cloudantQueryMap = new HashMap<String, Object>();
cloudantQueryMap.put("selector", andOpMap);

// Create a Cloudant Query Object
CloudantQuery query = new CloudantQuery(cloudantQueryMap);

// Run the Cloudant Query against a Store
Task<List> queryTask = store.performQuery(query);
queryTask.continueWith(new Continuation<List, Object>() {

@Override
public Object then(Task<List> task) throws Exception {

if(task.isFaulted()){
// Handle Error

}else{
List queryResult = task.getResult();
// Use queryResult to do something

}
return null;

}
});

AFTER (with Cloudant Sync):
// Use an existing store
Datastore datastore = existingStore;
IndexManager indexManager = existingIndexManager;

// Create data type predicate
Map<String, Object> dataTypeEqualityOpMap = new HashMap<String, Object>();
dataTypeEqualityOpMap.put("$eq", "Automobile");

Map<String, Object> dataTypeSelectorMap = new HashMap<String, Object>();
dataTypeSelectorMap.put("@datatype", dataTypeEqualityOpMap);

// Create year predicate
Map<String, Object> yearEqualityOpMap = new HashMap<String, Object>();
yearEqualityOpMap.put("$eq", 2006);

Map<String, Object> yearSelectorMap = new HashMap<String, Object>();

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-99

yearSelectorMap.put("year", yearEqualityOpMap);

// Add predicates to AND compound predicate
List<Map<String, Object>> andPredicates = new ArrayList<Map<String, Object>>();
andPredicates.add(dataTypeSelectorMap);
andPredicates.add(yearSelectorMap);

Map<String, Object> selectorMap = new HashMap<String, Object>();
selectorMap.put("$and", andPredicates);

// Run the query against a Store
QueryResult result = indexManager.find(selectorMap);

Supporting offline storage and synchronization
You can synchronize the data on a mobile device with a remote database instance.
You can either pull updates from a remote database to the local database on the
mobile device, or push local database updates to a remote database.

Before you begin

For more details, see CDTDatastore Replication documentation.

For more details, see Cloudant Sync Replication documentation. For CRUD
operations on a remote store, see the Cloudant Replication API

Running pull replication:
Procedure

Run pull replication.
BEFORE (with IMFData/CloudantToolkit):
// store is an existing CDTStore object created using IMFDataManager remoteStore
__block NSError *replicationError;
CDTPullReplication *pull = [manager pullReplicationForStore: store.name];
CDTReplicator *replicator = [manager.replicatorFactory oneWay:pull error:&replicationError];
if(replicationError){

// Handle error
}else{

// replicator creation was successful
}

[replicator startWithError:&replicationError];
if(replicationError){

// Handle error
}else{

// replicator start was successful
}

// (optionally) monitor replication via polling
while (replicator.isActive) {

[NSThread sleepForTimeInterval:1.0f];
NSLog(@"replicator state : %@", [CDTReplicator stringForReplicatorState:replicator.state]);

}

// Use an existing store
let store:CDTStore = existingStore

do {
// store is an existing CDTStore object created using IMFDataManager remoteStore
let pull:CDTPullReplication = manager.pullReplicationForStore(store.name)
let replicator:CDTReplicator = try manager.replicatorFactory.oneWay(pull)

// start replication
try replicator.start()

5-100 IBM MobileFirst Platform Foundation V8.0.0

https://github.com/cloudant/CDTDatastore/blob/master/doc/replication.md
https://github.com/cloudant/sync-android/blob/master/doc/replication.md
https://docs.cloudant.com/replication.html

// (optionally) monitor replication via polling
while replicator.isActive() {

NSThread.sleepForTimeInterval(1.0)
print("replicator state : \(CDTReplicator.stringForReplicatorState(replicator.state))")

}

} catch let error as NSError {
// Handle error

}

// Use an existing store
Store store = existingStore;

// create a pull replication task
// name is the database name of the store being replicated
Task<PullReplication> pullTask = manager.pullReplicationForStore(store.getName());
pullTask.continueWith(new Continuation<PullReplication, Object>() {

@Override
public Object then(Task<PullReplication> task) throws Exception {

if(task.isFaulted()){
// Handle error

}else{
// Start the replication
PullReplication pull = task.getResult();
Replicator replicator = ReplicatorFactory.oneway(pull);
replicator.start();

}
return null;

}
});

AFTER (with Cloudant Sync):
// Use an existing datastore
NSURL *remoteStoreUrl = existingRemoteStoreUrl;
CDTDatastoreManager *datastoreManager = existingDatastoreManager;
CDTDatastore *datastore = existingDatastore;

// Create pull replication objects
__block NSError *replicationError;
CDTReplicatorFactory *replicatorFactory = [[CDTReplicatorFactory alloc]initWithDatastoreManager:datastoreManager];
CDTPullReplication *pull = [CDTPullReplication replicationWithSource:remoteStoreUrl target:datastore];
CDTReplicator *replicator = [replicatorFactory oneWay:pull error:&error];
if(replicationError){

// Handle error
}else{

// replicator creation was successful
}

[replicator startWithError:&replicationError];
if(replicationError){

// Handle error
}else{

// replicator start was successful
}

// (optionally) monitor replication via polling
while (replicator.isActive) {

[NSThread sleepForTimeInterval:1.0f];
NSLog(@"replicator state : %@", [CDTReplicator stringForReplicatorState:replicator.state]);

}

let remoteStoreUrl:NSURL = existingRemoteStoreUrl
let datastoreManager:CDTDatastoreManager = existingDatastoreManager
let datastore:CDTDatastore = existingDatastore

do {
// store is an existing CDTStore object created using IMFDataManager remoteStore

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-101

let replicatorFactory = CDTReplicatorFactory(datastoreManager: datastoreManager)
let pull:CDTPullReplication = CDTPullReplication(source: remoteStoreUrl, target: datastore)
let replicator:CDTReplicator = try replicatorFactory.oneWay(pull)

// start replication
try replicator.start()

// (optionally) monitor replication via polling
while replicator.isActive() {

NSThread.sleepForTimeInterval(1.0)
print("replicator state : \(CDTReplicator.stringForReplicatorState(replicator.state))")

}

} catch let error as NSError {
// Handle error

}

// Use an opened Datastore to replicate to
Datastore datastore = existingDatastore;
URI uri = existingURI;

// Create a replicator that replicates changes from the remote
final Replicator replicator = ReplicatorBuilder.pull().from(uri).to(datastore).build();

// Register event listener
replicator.getEventBus().register(new Object() {

@Subscribe
public void complete(ReplicationCompleted event) {

// Handle ReplicationCompleted event
}

@Subscribe
public void error(ReplicationErrored event) {

// Handle ReplicationErrored event
}

});

// Start replication
replicator.start();

Running push replication:
Procedure

Run push replication.
BEFORE (with IMFData/CloudantToolkit):
// store is an existing CDTStore object created using IMFDataManager localStore
__block NSError *replicationError;
CDTPushReplication *push = [manager pushReplicationForStore: store.name];
CDTReplicator *replicator = [manager.replicatorFactory oneWay:push error:&replicationError];
if(replicationError){

// Handle error
}else{

// replicator creation was successful
}

[replicator startWithError:&replicationError];
if(replicationError){

// Handle error
}else{

// replicator start was successful
}

// (optionally) monitor replication via polling

5-102 IBM MobileFirst Platform Foundation V8.0.0

while (replicator.isActive) {
[NSThread sleepForTimeInterval:1.0f];
NSLog(@"replicator state : %@", [CDTReplicator stringForReplicatorState:replicator.state]);

}

// Use an existing store
let store:CDTStore = existingStore

do {
// store is an existing CDTStore object created using IMFDataManager localStore
let push:CDTPushReplication = manager.pushReplicationForStore(store.name)
let replicator:CDTReplicator = try manager.replicatorFactory.oneWay(push)

// Start replication
try replicator.start()

// (optionally) monitor replication via polling
while replicator.isActive() {

NSThread.sleepForTimeInterval(1.0)
print("replicator state : \(CDTReplicator.stringForReplicatorState(replicator.state))")

}
} catch let error as NSError {

// Handle error
}

// Use an existing store
Store store = existingStore;

// create a push replication task
// name is the database name of the store being replicated
Task<PushReplication> pushTask = manager.pushReplicationForStore(store.getName());
pushTask.continueWith(new Continuation<PushReplication, Object>() {

@Override
public Object then(Task<PushReplication> task) throws Exception {

if(task.isFaulted()){
// Handle error

}else{
// Start the replication
PushReplication push = task.getResult();
Replicator replicator = ReplicatorFactory.oneway(push);
replicator.start();

}
return null;

}
});

AFTER (with Cloudant Sync):
// Use an existing datastore
NSURL *remoteStoreUrl = existingRemoteStoreUrl;
CDTDatastoreManager *datastoreManager = existingDatastoreManager;
CDTDatastore *datastore = existingDatastore;

// Create push replication objects
__block NSError *replicationError;
CDTReplicatorFactory *replicatorFactory = [[CDTReplicatorFactory alloc]initWithDatastoreManager:datastoreManager];
CDTPushReplication *push = [CDTPushReplication replicationWithSource:datastore target:remoteStoreUrl];
CDTReplicator *replicator = [replicatorFactory oneWay:push error:&error];
if(replicationError){

// Handle error
}else{

// replicator creation was successful
}

[replicator startWithError:&replicationError];
if(replicationError){

// Handle error
}else{

// replicator start was successful

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-103

}

// (optionally) monitor replication via polling
while (replicator.isActive) {

[NSThread sleepForTimeInterval:1.0f];
NSLog(@"replicator state : %@", [CDTReplicator stringForReplicatorState:replicator.state]);

}

let remoteStoreUrl:NSURL = existingRemoteStoreUrl
let datastoreManager:CDTDatastoreManager = existingDatastoreManager
let datastore:CDTDatastore = existingDatastore

do {
// store is an existing CDTStore object created using IMFDataManager remoteStore
let replicatorFactory = CDTReplicatorFactory(datastoreManager: datastoreManager)
let push:CDTPushReplication = CDTPushReplication(source: datastore, target: remoteStoreUrl)
let replicator:CDTReplicator = try replicatorFactory.oneWay(push)

// start replication
try replicator.start()

// (optionally) monitor replication via polling
while replicator.isActive() {

NSThread.sleepForTimeInterval(1.0)
print("replicator state : \(CDTReplicator.stringForReplicatorState(replicator.state))")

}

} catch let error as NSError {
// Handle error

}

// Use an opened Datastore to replicate from
Datastore datastore = existingStore;
URI uri = existingURI;

// Create a replicator that replicates changes from the local
// database to the remote datastore.
final Replicator replicator = ReplicatorBuilder.push().from(datastore).to(uri).build();

// Register event listener
replicator.getEventBus().register(new Object() {

@Subscribe
public void complete(ReplicationCompleted event) {

// Handle ReplicationCompleted event
}

@Subscribe
public void error(ReplicationErrored event) {

// Handle ReplicationErrored event
}

});

// Start replication
replicator.start();

Applying a fix pack to IBM MobileFirst Platform Server
Find out how to use the Server Configuration Tool to upgrade MobileFirst Server
V8.0.0 to a fix pack or an interim fix. Alternatively, if you installed MobileFirst
Server with Ant tasks, you can also use Ant tasks to apply the fix pack or interim
fix.

5-104 IBM MobileFirst Platform Foundation V8.0.0

About this task

To apply an interim fix or fix pack on MobileFirst Server, choose one of the
following topics based on your initial installation method:
v Applying a fix pack or an interim fix with the Server Configuration Tool
v “Applying a fix pack by using the Ant files” on page 6-111

Upgrading to IBM MobileFirst Platform Foundation V8.0.0 5-105

5-106 IBM MobileFirst Platform Foundation V8.0.0

Installing and configuring server-side components

Learn how to install and configure the server-side components of IBM MobileFirst
Platform Foundation.

To learn how to install and configure the server-side components of IBM
MobileFirst Platform Foundation, read the following topics.

For more information about how to set up a development environment, see
“Setting up the development environment” on page 7-9.

For more information about how to size your system, see the Scalability and
Hardware Sizing document and its accompanying hardware calculator spreadsheet
on the Developer Center website for IBM MobileFirst Platform.

Installation overview
IBM MobileFirst Platform Foundation provides development tools and server-side
components that you can install on-premises or deploy to the cloud for test or
production use. Review the installation topics appropriate for your installation
scenario.

Installing a development environment

If you develop the client-side or the server-side of mobile apps, install MobileFirst
Platform CLI, MobileFirst Development Server and MobileFirst development
libraries for your environment. For more information, see “Setting up the
development environment” on page 7-9.

Installing a test or production server on-premises

If you install a test or production server, start with “Tutorials about MobileFirst
Server installation” on page 6-4 for a simple installation and to learn about the
installation of MobileFirst Server. For more information about preparing an
installation for your specific environment, see “Installing MobileFirst Server for a
production environment” on page 6-39.

To add MobileFirst Analytics Server to your installation, see “MobileFirst Analytics
Server installation guide” on page 11-2.

To install IBM MobileFirst Platform Application Center, see “Installing and
configuring the Application Center” on page 6-198.

Deploying MobileFirst Server to the cloud

If you plan to deploy MobileFirst Server to the cloud, see “Deploying MobileFirst
Server to the cloud” on page 9-1

Upgrading from earlier versions

The preceding sections provide an overview of IBM MobileFirst Platform
Foundation new installations. For information about upgrading existing
installations and applications to a newer version, see “Upgrading to IBM

© Copyright IBM Corp. 2006, 2016 6-1

https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-8-0

MobileFirst Platform Foundation V8.0.0” on page 5-1.

Installing IBM MobileFirst Platform Server
IBM installations are based on an IBM product called IBM Installation Manager.
Install IBM Installation Manager V1.8.4 or later separately before you install IBM
MobileFirst Platform Foundation.

Important: Ensure that you use IBM Installation Manager V1.8.4 or later. The older
versions of Installation Manager are not able to install IBM MobileFirst Platform
Foundation V8.0.0 because the postinstallation operations of the product require
Java 7. The older versions of Installation Manager come with Java 6.

The MobileFirst Server installer copies onto your computer all the tools and
libraries that are required for deploying MobileFirst Server components and
optionally the IBM MobileFirst Platform Application Center to your application
server.

The following topics include an overview of MobileFirst Server architecture, a
getting started tutorial, and the complete information about the installation of
MobileFirst Server for production.

MobileFirst Server overview
MobileFirst Server consists of several components. An overview of MobileFirst
Server architecture is provided for you to understand the functions of each
component.

Unlike MobileFirst Server V7.1.0 or earlier, the installation process for V8.0.0 is
separated from the development and deployment of mobile app operations. In
V8.0.0, after the server components and the database are installed and configured,
MobileFirst Server can be operated for most operations without the need to access
the application server or database configuration.

The administration and deployment operations of the MobileFirst artifacts are done
through MobileFirst Operations Console, or the REST API of the MobileFirst Server
administration service. The operations can also be done by using some command
line tools that wrap this API, such as mfpdev or mfpadm. The authorized users of
MobileFirst Server can modify the server-side configuration of mobile applications,
upload, or configure server-side code (the adapters), upload new web resources for
Cordova mobile apps, run application management operations, and more.

MobileFirst Server offers extra layers of security, in addition to the security layers
of the network infrastructure or the application server. The security features
include the control of application authenticity and the access control to the
server-side resources and the adapters. These security configurations can also be
done by the authorized users of MobileFirst Operations Console and the
administration service. You determine the authorization of the MobileFirst
administrators by mapping them to security roles as described in “Configuring
user authentication for MobileFirst Server administration” on page 6-166.

A simplified version of MobileFirst Server that is preconfigured and does not need
software prerequisite such as database or an application server is available for
developers. See “Setting up the MobileFirst Development Server” on page 7-12.

6-2 IBM MobileFirst Platform Foundation V8.0.0

For production purpose, you can use an installation of MobileFirst Server
on-premises or deploy MobileFirst Server to the cloud. For more information about
deploying MobileFirst Server to the cloud, see “Deploying MobileFirst Server to
the cloud” on page 9-1.

MobileFirst Server components

The architecture of the MobileFirst Server components is illustrated as follows:

MobileFirst Server is composed of several components.

Core components of MobileFirst Server
MobileFirst Operations Console, the MobileFirst Server administration
service, the MobileFirst Server live update service, the MobileFirst Server
artifacts, and the MobileFirst runtime are the minimum set of the
components to install. The runtime provides the MobileFirst services to the
mobile apps that run on the mobile devices. The administration service
provides the configuration and administration capabilities. You use the
service via MobileFirst Operations Console, the live update service REST
API, or command line tools such as mfpadm or mfpdev. The live update
service manages configuration data and is used by the administration
service. These components require a database. The database table name for
each component does not have any intersection. As such, you can use the
same database or even the same schema to store all the tables of these
components. For more information, see “Setting up databases” on page
6-63. It is possible to install more than one instance of the runtime. In this
case, each instance needs its own database. The artifacts component
provides resources for MobileFirst Operations Console. It does not requires
a database.

Installing and configuring 6-3

Optional components of MobileFirst Server
The MobileFirst Server push service provides push notification capabilities.
It must be installed to provide these capabilities of the mobile apps use the
MobileFirst Push features (“Push notification” on page 7-248). From the
perspective of mobile apps, the URL of the push service is the same as the
URL as the runtime, except that its context root is /imfpush. If you plan to
install the push service on a different server or cluster than the runtime,
you need to configure the routing rules of your HTTP server. The
configuration is to ensure that the requests to the push service and the
runtime are properly routed. The push service requires a database. The
tables of the push service have no intersection with the tables of the
runtime, the administration service, and the live update service. Thus, it
can also be installed in the same database or schema. The MobileFirst
Analytics service and MobileFirst Analytics Console provide monitoring
and analytics information about the mobile apps usage. Mobile apps can
provide more insight by using the “Logger SDK” on page 11-37. The
MobileFirst Analytics service does not need a database. It stores its data
locally on disk by using Elasticsearch. The data is structured in shards that
can be replicated between the members of a cluster of the Analytics
service.

For more information about the network flows and the topology constraints for
these components, see “Topologies and network flows” on page 6-78.

Installation process

The installation of MobileFirst Server on-premises can be done by using the
following ways:
v The Server Configuration Tool - a graphical wizard
v Ant tasks through the command line tools
v Manual installation

In the next sections, more information about the installation of MobileFirst Server
on-premises is provided. You can find:
v A getting started tutorial that guides you through a complete installation of

MobileFirst Server farm on WebSphere Application Server Liberty profile. The
tutorial is based on a simple scenario for you to try out the installation either in
graphical mode or in command line mode.

v A detailed section (“Installing MobileFirst Server for a production environment”
on page 6-39) that contains details about the installation prerequisites, database
setup, server topologies, deployment of the components to the application
server, and server configuration.

Tutorials about MobileFirst Server installation
Learn about the MobileFirst Server installation process by walking through the
instructions to create a functional MobileFirst Server, cluster with two nodes on
WebSphere Application Server Liberty profile.

This getting started tutorial guides you through the installation procedure to have
a functional MobileFirst Server, clusters with two nodes on Liberty profile. The
installation can be done in two ways:
v By using the graphical mode of IBM Installation Manager and the Server

Configuration Tool.
v By using the command line tool.

6-4 IBM MobileFirst Platform Foundation V8.0.0

After the tutorial is completed, you have a working MobileFirst Server. However,
you need to configure it, in particular for security, before you use the server. For
more information, see “Configuring MobileFirst Server” on page 6-164.

Installing MobileFirst Server in graphical mode
Use the graphical mode of IBM Installation Manager and the Server Configuration
Tool to install MobileFirst Server.

Before you begin
1. Make sure that one of the following databases and a supported Java version are

installed. You also need the corresponding JDBC driver for the database to be
available on your computer:
v Database Management System (DBMS) from the list of supported database:

– DB2®

– MySQL
– Oracle

Important:

You must have a database where you can create the tables that are needed by
the product, and a database user who can create tables in that database.

In the tutorial, the steps to create the tables are for DB2. You can find the
DB2 installer as a package of IBM MobileFirst Platform Foundation
eAssembly on IBM Passport Advantage.

v JDBC driver for your database.
– For DB2, use the DB2 JDBC driver type 4.
– For MySQL, use the Connector/J JDBC driver.
– For Oracle, use the Oracle thin JDBC driver.

v Java 7 or later.
2. Download the installer of IBM Installation Manager V1.8.4 or later from

Installation Manager and Packaging Utility download links.
3. You must also have the installation repository of the MobileFirst Server and the

installer of WebSphere Application Server Liberty Core V8.5.5.3 or later.
Download these packages from the IBM MobileFirst Platform Foundation
eAssembly on Passport Advantage:

MobileFirst Server installation repository
IBM MobileFirst Platform Foundation V8.0 .zip file of Installation
Manager Repository for IBM MobileFirst Platform Server

WebSphere Application Server Liberty profile
IBM WebSphere Application Server - Liberty Core V8.5.5.3 or later

About this task

You can run the installation in graphical mode if you are on one of the following
operating systems:
v Windows x86 or x86-64
v Mac OS x86-64
v Linux x86 or Linux x86-64

On other operating systems, you can still run the installation with Installation
Manager in graphical mode, but the Server Configuration Tool is not available. You

Installing and configuring 6-5

http://www.ibm.com/software/passportadvantage/pao_customers.htm
http://www.ibm.com/support/docview.wss?uid=swg27025142

need to use Ant tasks (as described in “Installing MobileFirst Server in command
line mode” on page 6-22) to deploy MobileFirst Server to Liberty profile.

Note: The instruction to install and set up the database is not part of this tutorial.
If you want to run this tutorial without installing a stand-alone database, you can
use the embedded Derby database. However, the restrictions for using this
database are as follows:
v You can run Installation Manager in graphical mode, but to deploy the server,

you need to skip to the command line section of this tutorial to install with Ant
tasks.

v You cannot configure a server farm. Embedded Derby database does not support
access from multiple servers. To configure a server farm, you need DB2, MySQL,
or Oracle.

This tutorial goes through the following steps:
1. “Installing IBM Installation Manager”
2. “Installing WebSphere Application Server Liberty Core”
3. “Installing MobileFirst Server” on page 6-8
4. “Creating a database” on page 6-9
5. “Running the Server Configuration Tool” on page 6-10
6. “Testing the installation” on page 6-18
7. “Creating a farm of two Liberty servers that run MobileFirst Server” on page

6-19
8. “Testing the farm and see the changes in MobileFirst Operations Console” on

page 6-22

Installing IBM Installation Manager:
About this task

You must install Installation Manager V1.8.4 or later. The older versions of
Installation Manager are not able to install IBM MobileFirst Platform Foundation
V8.0 because the postinstallation operations of the product require Java 7. The
older versions of Installation Manager come with Java 6.

Procedure

1. Extract the IBM Installation Manager archive that is downloaded. You can find
the installer at Installation Manager and Packaging Utility download links.

2. Install Installation Manager.
v Run install.exe to install Installation Manager as administrator. Root is

needed on Linux or UNIX. On Windows, the administrator privilege is
needed. In this mode, the information about the installed packages is placed
in a shared location on the disk and any user that is allowed to run
Installation Manager can update the applications.

v Run userinst.exe to install Installation Manager in user mode. No specific
privilege is needed. However, in this mode, the information about the
installed packages are placed in the user's home directory. Only that user can
update the applications that are installed with Installation Manager.

Installing WebSphere Application Server Liberty Core:
About this task

The installer for WebSphere Application Server Liberty Core is provided as part of
the package for IBM MobileFirst Platform Foundation. In this task, Liberty profile

6-6 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/docview.wss?uid=swg27025142

is installed and a server instance is created so that you can install MobileFirst
Server on it.

Procedure

1. Extract the compressed file for WebSphere Application Server Liberty Core that
you downloaded.

2. Launch Installation Manager.
3. Add the repository in Installation Manager.

a. Go to File > Preferences and click Add Repositories....
b. Browse for the repository.config file of diskTag.inf file in the directory

where the installer is extracted.
c. Select the file and click OK.
d. Click OK to close the Preferences panel.

4. Click Install to install Liberty.
a. Select IBM WebSphere Application Server Liberty Core and click Next.
b. Accept the terms in the license agreements, and click Next.

5. In the scope of this tutorial, do not need to install the additional assets when
asked. Click Install for the installation process to start.
v If the installation is successful, the program displays a message indicating

that installation is successful. The program might also display important
postinstallation instructions.

v If the installation is not successful, click View Log File to troubleshoot the
problem.

6. Move the usr directory that contains the servers in a location that does not
need specific privileges.
If you install Liberty with Installation Manager in administrator mode, the files
are in a location where non-administrator or non-root users cannot modify the
files. For the scope of this tutorial, move the usr directory that contains the
servers in a place that does not need specific privileges. In this way, the
installation operations can be done without specific privileges.
a. Go to the installation directory of Liberty.
b. Create a directory named etc. You need administrator or root privileges.
c. In etc directory, create a server.env file with the following content:

WLP_USER_DIR=<path to a directory where any user can write>

For example, on Windows:
WLP_USER_DIR=C:\LibertyServers\usr

7. Create a Liberty server that will be used to install the first node of MobileFirst
Server at the later part of the tutorial.
a. Start a command line.
b. Go to liberty_install_dir/bin, and enter server create mfp1.

This command creates a Liberty server instance named mfp1. You can see
its definition at liberty_install_dir/usr/servers/mfp1 or
WLP_USER_DIR/servers/mfp1 (if you modify the directory as described in
step 6).

Results

After the server is created, you can start this server with server start mfp1 from
liberty_install_dir/bin/.

Installing and configuring 6-7

To stop the server, enter the command: server stop mfp1 from
liberty_install_dir/bin/.

The default home page can be viewed at http://localhost:9080.

Note: For production, you need to make sure that the Liberty server is started as a
service when the host computer starts. Making the Liberty server start as a service
is not part of this tutorial.

Installing MobileFirst Server:
Before you begin

Make sure that Installation Manager V1.8.4 or later is installed. The installation of
MobileFirst Server might not succeed with an older version of Installation Manager
because the postinstallation operations require Java 7. The older versions of
Installation Manager come with Java 6.

About this task

Run Installation Manager to install the binary files of MobileFirst Server on your
disk before you create the databases and deploy MobileFirst Server to Liberty
profile. During the installation of MobileFirst Server with Installation Manager, an
option is proposed to you to install IBM MobileFirst Platform Application Center.
Application Center is a different component of the product. For this tutorial, it is
not required to be installed with MobileFirst Server. For more information about
Application Center, see “Installing and configuring the Application Center” on
page 6-198.

Procedure

1. Launch Installation Manager.
2. Add the repository of MobileFirst Server in Installation Manager.

a. Go to File > Preferences and click Add Repositories....
b. Browse for the repository file in the directory where the installer is

extracted.
If you decompress the IBM MobileFirst Platform Foundation V8.0 .zip file
for MobileFirst Server in mfp_installer_directory folder, the repository file
can be found at mfp_installer_directory/MobileFirst_Platform_Server/
disk1/diskTag.inf.
You might also want to apply the latest fix pack that can be downloaded
from IBM Support Portal. Make sure to enter the repository for the fix pack.
If you decompress the fix pack in fixpack_directory folder, the repository
file is found in fixpack_directory/MobileFirst_Platform_Server/disk1/
diskTag.inf.

Note: You cannot install the fix pack without the repository of the base
version in the repositories of Installation Manager. The fix packs are
incremental installers and need the repository of the base version to be
installed.

c. Select the file and click OK.
d. Click OK to close the Preferences panel.

3. After you accept the license terms of the product, click Next.
4. Select the Create a new package group option to install the product in that new

package group.

6-8 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/entry/portal/product/other_software/ibm_mobilefirst_platform_foundation

5. Click Next.
6. Select Do not activate token licensing with the Rational License Key

Server option in the Activate token licensing section of the General settings
panel.
In this tutorial, it is assumed that token licensing is not needed and the steps to
configure MobileFirst Server for token licensing are not included. However, for
production installation, you must determine whether you need to activate
token licensing or not. If you have a contract to use token licensing with
Rational License Key Server, select Activate token licensing with the
Rational License Key Server option. After you activate token licensing, you
must do extra steps to configure MobileFirst Server. For more information, see
“Installing and configuring for token licensing” on page 6-150.

7. Keep the default option (No) as-is in the Install IBM MobileFirst Platform
Foundation for iOS section of the General settings panel.

8. Select No option in the Choose configuration panel so that Application Center
is not installed. For production installation, use Ant tasks to install Application
Center. The installation with Ant tasks enables you to decouple the updates to
MobileFirst Server from the updates to Application Center. For more
information about installing Application Center, see “Installing and configuring
the Application Center” on page 6-198.

9. Click Next until you reach the Thank You panel. Then, proceed with the
installation.

Results

An installation directory that contains the resources to install MobileFirst
components is installed.

You can find the resources in the following folders:
v MobileFirstServer folder for MobileFirst Server
v PushService folder for MobileFirst Server push service
v ApplicationCenter folder for Application Center
v Analytics folder for MobileFirst Analytics

The goal of this tutorial is to install MobileFirst Server by using the resources in
MobileFirstServer folder.

You can also find some shortcuts for the Server Configuration Tool, Ant, and
mfpadm program in the shortcuts folder.

Creating a database:
About this task

This task is to ensure that a database exists in your DBMS, and that a user is
allowed to use the database, create tables in it, and use the tables.

The database is used to store the technical data that is used by the various
MobileFirst components:
v MobileFirst Server administration service
v MobileFirst Server live update service
v MobileFirst Server push service
v MobileFirst runtime

Installing and configuring 6-9

In this tutorial, the tables for all the components are placed under the same
schema. The Server Configuration Tool creates the tables in the same schema. For
more flexibility, you might want to use Ant tasks or a manual installation.

Note: The steps in this task are for DB2. If you plan to use MySQL or Oracle, see
“Database requirements” on page 6-65.

Procedure

1. Log on to the computer that is running the DB2 server. It is assumed that a
DB2 user, for example named as mfpuser, exists.

2. Verify that this DB2 user has the access to a database with a page size 32768 or
more, and is allowed to create implicit schemas and tables in that database.
By default, this user is a user declared on the operating system of the computer
that runs DB2. That is, a user with a login for that computer. If such user exists,
the next action in step 3 is not needed. In the later part of the tutorial, the
Server Configuration Tool creates all the tables that are required by the product
under a schema in that database.

3. Create a database with the correct page size for this installation if you do not
have one.
a. Open a session with a user that has SYSADM or SYSCTRL permissions. For

example, use the user db2inst1 that is the default admin user that is created
by the DB2 installer.

b. Open a DB2 command line processor:
v On Windows systems, click Start > IBM DB2 > Command Line

Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin (or db2_install_dir/bin

if sqllib is not created in the administrator's home directory) and enter
./db2.

c. Enter the following SQL statements to create a database that is called
MFPDATA:
CREATE DATABASE MFPDATA COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO MFPDATA
GRANT CONNECT ON DATABASE TO USER mfpuser
GRANT CREATETAB ON DATABASE TO USER mfpuser
GRANT IMPLICIT_SCHEMA ON DATABASE TO USER mfpuser
DISCONNECT MFPDATA
QUIT

If you defined a different user name, replace mfpuser with your own user
name.

Note: The statement does not remove the default privileges granted to
PUBLIC in a default DB2 database. For production, you might need to
reduce the privileges in that database to the minimum requirement for the
product. For more information about DB2 security and an example of the
security practices, see DB2 security, Part 8: Twelve DB2 security best
practices.

Running the Server Configuration Tool:
About this task

You use the Server Configuration Tool to run the following operations:
v Create the tables in the database that are needed by the MobileFirst applications

6-10 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/developerworks/data/library/techarticle/dm-0607wasserman/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0607wasserman/

v Deploy the web applications of MobileFirst Server (the runtime, administration
service, live update service, push service components, and MobileFirst
Operations Console) to Liberty server.

The Server Configuration Tool does not deploy the following MobileFirst
applications:

MobileFirst Analytics
MobileFirst Analytics is typically deployed on a different set of servers
than MobileFirst Server because of its high memory requirements.
MobileFirst Analytics can be installed manually or with Ant tasks. If it is
already installed, you can enter its URL, the user name, and password to
send data to it in the Server Configuration Tool. The Server Configuration
Tool will then configure the MobileFirst apps to send data to MobileFirst
Analytics. For more information about the installation of MobileFirst
Analytics, see “MobileFirst Analytics Server installation guide” on page
11-2.

Application Center
This application can be used to distribute mobile apps internally to the
employees that use the apps, or for test purpose. It is independent of
MobileFirst Server and is not necessary to install together with MobileFirst
Server. For more information, see “Installing and configuring the
Application Center” on page 6-198.

Procedure

1. Start the Server Configuration Tool.
v On Linux, from application shortcuts Applications > IBM MobileFirst

Platform Server > Server Configuration Tool.
v On Windows, click Start > Programs > IBM MobileFirst Platform Server >

Server Configuration Tool.
v On Mac OS, open a shell console. Go to mfp_server_install_dir/shortcuts

and type ./configuration-tool.sh.
The mfp_server_install_dir directory is where you installed MobileFirst
Server.

2. Select File > New Configuration... to create a MobileFirst Server
Configuration.

3. Name the configuration Hello MobileFirst and click OK.
4. Leave the default entries of Configuration Details as-is and click Next.

In this tutorial, the environment ID is not used. It is a feature for advanced
deployment scenario. An example of such scenario would be installing
multiple instances of MobileFirst Server and administration service in the
same application server or WebSphere Application Server cell.

5. Keep the default context root for the administration service and the runtime
component.

6. Do not change the default entries in the Console Settings panel and click
Next to install MobileFirst Operations Console with the default context root.

7. Select IBM DB2 as a database and click Next.
8. In the DB2 Database Settings panel, complete the details:

a. Enter the host name that runs your DB2 server. If it is running on your
computer, you can enter localhost.

b. Change the port number if the DB2 instance you plan to use is not
listening to the default port (50000).

Installing and configuring 6-11

c. Enter the path to the DB2 JDBC driver. For DB2, the file that is named as
db2jcc4.jar is expected. It is also needed to have the
db2jcc_license_cu.jar file in the same directory. In a standard DB2
distribution, these files are found in db2_install_dir/java.

d. Click Next.

If the DB2 server cannot be reached with the credentials that are entered, the
Server Configuration Tool disables the Next button and displays an error. The
Next button is also disabled if the JDBC driver does not contain the expected
classes. If everything is correct, the Next button is enabled.

9. In the DB2 Additional Settings panel, complete the details:
a. Enter mfpuser as DB2 user name and its password. Use your own DB2

user name if it is not mfpuser.
b. Enter MFPDATA as the name of the database.
c. Leave MFPDATA as the schema in which the tables will be created. Click

Next. By default, Server Configuration Tool proposes the value MFPDATA.
10. Do not enter any values in the Database Creation Request panel and click

Next.
This pane is used when the database that is entered in the previous pane does
not exist on the DB2 server. In that case, you can enter the user name and
password of the DB2 administrator. The Server Configuration Tool opens an
ssh session to the DB2 server and runs the commands as described in
“Creating a database” on page 6-9 to create the database with default settings
and the correct page size.

11. In the Application Server Selection panel, select WebSphere Application
Server option and click Next.

12. In the Application Server Settings panel, complete the details:
a. Enter the installation directory for WebSphere Application Server Liberty.
b. Select the server where you plan to install the product in the server name

field. Select mfp1 server that is created in step 7 on page 6-7 of “Installing
WebSphere Application Server Liberty Core” on page 6-6.

c. Leave the Create a user option selected with its default values.
This option creates a user in the basic registry of the Liberty server, so that
you can sign in to MobileFirst Operations Console or to the administration
service. For a production installation, do not use this option and configure
the security roles of the applications after the installation as described in
“Configuring user authentication for MobileFirst Server administration” on
page 6-166.

d. Select the Server farm deployment option for the deployment type.
e. Click Next.

13. Select Install the Push service option.
When the push service is installed, HTTP or HTTPS flows are needed from
the administration service to the push service, and from the administration
service and the push service to the runtime component.

14. Select Have the Push and Authorization Service URLs computed
automatically option.
When this option is selected, the Server Configuration Tool configures the
applications to connect to the applications installed on the same server. When
you use a cluster, enter the URL that is used to connect to the services from
your HTTP load balancer. When you install on WebSphere Application Server
Network Deployment, it is mandatory to enter a URL manually.

6-12 IBM MobileFirst Platform Foundation V8.0.0

15. Keep the default entries of Credentials for secure communication between
the Administration and the Push service as-is.
A client ID and a password are needed to register the push service and the
administration service as the confidential OAuth clients for the authorization
server (which is by default, the runtime component). The Server Configuration
Tool generates an ID and a random password for each of the service, that you
can keep as-is for this getting started tutorial.

16. Click Next.
17. Keep the default entries of Analytics Setting panel as-is.

To enable the connection to the Analytics server, you need to first install
MobileFirst Analytics. However, the installation is not in the scope of this
tutorial.

18. Click Deploy.

Results

You can see a detail of the operations done in Console Window.

An Ant file is saved. The Server Configuration Tool helps you create an Ant file for
installing and updating your configuration. This Ant file can be exported by using
File > Export Configuration as Ant Files... . For more information about this Ant
file, see “Deploying MobileFirst Server to Liberty with Ant tasks” on page 6-28 in
“Installing MobileFirst Server in command line mode” on page 6-22.

Then, the Ant file is run and does the following operations:
1. The tables for the following components are created in the database:
v The administration service and the live update service. Created by the

admdatabases Ant target.
v The runtime. Created by the rtmdatabases Ant target.
v The push service. Created by the pushdatabases Ant target.

2. The WAR files of the various components are deployed to Liberty server. You
can see the details of the operations in the log under adminstall, rtminstall,
and pushinstall targets.

If you have access to the DB2 server, you can list the tables that are created by
using these instructions:
1. Open a DB2 command line processor with mfpuser as described in step 3 on

page 6-10 of “Creating a database” on page 6-9.
2. Enter the SQL statements:

CONNECT TO MFPDATA USER mfpuser USING mfpuser_password
LIST TABLES FOR SCHEMA MFPDATA
DISCONNECT MFPDATA
QUIT

Take note of the following database factors:

Database user consideration
In the Server Configuration Tool, only one database user is needed. This
user is used to create the tables, but is also used as the data source user in
the application server at run time. In production environment, you might
want to restrict the privileges of the user that is used at run time to the
strict minimum (SELECT / INSERT / DELETE / UPDATE), and thus provide a
different user for deployment in the application server. For more
information about the privileges that are required at run time, see

Installing and configuring 6-13

“Database users and privileges” on page 6-64. The Ant files that are
provided as examples also use the same users for both cases. However, in
the case of DB2, you might want to create your own versions of files. As
such, you can distinguish the user that is used to create the databases from
the user that is used for the data source in the application server with the
Ant tasks.

Database tables creation
For production, you might want to create the tables manually. For example,
if your DBA wants to override some default settings or assign specific table
spaces. The database scripts that are used to create the tables are available
in mfp_server_install_dir/MobileFirstServer/databases and
mfp_server_install_dir/PushService/databases. For more information,
see “Create the database tables manually” on page 6-67.

The server.xml file and some application server setting are modified during the
installation. Before each modification, a copy of the server.xml file is made, such
as server.xml.bak, server.xml.bak1, and server.xml.bak2. To see everything that
was added, you can compare the server.xml file with the oldest backup
(server.xml.bak). On Linux, you can use the command diff --strip-trailing-cr
server.xml server.xml.bak to see the differences. On AIX, use the command diff
server.xml server.xml.bak to find the differences.

Modification of the application server settings (specific to Liberty):

1. The Liberty features are added.
The features are added for each application and can be duplicated. For
example, the JDBC feature is used for both the administration service
and the runtime components. This duplication allows the removal of
the features of an application when it is uninstalled without breaking
the other applications. For example, if you decide at some point to
uninstall the push service from a server and install it on another server.
However, not all topologies are possible. The administration service, the
live update service, and the runtime component must be on the same
application server with Liberty profile. For more information, see
“Constraints on MobileFirst Server administration service, MobileFirst
Server live update service and MobileFirst runtime” on page 6-84. The
duplication of features does not create issue unless the features that
added are conflicting. Adding the jdbc-40 and jdbc-41 features would
cause a problem, but adding twice the same feature does not.

2. host=’*’ is added in the httpEndPoint declaration.
This setting is to allow the connection to the server from all network
interfaces. In production, you might want to restrict the host value of
the HTTP endpoint.

3. The tcpOptions element (tcpOptions soReuseAddr="true") is added in
the server configuration to enable immediate rebind to a port with no
active listener and improve the throughput of the server.

4. A keystore with ID defaultKeyStore is created if it does not exist.
The keystore is to enable the HTTPS port and more specifically, to
enable the JMX communication between the administration service
(mfp-admin-service.war) and the runtime component (mfp-server.war).
The two applications communicate via JMX. In the case of Liberty
profile, restConnector is used to communicate between the applications
in a single server and also between the servers of a Liberty Farm. It
requires the use of HTTPS. For the keystore that is created by default,
Liberty profiles creates a certificate with a validity period of 365 days.

6-14 IBM MobileFirst Platform Foundation V8.0.0

This configuration is not intended for production use. For production,
you need to reconsider to use your own certificate.
To enable JMX, a user with administrator role (named as MfpRESTUser)
is created in the basic registry. Its name and password are provided as
JNDI properties (mfp.admin.jmx.user and mfp.admin.jmx.pwd) and are
used by the runtime component and the administration service to run
JMX queries. In the global JMX properties, some properties are used to
define the cluster mode (stand-alone server or working in a farm). The
Server Configuration Tool sets the mfp.topology.clustermode property
to Standalone in Liberty server. In the later part of this tutorial about
the creation of a farm, the property is modified to Cluster.

5. The creation of users (Also valid for Apache Tomcat and WebSphere
Application Server)
v Optional Users: The Server Configuration Tool creates a test user

(admin/admin) so that you can use this user to log to the console after
the installation.

v Mandatory Users: The Server Configuration Tool also creates a user
(named as configUser_mfpadmin with a randomly generated
password) to be used by the administration service to contact the
local live update service. For Liberty server, MfpRESTUser is created. If
your application server is not configured to use a basic registry (for
example, an LDAP registry), the Server Configuration Tool is unable
to request the name of an existing user. In this case, you need to use
Ant tasks. For more information, see “Installing with Ant Tasks” on
page 6-110.

6. The webContainer element is modified.
The deferServletLoad web container custom property is set to false.
Both the runtime component and the administration service must start
when the server starts. These components can thus register the JMX
beans and start the synchronization procedure that allows the runtime
component to download all the applications and adapters that it needs
to serve.

7. The default executor is customized to set large values to coreThreads
and maxThreads if you use Liberty V8.5.5.5 or earlier. The default
executor is automatically tuned by Liberty as of V8.5.5.6.
This setting avoids timeout issues that break the startup sequence of
the runtime component and administration service on some Liberty
versions. The absence of this statement can be the cause of these errors
in the server log file:

Failed to obtain JMX connection to access an MBean. There might be a JMX configuration error: Read timed out
FWLSE3000E: A server error was detected.

FWLSE3012E: JMX configuration error. Unable to obtain MBeans. Reason: "Read timed out".

Declaration of applications

The following applications are installed:
v mfpadmin, the administration service
v mfpadminconfig, the live update service
v mfpconsole, MobileFirst Operations Console
v mobilefirst, MobileFirst runtime component
v imfpush, the push service

Installing and configuring 6-15

The Server Configuration Tool installs all the applications on the same
server. You can separate the applications in different application servers,
but under certain constraints that are documented in “Topologies and
network flows” on page 6-78.

For an installation on different servers, you cannot use the Server
Configuration Tool. Use Ant tasks (“Deploying MobileFirst Server to
Liberty with Ant tasks” on page 6-28) or install the product manually.

Administration service

The administration service is the service for managing MobileFirst
applications, adapters, and their configurations. It is secured by
security roles. By default, the Server Configuration Tool adds a
user (admin) with the administrator role, that you can use to log in
to the console for testing. The configuration of the security role
must be done after an installation with the Server Configuration
Tool (or with Ant tasks). See “Configuring user authentication for
MobileFirst Server administration” on page 6-166. You might want
to map the users or the groups that come from the basic registry or
an LDAP registry that you configure in your application server to
each security role.

The class loader is set with delegation parent last for Liberty
profile and WebSphere Application Server, and for all MobileFirst
applications. This setting is to avoid conflicts between the classes
packaged in the MobileFirst applications and the classes of the
application server. Forgetting to set the class loader delegation to
parent last is a frequent source of error in manual installation. For
Apache Tomcat, this declaration is not needed.

In Liberty profile, a common library is added to the application for
decrypting passwords that are passed as JNDI properties. The
Server Configuration Tool defines two mandatory JNDI properties
for the administration service: mfp.config.service.user and
mfp.config.service.password. They are used by the administration
service to connect to the live update service with its REST API.
More JNDI properties can be defined to tune the application or
adapt it to your installation particularities. For more information,
see “List of JNDI properties for MobileFirst Server administration
service” on page 6-174.

The Server Configuration Tool also defines the JNDI properties (the
URL and the OAuth parameters to register the confidential clients)
for the communication with the push service.

The data source to the database that contains the tables for the
administration service is declared, as well as a library for its JDBC
driver.

Live update service

The live update service stores information about the runtime and
application configurations. It is controlled by the administration
service and must always run on the same server as the
administration service. The context root is
context_root_of_admin_serverconfig. As such, it is
mfpadminconfig. The administration service assumes that this
convention is respected to create the URL of its requests to the
REST services of the live update service.

6-16 IBM MobileFirst Platform Foundation V8.0.0

The class loader is set with delegation parent last as discussed in
the administration service section.

The live update service has one security role, admin_config. A user
must be mapped to that role. Its password and login must be
provided to the administration service with the JNDI property:
mfp.config.service.user and mfp.config.service.password. For
information about the JNDI properties, see “List of JNDI properties
for MobileFirst Server administration service” on page 6-174 and
“List of JNDI properties for MobileFirst Server live update service”
on page 6-182.

It also needs a data source with JNDI name on Liberty profile. The
convention is context_root_of_config_server/jdbc/ConfigDS. In
this tutorial, it is defined as mfpadminconfig/jdbc/ConfigDS. In an
installation by the Server Configuration Tool or with Ant tasks, the
tables of the live update service are in the same database and
schema as the tables of the administration service. The user to
access these tables is also the same.

MobileFirst Operations Console

MobileFirst Operations Console is declared with the same security
roles as the administration service. The users that are mapped to
the security roles of MobileFirst Operations Console must also be
mapped to the same security role of the administration service.
Indeed, MobileFirst Operations Console runs queries to the
administration service on the behalf of the console user.

The Server Configuration Tool positions one JNDI property,
mfp.admin.endpoint, that indicates how the console connects to the
administration service. The default value set by the Server
Configuration Tool is '*://*:*/mfpadmin'. The setting means that
it must use the same protocol, host name, and port as the incoming
HTTP request to the console, and the context root of the
administration service is /mfpadmin. If you want to force the
request to go though a web proxy, change the default value. For
more information about the possible values for this URL, or for
information about other possible JNDI properties, see “List of JNDI
properties for MobileFirst Server administration service” on page
6-174.

The class loader is set with delegation parent last as discussed in
the administration service section.

MobileFirst runtime

This application is not secured by a security role. It is not required
to log in with a user known by the Liberty server, to access this
application. The mobile devices requests are routed to the runtime.
They are authenticated by other mechanisms specific to the
product (such as OAuth) and the configuration of the MobileFirst
applications.

The class loader is set with delegation parent last as discussed in
the administration service section.

It also needs a data source with JNDI name on Liberty profile. The
convention is context_root_of_runtime/jdbc/mfpDS. In this
tutorial, it is defined as mobilefirst/jdbc/mfpDS. In an installation
by the Server Configuration Tool or with Ant tasks, the tables of

Installing and configuring 6-17

the runtime are in the same database and schema as the tables of
the administration service. The user to access these tables is also
the same.

Push service

This application is secured by OAuth. The valid OAuth tokens
must be included in any HTTP request to the service.

The configuration of OAuth is made through the JNDI properties
(such as the URL of the authorization server, the client ID, and the
password of the push service). The JNDI properties also indicate
the security plug-in (mfp.push.services.ext.security) and the fact
that a relational database is used (mfp.push.db.type). The requests
from the mobile devices to the push service are routed to this
service. The context root of the push service must be /imfpush. The
client SDK computes the URL of the push service based on the
URL of the runtime with the context root (/imfpush). If you want
to install the push service on a different server than the runtime,
you need to have an HTTP router that can route the device
requests to the relevant application server.

The class loader is set with delegation parent last as discussed in
the administration service section.

It also needs a data source with JNDI name on Liberty profile. The
JNDI name is imfpush/jdbc/imfPushDS. In an installation by the
Server Configuration Tool or with Ant tasks, the tables of the push
service are in the same database and schema as the tables of the
administration service. The user to access these tables is also the
same.

Other files modification

The Liberty profile jvm.options file is modified. A property
(com.ibm.ws.jmx.connector.client.rest.readTimeout) is defined to avoid
timeout issues with JMX when the runtime synchronizes with the
administration service.

Testing the installation:
About this task

After the installation is complete, you can use this procedure to test the
components that are installed.

Procedure

1. Start the server by using the command server start mfp1. The binary file for
the server is in liberty_install_dir/bin.

2. Test MobileFirst Operations Console with a web browser.
Go to http://localhost:9080/mfpconsole. By default, the server runs on port
9080. However, you can verify the port in the element <httpEndpoint> as
defined in the server.xml file. A login screen is displayed.

6-18 IBM MobileFirst Platform Foundation V8.0.0

3. Log in with admin/admin.
This user is created by default by the Server Configuration Tool.

Note: If you connect with HTTP, the login ID and password are sent in clear
text in the network. For a secure login, use HTTPS to log to the server. You can
see the HTTPS port of the Liberty server in the httpsPort attribute of the
<httpEndpoint> element in the server.xml file. By default, the value is 9443.

4. Log out of the console with Hello Admin > Sign Out.
5. Enter the following URL: https://localhost:9443/mfpconsole in the web

browser and accept the certificate.
By default, the Liberty server generates a default certificate that is not known
by your web browser, you need to accept the certificate. Mozilla Firefox
presents this certification as a security exception.

6. Log in again with admin/admin.
The login and password are encrypted between your web browser and
MobileFirst Server. In production, you might want to close the HTTP port.

Creating a farm of two Liberty servers that run MobileFirst Server:
About this task

In this task, you will create a second Liberty server that runs the same MobileFirst
Server and connected to the same database. In production, you might use more
than one server for performance reasons, to have enough servers to serve the
number of transactions per second that is needed for your mobile applications at
peak time. It is also for high availability reasons to avoid having a single point of
failure.

When you have more than one server that runs MobileFirst Server, the servers
must be configured as a farm. This configuration enables any administration
service to contact all the runtimes of a farm. If the cluster is not configured as a
farm, only the runtime that runs in the same application server as the management
service that runs the management operation is notified. Others runtimes are not

Installing and configuring 6-19

aware of the change. For example, you deploy a new version of an adapter in a
cluster that is not configured as a farm, only one server would serve the new
adapter. The other servers would continue to serve the old adapter. The only
situation where you can have a cluster and do not need to configure a farm is
when you install your servers on WebSphere Application Server Network
Deployment. The administration service is able to find all the servers by querying
the JMX beans with the deployment manager. The deployment manager must be
running to allow management operations because it is used to provide the list of
the MobileFirst JMX beans of the cell.

When you create a farm, you also need to configure an HTTP server to send
queries to all the members of the farm. The configuration of an HTTP server is not
included in this tutorial. This tutorial is only about configuring the farm so that
management operations are replicated to all the runtime components of the cluster.

Procedure

1. Create a second Liberty server on the same computer.
a. Start a command line.
b. Go to liberty_install_dir/bin, and enter server create mfp2.

2. Modify the HTTP and HTTPS ports of the server mfp2 so that they do not
conflict with the ports of server mfp1.
a. Go to the second server directory.

The directory is liberty_install_dir/usr/servers/mfp2 or
WLP_USER_DIR/servers/mfp2 (if you modify the directory as described in
step 6 on page 6-7 of “Installing WebSphere Application Server Liberty
Core” on page 6-6).

b. Edit the server.xml file. Replace
<httpEndpoint id="defaultHttpEndpoint"

httpPort="9080"
httpsPort="9443" />

with
<httpEndpoint id="defaultHttpEndpoint"

httpPort="9081"
httpsPort="9444" />

The HTTP and HTTPS ports of the server mfp2 do not conflict with the
ports of the server mfp1 with this change. Make sure to modify the ports
before you run the installation of MobileFirst Server. Otherwise, if you
modify the port after the installation is made, you also need to reflect the
change of the port in the JNDI property: mfp.admin.jmx.port.

3. Run the Server Configuration Tool.
a. Create a configuration Hello MobileFirst 2.
b. Do the same installation procedure as described in “Running the Server

Configuration Tool” on page 6-10 but select mfp2 as the application server.
Use the same database and same schema.

Note:

v If you use an environment ID for server mfp1 (not suggested in the
tutorial), the same environment ID must be used for server mfp2.

v If you modify the context root for some applications, use the same
context root for server mfp2. The servers of a farm must be symmetric.

6-20 IBM MobileFirst Platform Foundation V8.0.0

v If you create a default user (admin/admin), create the same user in the
server mfp2.

The Ant tasks detect that the databases exist and do not create the tables (see
the following log extract). Then, the applications are deployed to the server.

[configuredatabase] Checking connectivity to MobileFirstAdmin database MFPDATA with schema ’MFPDATA’ and user ’mfpuser’...
[configuredatabase] Database MFPDATA exists.
[configuredatabase] Connection to MobileFirstAdmin database MFPDATA with schema ’MFPDATA’ and user ’mfpuser’ succeeded.
[configuredatabase] Getting the version of MobileFirstAdmin database MFPDATA...
[configuredatabase] Table MFPADMIN_VERSION exists, checking its value...
[configuredatabase] GetSQLQueryResult => MFPADMIN_VERSION = 8.0.0
[configuredatabase] Configuring MobileFirstAdmin database MFPDATA...
[configuredatabase] The database is in latest version (8.0.0), no upgrade required.
[configuredatabase] Configuration of MobileFirstAdmin database MFPDATA succeeded.

4. Test the two servers with HTTP connection.
a. Open a web browser.
b. Enter the following URL: http://localhost:9080/mfpconsole. The console

is served by server mfp1.
c. Log in with admin/admin.
d. Open a tab in the same web browser and enter the URL:

http://localhost:9081/mfpconsole. The console is served by server mfp2.
e. Log in with admin/admin. If the installation is done correctly, you can see

the same welcome page in both tabs after login.
f. Return to first browser tab and click Hello, admin > Download Audit Log.

You are logged out of the console and see the login screen again.
This logout behavior is an issue. The problem happens because when you
log on to server mfp2, a Lightweight Third Party Authentication (LTPA)
token is created and stored in your browser as a cookie. However, this LTPA
token is not recognized by server mfp1. Switching between servers is likely
to happen in a production environment when you have an HTTP load
balancer in front of the cluster. To resolve this issue, you must ensure that
both servers (mfp1 and mfp2) generate the LTPA tokens with the same secret
keys. Copy the LTPA keys from server mfp1 to server mfp2.
1) Stop both servers with these commands:

server stop mfp1
server stop mfp2

2) Copy the LTPA keys of server mfp1 to server mfp2.
From liberty_install_dir/usr/servers or WLP_USER_DIR/servers, run
the following command depending on your operating system.
v On UNIX: cp mfp1/resources/security/ltpa.keys

mfp2/resources/security/ltpa.keys

v On Windows: copy mfp1/resources/security/ltpa.keys
mfp2/resources/security/ltpa.keys

g. Restart the servers. Switch from one browser tab to another other does not
require you to relogin. In a Liberty server farm, all servers must have the
same LTPA keys.

5. Enable the JMX communication between the Liberty servers.
The JMX communication with Liberty, is done via the Liberty REST connector
over the HTTPS protocol. To enable this communication, each server of the
farm must be able to recognize the SSL certificate of the other members. You
need to exchange the HTTPS certificates in their truststores. Use IBM utilities
such as Keytool, which is part of the IBM JRE distribution in java/bin to
configure the truststore. The locations of keystore and truststore are defined in
the server.xml file. See the keyStoreRef and trustStoreRef attributes in SSL
configuration attributes. By default, the keystore of Liberty profile is at

Installing and configuring 6-21

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_ssl.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_ssl.html?lang=en

WLP_USER_DIR/servers/server_name/resources/security/key.jks. The
password of this default keystore, as can be seen in the server.xml file, is
mobilefirst.

Tip: You can change it with the Keytool utility, but you must also change the
password in the server.xml file so that Liberty server can read that keystore. In
this tutorial, use the default password.
a. In WLP_USER_DIR/servers/mfp1/resources/security, enter keytool -list

-keystore key.jks. The command shows the certificates in the keystore.
There is only one named default. You are prompted for the password of
the keystore (mobilefirst) before you can see the keys. This is the case for
all the next commands with Keytool utility.

b. Export the default certificate of server mfp1 with the command: keytool
-exportcert -keystore key.jks -alias default -file mfp1.cert.

c. In WLP_USER_DIR/servers/mfp2/resources/security, export the default
certificate of server mfp2 with the command: keytool -exportcert
-keystore key.jks -alias default -file mfp2.cert.

d. In the same directory, import the certificate of server mfp1 with the
command: keytool -import -file ../../../mfp1/resources/security/
mfp1.cert -keystore key.jks The certificate of server mfp1 is imported
into the keystore of server mfp2 so that server mfp2 can trust the HTTPS
connections to server mfp1. You are asked to confirm that you trust the
certificate.

e. In WLP_USER_DIR/servers/mfp1/resources/security, import the certificate of
server mfp2 with the command: keytool -import -file
../../../mfp2/resources/security/mfp2.cert -keystore key.jks. After
this step, the HTTPS connections between the two servers are possible.

Testing the farm and see the changes in MobileFirst Operations Console:
Procedure

1. Start the two servers:
server start mfp1
server start mfp2

2. Access the console. For example, http://localhost:9080/mfpconsole, or
https://localhost:9443/mfpconsole in HTTPS. In the left sidebar, an extra
menu that is labeled as Server Farm Nodes appears. If you click Server Farm
Nodes, you can the status of each node. You might need to wait a bit for both
nodes to be started.

Installing MobileFirst Server in command line mode
Use the command line mode of IBM Installation Manager and Ant tasks to install
MobileFirst Server.

Before you begin
1. Make sure that one of the following databases and a supported Java version are

installed. You also need the corresponding JDBC driver for the database to be
available on your computer:
v Database Management System (DBMS) from the list of supported database:

– DB2
– MySQL
– Oracle

Important:

6-22 IBM MobileFirst Platform Foundation V8.0.0

You must have a database where you can create the tables that are needed by
the product, and a database user who can create tables in that database.

In the tutorial, the steps to create the tables are for DB2. You can find the
DB2 installer as a package of IBM MobileFirst Platform Foundation
eAssembly on IBM Passport Advantage.

v JDBC driver for your database.
– For DB2, use the DB2 JDBC driver type 4.
– For MySQL, use the Connector/J JDBC driver.
– For Oracle, use the Oracle thin JDBC driver.

v Java 7 or later.
2. Download the installer of IBM Installation Manager V1.8.4 or later from

Installation Manager and Packaging Utility download links.
3. You must also have the installation repository of the MobileFirst Server and the

installer of WebSphere Application Server Liberty Core V8.5.5.3 or later.
Download these packages from the IBM MobileFirst Platform Foundation
eAssembly on Passport Advantage:

MobileFirst Server installation repository
IBM MobileFirst Platform Foundation V8.0 .zip file of Installation
Manager Repository for IBM MobileFirst Platform Server

WebSphere Application Server Liberty profile
IBM WebSphere Application Server - Liberty Core V8.5.5.3 or later

About this task

This tutorial goes through the following steps:
1. “Installing IBM Installation Manager”
2. “Installing WebSphere Application Server Liberty Core” on page 6-24
3. “Installing MobileFirst Server” on page 6-25
4. “Creating a database” on page 6-27
5. “Deploying MobileFirst Server to Liberty with Ant tasks” on page 6-28
6. “Testing the installation” on page 6-35
7. “Creating a farm of two Liberty servers that run MobileFirst Server” on page

6-36
8. “Testing the farm and see the changes in MobileFirst Operations Console” on

page 6-39

Installing IBM Installation Manager:
About this task

You must install Installation Manager V1.8.4 or later. The older versions of
Installation Manager are not able to install IBM MobileFirst Platform Foundation
V8.0 because the postinstallation operations of the product require Java 7. The
older versions of Installation Manager come with Java 6.

Procedure

1. Extract the IBM Installation Manager archive file that is downloaded. You can
find the installer at Installation Manager and Packaging Utility download links.

2. Review the license agreement for IBM Installation Manager that is in
unzip_IM_1.8.x/license directory.

Installing and configuring 6-23

http://www.ibm.com/software/passportadvantage/pao_customers.htm
http://www.ibm.com/support/docview.wss?uid=swg27025142
http://www.ibm.com/support/docview.wss?uid=swg27025142

3. If you accept the license agreement after the review, install Installation
Manager.
v Run installc.exe to install Installation Manager as administrator. Root is

needed on Linux or UNIX. On Windows, the administrator privilege is
needed. In this mode, the information about the installed packages is placed
in a shared location on the disk and any user that is allowed to run
Installation Manager can update the applications.
The executable file name ends with c (installc) for a command line
installation without a graphical user interface. To install Installation Manager,
enter installc.exe -acceptLicence.

v Run userinstc.exe to install Installation Manager in user mode. No specific
privilege is needed. However, in this mode, the information about the
installed packages are placed in the user's home directory. Only that user can
update the applications that are installed with Installation Manager.
The executable ends with c (userinstc) for a command line installation
without a graphical user interface. To install Installation Manager, enter
userinstc.exe -acceptLicence.

Installing WebSphere Application Server Liberty Core:
About this task

The installer for WebSphere Application Server Liberty Core is provided as part of
the package for IBM MobileFirst Platform Foundation. In this task, Liberty profile
is installed and a server instance is created so that you can install MobileFirst
Server on it.

Procedure

1. Review the license agreement for WebSphere Application Server Liberty Core.
The license files can be viewed when you download the installer from Passport
Advantage.

2. Extract the compressed file of WebSphere Application Server Liberty Core, that
you downloaded, to a folder.
In the steps that follow, the directory where you extract the installer is referred
as liberty_repository_dir. It contains a repository.config file or a
diskTag.inf file, among many other files.

3. Decide a directory where Liberty profile is to be installed. It is referred as
liberty_install_dir in the next steps.

4. Start a command line and go to installation_manager_install_dir/tools/
eclipse/.

5. If you accept the license agreement after the review, install Liberty.
Enter the command: imcl install com.ibm.websphere.liberty.v85
-repositories liberty_repository_dir -installationDirectory
liberty_install_dir -acceptLicense This command installs Liberty in the
liberty_install_dir directory. The -acceptLicense option means that you
accept the license terms for the product.

6. Move the directory that contains the servers in a location that does not need
specific privileges.
For the scope of this tutorial, if liberty_install_dir points to a location where
non-administrator or non-root users cannot modify the files, move the directory
that contains the servers to a location that does not need specific privileges. In
this way, the installation operations can be done without specific privileges.
a. Go to the installation directory of Liberty.

6-24 IBM MobileFirst Platform Foundation V8.0.0

b. Create a directory named etc. You need administrator or root privileges.
c. In etc directory, create a server.env file with the following content:

WLP_USER_DIR=<path to a directory where any user can write>

For example, on Windows:
WLP_USER_DIR=C:\LibertyServers\usr

7. Create a Liberty server that will be used to install the first node of MobileFirst
Server at the later part of the tutorial.
a. Start a command line.
b. Go to liberty_install_dir/bin, and enter server create mfp1.

This command creates a Liberty server instance named mfp1. You can see
its definition at liberty_install_dir/usr/servers/mfp1 or
WLP_USER_DIR/servers/mfp1 (if you modify the directory as described in
step 6 on page 6-24).

Results

After the server is created, you can start this server with server start mfp1 from
liberty_install_dir/bin/.

To stop the server, enter the command: server stop mfp1 from
liberty_install_dir/bin/.

The default home page can be viewed at http://localhost:9080.

Note: For production, you need to make sure that the Liberty server is started as a
service when the host computer starts. Making the Liberty server start as a service
is not part of this tutorial.

Installing MobileFirst Server:
Before you begin

Make sure that Installation Manager V1.8.4 or later is installed. The installation of
MobileFirst Server might not succeed with an older version of Installation Manager
because the postinstallation operations require Java 7. The older versions of
Installation Manager come with Java 6.

About this task

Run Installation Manager to install the binary files of MobileFirst Server on your
disk before you create the databases and deploy MobileFirst Server to Liberty
profile. In this tutorial, you install MobileFirst Server without IBM MobileFirst
Platform Application Center. Application Center is a different component of the
product and it is not required to be installed with MobileFirst Server. You need to
specify two properties in the command so that Application Center in not installed
together with MobileFirst Server. For more information about Application Center,
see “Installing and configuring the Application Center” on page 6-198.

You also need to specify one property to indicate whether to activate token
licensing or not. In this tutorial, it is assumed that token licensing is not needed
and the steps to configure MobileFirst Server for token licensing are not included.
However, for production installation, you must determine whether you need to
activate token licensing or not. If you do not have a contract to use token licensing
with the Rational License Key Server, you do not need to activate token licensing.

Installing and configuring 6-25

If you activate token licensing, you must configure MobileFirst Server for token
licensing. For more information, see “Installing and configuring for token
licensing” on page 6-150.

In this tutorial, you specify the properties as the parameters through the imcl
command line. This specification can also be done by using a response file.

Procedure

1. Review the license agreement for MobileFirst Server. The license files can be
viewed when you download the installation repository from Passport
Advantage.

2. Extract the compressed file of MobileFirst Server installer, that you
downloaded, to a folder.
In the steps that follow, the directory where you extract the installer is referred
as mfp_repository_dir. It contains a MobileFirst_Platform_Server/disk1
folder.

3. Start a command line and go to installation_manager_install_dir/tools/
eclipse/.

4. If you accept the license agreement after the review in step 1, install
MobileFirst Server.
Enter the command: imcl install com.ibm.mobilefirst.foundation.server
-repositories mfp_repository_dir/MobileFirst_Platform_Server/disk1
-properties
user.appserver.selection2=none,user.database.selection2=none,user.database.
preinstalled=false,user.licensed.by.tokens=false,user.use.ios.edition=false
-acceptLicense

The following properties are defined to have an installation without
Application Center:
v user.appserver.selection2=none

v user.database.selection2=none

v user.database.preinstalled=false

This property indicates that token licensing is not activated:
user.licensed.by.tokens=false.
Set the value of the user.use.ios.edition property to false to install IBM
MobileFirst Platform Foundation.

Results

An installation directory that contains the resources to install MobileFirst
components is installed.

You can find the resources in the following folders:
v MobileFirstServer folder for MobileFirst Server
v PushService folder for MobileFirst Server push service
v ApplicationCenter folder for Application Center
v Analytics folder for MobileFirst Analytics

The goal of this tutorial is to install MobileFirst Server by using the resources in
MobileFirstServer folder.

You can also find some shortcuts for the Server Configuration Tool, Ant, and
mfpadm program in the shortcuts folder.

6-26 IBM MobileFirst Platform Foundation V8.0.0

Creating a database:
About this task

This task is to ensure that a database exists in your DBMS, and that a user is
allowed to use the database, create tables in it, and use the tables. You can skip
this task if you plan to use Derby database.

The database is used to store the technical data that is used by the various
MobileFirst components:
v MobileFirst Server administration service
v MobileFirst Server live update service
v MobileFirst Server push service
v MobileFirst runtime

In this tutorial, the tables for all the components are placed under the same
schema.

Note: The steps in this task are for DB2. If you plan to use MySQL or Oracle, see
“Database requirements” on page 6-65.

Procedure

1. Log on to the computer that is running the DB2 server. It is assumed that a
DB2 user, for example named as mfpuser, exists.

2. Verify that this DB2 user has the access to a database with a page size 32768 or
more, and is allowed to create implicit schemas and tables in that database.
By default, this user is a user declared on the operating system of the computer
that runs DB2. That is, a user with a login for that computer. If such user exists,
the next action in step 3 is not needed.

3. Create a database with the correct page size for this installation if you do not
have one.
a. Open a session with a user that has SYSADM or SYSCTRL permissions. For

example, use the user db2inst1 that is the default admin user that is created
by the DB2 installer.

b. Open a DB2 command line processor:
v On Windows systems, click Start > IBM DB2 > Command Line

Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin (or db2_install_dir/bin

if sqllib is not created in the administrator's home directory) and enter
./db2.

c. Enter the following SQL statements to create a database that is called
MFPDATA:
CREATE DATABASE MFPDATA COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO MFPDATA
GRANT CONNECT ON DATABASE TO USER mfpuser
GRANT CREATETAB ON DATABASE TO USER mfpuser
GRANT IMPLICIT_SCHEMA ON DATABASE TO USER mfpuser
DISCONNECT MFPDATA
QUIT

If you defined a different user name, replace mfpuser with your own user
name.

Note: The statement does not remove the default privileges granted to
PUBLIC in a default DB2 database. For production, you might need to
reduce the privileges in that database to the minimum requirement for the

Installing and configuring 6-27

product. For more information about DB2 security and an example of the
security practices, see DB2 security, Part 8: Twelve DB2 security best
practices.

Deploying MobileFirst Server to Liberty with Ant tasks:
About this task

You use the Ant tasks to run the following operations:
v Create the tables in the database that are needed by the MobileFirst applications
v Deploy the web applications of MobileFirst Server (the runtime, administration

service, live update service, push service components, and MobileFirst
Operations Console) to Liberty server.

The following MobileFirst applications are not deployed by Ant tasks:

MobileFirst Analytics
MobileFirst Analytics is typically deployed on a different set of servers
than MobileFirst Server because of its high memory requirements.
MobileFirst Analytics can be installed manually or with Ant tasks. If it is
already installed, you can enter its URL, the user name, and password to
send data to it in the Server Configuration Tool. The Server Configuration
Tool then configures the MobileFirst apps to send data to MobileFirst
Analytics. For more information about the installation of MobileFirst
Analytics, see “MobileFirst Analytics Server installation guide” on page
11-2.

Application Center
This application can be used to distribute mobile apps internally to the
employees that use the apps, or for test purpose. It is independent of
MobileFirst Server and is not necessary to install together with MobileFirst
Server. For more information, see “Installing and configuring the
Application Center” on page 6-198.

Procedure

Pick the appropriate XML file that contains the Ant tasks and configure the
properties.
1. Make a copy of the mfp_install_dir/MobileFirstServer/configuration-

samples/configure-liberty-db2.xml file to a working directory.
This file contains the Ant tasks for installing MobileFirst Server on Liberty with
DB2 as the database. Before you use it, define the properties to describe where
the applications of MobileFirst Server are to be deployed.

2. Edit the copy of the XML file and set the values of the following properties:
v mfp.admin.contextroot to /mfpadmin
v mfp.runtime.contextroot to /mfp
v database.db2.host to the value to the host name of the computer that runs

your DB2 database. If the database is on the same computer as Liberty, use
localhost.

v database.db2.port to the port to which the DB2 instance is listening. By
default, it is 50000.

v database.db2.driver.dir to the directory that contains your DB2 driver:
db2jcc4.jar and db2jcc_license_cu.jar. In a standard DB2 distribution,
these files are found in db2_install_dir/java.

6-28 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/developerworks/data/library/techarticle/dm-0607wasserman/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0607wasserman/

v database.db2.mfp.dbname to MFPDATA - the database name that you create in
“Creating a database” on page 6-27.

v database.db2.mfp.schema to MFPDATA - the value of the schema where the
tables for MobileFirst Server are to be created. If your DB user is not able to
create a schema, set the value to an empty string. For example,
database.db2.mfp.schema="".

v database.db2.mfp.username to the DB2 user that creates the tables. This user
also uses the tables at run time. For this tutorial, use mfpuser.

v appserver.was.installdir to the Liberty installation directory.
v appserver.was85liberty.serverInstance to mfp1 - the value to the name of

the Liberty server where MobileFirst Server is to be installed.
v mfp.farm.configure to false to install MobileFirst Server in stand-alone

mode.
v mfp.analytics.configure to false. The connection to MobileFirst Analytics is

not in the scope of this tutorial. You can ignore the other properties
mfp.analytics.****.

v mfp.admin.client.id to admin-client-id.
v mfp.admin.client.secret to adminSecret (or choose another secret

password).
v mfp.push.client.id to push-client-id.
v mfp.push.client.secret to pushSecret (or choose another secret password).
v mfp.config.admin.user to the user name of the MobileFirst Server live

update service. In a server farm topology, the user name must be the same
for all the members of the farm.

v mfp.config.admin.password to the password of the MobileFirst Server live
update service. In a server farm topology, the password must be the same for
all the members of the farm.

3. Keep the default values of the following properties as-is:
v mfp.admin.console.install to true
v mfp.admin.default.user to admin - the name of a default user that is created

to log in to MobileFirst Operations Console.
v mfp.admin.default.user.initialpassword to admin - the password of a

default user that is created to log in to the admin console.
v appserver.was.profile to Liberty. If the value is different, the Ant task

assumes that the installation is on a WebSphere Application Server server.
4. Save the file after the properties are defined.
5. Run the command mfp_server_install_dir/shortcuts/ant -f

configure-liberty-db2.xml. This command shows a list of possible targets for
the Ant file.

6. Run mfp_server_install_dir/shortcuts/ant -f configure-liberty-db2.xml
databases to create the database tables.

7. Run mfp_server_install_dir/shortcuts/ant -f configure-liberty-db2.xml
install to install MobileFirst Server.

Note: If you do not have DB2, and want to test the installation with an embedded
Derby as a database, use the mfp_install_dir/MobileFirstServer/configuration-
samples/configure-liberty-derby.xml file. However, you cannot do the last step
of this tutorial (“Creating a farm of two Liberty servers that run MobileFirst
Server” on page 6-36) because the Derby database cannot be accessed by multiple
Liberty servers. You must set the properties except the DB2 related ones
(database.db2...). For Derby, set the value of the property

Installing and configuring 6-29

database.derby.datadir to the directory where Derby database can be created.
Also, set the value of the property database.derby.mfp.dbname to MFPDATA.

Results

You can see a detail of the operations done in the log file of the Ant tasks.

The following operations are run by the Ant tasks:
1. The tables for the following components are created in the database:
v The administration service and the live update service. Created by the

admdatabases Ant target.
v The runtime component. Created by the rtmdatabases Ant target.
v The push service. Created by the pushdatabases Ant target.

2. The WAR files of the various components are deployed to Liberty server. You
can see the details of the operations in the log under adminstall, rtminstall,
and pushinstall targets.

If you have access to the DB2 server, you can list the tables that are created by
using these instructions:
1. Open a DB2 command line processor with mfpuser as described in step 3 on

page 6-27 of “Creating a database” on page 6-27.
2. Enter the SQL statements:

CONNECT TO MFPDATA USER mfpuser USING mfpuser_password
LIST TABLES FOR SCHEMA MFPDATA
DISCONNECT MFPDATA
QUIT

Take note of the following database factors:

Database user consideration
In this tutorial, only one database user is needed. This user is used to
create the tables, but is also used as the data source user in the application
server at run time. In production environment, you might want to restrict
the privileges of the user that is used at run time to the strict minimum
(SELECT / INSERT / DELETE / UPDATE), and thus provide a different user for
deployment in the application server. For more information about the
privileges that are required at run time, see “Database users and
privileges” on page 6-64. The Ant files that are provided as examples also
use the same users for both cases. However, in the case of DB2, you might
want to create your own versions of files. As such, you can distinguish the
user that is used to create the databases from the user that is used for the
data source in the application server with the Ant tasks.

Database tables creation
For production, you might want to create the tables manually. For example,
if your DBA wants to override some default settings or assign specific table
spaces. The database scripts that are used to create the tables are available
in mfp_server_install_dir/MobileFirstServer/databases and
mfp_server_install_dir/PushService/databases. For more information,
see “Create the database tables manually” on page 6-67.

The server.xml file and some application server setting are modified during the
installation. Before each modification, a copy of the server.xml file is made, such
as server.xml.bak, server.xml.bak1, and server.xml.bak2. To see everything that
was added, you can compare the server.xml file with the oldest backup
(server.xml.bak). On Linux, you can use the command diff --strip-trailing-cr

6-30 IBM MobileFirst Platform Foundation V8.0.0

server.xml server.xml.bak to see the differences. On AIX, use the command diff
server.xml server.xml.bak to find the differences.

Modification of the application server settings (specific to Liberty):

1. The Liberty features are added.
The features are added for each application and can be duplicated. For
example, the JDBC feature is used for both the administration service
and the runtime components. This duplication allows the removal of
the features of an application when it is uninstalled without breaking
the other applications. For example, if you decide at some point to
uninstall the push service from a server and install it on another server.
However, not all topologies are possible. The administration service, the
live update service, and the runtime component must be on the same
application server with Liberty profile. For more information, see
“Constraints on MobileFirst Server administration service, MobileFirst
Server live update service and MobileFirst runtime” on page 6-84. The
duplication of features does not create issue unless the features that
added are conflicting. Adding the jdbc-40 and jdbc-41 features would
cause a problem, but adding twice the same feature does not.

2. host=’*’ is added in the httpEndPoint declaration.
This setting is to allow the connection to the server from all network
interfaces. In production, you might want to restrict the host value of
the HTTP endpoint.

3. The tcpOptions element (tcpOptions soReuseAddr="true") is added in
the server configuration to enable immediate rebind to a port with no
active listener and improve the throughput of the server.

4. A keystore with ID defaultKeyStore is created if it does not exist.
The keystore is to enable the HTTPS port and more specifically, to
enable the JMX communication between the administration service
(mfp-admin-service.war) and the runtime component (mfp-server.war).
The two applications communicate via JMX. In the case of Liberty
profile, restConnector is used to communicate between the applications
in a single server and also between the servers of a Liberty Farm. It
requires the use of HTTPS. For the keystore that is created by default,
Liberty profiles creates a certificate with a validity period of 365 days.
This configuration is not intended for production use. For production,
you need to reconsider to use your own certificate.
To enable JMX, a user with administrator role (named MfpRESTUser) is
created in the basic registry. Its name and password are provided as
JNDI properties (mfp.admin.jmx.user and mfp.admin.jmx.pwd) and are
used by the runtime component and the administration service to run
JMX queries. In the global JMX properties, some properties are used to
define the cluster mode (stand-alone server or working in a farm). The
Ant tasks set the mfp.topology.clustermode property to Standalone in
Liberty server. In the later part of this tutorial about the creation of a
farm, the property is modified to Cluster.

5. The creation of users (Also valid for Apache Tomcat and WebSphere
Application Server)
v Optional users: The default Ant task creates a test user (admin/admin)

so that you can use this user to log to the console after the
installation.

v Mandatory users: Except for the server farm topology, the Ant task
also creates a user (named as configUser_mfpadmin with a randomly
generated password) to be used by the administration service to

Installing and configuring 6-31

contact the local live update service. For the server farm topology,
this user and the password must be the same for all the members of
the farm. For Liberty server, MfpRESTUser is created. If your
application server is not configured to use a basic registry (but for
example, an LDAP registry), the Ant task attempts to create a user in
the basic registry. This operation fails and might create an invalid
server.xml. In this case, you need to modify the Ant files so that
users are not created, as documented in “Installing with Ant Tasks”
on page 6-110.

6. The webContainer element is modified.
The deferServletLoad web container custom property is set to false.
Both the runtime component and the administration service must start
when the server starts. These components can thus register the JMX
beans and start the synchronization procedure that allows the runtime
component to download all the applications and adapters that it needs
to serve.

7. The default executor is customized to set large values to coreThreads
and maxThreads.
This setting avoids timeout issues that break the startup sequence of
the runtime component and administration service on some Liberty
versions. The absence of this statement can be the cause of these errors
in the server log file:

Failed to obtain JMX connection to access an MBean. There might be a JMX configuration error: Read timed out
FWLSE3000E: A server error was detected.

FWLSE3012E: JMX configuration error. Unable to obtain MBeans. Reason: "Read timed out".

Declaration of applications

The following applications are installed:
v mfpadmin, the administration service
v mfpadminconfig, the live update service
v mfpconsole, MobileFirst Operations Console
v mobilefirst, MobileFirst runtime component
v imfpush, the push service

You can separate the applications in different application servers, but
under certain constraints that are documented in “Topologies and network
flows” on page 6-78. You can either use Ant tasks or install the product
manually.

Administration service

The administration service is the service for managing MobileFirst
applications, adapters, and their configurations. It is secured by
security roles. By default, the Server Configuration Tool adds a
user (admin) with the administrator role, that you can use to log in
to the console for testing. The configuration of the security role
must be done after an installation with the Server Configuration
Tool (or with Ant tasks). See “Configuring user authentication for
MobileFirst Server administration” on page 6-166. You might want
to map the users or the groups that come from the basic registry or
an LDAP registry that you configure in your application server to
each security role.

The class loader delegation is set to parent last for Liberty profile
and WebSphere Application Server, and for all MobileFirst
applications. This setting is to avoid conflicts between the classes

6-32 IBM MobileFirst Platform Foundation V8.0.0

packaged in the MobileFirst applications and the classes of the
application server. Forgetting to set the class loader delegation to
parent last is a frequent source of error in manual installation. For
Apache Tomcat, this declaration is not needed.

In Liberty profile, a common library is added to the application for
decrypting passwords that are passed as JNDI properties. The
Server Configuration Tool defines two mandatory JNDI properties
for the administration service: mfp.config.service.user and
mfp.config.service.password. They are used by the administration
service to connect to the live update service with its REST API.
More JNDI properties can be defined to tune the application or
adapt it to your installation particularities. For more information,
see “List of JNDI properties for MobileFirst Server administration
service” on page 6-174.

The data source to the database that contains the tables for the
administration service is declared, as well as a library for its JDBC
driver.

Live update service

The live update service stores information about the runtime and
application configurations. It is controlled by the administration
service and must always run on the same server as the
administration service. The context root is
context_root_of_admin_serverconfig. As such, it is
mfpadminconfig. The administration service assumes that this
convention is respected to create the URL of its requests to the
REST services of the live update service.

The class loader is set with delegation parent last as discussed in
the administration service section.

The live update service has one security role, admin_config. A user
must be mapped to that role. Its password and login must be
provided to the administration service with the JNDI property:
mfp.config.service.user and mfp.config.service.password. In a
server farm topology, the user and its password must be the same
for all the members of the farm.

For information about the JNDI properties, see “List of JNDI
properties for MobileFirst Server administration service” on page
6-174 and “List of JNDI properties for MobileFirst Server live
update service” on page 6-182.

It also needs a data source with JNDI name on Liberty profile. The
convention is context_root_of_config_server/jdbc/ConfigDS. In
this tutorial, it is defined as mfpadminconfig/jdbc/ConfigDS. In an
installation by the Server Configuration Tool or with Ant tasks, the
tables of the live update service are in the same database and
schema as the tables of the administration service. The user to
access these tables is also the same.

MobileFirst Operations Console

MobileFirst Operations Console is declared with the same security
roles as the administration service. The users that are mapped to
the security roles of MobileFirst Operations Console must also be
mapped to the same security role of the administration service.

Installing and configuring 6-33

Indeed, MobileFirst Operations Console runs queries to the
administration service on the behalf of the console user.

The Server Configuration Tool positions one JNDI property,
mfp.admin.endpoint, that indicates how the console connects to the
administration service. The default value set by the Server
Configuration Tool is '*://*:*/mfpadmin'. The setting means that
it must use the same protocol, host name, and port as the incoming
HTTP request to the console, and the context root of the
administration service is /mfpadmin. If you want to force the
request to go though a web proxy, change the default value. For
more information about the possible values for this URL, or for
information about other possible JNDI properties, see “List of JNDI
properties for MobileFirst Server administration service” on page
6-174.

The class loader is set with delegation parent last as discussed in
the administration service section.

MobileFirst runtime

This application is not secured by a security role. It is not required
to log in with a user known by the Liberty server to access this
application. The mobile devices requests are routed to the runtime.
They are authenticated by other mechanism specific to the product
(such as OAuth) and the configuration of the MobileFirst
applications.

The class loader is set with delegation parent last as discussed in
the administration service section.

It also needs a data source with JNDI name on Liberty profile. The
convention is context_root_of_runtime/jdbc/mfpDS. In this
tutorial, it is defined as mobilefirst/jdbc/mfpDS. In an installation
by the Server Configuration Tool or with Ant tasks, the tables of
the runtime are in the same database and schema as the tables of
the administration service. The user to access these tables is also
the same.

Push service

This application is secured by OAuth. The valid OAuth tokens
must be included in any HTTP request to the service.

The configuration of OAuth is made through the JNDI properties
(such as the URL of the authorization server, the client ID, and the
password of the push service). The JNDI properties also indicate
the security plug-in (mfp.push.services.ext.security) and the fact
that a relational database is used (mfp.push.db.type). The requests
from the mobile devices to the push service are routed to this
service. The context root of the push service must be /imfpush. The
client SDK computes the URL of the push service based on the
URL of the runtime with the context root (/imfpush). If you want
to install the push service on a different server than the runtime,
you need to have an HTTP router that can route the device
requests to the relevant application server.

The class loader is set with delegation parent last as discussed in
the administration service section.

6-34 IBM MobileFirst Platform Foundation V8.0.0

It also needs a data source with JNDI name on Liberty profile. The
JNDI name is imfpush/jdbc/imfPushDS. In an installation by the
Server Configuration Tool or with Ant tasks, the tables of the push
service are in the same database and schema as the tables of the
administration service. The user to access these tables is also the
same.

Other files modification

The Liberty profile jvm.options file is modified. A property
com.ibm.ws.jmx.connector.client.rest.readTimeout is defined to avoid
timeout issues with JMX when the runtime synchronizes with the
administration service.

Testing the installation:
About this task

After the installation is complete, you can use this procedure to test the
components that are installed.

Procedure

1. Start the server by using the command server start mfp1. The binary file for
the server is in liberty_install_dir/bin.

2. Test MobileFirst Operations Console with a web browser.
Go to http://localhost:9080/mfpconsole. By default, the server runs on port
9080. However, you can verify the port in the element <httpEndpoint> as
defined in the server.xml file. A login screen is displayed.

3. Log in with admin/admin.
This user is created by default.

Note: If you connect with HTTP, the login ID and password are sent in clear
text in the network. For a secure login, use HTTPS to log to the server. You can
see the HTTPS port of the Liberty server in the httpsPort attribute of the
<httpEndpoint> element in the server.xml file. By default, the value is 9443.

Installing and configuring 6-35

4. Log out of the console with Hello Admin > Sign Out.
5. Enter the following URL: https://localhost:9443/mfpconsole in the web

browser and accept the certificate.
By default, the Liberty server generates a default certificate that is not known
by your web browser, you need to accept the certificate. Mozilla Firefox
presents this certification as a security exception.

6. Log in again with admin/admin.
The login and password are encrypted between your web browser and
MobileFirst Server. In production, you might want to close the HTTP port.

Creating a farm of two Liberty servers that run MobileFirst Server:
About this task

In this task, you will create a second Liberty server that runs the same MobileFirst
Server and connected to the same database. In production, you might use more
than one server for performance reasons, to have enough servers to serve the
number of transactions per second that is needed for your mobile applications at
peak time. It is also for high availability reasons to avoid having a single point of
failure.

When you have more than one server that runs MobileFirst Server, the servers
must be configured as a farm. This configuration enables any administration
service to contact all the runtimes of a farm. If the cluster is not configured as a
farm, only the runtime that runs in the same application server as the management
service that runs the management operation is notified. Others runtimes are not
aware of the change. For example, you deploy a new version of an adapter in a
cluster that is not configured as a farm, only one server would serve the new
adapter. The other servers would continue to serve the old adapter. The only
situation where you can have a cluster and do not need to configure a farm is
when you install your servers on WebSphere Application Server Network
Deployment. The administration service is able to find all the servers by querying
the JMX beans with the deployment manager. The deployment manager must be
running to allow management operations because it is used to provide the list of
the MobileFirst JMX beans of the cell.

When you create a farm, you also need to configure an HTTP server to send
queries to all the members of the farm. The configuration of an HTTP server is not
included in this tutorial. This tutorial is only about configuring the farm so that
management operations are replicated to all the runtime components of the cluster.

Procedure

1. Create a second Liberty server on the same computer.
a. Start a command line.
b. Go to liberty_install_dir/bin, and enter server create mfp2.

2. Modify the HTTP and HTTPS ports of the server mfp2 so that they do not
conflict with the ports of server mfp1.
a. Go to the second server directory.

The directory is liberty_install_dir/usr/servers/mfp2 or
WLP_USER_DIR/servers/mfp2 (if you modify the directory as described in
step 6 on page 6-24 of “Installing WebSphere Application Server Liberty
Core” on page 6-24).

b. Edit the server.xml file. Replace

6-36 IBM MobileFirst Platform Foundation V8.0.0

<httpEndpoint id="defaultHttpEndpoint"
httpPort="9080"
httpsPort="9443" />

with
<httpEndpoint id="defaultHttpEndpoint"

httpPort="9081"
httpsPort="9444" />

The HTTP and HTTPS ports of the server mfp2 do not conflict with the
ports of the server mfp1 with this change. Make sure to modify the ports
before you run the installation of MobileFirst Server. Otherwise, if you
modify the port after the installation is made, you also need to reflect the
change of the port in the JNDI property: mfp.admin.jmx.port.

3. Copy the Ant file that you used in “Deploying MobileFirst Server to Liberty
with Ant tasks” on page 6-28, and change the value of the property
appserver.was85liberty.serverInstance to mfp2. The Ant tasks detect that the
databases exist and do not create the tables (see the following log extract).
Then, the applications are deployed to the server.

[configuredatabase] Checking connectivity to MobileFirstAdmin database MFPDATA with schema ’MFPDATA’ and user ’mfpuser’...
[configuredatabase] Database MFPDATA exists.
[configuredatabase] Connection to MobileFirstAdmin database MFPDATA with schema ’MFPDATA’ and user ’mfpuser’ succeeded.
[configuredatabase] Getting the version of MobileFirstAdmin database MFPDATA...
[configuredatabase] Table MFPADMIN_VERSION exists, checking its value...
[configuredatabase] GetSQLQueryResult => MFPADMIN_VERSION = 8.0.0
[configuredatabase] Configuring MobileFirstAdmin database MFPDATA...
[configuredatabase] The database is in latest version (8.0.0), no upgrade required.
[configuredatabase] Configuration of MobileFirstAdmin database MFPDATA succeeded.

4. Test the two servers with HTTP connection.
a. Open a web browser.
b. Enter the following URL: http://localhost:9080/mfpconsole. The console

is served by server mfp1.
c. Log in with admin/admin.
d. Open a tab in the same web browser and enter the URL:

http://localhost:9081/mfpconsole. The console is served by server mfp2.
e. Log in with admin/admin. If the installation is done correctly, you can see

the same welcome page in both tabs after login.
f. Return to first browser tab and click Hello, admin > Download Audit Log.

You are logged out of the console and see the login screen again.
This logout behavior is an issue. The problem happens because when you
log on to server mfp2, a Lightweight Third Party Authentication (LTPA)
token is created and stored in your browser as a cookie. However, this LTPA
token is not recognized by server mfp1. Switching between servers is likely
to happen in a production environment when you have an HTTP load
balancer in front of the cluster. To resolve this issue, you must ensure that
both servers (mfp1 and mfp2) generate the LTPA tokens with the same secret
keys. Copy the LTPA keys from server mfp1 to server mfp2.
1) Stop both servers with these commands:

server stop mfp1
server stop mfp2

2) Copy the LTPA keys of server mfp1 to server mfp2.
From liberty_install_dir/usr/servers or WLP_USER_DIR/servers, run
the following command depending on your operating system.
v On UNIX: cp mfp1/resources/security/ltpa.keys

mfp2/resources/security/ltpa.keys

Installing and configuring 6-37

v On Windows: copy mfp1/resources/security/ltpa.keys
mfp2/resources/security/ltpa.keys

g. Restart the servers. Switch from one browser tab to another other does not
require you to relogin. In a Liberty server farm, all servers must have the
same LTPA keys.

5. Enable the JMX communication between the Liberty servers.
The JMX communication with Liberty, is done via the Liberty REST connector
over the HTTPS protocol. To enable this communication, each server of the
farm must be able to recognize the SSL certificate of the other members. You
need to exchange the HTTPS certificates in their truststores. Use IBM utilities
such as Keytool, which is part of the IBM JRE distribution in java/bin to
configure the truststore. The locations of keystore and truststore are defined in
the server.xml file. See the keyStoreRef and trustStoreRef attributes in SSL
configuration attributes. By default, the keystore of Liberty profile is at
WLP_USER_DIR/servers/server_name/resources/security/key.jks. The
password of this default keystore, as can be seen in the server.xml file, is
mobilefirst.

Tip: You can change it with the Keytool utility, but you must also change the
password in the server.xml file so that Liberty server can read that keystore. In
this tutorial, use the default password.
a. In WLP_USER_DIR/servers/mfp1/resources/security, enter keytool -list

-keystore key.jks. The command shows the certificates in the keystore.
There is only one named default. You are prompted for the password of
the keystore (mobilefirst) before you can see the keys. This is the case for
all the next commands with Keytool utility.

b. Export the default certificate of server mfp1 with the command: keytool
-exportcert -keystore key.jks -alias default -file mfp1.cert.

c. In WLP_USER_DIR/servers/mfp2/resources/security, export the default
certificate of server mfp2 with the command: keytool -exportcert
-keystore key.jks -alias default -file mfp2.cert.

d. In the same directory, import the certificate of server mfp1 with the
command: keytool -import -file ../../../mfp1/resources/security/
mfp1.cert -keystore key.jks The certificate of server mfp1 is imported
into the keystore of server mfp2 so that server mfp2 can trust the HTTPS
connections to server mfp1. You are asked to confirm that you trust the
certificate.

e. In WLP_USER_DIR/servers/mfp1/resources/security, import the certificate of
server mfp2 with the command: keytool -import -file
../../../mfp2/resources/security/mfp2.cert -keystore key.jks. After
this step, the HTTPS connections between the two servers are possible.

6. Modify the JNDI properties of each server to configure the farm.
a. Edit the WLP_USER_DIR/servers/mfp1/server.xml file.

1) Set the value of mfp.topology.clustermode property to Farm. The
administrations service operates in farm mode with this setting.

2) Add this JNDI entry: <jndiEntry jndiName="mfp.admin.serverid"
value="mfp1"/>. Each server of the farm needs to have a unique server
ID.

3) Review the value of mfp.admin.jmx.host property. In this tutorial, the
value is set to localhost. This setting is acceptable if all clusters of the
farm are running on the same computer. However, in general, the host
name must be resolvable by all the members of the farm. Set the host
name of the computer as the value of mfp.admin.jmx.host.

6-38 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_ssl.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_ssl.html?lang=en

a. Edit the WLP_USER_DIR/servers/mfp2/server.xml file and proceed with the
same changes. For this JNDI entry (mfp.admin.serverid), you must give a
value that is different from mfp1. Use mfp2.

Note: This procedure shows you the complete manual steps to configure the
already installed Liberty server as the members of a farm. If you plan to install
the server farm members, some steps can be automated by Ant tasks. You can
configure the Ant tasks by setting the values of the following properties:
v Set mfp.farm.configure to true.
v mfp.farm.server.id: An identifier that you define for each farm member.

This identifier must be unique across all farm members.

For more information, see “Installing a server farm with Ant tasks” on page
6-141.

Testing the farm and see the changes in MobileFirst Operations Console:
Procedure

1. Start the two servers:
server start mfp1
server start mfp2

2. Access the console. For example, http://localhost:9080/mfpconsole, or
https://localhost:9443/mfpconsole in HTTPS. In the left sidebar, an extra
menu that is labeled as Server Farm Nodes appears. If you click Server Farm
Nodes, you can view the status of each node. You might need to wait a bit for
both nodes to be started.

Installing MobileFirst Server for a production environment
This section is intended for developers and administrators who want to install and
configure MobileFirst Server for a production environment.

This section provides details, beyond the tutorial about MobileFirst Server
installation, to assist you in planning and preparing an installation for your specific
environment.

For more information about the configuration of the MobileFirst Server, see
“Configuring MobileFirst Server” on page 6-164.

Installation prerequisites
For smooth installation of MobileFirst Server, ensure that you fulfill all the
software prerequisites.

Before you install MobileFirst Server, you need to have the following software:

Database Management System (DBMS)

A DBMS is needed to store the technical data of MobileFirst Server
components. You must use one of the supported DBMS:
v IBM DB2
v MySQL
v Oracle

For more information about the versions of DBMS that are supported by
the product, see “System requirements” on page 2-7. If you use a relational
DBMS (IBM DB2, Oracle, or MySQL), you need the JDBC driver for that

Installing and configuring 6-39

database during the installation process. The JDBC drivers are not
provided by MobileFirst Server installer. Make sure that you have the
JDBC driver.
v For DB2, use the DB2 JDBC driver V4.0 (db2jcc4.jar).
v For MySQL, use the Connector/J JDBC driver.
v For Oracle, use the Oracle thin JDBC driver.

Java application server

A Java application server is needed to run the MobileFirst Server
applications. You can use any of the following application servers:
v WebSphere Application Server Liberty Core
v WebSphere Application Server Liberty Network Deployment
v WebSphere Application Server
v Apache Tomcat

For more information about the versions of application servers that are
supported by the product, see “System requirements” on page 2-7. The
application server must run with Java 7 or later. By default, some versions
of WebSphere Application Server run with Java 6. With this default, they
cannot run MobileFirst Server.

IBM Installation Manager V1.8.4 or later

Installation Manager is used to run the installer of MobileFirst Server. You
must install Installation Manager V1.8.4 or later. The older versions of
Installation Manager are not able to install IBM MobileFirst Platform
Foundation V8.0 because the postinstallation operations of the product
require Java 7. The older versions of Installation Manager come with Java
6.

Download the installer of IBM Installation Manager V1.8.4 or later from
Installation Manager and Packaging Utility download links.

Installation Manager repository for MobileFirst Server

You can download the repository from the IBM MobileFirst Platform
Foundation eAssembly on IBM Passport Advantage. The name of the pack
is IBM MobileFirst Platform Foundation V8.0 .zip file of Installation
Manager Repository for IBM MobileFirst Platform Server.

You might also want to apply the latest fix pack that can be downloaded
from IBM Support Portal. The fix pack cannot be installed without the
repository of the base version in the repositories of Installation Manager.

The IBM MobileFirst Platform Foundation eAssembly includes the following
installers:
v IBM DB2 Workgroup Server Edition
v IBM WebSphere Application Server Liberty Core

For Liberty, you can also use IBM WebSphere SDK Java Technology edition with
IBM WebSphere Application Server Liberty Core supplement.

Running IBM Installation Manager
IBM Installation Manager installs the IBM MobileFirst Platform Server files and
tools on your computer.

6-40 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/docview.wss?uid=swg27025142
http://www.ibm.com/software/passportadvantage/pao_customers.htm
http://www.ibm.com/support/entry/portal/product/other_software/ibm_mobilefirst_platform_foundation

You run Installation Manager to install the binary files of MobileFirst Server and
the tools to deploy the MobileFirst Server applications to an application server on
your computer. The files and tools that are installed by the installer are described
in “Distribution structure of MobileFirst Server” on page 6-61.

You need IBM Installation Manager V1.8.4 or later to run the MobileFirst Server
installer. You can run it either in graphical mode or in command line mode.

Two main options are proposed during the installation process:
v Activation of token licensing
v Installation and deployment of IBM MobileFirst Platform Application Center

Token licensing

Token licensing is one of the two licensing methods supported by
MobileFirst Server. You must determine whether you need to activate
token licensing or not. If you do not have a contract that defines the use of
token licensing with the Rational License Key Server, do not activate token
licensing. If you activate token licensing, you must configure MobileFirst
Server for token licensing. For more information, see “Installing and
configuring for token licensing” on page 6-150.

IBM MobileFirst Platform Application Center

Application Center is a component of IBM MobileFirst Platform
Foundation. With Application Center, you can share mobile applications
that are under development within your organization in a single repository
of mobile applications.

If you choose to install Application Center with Installation Manager, you
must provide the database and the application server parameters so that
Installation Manager configures the databases and deploys Application
Center to the application server. If you choose not to install Application
Center with Installation Manager, Installation Manager saves the WAR file
and the resources of Application Center to your disk. It does not set up the
databases nor deploys Application Center WAR file to your application
server. You can do this later by using Ant tasks or manually. This option to
install Application Center is a convenient way to discover Application
Center because you are guided during the installation process by the
graphical Install wizard.

However, for production installation, use Ant tasks to install Application
Center. The installation with Ant tasks enables you to decouple the
updates to MobileFirst Server from the updates to Application Center.
v Advantage of installing Application Center with Installation Manager.

– A guided graphical wizard assists you through the installation and
deployment process.

v Disadvantages of installing Application Center with Installation
Manager.
– If Installation Manager is run with the root user on UNIX or Linux, it

might create files that are owned by root in the directory of the
application server where Application Center is deployed. As a result,
you must run the application server as root.

– You have no access to the database scripts and cannot provide them
to your database administrator to create the tables before you run the
installation procedure. Installation Manager creates the database
tables for you with default settings.

Installing and configuring 6-41

– Each time when you upgrade the product, for example to install an
interim fix, Application Center is upgraded first. The upgrade of
Application Center includes operations on the database and the
application server. If the upgrade of Application Center fails, it
prevents Installation Manager from completing the upgrade, and
prevents you from upgrading other MobileFirst Server components.
For production installation, do not deploy Application Center with
Installation Manager. Install Application Center separately with Ant
tasks after Installation Manager installsMobileFirst Server. For more
information about Application Center, see “Installing and configuring
the Application Center” on page 6-198.

Important: The MobileFirst Server installer installs only the MobileFirst Server
binary files and tools on your disk. It does not deploy the MobileFirst Server
applications to your application server. After you run the installation with
Installation Manager, you must set up the databases and deploy the MobileFirst
Server applications to your application server. For more information, see:
v “Setting up databases” on page 6-63
v “Topologies and network flows” on page 6-78
v “Installing MobileFirst Server to an application server” on page 6-100

Similarly, when you run Installation Manager to update an existing installation, it
updates only the files on your disk. You need to perform more actions to update
the applications that are deployed to your application servers. To apply an interim
fix or fix pack, see:
v Applying a fix pack or an interim fix with the Server Configuration Tool
v “Applying a fix pack by using the Ant files” on page 6-111
Related tasks:
“Installing IBM Installation Manager” on page 6-6

Administrator versus user mode:

You can install MobileFirst Server in two different IBM Installation Manager
modes. The mode depends on how IBM Installation Manager itself is installed. The
mode determines the directories and commands that you use for both Installation
Manager and packages.

IBM MobileFirst Platform Foundation supports the following two Installation
Manager modes:
v Administrator mode
v User (nonadministrator) mode

Group mode that is available on Linux or UNIX is not supported by the product.

Administrator mode
In administrator mode, Installation Manager must be run as root under
Linux or UNIX, and with administrator privileges under Windows. The
repository files of Installation Manager (that is the list of installed software
and its version) are installed in a system directory. /var/ibm on Linux or
UNIX, or ProgramData on Windows. Do not deploy Application Center
with Installation Manager if you run Installation Manager in administrator
mode. For more information about not deploying Application Center in
administrator mode, see Disadvantages of installing Application Center
with Installation Manager in “Running IBM Installation Manager” on page
6-40.

6-42 IBM MobileFirst Platform Foundation V8.0.0

If you install other IBM software (such as WebSphere Application Server or
Liberty) with Installation Manager in administrator mode, you might want
to move the servers to a directory that can be written by non-root users.
For WebSphere Application Server, create a profile in a different location.
For Liberty, move the directory usr (that contains the server) to a location
that can be written by other users. For an example, see step 6 on page 6-7
in “Installing WebSphere Application Server Liberty Core” on page 6-6 of
the Getting started tutorial.

User (nonadministrator) mode
In user mode, Installation Manager can be run by any user without specific
privileges. However, the repository files of Installation manager are stored
in the user's home directory. Only that user is able to upgrade an
installation of the product.

If you do not run Installation Manager as root, make sure that you have a
user account that is available later when you upgrade the product
installation or apply an interim fix.

For more information about the Installation Manager modes, see Installing as an
administrator, nonadministrator, or group in the IBM Installation Manager
documentation.

Installing by using IBM Installation Manager Install wizard:

Use the graphical user interface (GUI) of Installation Manager to install MobileFirst
Server.

Before you begin

Before you begin with the installation, make sure that Installation Manager V1.8.4
or later is installed. For more information, see “Installing IBM Installation
Manager” on page 6-6.

Download the Installation Manager repository for MobileFirst Server from the IBM
MobileFirst Platform Foundation eAssembly on IBM Passport Advantage. The
name of the image is IBM MobileFirst Platform Foundation V8.0 .zip file of
Installation Manager Repository for IBM MobileFirst Platform Server.

Lastly, go through the following sections to learn more about the installation
options:
v “Administrator versus user mode” on page 6-42
v Token licensing and Application Center installation details

About this task

Follow the steps in the procedure to install the resources of MobileFirst Server, and
the tools (such as the Server Configuration Tool, Ant, and mfpadm program).

The decisions in the following two panes in the installation wizard are mandatory:
v The General settings panel.
v The Choose configuration panel to install Application Center.

Procedure

1. Launch Installation Manager.
2. Add the repository of MobileFirst Server in Installation Manager.

Installing and configuring 6-43

http://www.ibm.com/support/knowledgecenter/SSDV2W_1.8.4/com.ibm.silentinstall12.doc/topics/r_admin_nonadmin.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSDV2W_1.8.4/com.ibm.silentinstall12.doc/topics/r_admin_nonadmin.html?lang=en
http://www.ibm.com/software/passportadvantage/pao_customers.htm

a. Go to File > Preferences and click Add Repositories....
b. Browse for the repository file in the directory where the installer is

extracted.
If you decompress the IBM MobileFirst Platform Foundation V8.0 .zip file
for MobileFirst Server in mfp_installer_directory folder, the repository file
can be found at mfp_installer_directory/MobileFirst_Platform_Server/
disk1/diskTag.inf.
You might also want to apply the latest fix pack that can be downloaded
from IBM Support Portal. Make sure to enter the repository for the fix pack.
If you decompress the fix pack in fixpack_directory folder, the repository
file is found in fixpack_directory/MobileFirst_Platform_Server/disk1/
diskTag.inf.

Note: You cannot install the fix pack without the repository of the base
version in the repositories of Installation Manager. The fix packs are
incremental installers and need the repository of the base version to be
installed.

c. Select the file and click OK.
d. Click OK to close the Preferences panel.

3. After you accept the license terms of the product, click Next.
4. Choose the package group to install the product.

IBM MobileFirst Platform Foundation V8.0 is a replacement for the previous
releases that have a different installation name:
v Worklight for V5.0.6
v IBM Worklight for V6.0 to V6.3
If one of these older versions of the product is installed on your computer,
Installation Manager offers you an option Use an Existing Package Group at
the start of the installation process. This option uninstalls your older version of
the product, and reuse your older installation options to upgrade IBM
MobileFirst Platform Application Center if it was installed. For information
about upgrading an older version of the product, see “Upgrading to IBM
MobileFirst Platform Foundation V8.0.0” on page 5-1.
For a separate installation, select the Create a New Package group option so
that you can install the new version alongside with the older one.
If no other version of the product is installed on your computer, choose the
Create a new package group option to install the product in a new package
group.

5. Click Next.
6. Decide whether to activate token licensing in the Activate token licensing

section of the General settings panel.
If you have a contract to use token licensing with Rational License Key Server,
select Activate token licensing with the Rational License Key Server
option. After you activate token licensing, you must do extra steps to configure
MobileFirst Server. For more information, see “Installing and configuring for
token licensing” on page 6-150.
Otherwise, select Do not activate token licensing with the Rational
License Key Server option to proceed.

7. Keep the default option (No) as-is in the Install IBM MobileFirst Platform
Foundation for iOS section of the General settings panel.

8. Decide whether to install Application Center in Choose configuration panel.

6-44 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/entry/portal/product/other_software/ibm_mobilefirst_platform_foundation

For production installation, use Ant tasks to install Application Center. The
installation with Ant tasks enables you to decouple the updates to MobileFirst
Server from the updates to Application Center. In this case, select No option in
the Choose configuration panel so that Application Center is not installed.
If you select Yes, you need to go through the next panes to enter the details
about the database you plan to use and the application server where you plan
to deploy Application Center. You also need to have the JDBC driver of your
database available.
For more information about installing Application Center, see “Installing and
configuring the Application Center” on page 6-198.

9. Click Next until you reach the Thank You panel. Then, proceed with the
installation.

Results

An installation directory that contains the resources to install MobileFirst
components is installed.

You can find the resources in the following folders:
v MobileFirstServer folder for MobileFirst Server
v PushService folder for MobileFirst Server push service
v ApplicationCenter folder for Application Center
v Analytics folder for MobileFirst Analytics

You can also find some shortcuts for the Server Configuration Tool, Ant, and
mfpadm program in the shortcuts folder.

Installing by running IBM Installation Manager in command line:

Run Installation Manager in command line mode to install MobileFirst Server.

Before you begin

Before you begin with the installation, make sure to go through the following
sections:
v Token licensing and Application Center installation details
v “Administrator versus user mode” on page 6-42

About this task

To get familiar about installing the product with Installation Manager in command
line mode, see “Installing IBM Installation Manager” on page 6-23 and “Installing
MobileFirst Server” on page 6-25 in the installation tutorial.

The MobileFirst Server installer requires some parameters during the installation
process. You need to pass the value of the parameters in the command line for
simple cases. Another way is to define them in the XML response file and run the
installation by using the response file.

The installation by command line in this procedure does not require a response
file. It does not deploy Application Center. You can later deploy it with Ant tasks.
For more information, see “Installing and configuring the Application Center” on
page 6-198.

Installing and configuring 6-45

However, if you prefer to install and deploy Application Center with Installation
Manager, you need a response file. See “Installing by using XML response files
(silent installation)” on page 6-47.

Procedure

1. Review the license agreement for MobileFirst Server. The license files can be
viewed when you download the installation repository from Passport
Advantage.

2. Extract the compressed file of MobileFirst Server repository, that you
downloaded, to a folder.
You can download the repository from the IBM MobileFirst Platform
Foundation eAssembly on IBM Passport Advantage. The name of the pack is
IBM MobileFirst Platform Foundation V8.0 .zip file of Installation
Manager Repository for IBM MobileFirst Platform Server.
In the steps that follow, the directory where you extract the installer is referred
as mfp_repository_dir. It contains a MobileFirst_Platform_Server/disk1
folder.

3. Start a command line and go to installation_manager_install_dir/tools/
eclipse/.

4. If you accept the license agreement after the review in step 1, install
MobileFirst Server.
v For an installation without token licensing enforcement (if you do not have a

contract that defines the use of token licensing), enter the command:
imcl install com.ibm.mobilefirst.foundation.server -repositories
mfp_repository_dir/MobileFirst_Platform_Server/disk1 -properties
user.appserver.selection2=none,user.database.selection2=none,user.database.
preinstalled=false,user.licensed.by.tokens=false,user.use.ios.edition=false
-acceptLicense

v For an installation with token licensing enforcement, enter the command:
imcl install com.ibm.mobilefirst.foundation.server -repositories
mfp_repository_dir/MobileFirst_Platform_Server/disk1 -properties
user.appserver.selection2=none,user.database.selection2=none,user.database.
preinstalled=false,user.licensed.by.tokens=true,user.use.ios.edition=false
-acceptLicense

The value of user.licensed.by.tokens property is set to true. You must
configure MobileFirst Server for token licensing. For more information, see
“Installing and configuring for token licensing” on page 6-150.

The following properties are set to install MobileFirst Server without
Application Center:
v user.appserver.selection2=none

v user.database.selection2=none

v user.database.preinstalled=false

This property indicates whether token licensing is activated or not:
user.licensed.by.tokens=true/false.
Set the value of the user.use.ios.edition property to false to install IBM
MobileFirst Platform Foundation.

5. If you want to install with the latest interim fix, add the interim fix repository
in the -repositories parameter. The -repositories parameter takes a
comma-separated list of repositories.
a. Add the version of the interim fix by replacing

com.ibm.mobilefirst.foundation.server with

6-46 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/software/passportadvantage/pao_customers.htm

com.ibm.mobilefirst.foundation.server_version. version has the form
8.0.0.0-buildNumber. For example, if you install the interim fix
8.0.0.0-IF201601031015, enter the command: imcl install
com.ibm.mobilefirst.foundation.server_8.0.0.00-201601031015
-repositories....
For more information about the imcl command, see Installation Manager:
Installing packages by using imcl commands.

Results

An installation directory that contains the resources to install MobileFirst
components is installed.

You can find the resources in the following folders:
v MobileFirstServer folder for MobileFirst Server
v PushService folder for MobileFirst Server push service
v ApplicationCenter folder for Application Center
v Analytics folder for MobileFirst Analytics

You can also find some shortcuts for the Server Configuration Tool, Ant, and
mfpadm program in the shortcuts folder.

Installing by using XML response files (silent installation):

If you want to install IBM MobileFirst Platform Application Center with IBM
Installation Manager in command line, you need to provide a large list of
arguments. In this case, use the XML response files to provide these arguments.

About this task

Silent installations are defined by an XML file that is called a response file. This file
contains the necessary data to complete installation operations silently. Silent
installations are started from the command line or a batch file.

You can use Installation Manager to record preferences and installation actions for
your response file in user interface mode. Alternatively, you can create a response
file manually by using the documented list of response file commands and
preferences.

Silent installation is described in the Installation Manager user documentation, see
Working in silent mode.

There are two ways to create a suitable response file:
v Working with sample response files provided in the MobileFirst user

documentation.
v Working with a response file recorded on a different computer.

Both of these methods are documented in the following sections.

In addition, for a list of the parameters that are created in the response file by the
Installation Manager wizard, see “Command-line (silent installation) parameters”
on page 6-50.

Installing and configuring 6-47

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.8.4/com.ibm.cic.commandline.doc/topics/t_imcl_install.html?lang=en
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.8.4/com.ibm.cic.commandline.doc/topics/t_imcl_install.html?lang=en
http://ibm.biz/knowctr#SSDV2W_1.8.4/com.ibm.silentinstall12.doc/topics/t_silentinstall_overview.html

Working with sample response files for IBM Installation Manager:

Instructions for working with sample response files for IBM Installation Manager
to facilitate creating a silent MobileFirst Server installation.

Procedure

Sample response files for IBM Installation Manager are provided in the
Silent_Install_Sample_Files.zip compressed file. The following procedures
describe how to use them.
1. Pick the appropriate sample response file from the compressed file. The

Silent_Install_Sample_Files.zip file contains one subdirectory per release.

Important: For an installation that does not install Application Center on an
application server, use the file named install-no-appcenter.xml.
For an installation that installs Application Center, pick the sample response file
from the following table, depending on your application server and database.

Table 6-1. Sample installation response files in the Silent_Install_Sample_Files.zip file to
install the Application Center

Application
server where
you install the
Application
Center Derby IBM DB2 MySQL Oracle

WebSphere
Application
Server Liberty
profile

install-
liberty-
derby.xml

install-
liberty-db2.xml

install-
liberty-
mysql.xml (See
Note)

install-
liberty-
oracle.xml

WebSphere
Application
Server full
profile,
stand-alone
server

install-was-
derby.xml

install-was-
db2.xml

install-was-
mysql.xml (See
Note)

install-was-
oracle.xml

WebSphere
Application
Server Network
Deployment

n/a install-wasnd-
cluster-db2.xml

install-wasnd-
server-db2.xml

install-wasnd-
node-db2.xml

install-wasnd-
cell-db2.xml

install-wasnd-
cluster-
mysql.xml (See
Note)

install-wasnd-
server-
mysql.xml (See
Note)

install-wasnd-
node-mysql.xml

install-wasnd-
cell-mysql.xml
(See Note)

install-wasnd-
cluster-
oracle.xml

install-wasnd-
server-
oracle.xml

install-wasnd-
node-oracle.xml

install-wasnd-
cell-oracle.xml

Apache Tomcat install-tomcat-
derby.xml

install-tomcat-
db2.xml

install-tomcat-
mysql.xml

install-tomcat-
oracle.xml

Note: MySQL in combination with WebSphere Application Server Liberty
profile or WebSphere Application Server full profile is not classified as a

6-48 IBM MobileFirst Platform Foundation V8.0.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/Silent_Install_Sample_Files.zip

supported configuration. For more information, see WebSphere Application
Server Support Statement. You can use IBM DB2 or another DBMS that is
supported by WebSphere Application Server to benefit from a configuration
that is fully supported by IBM Support.
For uninstallation, use a sample file that depends on the version of MobileFirst
Server or Worklight Server that you initially installed in the particular package
group:
v MobileFirst Server uses the package group IBM MobileFirst Platform

Server.
v Worklight Server V6.x, or later, uses the package group IBM Worklight.
v Worklight Server V5.x uses the package group Worklight.

Table 6-2. Sample uninstallation response files in the Silent_Install_Sample_Files.zip

Initial version of MobileFirst Server Sample file

Worklight Server V5.x uninstall-initially-worklightv5.xml

Worklight Server V6.x uninstall-initially-worklightv6.xml

IBM MobileFirst Platform Server V6.x or
later

uninstall-initially-mfpserver.xml

2.

Change the file access rights of the sample file to be as restrictive as possible.
Step 4 requires that you supply some passwords. If you must prevent other
users on the same computer from learning these passwords, you must remove
the read permissions of the file for users other than yourself. You can use a
command, such as the following examples:
v On UNIX:

chmod 600 <target-file.xml>

v On Windows:
cacls <target-file.xml> /P Administrators:F %USERDOMAIN%\%USERNAME%:F

3.

Similarly, if the server is a WebSphere Application Server Liberty profile or
Apache Tomcat server, and the server is meant to be started only from your
user account, you must also remove the read permissions for users other than
yourself from the following file:
v For WebSphere Application Server Liberty profile: wlp/usr/servers/

<server>/server.xml

v For Apache Tomcat: conf/server.xml
4. Adjust the list of repositories, in the <server> element. For more information

about this step, see IBM Installation Manager documentation at Repositories.
In the <profile> element, adjust the values of each key/value pair.
In the <offering> element in the <install> element, set the version attribute to
match the release you want to install, or remove the version attribute if you
want to install the newest version available in the repositories.

5. Type the following command:
<InstallationManagerPath>/eclipse/tools/imcl input <responseFile> -log /tmp/installwl.log -acceptLicense

Where:
v <InstallationManagerPath> is the installation directory of IBM Installation

Manager.
v <responseFile> is the name of the file that is selected and updated in step 1.

Installing and configuring 6-49

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://ibm.biz/knowctr#SSDV2W_1.8.4/com.ibm.silentinstall12.doc/topics/r_repository_types.html

For more information, see the IBM Installation Manager documentation at
Installing a package silently by using a response file.

Working with a response file recorded on a different machine:

Instructions for working with response files for IBM Installation Manager created
on another machine to facilitate creating a silent MobileFirst Server installation.

Procedure

1. Record a response file, by running IBM Installation Manager in wizard mode
and with option -record responseFile on a machine where a GUI is available.
For more details, see Record a response file with Installation Manager.

2.

Change the file access rights of the response file to be as restrictive as possible.
Step 4 requires that you supply some passwords. If you must prevent other
users on the same computer from learning these passwords, you must remove
the read permissions of the file for users other than yourself. You can use a
command, such as the following examples:
v On UNIX:

chmod 600 response-file.xml

v On Windows:
cacls response-file.xml /P Administrators:F %USERDOMAIN%\%USERNAME%:F

3.

Similarly, if the server is a WebSphere Application Server Liberty or Apache
Tomcat server, and the server is meant to be started only from your user
account, you must also remove the read permissions for users other than
yourself from the following file:
v For WebSphere Application Server Liberty: wlp/usr/servers/<server>/

server.xml

v For Apache Tomcat: conf/server.xml
4. Modify the response file to take into account differences between the machine

on which the response file was created and the target machine.
5. Install MobileFirst Server by using the response file on the target machine, as

described in Install a package silently by using a response file.

Command-line (silent installation) parameters:

The response file that you create for silent installations by running the IBM
Installation Manager wizard supports a number of parameters.

6-50 IBM MobileFirst Platform Foundation V8.0.0

http://ibm.biz/knowctr#SSDV2W_1.8.4/com.ibm.silentinstall12.doc/topics/t_silent_response_file_install.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_create_response_files_IM.html
http://ibm.biz/knowctr#SSDV2W_1.7.0/com.ibm.silentinstall12.doc/topics/t_silent_response_file_install.html

Table 6-3. Parameters available for silent installation.

Key When necessary Description
Allowed
values

user.use.ios.edition Always
Set the value
to false if
you plan to
install IBM
MobileFirst
Platform
Foundation.

If you plan to
install the
product for
iOS edition,
you must set
the value to
true.

true or
false

Installing and configuring 6-51

Table 6-3. Parameters available for silent installation (continued).

Key When necessary Description
Allowed
values

user.licensed.by.tokens Always
Activation of
token
licensing

If you plan to
use the
product with
the Rational
License Key
Server, you
must activate
token
licensing. In
this case, set
the value to
true.

If you do not
plan to use
the product
with Rational
License Key
Server, set the
value to
false.

If you activate
license tokens,
specific
configuration
steps are
required after
you deploy
the product to
an application
server. For
more
information,
see “Installing
and
configuring
for token
licensing” on
page 6-150.

true or
false

user.appserver.selection2 Always Type of
application
server. was
means
preinstalled
WebSphere
Application
Server 8.5.5.
tomcat means
Tomcat 7.0.

6-52 IBM MobileFirst Platform Foundation V8.0.0

Table 6-3. Parameters available for silent installation (continued).

Key When necessary Description
Allowed
values

user.appserver.was.installdir ${user.appserver.selection2}
== was

WebSphere
Application
Server
installation
directory.

An absolute
directory
name.

user.appserver.was.profile ${user.appserver.selection2}
== was

Profile into
which to
install the
applications.
For
WebSphere
Application
Server
Network
Deployment,
specify the
Deployment
Manager
profile.
Liberty
means the
Liberty profile
(subdirectory
wlp).

The name of
one of the
WebSphere
Application
Server
profiles.

user.appserver.was.cell ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

WebSphere
Application
Server cell
into which to
install the
applications.

The name of
the
WebSphere
Application
Server cell.

user.appserver.was.node ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

WebSphere
Application
Server node
into which to
install the
applications.
This
corresponds
to the current
machine.

The name of
the
WebSphere
Application
Server node
of the
current
machine.

Installing and configuring 6-53

Table 6-3. Parameters available for silent installation (continued).

Key When necessary Description
Allowed
values

user.appserver.was.scope ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Type of set of
servers into
which to
install the
applications.
server means
a standalone
server.
nd-cell
means a
WebSphere
Application
Server
Network
Deployment
cell.
nd-cluster
means a
WebSphere
Application
Server
Network
Deployment
cluster.
nd-node
means a
WebSphere
Application
Server
Network
Deployment
node
(excluding
clusters).
nd-server
means a
managed
WebSphere
Application
Server
Network
Deployment
server.

server,
nd-cell,
nd-cluster,
nd-node,
nd-server

user.appserver.was.serverInstance${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
${user.appserver.was.scope}
== server

Name of
WebSphere
Application
Server server
into which to
install the
applications.

The name of
a WebSphere
Application
Server server
on the
current
machine.

6-54 IBM MobileFirst Platform Foundation V8.0.0

Table 6-3. Parameters available for silent installation (continued).

Key When necessary Description
Allowed
values

user.appserver.was.nd.cluster ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
${user.appserver.was.scope}
== nd-cluster

Name of
WebSphere
Application
Server
Network
Deployment
cluster into
which to
install the
applications.

The name of
a WebSphere
Application
Server
Network
Deployment
cluster in the
WebSphere
Application
Server cell.

user.appserver.was.nd.node ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
(${user.appserver.was.scope}
== nd-node ||
${user.appserver.was.scope}
== nd-server)

Name of
WebSphere
Application
Server
Network
Deployment
node into
which to
install the
applications.

The name of
a WebSphere
Application
Server
Network
Deployment
node in the
WebSphere
Application
Server cell.

user.appserver.was.nd.server ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
${user.appserver.was.scope}
== nd-server

Name of
WebSphere
Application
Server
Network
Deployment
server into
which to
install the
applications.

The name of
a WebSphere
Application
Server
Network
Deployment
server in the
given
WebSphere
Application
Server
Network
Deployment
node.

user.appserver.was.admin.name ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Name of
WebSphere
Application
Server
administrator.

user.appserver.was.admin.password2${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Password of
WebSphere
Application
Server
administrator,
optionally
encrypted in a
specific way.

Installing and configuring 6-55

Table 6-3. Parameters available for silent installation (continued).

Key When necessary Description
Allowed
values

user.appserver.was.appcenteradmin.password${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Password of
appcenteradmin
user to add to
the
WebSphere
Application
Server users
list, optionally
encrypted in a
specific way.

user.appserver.was.serial ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Suffix that
distinguishes
the
applications
to be installed
from other
installations
of MobileFirst
Server.

String of 10
decimal
digits.

user.appserver.was85liberty.serverInstance_${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
== Liberty

Name of
WebSphere
Application
Server Liberty
server into
which to
install the
applications.

user.appserver.tomcat.installdir${user.appserver.selection2}
== tomcat

Apache
Tomcat
installation
directory. For
a Tomcat
installation
that is split
between a
CATALINA_HOME
directory and
a
CATALINA_BASE
directory, here
you need to
specify the
value of the
CATALINA_BASE
environment
variable.

An absolute
directory
name.

6-56 IBM MobileFirst Platform Foundation V8.0.0

Table 6-3. Parameters available for silent installation (continued).

Key When necessary Description
Allowed
values

user.database.selection2 Always Type of
database
management
system used
to store the
databases.

derby, db2,
mysql,
oracle, none

The value
none means
that the
installer will
not install
the
Application
Center. If
this value is
used, both
user.appserver.selection2
and
user.database.selection2
must take
the value
none.

user.database.preinstalled Always true means a
preinstalled
database
management
system, false
means Apache
Derby to
install.

true, false

user.database.derby.datadir ${user.database.selection2}
== derby

The directory
in which to
create or
assume the
Derby
databases.

An absolute
directory
name.

user.database.db2.host ${user.database.selection2}
== db2

The host
name or IP
address of the
DB2 database
server.

user.database.db2.port ${user.database.selection2}
== db2

The port
where the
DB2 database
server listens
for JDBC
connections.
Usually 50000.

A number
between 1
and 65535.

user.database.db2.driver ${user.database.selection2}
== db2

The absolute
file name of
db2jcc4.jar.

An absolute
file name.

Installing and configuring 6-57

Table 6-3. Parameters available for silent installation (continued).

Key When necessary Description
Allowed
values

user.database.db2.appcenter.username${user.database.selection2}
== db2

The user
name used to
access the
DB2 database
for
Application
Center.

Non-empty.

user.database.db2.appcenter.password${user.database.selection2}
== db2

The password
used to access
the DB2
database for
Application
Center,
optionally
encrypted in a
specific way.

Non-empty
password.

user.database.db2.appcenter.dbname${user.database.selection2}
== db2

The name of
the DB2
database for
Application
Center.

Non-empty;
a valid DB2
database
name.

user.database.oracle.appcenter.isservicename.jdbc.urlOptional Indicates if
user.database.mysql.appcenter.dbname
is a Service
name or a SID
name. If the
parameter is
absent then
user.database.mysql.appcenter.dbname
is considered
to be a SID
name.

true
(indicates a
Service
name) or
false
(indicates a
SID name)

user.database.db2.appcenter.schema${user.database.selection2}
== db2

The name of
the schema
for
Application
Center in the
DB2 database.

user.database.mysql.host ${user.database.selection2}
== mysql

The host
name or IP
address of the
MySQL
database
server.

user.database.mysql.port ${user.database.selection2}
== mysql

The port
where the
MySQL
database
server listens
for JDBC
connections.
Usually 3306.

A number
between 1
and 65535.

6-58 IBM MobileFirst Platform Foundation V8.0.0

Table 6-3. Parameters available for silent installation (continued).

Key When necessary Description
Allowed
values

user.database.mysql.driver ${user.database.selection2}
== mysql

The absolute
file name of
mysql-
connector-
java-5.*-
bin.jar.

An absolute
file name.

user.database.mysql.appcenter.username${user.database.selection2}
== mysql

The user
name used to
access the
MySQL
database for
Application
Center.

Non-empty.

user.database.mysql.appcenter.password${user.database.selection2}
== mysql

The password
used to access
the MySQL
database for
Application
Center,
optionally
encrypted in a
specific way.

user.database.mysql.appcenter.dbname${user.database.selection2}
== mysql

The name of
the MySQL
database for
Application
Center.

Non-empty,
a valid
MySQL
database
name.

user.database.oracle.host ${user.database.selection2}
== oracle, unless
${user.database.oracle.appcenter.jdbc.url}
is specified

The host
name or IP
address of the
Oracle
database
server.

user.database.oracle.port ${user.database.selection2}
== oracle, unless
${user.database.oracle.appcenter.jdbc.url}
is specified

The port
where the
Oracle
database
server listens
for JDBC
connections.
Usually 1521.

A number
between 1
and 65535.

user.database.oracle.driver ${user.database.selection2}
== oracle

The absolute
file name of
the Oracle
thin driver jar
file.
(ojdbc6.jar
or
ojdbc7.jar)

An absolute
file name.

Installing and configuring 6-59

Table 6-3. Parameters available for silent installation (continued).

Key When necessary Description
Allowed
values

user.database.oracle.appcenter.username${user.database.selection2}
== oracle

The user
name used to
access the
Oracle
database for
Application
Center.

A string
consisting of
1 to 30
characters:
ASCII digits,
ASCII
uppercase
and
lowercase
letters, '_', '#',
'$' are
allowed.

user.database.oracle.appcenter.username.jdbc${user.database.selection2}
== oracle

The user
name used to
access the
Oracle
database for
Application
Center, in a
syntax
suitable for
JDBC.

Same as
${user.database.oracle.appcenter.username}
if it starts
with an
alphabetic
character
and does not
contain
lowercase
characters,
otherwise it
must be
${user.database.oracle.appcenter.username}
surrounded
by double
quotes.

user.database.oracle.appcenter.password${user.database.selection2}
== oracle

The password
used to access
the Oracle
database for
Application
Center,
optionally
encrypted in a
specific way.

The
password
must be a
string
consisting of
1 to 30
characters:
ASCII digits,
ASCII
uppercase
and
lowercase
letters, '_', '#',
'$' are
allowed.

user.database.oracle.appcenter.dbname${user.database.selection2}
== oracle, unless
${user.database.oracle.appcenter.jdbc.url}
is specified

The name of
the Oracle
database for
Application
Center.

Non-empty,
a valid
Oracle
database
name.

6-60 IBM MobileFirst Platform Foundation V8.0.0

Table 6-3. Parameters available for silent installation (continued).

Key When necessary Description
Allowed
values

user.database.oracle.appcenter.isservicename.jdbc.urlOptional Indicates if
user.database.oracle.appcenter.dbname
is a Service
name or a SID
name. If the
parameter is
absent then
user.database.oracle.appcenter.dbname
is considered
to be a SID
name.

true
(indicates a
Service
name) or
false
(indicates a
SID name)

user.database.oracle.appcenter.jdbc.url${user.database.selection2}
== oracle, unless
${user.database.oracle.host},
${user.database.oracle.port},
${user.database.oracle.appcenter.dbname}
are all specified

The JDBC
URL of the
Oracle
database for
Application
Center.

A valid
Oracle JDBC
URL. Starts
with
"jdbc:oracle:".

user.writable.data.user Always The operating
system user
that is
allowed to
run the
installed
server.

An operating
system user
name, or
empty.

user.writable.data.group2 Always The operating
system users
group that is
allowed to
run the
installed
server.

An operating
system users
group name,
or empty.

Distribution structure of MobileFirst Server:

The MobileFirst Server files and tools are installed in the MobileFirst Server
installation directory.

Table 6-4. Files and subdirectories in the Analytics subdirectory

Item Description

analytics.ear and analytics-*.war The EAR and WAR files to install IBM
MobileFirst Analytics.

configuration-samples Contains the sample Ant files to install
MobileFirst Analytics with Ant tasks.

Table 6-5. Files and subdirectories in the ApplicationCenter subdirectory

Item Description

configuration-samples Contains the sample Ant files to install
Application Center. The Ant tasks create the
database table and deploy WAR files to an
application server.

Installing and configuring 6-61

Table 6-5. Files and subdirectories in the ApplicationCenter subdirectory (continued)

Item Description

console Contains the EAR and WAR files to install
Application Center. The EAR file is uniquely
for IBM PureApplication System.

databases Contains the SQL scripts to be used for the
manual creation of tables for Application
Center.

installer Contains the resources to create the
Application Center client.

tools The tools of Application Center.

Table 6-6. Files and subdirectories in the MobileFirstServer subdirectory

Item Description

mfp-ant-deployer.jar A set of MobileFirst Server Ant tasks.

mfp-*.war The WAR files of the MobileFirst Server
components.

configuration-samples Contains the sample Ant files to install
MobileFirst Server components with Ant
tasks.

ConfigurationTool Contains the binary files of the Server
Configuration Tool. The tool is launched
from mfp_server_install_dir/shortcuts.

databases Contains the SQL scripts to be used for the
manual creation of tables for MobileFirst
Server components (MobileFirst Server
administration service, MobileFirst Server
configuration service, and MobileFirst
runtime).

external-server-libraries Contains the JAR files that are used by
different tools (such as the authenticity tool
and the OAuth security tool).

Table 6-7. Files and subdirectories in the PushService subdirectory

Item Description

mfp-push-service.war The WAR file to install MobileFirst Server
push service.

databases Contains the SQL scripts to be used for the
manual creation of tables for MobileFirst
Server push service.

Table 6-8. Files and subdirectories in the License subdirectory

Item Description

Text Contains the license for IBM MobileFirst
Platform Foundation.

6-62 IBM MobileFirst Platform Foundation V8.0.0

Table 6-9. Files and subdirectories in the MobileFirst Server installation directory

Item Description

shortcuts Launcher scripts for Apache Ant, the Server
Configuration Tool, and the mfpadmin
command, which are supplied with
MobileFirst Server.

Table 6-10. Files and subdirectories in the tools subdirectory

Item Description

tools/apache-ant-<version> A binary installation of Apache Ant that is
used by the Server Configuration Tool. It can
also be used to run the Ant tasks.

Setting up databases
Set up the database to be used by MobileFirst Server components.

The following MobileFirst Server components need to store technical data into a
database:
v MobileFirst Server administration service
v MobileFirst Server live update service
v MobileFirst Server push service
v MobileFirst runtime

Note: If multiple runtime instances are installed with different context root, each
instance needs its own set of tables.

The database can be a relational database such as IBM DB2, Oracle, or MySQL.

Relational databases (DB2, Oracle, or MySQL)

Each component needs a set of tables. The tables can be created manually
by running the SQL scripts specific to each component (see “Create the
database tables manually” on page 6-67), by using Ant Tasks, or the Server
Configuration Tool. The table names of each component do not overlap.
Thus, it is possible to put all the tables of these components under a single
schema.

However, if you decide to install multiple instances of MobileFirst runtime,
each with its own context root in the application server, every instance
needs its own set of tables. In this case, they need to be in different
schemas.

Relational databases:

Understand the users, privileges, and database requirement before you set up the
database tables.

Ensure that you have one of the following relational databases:
v IBM DB2
v MySQL
v Oracle

For more information about the versions of database that are supported by the
product, see “System requirements” on page 2-7.

Installing and configuring 6-63

Database users and privileges:

At run time, the MobileFirst Server applications in the application server use data
sources as resources to obtain connection to relational databases. The data source
needs a user with certain privileges to access the database.

You need to configure a data source for each MobileFirst Server application that is
deployed to the application server to have the access to the relational database.
The data source requires a user with specific privileges to access the database. The
number of users that you need to create depends on the installation procedure that
is used to deploy MobileFirst Server applications to the application server.

Installation with the Server Configuration Tool
The same user is used for all components (MobileFirst Server
administration service, MobileFirst Server configuration service,
MobileFirst Server push service, and MobileFirst runtime)

Installation with Ant tasks
The sample Ant files that are provided in the product distribution use the
same user for all components. However, it is possible to modify the Ant
files to have different users:
v The same user for the administration service and the configuration

service as they cannot be installed separately with Ant tasks.
v A different user for the runtime
v A different user for the push service.

Manual installation
It is possible to assign a different data source, and thus a different user, to
each of the MobileFirst Server components.

At run time, the users must have the following privileges on the tables and
sequences of their data:
v SELECT TABLE

v INSERT TABLE

v UPDATE TABLE

v DELETE TABLE

v SELECT SEQUENCE

If the tables are not created manually before you run the installation with Ant
Tasks or the Server Configuration Tool, ensure that you have a user that is able to
create the tables. It also needs the following privileges:
v CREATE INDEX

v CREATE SEQUENCE

v CREATE TABLE

For an upgrade of the product, it needs these additional privileges:
v ALTER TABLE

v CREATE VIEW

v DROP INDEX

v DROP SEQUENCE

v DROP TABLE

v DROP VIEW

6-64 IBM MobileFirst Platform Foundation V8.0.0

Database requirements:

The database stores all the data of the MobileFirst Server applications. Before you
install the MobileFirst Server components, ensure that the database requirements
are met.

DB2 database and user requirements:

Review the database requirement for DB2. Follow the steps to create user,
database, and setup your database to meet the specific requirement.

About this task

The page size of the database must be at least 32768.The following procedure
creates a database with a page size 32768. It also creates a user (mfpuser) and then
grants the database access to this user. This user can then be used by the Server
Configuration Tool or the Ant tasks to create the tables.

Procedure

1. Create a system user named, for example, mfpuser in a DB2 admin group such
as DB2USERS, by using the appropriate commands for your operating system.
Give it a password, for example, mfpuser.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions.
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin and enter ./db2.

3. To create the MobileFirst Server database, enter the SQL statements similar to
the following example.
Replace the user name mfpuser with your own.
CREATE DATABASE MFPDATA COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO MFPDATA
GRANT CONNECT ON DATABASE TO USER mfpuser
DISCONNECT MFPDATA
QUIT

Oracle database and user requirements:

Review the database requirement for Oracle. Follow the steps to create user,
database, and setup your database to meet the specific requirement.

About this task

Ensure that you set the database character set as Unicode character set
(AL32UTF8) and the national character set as UTF8 - Unicode 3.0 UTF-8.

The runtime user (as discussed is “Database users and privileges” on page 6-64)
must have an associated table space and enough quota to write the technical data
required by the MobileFirst services. For more information about the tables that are
used by the product, see “Internal runtime databases” on page 6-315.

The tables are expected to be created in the default schema of the runtime user.
The Ant tasks and the Server Configuration Tool create the tables in the default
schema of the user passed as argument. For more information about the creation of
tables, see “Creating the Oracle database tables manually” on page 6-68.

Installing and configuring 6-65

The procedure creates a database if needed. A user that can create tables and index
in this database is added and used as a runtime user.

Procedure

1. If you do not already have a database, use the Oracle Database Configuration
Assistant (DBCA) and follow the steps in the wizard to create a new
general-purpose database, named ORCL in this example:
a. Use global database name ORCL_your_domain, and system identifier (SID)

ORCL.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts because you must first create a user account.
c. On the Character Sets tab of the step Initialization Parameters, select Use

Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8
national character set.

d. Complete the procedure, accepting the default values.
2. Create a database user by using either Oracle Database Control or the Oracle

SQLPlus command line interpreter.
v Using Oracle Database Control:

a. Connect as SYSDBA.
b. Go to the Users page and click Server, then Users in the Security section.
c. Create a user, for example MFPUSER.
d. Assign the following attributes:

– Profile: DEFAULT
– Authentication: password
– Default tablespace: USERS
– Temporary tablespace: TEMP
– Status: Unlocked
– Add system privilege: CREATE SESSION
– Add system privilege: CREATE SEQUENCE
– Add system privilege: CREATE TABLE
– Add quota: Unlimited for tablespace USERS

v Using the Oracle SQLPlus command line interpreter:
The commands in the following example create a user named MFPUSER for the
database:

CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER MFPUSER IDENTIFIED BY MFPUSER_password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO MFPUSER;
DISCONNECT;

MySQL database and user requirements:

Review the database requirement for MySQL. Follow the steps to create user,
database, and configure your database to meet the specific requirement.

About this task

Make sure that you set the character set to UTF8.

The following properties must be assigned with appropriate values:
v max_allowed_packet with 256 M or more

6-66 IBM MobileFirst Platform Foundation V8.0.0

v innodb_log_file_size with 250 M or more

For more information about how to set the properties, see MySQL documentation.

The procedure creates a database (MFPDATA) and a user (mfpuser) that can connect
to the database with all privileges from a host (mfp-host).

Procedure

1. Run a MySQL command line client with the option -u root.
2. Enter the following commands:

CREATE DATABASE MFPDATA CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON MFPDATA.* TO ’mfpuser’@’mfp-host’ IDENTIFIED BY ’mfpuser-password’;
GRANT ALL PRIVILEGES ON MFPDATA.* TO ’mfpuser’@’localhost’ IDENTIFIED BY ’mfpuser-password’;
FLUSH PRIVILEGES;

Where mfpuser before the "at" sign (@) is the user name, mfpuser-password after
IDENTIFIED BY is its password, and mfp-host is the name of the host on which
IBM MobileFirst Platform Foundation runs.
The user must be able to connect to the MySQL server from the hosts that run
the Java application server with the MobileFirst Server applications installed.

Create the database tables manually:

The database tables for the MobileFirst Server applications can be created
manually, with Ant Tasks, or with the Server Configuration Tool. The topics
provide the explanation and details on how to create them manually.

Depending on your choice of the supported database management system (DBMS),
select one of the following topics to create the database tables manually.

Creating the DB2 database tables manually:

Use the SQL scripts that are provided in the MobileFirst Server installation to
create the DB2 database tables.

Before you begin

The DB2 database must fulfill the requirement as described in “DB2 database and
user requirements” on page 6-65.

About this task

As described in “Setting up databases” on page 6-63, all the four MobileFirst
Server components need tables. They can be created in the same schema or in
different schemas. However, some constraints apply depending on how the
MobileFirst Server applications are deployed to the Java application server. They
are the similar to the topic about the possible users for DB2 as described in
“Database users and privileges” on page 6-64.

Installation with the Server Configuration Tool
The same schema is used for all components (MobileFirst Server
administration service, MobileFirst Server live update service, MobileFirst
Server push service, and MobileFirst runtime)

Installation with Ant tasks
The sample Ant files that are provided in the product distribution use the
same schema for all components. However, it is possible to modify the Ant
files to have different schemas:

Installing and configuring 6-67

http://dev.mysql.com/doc/

v The same schema for the administration service and the live update
service as they cannot be installed separately with Ant tasks.

v A different schema for the runtime
v A different schema for the push service.

Manual installation
It is possible to assign a different data source, and thus a different schema,
to each of the MobileFirst Server components.

The scripts to create the tables are as follows:
v For the administration service, in mfp_install_dir/MobileFirstServer/

databases/create-mfp-admin-db2.sql.
v For the live update service, in mfp_install_dir/MobileFirstServer/databases/

create-configservice-db2.sql.
v For the runtime component, in mfp_install_dir/MobileFirstServer/databases/

create-runtime-db2.sql.
v For the push service, in mfp_install_dir/PushService/databases/create-push-

db2.sql.

The following procedure creates the tables for all the applications in the same
schema (MFPSCM). It assumes that a database and a user are already created. For
more information, see “DB2 database and user requirements” on page 6-65.

Procedure

Run DB2 with the following commands with the user (mfpuser):
db2 CONNECT TO MFPDATA
db2 SET CURRENT SCHEMA = ’MFPSCM’
db2 -vf mfp_install_dir/MobileFirstServer/databases/create-mfp-admin-db2.sql
db2 -vf mfp_install_dir/MobileFirstServer/databases/create-configservice-db2.sql -t
db2 -vf mfp_install_dir/MobileFirstServer/databases/create-runtime-db2.sql -t
db2 -vf mfp_install_dir/PushService/databases/create-push-db2.sql -t

If the tables are created by mfpuser, this user has the privileges on the tables
automatically and can use them at run time. If you want to restrict the privileges
of the runtime user as described in “Database users and privileges” on page 6-64
or a finer control of privileges, refer to the DB2 documentation.

Creating the Oracle database tables manually:

Use the SQL scripts that are provided in the MobileFirst Server installation to
create the Oracle database tables.

Before you begin

The Oracle database must fulfill the requirement as described in “Oracle database
and user requirements” on page 6-65.

About this task

As described in “Setting up databases” on page 6-63, all the four MobileFirst
Server components need tables. They can be created in the same schema or in
different schemas. However, some constraints apply depending on how the
MobileFirst Server applications are deployed to the Java application server. The
details are described in “Database users and privileges” on page 6-64.

6-68 IBM MobileFirst Platform Foundation V8.0.0

The tables must be created in the default schema of the runtime user. The scripts to
create the tables are as follows:
v For the administration service, in mfp_install_dir/MobileFirstServer/

databases/create-mfp-admin-oracle.sql.
v For the live update service, in mfp_install_dir/MobileFirstServer/databases/

create-configservice-oracle.sql.
v For the runtime component, in mfp_install_dir/MobileFirstServer/databases/

create-runtime-oracle.sql.
v For the push service, in mfp_install_dir/PushService/databases/create-push-

oracle.sql.

The following procedure creates the tables for all the applications for the same user
(MFPUSER). It assumes that a database and a user are already created. For more
information, see “Oracle database and user requirements” on page 6-65.

Procedure

Run the following commands in Oracle SQLPlus:
CONNECT MFPUSER/MFPUSER_password@ORCL
@mfp_install_dir/MobileFirstServer/databases/create-mfp-admin-oracle.sql
@mfp_install_dir/MobileFirstServer/databases/create-configservice-oracle.sql
@mfp_install_dir/MobileFirstServer/databases/create-runtime-oracle.sql
@mfp_install_dir/PushService/databases/create-push-oracle.sql
DISCONNECT;

If the tables are created by MFPUSER, this user has the privileges on the tables
automatically and can use them at run time. The tables are created in the user's
default schema. If you want to restrict the privileges of the runtime user as
described in “Database users and privileges” on page 6-64 or have a finer control
of privileges, refer to the Oracle documentation.

Creating the MySQL database tables manually:

Use the SQL scripts that are provided in the MobileFirst Server installation to
create the MySQL database tables.

Before you begin

The MySQL database must fulfill the requirement as described in “MySQL
database and user requirements” on page 6-66.

About this task

As described in “Setting up databases” on page 6-63, all the four MobileFirst
Server components need tables. They can be created in the same schema or in
different schemas. However, some constraints apply depending on how the
MobileFirst Server applications are deployed to the Java application server. They
are the similar to the topic about the possible users for MySQL as described in
“Database users and privileges” on page 6-64.

Installation with the Server Configuration Tool
The same database is used for all components (MobileFirst Server
administration service, MobileFirst Server live update service, MobileFirst
Server push service, and MobileFirst runtime)

Installing and configuring 6-69

Installation with Ant tasks
The sample Ant files that are provided in the product distribution use the
same database for all components. However, it is possible to modify the
Ant files to have different database:
v The same database for the administration service and the live update

service as they cannot be installed separately with Ant tasks.
v A different database for the runtime
v A different database for the push service.

Manual installation
It is possible to assign a different data source, and thus a different
database, to each of the MobileFirst Server components.

The scripts to create the tables are as follows:
v For the administration service, in mfp_install_dir/MobileFirstServer/

databases/create-mfp-admin-mysql.sql.
v For the live update service, in mfp_install_dir/MobileFirstServer/databases/

create-configservice-mysql.sql.
v For the runtime component, in mfp_install_dir/MobileFirstServer/databases/

create-runtime-mysql.sql.
v For the push service, in mfp_install_dir/PushService/databases/create-push-

mysql.sql.

The following example creates the tables for all the applications for the same user
and database. It assumes that a database and a user has been created as in
'Requirements for the databases/MySQL'

The following procedure creates the tables for all the applications for the same user
(mfpuser) and database (MFPDATA). It assumes that a database and a user are already
created. For more information, see “MySQL database and user requirements” on
page 6-66.

Procedure

1. Run a MySQL command line client with the option: -u mfpuser.
2. Enter the following commands:

USE MFPDATA;
SOURCE mfp_install_dir/MobileFirstServer/databases/create-mfp-admin-mysql.sql;
SOURCE mfp_install_dir/MobileFirstServer/databases/create-configservice-mysql.sql;
SOURCE mfp_install_dir/MobileFirstServer/databases/create-runtime-mysql.sql;
SOURCE mfp_install_dir/PushService/databases/create-push-mysql.sql;

Create the database tables with the Server Configuration Tool:

The database tables for the MobileFirst Server applications can be created
manually, with Ant Tasks, or with the Server Configuration Tool. The topics
provide the explanation and details about database setup when you install
MobileFirst Server with the Server Configuration Tool.

The Server Configuration Tool can create the database tables as part of the
installation process. In some cases, it can even create a database and a user for the
MobileFirst Server components. For an overview of the installation process with
theServer Configuration Tool, see “Installing MobileFirst Server in graphical mode”
on page 6-5.

6-70 IBM MobileFirst Platform Foundation V8.0.0

After you complete the configuration credentials and click Deploy in the Server
Configuration Tool pane, the following operations are run:
v Create the database and user if needed.
v Verify whether the MobileFirst Server tables exist in the database. If they do not

exist, create the tables.
v Deploys the MobileFirst Server applications to the application server.

If the database tables are created manually before you run the Server
Configuration Tool, the tool can detect them and skip the phase of setting up the
tables.

Depending on your choice of the supported database management system (DBMS),
select one of the following topics for more details on how the tool creates the
database tables.

Creating the DB2 database tables with the Server Configuration Tool:

Use the Server Configuration Tool that is provided with MobileFirst Server
installation to create the DB2 database tables.

About this task

The Server Configuration Tool can create a database in the default DB2 instance. In
Database Selection panel of the Server Configuration Tool, select the IBM DB2
option. In the next three panes, enter the database credentials. If the database name
that is entered in the Database Additional Settings panel does not exist in the DB2
instance, you can enter additional information to enable the tool to create a
database for you.

The following procedure provides some extra steps that you need to do when you
create the database table with the tool.

Procedure

1. Run an SSH server on the computer that runs the DB2 database.
The Server Configuration Tool opens an SSH session to the DB2 host to create
the database. Except on Linux and some versions of UNIX systems, the SSH
server is needed even if the DB2 database runs on the same computer as the
Server Configuration Tool.

2. In the Database creation request panel, enter the login ID and password of a
DB2 user with administration privileges (SYSADM or SYSCTRL permissions).
You need to provide this user with the administration privileges if the DB2 user
that is entered in the Database Additional Settings panel does not have those
permissions.

Results

The Server Configuration Tool creates the database tables with default settings
with the following SQL statement:
CREATE DATABASE MFPDATA COLLATE USING SYSTEM PAGESIZE 32768

It is not meant to be used for production as in a default DB2 installation, many
privileges are granted to PUBLIC.

Installing and configuring 6-71

Creating the Oracle database tables with the Server Configuration Tool:

Use the Server Configuration Tool that is provided with MobileFirst Server
installation to create the Oracle database tables.

About this task

In Database Selection panel of the Server Configuration Tool, select the Oracle
Standard or Enterprise Editions, 11g or 12c option. In the next three panes,
enter the database credentials.

When you enter the Oracle user name in Database Additional Settings panel, it
must be in uppercase. If you have an Oracle database user (FOO), but you enter a
user name with lowercase (foo), the Server Configuration Tool considers it as
another user. Unlike other tools for Oracle database, the Server Configuration Tool
protects the user name against automatic conversion to uppercase.

The Server Configuration Tool uses a service name or Oracle System Identifier
(SID) to identify a database. However, if you want to make the connection to
Oracle RAC, you need to enter a complex JDBC URL. In this case, in the Database
Settings panel, select the Connect using generic Oracle JDBC URLs option and
enter a URL for the Oracle thin driver.

If you need to create database and user for Oracle, use the Oracle Database
Creation Assistant (DBCA) tool. For more information, see “Oracle database and
user requirements” on page 6-65.

The Server Configuration Tool can do the same but with a limitation. The tool can
create a user for Oracle 11g or Oracle 12g. However, it can create a database only
for Oracle 11g, and not for Oracle 12c.

If the database name or user name that is entered in the Database Additional
Settings panel does not exist, refer to the following two sections for the extra steps
to create the database or the user.

Creating the database:
Procedure

1. Run an SSH server on the computer that runs the Oracle database.
The Server Configuration Tool opens an SSH session to the Oracle host to
create the database. Except on Linux and some versions of UNIX systems, the
SSH server is needed even if the Oracle database runs on the same computer as
the Server Configuration Tool.

2. In Database creation request panel, enter the login ID and password of an
Oracle database user that has the privileges to create a database.

3. In the same panel, also enter the password for the SYS user and the SYSTEM user
for the database that is to be created.

Results

A database is created with the SID name that is entered in the Database
Additional Settings panel. It is not meant to be used for production.

Creating the user:
Procedure

1. Run an SSH server on the computer that runs the Oracle database.

6-72 IBM MobileFirst Platform Foundation V8.0.0

The Server Configuration Tool opens an SSH session to the Oracle host to
create the database. Except on Linux and some versions of UNIX systems, the
SSH server is needed even if the Oracle database runs on the same computer as
the Server Configuration Tool.

2. In the Database Additional Settings panel, enter the login ID and password of
the database user that is to be created.

3. In Database creation request panel, enter the login ID and password of an
Oracle database user that has the privileges to create a database user.

4. In same panel, also enter the password for the SYSTEM user of the database.

Results

A database user is created with the name and password that are entered in the
Database Additional Settings panel.

Creating the MySQL database tables with the Server Configuration Tool:

Use the Server Configuration Tool that is provided with MobileFirst Server
installation to create the MySQL database tables.

About this task

The Server Configuration Tool can create a MySQL database for you. In Database
Selection panel of the Server Configuration Tool, select the MySQL 5.5.x, 5.6.x or
5.7.x option. In the next three panes, enter the database credentials. If the database
or the user that you enter in the Database Additional Settings panel does not
exist, the tool can create it.

If MySQL server does not have the settings that are recommended in “MySQL
database and user requirements” on page 6-66, the Server Configuration Tool
displays a warning. Make sure to fulfill the requirements before you run the Server
Configuration Tool.

The following procedure provides some extra steps that you need to do when you
create the database tables with the tool.

Procedure

1. In the Database Additional Settings panel, besides the connection settings, you
must enter all the hosts from which the user is allowed to connect to the
database. That is, all the hosts where MobileFirst Server runs.

2. In the Database creation request panel, enter the login ID and the password of
a MySQL administrator. By default, the administrator is root.

Create the database tables with Ant tasks:

The database tables for the MobileFirst Server applications can be created
manually, with Ant Tasks, or with the Server Configuration Tool. The topics
provide the explanation and details on how to create them with Ant tasks.

You can find relevant information in this section about the setting up of the
database if MobileFirst Server is installed with Ant Tasks.

Installing and configuring 6-73

You can use Ant Tasks to set up the MobileFirst Server database tables. In some
cases, you can also create a database and a user with these tasks. For an overview
of the installation process with Ant Tasks, see “Installing MobileFirst Server in
command line mode” on page 6-22.

A set of sample Ant files is provided with the installation to help you get started
with the Ant tasks. You can find the files in mfp_install_dir/MobileFirstServer/
configurations-samples. The files are named after the following patterns:

configure-<appserver>-<dbms>.xml
The Ant files can do these tasks:
v Create the tables in a database if the database and database user exist.

The requirements for the database are listed in “Database requirements”
on page 6-65.

v Deploy the WAR files of the MobileFirst Server components to the
application server. These Ant files use the same database user to create
the tables, and to install the run time database user for the applications
at run time. The files also use the same database user for all
theMobileFirst Server applications.

create-database-<dbms>.xml
The Ant files can create a database if needed on the supported database
management system (DBMS), and then create the tables in the database.
However, as the database is created with default settings, it is not meant to
be used for production.

In the Ant files, you can find the predefined targets that use configureDatabase
Ant task to set up the database. For more information, see “Ant configuredatabase
task reference” on page 6-268.

Using the sample Ant files

The sample Ant files have predefined targets. Follow this procedure to use the
files.
1. Copy the Ant file according to your application server and database

configuration in a working directory.
2. Edit the file and enter the values for your configuration in the <! -- Start of

Property Parameters --> section for the Ant file.
3. Run the Ant file with the databases target: mfp_install_dir/shortcuts/ant -f

your_ant_file databases.

This command creates the tables in the specified database and schema for all
MobileFirst Server applications (MobileFirst Server administration service,
MobileFirst Server live update service, MobileFirst Server push service, and
MobileFirst Server runtime). A log for the operations is produced and stored in
your disk.
v On Windows, it is in C:\Users\user_name\Documents\IBM MobileFirst Platform

Server Data\Configuration Logs\ directory.
v On UNIX, it is in $HOME/.mobilefirst_platform_server/configuration-logs/

directory.

Different users for the database tables creation and for run time

The sample Ant files in mfp_install_dir/MobileFirstServer/configurations-
samples use the same database user for:

6-74 IBM MobileFirst Platform Foundation V8.0.0

v All the MobileFirst Server applications (the administration service, the live
update service, the push service, and the runtime)

v The user that is used to create the database and the user at run time for the data
source in the application server.

If you want to separate the users as described in “Database users and privileges”
on page 6-64, you need to create your own Ant file, or modify the sample Ant files
so that each database target has a different user. For more information, see
“Installation reference” on page 6-268.

For DB2 and MySQL, it is possible to have different users for the database creation
and for the run time. The privileges for each type of the users are listed in
“Database users and privileges” on page 6-64. For Oracle, you cannot have a
different user for database creation and for the run time. The Ant tasks consider
that the tables are in the default schema of a user. If you want to reduce privileges
for the runtime user, you must create the tables manually in the default schema of
the user that will be used at run time. For more information, see “Creating the
Oracle database tables manually” on page 6-68.

Depending on your choice of the supported database management system (DBMS),
select one of the following topics to create the database with Ant tasks.

Creating the DB2 database tables with Ant tasks:

Use Ant tasks that are provided with MobileFirst Server installation to create the
DB2 database.

To create the database tables in a database that already exists, see “Create the
database tables with Ant tasks” on page 6-73.

To create a database and the database tables, you can do so by Ant tasks. The Ant
tasks create a database in the default instance of DB2 if you use an Ant file that
contains the dba element. This element can be found in the sample Ant files named
as create-database-<dbms>.xml.

Before you run the Ant tasks, make sure that you have an SSH server on the
computer that runs the DB2 database. The configureDatabase Ant task opens an
SSH session to the DB2 host to create the database. The SSH server is needed even
if the DB2 database runs on the same computer where you run the Ant tasks
(except on Linux and some versions of UNIX systems).

Follow the general guidelines as described in “Create the database tables with Ant
tasks” on page 6-73 to edit the copy of the create-database-db2.xml file.

You must also provide the login ID and password of a DB2 user with
administration privileges (SYSADM or SYSCTRL permissions) in the dba element. In
the sample Ant file for DB2 (create-database-db2.xml), the properties to set are:
database.db2.admin.username and database.db2.admin.password.

When the databases Ant target is called, the configureDatabase Ant task creates a
database with default settings with the following SQL statement:
CREATE DATABASE MFPDATA COLLATE USING SYSTEM PAGESIZE 32768

It is not meant to be used for production as in a default DB2 installation, many
privileges are granted to PUBLIC.

Installing and configuring 6-75

Creating the Oracle database tables with Ant tasks:

Use Ant tasks that are provided with MobileFirst Server installation to create the
Oracle database tables.

About this task

When you enter the Oracle user name in Ant file, it must be in uppercase. If you
have an Oracle database user (FOO), but you enter a user name with lowercase
(foo), the configureDatabase Ant task considers it as another user. Unlike other
tools for Oracle database, the configureDatabase Ant task protects the user name
against automatic conversion to uppercase.

The configureDatabase Ant task uses a service name or Oracle System Identifier
(SID) to identify a database. However, if you want to make the connection to
Oracle RAC, you need to enter a complex JDBC URL. In this case, the oracle
element that is within the configureDatabase Ant task must use the attributes (url,
user, and password) instead of these attributes (database, server, port, user, and
password) attributes. For more information, see Table 6-69 on page 6-274 in “Ant
configuredatabase task reference” on page 6-268. The sample Ant files in
mfp_install_dir/MobileFirstServer/configurations-samples use the database,
server, port, user, and password attributes in the oracle element. They must be
modified if you need to connect to Oracle with a JDBC URL.

To create the database tables in a database that already exists, see “Create the
database tables with Ant tasks” on page 6-73.

To create a database, user, or the database tables, use the Oracle Database Creation
Assistant (DBCA) tool. For more information, see “Oracle database and user
requirements” on page 6-65.

The configureDatabase Ant task can do the same but with a limitation. The task
can create a database user for Oracle 11g or Oracle 12g. However, it can create a
database only for Oracle 11g, and not for Oracle 12c. Refer to the following two
sections for the extra steps that you need to create the database or the user.

Creating the database:
Before you begin

Follow the general guidelines as described in “Create the database tables with Ant
tasks” on page 6-73 to edit the copy of the create-database-oracle.xml file.

Procedure

1. Run an SSH server on the computer that runs the Oracle database.
The configureDatabase Ant task opens an SSH session to the Oracle host to
create the database. Except on Linux and some versions of UNIX systems, the
SSH server is needed even if the Oracle database runs on the same computer
where you run the Ant tasks.

2. In dba element that is defined in the create-database-oracle.xml file, enter the
login ID and password of an Oracle database user that can connect to the
Oracle Server via SSH and has the privileges to create a database. You can
assign the values in the following properties:
v database.oracle.admin.username

v database.oracle.admin.password

6-76 IBM MobileFirst Platform Foundation V8.0.0

3. In oracle element, enter the database name that you want to create. The
attribute is database. You can assign the value in the
database.oracle.mfp.dbname property.

4. In the same oracle element, also enter the password for the SYS user and the
SYSTEM user for the database that is to be created. The attributes are
sysPassword and systemPassword. You can assign the values in the
corresponding properties:
v database.oracle.sysPassword

v database.oracle.systemPassword

5. After all the database credentials are entered in the Ant file, save it and run the
databases Ant target.

Results

A database is created with the SID name that is entered in the database of the
oracle element. It is not meant to be used for production.

Creating the user:
Before you begin

Follow the general guidelines as described in “Create the database tables with Ant
tasks” on page 6-73 to edit the copy of the create-database-oracle.xml file.

Procedure

1. Run an SSH server on the computer that runs the Oracle database.
The configureDatabase Ant task opens an SSH session to the Oracle host to
create the database. Except on Linux and some versions of UNIX systems, the
SSH server is needed even if the Oracle database runs on the same computer
where you run the Ant tasks.

2. In oracle element that is defined in the create-database-oracle.xml file, enter
the login ID and password of an Oracle database user that you want to create.
The attributes are user and password. You can assign the values in the
corresponding properties:
v database.oracle.mfp.username

v database.oracle.mfp.password

3. In the same oracle element, also enter the password for the SYSTEM user for the
database. The attribute is systemPassword. You can assign the value in the
database.oracle.systemPassword property.

4. In dba element, enter the login ID and password of an Oracle database user
that has the privileges to create a user. You can assign the values in the
following properties:
v database.oracle.admin.username

v database.oracle.admin.password

5. After all the database credentials are entered in the Ant file, save it and run the
databases Ant target.

Results

A database user is created with the name and password that are entered in the
oracle element. This user has the privileges to create the MobileFirst Server tables,
upgrade them and use them at run time.

Installing and configuring 6-77

Creating the MySQL database tables with Ant tasks:

Use Ant Tasks that are provided with MobileFirst Server installation to create the
MySQL database tables.

About this task

To create the database tables in a database that already exists, see “Create the
database tables with Ant tasks” on page 6-73.

If MySQL server does not have the settings that are recommended in “MySQL
database and user requirements” on page 6-66, the configureDatabase Ant task
displays a warning. Make sure to fulfill the requirements before you run the Ant
task.

To create a database and the database tables, follow the general guidelines as
described in “Create the database tables with Ant tasks” on page 6-73 to edit the
copy of the create-database-mysql.xml file.

The following procedure provides some extra steps that you need to do when you
create the database tables with the configureDatabase Ant task.

Procedure

1. In dba element that is defined in the create-database-mysql.xml file, enter the
login ID and password of a MySQL administrator. By default, the administrator
is root. You can assign the values in the following properties:
v database.mysql.admin.username

v database.mysql.admin.password

2. In the mysql element, add a client element for each host from which the user
is allowed to connect to the database. That is, all the hosts where MobileFirst
Server runs.

3. After all the database credentials are entered in the Ant file, save it and run the
databases Ant target.

Topologies and network flows
Topics about possible server topologies for MobileFirst Server components and the
network flows.

The components are deployed according to the server topology that you use. The
network flows topic also explains to you how the components communicate with
one another and with the devices.

Network flows between the MobileFirst Server components:

The MobileFirst Server components can communicate with each other over JMX or
HTTP. You need to configure certain JNDI properties to enable the
communications.

The network flows between the components and the device can be illustrated by
the following image:

6-78 IBM MobileFirst Platform Foundation V8.0.0

The flows between the various MobileFirst Server components, IBM MobileFirst
Analytics, the mobile devices, and the application server are explained in the
following sections:
1. “MobileFirst runtime to MobileFirst Server administration service”
2. “MobileFirst Server administration service to MobileFirst runtime in other

servers” on page 6-81
3. “MobileFirst Server administration service and MobileFirst runtime to the

deployment manager on WebSphere Application Server Network Deployment”
on page 6-81

4. “MobileFirst Server push service and MobileFirst runtime to MobileFirst
Analytics” on page 6-82

5. “MobileFirst Server administration service to MobileFirst Server live update
service” on page 6-82

6. “MobileFirst Operations Console to MobileFirst Server administration service”
on page 6-83

7. “MobileFirst Server administration service to MobileFirst Server push service,
and to the authorization server ” on page 6-83

8. “ MobileFirst Server push service to an external push notification service
(outbound) ” on page 6-84

9. “ Mobile devices to MobileFirst runtime ” on page 6-84

MobileFirst runtime to MobileFirst Server administration service

The runtime and the administration service can communicate with each other
through JMX and HTTP. This communication occurs during the initialization phase
of the runtime. The runtime contacts the administration service local to its
application server to get the list of the adapters and applications that it needs to

Installing and configuring 6-79

serve. The communication also happens when some administration operations are
run from MobileFirst Operations Console or the administration service. On
WebSphere Application Server Network Deployment, the runtime can contact an
administration service that is installed on another server of the cell. This enables
the non-symmetric deployment (see “Constraints on MobileFirst Server
administration service, MobileFirst Server live update service and MobileFirst
runtime” on page 6-84). However, on all other application servers (Apache Tomcat,
WebSphere Application Server Liberty, or stand-alone WebSphere Application
Server), the administration service must be running on the same server as the
runtime.

The protocols for JMX depend on the application server:
v Apache Tomcat - RMI
v WebSphere Application Server Liberty - HTTPS (with the REST connector)
v WebSphere Application Server - SOAP or RMI

For the communication via JMX, it is required that these protocols are available on
the application server. For more information about the requirements, see
“Application server prerequisites” on page 6-100.

The JMX beans of the runtime and the administration service are obtained from the
application server. However, in the case of WebSphere Application Server Network
Deployment, the JMX beans are obtained from the deployment manager. The
deployment manager has the view of all the beans of a cell on WebSphere
Application Server Network Deployment. As such, some configurations are not
needed on WebSphere Application Server Network Deployment (such as the farm
configuration), and non-symmetric deployment is possible on WebSphere
Application Server Network Deployment. For more information, see “Constraints
on MobileFirst Server administration service, MobileFirst Server live update service
and MobileFirst runtime” on page 6-84.

To distinguish different installation of MobileFirst Server on the same application
server or on the same WebSphere Application Server cell, you can use an
environment ID, which is a JNDI variable. By default, this variable has an empty
value. A runtime with a given environment ID communicates only with an
administration service that has the same environment ID. For example, the
administration service has an environment ID set to X, and the runtime has a
different environment ID (for example, Y), then the two components do not see
each other. The MobileFirst Operations Console shows no runtime available.

An administration service must be able to communicate with all the MobileFirst
runtime components of a cluster. When an administration operation is run, such as
uploading a new version of an adapter, or changing the active status of an
application, all runtime components of the cluster must be notified about the
change. If the application server is not WebSphere Application Server Network
Deployment, this communication can happen only if a farm is configured. For
more information, see “Constraints on MobileFirst Server administration service,
MobileFirst Server live update service and MobileFirst runtime” on page 6-84.

The runtime also communicates with the administration service through HTTP or
HTTPS to download large artifacts such as the adapters. A URL is generated by the
administration service and the runtime opens and outbound HTTP or HTTPS
connection to request an artifact from this URL. It is possible to override the
default URL generation by defining the JNDI properties (mfp.admin.proxy.port,
mfp.admin.proxy.protocol, and mfp.admin.proxy.host) in the administration
service. The administration service might also need to communicate with the

6-80 IBM MobileFirst Platform Foundation V8.0.0

runtime through HTTP or HTTPS to get the OAuth tokens that are used to run the
push operations. For more information, see “MobileFirst Server administration
service to MobileFirst Server push service, and to the authorization server ” on
page 6-83.

The JNDI properties that are used for the communication between the runtime and
the administration service are as follows:

MobileFirst Server administration service

v Table 6-30 on page 6-174 - JNDI properties for administration services:
JMX

v Table 6-33 on page 6-177 - JNDI properties for administration services:
proxies

v Table 6-34 on page 6-177 - JNDI properties for administration services:
topologies

MobileFirst runtime
“List of JNDI properties for MobileFirst runtime” on page 6-183

MobileFirst Server administration service to MobileFirst runtime in other servers

As described in “MobileFirst runtime to MobileFirst Server administration service”
on page 6-79, it is required to have the communication between an administration
service and all the runtime components of a cluster. When an administration
operation is run, all the runtime components of a cluster can then be notified about
this modification. The communication is through JMX.

On WebSphere Application Server Network Deployment, this communication can
occur without any specific configuration. All the JMX MBeans that correspond to
the same environment ID are obtained from the deployment manager.

For a cluster of stand-alone WebSphere Application Server, WebSphere Application
Server Liberty profile, or Apache Tomcat, the communication can happen only if a
farm is configured. For more information, see “Installing a server farm” on page
6-139.

MobileFirst Server administration service and MobileFirst runtime to the
deployment manager on WebSphere Application Server Network Deployment

On WebSphere Application Server Network Deployment, the runtime and the
administration service obtain the JMX MBeans that are used in “MobileFirst
runtime to MobileFirst Server administration service” on page 6-79 and
“MobileFirst Server administration service to MobileFirst runtime in other servers”
by communicating with the deployment manager. The corresponding JNDI
properties are mfp.admin.jmx.dmgr.* in JNDI properties for administration services:
JMX.

The deployment manager must be running to allow the operations that require
JMX communication between the runtime and the administration service. Such
operations can be a runtime initialization, or the notification of a modification
performed through the administration service.

Installing and configuring 6-81

MobileFirst Server push service and MobileFirst runtime to MobileFirst
Analytics

The runtime sends data to MobileFirst Analytics through HTTP or HTTPS. The
JNDI properties of the runtime that are used to define this communication are:
v mfp.analytics.url- the URL that is exposed by MobileFirst Analytics service to

receive incoming analytics data from the runtime. Example:
http://<hostname>:<port>/analytics-service/rest

When MobileFirst Analytics is installed as a cluster, the data can be sent to any
member of the cluster.

v mfp.analytics.username - the user name that is used to access MobileFirst
Analytics service. The analytics service is protected by a security role.

v mfp.analytics.password - the password to access the analytics service.
v mfp.analytics.console.url - the URL that is passed to MobileFirst Operations

Console to display a link to MobileFirst Analytics Console. Example:
http://<hostname>:<port>/analytics/console

The JNDI properties of the push service that are used to define this communication
are:
v mfp.push.analytics.endpoint - the URL that is exposed by MobileFirst Analytics

service to receive incoming analytics data from the push service. Example:
http://<hostname>:<port>/analytics-service/rest

When MobileFirst Analytics is installed as a cluster, the data can be sent to any
member of the cluster.

v mfp.push.analytics.username - the user name that is used to access MobileFirst
Analytics service. The analytics service is protected a security role.

v mfp.push.analytics.password - the password to access the analytics service.

MobileFirst Server administration service to MobileFirst Server live update
service

The administration service communicates with the live update service to store and
retrieve configuration information about the MobileFirst artifacts. The
communication is performed through HTTP or HTTPS.

The URL to contact the live update service is automatically generated by the
administration service. Both services must be on the same application server. The
context root of the live update service must define in this way:
<adminContextRoot>config. For example, if the context root of the administration
service is mfpadmin, then the context root of the live update service must be
mfpadminconfig. It is possible to override the default URL generation by defining
the JNDI properties (mfp.admin.proxy.port, mfp.admin.proxy.protocol, and
mfp.admin.proxy.host) in the administration service.

The JNDI properties to configure this communication between the two services are:
v mfp.config.service.user

v mfp.config.service.password

v And those properties in JNDI properties for administration services: proxies.

6-82 IBM MobileFirst Platform Foundation V8.0.0

MobileFirst Operations Console to MobileFirst Server administration service

MobileFirst Operations Console is a web user interface and acts as the front end to
the administration service. It communicates with the REST services of the
administration service through HTTP or HTTPS. The users who are allowed to use
the console, must also be allowed to use the administration service. Each user that
is mapped to a certain security role of the console must also be mapped to the
same security role of the service. With this setup, the requests from the console can
thus be accepted by the service.

The JNDI properties to configure this communication are in JNDI properties for the
MobileFirst Operations Console.

Note: The mfp.admin.endpoint property enables the console to locate the
administration service. You can use the asterisk (*) character as wildcard for
specifying that the URL, generated by the console to contact the administration
services, use the same value as the incoming HTTP request to the console. For
example: *://*:*/mfpadmin means use the same protocol, host, and port as the
console, but use mfpadmin as context root. This property is specified for the console
application.

MobileFirst Server administration service to MobileFirst Server push service,
and to the authorization server

The administration service communicates with the push service to request various
push operations. This communication is secured through the OAuth protocol. Both
services need to be registered as confidential clients. An initial registration can be
performed at installation time. In this process, both services need to contact an
authorization server. This authorization server can be MobileFirst runtime.

The JNDI properties of the administration service to configure this communication
are:
v mfp.admin.push.url - the URL of the push service.
v mfp.admin.authorization.server.url - the URL of the MobileFirst authorization

server.
v mfp.admin.authorization.client.id - the client ID of the administration service,

as an OAuth confidential client.
v mfp.admin.authorization.client.secret - the secret code that is used to get the

OAuth-based tokens.

Note: The mfp.push.authorization.client.id and
mfp.push.authorization.client.secret properties of the administration service
can be used to register the push service automatically as a confidential client when
the administration service starts. The push service must be configured with the
same values.
The JNDI properties of the push service to configure this communication are:
v mfp.push.authorization.server.url - the URL of the MobileFirst authorization

server. Same as the property mfp.admin.authorization.server.url.
v mfp.push.authorization.client.id - the client ID of the push service to contact

the authorization server.
v mfp.push.authorization.client.secret - the secret code that is used to contact

the authorization server.

Installing and configuring 6-83

MobileFirst Server push service to an external push notification service
(outbound)

The push service generates outbound traffic to the external notification service
such as Apple Push Notification Service (APNS) or Google Cloud Messaging
(GCM). This communication can also be done through a proxy. Depending on the
notification service, the following JNDI properties must be set:
v push.apns.proxy.*

v push.gcm.proxy.*

For more information, see “List of JNDI properties for MobileFirst Server push
service” on page 6-186.

Mobile devices to MobileFirst runtime

The mobile devices contact the runtime. The security of this communication is
determined by the configuration of the application and the adapters that are
requested. For more information, see “MobileFirst security framework” on page
7-265.

Constraints on the MobileFirst Server components and MobileFirst Analytics:

Understand the constraints on the various MobileFirst Server components and
MobileFirst Analytics before you decide your server topology.

For more in-depth explanation about the server topology for the various
MobileFirst Server components, see the following topics.

Constraints on MobileFirst Server administration service, MobileFirst Server live update
service and MobileFirst runtime:

Find out the constraints and the deployment mode of the administration service,
live update service, and the runtime per server topology.

The live update service must be always installed with the administration service
on the same application server as explained in “MobileFirst Server administration
service to MobileFirst Server live update service” on page 6-82. The context root of
the live update service must define in this way: /<adminContextRoot>config. For
example, if the context root of the administration service is /mfpadmin, then the
context root of the live update service must be /mfpadminconfig.

You can use the following topologies of application servers:
v Stand-alone server: WebSphere Application Server Liberty profile, Apache

Tomcat, or WebSphere Application Server full profile
v Server farm: WebSphere Application Server Liberty profile, Apache Tomcat, or

WebSphere Application Server full profile
v WebSphere Application Server Network Deployment cell
v Liberty collective

Modes of deployment

Depending on the application server topology that you use, you have two modes
of deployment choice for deploying the administration service, the live update
service and the runtime in the application server infrastructure. In asymmetric

6-84 IBM MobileFirst Platform Foundation V8.0.0

deployment, you can install the runtimes on different application servers from the
administration and the live update services.

Symmetric deployment
In symmetrical deployment, you must install the MobileFirst
administration components (MobileFirst Operations Console, the
administration service, and the live update service applications) and the
runtime on the same application server.

Asymmetric deployment
In asymmetric deployment, you can install the runtimes on different
application servers from the MobileFirst administration components.

Asymmetric deployment is only supported for WebSphere Application Server
Network Deployment cell topology and for Liberty collective topology.

Stand-alone server topology:

You can configure a stand-alone topology for WebSphere Application Server full
profile, WebSphere Application Server Liberty profile, and Apache Tomcat.

In this topology, all the administration components and the runtimes are deployed
in a single Java Virtual Machine (JVM).

With one JVM, only symmetric deployment is possible with the following
characteristics:

Figure 6-1. Topology of a stand-alone server

Installing and configuring 6-85

v One or several administration components can be deployed. Each MobileFirst
Operations Console communicates with one administration service and one live
update service.

v One or several runtimes can be deployed.
v One MobileFirst Operations Console can manage several runtimes.
v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema.
v Each live update service uses its own live update database schema.
v Each runtime uses its own runtime database schema.

Configuration of JNDI properties

Some JNDI properties are required to enable Java Management Extensions (JMX)
communication between the administration service and the runtime, and to define
the administration service that manages a runtime. For details about these
properties, see “List of JNDI properties for MobileFirst Server administration
service” on page 6-174 and “List of JNDI properties for MobileFirst runtime” on
page 6-183

Stand-alone WebSphere Application Server Liberty profile server

The following global JNDI properties are required for the administration
services and the runtimes.

Table 6-11. Global JNDI properties for administration services and runtimes in WebSphere
Application Server Liberty stand-alone topology.

JNDI properties Values

mfp.topology.platform Liberty

mfp.topology.clustermode Standalone

mfp.admin.jmx.host The host name of the WebSphere
Application Server Liberty profile server.

mfp.admin.jmx.port The port of the REST connector that is the
port of the httpsPort attribute declared in
the <httpEndpoint> element of the
server.xml file of WebSphere Application
Server Liberty profile server. This property
has no default value.

mfp.admin.jmx.user The user name of the WebSphere
Application Server Liberty administrator,
which must be identical to the name defined
in the <administrator-role> element of the
server.xml file of the WebSphere
Application Server Liberty profile server.

mfp.admin.jmx.pwd The password of the WebSphere Application
Server Liberty administrator user.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:
v On each administration service, a unique value for the local

mfp.admin.environmentid JNDI property.

6-86 IBM MobileFirst Platform Foundation V8.0.0

v On each runtime, the same value for the local mfp.admin.environmentid
JNDI property as the value defined for the administration service that
manages the runtime.

Stand-alone Apache Tomcat server

The following local JNDI properties are required for the administration
services and the runtimes.

Table 6-12. Local JNDI properties for administration services and runtimes in Apache
Tomcat stand-alone topology.

JNDI properties Values

mfp.topology.platform Tomcat

mfp.topology.clustermode Standalone

JVM properties are also required to define Java Management Extensions
(JMX) Remote Method Invocation (RMI). For more information, see
“Configuring JMX connection for Apache Tomcat” on page 6-101.

If the Apache Tomcat server is running behind a firewall, the
mfp.admin.rmi.registryPort and mfp.admin.rmi.serverPort JNDI
properties are required for the administration service. See “Configuring
JMX connection for Apache Tomcat” on page 6-101.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:
v On each administration service, a unique value for the local

mfp.admin.environmentid JNDI property.
v On each runtime, the same value for the local mfp.admin.environmentid

JNDI property as the value defined for the administration service that
manages the runtime.

Stand-alone WebSphere Application Server

The following local JNDI properties are required for the administration
services and the runtimes.

Table 6-13. Local JNDI properties for administration services and runtimes in WebSphere
Application Server stand-alone topology.

JNDI properties Values

mfp.topology.platform WAS

mfp.topology.clustermode Standalone

mfp.admin.jmx.connector The JMX connector type; the value can be
SOAP or RMI.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:
v On each administration service, a unique value for the local

mfp.admin.environmentid JNDI property.

Installing and configuring 6-87

v On each runtime, the same value for the local mfp.admin.environmentid
JNDI property as the value defined for the administration service that
manages the runtime.

Server farm topology:

You can configure a farm of WebSphere Application Server full profile, WebSphere
Application Server Liberty profile, or Apache Tomcat application servers.

A farm is a set of individual servers where the same components are deployed and
where the same administration service database and runtime database are shared
between the servers. The farm topology enables the load of MobileFirst
applications to be distributed across several servers. Each server in the farm must
be a Java virtual machine (JVM) of the same type of application server; that is, a
homogeneous server farm. For example, a set of several Liberty servers can be
configured as a server farm. Conversely, a mix of Liberty server, Tomcat server, or
stand-alone WebSphere Application Server cannot be configured as a server farm.

In this topology, all the administration components (MobileFirst Operations
Console, the administration service, and the live update service) and the runtimes
are deployed on every server in the farm.

This topology supports only symmetric deployment. The runtimes and the
administration components must be deployed on every server in the farm. The
deployment of this topology has the following characteristics:
v One or several administration components can be deployed. Each instance of

MobileFirst Operations Console communicates with one administration service
and one live update service.

Figure 6-2. Topology of a server farm

6-88 IBM MobileFirst Platform Foundation V8.0.0

v The administration components must be deployed on all servers in the farm.
v One or several runtimes can be deployed.
v The runtimes must be deployed on all servers in the farm.
v One MobileFirst Operations Console can manage several runtimes.
v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema. All

deployed instances of the same administration service share the same
administration database schema.

v Each live update service uses its own live update database schema. All deployed
instances of the same live update service share the same live update database
schema.

v Each runtime uses its own runtime database schema. All deployed instances of
the same runtime share the same runtime database schema.

Configuration of JNDI properties

Some JNDI properties are required to enable JMX communication between the
administration service and the runtime of the same server, and to define the
administration service that manages a runtime. For convenience, the following
tables list these properties. For instructions about how to install a server farm, see
“Installing a server farm” on page 6-139. For more information about the JNDI
properties, see “List of JNDI properties for MobileFirst Server administration
service” on page 6-174 and “List of JNDI properties for MobileFirst runtime” on
page 6-183.

WebSphere Application Server Liberty profile server farm

The following global JNDI properties are required in each server of the
farm for the administration services and the runtimes.

Table 6-14. Global JNDI properties for administration services and runtimes in server farm
topology of WebSphere Application Server Liberty profile.

JNDI properties Values

mfp.topology.platform Liberty

mfp.topology.clustermode Farm

mfp.admin.jmx.host The host name of the WebSphere
Application Server Liberty profile server

mfp.admin.jmx.port The ort of the REST connector that must be
identical to the value of the httpsPort
attribute declared in the <httpEndpoint>
element of the server.xml file of the
WebSphere Application Server Liberty
profile server.

<httpEndpoint id="defaultHttpEndpoint"
httpPort="9080" httpsPort="9443"
host="*" />

Installing and configuring 6-89

Table 6-14. Global JNDI properties for administration services and runtimes in server farm
topology of WebSphere Application Server Liberty profile (continued).

JNDI properties Values

mfp.admin.jmx.user The user name of the WebSphere
Application Server Liberty administrator
that is defined in the <administrator-role>
element of the server.xml file of the
WebSphere Application Server Liberty
profile server.

<administrator-role>
<user>MfpRESTUser</user>

</administrator-role>

mfp.admin.jmx.pwd The password of the WebSphere Application
Server Liberty administrator user.

The mfp.admin.serverid JNDI property is required for the administration
service to manage the server farm configuration. Its value is the server
identifier, which must be different for each server in the farm.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:
v On each administration service, a unique value for the local

mfp.admin.environmentid JNDI property.
v On each runtime, the same value for the local mfp.admin.environmentid

JNDI property as the value defined for the administration service that
manages the runtime.

Apache Tomcat server farm

The following global JNDI properties are required in each server of the
farm for the administration services and the runtimes.

Table 6-15. Global JNDI properties for administration services and runtimes in server farm
topology of Apache Tomcat.

JNDI properties Values

mfp.topology.platform Tomcat

mfp.topology.clustermode Farm

JVM properties are also required to define Java Management Extensions
(JMX) Remote Method Invocation (RMI). For more information, see
“Configuring JMX connection for Apache Tomcat” on page 6-101.

The mfp.admin.serverid JNDI property is required for the administration
service to manage the server farm configuration. Its value is the server
identifier, which must be different for each server in the farm.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify:
v On each administration service, a unique value for the local

mfp.admin.environmentid JNDI property.

6-90 IBM MobileFirst Platform Foundation V8.0.0

v On each runtime, the same value for the local mfp.admin.environmentid
JNDI property as the value defined for the administration service that
manages the runtime.

WebSphere Application Server full profile server farm

The following global JNDI properties are required on each server in the
farm for the administration services and the runtimes.

Table 6-16. Global JNDI properties for administration services and runtimes in server farm
topology of WebSphere Application Server full profile.

JNDI properties Values

mfp.topology.platform WAS

mfp.topology.clustermode Farm

mfp.admin.jmx.connector SOAP

The following JNDI properties are required for the administration service
to manage the server farm configuration.

JNDI properties Values

mfp.admin.jmx.user The user name of WebSphere Application
Server. This user must be defined in the
WebSphere Application Server user registry.

mfp.admin.jmx.pwd The password of the WebSphere Application
Server user.

mfp.admin.serverid The server identifier, which must be
different for each server in the farm and
identical to the value of this property used
for this server in the server farm
configuration file.

Several administration components can be deployed to enable the same
JVM to run on separate administration components that manage different
runtimes.

When you deploy several administration components, you must specify
the following values:
v On each administration service, a unique value for the local

mfp.admin.environmentid JNDI property.
v On each runtime, the same value for the local mfp.admin.environmentid

JNDI property as the value defined for the administration service that
manages the runtime.

Liberty collective topology:

You can deploy the MobileFirst Server components in a Liberty collective topology.

In the Liberty collective topology, the MobileFirst Server administration
components (MobileFirst Operations Console, the administration service, and the
live update service) are deployed in a collective controller and the MobileFirst
runtimes in collective member. This topology supports only asymmetric
deployment, the runtimes cannot be deployed in a collective controller.

Installing and configuring 6-91

The deployment of this topology has the following characteristics:
v One or several administration components can be deployed in one or several

controllers of the collective. Each instance of MobileFirst Operations Console
communicates with one administration service and one live update service.

v One or several runtimes can be deployed in the cluster members of the
collective.

v One MobileFirst Operations Console manages several runtimes that are
deployed in the cluster members of the collective.

v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema.
v Each live update service uses its own live update database schema.
v Each runtime uses its own runtime database schema.

Configuration of JNDI properties

The following tables list the JNDI properties are required to enable JMX
communication between the administration service and the runtime, and to define
the administration service that manages a runtime. For more information about
these properties, see “List of JNDI properties for MobileFirst Server administration
service” on page 6-174 and “List of JNDI properties for MobileFirst runtime” on
page 6-183

Figure 6-3. The topology of a Liberty collective

6-92 IBM MobileFirst Platform Foundation V8.0.0

page 6-181. For instructions about how to install a Liberty collective manually, see
“Manual installation on WebSphere Application Server Liberty collective” on page
6-121.

The following global JNDI properties are required for the administration services:

Table 6-17. Global JNDI properties for the administration services.

JNDI properties Values

mfp.topology.platform Liberty

mfp.topology.clustermode Cluster

mfp.admin.serverid controller

mfp.admin.jmx.host The host name of the Liberty controller.

mfp.admin.jmx.port The port of the REST connector that must be
identical to the value of the httpsPort
attribute declared in the <httpEndpoint>
element of the server.xml file of the Liberty
controller.

<httpEndpoint id="defaultHttpEndpoint"
httpPort="9080" httpsPort="9443"
host="*"/>

mfp.admin.jmx.user The user name of the controller
administrator that is defined in the
<administrator-role> element of the
server.xml file of the Liberty controller.

<administrator-role> <user>MfpRESTUser</
user> </administrator-role>

mfp.admin.jmx.pwd The password of the Liberty controller
administrator user.

Several administration components can be deployed to enable the controller to run
separate administration components that manage different runtimes.

When you deploy several administration components, you must specify on each
administration service, a unique value for the local mfp.admin.environmentid JNDI
property.

The following global JNDI properties are required for the runtimes:

Table 6-18. Global JNDI properties for the runtimes.

JNDI properties Values

mfp.topology.platform Liberty

mfp.topology.clustermode Cluster

mfp.admin.serverid A value that identifies uniquely the
collective member. It must be different for
each member in the collective. The value
controller cannot be used as it is reserved
for the collective controller.

mfp.admin.jmx.host The host name of the Liberty controller.

Installing and configuring 6-93

Table 6-18. Global JNDI properties for the runtimes. (continued)

JNDI properties Values

mfp.admin.jmx.port The port of the REST connector that must be
identical to the value of the httpsPort
attribute declared in the <httpEndpoint>
element of the server.xml file of the Liberty
controller.

<httpEndpoint id="defaultHttpEndpoint"
httpPort="9080" httpsPort="9443"
host="*"/>

mfp.admin.jmx.user The user name of the controller
administrator that is defined in the
<administrator-role> element of the
server.xml file of the Liberty controller.

<administrator-role> <user>MfpRESTUser</
user> </administrator-role>

mfp.admin.jmx.pwd The password of the Liberty controller
administrator user.

The following JNDI property is required for the runtime when several controllers
(replicas) using the same administration components are used:

Table 6-19. JNDI properties for the runtime.

JNDI properties Values

mfp.admin.jmx.replica Endpoint list of the different controller
replicas with the following syntax:
replica-1 hostname:replica-1 port,
replica-2 hostname:replica-2 port,...,
replica-n hostname:replica-n port

When several administration components are deployed in the controller, each
runtime must have the same value for the local mfp.admin.environmentid JNDI
property as the value that is defined for the administration service that manages
the runtime.

WebSphere Application Server Network Deployment topologies:

The administration components and the runtimes are deployed in servers or
clusters of the WebSphere Application Server Network Deployment cell.

Examples of these topologies support either asymmetric or symmetric deployment,
or both. You can, for example, deploy the administration components (MobileFirst
Operations Console, the administration service, and the live update service) in one
cluster and the runtimes managed by these components in another cluster.

Symmetric deployment in the same server or cluster

Figure 6-4 on page 6-95 shows symmetric deployment where the runtimes and the
administration components are deployed in the same server or cluster.

6-94 IBM MobileFirst Platform Foundation V8.0.0

The deployment of this topology has the following characteristics:
v One or several administration components can be deployed in one or several

servers or clusters of the cell. Each instance of MobileFirst Operations Console
communicates with one administration service and one live update service.

v One or several runtimes can be deployed in the same server or cluster as the
administration components that manage them.

v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema.
v Each live update service uses its own live update database schema.
v Each runtime uses its own runtime database schema.

Asymmetric deployment with runtimes and administration services in different
server or cluster

Figure 6-5 on page 6-96 shows a topology where the runtimes are deployed in a
different server or cluster from the administration services.

Figure 6-4. Symmetric deployment, same server or cluster

Installing and configuring 6-95

The deployment of this topology has the following characteristics:
v One or several administration components can be deployed in one or several

servers or clusters of the cell. Each instance of MobileFirst Operations Console
communicates with one administration service and one live update service.

v One or several runtimes can be deployed in other servers or clusters of the cell.
v One MobileFirst Operations Console manages several runtimes deployed in the

other servers or clusters of the cell.
v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema.
v Each live update service uses its own live update database schema.
v Each runtime uses its own runtime database schema.

This topology is advantageous, because it enables the runtimes to be isolated from
the administration components and from other runtimes. It can be used to provide
performance isolation, to isolate critical applications, and to enforce Service Level
Agreement (SLA).

Symmetric and asymmetric deployment

Figure 6-6 on page 6-97 shows an example of symmetric deployment in Cluster1
and of asymmetric deployment in Cluster2, where Runtime2 and Runtime3 are
deployed in a different cluster from the administration components. MobileFirst

Figure 6-5. Asymmetric deployment, different server or cluster

6-96 IBM MobileFirst Platform Foundation V8.0.0

Operations Console manages the runtimes deployed in Cluster1 and Cluster2.

The deployment of this topology has the following characteristics:
v One or several administration components can be deployed in one or several

servers or clusters of the cell. Each instance of MobileFirst Operations Console
communicates with one administration service and one live update service.

v One or several runtimes can be deployed in one or several servers or clusters of
the cell.

v One MobileFirst Operations Console can manage several runtimes deployed in
the same or other servers or clusters of the cell.

v One runtime is managed by only one MobileFirst Operations Console.
v Each administration service uses its own administration database schema.
v Each live update service uses its own live update database schema.
v Each runtime uses its own runtime database schema.

Configuration of JNDI properties

Some JNDI properties are required to enable JMX communication between the
administration service and the runtime, and to define the administration service
that manages a runtime. For details about these properties, see “List of JNDI
properties for MobileFirst Server administration service” on page 6-174 and “List
of JNDI properties for MobileFirst runtime” on page 6-183

Figure 6-6. Symmetric and asymmetric deployment in different clusters of a cell

Installing and configuring 6-97

The following local JNDI properties are required for the administration services
and for the runtimes:

Table 6-20. Local JNDI properties for administration services and runtimes in WebSphere
Application Server Network Deployment topologies.

JNDI properties Values

mfp.topology.platform WAS

mfp.topology.clustermode Cluster

mfp.admin.jmx.connector The JMX connector type to connect with the
deployment manager. The value can be SOAP
or RMI. SOAP is the default and preferred
value. You must use RMI if the SOAP port is
disabled.

mfp.admin.jmx.dmgr.host The host name of the deployment manager.

mfp.admin.jmx.dmgr.port The RMI or the SOAP port used by the
deployment manager, depending on the
value of mfp.admin.jmx.connector.

Several administration components can be deployed to enable you to run the same
server or cluster with separate administration components managing each of the
different runtimes.

When several administration components are deployed, you must specify:
v On each administration service, a unique value for the local

mfp.admin.environmentid JNDI property.
v On each runtime, the same value for the local mfp.admin.environmentid as the

value defined for the administration service that manages that runtime.

If the virtual host that is mapped to an administration service application is not the
default host, you must set the following properties on the administration service
application:
v mfp.admin.jmx.user: the user name of the WebSphere Application Server

administrator
v mfp.admin.jmx.pwd: the password of the WebSphere Application Server

administrator

Using a reverse proxy with server farm and WebSphere Application Server Network
Deployment topologies:

You can use a reverse proxy with distributed topologies. If your topology uses a
reverse proxy, configure the required JNDI properties for the administration
service.

See the Glossary for the definition of a reverse proxy.

You can use a reverse proxy, such as IBM HTTP Server, to front server farm or
WebSphere Application Server Network Deployment topologies. In this case, you
must configure the administration components appropriately.

You can call the reverse proxy from:
v The browser when you access MobileFirst Operations Console.
v The runtime when it calls the administration service.

6-98 IBM MobileFirst Platform Foundation V8.0.0

v The MobileFirst Operations Console component when it calls the administration
service.

If the reverse proxy is in a DMZ (a firewall configuration for securing local area
networks) and a firewall is used between the DMZ and the internal network, this
firewall must authorize all incoming requests from the application servers.

When a reverse proxy is used in front of the application server infrastructure, the
following JNDI properties must be defined for the administration service.

Table 6-21. JNDI properties for reverse proxy

JNDI properties Values

mfp.admin.proxy.protocol The protocol that is used to communicate
with the reverse proxy. It can be HTTP or
HTTPS.

mfp.admin.proxy.host The host name of the reverse proxy.

mfp.admin.proxy.port The port number of the reverse proxy.

The mfp.admin.endpoint property that references the URL of the reverse proxy is
also required for MobileFirst Operations Console.

Constraints on MobileFirst Server push service:

Find out the constraints of deploying push service application.

The push service can be on the same application server as the administration
service or the runtime, or can be on a different application server. The URL used
by the client apps to contact the push service is the same as the URL used by the
client apps to contact the runtime, excepted that the context root of the runtime is
replaced by imfpush. If you install the push service on a different server than the
runtime, your HTTP server must direct the traffic to the /imfpush context root to a
server where the push service runs.

For more information about the JNDI properties that are needed to adapt the
installation to a topology, see “MobileFirst Server administration service to
MobileFirst Server push service, and to the authorization server ” on page 6-83.
The push service must be installed with the context root /imfpush.

Multiple MobileFirst runtimes:

Find out the details about deploying multiple runtimes on the same server.

You can install multiple runtimes. Each runtime must have its own context root,
and all of these runtimes are managed by the same MobileFirst Server
administration service and MobileFirst Operations Console.

The constraints as described in “Constraints on MobileFirst Server administration
service, MobileFirst Server live update service and MobileFirst runtime” on page
6-84 applies. Each runtime (with its context root) must have its own database
tables.

Installing and configuring 6-99

Multiple instances of MobileFirst Server on the same server or WebSphere
Application Server cell:

By defining a common environment ID, multiple instances of MobileFirst Server
are possible to be installed on the same server.

You can install multiple instances of MobileFirst Server administration service,
MobileFirst Server live update service, and MobileFirst runtime on the same
application server or WebSphere Application Server cell. However, you must
distinguish their installations with the JNDI variable: mfp.admin.environmentid,
which is a variable of the administration service and of the runtime. The
administration service manages only the runtimes that have the same environment
identifier. As such, only the runtime components and the administration service
that have the same value for mfp.admin.environmentid are considered as part of
the same installation.

Installing MobileFirst Server to an application server
The installation of the components can be done by using Ant Tasks, the Server
Configuration Tool, or manually. Find out the prerequisite and the details about the
installation process so that you can install the components on the application
server successfully.

For an overview of the installation process, see “Tutorials about MobileFirst Server
installation” on page 6-4.

Before you proceed with installing the components to the application server, ensure
that the databases and the tables for the components are prepared and ready to
use. For more information, see “Setting up databases” on page 6-63.

The server topology to install the components must also be defined. See
“Topologies and network flows” on page 6-78.

You can install the components with the following methods:
v Ant tasks
v Server Configuration Tool
v Manual installation

You can find the information about installing the MobileFirst Server components to
one or more application servers in the following topics.

Application server prerequisites:

Depending on your choice of the application server, select one of the following
topics to find out the prerequisites that you must fulfill before you install the
MobileFirst Server components.

Apache Tomcat prerequisites:

MobileFirst Server has some requirements for the configuration of Apache Tomcat
that are detailed in the following topics.

Ensure that you fulfill the following criteria:
v Use a supported version of Apache Tomcat. See “System requirements” on page

2-7.
v Apache Tomcat must be run with JRE 7.0 or later.

6-100 IBM MobileFirst Platform Foundation V8.0.0

v The JMX configuration must be enabled to allow the communication between
the administration service and the runtime component. The communication uses
RMI as described in “Configuring JMX connection for Apache Tomcat.”

Configuring JMX connection for Apache Tomcat:

You must configure a secure JMX connection for Apache Tomcat application server.

About this task

The Server Configuration Tool and the Ant tasks can configure a default secure
JMX connection, which includes the definition of a JMX remote port, and the
definition of authentication properties. They modify tomcat_install_dir/bin/
setenv.bat and tomcat_install_dir/bin/setenv.sh to add these options to
CATALINA_OPTS:
-Djava.rmi.server.hostname=localhost
-Dcom.sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

Note: 8686 is a default value. The value for this port can be changed if the port is
not available on the computer.
v The setenv.bat file is used if you start Apache Tomcat with

tomcat_install_dir/bin/startup.bat, or tomcat_install_dir/bin/catalina.bat.
v The setenv.sh file is used if you start Apache Tomcat with

<tomcatInstallDir>/bin/startup.sh, or tomcat_install_dir/bin/catalina.sh.

This file might not be used if you start Apache Tomcat with another command. If
you installed the Apache Tomcat Windows Service Installer, the service launcher
does not use setenv.bat.

Important: This configuration is not secure by default. To secure the configuration,
you must manually complete steps 2 and 3 of the following procedure.

Procedure

Manually configuring Apache Tomcat:
1. For a simple configuration, add the following options to CATALINA_OPTS:

-Djava.rmi.server.hostname=localhost
-Dcom.sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

2. To activate authentication, see the Apache Tomcat user documentation SSL
Support - BIO and NIO and SSL Configuration HOW-TO.

3. For a JMX configuration with SSL enabled, add the following options:
-Dcom.sun.management.jmxremote=true
-Dcom.sun.management.jmxremote.port=8686
-Dcom.sun.management.jmxremote.ssl=true
-Dcom.sun.management.jmxremote.authenticate=false
-Djava.rmi.server.hostname=localhost
-Djavax.net.ssl.trustStore=<key store location>
-Djavax.net.ssl.trustStorePassword=<key store password>
-Djavax.net.ssl.trustStoreType=<key store type>
-Djavax.net.ssl.keyStore=<key store location>
-Djavax.net.ssl.keyStorePassword=<key store password>
-Djavax.net.ssl.keyStoreType=<key store type>

Installing and configuring 6-101

https://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html#SSL_Support
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

Note: The port 8686 can be changed.
4. If the Tomcat instance is running behind a firewall, the JMX Remote Lifecycle

Listener must be configured. See the Apache Tomcat documentation for JMX
Remote Lifecycle Listener.
The following environment properties must also be added to the Context
section of the administration service application in the server.xml file, such as
in the following example:

<Context docBase="mfpadmin" path="/mfpadmin ">
<Environment name="mfp.admin.rmi.registryPort" value="registryPort" type="java.lang.String" override="false"/>
<Environment name="mfp.admin.rmi.serverPort" value="serverPort" type="java.lang.String" override="false"/>

</Context>

In the previous example:
v registryPort must have the same value as the rmiRegistryPortPlatform

attribute of the JMX Remote Lifecycle Listener.
v serverPort must have the same value as the rmiServerPortPlatform attribute

of the JMX Remote Lifecycle Listener.
5. If you installed Apache Tomcat with the Apache Tomcat Windows Service

Installer instead of adding the options to CATALINA_OPTS, run
tomcat_install_dir/bin/Tomcat7w.exe, and add the options in the Java tab of
the Properties window.

6-102 IBM MobileFirst Platform Foundation V8.0.0

http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener
http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener

WebSphere Application Server Liberty prerequisites:

IBM MobileFirst Platform Server has some requirements for the configuration of
the Liberty server that are detailed in the following topics.

Ensure that you fulfill the following criteria:
v Use a supported version of Liberty. See “System requirements” on page 2-7.
v Liberty must be run with JRE 7.0 or later. JRE 6.0 is not supported.
v Some versions of Liberty support both the features of Java EE 6 and Java EE 7.

For example, jdbc-4.0 Liberty feature is part of Java EE 6, whereas jdbc-4.1
Liberty feature is part of Java EE 7. MobileFirst Server V8.0.0 can be installed
with Java EE 6 or Java EE 7 features. However, if you want to run an older
version of MobileFirst Server on the same Liberty server, you must use the Java
EE 6 features. MobileFirst Server V7.1.0 and earlier, does not support the Java EE
7 features.

v JMX must be configured as documented in “Configuring JMX connection for
WebSphere Application Server Liberty profile.”

v For an installation in a production environment, you might want to start the
Liberty server as a service on Windows, Linux, or UNIX systems so that:
– The MobileFirst Server components are started automatically when the

computer starts.
– The process that runs Liberty server is not stopped when the user, who

started the process, logs out.
v MobileFirst Server V8.0.0 cannot be deployed in a Liberty server that contains

the deployed MobileFirst Server components from the previous versions.
v For an installation in a Liberty collective environment, the Liberty collective

controller and the Liberty collective cluster members must be configured as
documented in Configuring a Liberty collective.

Configuring JMX connection for WebSphere Application Server Liberty profile:

You must configure a secure JMX connection for Liberty profile.

Procedure

MobileFirst Server requires the secure JMX connection to be configured.
v The Server Configuration Tool and the Ant tasks can configure a default secure

JMX connection, which includes the generation of a self-signed SSL certificate
with a validity period of 365 days. This configuration is not intended for
production use.

v To configure the secure JMX connection for production use, follow the
instructions as described in Configuring secure JMX connection to the Liberty
profile.

v The rest-connector is available for WebSphere Application Server, Liberty Core,
and other editions of Liberty, but it is possible to package a Liberty server with a
subset of the available features. To verify that the rest-connector feature is
available in your installation of Liberty, enter the following command:
liberty_install_dir/bin/productInfo featureInfo

Note: Verify that the output of this command contains restConnector-1.0.

Installing and configuring 6-103

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/tagt_wlp_configure_collective.html
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1
http://ibm.biz/knowctr#SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_restconnector.html?cp=SSD28V_8.5.5%2F1-5-2-10-1

WebSphere Application Server and WebSphere Application Server Network Deployment
prerequisites:

IBM MobileFirst Platform Server has some requirements for the configuration of
WebSphere Application Server and WebSphere Application Server Network
Deployment that are detailed in the following topics.

Ensure that you fulfill the following criteria:
v Use a supported version of WebSphere Application Server. See “System

requirements” on page 2-7.
v The application server must be run with JRE 7.0. By default, WebSphere

Application Server uses Java 6.0 SDK. To switch to Java 7.0 SDK, see Switching
to Java 7.0 SDK in WebSphere Application Server.

v The administrative security must be turned on. MobileFirst Operations Console,
the MobileFirst Server administration service, and the MobileFirst Server
configuration service are protected by security roles. For more information, see
Enabling security.

v The JMX configuration must be enabled to allow the communication between
the administration service and the runtime component. The communication uses
SOAP. For WebSphere Application Server Network Deployment, RMI can be
used. For more information, see “Configuring JMX connection for WebSphere
Application Server and WebSphere Application Server Network Deployment.”

Configuring JMX connection for WebSphere Application Server and WebSphere
Application Server Network Deployment:

You must configure a secure JMX connection for WebSphere Application Server
and WebSphere Application Server Network Deployment.

Procedure

v MobileFirst Server requires access to the SOAP port, or the RMI port to perform
JMX operations. By default, the SOAP port is active on a WebSphere Application
Server. MobileFirst Server uses the SOAP port by default. If both the SOAP and
RMI ports are deactivated, MobileFirst Server does not run.

v RMI is only supported by WebSphere Application Server Network Deployment.
RMI is not supported by a stand-alone profile, or a WebSphere Application
Server server farm.

v You must activate Administrative and Application Security.

File system prerequisites:

To install IBM MobileFirst Platform Server to an application server, the MobileFirst
installation tools must be run by a user that has specific file system privileges.

The installation tools include:
v IBM Installation Manager
v The Server Configuration Tool
v The Ant tasks to deploy MobileFirst Server

For WebSphere Application Server Liberty profile, you must have the required
permission to perform the following actions:
v Read the files in the Liberty installation directory.

6-104 IBM MobileFirst Platform Foundation V8.0.0

https://www.ibm.com/support/knowledgecenter/SSWLGF_8.5.5/com.ibm.sr.doc/twsr_java17.html
https://www.ibm.com/support/knowledgecenter/SSWLGF_8.5.5/com.ibm.sr.doc/twsr_java17.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/tsec_csec2.html?cp=SSEQTP_8.5.5%2F1-8-2-31-0-2&lang=en

v Create files in the configuration directory of the Liberty server, which is typically
usr/servers/<servername>, to create backup copies and modify server.xml and
jvm.options.

v Create files and directories in the Liberty shared resource directory, which is
typically usr/shared.

v Create files in the Liberty server apps directory, which is typically
usr/servers/<servername>/apps.

For WebSphere Application Server full profile and WebSphere Application Server
Network Deployment, you must have the required permission to perform the
following actions:
v Read the files in the WebSphere Application Server installation directory.
v Read the configuration file of the selected WebSphere Application Server full

profile or of the Deployment Manager profile.
v Run the wsadmin command.
v Create files in the profiles configuration directory. The installation tools put

resources such as shared libraries or JDBC drivers in that directory.

For Apache Tomcat, you must have the required permission to perform the
following actions:
v Read the configuration directory.
v Create backup files and modify files in the configuration directory, such as

server.xml, and tomcat-users.xml.
v Create backup files and modify files in the bin directory, such as setenv.bat.
v Create files in the lib directory.
v Create files in the webapps directory.

For all these application servers, the user who runs the application server must be
able to read the files that were created by the user who ran the MobileFirst
installation tools.

Installing with the Server Configuration Tool:

Use the Server Configuration Tool to install the MobileFirst Server components to
your application server.

The Server Configuration Tool can set up the database and install the components
to an application server. This tool is meant for a single user. The configuration files
are store on the disk. The directory where they are stored can be modified with
menu File > Preferences. The files must be used only by one instance of the Server
Configuration Tool at the time. The tool does not manage concurrent access to the
same file. If you have multiple instances of the tool accessing the same file, the
data might be lost. For more information about how the tool creates and setup the
databases, see “Create the database tables with the Server Configuration Tool” on
page 6-70. If the databases exist, the tool can detect them by testing the presence
and the content of some test tables and does not modify these database tables.

Supported operating systems:

Find out the operating systems that are supported by the Server Configuration
Tool.

Installing and configuring 6-105

You can use the Server Configuration Tool if you are on the following operating
systems:
v Windows x86 or x86-64
v Mac OS x86-64
v Linux x86 or Linux x86-64

The tool is not available on other operating systems. You need to use Ant tasks to
install the MobileFirst Server components as described in “Installing with Ant
Tasks” on page 6-110.

Supported topologies:

Find out the topologies that are supported by the Server Configuration Tool to
install the MobileFirst Server components.

The Server Configuration Tool installs the MobileFirst Server components with the
following topologies:
v All components (MobileFirst Operations Console, the MobileFirst Server

administration service, the MobileFirst Server live update service, and the
MobileFirst runtime) are in the same application server. However, on WebSphere
Application Server Network Deployment when you install on a cluster, you can
specify a different cluster for the administration and live update services, and
for the runtime. On Liberty collective, MobileFirst Operations Console, the
administration service, and the live update service are installed in a collective
controller and the runtime in a collective member.

v If the MobileFirst Server push service is installed, it is also installed on the same
server. However, on WebSphere Application Server Network Deployment when
you install on a cluster, you can specify a different cluster for the push service.
On Liberty collective, the push service is installed in a Liberty member that can
be the same as the one where the runtime is installed.

v All the components use the same database system and the user. For DB2, all the
components also use the same schema.

v The Server Configuration Tool installs the components for a single server except
for Liberty collective and WebSphere Application Server Network Deployment
for asymmetric deployment. For an installation on multiple servers, a farm must
be configured after the tool is run. The server farm configuration is not required
on WebSphere Application Server Network Deployment.

For other topologies or other database settings, you can install the components
with Ant Tasks or manually instead.

Running the Server Configuration Tool:

Follow the instructions to run the Server Configuration Tool and install MobileFirst
Server on the application server.

Before you begin

Before you run the Server Configuration Tool, make sure that the following
requirements are fulfilled:
v The databases and the tables for the components are prepared and ready to use.

See “Setting up databases” on page 6-63.
v The server topology to install the components is decided. See “Topologies and

network flows” on page 6-78.

6-106 IBM MobileFirst Platform Foundation V8.0.0

v The application server is configured. See “Application server prerequisites” on
page 6-100.

v The user that runs the tool has the specific file system privileges. See “File
system prerequisites” on page 6-104.

Procedure

1. Start the Server Configuration Tool.
v On Linux, from application shortcuts Applications > IBM MobileFirst

Platform Server > Server Configuration Tool.
v On Windows, click Start > Programs > IBM MobileFirst Platform Server >

Server Configuration Tool.
v On Mac OS, open a shell console. Go to mfp_server_install_dir/shortcuts

and type ./configuration-tool.sh.
The mfp_server_install_dir directory is where you installed MobileFirst Server.

2. Select File > New Configuration to create a MobileFirst Server Configuration.
a. In the Configuration Details panel, enter the context root of the

administration service and the runtime component. You might want to enter
an environment ID.
An environment ID is used in advanced use cases, for example when
multiple installations of MobileFirst Server are made on the same
application server or same WebSphere Application Server cell. See “Multiple
instances of MobileFirst Server on the same server or WebSphere
Application Server cell” on page 6-100.

b. In the Console Settings panel, select whether to install MobileFirst
Operations Console or not.
If the console is not installed, you need to use command line tools (mfpdev
or mfpadm) or the REST API to interact with the MobileFirst Server
administration service.

c. In the Database Selection panel, select the database management system
that you plan to use.
All the components use the same database type and the same database
instance. For more information about the database panes, see “Create the
database tables with the Server Configuration Tool” on page 6-70.

d. In the Application Server Selection panel, select the type of application
server where you want to deploy MobileFirst Server.

3. In the Application Server Settings panel, choose the application server and do
the following steps:
v For an installation on WebSphere Application Server Liberty:

– Enter the installation directory of Liberty and the name of the server
where you want to install MobileFirst Server.

– You can create a default user to log in the console. This user is created in
the Liberty Basic registry. For a production installation, you might want to
clear the Create a default user option and to configure the user access
after the installation. For more information, see “Configuring user
authentication for MobileFirst Server administration” on page 6-166.

– Select the deployment type: Standalone deployment (default), Server farm
deployment, or Liberty collective deployment.

If the Liberty collective deployment option is selected, do the following
steps:
a. Specify the Liberty collective server:

Installing and configuring 6-107

– Where the administration service, MobileFirst Operations Console and
the live update service are installed. The server must be a Liberty
collective controller.

– Where the runtime is installed. The server must be a Liberty collective
member.

– Where the push service is installed. The server must be a Liberty
collective member.

b. Enter the server ID of the member. This identifier must be different for
each member in the collective.

c. Enter the cluster name of the collective members.
d. Enter the controller host name and HTTPS port number. The values must

be the same as the one that is defined in the <variable> element inside
the server.xml file of the Liberty collective controller.

e. Enter the controller administrator user name and password.
v For an installation on WebSphere Application Server or WebSphere

Application Server Network Deployment:
– Enter the installation directory of WebSphere Application Server.
– Select the WebSphere Application Server profile where you want to install

MobileFirst Server. If you install on WebSphere Application Server
Network Deployment, select the profile of the deployment manager. On
the deployment manager profile, you can select a scope (Server or
Cluster). If you select Cluster, you must specify the cluster:
- Where the runtime is installed.
- Where the administration service, MobileFirst Operations Console and

the live update service are installed.
- Where the push service is installed.

– Enter an administrator login ID and password. The administrator user
must have an administrator role.

– If you select the Declare the WebSphere Administrator as an
administrator user in IBM MobileFirst Platform Operations Console
option, then the user that is used to install MobileFirst Server is mapped
to the administration security role of the console and can log in to the
console with administrator privileges. This user is also mapped to the
security role of the live update service. The user name and password are
set as JNDI properties (mfp.config.service.user and
mfp.config.service.password) of the administration service.

– If you do not select the Declare the WebSphere Administrator as an
administrator user in IBM MobileFirst Platform Operations Console
option, then before you can use MobileFirst Server, you must do the
following tasks:
- Enable the communication between the administration service and the

live update service by:
v Mapping a user to the security role configadmin of the live update

service.
v Adding the login ID and password of this user in the JNDI properties

(mfp.config.service.user and mfp.config.service.password) of the
administration service.

v Map one or more users to the security roles of the administration
service and MobileFirst Operations Console. See “Configuring user
authentication for MobileFirst Server administration” on page 6-166.

v For an installation on Apache Tomcat:

6-108 IBM MobileFirst Platform Foundation V8.0.0

– Enter the installation directory of Apache Tomcat.
– Enter the port that is used for the JMX communication with RMI. By

default, the value is 8686. The Server Configuration Tool modifies the
tomcat_install_dir/bin/setenv.bat or tomcat_install_dir/bin/
setenv.sh file to open this port. If you want to open the port manually, or
have already some code that opens the port in setenv.bat or setenv.sh,
do not use the tool. Install with Ant tasks instead. An option to open the
RMI port manually is provided for an installation with Ant tasks.

– Create a default user to log in the console. This user is also created in the
tomcat-users.xml configuration file. For a production installation, you
might want to clear the Create a default user option and to configure
the user access after the installation. For more information, see
“Configuring user authentication for MobileFirst Server administration”
on page 6-166.

4. In the Push Service Settings panel, select the Install the Push service option
if you want the push service to be installed in the application server. The
context root is imfpush. To enable the communication between the push service
and the administration service, you need to define the following parameters:
a. Enter the URL of the push service and the URL of the runtime. This URL

can be computed automatically if you install on Liberty, Apache Tomcat, or
stand-alone WebSphere Application Server. It uses the URL of the
component (the runtime or the push service) on the local server. If you
install on WebSphere Application Server Network Deployment or the
communications go through a web proxy or load balancer, you must enter
the URL manually.

b. Enter the confidential client IDs and secret for the OAuth communication
between the services. Otherwise, the tool generates default values and
random passwords.

5. In the Analytics Settings panel, select the Enable the connection to the
Analytics server if MobileFirst Analytics is installed. Enter the following
connection settings:
v The URL of the Analytics console.
v The URL of the Analytics server (the Analytics data service).
v The user login ID and password that is allowed to publish data to the

Analytics server.

The tool configures the runtime and the push service to send data to the
Analytics server.

6. Click Deploy to proceed with the installation.

What to do next

After the installation is completed successfully, restart the application server in the
case of Apache Tomcat or Liberty profile.

If Apache Tomcat is launched as a service, the setenv.bat or setenv.sh file that
contains the statement to open the RMI might not be read. As a result, MobileFirst
Server might not be able to work correctly. To set the required variables, see
“Configuring JMX connection for Apache Tomcat” on page 6-101.

On WebSphere Application Server Network Deployment, the applications are
installed but not started. You need to start them manually. You can do that from
the WebSphere Application Server administration console.

Installing and configuring 6-109

Keep the configuration file in the Server Configuration Tool. You might reuse it to
install the interim fixes. The menu to apply an interim fix is Configurations >
Replace the deployed WAR files.

Applying a fix pack by using the Server Configuration Tool:

You can apply a fix pack or an interim fix by using the Server Configuration Tool
if MobileFirst Server is installed previously with the tool.

About this task

If MobileFirst Server is installed with the tool and the configuration file is kept,
you can apply a fix pack or an interim fix by reusing the configuration file.

Procedure

1. Start the Server Configuration Tool.
v On Linux, from application shortcuts Applications > IBM MobileFirst

Platform Server > Server Configuration Tool.
v On Windows, click Start > Programs > IBM MobileFirst Platform Server >

Server Configuration Tool.
v On Mac OS, open a shell console. Go to mfp_server_install_dir/shortcuts

and type ./configuration-tool.sh.
The mfp_server_install_dir directory is where you installed MobileFirst Server.

2. Click Configurations > Replace the deployed WAR files and select an existing
configuration to apply the fix pack or an interim fix.

Installing with Ant Tasks:

Use Ant tasks to install the MobileFirst Server components to your application
server.

You can find the sample configuration files for installing MobileFirst Server in the
mfp_install_dir/MobileFirstServer/configuration-samples directory.

You can also create a configuration with the Server Configuration Tool and export
the Ant files by using File > Export Configuration as Ant Files.... The sample Ant
files have the same limitations as the Server Configuration Tool:
v All components (MobileFirst Operations Console, MobileFirst Server

administration service, MobileFirst Server live update service, the MobileFirst
Server artifacts, and MobileFirst runtime) are in the same application server.
However, on WebSphere Application Server Network Deployment when you
install on a cluster, you can specify a different cluster for the administration and
live update services, and for the runtime.

v If the MobileFirst Server push service is installed, it is also installed on the same
server. However, on WebSphere Application Server Network Deployment when
you install on a cluster, you can specify a different cluster for the push service.

v All the components use the same database system and the user. For DB2, all the
components also use the same schema.

v The Server Configuration Tool installs the components for a single server. For an
installation on multiple servers, a farm must be configured after the tool is run.
The server farm configuration is not supported on WebSphere Application
Server Network Deployment.

6-110 IBM MobileFirst Platform Foundation V8.0.0

You can configure the MobileFirst Server services to run in server farm with Ant
tasks. To include your server in a farm, you need to specify some specific attributes
that configure your application server accordingly. For more information about
configuring a server farm with Ant tasks, see “Installing a server farm with Ant
tasks” on page 6-141.

For other topologies that are supported in “Topologies and network flows” on
page 6-78, you can modify the sample Ant files.

The references to the Ant tasks are as follows:
v “Ant tasks for installation of MobileFirst Operations Console, MobileFirst Server

artifacts, MobileFirst Server administration, and live update services” on page
6-274

v “Ant tasks for installation of MobileFirst Server push service” on page 6-287
v “Ant tasks for installation of MobileFirst runtime environments” on page 6-293

For an overview of installing with the sample configuration file and tasks, see
“Installing MobileFirst Server in command line mode” on page 6-22.

You can run an Ant file with the Ant distribution that is part of the product
installation. For example, if you have WebSphere Application Server Network
Deployment cluster and your database is IBM DB2, you can use the
mfp_install_dir/MobileFirstServer/configuration-samples/configure-wasnd-
cluster-db2.xml Ant file. After you edit the file and enter all the required
properties, you can run the following commands from mfp_install_dir/
MobileFirstServer/configuration-samples directory:
v mfp_install_dir/shortcuts/ant -f configure-wasnd-cluster-db2.xml help -

This command displays the list of all the possible targets of the Ant file, to
install, uninstall, or update some components.

v mfp_install_dir/shortcuts/ant -f configure-wasnd-cluster-db2.xml install -
This command installs MobileFirst Server on the WebSphere Application Server
Network Deployment cluster, with DB2 as a data source by using the parameters
that you entered in the properties of the Ant file.

After the installation, make a copy of the Ant file so that you can reuse it to apply
a fix pack. For more information, see “Applying a fix pack by using the Ant files.”

Applying a fix pack by using the Ant files:

You can apply a fix pack with Ant tasks if MobileFirst Server is installed with Ant
tasks.

Updating with the sample Ant file:
About this task

If you use the sample Ant files that are provided in the mfp_install_dir/
MobileFirstServer/configuration-samples directory to install MobileFirst Server,
you can reuse a copy of this Ant file to apply a fix pack. For password values, you
can enter ************ (12 stars) instead of the actual value, to be prompted
interactively when the Ant file is run.

To apply a fix pack, do the following steps.

Installing and configuring 6-111

Procedure

1. Verify the value of the mfp.server.install.dir property in the Ant file. It must
point to the directory that contains the product with the fix pack applied. This
value is used to take the updated MobileFirst Server WAR files.

2. Run the command:
mfp_install_dir/shortcuts/ant -f your_ant_file update

Updating with own Ant file:
About this task

If you use your own Ant file, make sure that for each installation task
(installmobilefirstadmin, installmobilefirstruntime, and
installmobilefirstpush), you have a corresponding update task in your Ant file
with the same parameters. The corresponding update tasks are
updatemobilefirstadmin, updatemobilefirstruntime, and updatemobilefirstpush.

To apply a fix pack with your own Ant file, do the following steps.

Procedure

1. Verify the class path of the <taskdef> element for the mfp-ant-deployer.jar
file. It must point to the mfp-ant-deployer.jar file in an MobileFirst Server
installation that the fix pack is applied. By default, the updated MobileFirst
Server WAR files are taken from the location of mfp-ant-deployer.jar.

2. Run the update tasks (updatemobilefirstadmin, updatemobilefirstruntime, and
updatemobilefirstpush) of your Ant file.

Sample Ant files modifications:

You can modify the sample Ant files that are provided in the mfp_install_dir/
MobileFirstServer/configuration-samples directory to adapt to your installation
requirements.

The following sections provide the details on how you can modify the sample Ant
files to adapt the installation to your needs:
1. “Specify extra JNDI properties”
2. “Specify existing users” on page 6-113
3. “Specify Liberty Java EE level” on page 6-113
4. “Specify data source JDBC properties” on page 6-114
5. “Run the Ant files on a computer where MobileFirst Server is not installed” on

page 6-114
6. “Specify WebSphere Application Server Network Deployment targets” on page

6-114
7. “Manual configuration of the RMI port on Apache Tomcat” on page 6-115

Specify extra JNDI properties

The installmobilefirstadmin, installmobilefirstruntime, and
installmobilefirstpush Ant tasks declare the values for the JNDI properties that
are required for the components to function. These JNDI properties are used to
define the JMX communication, and also the links to other components (such the
live update service, the push service, the analytics service, or the authorization
server). However, you can also define values for other JNDI properties. Use the
<property> element that exists for these three tasks. For a list of JNDI properties,
see:

6-112 IBM MobileFirst Platform Foundation V8.0.0

v “List of JNDI properties for MobileFirst Server administration service” on page
6-174

v “List of JNDI properties for MobileFirst Server push service” on page 6-186
v “List of JNDI properties for MobileFirst runtime” on page 6-183

For example:
<installmobilefirstadmin ..>

<property name="mfp.admin.actions.prepareTimeout" value="3000000"/>
</installmobilefirstadmin>

Specify existing users

By default, the installmobilefirstadmin Ant task creates users:
v On WebSphere Application Server Liberty to define a Liberty administrator for

the JMX communication.
v On any application server, to define a user that is used for the communication

with the live update service.

To use an existing user instead of creating new user, you can do the following
operations:
1. In the <jmx> element, specify a user and password, and set the value of the

createLibertyAdmin attribute to false. For example:
<installmobilefirstadmin ...>

<jmx libertyAdminUser="myUser" libertyAdminPassword="password" createLibertyAdmin="false" />
...

2. In the <configuration> element, specify a user and password and set the value
of the createConfigAdminUser attribute to false. For example:

<installmobilefirstadmin ...>
<configuration configAdminUser="myUser" configAdminPassword="password" createConfigAdminUser="false" />
...

Also, the user that is created by the sample Ant files is mapped to the security
roles of the administration service and the console. With this setting, you can use
this user to log on to MobileFirst Server after the installation. To change that
behavior, remove the <user> element from the sample Ant files. Alternatively, you
can remove the password attribute from the <user> element, and the user is not
created in the local registry of the application server.

Specify Liberty Java EE level

Some distributions of WebSphere Application Server Liberty support features from
Java EE 6 or from Java EE 7. By default, the Ant tasks automatically detect the
features to install. For example, jdbc-4.0 Liberty feature is installed for Java EE 6
and jdbc-4.1 feature is installed in case of Java EE 7. If the Liberty installation
supports both features from Java EE 6 and Java EE 7, you might want to force a
certain level of features. An example might be that you plan to run both
MobileFirst Server V8.0.0 and V7.1.0 on the same Liberty server. MobileFirst
ServerV7.1.0 or earlier supports only Java EE 6 features.

To force a certain level of Java EE 6 features, use the jeeversion attribute of the
<websphereapplicationserver> element. For example:

Installing and configuring 6-113

<installmobilefirstadmin execute="${mfp.process.admin}" contextroot="${mfp.admin.contextroot}">
[...]
<applicationserver>

<websphereapplicationserver installdir="${appserver.was.installdir}"
profile="Liberty"
jeeversion="6">

Specify data source JDBC properties

You can specify the properties for the JDBC connection. Use the <property>
element of a <database> element. The element is available in configureDatabase,
installmobilefirstadmin, installmobilefirstruntime, and
installmobilefirstpush Ant tasks. For example:
<configuredatabase kind="MobileFirstAdmin">

<db2 database="${database.db2.mfpadmin.dbname}"
server="${database.db2.host}"
instance="${database.db2.instance}"
user="${database.db2.mfpadmin.username}"
port= "${database.db2.port}"
schema = "${database.db2.mfpadmin.schema}"
password="${database.db2.mfpadmin.password}">
<property name="commandTimeout" value="10"/>
</db2>

Run the Ant files on a computer where MobileFirst Server is not installed

To run the Ant tasks on a computer where MobileFirst Server is not installed, you
need the following items:
v An Ant installation
v A copy of the mfp-ant-deployer.jar file to the remote computer. This library

contains the definition of the Ant tasks.
v To specify the resources to be installed. By default, the WAR files are taken near

the mfp-ant-deployer.jar, but you can specify the location of these WAR files.
For example:

<installmobilefirstadmin execute="true" contextroot="/mfpadmin" serviceWAR="/usr/mfp/mfp-admin-service.war">
<console install="true" warFile="/usr/mfp/mfp-admin-ui.war"/>

For more information, see the Ant tasks to install each MobileFirst Server
component at “Installation reference” on page 6-268.

Specify WebSphere Application Server Network Deployment targets

To install on WebSphere Application Server Network Deployment, the specified
WebSphere Application Server profile must be the deployment manager. You can
deploy on the following configurations:
v A cluster
v A single server
v A cell (all the servers of a cell)
v A node (all the servers of a node)

The sample files such as configure-wasnd-cluster-<dbms>.xml,
configure-wasnd-server-<dbms>.xml, and configure-wasnd-node-<dbms>.xml
contain the declaration to deploy on each type of target. For more information, see
the Ant tasks to install each MobileFirst Server component at “Installation
reference” on page 6-268.

6-114 IBM MobileFirst Platform Foundation V8.0.0

Note: As of V8.0.0, the sample configuration file for the WebSphere Application
Server Network Deployment cell is not provided.

Manual configuration of the RMI port on Apache Tomcat

By default, the Ant tasks modify the setenv.bat file or the setenv.sh file to open
the RMI port. If you prefer to open the RMI port manually, add the
tomcatSetEnvConfig attribute with the value as false to the <jmx> element of the
installmobilefirstadmin, updatemobilefirstadmin, and
uninstallmobilefirstadmin tasks.

Installing the MobileFirst Server components manually:

You can also install the MobileFirst Server components to your application server
manually.

The following topics provide you the complete information to guide you through
the installing process of the components on the supported applications in
production.

Manual installation on WebSphere Application Server Liberty:

Find out more details on how to install the MobileFirst Server components on
WebSphere Application Server Liberty.

For an overview of an installation of MobileFirst Server on Liberty profile, see
“Tutorials about MobileFirst Server installation” on page 6-4.

Make sure that you have also fulfilled the requirements as documented in
“WebSphere Application Server Liberty prerequisites” on page 6-103.

Topology constraints

The MobileFirst Server administration service, the MobileFirst Server live update
service, and the MobileFirst runtime must be installed on the same application
server. The context root of the live update service must be defined as
<adminContextRoot>config. The context root of the push service must be imfpush.
For more information about the constraints, see “Constraints on the MobileFirst
Server components and MobileFirst Analytics” on page 6-84.

Application server settings

You must configure the <webContainer> element to load the servlets immediately.
This setting is required for the initialization through JMX. For example:
<webContainer deferServletLoad="false"/>

Optionally, to avoid timeout issues that break the startup sequence of the runtime
and the administration service on some Liberty versions, change the default
<executor> element. Set large values to the coreThreads and maxThreads attributes.
For example:
<executor id="default" name="LargeThreadPool"

coreThreads="200" maxThreads="400" keepAlive="60s"
stealPolicy="STRICT" rejectedWorkPolicy="CALLER_RUNS"/>

You might also configure the <tcpOptions> element and set the soReuseAddr
attribute to true.

Installing and configuring 6-115

<tcpOptions soReuseAddr="true"/>

Liberty features required by the MobileFirst Server applications

You can use the following features for Java EE 6 or Java EE 7.

MobileFirst Server administration service

v jdbc-4.0 (jdbc-4.1 for Java EE 7)
v appSecurity-2.0

v restConnector-1.0

v usr:MFPDecoderFeature-1.0

MobileFirst Server push service

v jdbc-4.0 (jdbc-4.1 for Java EE 7)
v servlet-3.0 (servlet-3.1 for Java EE 7)
v ssl-1.0

v usr:MFPDecoderFeature-1.0

MobileFirst runtime

v jdbc-4.0 (jdbc-4.1 for Java EE 7)
v servlet-3.0 (servlet-3.1 for Java EE 7)
v ssl-1.0

v usr:MFPDecoderFeature-1.0

Global JNDI entries

The following global JNDI entries are required to configure the JMX
communication between the runtime and the administration service:
v mfp.admin.jmx.host

v mfp.admin.jmx.port

v mfp.admin.jmx.user

v mfp.admin.jmx.pwd

v mfp.topology.platform

v mfp.topology.clustermode

These global JNDI entries are set with this syntax and are not prefixed by a context
root. For example:
<jndiEntry jndiName="mfp.admin.jmx.port" value="9443"/>

Note: To protect against an automatic conversion of the JNDI values, so that 075 is
not converted to 61 or 31.500 is not converted to 31.5, use this syntax ’"075"’
when you define the value.
For more information about the JNDI properties for the administration service, see
“List of JNDI properties for MobileFirst Server administration service” on page
6-174.

For a farm configuration, see also the following topics:
v “Server farm topology” on page 6-88
v “Topologies and network flows” on page 6-78
v “Installing a server farm” on page 6-139

6-116 IBM MobileFirst Platform Foundation V8.0.0

Class loader

For all applications, the class loader must have the parent last delegation. For
example:
<application id="mfpadmin" name="mfpadmin" location="mfp-admin-service.war" type="war">

[...]
<classloader delegation="parentLast">
</classloader>

</application>

Password decoder user feature

Copy the password decoder user feature to your Liberty profile. For example:
v On UNIX and Linux systems:

mkdir -p LIBERTY_HOME/wlp/usr/extension/lib/features
cp product_install_dir/features/com.ibm.websphere.crypto_1.0.0.jar LIBERTY_HOME/wlp/usr/extension/lib/
cp product_install_dir/features/MFPDecoderFeature-1.0.mf LIBERTY_HOME/wlp/usr/extension/lib/features/

v On Windows systems:
mkdir LIBERTY_HOME\wlp\usr\extension\lib
copy /B product_install_dir\features\com.ibm.websphere.crypto_1.0.0.jar
LIBERTY_HOME\wlp\usr\extension\lib\com.ibm.websphere.crypto_1.0.0.jar
mkdir LIBERTY_HOME\wlp\usr\extension\lib\features
copy /B product_install_dir\features\MFPDecoderFeature-1.0.mf
LIBERTY_HOME\wlp\usr\extension\lib\features\MFPDecoderFeature-1.0.mf

MobileFirst Server administration service configuration details:

The administration service is packaged as a WAR application for you to deploy to
the application server. You need to make some specific configurations for this
application in the server.xml file.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty” on page 6-115 for the configuration details that are common to all
services.

The administration service WAR file is in mfp_install_dir/MobileFirstServer/
mfp-admin-service.war.

You can define the context root as you want. However, usually it is /mfpadmin.

Mandatory JNDI properties

When you define the JNDI properties, the JNDI names must be prefixed with the
context root of the administration service. The following example illustrates the
case to declare mfp.admin.push.url whereby the administration service is installed
with /mfpadmin as the context root:
<jndiEntry jndiName="mfpadmin/mfp.admin.push.url" value="http://localhost:9080/imfpush"/>

If the push service is installed, you must configure the following JNDI properties:
v mfp.admin.push.url

v mfp.admin.authorization.server.url

v mfp.push.authorization.client.id

v mfp.push.authorization.client.secret

v mfp.admin.authorization.client.id

v mfp.admin.authorization.client.secret

The JNDI properties for the communication with the configuration service are as
follows:

Installing and configuring 6-117

v mfp.config.service.user

v mfp.config.service.password

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server administration service” on page 6-174.

Data source

The JNDI name of the data source for the administration service must be defined
as jndiName=<contextRoot>/jdbc/mfpAdminDS. The following example illustrates the
case whereby the administration service is installed with the context root
/mfpadmin, and that the service is using a relational database:
<dataSource jndiName="mfpadmin/jdbc/mfpAdminDS" transactional="false">

[...]
</dataSource>

Security roles

Declare the following roles in the <application-bnd> element of the application:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

MobileFirst Server live update service configuration details:

The live update service is packaged as a WAR application for you to deploy to the
application server. You need to make some specific configurations for this
application in the server.xml file.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty” on page 6-115 for the configuration details that are common to all
services.

The live update service WAR file is in mfp_install_dir/MobileFirstServer/mfp-
live-update.war.

The context root of the live update service must define in this way:
/<adminContextRoot>config. For example, if the context root of the administration
service is /mfpadmin, then the context root of the live update service must be
/mfpadminconfig.

Data source

The JNDI name of the data source for the live update service must be defined as
<contextRoot>/jdbc/ConfigDS. The following example illustrates the case whereby
the live update service is installed with the context root /mfpadminconfig, and that
the service is using a relational database:
<dataSource jndiName="mfpadminconfig/jdbc/ConfigDS" transactional="false">

[...]
</dataSource>

Security roles

Declare the configadmin role in the <application-bnd> element of the application.

6-118 IBM MobileFirst Platform Foundation V8.0.0

At least one user must be mapped to this role. The user and its password must be
provided to the following JNDI properties of the administration service:
v mfp.config.service.user

v mfp.config.service.password

MobileFirst Operations Console configuration details:

The console is packaged as a WAR application for you to deploy to the application
server. You need to make some specific configurations for this application in the
server.xml file.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty” on page 6-115 for the configuration details that are common to all
services.

The console WAR file is in mfp_install_dir/MobileFirstServer/mfp-admin-ui.war.

You can define the context root as you want. However, usually it is /mfpconsole.

Mandatory JNDI properties

When you define the JNDI properties, the JNDI names must be prefixed with the
context root of the console. The following example illustrates the case to declare
mfp.admin.endpoint whereby the console is installed with /mfpconsole as the
context root:
<jndiEntry jndiName="mfpconsole/mfp.admin.endpoint" value="*://*:*/mfpadmin"/>

The typical value for the mfp.admin.endpoint property is *://*:*/
<adminContextRoot>.

For more information about the JNDI properties, see “JNDI properties for
MobileFirst Operations Console” on page 6-181.

Security roles

Declare the following roles in the <application-bnd> element of the application:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Any user that is mapped to a security role of the console must also be mapped to
the same security role of the administration service.

MobileFirst runtime configuration details:

The runtime is packaged as a WAR application for you to deploy to the application
server. You need to make some specific configurations for this application in the
server.xml file.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty” on page 6-115 for the configuration details that are common to all
services.

The runtime WAR file is in mfp_install_dir/MobileFirstServer/mfp-server.war.

Installing and configuring 6-119

You can define the context root as you want. However, it is /mfp by default.

Mandatory JNDI properties

When you define the JNDI properties, the JNDI names must be prefixed with the
context root of the runtime. The following example illustrates the case to declare
mfp.analytics.url whereby the runtime is installed with /mobilefirst as the
context root:

<jndiEntry jndiName="mobilefirst/mfp.analytics.url" value="http://localhost:9080/analytics-service/rest"/>

You must define the mobilefirst/mfp.authorization.server property. For
example:
<jndiEntry jndiName="mobilefirst/mfp.authorization.server" value="embedded"/>

If MobileFirst Analytics is installed, you need to define the following JNDI
properties:
v mfp.analytics.url

v mfp.analytics.console.url

v mfp.analytics.username

v mfp.analytics.password

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst runtime” on page 6-183.

Data source

The JNDI name of the data source for the runtime must be defined as
jndiName=<contextRoot>/jdbc/mfpDS. The following example illustrates the case
whereby the runtime is installed with the context root /mobilefirst, and that the
runtime is using a relational database:
<dataSource jndiName="mobilefirst/jdbc/mfpDS" transactional="false">

[...]
</dataSource>

MobileFirst Server push service configuration details:

The push service is packaged as a WAR application for you to deploy to the
application server. You need to make some specific configurations for this
application in the server.xml file.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty” on page 6-115 for the configuration details that are common to all
services.

The push service WAR file is in mfp_install_dir/PushService/mfp-push-
service.war.

You must define the context root as /imfpush. Otherwise, the client devices cannot
connect to it as the context root is hardcoded in the SDK.

6-120 IBM MobileFirst Platform Foundation V8.0.0

Mandatory JNDI properties

When you define the JNDI properties, the JNDI names must be prefixed with the
context root of the push service. The following example illustrates the case to
declare mfp.push.analytics.user whereby the push service is installed with
/imfpush as the context root:
<jndiEntry jndiName="imfpush/mfp.push.analytics.user" value="admin"/>

You need to define the following properties:
v mfp.push.authorization.server.url

v mfp.push.authorization.client.id

v mfp.push.authorization.client.secret

v mfp.push.services.ext.security - the value must be
com.ibm.mfp.push.server.security.plugin.OAuthSecurityPlugin.

v mfp.push.db.type - for a relational database, the value must be DB.

If MobileFirst Analytics is configured, define the following JNDI properties:
v mfp.push.analytics.endpoint

v mfp.analytics.username

v mfp.analytics.password

v mfp.push.services.ext.analytics - the value must be
com.ibm.mfp.push.server.analytics.plugin.AnalyticsPlugin.

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server push service” on page 6-186.

Data source

The JNDI name of the data source for the push service must be defined as
jndiName=imfpush/jdbc/imfPushDS.

MobileFirst Server artifacts configuration details:

The artifacts component is packaged as a WAR application for you to deploy to the
application server. You need to make some specific configurations for this
application in the server.xml file.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty” on page 6-115 for the configuration details that are common to all
services.

The WAR file for this component is in mfp_install_dir/MobileFirstServer/mfp-
dev-artifacts.war.

You must define the context root as /mfp-dev-artifacts.

Manual installation on WebSphere Application Server Liberty collective:

Find out more details on how to install the MobileFirst Server components on
Liberty collective.

Make sure that you have also fulfilled the requirements as documented in
“WebSphere Application Server Liberty prerequisites” on page 6-103.

Installing and configuring 6-121

Topology constraints

The MobileFirst Server administration service, the MobileFirst Server live update
service, and MobileFirst Operations Console must be installed in a Liberty
collective controller. The MobileFirst runtime and the MobileFirst Server push
service must be installed in every member of the Liberty collective cluster.

The context root of the live update service must be defined as
<adminContextRoot>config. The context root of the push service must be imfpush.
For more information about the constraints, see “Constraints on the MobileFirst
Server components and MobileFirst Analytics” on page 6-84.

Application server settings

You must configure the <webContainer> element to load the servlets immediately.
This setting is required for the initialization through JMX. For example:
<webContainer deferServletLoad="false"/>

Optionally, to avoid timeout issues that break the startup sequence of the runtime
and the administration service on some Liberty versions, change the default
<executor> element. Set large values to the coreThreads and maxThreads attributes.
For example:
<executor id="default" name="LargeThreadPool"

coreThreads="200" maxThreads="400" keepAlive="60s"
stealPolicy="STRICT" rejectedWorkPolicy="CALLER_RUNS"/>

You might also configure the <tcpOptions> element and set the soReuseAddr
attribute to true.
<tcpOptions soReuseAddr="true"/>

Liberty features required by the MobileFirst Server applications

You need to add the following features for Java EE 6 or Java EE 7.

MobileFirst Server administration service

v jdbc-4.0 (jdbc-4.1 for Java EE 7)
v appSecurity-2.0

v restConnector-1.0

v usr:MFPDecoderFeature-1.0

MobileFirst Server push service

v jdbc-4.0 (jdbc-4.1 for Java EE 7)
v servlet-3.0 (servlet-3.1 for Java EE 7)
v ssl-1.0

v usr:MFPDecoderFeature-1.0

MobileFirst runtime

v jdbc-4.0 (jdbc-4.1 for Java EE 7)
v servlet-3.0 (servlet-3.1 for Java EE 7)
v ssl-1.0

v usr:MFPDecoderFeature-1.0

6-122 IBM MobileFirst Platform Foundation V8.0.0

JNDI entries

The following global JNDI entries are required to configure the JMX
communication between the runtime and the administration service:
v mfp.admin.jmx.host

v mfp.admin.jmx.port

v mfp.admin.jmx.user

v mfp.admin.jmx.pwd

v mfp.topology.platform

v mfp.topology.clustermode

v mfp.admin.serverid

These global JNDI entries are set with this syntax and are not prefixed by a context
root. For example:
<jndiEntry jndiName="mfp.admin.jmx.port" value="9443"/>

Note: To protect against an automatic conversion of the JNDI values, so that 075 is
not converted to 61 or 31.500 is not converted to 31.5, use this syntax ’"075"’
when you define the value.
For more information about the JNDI properties for the administration service, see
“List of JNDI properties for MobileFirst Server administration service” on page
6-174.

For more information about the JNDI properties for the runtime, see “List of JNDI
properties for MobileFirst runtime” on page 6-183.

Class loader

For all applications, the class loader must have the parent last delegation. For
example:
<application id="mfpadmin" name="mfpadmin" location="mfp-admin-service.war" type="war">

[...]
<classloader delegation="parentLast">
</classloader>

</application>

Password decoder user feature

Copy the password decoder user feature to your Liberty profile. For example:
v On UNIX and Linux systems:

mkdir -p LIBERTY_HOME/wlp/usr/extension/lib/features
cp product_install_dir/features/com.ibm.websphere.crypto_1.0.0.jar LIBERTY_HOME/wlp/usr/extension/lib/
cp product_install_dir/features/MFPDecoderFeature-1.0.mf LIBERTY_HOME/wlp/usr/extension/lib/features/

v On Windows systems:
mkdir LIBERTY_HOME\wlp\usr\extension\lib
copy /B product_install_dir\features\com.ibm.websphere.crypto_1.0.0.jar
LIBERTY_HOME\wlp\usr\extension\lib\com.ibm.websphere.crypto_1.0.0.jar
mkdir LIBERTY_HOME\wlp\usr\extension\lib\features
copy /B product_install_dir\features\MFPDecoderFeature-1.0.mf
LIBERTY_HOME\wlp\usr\extension\lib\features\MFPDecoderFeature-1.0.mf

MobileFirst Server administration service configuration details:

The administration service is packaged as a WAR application for you to deploy to
the Liberty collective controller. You need to make some specific configurations for
this application in the server.xml file of the Liberty collective controller.

Installing and configuring 6-123

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty collective” on page 6-121 for the configuration details that are common to
all services.

The administration service WAR file is in mfp_install_dir/MobileFirstServer/
mfp-admin-service.war.

You can define the context root as you want. However, it is /mfpadmin by default.

Mandatory JNDI properties

When you define the JNDI properties, the JNDI names must be prefixed with the
context root of the administration service. The following example illustrates the
case to declare mfp.admin.push.url whereby the administration service is installed
with /mfpadmin as the context root:
<jndiEntry jndiName="mfpadmin/mfp.admin.push.url" value="http://localhost:9080/imfpush"/>

If the push service is installed, you must configure the following JNDI properties:
v mfp.admin.push.url

v mfp.admin.authorization.server.url

v mfp.push.authorization.client.id

v mfp.push.authorization.client.secret

v mfp.admin.authorization.client.id

v mfp.admin.authorization.client.secret

The JNDI properties for the communication with the configuration service are as
follows:
v mfp.config.service.user

v mfp.config.service.password

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server administration service” on page 6-174.

Data source

The JNDI name of the data source for the administration service must be defined
as jndiName=<contextRoot>/jdbc/mfpAdminDS. The following example illustrates the
case whereby the administration service is installed with the context root
/mfpadmin, and that the service is using a relational database:
<dataSource jndiName="mfpadmin/jdbc/mfpAdminDS" transactional="false">

[...]
</dataSource>

Security roles

Declare the following roles in the <application-bnd> element of the application:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

6-124 IBM MobileFirst Platform Foundation V8.0.0

MobileFirst Server live update service configuration details:

The live update service is packaged as a WAR application for you to deploy to the
Liberty collective controller. You need to make some specific configurations for this
application in the server.xml file of the Liberty collective controller.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty collective” on page 6-121 for the configuration details that are common to
all services.

The live update service WAR file is in mfp_install_dir/MobileFirstServer/mfp-
live-update.war.

The context root of the live update service must define in this way:
/<adminContextRoot>config. For example, if the context root of the administration
service is /mfpadmin, then the context root of the live update service must be
/mfpadminconfig.

Data source

The JNDI name of the data source for the live update service must be defined as
<contextRoot>/jdbc/ConfigDS. The following example illustrates the case whereby
the live update service is installed with the context root /mfpadminconfig, and that
the service is using a relational database:
<dataSource jndiName="mfpadminconfig/jdbc/ConfigDS" transactional="false">

[...]
</dataSource>

Security roles

Declare the configadmin role in the <application-bnd> element of the application.

At least one user must be mapped to this role. The user and its password must be
provided to the following JNDI properties of the administration service:
v mfp.config.service.user

v mfp.config.service.password

MobileFirst Operations Console configuration details:

The console is packaged as a WAR application for you to deploy to the Liberty
collective controller. You need to make some specific configurations for this
application in the server.xml file of the Liberty collective controller.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty collective” on page 6-121 for the configuration details that are common to
all services.

The console WAR file is in mfp_install_dir/MobileFirstServer/mfp-admin-ui.war.

You can define the context root as you want. However, it is /mfpconsole by
default.

Installing and configuring 6-125

Mandatory JNDI properties

When you define the JNDI properties, the JNDI names must be prefixed with the
context root of the console. The following example illustrates the case to declare
mfp.admin.endpoint whereby the console is installed with /mfpconsole as the
context root:
<jndiEntry jndiName="mfpconsole/mfp.admin.endpoint" value="*://*:*/mfpadmin"/>

The typical value for the mfp.admin.endpoint property is *://*:*/
<adminContextRoot>.

For more information about the JNDI properties, see “JNDI properties for
MobileFirst Operations Console” on page 6-181.

Security roles

Declare the following roles in the <application-bnd> element of the application:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Any user that is mapped to a security role of the console must also be mapped to
the same security role of the administration service.

MobileFirst runtime configuration details:

The runtime is packaged as a WAR application for you to deploy to the Liberty
collective cluster members. You need to make some specific configurations for this
application in the server.xml file of every Liberty collective cluster member.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty collective” on page 6-121 for the configuration details that are common to
all services.

The runtime WAR file is in mfp_install_dir/MobileFirstServer/mfp-server.war.

You can define the context root as you want. However, it is /mfp by default.

Mandatory JNDI properties

When you define the JNDI properties, the JNDI names must be prefixed with the
context root of the runtime. The following example illustrates the case to declare
mfp.analytics.url whereby the runtime is installed with /mobilefirst as the
context root:

<jndiEntry jndiName="mobilefirst/mfp.analytics.url" value="http://localhost:9080/analytics-service/rest"/>

You must define the mobilefirst/mfp.authorization.server property. For
example:
<jndiEntry jndiName="mobilefirst/mfp.authorization.server" value="embedded"/>

If MobileFirst Analytics is installed, you need to define the following JNDI
properties:
v mfp.analytics.url

v mfp.analytics.console.url

6-126 IBM MobileFirst Platform Foundation V8.0.0

v mfp.analytics.username

v mfp.analytics.password

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst runtime” on page 6-183.

Data source

The JNDI name of the data source for the runtime must be defined as
jndiName=<contextRoot>/jdbc/mfpDS. The following example illustrates the case
whereby the runtime is installed with the context root /mobilefirst, and that the
runtime is using a relational database:
<dataSource jndiName="mobilefirst/jdbc/mfpDS" transactional="false">

[...]
</dataSource>

MobileFirst Server push service configuration details:

The push service is packaged as a WAR application for you to deploy to a Liberty
collective cluster member or to a Liberty server.

If you install the push service in a Liberty server, see “MobileFirst Server push
service configuration details” on page 6-120 under “Manual installation on
WebSphere Application Server Liberty” on page 6-115.

When the MobileFirst Server push service is installed in a Liberty collective, it can
be installed in the same cluster than the runtime or in another cluster.

You need to make some specific configurations for this application in the
server.xml file of every Liberty collective cluster member.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty collective” on page 6-121 for the configuration details that are common to
all services.

The push service WAR file is in mfp_install_dir/PushService/mfp-push-
service.war.

You must define the context root as /imfpush. Otherwise, the client devices cannot
connect to it as the context root is hardcoded in the SDK.

Mandatory JNDI properties

When you define the JNDI properties, the JNDI names must be prefixed with the
context root of the push service. The following example illustrates the case to
declare mfp.push.analytics.user whereby the push service is installed with
/imfpush as the context root:
<jndiEntry jndiName="imfpush/mfp.push.analytics.user" value="admin"/>

You need to define the following properties:
v mfp.push.authorization.server.url

v mfp.push.authorization.client.id

v mfp.push.authorization.client.secret

v mfp.push.services.ext.security - the value must be
com.ibm.mfp.push.server.security.plugin.OAuthSecurityPlugin.

Installing and configuring 6-127

v mfp.push.db.type - for a relational database, the value must be DB.

If MobileFirst Analytics is configured, define the following JNDI properties:
v mfp.push.analytics.endpoint

v mfp.analytics.username

v mfp.analytics.password

v mfp.push.services.ext.analytics - the value must be
com.ibm.mfp.push.server.analytics.plugin.AnalyticsPlugin.

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server push service” on page 6-186.

Data source

The JNDI name of the data source for the push service must be defined as
jndiName=imfpush/jdbc/imfPushDS.

MobileFirst Server artifacts configuration details:

The artifacts component is packaged as a WAR application for you to deploy to the
Liberty collective controller. You need to make some specific configurations for this
application in the server.xml file of the Liberty collective controller.

Before you proceed, review “Manual installation on WebSphere Application Server
Liberty collective” on page 6-121 for the configuration details that are common to
all services.

The WAR file for this component is in mfp_install_dir/MobileFirstServer/mfp-
dev-artifacts.war.

You must define the context root as /mfp-dev-artifacts.

Manual installation on Apache Tomcat:

Find out more details on how to install the MobileFirst Server components on
Apache Tomcat.

Make sure that you have fulfilled the requirements as documented in “Apache
Tomcat prerequisites” on page 6-100.

Application server settings

You must activate the Single Sign On Valve. For example:
<Valve className="org.apache.catalina.authenticator.SingleSignOn"/>

Optionally, you might want to activate the memory realm if the users are defined
in tomcat-users.xml. For example:
<Realm className="org.apache.catalina.realm.MemoryRealm"/>

Topology constraints

The MobileFirst Server administration service, the MobileFirst Server live update
service, and the MobileFirst runtime must be installed on the same application
server. The context root of the live update service must be defined as
<adminContextRoot>config. The context root of the push service must be imfpush.

6-128 IBM MobileFirst Platform Foundation V8.0.0

For more information about the constraints, see “Constraints on the MobileFirst
Server components and MobileFirst Analytics” on page 6-84.

MobileFirst Server administration service configuration details:

The administration service is packaged as a WAR application for you to deploy to
the application server. You need to make some specific configurations for this
application.

Before you proceed, review “Manual installation on Apache Tomcat” on page 6-128
for the configuration details that are common to all services.

The administration service WAR file is in mfp_install_dir/MobileFirstServer/
mfp-admin-service.war.

You can define the context root as you want. However, usually it is /mfpadmin.

Mandatory JNDI properties

The JNDI properties are defined within the <Environment> element in the
application context. For example:
<Environment name="mfp.admin.push.url" value="http://localhost:8080/imfpush" type="java.lang.String" override="false"/>

To enable the JMX communication with the runtime, define the following JNDI
properties:
v mfp.topology.platform

v mfp.topology.clustermode

If the push service is installed, you must also configure the following JNDI
properties:
v mfp.admin.push.url

v mfp.admin.authorization.server.url

v mfp.push.authorization.client.id

v mfp.push.authorization.client.secret

v mfp.admin.authorization.client.id

v mfp.admin.authorization.client.secret

The JNDI properties for the communication with the live update service are as
follows:
v mfp.config.service.user

v mfp.config.service.password

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server administration service” on page 6-174.

Data source

The data source (jdbc/mfpAdminDS) is declared as a resource in the <Context>
element. For example:
<Resource name="jdbc/mfpAdminDS" type="javax.sql.DataSource" .../>

Installing and configuring 6-129

Security roles

The security roles available for the administration service application are:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

MobileFirst Server live update service configuration details:

The live update service is packaged as a WAR application for you to deploy to the
application server. You need to make some specific configurations for this
application.

Before you proceed, review “Manual installation on Apache Tomcat” on page 6-128
for the configuration details that are common to all services.

The live update service WAR file is in mfp_install_dir/MobileFirstServer/mfp-
live-update.war.

The context root of the live update service must define in this way:
/<adminContextRoot>config. For example, if the context root of the administration
service is /mfpadmin, then the context root of the live update service must be
/mfpadminconfig.

Data source

The JNDI name of the data source for the live update service must be defined as
jdbc/ConfigDS. Declare it as a resource in the <Context> element.

Security roles

The security role available for the live update service application is configadmin.

At least one user must be mapped to this role. The user and its password must be
provided to the following JNDI properties of the administration service:
v mfp.config.service.user

v mfp.config.service.password

MobileFirst Operations Console configuration details:

The console is packaged as a WAR application for you to deploy to the application
server. You need to make some specific configurations for this application.

Before you proceed, review “Manual installation on Apache Tomcat” on page 6-128
for the configuration details that are common to all services.

The console WAR file is in mfp_install_dir/MobileFirstServer/mfp-admin-ui.war.

You can define the context root as you want. However, usually it is /mfpconsole.

Mandatory JNDI properties

You need to define the mfp.admin.endpoint property. The typical value for this
property is *://*:*/<adminContextRoot>.

6-130 IBM MobileFirst Platform Foundation V8.0.0

For more information about the JNDI properties, see “JNDI properties for
MobileFirst Operations Console” on page 6-181.

Security roles

The security roles available for the application are:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

MobileFirst runtime configuration details:

The runtime is packaged as a WAR application for you to deploy to the application
server. You need to make some specific configurations for this application.

Before you proceed, review “Manual installation on Apache Tomcat” on page 6-128
for the configuration details that are common to all services.

The runtime WAR file is in mfp_install_dir/MobileFirstServer/mfp-server.war.

You can define the context root as you want. However, it is /mfp by default.

Mandatory JNDI properties

You must define the mfp.authorization.server property. For example:
<Environment name="mfp.authorization.server" value="embedded" type="java.lang.String" override="false"/>

To enable the JMX communication with the administration service, define the
following JNDI properties:
v mfp.topology.platform

v mfp.topology.clustermode

If MobileFirst Analytics is installed, you also need to define the following JNDI
properties:
v mfp.analytics.url

v mfp.analytics.console.url

v mfp.analytics.username

v mfp.analytics.password

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst runtime” on page 6-183.

Data source

The JNDI name of the data source for the runtime must be defined as jdbc/mfpDS.
Declare it as a resource in the <Context> element.

MobileFirst Server push service configuration details:

The push service is packaged as a WAR application for you to deploy to the
application server. You need to make some specific configurations for this
application.

Installing and configuring 6-131

Before you proceed, review “Manual installation on Apache Tomcat” on page 6-128
for the configuration details that are common to all services.

The push service WAR file is in mfp_install_dir/PushService/mfp-push-
service.war.

You must define the context root as /imfpush. Otherwise, the client devices cannot
connect to it as the context root is hardcoded in the SDK.

Mandatory JNDI properties

You need to define the following properties:
v mfp.push.authorization.server.url

v mfp.push.authorization.client.id

v mfp.push.authorization.client.secret

v mfp.push.services.ext.security - the value must be
com.ibm.mfp.push.server.security.plugin.OAuthSecurityPlugin.

v mfp.push.db.type - for a relational database, the value must be DB.

If MobileFirst Analytics is configured, define the following JNDI properties:
v mfp.push.analytics.endpoint

v mfp.analytics.username

v mfp.analytics.password

v mfp.push.services.ext.analytics - the value must be
com.ibm.mfp.push.server.analytics.plugin.AnalyticsPlugin.

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server push service” on page 6-186.

Data source

The JNDI name of the data source for the push service must be defined as
jdbc/imfPushDS.

MobileFirst Server artifacts configuration details:

The artifacts component is packaged as a WAR application for you to deploy to the
application server. You need to make some specific configurations for this
application.

Before you proceed, review “Manual installation on Apache Tomcat” on page 6-128
for the configuration details that are common to all services.

The WAR file for this component is in mfp_install_dir/MobileFirstServer/mfp-
dev-artifacts.war.

You must define the context root as /mfp-dev-artifacts.

Manual installation on WebSphere Application Server and WebSphere Application Server
Network Deployment:

Find out more details on how to install the MobileFirst Server components on
WebSphere Application Server and WebSphere Application Server Network
Deployment.

6-132 IBM MobileFirst Platform Foundation V8.0.0

Make sure that you have fulfilled the requirements as documented in “WebSphere
Application Server and WebSphere Application Server Network Deployment
prerequisites” on page 6-104.

Topology constraints

On a stand-alone WebSphere Application Server
The MobileFirst Server administration service, the MobileFirst Server live
update service, and the MobileFirst runtime must be installed on the same
application server. The context root of the live update service must be
defined as <adminContextRoot>config. The context root of the push service
must be imfpush. For more information about the constraints, see
“Constraints on the MobileFirst Server components and MobileFirst
Analytics” on page 6-84.

On WebSphere Application Server Network Deployment
The deployment manager must be running while MobileFirst Server is
running. The deployment manager is used for the JMX communication
between the runtime and the administration service. The administration
service and the live update service must be installed on the same
application server. The runtime can be installed on different servers than
the administration service, but it must be on the same cell.

Application server settings

The administrative security and the application security must be enabled. You can
enable the application security in the WebSphere Application Server administration
console:
1. Log in to the WebSphere Application Server administration console.
2. Click Security > Global Security. Ensure that Enable administrative security

is selected.
3. Also, ensure that Enable application security is selected. The application

security can be enabled only if administrative security is enabled.
4. Click OK.
5. Save the changes.

For more information, see Enabling security in WebSphere Application Server
documentation.

The server class loader policy must support parent last delegation. The MobileFirst
Server WAR files must be installed with parent last class loader mode. Review the
class-loader policy:
1. Log in to the WebSphere Application Server administration console.
2. Click Servers > Server Types > WebSphere application servers, and click on

the server that is used for IBM MobileFirst Platform Foundation.
3. If the class-loader policy is set to Multiple, do nothing.
4. If the class-loader policy is set to Single and the class loading mode is set to

Classes loaded with local class loader first (parent last), do nothing.
5. If the class-loader policy is set to Single and the class loading mode is set to

Classes loaded with parent class loader first (parent first), change the
class-loader policy to Multiple. Also, set the class loader order of all
applications other than MobileFirst Server applications to Classes loaded with
parent class loader first (parent first).

Installing and configuring 6-133

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_csec2.html

Class loader

For all MobileFirst Server applications, the class loader must have the parent last
delegation.

To set the class loader delegation to parent last after an application is installed,
follow these steps:
1. Click the Manage Applications link, or click Applications > Application

Types > WebSphere entreprise applications.
2. Click the MobileFirst Server application. By default the name of the

application is the name of the WAR file.
3. In the Detail Properties section, click the Class loading and update detection

link.
4. In the Class loader order pane, select the Classes loaded with local class

loader first (parent last) option.
5. Click OK.
6. In the Modules section, click the Manage Modules link.
7. Click the module.
8. For the Class loader order field, select the Classes loaded with local class

loader first (parent last) option.
9. Click OK twice to confirm the selection and back to the Configuration panel

of the application.
10. Click Save to persist the changes.

MobileFirst Server administration service configuration details:

The administration service is packaged as a WAR application for you to deploy to
the application server. You need to make some specific configurations for this
application.

Before you proceed, review “Manual installation on WebSphere Application Server
and WebSphere Application Server Network Deployment” on page 6-132 for the
configuration details that are common to all services.

The administration service WAR file is in mfp_install_dir/MobileFirstServer/
mfp-admin-service.war.

You can define the context root as you want. However, usually it is /mfpadmin.

Mandatory JNDI properties

You can set JNDI properties with the WebSphere Application Server administration
console. Go to Applications > Application Types > WebSphere enterprise
applications > application_name > Environment entries for Web modules and set
the entries.

To enable the JMX communication with the runtime, you must configure the
following JNDI properties:

On WebSphere Application Server Network Deployment

v mfp.admin.jmx.dmgr.host

v mfp.admin.jmx.dmgr.port - the SOAP port on the deployment manager.
v mfp.topology.platform - set the value as WAS.

6-134 IBM MobileFirst Platform Foundation V8.0.0

v mfp.topology.clustermode - set the value as Cluster.
v mfp.admin.jmx.connector - set the value as SOAP.

On a stand-alone WebSphere Application Server

v mfp.topology.platform - set the value as WAS.
v mfp.topology.clustermode - set the value as Standalone.
v mfp.admin.jmx.connector - set the value as SOAP.

If the push service is installed, you must configure the following JNDI properties:
v mfp.admin.push.url

v mfp.admin.authorization.server.url

v mfp.push.authorization.client.id

v mfp.push.authorization.client.secret

v mfp.admin.authorization.client.id

v mfp.admin.authorization.client.secret

The JNDI properties for the communication with the configuration service are as
follows:
v mfp.config.service.user

v mfp.config.service.password

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server administration service” on page 6-174.

Data source

Create a data source for the administration service and map it to jdbc/mfpAdminDS.

Start order

The administration service application must start before the runtime application.
You can set the order at Startup behavior section. For example, set the Startup
Order to 1 for the administration service and 2 to the runtime.

Security roles

The following roles are defined for this application:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

MobileFirst Server live update service configuration details:

The live update service is packaged as a WAR application for you to deploy to the
application server. You need to make some specific configurations for this
application.

Before you proceed, review “Manual installation on WebSphere Application Server
and WebSphere Application Server Network Deployment” on page 6-132 for the
configuration details that are common to all services.

Installing and configuring 6-135

The live update service WAR file is in mfp_install_dir/MobileFirstServer/mfp-
live-update.war.

The context root of the live update service must define in this way:
/<adminContextRoot>config. For example, if the context root of the administration
service is /mfpadmin, then the context root of the live update service must be
/mfpadminconfig.

Data source

Create a data source for the live update service and map it to jdbc/ConfigDS.

Security roles

The configadmin role is defined for this application.

At least one user must be mapped to this role. The user and its password must be
provided to the following JNDI properties of the administration service:
v mfp.config.service.user

v mfp.config.service.password

MobileFirst Operations Console configuration details:

The console is packaged as a WAR application for you to deploy to the application
server. You need to make some specific configurations for this application.

Before you proceed, review “Manual installation on WebSphere Application Server
and WebSphere Application Server Network Deployment” on page 6-132 for the
configuration details that are common to all services.

The console WAR file is in mfp_install_dir/MobileFirstServer/mfp-admin-ui.war.

You can define the context root as you want. However, usually it is /mfpconsole.

Mandatory JNDI properties

You can set JNDI properties with the WebSphere Application Server administration
console. Go to Applications > Application Types > WebSphere enterprise
applications > application_name > Environment entries for Web modules and set
the entries.

You need to define the mfp.admin.endpoint property. The typical value for this
property is *://*:*/<adminContextRoot>.

For more information about the JNDI properties, see “JNDI properties for
MobileFirst Operations Console” on page 6-181.

Security roles

The following roles are defined for the application:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

6-136 IBM MobileFirst Platform Foundation V8.0.0

Any user that is mapped to a security role of the console must also be mapped to
the same security role of the administration service.

MobileFirst runtime configuration details:

The runtime is packaged as a WAR application for you to deploy to the application
server. You need to make some specific configurations for this application.

Before you proceed, review “Manual installation on WebSphere Application Server
and WebSphere Application Server Network Deployment” on page 6-132 for the
configuration details that are common to all services.

The runtime WAR file is in mfp_install_dir/MobileFirstServer/mfp-server.war.

You can define the context root as you want. However, it is /mfp by default.

Mandatory JNDI properties

You can set JNDI properties with the WebSphere Application Server administration
console. Go to Applications > Application Types > WebSphere enterprise
applications > application_name > Environment entries for Web modules and set
the entries.

You must define the mfp.authorization.server property with the value as
embedded.

Also, define the following JNDI properties to enable the JMX communication with
the administration service:

On WebSphere Application Server Network Deployment

v mfp.admin.jmx.dmgr.host - the host name of the deployment manager.
v mfp.admin.jmx.dmgr.port - the SOAP port of the deployment manager.
v mfp.topology.platform - set the value as WAS.
v mfp.topology.clustermode - set the value as Cluster.
v mfp.admin.jmx.connector - set the value as SOAP.

On a stand-alone WebSphere Application Server

v mfp.topology.platform - set the value as WAS.
v mfp.topology.clustermode - set the value as Standalone.
v mfp.admin.jmx.connector - set the value as SOAP.

If MobileFirst Analytics is installed, you also need to define the following JNDI
properties:
v mfp.analytics.url

v mfp.analytics.console.url

v mfp.analytics.username

v mfp.analytics.password

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst runtime” on page 6-183.

Installing and configuring 6-137

Start order

The runtime application must start after the administration service application. You
can set the order at Startup behavior section. For example, set the Startup Order
to 1 for the administration service and 2 to the runtime.

Data source

Create a data source for the runtime and map it to jdbc/mfpDS.

MobileFirst Server push service configuration details:

The push service is packaged as a WAR application for you to deploy to the
application server. You need to make some specific configurations for this
application.

Before you proceed, review “Manual installation on WebSphere Application Server
and WebSphere Application Server Network Deployment” on page 6-132 for the
configuration details that are common to all services.

The push service WAR file is in mfp_install_dir/PushService/mfp-push-
service.war.

You must define the context root as /imfpush. Otherwise, the client devices cannot
connect to it as the context root is hardcoded in the SDK.

Mandatory JNDI properties

You can set JNDI properties with the WebSphere Application Server administration
console. Go to Applications > Application Types > WebSphere enterprise
applications > application_name > Environment entries for Web modules and set
the entries.

You need to define the following properties:
v mfp.push.authorization.server.url

v mfp.push.authorization.client.id

v mfp.push.authorization.client.secret

v mfp.push.services.ext.security - the value must be
com.ibm.mfp.push.server.security.plugin.OAuthSecurityPlugin.

v mfp.push.db.type - for a relational database, the value must be DB.

If MobileFirst Analytics is configured, define the following JNDI properties:
v mfp.push.analytics.endpoint

v mfp.analytics.username

v mfp.analytics.password

v mfp.push.services.ext.analytics - the value must be
com.ibm.mfp.push.server.analytics.plugin.AnalyticsPlugin.

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server push service” on page 6-186.

Data source

Create the data source for the push service and map it to jdbc/imfPushDS.

6-138 IBM MobileFirst Platform Foundation V8.0.0

MobileFirst Server artifacts configuration details:

The artifacts component is packaged as a WAR application for you to deploy to the
application server. You need to make some specific configurations for this
application.

Before you proceed, review “Manual installation on WebSphere Application Server
and WebSphere Application Server Network Deployment” on page 6-132 for the
configuration details that are common to all services.

The WAR file for this component is in mfp_install_dir/MobileFirstServer/mfp-
dev-artifacts.war.

You must define the context root as /mfp-dev-artifacts.

Installing a server farm:

You can install your server farm by running Ant tasks, with the Server
Configuration Tool, or manually.

Planning the configuration of a server farm:

To plan the configuration of a server farm, choose the application server, configure
the MobileFirst databases, and deploy the WAR files of the MobileFirst Server
components on each server of the farm. You have the options to use the Server
Configuration Tool, Ant tasks, or manual operations to configure a server farm.

When you intend to plan a server farm installation, see “Constraints on
MobileFirst Server administration service, MobileFirst Server live update service
and MobileFirst runtime” on page 6-84 first, and in particular see “Server farm
topology” on page 6-88.

In IBM MobileFirst Platform Foundation, a server farm is composed of multiple
stand-alone application servers that are not federated or administered by a
managing component of an application server. MobileFirst Server internally
provides a farm plug-in as the means to enhance an application server so that it
can be part of a server farm.

When to declare a server farm

Declare a server farm in the following cases:

v MobileFirst Server is installed on multiple Tomcat application servers.
v MobileFirst Server is installed on multiple WebSphere Application Server

servers but not on WebSphere Application Server Network Deployment.
v MobileFirst Server is installed on multiple WebSphere Application Server

Liberty servers.

Do not declare a server farm in the following cases:

v Your application server is stand-alone.
v Multiple application servers are federated by WebSphere Application

Server Network Deployment.

Why it is mandatory to declare a farm

Each time a management operation is performed through MobileFirst Operations
Console or through the MobileFirst Server administration service application, the

Installing and configuring 6-139

operation needs to be replicated to all instances of a runtime environment.
Examples of such management operations are the uploading of a new version of
an app or of an adapter. The replication is done via JMX calls performed by the
administration service application instance that handles the operation. The
administration service needs to contact all runtime instances in the cluster. In
environments listed under “When to declare a server farm” on page 6-139, the
runtime can be contacted through JMX only if a farm is configured. If a server is
added to a cluster without proper configuration of the farm, the runtime in that
server will be in an inconsistent state after each management operation, and until
it is restarted again.

Installing a server farm with the Server Configuration Tool:

Use the Server Configuration Tool to configure each server in the farm according
to the requirements of the single type of application server that is used for each
member of the server farm.

About this task

When you plan a server farm with the Server Configuration Tool, first create the
stand-alone servers and configure their respective truststores so that they can
communicate with one another in a secure way. Then, run the tool that does the
following operations:
v Configure the database instance that is shared by the MobileFirst Server

components.
v Deploy the MobileFirst Server components to each server
v Modify its configuration to make it a member of a server farm

Procedure

1. Prepare the application servers that must be configured as the server farm
members.
a. Choose the type of application server to use to configure the members of

the server farm. IBM MobileFirst Platform Foundation supports the
following application servers in server farms:
v WebSphere Application Server full profile

Note: In a farm topology, you cannot use the RMI JMX connector. In this
topology, only the SOAP connector is supported by IBM MobileFirst
Platform Foundation.

v WebSphere Application Server Liberty profile
v Apache Tomcat

To know which versions of the application servers are supported, see
“System requirements” on page 2-7.

Important:

IBM MobileFirst Platform Foundation supports only homogeneous server
farms. A server farm is homogeneous when it connects same type of
application servers. Attempting to associate different types of application
servers might lead to unpredictable behavior at run time. For example, a
farm with a mix of Apache Tomcat servers and WebSphere Application
Server full profile servers is an invalid configuration.

6-140 IBM MobileFirst Platform Foundation V8.0.0

b. Set up as many stand-alone servers as the number of members that you
want in the farm.
Each of these stand-alone servers must communicate with the same
database. You must make sure that any port used by any of these servers is
not also used by another server that is configured on the same host. This
constraint applies to the ports used by HTTP, HTTPS, REST, SOAP, and
RMI protocols.
Each of these servers must have the MobileFirst Server administration
service, the MobileFirst Server live update service, and one or more
MobileFirst runtimes deployed on it.
For more information about setting up a server, see “Constraints on
MobileFirst Server administration service, MobileFirst Server live update
service and MobileFirst runtime” on page 6-84.

c. Exchange the signer certificates between all the servers in their respective
truststores.
This step is mandatory for the farms that use WebSphere Application Server
full profile or Liberty as security must be enabled. In addition, for Liberty
farms, the same LTPA configuration must be replicated on each server to
ensure single-sign on capability. To do this configuration, follow the
guidelines in step 6 on page 6-147 of “Configuring a server farm manually”
on page 6-144.

2. Run the Server Configuration Tool for each server of the farm.
All servers must share the same databases. Make sure to select the deployment
type: Server farm deployment in the Application Server Settings panel. For
more information about the tool, see “Running the Server Configuration Tool”
on page 6-106.

Installing a server farm with Ant tasks:

Use Ant tasks to configure each server in the farm according to the requirements of
the single type of application server that is used for each member of the server
farm.

About this task

When you plan a server farm with Ant tasks, first create the stand-alone servers
and configure their respective truststores so that they can communicate with one
another in a secure way. Then, run Ant tasks to configure the database instance
that is shared by the MobileFirst Server components. Finally, run Ant tasks to
deploy the MobileFirst Server components to each server and modify its
configuration to make it a member of a server farm.

Procedure

1. Prepare the application servers that must be configured as the server farm
members.
a. Choose the type of application server to use to configure the members of

the server farm. IBM MobileFirst Platform Foundation supports the
following application servers in server farms:
v WebSphere Application Server full profile

Note: In a farm topology, you cannot use the RMI JMX connector. In this
topology, only the SOAP connector is supported by IBM MobileFirst
Platform Foundation.

Installing and configuring 6-141

v WebSphere Application Server Liberty profile
v Apache Tomcat

To know which versions of the application servers are supported, see
“System requirements” on page 2-7.

Important:

IBM MobileFirst Platform Foundation supports only homogeneous server
farms. A server farm is homogeneous when it connects same type of
application servers. Attempting to associate different types of application
servers might lead to unpredictable behavior at run time. For example, a
farm with a mix of Apache Tomcat servers and WebSphere Application
Server full profile servers is an invalid configuration.

b. Set up as many stand-alone servers as the number of members that you
want in the farm.
Each of these stand-alone servers must communicate with the same
database. You must make sure that any port used by any of these servers is
not also used by another server that is configured on the same host. This
constraint applies to the ports used by HTTP, HTTPS, REST, SOAP, and
RMI protocols.
Each of these servers must have the MobileFirst Server administration
service, the MobileFirst Server live update service, and one or more
MobileFirst runtimes deployed on it.
For more information about setting up a server, see “Constraints on
MobileFirst Server administration service, MobileFirst Server live update
service and MobileFirst runtime” on page 6-84.

c. Exchange the signer certificates between all the servers in their respective
truststores.
This step is mandatory for the farms that use WebSphere Application Server
full profile or Liberty as security must be enabled. In addition, for Liberty
farms, the same LTPA configuration must be replicated on each server to
ensure single-sign on capability. To do this configuration, follow the
guidelines in step 6 on page 6-147 of “Configuring a server farm manually”
on page 6-144.

2. Configure the database for the administration service, the live update service,
and the runtime.
a. Decide which database that you want to use and choose the Ant file to

create and configure the database in the mfp_install_dir/
MobileFirstServer/configuration-samples directory:
v For DB2, use create-database-db2.xml.
v For MySQL, use create-database-mysql.xml.
v For Oracle, use create-database-oracle.xml.

Note: Do not use the Derby database in a farm topology because the Derby
database allows only a single connection at a time.

b. Edit the Ant file and enter all the required properties for the database.
To enable the configuration of the database that is used by the MobileFirst
Server components, set the values of the following properties:
v Set mfp.process.admin to true. To configure the database for the

administration service and the live update service.

6-142 IBM MobileFirst Platform Foundation V8.0.0

v Set mfp.process.runtime to true. To configure the database for the
runtime.

c. Run the following commands from the mfp_install_dir/
MobileFirstServer/configuration-samples directory where
create-database-ant-file.xml must be replaced with the actual Ant file
name that you chose:
mfp_install_dir/shortcuts/ant -f create-database-ant-file.xml
admdatabases

mfp_install_dir/shortcuts/ant -f create-database-ant-file.xml
rtmdatabases

As the MobileFirst Server databases are shared between the application
servers in a farm, these two commands must be run only once, whatever
the number of servers in the farm.

d. Optionally, if you want to install another runtime, you must configure
another database with another database name or schema.
To do so, edit the Ant file, modify the properties, and run the following
command once, whatever the number of servers in the farm:
mfp_install_dir/shortcuts/ant -f create-database-ant-file.xml
rtmdatabases

3. Deploy the administration service, the live update service, and the runtime on
the servers and configure these servers as the members of a server farm.
a. Choose the Ant file that corresponds to your application server and your

database in the mfp_install_dir/MobileFirstServer/configuration-
samples directory to deploy the administration service, the live update
service, and the runtime on the servers.
For example, choose the configure-liberty-db2.xml file for a deployment
on Liberty server with the DB2 database. Make as many copies of this file
as the number of members that you want in the farm.

Note: Keep these files after the configuration as they can be reused for
upgrading the MobileFirst Server components that are already deployed, or
for uninstalling them from each member of the farm.

b. Edit each copy of the Ant file, enter the same properties for the database
that are used at step 2 on page 6-142, and also enter the other required
properties for the application server.
To configure the server as a server farm member, set the values of the
following properties:
v Set mfp.farm.configure to true.
v mfp.farm.server.id: An identifier that you define for this farm member.

Make sure that each server in the farm has its own unique identifier. If
two servers in the farm have the same identifier, the farm might behave
in an unpredictable way.

v mfp.config.service.user: The user name that is used to access the live
update service. The user name must be the same for all the members of
the farm.

v mfp.config.service.password: The password that is used to access the
live update service. The password must be the same for all the members
of the farm.

To enable the deployment of the WAR files of the MobileFirst Server
components on the server, set the values of the following properties:

Installing and configuring 6-143

v Set mfp.process.admin to true. To deploy the WAR files of the
administration service and the live update service.

v Set mfp.process.runtime to true. To deploy the WAR file of the runtime.

Note: If you plan to install more than one runtime on the servers of the
farm, specify the attribute id and set a value that must be unique for each
runtime on the installmobilefirstruntime, updatemobilefirstruntime, and
uninstallmobilefirstruntime Ant tasks.
For example,
<target name="rtminstall">

<installmobilefirstruntime execute="true" contextroot="/runtime1" id="rtm1">

c. For each server, run the following commands where configure-appserver-
database-ant-file.xml must be replaced with the actual Ant file name that
you chose:
mfp_install_dir/shortcuts/ant -f configure-appserver-database-ant-
file.xml adminstall

mfp_install_dir/shortcuts/ant -f configure-appserver-database-ant-
file.xml rtminstall

These commands run the installmobilefirstadmin and
installmobilefirstruntime Ant tasks. For more information about these
tasks, see “Ant tasks for installation of MobileFirst Operations Console,
MobileFirst Server artifacts, MobileFirst Server administration, and live
update services” on page 6-274 and “Ant tasks for installation of MobileFirst
runtime environments” on page 6-293.

d. Optionally, if you want to install another runtime, do the following steps:
1) Make a copy of the Ant file that you configured at step 3b on page

6-143.
2) Edit the copy, set a distinct context root, and a value for the attribute id

of installmobilefirstruntime, updatemobilefirstruntime, and
uninstallmobilefirstruntime that is different from the other runtime
configuration.

3) Run the following command on each server on the farm where
configure-appserver-database-ant-file2.xml must be replaced with
the actual name of the Ant file that is edited:
mfp_install_dir/shortcuts/ant -f configure-appserver-database-
ant-file2.xml rtminstall

4) Repeat this step for each server of the farm.
4. Restart all the servers.

Configuring a server farm manually:

You must configure each server in the farm according to the requirements of the
single type of application server that is used for each member of the server farm.

About this task

When you plan a server farm, first create stand-alone servers that communicate
with the same database instance. Then, modify the configuration of these servers to
make them members of a server farm.

6-144 IBM MobileFirst Platform Foundation V8.0.0

Procedure

1. Choose the type of application server to use to configure the members of the
server farm. IBM MobileFirst Platform Foundation supports these application
servers in server farms:
v WebSphere Application Server full profile.

Note: In a farm topology, you cannot use the RMI JMX connector. In this
topology, IBM MobileFirst Platform Foundation supports only the SOAP
connector.

v WebSphere Application Server Liberty profile.
v Apache Tomcat.
To know which versions of application servers are supported, see “System
requirements” on page 2-7.

Note: IBM MobileFirst Platform Foundation supports only homogeneous server
farms. A server farm is homogeneous when it connects application servers of
the same type. Attempting to associate different types of application servers
might lead to unpredictable behavior at run time. For example, a farm with a
mix of Apache Tomcat servers and WebSphere Application Server full profile
servers is an invalid configuration.

2. Decide which database that you want to use. You can choose from:
v DB2
v MySQL
v Oracle
MobileFirst Server databases are shared between the application servers in a
farm, which means:
v You create the database only once, whatever the number of servers in the

farm.
v You cannot use the Derby database in a farm topology because the Derby

database allows only a single connection at a time.
For more information about databases, see “Setting up databases” on page 6-63.

3. Set up as many stand-alone servers as the number of members that you want
in the farm. Each of these stand-alone servers must communicate with the same
database. You must make sure that any port used by any of these servers is not
also used by another server that is configured on the same host. This constraint
applies to the ports used by HTTP, HTTPS, REST, SOAP, and RMI protocols.
Each of these servers must have the MobileFirst Server administration service,
the MobileFirst Server live update service, and one or more MobileFirst
runtimes deployed on it.
For more information about setting up a server, see “Constraints on MobileFirst
Server administration service, MobileFirst Server live update service and
MobileFirst runtime” on page 6-84.
When each of these servers is working properly in a stand-alone topology, you
can transform them into members of a server farm.

4. Stop all the servers that are intended to become members of the farm.
5. Configure each server appropriately for the type of application server.

You must set some JNDI properties correctly. In a server farm topology, the
mfp.config.service.user and mfp.config.service.password JNDI properties
must have the same value for all the members of the farm. For Apache Tomcat,
you must also check that the JVM arguments are properly defined.
v WebSphere Application Server Liberty profile

Installing and configuring 6-145

In the server.xml file, set the JNDI properties shown in the following sample
code.
<jndiEntry jndiName="mfp.topology.clustermode" value="Farm"/>
<jndiEntry jndiName="mfp.admin.serverid" value="farm_member_1"/>
<jndiEntry jndiName="mfp.admin.jmx.user" value="myRESTConnectorUser"/>
<jndiEntry jndiName="mfp.admin.jmx.pwd" value="password-of-rest-connector-user"/>
<jndiEntry jndiName="mfp.admin.jmx.host" value="93.12.0.12"/>
<jndiEntry jndiName="mfp.admin.jmx.port" value="9443"/>

These properties must be set with appropriate values:
– mfp.admin.serverid: The identifier that you defined for this farm member.

This identifier must be unique across all farm members.
– mfp.admin.jmx.user and mfp.admin.jmx.pwd: These values must match the

credentials of a user as declared in the <administrator-role/> element.
– mfp.admin.jmx.host: Set this parameter to the IP or the host name that is

used by remote members to access this server. Therefore, do not set it to
localhost. This host name is used by the other members of the farm and
must be accessible to all farm members.

– mfp.admin.jmx.port: Set this parameter to the server HTTPS port that is
used for the JMX REST connection. You can find the value in the
<httpEndpoint> element of the server.xml file.

v Apache Tomcat

Modify the conf/server.xml file to set the following JNDI properties in the
administration service context and in every runtime context.

<Environment name="mfp.topology.clustermode" value="Farm" type="java.lang.String" override="false"/>
<Environment name="mfp.admin.serverid" value="farm_member_1" type="java.lang.String" override="false"/>

The mfp.admin.serverid property must be set to the identifier that you
defined for this farm member. This identifier must be unique across all farm
members.
You must make sure that the -Djava.rmi.server.hostname JVM argument is
set to the IP or the host name that is used by remote members to access this
server. Therefore, do not set it to localhost. In addition, you must make sure
that the -Dcom.sun.management.jmxremote.port JVM argument is set with a
port that is not already in use to enable JMX RMI connections. Both
arguments are set in the CATALINA_OPTS environment variable.

v WebSphere Application Server full profile

You must declare the following JNDI properties in the administration service
and in every runtime application deployed on the server.
– mfp.topology.clustermode

– mfp.admin.serverid

a. In the WebSphere Application Server console, select Applications >
Application Types > WebSphere Enterprise applications.

b. Select the administration service application.
c. In Web Module Properties, click Environment entries for Web Modules to

display the JNDI properties.
d. Set the values of the following properties.
v Set mfp.topology.clustermode to Farm.
v Set mfp.admin.serverid to the identifier that you chose for this farm

member. This identifier must be unique across all farm members.
v Set mfp.admin.jmx.user to a user name that has access to the SOAP

connector.
v Set mfp.admin.jmx.pwd to the password of the user as declared in

mfp.admin.jmx.user.

6-146 IBM MobileFirst Platform Foundation V8.0.0

v Set mfp.admin.jmx.port to the value of the SOAP port.
e. Verify that mfp.admin.jmx.connector is set to SOAP.
f. Click OK and save the configuration.
g. Make similar changes for every MobileFirst runtime application deployed

on the server.
6. Exchange the server certificates in their truststores between all members of the

farm. Exchanging the server certificates in their truststores is mandatory for
farms that use WebSphere Application Server full profile and WebSphere
Application Server Liberty profile because in these farms, communications
between the servers is secured by SSL.
v WebSphere Application Server Liberty profile

You can configure the truststore by using IBM utilities such as Keytool or
iKeyman.
– For more information about Keytool, see Keytool in the IBM SDK, Java

Technology Edition.
– For more information about iKeyman, see iKeyman in the IBM SDK, Java

Technology Edition.
The locations of keystore and truststore are defined in the server.xml file.
See the keyStoreRef and trustStoreRef attributes in SSL configuration
attributes. By default, the keystore of Liberty profile is at
${server.config.dir}/resources/security/key.jks. If the truststore
reference is missing or not defined in the server.xml file, the keystore that is
specified by keyStoreRef is used. The server uses the default keystore and
the file is created the first time that the server runs. In that case, a default
certificate is created with a validity period of 365 days. For production, you
might consider using your own certificate (including the intermediate ones, if
needed) or changing the expiration date of the generated certificate.

Note: If you want to confirm the location of the truststore, you can do so by
adding the following declaration to the server.xml file:
<logging traceSpecification="SSL=all:SSLChannel=all"/>

Lastly, start the server and look for lines that contain
com.ibm.ssl.trustStore in the ${wlp.install.dir}/usr/servers/
server_name/logs/trace.log file.

a. Import the public certificates of the other servers in the farm into the
truststore that is referenced by the server.xml configuration file of the
server.
The tutorial (“Installing MobileFirst Server in graphical mode” on page 6-5)
provides you the instructions to exchange the certificates between two
Liberty servers in a farm. For more information, see step 5 on page 6-21 of
“Creating a farm of two Liberty servers that run MobileFirst Server” on
page 6-19 section.

b. Restart each instance of WebSphere Application Server Liberty profile to
make the security configuration take effect.
The following steps are needed for single sign-on (SSO) to work.

c. Start one member of the farm. In the default LTPA configuration, after the
Liberty server starts successfully, it generates an LTPA keystore as
${wlp.user.dir}/servers/server_name/resources/security/ltpa.keys.

d. Copy the ltpa.keys file to the ${wlp.user.dir}/servers/server_name/
resources/security directory of each farm member to replicate the LTPA
keystores across the farm members.

Installing and configuring 6-147

http://www-01.ibm.com/support/knowledgecenter/?lang=en#!/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/keytoolDocs/keytool_overview.html
http://www-01.ibm.com/support/knowledgecenter/?lang=en#!/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/ikeyman_tool.html
http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_ssl.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_ssl.html?lang=en

For more information about LTPA configuration, see Configuring LTPA on
the Liberty profile.

v WebSphere Application Server full profile

Configure the truststore in the WebSphere Application Server administration
console.

a. Log in to WebSphere Application Server administration console.
b. Select Security > SSL certificate and key management.
c. In Related Items, select Keystores and certificates.
d. In the Keystore usages field, make sure that SSL keystores is selected. You

can now import the certificates from all the other servers in the farm.
e. Click NodeDefaultTrustStore.
f. In Additional Properties, select Signer certificates.
g. Click Retrieve from port. You can now enter communication and security

details of each of the other servers in the farm. Follow the next steps for
each of the other farm members.

h. In the Host field, enter the server host name or IP address.
i. In the Port field, enter the HTTPS transport (SSL) port.
j. In SSL configuration for outbound connection, select

NodeDefaultSSLSettings.
k. In the Alias field, enter an alias for this signer certificate.
l. Click Retrieve signer information.
m. Review the information that is retrieved from the remote server and then

click OK.
n. Click Save.
o. Restart the server.

Verifying a farm configuration:

You can check the status of the farm members from MobileFirst Operations
Console.

About this task

The purpose of this task is to check the status of the farm members and verify
whether a farm is configured properly.

Procedure

1. Start all the servers of the farm.
2. Access MobileFirst Operations Console.

For example, http://server_name:port/mfpconsole, or https://
hostname:secure_port/mfpconsole in HTTPS. In the console sidebar, an extra
menu that is labeled as Server Farm Nodes appears.

3. Click Server Farm Nodes to access the list of registered farm members and
their status. In the following example, the node that is identified as
FarmMember2 is considered to be down, which indicates that this server has
probably failed and requires some maintenance.

6-148 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/knowledgecenter/#!/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ltpa.html
http://www.ibm.com/support/knowledgecenter/#!/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ltpa.html

Lifecycle of a server farm node:

You can configure heartbeat rate and timeout values to indicate possible server
problems among farm members by triggering a change in status of an affected
node.

Registration and monitoring servers as farm nodes

When a server configured as a farm node is started, the administration service on
that server automatically registers it as a new farm member.

When a farm member is shut down, it automatically unregisters from the farm.

A heartbeat mechanism exists to keep track of farm members that might become
unresponsive, for example, because of a power outage or a server failure. In this
heartbeat mechanism, MobileFirst runtimes periodically send a heartbeat to
MobileFirst administration services at a specified rate. If the MobileFirst
administration service registers that too long a time has elapsed since a farm
member sent a heartbeat, the farm member is considered to be down.

Farm members that are considered to be down do not serve any more requests to
mobile applications.

Having one or more nodes down does not prevent the other farm members from
correctly serving requests to mobile applications nor from accepting new
management operations that are triggered through the MobileFirst Operations
Console.

Configuring the heartbeat rate and timeout values

You can configure the heartbeat rate and timeout values by defining the following
JNDI properties:
v mfp.admin.farm.heartbeat

v mfp.admin.farm.missed.heartbeats.timeout

For more information about JNDI properties, see “List of JNDI properties for
MobileFirst Server administration service” on page 6-174.

Figure 6-7. List of server farm nodes

Installing and configuring 6-149

Installing and configuring for token licensing
If you plan to use token licensing for MobileFirst Server, you must install the
Rational Common Licensing library and configure your application server to
connect MobileFirst Server to the Rational License Key Server.

The following topics describe the installation overview, the manual installation of
Rational Common Licensing library, the configuration of the application server, and
the platform limitations for token licensing.

Planning for the use of token licensing
If the token licensing is purchased for MobileFirst Server, you have extra steps to
consider in the installation planning.

Technical restrictions
Here are the technical restrictions for the use of token licensing:

Supported Platforms:
The list of platforms that support token licensing is listed at
“Limitations of supported platforms for token licensing” on page
6-159. The MobileFirst Server running on a platform that is not
listed might not be possible to install and configure for token
licensing. The native libraries for the Rational Common Licensing
client might not available for the platform or not supported.

Supported Topologies:
The topologies that are supported by token licensing is listed at
“Constraints on MobileFirst Server administration service,
MobileFirst Server live update service and MobileFirst runtime” on
page 6-84.

Network requirement
MobileFirst Server must be able to communicate with the Rational License
Key Server.

This communication requires the access to the following two ports of the
license server:
v License manager daemon (lmgrd) port - the default port number is

27000.
v Vendor daemon (ibmratl) port

To configure the ports so that they use static values, see How to serve a
license key to client machines through a firewall.

Installation Process
You need to activate token licensing when you run the IBM Installation
Manager at installation time. For more information about the instructions
for enabling token licensing, see “Installation overview for token licensing”
on page 6-151.

After MobileFirst Server is installed, you must manually configure the
server for token licensing. For more information, see the following topics in
this section.

The MobileFirst Server is not functional before you complete this manual
configuration. The Rational Common Licensing client library is to be
installed in your application server, and you define the location of the
Rational License Key Server.

Operations
After you install and configure IBM MobileFirst Platform Server for token

6-150 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/docview.wss?uid=swg21257370
http://www.ibm.com/support/docview.wss?uid=swg21257370

licensing, the server validates licenses during various scenarios. For more
information about the retrieval of tokens during operations, see “Token
license validation” on page 10-83.

If you need to test a non-production application on a production server
with token licensing enabled, you can declare the application as
non-production. For more information about declaring the application type,
see “Setting the application license information” on page 10-80.

Installation overview for token licensing
The installation process overview for the use of IBM MobileFirst Platform
Foundation with token licensing enabled

Before you begin

Review “Planning for the use of token licensing” on page 6-150.

About this task

If you intend to use token licensing with IBM MobileFirst Platform Foundation,
make sure that you go through the following preliminary steps in this order.

Important:

v Your choice about token licensing (activating it or not) as part of an installation
that supports token licensing cannot be modified. If later you need to change the
token licensing option, you must uninstall IBM MobileFirst Platform Foundation
and reinstall it.

Procedure
1. Activate token licensing when you run IBM Installation Manager to install IBM

MobileFirst Platform Foundation.

Graphic mode installation
If you install the product in graphic mode, select Activate token
licensing with the Rational License Key Server option in the General
settings panel during the installation.

Installing and configuring 6-151

For more information about running IBM Installation Manager, see
“Running IBM Installation Manager” on page 6-40.

Command line mode installation
If you install in silent mode, set the value as true to the
user.licensed.by.tokens parameter in the response file.

For example, you can use:
imcl install com.ibm.mobilefirst.foundation.server -repositories
mfp_repository_dir/MobileFirst_Platform_Server/disk1 -properties
user.appserver.selection2=none,user.database.selection2=none,user.database.preinstalled=false,user.use.ios.edition=false,user.licensed.by.tokens=true
-acceptLicense

For more information about installing MobileFirst Server in command
line mode, see “Installing by running IBM Installation Manager in
command line” on page 6-45.

2. Deploy the MobileFirst Server to an application server after the product
installation is complete. For more information, see “Installing MobileFirst
Server to an application server” on page 6-100.

3. Configure MobileFirst Server for token licensing. The steps depend on your
application server.
v For WebSphere Application Server Liberty profile, see “Connecting

MobileFirst Server installed on WebSphere Application Server Liberty profile
to the Rational License Key Server” on page 6-154

v For Apache Tomcat, see “Connecting MobileFirst Server installed on Apache
Tomcat to the Rational License Key Server” on page 6-153

v For WebSphere Application Server full profile, see “Connecting MobileFirst
Server installed on WebSphere Application Server to the Rational License
Key Server” on page 6-156.

Figure 6-8. Activating token licensing during the installation of the product.

6-152 IBM MobileFirst Platform Foundation V8.0.0

Connecting MobileFirst Server installed on Apache Tomcat to the
Rational License Key Server
You must install the Rational Common Licensing native and Java libraries on the
Apache Tomcat application server before you connect MobileFirst Server to the
Rational License Key Server.

Before you begin
v Rational License Key Server 8.1.4.8 or later must be installed and configured.

The network must allow communication to and from MobileFirst Server by
opening the two-way communication ports (lmrgd and ibmratl). For more
information, see Rational License Key Server Portal and How to serve a license
key to client machines through a firewall.

v Make sure that the license keys for IBM MobileFirst Platform Foundation are
generated . For more information about generating and managing your license
keys with IBM® Rational License Key Center, see IBM Support - Licensing and
Obtaining license keys with IBM Rational License Key Center.

v MobileFirst Server must be installed and configured with the option Activate
token licensing with the Rational License Key Server on your Apache
Tomcat as indicated in “Installation overview for token licensing” on page 6-151.

Installing Rational Common Licensing libraries:
Procedure

1. Choose the Rational Common Licensing native library. Depending on your
operating system and the bit version of the Java Runtime Environment (JRE) on
which your Apache Tomcat is running, you must choose the correct native
library in product_install_dir/MobileFirstServer/tokenLibs/bin/
your_corresponding_platform/the_native_library_file. For example, for
Linux x86 with a 64-bit JRE, the library can be found in product_install_dir/
MobileFirstServer/tokensLibs/bin/Linux_x86_64/librcl_ibmratl.so.

2. Copy the native library to the computer that runs MobileFirst Server
administration service. The directory might be ${CATALINA_HOME}/bin.

Note: ${CATALINA_HOME} is the installation directory of your Apache Tomcat.
3. Copy rcl_ibmratl.jar file to ${CATALINA_HOME}/lib. The rcl_ibmratl.jar file

is a Rational Common Licensing Java library that can be found in
product_install_dir/MobileFirstServer/tokenLibs directory. The library uses
the native library that is copied in Step 2, and can be loaded only once by
Apache Tomcat. This file must be placed in the ${CATALINA_HOME}/lib directory
or any directory in the path of Apache Tomcat common class loader.

Important: The Java virtual machine (JVM) of Apache Tomcat needs read and
execute privileges on the copied native and Java libraries. Both copied files
must also be readable and executable at least for the application server process
in your operating system.

4. Configure the access to the Rational Common Licensing library by the JVM of
your application server. For any operating systems, configure the
${CATALINA_HOME}/bin/setenv.bat file (or setenv.sh file on UNIX) by adding
the following line:

Windows:
set CATALINA_OPTS=%CATALINA_OPTS%
-Djava.library.path=absolute_path_to_the_previous_bin_directory

UNIX: CATALINA_OPTS="$CATALINA_OPTS
-Djava.library.path=absolute_path_to_the_previous_bin_directory"

Installing and configuring 6-153

https://www.ibm.com/support/entry/portal/product/rational/rational_license_key_server?productContext=-283469295
http://www.ibm.com/support/docview.wss?uid=swg21257370
http://www.ibm.com/support/docview.wss?uid=swg21257370
http://www.ibm.com/software/rational/support/licensing/
https://www.ibm.com/support/knowledgecenter/SSSTWP_8.1.4/com.ibm.rational.license.doc/topics/t_access_license_key_center.html

Note: If you move the configuration folder of the server on which the
administration service is running, you must update the java.library.path with
the new absolute path.

5. Configure MobileFirst Server to access Rational License Key Server. In
${CATALINA_HOME}/conf/server.xml file, look for the <Context> element of the
administration service application, and add in these JNDI configuration lines.

<Environment name="mfp.admin.license.key.server.host" value="rlks_hostname" type="java.lang.String" override="false"/>
<Environment name="mfp.admin.license.key.server.port" value="rlks_port" type="java.lang.String" override="false"/>

v rlks_hostname is the host name of the Rational License Key Server.
v rlks_port is the port of the Rational License Key Server. By default, the value

is 27000.

For more information about the JNDI properties, see JNDI properties for
Administration Services: licensing.

Installing on Apache Tomcat server farm:
About this task

For configuring the connection of MobileFirst Server on Apache Tomcat server
farm, you must follow all the steps that are described in “Installing Rational
Common Licensing libraries” on page 6-153 for each node of your server farm
where the MobileFirst Server administration service is running. For more
information about server farm, see “Server farm topology” on page 6-88 and
“Installing a server farm” on page 6-139.

Connecting MobileFirst Server installed on WebSphere
Application Server Liberty profile to the Rational License Key
Server
You must install the Rational Common Licensing native and Java libraries on the
Liberty profile before you connect MobileFirst Server to the Rational License Key
Server.

Before you begin
v Rational License Key Server 8.1.4.8 or later must be installed and configured.

The network must allow communication to and from MobileFirst Server by
opening the two-way communication ports (lmrgd and ibmratl). For more
information, see Rational License Key Server Portal and How to serve a license
key to client machines through a firewall.

v Make sure that the license keys for IBM MobileFirst Platform Foundation are
generated . For more information about generating and managing your license
keys with IBM® Rational License Key Center, see IBM Support - Licensing and
Obtaining license keys with IBM Rational License Key Center.

v MobileFirst Server must be installed and configured with the option Activate
token licensing with the Rational License Key Server on your Liberty profile
as indicated in “Installation overview for token licensing” on page 6-151.

Installing Rational Common Licensing libraries:
Procedure

1. Define a shared library for the Rational Common Licensing client. This library
uses native code and can be loaded only once by the application server. Thus,
the applications that use it must reference it as a common library.
a. Choose the Rational Common Licensing native library. Depending on your

operating system and the bit version of the Java Runtime Environment
(JRE) on which your Liberty profile is running, you must choose the correct
native library in product_install_dir/MobileFirstServer/tokenLibs/bin/

6-154 IBM MobileFirst Platform Foundation V8.0.0

https://www.ibm.com/support/entry/portal/product/rational/rational_license_key_server?productContext=-283469295
http://www.ibm.com/support/docview.wss?uid=swg21257370
http://www.ibm.com/support/docview.wss?uid=swg21257370
http://www.ibm.com/software/rational/support/licensing/
https://www.ibm.com/support/knowledgecenter/SSSTWP_8.1.4/com.ibm.rational.license.doc/topics/t_access_license_key_center.html

your_corresponding_platform/the_native_library_file. For example, for
Linux x86 with a 64-bits JRE, the library can be found in
product_install_dir/MobileFirstServer/tokensLibs/bin/Linux_x86_64/
librcl_ibmratl.so.

b. Copy the native library to the computer that runs MobileFirst Server
administration service. The directory might be ${shared.resource.dir}/
rcllib. The ${shared.resource.dir} directory is usually in usr/shared/
resources, where usr is the directory that also contains the usr/servers
directory. For more information about standard location of
${shared.resource.dir}, see WebSphere Application Server Liberty Core -
Directory locations and properties. If the rcllib folder does not exist, create
this folder and then copy the native library file over.

Note: Ensure that the Java virtual machine (JVM) of the application server
has both read and execute privileges on the native library. On Windows, the
following exception appears in the application server log if the JVM of the
application server does not have the executable rights on the copied native
library.

com.ibm.rcl.ibmratl.LicenseConfigurationException: java.lang.UnsatisfiedLinkError: rcl_ibmratl (Access is denied).

c. Copy rcl_ibmratl.jar file to ${shared.resource.dir}/rcllib. The
rcl_ibmratl.jar file is a Rational Common Licensing Java library that can
be found in product_install_dir/MobileFirstServer/tokenLibs directory.

Note: The Java virtual machine (JVM) of Liberty profile must have the
possibility to read the copied Java library. This file must also have readable
privilege (at least for the application server process) in your operating
system.

d. Declare a shared library that uses the rcl_ibmratl.jar file in the
${server.config.dir}/server.xml file.
<!-- Declare a shared Library for the RCL client. -->
<!- This library can be loaded only once because it uses native code. -->
<library id="RCLLibrary">
<fileset dir="${shared.resource.dir}/rcllib" includes="rcl_ibmratl.jar"/>

</library>

e. Declare the shared library as a common library for the MobileFirst Server
administration service application by adding an attribute
(commonLibraryRef) to the class loader of the application. As the library can
be loaded only once, it must be used as a common library, and not as a
private library.
<application id="mfpadmin" name="mfpadmin" location="mfp-admin-service.war" type="war">
[...]
<!- Declare the shared library as an attribute commonLibraryRef to

the class loader of the application. -->
<classloader delegation="parentLast" commonLibraryRef="RCLLibrary">
</classloader>

</application>

If you are using Oracle as database, then the server.xml will already have
the following class loader:
<classloader delegation="parentLast" commonLibraryRef="MobileFirst/JDBC/oracle">
</classloader>

You also need to append Rational Common Licensing library as common
library to the Oracle library as follows:
<classloader delegation="parentLast"

commonLibraryRef="MobileFirst/JDBC/oracle,RCLLibrary">
</classloader>

Installing and configuring 6-155

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_dirs.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_dirs.html?lang=en

f. Configure the access to the Rational Common Licensing library by the JVM
of your application server. For any operating systems, configure the
${wlp.user.dir}/servers/server_name/jvm.options file by adding the
following line:
-Djava.library.path=Absolute_path_to_the_previously_created_rcllib_folder

Note: If you move the configuration folder of the server on which the
administration service is running, you must update the java.library.path
with the new absolute path.

The ${wlp.user.dir} directory is usually in liberty_install_dir/usr and contains
the servers directory. However, it's location can be customized. For more
information, see Customizing the Liberty environment

2. Configure MobileFirst Server to access Rational License Key Server.
In the ${wlp.user.dir}/servers/server_name/server.xml file, add these JNDI
configuration lines.
<jndiEntry jndiName="mfp.admin.license.key.server.host" value="rlks_hostname"/>
<jndiEntry jndiName="mfp.admin.license.key.server.port" value="rlks_port"/>

v rlks_hostname is the host name of the Rational License Key Server.
v rlks_port is the port of the Rational License Key Server. By default, the value

is 27000.

For more information about the JNDI properties, see JNDI properties for
Administration Services: licensing.

Installing on Liberty profile server farm:
About this task

For configuring the connection of MobileFirst Server on Liberty profile server farm,
you must follow all the steps that are described in Installing Rational Common
Licensing libraries for each node of your server farm where the MobileFirst Server
administration service is running. For more information about server farm, see
“Server farm topology” on page 6-88 and “Installing a server farm” on page 6-139.

Connecting MobileFirst Server installed on WebSphere
Application Server to the Rational License Key Server
You must configure a shared library for the Rational Common Licensing libraries
on WebSphere Application Server before you connect MobileFirst Server to the
Rational License Key Server.

Before you begin
v Rational License Key Server 8.1.4.8 or later must be installed and configured.

The network must allow communication to and from MobileFirst Server by
opening the two-way communication ports (lmrgd and ibmratl). For more
information, see Rational License Key Server Portal and How to serve a license
key to client machines through a firewall.

v Make sure that the license keys for IBM MobileFirst Platform Foundation are
generated . For more information about generating and managing your license
keys with IBM® Rational License Key Center, see IBM Support - Licensing and
Obtaining license keys with IBM Rational License Key Center.

v MobileFirst Server must be installed and configured with the option Activate
token licensing with the Rational License Key Server on your WebSphere
Application Server as indicated in “Installation overview for token licensing” on
page 6-151.

6-156 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_admin_customvars.html?lang=en
https://www.ibm.com/support/entry/portal/product/rational/rational_license_key_server?productContext=-283469295
http://www.ibm.com/support/docview.wss?uid=swg21257370
http://www.ibm.com/support/docview.wss?uid=swg21257370
http://www.ibm.com/software/rational/support/licensing/
https://www.ibm.com/support/knowledgecenter/SSSTWP_8.1.4/com.ibm.rational.license.doc/topics/t_access_license_key_center.html

Installing Rational Common Licensing library on a stand-alone server:
Procedure

1. Define a shared library for the Rational Common Licensing library. This library
uses native code and can be loaded only once by a class loader during the
application server lifecycle. For this reason, the library is declared as a shared
library and associated to all the application servers that run the MobileFirst
Server administration service. For more information about the reasons to
declare this library as a shared library, see Configuring native libraries in
shared libraries.
a. Choose the Rational Common Licensing native library. Depending on your

operating system and the bit version of the Java Runtime Environment
(JRE) on which your WebSphere Application Server is running, you must
choose the correct native library in product_install_dir/
MobileFirstServer/tokenLibs/bin/your_corresponding_platform/
the_native_library_file.
For example, for Linux x86 with a 64-bits JRE, the library can be found in
product_install_dir/MobileFirstServer/tokensLibs/bin/Linux_x86_64/
librcl_ibmratl.so.
To determine the bit version of the Java Runtime Environment for a
stand-alone WebSphere Application Server or WebSphere Application Server
Network Deployment installation, run the versionInfo.bat on Windows or
versionInfo.sh on UNIX from the bin directory. The versionInfo.sh file is
in /opt/IBM/WebSphere/AppServer/bin. Look at the Architecture value in the
Installed Product section. The Java Runtime Environment is 64-bit if the
Architecture value mentions it explicitly or if it is suffixed with 64 or _64.

b. Place the native library that corresponds to your platform in a folder of
your operating system. For example, /opt/IBM/RCL_Native_Library/.

c. Copy rcl_ibmratl.jar file to /opt/IBM/RCL_Native_Library/. The
rcl_ibmratl.jar file is a Rational Common Licensing Java library that can
be found in product_install_dir/MobileFirstServer/tokenLibs directory.

Important: The Java virtual machine (JVM) of the application server needs
read and execute privileges on the copied native and Java libraries. Both
copied files must also be readable and executable at least for the application
server process in your operating system.

d. Declare a shared library in WebSphere Application Server administrative
console.
1) Log in to WebSphere Application Server administrative console.
2) Expand Environment > Shared Libraries.
3) Select a scope that is visible by all servers that run the MobileFirst

Server administration service. For example, a cluster.
4) Click New.
5) Enter a name for the library in the Name field. For example, RCL Shared

Library.
6) In the Classpath field, enter the path to the rcl_ibmratl.jar file. For

example, /opt/IBM/RCL_Native_Library/rcl_ibmratl.jar.
7) Click OK and save the changes. This setting takes effect when the server

is restarted.

Note: The native library path for this library is set in step 3 in the
ld.library.path property of the server's Java virtual machine.

Installing and configuring 6-157

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/tcws_sharedlib_nativelib.html
http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/tcws_sharedlib_nativelib.html

e. Associate the shared library with all servers that run the MobileFirst Server
administration service.
Associating the shared library to a server allows the shared library to be
used by several applications. If you need the Rational Common Licensing
client only for the MobileFirst Server administration service, you can create
a shared library with an isolated class loader and associate it with the
administration service application.
The following instruction is to associate the library with a server. For
WebSphere Application Server Network Deployment, you must complete
this instruction for all the servers that run the MobileFirst Server
administration service.
1) Set the class loader policy and mode.

a) In WebSphere Application Server administrative console, click
Servers > Server Types > WebSphere application servers >
server_name to access the application server setting page.

b) Set the values for the application class-loader policy and class
loading mode of the server:
v Classloader policy: Multiple
v Class loading mode: Classes loaded with parent class loader

first

c) In Server Infrastructure section, click Java and Process Management
> Class loader.

d) Click New and ensure that class loader order is set to Classes
loaded with parent class loader first.

e) Click Apply to create a new class loader ID.
2) Create a library reference for each shared library file that your

application needs.
a) Click the name of the class loader that is created in the previous

step.
b) In Additional properties section, click Shared library references.
c) Click Add.
d) At the Library reference settings page, select the appropriate library

reference. The name identifies the shared library file that your
application uses. For example, RCL Shared Library.

e) Click Apply and then save the changes.
2. Configure the environment entries for the MobileFirst Server administration

service web application.
a. In WebSphere Application Server administrative console, click Applications

> Application Types > WebSphere enterprise applications and select the
administration service application: MobileFirst_Administration_Service.

b. In Web Module Properties section, click Environment entries for web
modules.

c. Enter the values for mfp.admin.license.key.server.host and
mfp.admin.license.key.server.port.
v mfp.admin.license.key.server.host is the host name of the Rational

License Key Server.
v mfp.admin.license.key.server.port is the port of the Rational License

Key Server. By default, the value is 27000.
d. Click OK and save the changes.

6-158 IBM MobileFirst Platform Foundation V8.0.0

3. Configure the access to the Rational Common Licensing library by the
application server JVM.
a. In WebSphere Application Server administrative console, click Servers >

Server Types > WebSphere Application Servers and select your server.
b. In Server Infrastructure section, click Java and Process Management >

Process Definition > Java Virtual Machine > Custom Properties > New to
add a custom property.

c. In the Name field, type the name of the custom property as
java.library.path.

d. In the Value field, enter the path of the folder where you place the native
library file in Step 1b. For example, /opt/IBM/RCL_Native_Library/.

e. Click OK and save the changes.
4. Restart your application server.

Installing Rational Common Licensing library on WebSphere Application Server
Network Deployment:
About this task

For installing the native library on a WebSphere Application Server Network
Deployment, you must follow all the steps that are described in “Installing
Rational Common Licensing library on a stand-alone server” on page 6-157. The
servers or clusters that you configure must be restarted in order for the changes to
take effect.

Each node of your WebSphere Application Server Network Deployment must have
a copy of the Rational Common Licensing native library.

Each server where the MobileFirst Server administration service runs must be
configured to have access to the native library copied on your local computer.
These servers must also be configured to connect to Rational License Key Server.

Important:

v If you use a cluster with WebSphere Application Server Network Deployment,
your cluster can change. You must configure each newly added server in your
cluster, where the administration services are running.

Limitations of supported platforms for token licensing
The list of operating system, its version, and the hardware architecture that
supports MobileFirst Server with token licensing enabled.

For token licensing, the MobileFirst Server needs to connect to the Rational License
Key Server by using the Rational Common Licensing library.

This library is composed of a Java library and also native libraries. These native
libraries depend on the platform where MobileFirst Server is running. Thus, the
token licensing by MobileFirst Server is supported only on platforms where the
Rational Common Licensing library can be run.

The following table describes the platforms that support MobileFirst Server with
the token licensing.

Installing and configuring 6-159

Table 6-22. Supported Operating System, Operating System version, and hardware
architecture.

Operating System Operating System version
Hardware
architecture

AIX 7.1 POWER8® (64-bit
only)

SUSE Linux Enterprise Server 11 x86-64 only

Windows Server 2012 x86-64 only

Token licensing does not support 32-bit Java Runtime Environment (JRE). Make
sure that the application server uses a 64-bit JRE.

Troubleshooting token licensing problems
Find information to help resolve issues that you might encounter with token
licensing if you activated this feature when you installed MobileFirst Server.

When you start the MobileFirst Server administration service after you complete
“Installing and configuring for token licensing” on page 6-150, some errors or
exceptions can be emitted in the application server log or on MobileFirst
Operations Console. These exceptions might be due to incorrect installation of the
Rational Common Licensing library and configuration of the application server.

Apache Tomcat
Check catalina.log or catalina.out file, depending on your platform.

WebSphere Application Server Liberty profile
Check messages.log file.

WebSphere Application Server full profile
Check SystemOut.log file.

Important: If token licensing is installed on WebSphere Application Server
Network Deployment or a cluster, you must check the log of each server.

Here is a list of exceptions that might occur after the installation and configuration
for token licensing:
v “Rational Common Licensing native library is not found”
v “Rational Common Licensing shared library is not found” on page 6-161
v “The Rational License Key Server connection is not configured” on page 6-162
v “The Rational License Key Server is not accessible” on page 6-162
v “Failed to initialize Rational Common Licensing API” on page 6-163
v “Insufficient token licenses” on page 6-163
v “Invalid rcl_ibmratl.jar file” on page 6-163

Rational Common Licensing native library is not found

FWLSE3125E: The Rational Common Licensing native library is not found. Make
sure the JVM property (java.library.path) is defined with the right path
and the native library can be executed. Restart IBM MobileFirst Platform
Server after taking corrective action.

For WebSphere Application Server full profile
Possible causes to this error might be:

6-160 IBM MobileFirst Platform Foundation V8.0.0

v No common property with name java.library.path is defined at server
level.

v The path that is given as the value for the java.library.path property
does not contain the Rational Common Licensing native library.

v The native library does not have appropriate permissions. The library
must have the read and execute privileges on UNIX and Windows for
the user who accesses it with the Java Runtime Environment of the
application server.

For WebSphere Application Server Liberty profile and Apache Tomcat
Possible causes to this error might be:
v The path to the Rational Common Licensing native library given as the

value of java.library.path property is either not set or incorrect.
– For Liberty profile, check ${wlp.user.dir}/servers/server_name/

jvm.options file.
– For Apache Tomcat, check ${CATALINA_HOME}/bin/setenv.bat file or

setenv.sh file, depending on your platform.
v The native library is not found in the path that is defined to the

java.library.path property. Check that the native library exists in the
defined path with the expected name.

v The native library does not have appropriate permissions. The error
might be preceded by this exception:
com.ibm.rcl.ibmratl.LicenseConfigurationException:
java.lang.UnsatisfiedLinkError: {0}\rcl_ibmratl.dll: Access is
denied

The Java Runtime Environment of the application server needs read and
execute privileges on this native library. The library file must also be
readable and executable at least for the application server process in
your operating system.

v The shared library that uses the rcl_ibmratl.jar file is not defined in
the ${server.config.dir}/server.xml file for Liberty profile. The
rcl_ibmratl.jar might also not in the correct directory or the directory
does not have the appropriate permissions.

v The shared library that used the rcl_ibmratl.jar file is not declared as
a common library for the MobileFirst Server administration service
application in the ${server.config.dir}/server.xml file for the Liberty
profile.

v There is a mix of 32-bit and 64-bit objects between the Java Runtime
Environment of the application server and the native library. For
example, a 32-bit Java Runtime Environment is used with a 64-bit native
library. This mix is not supported.

Rational Common Licensing shared library is not found

FWLSE3126E: The Rational Common Licensing shared library is not found. Make
sure the shared library is configured. Restart IBM MobileFirst Platform
Server after taking corrective action.

Possible causes to this error might be:
v The rcl_ibmratl.jar file is not in the expected directory.

– For Apache Tomcat, check that this file is in ${CATALINA_HOME}/lib directory.
– For WebSphere Application Server Liberty profile, check that this file is in the

directory as defined in the server.xml file for the shared library of the

Installing and configuring 6-161

Rational Common Licensing client. For example, ${shared.resource.dir}/
rcllib. In the server.xml file, ensure that this shared library is correctly
referenced as a common library for MobileFirst Server administration service
application.

– For WebSphere Application Server, make sure that this file is in the directory
that is specified in the class path of the WebSphere Application Server shared
library. Check that the class path of that shared library contains this entry:
absolute_path/rcl_ibmratl.jar whereas absolute_path is the absolute path
of the rcl_ibmratl.jar file.

v The java.library.path property is not set for the application server. Define a
property with name java.library.path and set the path to the Rational
Common Licensing native library as the value. For example,
/opt/IBM/RCL_Native_Library/.

v The native library does not have the expected permissions. On Windows, the
Java Runtime Environment of the application server must have the read and
executable rights on the native library.

v There is a mix of 32-bit and 64-bit objects between the Java Runtime
Environment of the application server and the native library. For example, a
32-bit Java Runtime Environment is used with a 64-bit native library. This mix is
not supported.

The Rational License Key Server connection is not configured

FWLSE3127E: The Rational License Key Server connection is not configured.
Make sure the admin JNDI properties "mfp.admin.license.key.server.host" and
"mfp.admin.license.key.server.port" are set. Restart IBM MobileFirst
Platform Server after taking corrective action.

Possible causes to this error might be:
v The Rational Common Licensing native library and the shared library that uses

the rcl_ibmratl.jar file are correctly configured but the value of JNDI
properties (mfp.admin.license.key.server.host and
mfp.admin.license.key.server.port) is not set in the MobileFirst Server
administration service application.

v The Rational License Key Server is down.
v The host computer on which Rational License Key Server is installed cannot be

reached. Check the IP address or host name with the specified port.

The Rational License Key Server is not accessible

FWLSE3128E: The Rational License Key Server "{port}@{IP address or
hostname}" is not accessible. Make sure that license server is running and
accessible to IBM MobileFirst Platform Server. If this error occurs at
runtime startup, restart IBM MobileFirst Platform Server after taking
corrective action.

Possible causes to this error might be:
v The Rational Common Licensing shared library and the native library are

correctly defined but there is no valid configuration to connect to the Rational
License Key Server. Check the IP address, the host name, and the port of the
license server. Make sure that the license server is started and accessible from
the computer where the application server is installed.

v The native library is not found in the path that is defined to the
java.library.path property.

6-162 IBM MobileFirst Platform Foundation V8.0.0

v The native library does not have appropriate permissions.
v The native library is not in the defined directory.
v The Rational License Key Server is behind a firewall. The error might be

preceded by this exception: [ERROR] Failed to get license for application
'WorklightStarter' because Rational Licence Key Server ({port}@{IP
address or hostname}) is either down or not accessible
com.ibm.rcl.ibmratl.LicenseServerUnreachableException. All license files
searched for features: {port}@{IP address or hostname}

Ensure that the license manager daemon (lmgrd) port and the vendor daemon
(ibmratl) port are open in your firewall. For more information, see How to serve
a license key to client machines through a firewall.

Failed to initialize Rational Common Licensing API

Failed to initialize Rational Common Licensing (RCL) API because its native
library could not be found or loaded
com.ibm.rcl.ibmratl.LicenseConfigurationException:
java.lang.UnsatisfiedLinkError: rcl_ibmratl (Not found in
java.library.path)

Possible causes to this error might be:
v The Rational Common Licensing native library is not found in the path that is

defined to the java.library.path property. Check that the native library exists
in the defined path with the expected name.

v The java.library.path property is not set for the application server. Define a
property with name java.library.path and set the path to the Rational
Common Licensing native library as the value. For example,
/opt/IBM/RCL_Native_Library/.

v There is a mix of 32-bit and 64-bit objects between the Java Runtime
Environment of the application server and the native library. For example, a
32-bit Java Runtime Environment is used with a 64-bit native library. This mix is
not supported.

Insufficient token licenses

FWLSE3129E: Insufficient token licenses for feature "{0}".

This error occurs when the remaining number of token licenses on the Rational
License Key Server is not enough to deploy a new MobileFirst application.

Invalid rcl_ibmratl.jar file

UTLS0002E: The shared library RCL Shared Library contains a classpath entry
which does not resolve to a valid jar file, the library jar file is
expected to be found at {0}/rcl_ibmratl.jar.

Note: For WebSphere Application Server and WebSphere Application Server
Network Deployment only
Possible causes to this error might be:
v The rcl_ibmratl.jar Java library does not have the appropriate permissions.

The error might be followed by another exception: java.util.zip.ZipException:
error in opening zip file.
Check that the rcl_ibmratl.jar file has the read permission for the user who
installs WebSphere Application Server.

Installing and configuring 6-163

http://www.ibm.com/support/docview.wss?uid=swg21257370
http://www.ibm.com/support/docview.wss?uid=swg21257370

v If there is no other exception, the rcl_ibmratl.jar file that is referenced in the
class path of the shared library might be invalid or does not exist. Check that
the rcl_ibmratl.jar file is valid or exists in the defined path.
Related links

“Connecting MobileFirst Server installed on Apache Tomcat to the Rational
License Key Server” on page 6-153
You must install the Rational Common Licensing native and Java libraries on
the Apache Tomcat application server before you connect MobileFirst Server to
the Rational License Key Server.
“Connecting MobileFirst Server installed on WebSphere Application Server
Liberty profile to the Rational License Key Server” on page 6-154
You must install the Rational Common Licensing native and Java libraries on
the Liberty profile before you connect MobileFirst Server to the Rational License
Key Server.
“Connecting MobileFirst Server installed on WebSphere Application Server to
the Rational License Key Server” on page 6-156
You must configure a shared library for the Rational Common Licensing
libraries on WebSphere Application Server before you connect MobileFirst
Server to the Rational License Key Server.

Configuring MobileFirst Server
Consider your backup and recovery policy, optimize your MobileFirst Server
configuration, and apply access restrictions and security options.

Endpoints of the MobileFirst Server production server
You can create whitelists and blacklists for the endpoints of the IBM MobileFirst
Platform Server.

Note: Information regarding URLs that are exposed by IBM MobileFirst Platform
Foundation is provided as a guideline. Organizations must ensure the URLs are
tested in an enterprise infrastructure, based on what has been enabled for white
and black lists.

Table 6-23. MobileFirst runtime endpoints

API URL under <runtime
context root>/api/

Description Suggested for whitelist?

/adapterdoc/* Return the adapter's Swagger
documentation for the
named adapter

No. Used only internally by
the administrator and the
developers

/adapters/* Adapters serving Yes

/az/v1/authorization/* Authorize the client to access
a specific scope

Yes

/az/v1/introspection Introspect the client's access
token

No. This API is for
confidential clients only.

/az/v1/token Generate an access token for
the client

Yes

/clientLogProfile/* Get client log profile Yes

/directupdate/* Get Direct Update .zip file Yes, if you plan to use Direct
Update

/loguploader Upload client logs to server Yes

6-164 IBM MobileFirst Platform Foundation V8.0.0

Table 6-23. MobileFirst runtime endpoints (continued)

API URL under <runtime
context root>/api/

Description Suggested for whitelist?

/preauth/v1/heartbeat Accept heartbeat from the
client and note the last
activity time

Yes

/preauth/v1/logout Log out from a security
check

Yes

/preauth/v1/preauthorize Map and execute security
checks for a specific scope

Yes

/reach The server is reachable No, for internal use only

/registration/v1/clients/* Registration-service clients
API

No. This API is for
confidential clients only.

/registration/v1/self/* Registration-service client
self-registration API

Yes

Table 6-24. MobileFirst admin endpoints

API URL under <admin
context root>

Description Suggested for whitelist?

/management-apis/2.0/* All the REST APIs of
MobileFirst administration
service.

Yes. If the client accessing
the API is not behind the
firewall where the
MobileFirst Server is
running.

No. If the client that accesses
the API and the MobileFirst
Server are both running
behind the firewall.

Configuring MobileFirst Server to enable TLS V1.2
For MobileFirst Server to communicate with devices that support only Transport
Layer Security v1.2 (TLS) V1.2, among the SSL protocols, you must complete the
following instructions.

About this task

The steps to configure MobileFirst Server to enable Transport Layer Security (TLS)
V1.2 depend on how MobileFirst Server connects to devices.
v If MobileFirst Server is behind a reverse proxy that decrypts SSL-encoded

packets from devices before it passes the packets to the application server, you
must enable TLS V1.2 support on your reverse proxy. If you use IBM HTTP
Server as your reverse proxy, see Securing IBM HTTP Server for instructions.

v If MobileFirst Server communicates directly with devices, the steps to enable
TLS V1.2 depend on whether your application serveris Apache Tomcat,
WebSphere Application Server Liberty profile, or WebSphere Application Server
full profile.

Apache Tomcat
Procedure
1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.

Ensure that you have one of the following JRE versions:

Installing and configuring 6-165

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_securing_ihs_container.html

v Oracle JRE 1.7.0_75 or later
v Oracle JRE 1.8.0_31 or later

2. Edit the conf/server.xml file and modify the <Connector> element that declares
the HTTPS port so that the sslEnabledProtocols attribute has the following
value:
sslEnabledProtocols="TLSv1.2,TLSv1.1,TLSv1,SSLv2Hello"

WebSphere Application Server Liberty profile
Procedure
1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.
v If you use an IBM Java SDK, ensure that your IBM Java SDK is patched for

the POODLE vulnerability. You can find the minimum IBM Java SDK
versions that contain the patch for your version of WebSphere Application
Server in Security Bulletin: Vulnerability in SSLv3 affects IBM WebSphere
Application Server (CVE-2014-3566).

Note: You can use the versions that are listed in the security bulletin or later
versions.

v If you use an Oracle Java SDK, ensure that you have one of the following
versions:
– Oracle JRE 1.7.0_75 or later
– Oracle JRE 1.8.0_31 or later

2. If you use an IBM Java SDK, edit the server.xml file.
a. Add the following line:

<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore" sslProtocol="SSL_TLSv2"/>

b. Add the sslProtocol="SSL_TLSv2" attribute to all existing <ssl> elements.

WebSphere Application Server full profile
Procedure
1. Confirm that the Java Runtime Environment (JRE) supports TLS V1.2.

Ensure that your IBM Java SDK is patched for the POODLE vulnerability. You
can find the minimum IBM Java SDK versions that contain the patch for your
version of WebSphere Application Server in Security Bulletin: Vulnerability in
SSLv3 affects IBM WebSphere Application Server (CVE-2014-3566).

Note: You can use the versions that are listed in the security bulletin or later
versions.

2. Log in to WebSphere Application Server administrative console, and click
Security > SSL certificate and key management > SSL configurations.

3. For each SSL configuration listed, modify the configuration to enable TLS V1.2.
a. Select an SSL configuration and then, under Additional Properties, click

Quality of protections (QoP) settings.
b. From the Protocol list, select SSL_TLSv2.
c. Click Apply and then save the changes.

Configuring user authentication for MobileFirst Server
administration

You configure user authentication and choose an authentication method. Then, the
configuration procedure depends on the web application server that you use.

MobileFirst Server administration requires user authentication.

6-166 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173
http://www.ibm.com/support/docview.wss?uid=swg21687173

Important: If you use stand-alone WebSphere Application Server full profile, use
an authentication method other than the simple WebSphere authentication method
(SWAM) in global security. You can use lightweight third-party authentication
(LTPA). If you use SWAM, you might experience unexpected authentication
failures.

You must configure authentication after the installer deploys the MobileFirst Server
administration web applications in the web application server.

The MobileFirst Server administration has the following Java Platform, Enterprise
Edition (Java EE) security roles defined:
v mfpadmin

v mfpdeployer

v mfpoperator

v mfpmonitor

You must map the roles to the corresponding sets of users. The mfpmonitor role can
view data but cannot change any data. The following tables list MobileFirst roles
and functions for production servers.

Table 6-25. Deployment

Administrator Deployer Operator Monitor

Java EE security role. mfpadmin mfpdeployer mfpoperator mfpmonitor

Deploy an application. Yes Yes No No

Deploy an adapter. Yes Yes No No

Table 6-26. MobileFirst Server management

Administrator Deployer Operator Monitor

Java EE security role. mfpadmin mfpdeployer mfpoperator mfpmonitor

Configure runtime settings. Yes Yes No No

Table 6-27. Application management

Administrator Deployer Operator Monitor

Java EE security role. mfpadmin mfpdeployer mfpoperator mfpmonitor

Upload new MobileFirst application. Yes Yes No No

Remove MobileFirst application. Yes Yes No No

Upload new MobileFirst adapter. Yes Yes No No

Remove MobileFirst adapter. Yes Yes No No

Turn on or off application authenticity
testing for an application.

Yes Yes No No

Change properties on MobileFirst
application status: Active, Active
Notifying, and Disabled.

Yes Yes Yes No

Basically, all roles can issue GET requests, the mfpadmin, mfpdeployer, and
mfpmonitor roles can also issue POST and PUT requests, and the mfpadmin and
mfpdeployer roles can also issue DELETE requests.

Installing and configuring 6-167

Table 6-28. Requests related to push notifications

Administrator Deployer Operator Monitor

Java EE security role. mfpadmin mfpdeployer mfpoperator mfpmonitor

GET requests

v Get a list of all the devices that use
push notification for an application

v Get the details of a specific device

v Get the list of subscriptions

v Get the subscription information that is
associated with a subscription ID.

v Get the details of a GCM configuration

v Get the details of an APNS
configuration

v Get the list of tags that are defined for
the application

v Get details of a specific tag

Yes Yes Yes Yes

POST and PUT requests

v Register an app with push notification

v Update a push device registration

v Create a subscription

v Add or update a GCM configuration

v Add or update an APNS configuration

v Submit notifications to a device

v Create or update a tag

Yes Yes Yes No

DELETE requests

v Delete the registration of a device to
push notification

v Delete a subscription

v Unsubscribe a device from a tag

v Delete a GCM configuration

v Delete an APNS configuration

v Delete a tag

Yes Yes No No

Table 6-29. Disabling

Administrator Deployer Operator Monitor

Java EE security role. mfpadmin mfpdeployer mfpoperator mfpmonitor

Disable the specific device, marking the
state as lost or stolen so that access from
any of the applications on that device is
blocked.

Yes Yes Yes No

Disable a specific application, marking the
state as disabled so that access from the
specific application on that device is
blocked.

Yes Yes Yes No

If you choose to use an authentication method through a user repository such as
LDAP, you can configure the MobileFirst Server administration so that you can use
users and groups with the user repository to define the Access Control List (ACL)

6-168 IBM MobileFirst Platform Foundation V8.0.0

of the MobileFirst Server administration. This procedure depends on the type and
version of the web application server that you use.

Configuring WebSphere Application Server full profile for
MobileFirst Server administration
Configure security by mapping the MobileFirst Server administration Java EE roles
to a set of users for both web applications.

Procedure

You define the basics of user configuration in the WebSphere Application Server
console. Access to the console is usually by this address:
https://localhost:9043/ibm/console/

1. Select Security > Global Security.
2. Select Security Configuration Wizard to configure users.

You can manage individual user accounts by selecting Users and Groups >
Manage Users.

3. Map the roles mfpadmin, mfpdeployer, mfpmonitor, and mfpoperator to a set of
users.
a. Select Servers > Server Types > WebSphere application servers.
b. Select the server.
c. In the Configuration tab, select Applications > Enterprise applications.
d. Select MobileFirst_Administration_Service.
e. In the Configuration tab, select Details > Security role to user/group

mapping.
f. Perform the necessary customization.
g. Click OK.
h. Repeat steps c to g to map the roles for the console web application. In step

d, select MobileFirst_Administration_Console.
i. Click Save to save the changes.

Configuring WebSphere Application Server Liberty profile for
MobileFirst Server administration
Configure the Java EE security roles of the MobileFirst Server administration and
the data source in the server.xml file.

Before you begin

In WebSphere Application Server Liberty profile, you configure the roles of
mfpadmin, mfpdeployer, mfpmonitor, and mfpoperator in the server.xml
configuration file of the server.

About this task

To configure the security roles, you must edit the server.xml file. In the
<application-bnd> element of each <application> element, create <security-role>
elements. Each <security-role> element is for each roles: mfpadmin, mfpdeployer,
mfpmonitor, and mfpoperator. Map the roles to the appropriate user group name,
in this example: mfpadmingroup, mfpdeployergroup, mfpmonitorgroup, or
mfpoperatorgroup. These groups are defined through the <basicRegistry> element.
You can customize this element or replace it entirely with an <ldapRegistry>
element or a <safRegistry> element.

Installing and configuring 6-169

Then, to maintain good response times with a large number of installed
applications, for example with 80 applications, you should configure a connection
pool for the administration database.

Procedure
1. Edit the server.xml file.

For example:
<security-role name="mfpadmin">

<group name="mfpadmingroup"/>
</security-role>
<security-role name="mfpdeployer">

<group name="mfpdeployergroup"/>
</security-role>
<security-role name="mfpmonitor">

<group name="mfpmonitorgroup"/>
</security-role>
<security-role name="mfpoperator>

<group name="mfpoperatorgroup"/>
</security-role>

<basicRegistry id="mfpadmin">
<user name="admin" password="admin"/>
<user name="guest" password="guest"/>
<user name="demo" password="demo"/>
<group name="mfpadmingroup">
<member name="guest"/>
<member name="demo"/>

</group>
<group name="mfpdeployergroup">
<member name="admin" id="admin"/>

</group>
<group name="mfpmonitorgroup"/>
<group name="mfpoperatorgroup"/>

</basicRegistry>

2. Edit the server.xml file to define the AppCenterPool size.
<connectionManager id="AppCenterPool" minPoolSize="10" maxPoolSize="40"/>

3. In the <dataSource> element, define a reference to the connection manager:
<dataSource id="MFPADMIN" jndiName="mfpadmin/jdbc/mfpAdminDS" connectionManagerRef="AppCenterPool">
...
</dataSource>

Configuring Apache Tomcat for MobileFirst Server administration
You must configure the Java EE security roles for the MobileFirst Server
administration on the Apache Tomcat web application server.

Procedure
1. If you installed the MobileFirst Server administration manually, declare the

following roles in the conf/tomcat-users.xml file.
<role rolename="mfpadmin"/>
<role rolename="mfpmonitor"/>
<role rolename="mfpdeployer"/>
<role rolename="mfpoperator"/>

2. Add roles to the selected users, for example:
<user name="admin" password="admin" roles="mfpadmin"/>

3. You can define the set of users as described in the Apache Tomcat
documentation, Realm Configuration HOW-TO.

6-170 IBM MobileFirst Platform Foundation V8.0.0

http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

List of JNDI properties of the MobileFirst Server web
applications

Configure the JNDI properties for the MobileFirst Server web applications that are
deployed to the application server.

Setting up JNDI properties for MobileFirst Server web
applications
Set up JNDI properties to configure the MobileFirst Server web applications that
are deployed to the application server.

About this task

JNDI environment entries cover all the properties that you can set in a production
environment. For details about specific JNDI entries, see “List of JNDI properties
for MobileFirst Server administration service” on page 6-174, “List of JNDI
properties for MobileFirst Server live update service” on page 6-182, “List of JNDI
properties for MobileFirst runtime” on page 6-183, and “List of JNDI properties for
MobileFirst Server push service” on page 6-186.

Procedure

Set the JNDI environment entries in one of the following ways:
v Configure the server environment entries. The steps to configure the server

environment entries depends on which application server you use:
–

WebSphere Application Server:
1. In the WebSphere Application Server administration console, go to

Applications > Application Types > WebSphere enterprise applications
> application_name > Environment entries for Web modules

2. In the Value fields, enter values that are appropriate to your server
environment.

Installing and configuring 6-171

–
WebSphere Application Server Liberty:
1. In liberty_install_dir/usr/servers/serverName, edit the server.xml file,

and declare the JNDI properties as follows:
<application id="app_context_root" name="app_context_root" location="app_war_name.war"
type="war"> ...

</application>
<jndiEntry jndiName="app_context_root/JNDI_property_name" value="JNDI_property_value" />

The context root (in the previous example: app_context_root) connects
between the JNDI entry and a specific MobileFirst application. If multiple
MobileFirst applications exist on the same server, you can define specific
JNDI entries for each application by using the context path prefix.

Note: Some properties are defined globally on WebSphere Application Server
Liberty, without prefixing the property name by the context root. For a list of
these properties, see “Global JNDI entries” on page 6-116.

Figure 6-9. Setting JNDI environment entries on WebSphere Application Server

6-172 IBM MobileFirst Platform Foundation V8.0.0

For all other JNDI properties, the names must be prefixed with the context
root of the application:
- For the MobileFirst Administration Service application, the MobileFirst

Operations Console and MobileFirst runtime, you can define the context
root as you want. However, by default it is /mfpadmin for MobileFirst
Administration Service, /mfpconsole for MobileFirst Operations Console,
and /mfp for MobileFirst runtime.

- For the live update service, the context root must be
/<adminContextRoot>config. For example, if the context root of the
administration service is /mfpadmin, then the context root of the live update
service must be /mfpadminconfig.

- For the push service, you must define the context root as /imfpush.
Otherwise, the client devices cannot connect to it as the context root is
hardcoded in the SDK.

For example:
<application id="mfpadmin" name="mfpadmin" location="mfp-admin-service.war"

type="war"> ...
</application>
<jndiEntry jndiName="mfpadmin/mfp.admin.actions.prepareTimeout" value = "2400000" />

– Apache Tomcat:
1. In tomcat_install_dir/conf, edit the server.xml file, and declare the

JNDI properties as follows:
<Context docBase="app_context_root" path="/app_context_root">
<Environment name="JNDI_property_name" override="false"

type="java.lang.String" value="JNDI_property_value"/>
</Context>

- The context path prefix is not needed because the JNDI entries are
defined inside the <Context> element of an application.

- override="false" is mandatory.
- The type attribute is always java.lang.String, unless specified

differently for the property.
For example:
<Context docBase="app_context_root" path="/app_context_root">
<Environment name="mfp.admin.actions.prepareTimeout" override="false"

type="java.lang.String" value="2400000"/>
</Context>

v If you install with Ant tasks, you can also set the values of the JNDI properties
at installation time.
In mfp_install_dir/MobileFirstServer/configuration-samples, edit the
configuration XML file for the Ant tasks, and declare the values for the JNDI
properties by using the property element inside the following tags:
– <installmobilefirstadmin>, for MobileFirst Server administration,

MobileFirst Operations Console, and live update services. For more
information, see “Ant tasks for installation of MobileFirst Operations Console,
MobileFirst Server artifacts, MobileFirst Server administration, and live
update services” on page 6-274.

– <installmobilefirstruntime>, for MobileFirst runtime configuration
properties. For more information, see “Ant tasks for installation of MobileFirst
runtime environments” on page 6-293.

– <installmobilefirstpush>, for configuration of the push service. For more
information, see “Ant tasks for installation of MobileFirst Server push
service” on page 6-287.

For example:

Installing and configuring 6-173

<installmobilefirstadmin ..>
<property name = "mfp.admin.actions.prepareTimeout" value = "2400000" />

</installmobilefirstadmin>

List of JNDI properties for MobileFirst Server administration
service
When you configure MobileFirst Server administration service and MobileFirst
Operations Console for your application server, you set optional or mandatory
JNDI properties, in particular for Java Management Extensions (JMX).

JNDI properties for MobileFirst administration service

The following properties can be set on the administration service web application
mfp-admin-service.war.

Table 6-30. JNDI properties for administration service: JMX.

Property
Optional or
mandatory Description Restrictions

mfp.admin.jmx.connector Optional The Java Management
Extensions (JMX)
connector type.

The possible values are
SOAP and RMI. The default
value is SOAP.

WebSphere Application
Server only.

mfp.admin.jmx.host Optional Host name for the JMX
REST connection.

Liberty profile only.

mfp.admin.jmx.port Optional Port for the JMX REST
connection.

Liberty profile only.

mfp.admin.jmx.user Mandatory for
the Liberty
profile and for
WebSphere
Application
Server farm,
optional
otherwise

User name for the JMX
REST connection.

WebSphere Application
Server Liberty profile: The
user name for the JMX
REST connection.

WebSphere Application
Server farm: the user
name for the SOAP
connection.

WebSphere Application
Server Network
Deployment: the user
name of the WebSphere
administrator if the virtual
host mapped to the
MobileFirst server
administration application
is not the default host.

Liberty collective: the user
name of the controller
administrator that is
defined in the
<administrator-role>
element of the server.xml
file of the Liberty
controller.

6-174 IBM MobileFirst Platform Foundation V8.0.0

Table 6-30. JNDI properties for administration service: JMX (continued).

Property
Optional or
mandatory Description Restrictions

mfp.admin.jmx.pwd Mandatory for
the Liberty
profile and for
WebSphere
Application
Server farm,
optional
otherwise

User password for the
JMX REST connection.

WebSphere Application
Server Liberty profile: the
user password for the JMX
REST connection.

WebSphere Application
Server farm: the user
password for the SOAP
connection.

WebSphere Application
Server Network
Deployment: the user
password of the
WebSphere administrator
if the virtual host that is
mapped to the MobileFirst
Server server
administration application
is not the default host.

Liberty collective: the
password of the controller
administrator that is
defined in the
<administrator-role>
element of the server.xml
file of the Liberty
controller.

mfp.admin.rmi.registryPort Optional RMI registry port for the
JMX connection through a
firewall.

Tomcat only.

mfp.admin.rmi.serverPort Optional RMI server port for the
JMX connection through a
firewall.

Tomcat only.

mfp.admin.jmx.dmgr.host Mandatory Deployment manager host
name.

WebSphere Application
Server Network
Deployment only.

mfp.admin.jmx.dmgr.port Mandatory Deployment manager RMI
or SOAP port.

WebSphere Application
Server Network
Deployment only.

Table 6-31. JNDI properties for administration service: timeout.

Property
Optional or
mandatory Description

mfp.admin.actions.prepareTimeout Optional Timeout in milliseconds to transfer data from the
adminstration service to the runtime during a
deployment transaction. If the runtime cannot be
reached within this time, an error is raised and the
deployment transaction ends.

Default value: 1800000 ms (30 min)

Installing and configuring 6-175

Table 6-31. JNDI properties for administration service: timeout (continued).

Property
Optional or
mandatory Description

mfp.admin.actions.commitRejectTimeout Optional Timeout in milliseconds, when a runtime is
contacted, to commit or reject a deployment
transaction. If the runtime cannot be reached
within this time, an error is raised and the
deployment transaction ends.

Default value: 120000 ms (2 min)

mfp.admin.lockTimeoutInMillis Optional Timeout in milliseconds for obtaining the
transaction lock. Because deployment transactions
run sequentially, they use a lock. Therefore, a
transaction must wait until a previous transaction
is finished. This timeout is the maximal time
during which a transaction waits.

Default value: 1200000 ms (20 min)

mfp.admin.maxLockTimeInMillis Optional The maximal time during which a process can take
the transaction lock. Because deployment
transactions run sequentially, they use a lock. If the
application server fails while a lock is taken, it can
happen in rare situations that the lock is not
released at the next restart of the application
server. In this case, the lock is released
automatically after the maximum lock time so that
the server is not blocked forever. Set a time that is
longer than a normal transaction.

Default value: 1800000 (30 min)

Table 6-32. JNDI properties for administration service: logging.

Property
Optional or
mandatory Description

mfp.admin.logging.formatjson Optional Set this property to true to
enable pretty formatting (extra
blank space) of JSON objects in
responses and log messages.
Setting this property is helpful
when you debug the server.

Default value: false.

mfp.admin.logging.tosystemerror Optional Specifies whether all logging
messages are also directed to
System.Error. Setting this
property is helpful when you
debug the server.

6-176 IBM MobileFirst Platform Foundation V8.0.0

Table 6-33. JNDI properties for administration service: proxies.

Property
Optional or
mandatory Description

mfp.admin.proxy.port Optional If the MobileFirst administration server is
behind a firewall or reverse proxy, this
property specifies the address of the host. Set
this property to enable a user outside the
firewall to reach the MobileFirst
administration server. Typically, this property
is the port of the proxy, for example 443. It is
necessary only if the protocol of the external
and internal URIs are different.

mfp.admin.proxy.protocol Optional If the MobileFirst administration server is
behind a firewall or reverse proxy, this
property specifies the protocol (HTTP or
HTTPS). Set this property to enable a user
outside the firewall to reach the MobileFirst
administration server. Typically, this property
is set to the protocol of the proxy. For
example, wl.net. This property is necessary
only if the protocol of the external and
internal URIs are different.

mfp.admin.proxy.scheme Optional This property is just an alternative name for
mfp.admin.proxy.protocol.

mfp.admin.proxy.host Optional If the MobileFirst administration server is
behind a firewall or reverse proxy, this
property specifies the address of the host. Set
this property to enable a user outside the
firewall to reach the MobileFirst
administration server. Typically, this property
is the address of the proxy.

Table 6-34. JNDI properties for administration service: topologies.

Property
Optional or
mandatory Description

mfp.admin.audit Optional. Set this property to false to disable the audit
feature of the MobileFirst Operations Console.
The default value is true.

mfp.admin.environmentid Optional. The environment identifier for the registration of
the MBeans.

Use this identifier when different instances of the
MobileFirst Server are installed on the same
application server. The identifier determines
which administration service, which console, and
which runtimes belong to the same installation.
The administration service manages only the
runtimes that have the same environment
identifier.

mfp.admin.serverid Mandatory for
server farms
and Liberty
collective,
optional
otherwise.

Server farm: the server identifier. Must be
different for each server in the farm.

Liberty collective: the value must be controller.

Installing and configuring 6-177

Table 6-34. JNDI properties for administration service: topologies (continued).

Property
Optional or
mandatory Description

mfp.admin.hsts Optional. Set to true to enable HTTP Strict Transport
Security according to RFC 6797.

mfp.topology.platform Optional Server type. Valid values:

v Liberty

v WAS

v Tomcat

If you do not set the value, the application tries to
guess the server type.

mfp.topology.clustermode Optional In addition to the server type, specify here the
server topology. Valid values:

v Standalone

v Cluster

v Farm

The default value is Standalone.

mfp.admin.farm.heartbeat Optional This property enables you to set in minutes the
heartbeat rate that is used in server farm
topologies.

The default value is 2 minutes.

In a server farm, all members must use the same
heartbeat rate. If you set or change this JNDI
value on one server in the farm, you must also set
the same value on every other server in the farm.

For more information, see “Lifecycle of a server
farm node” on page 6-149.

mfp.admin.farm.missed.heartbeats.timeout Optional This property enables you to set the number of
missed heartbeats of a farm member before the
status of the farm member is considered to be
failed or down.

The default value is 2.

In a server farm all members must use the same
missed heartbeat value. If you set or change this
JNDI value on one server in the farm, you must
also set the same value on every other server in
the farm.

For more information, see “Lifecycle of a server
farm node” on page 6-149.

mfp.admin.farm.reinitialize Optional A Boolean value (true or false) for re-registering
or re-initializing the farm member.

mfp.swagger.ui.url Optional This property defines the URL of the Swagger
user interface to be displayed in the
administration console.

6-178 IBM MobileFirst Platform Foundation V8.0.0

Table 6-35. JNDI properties for administration service: relational database.

Property Optional or mandatory Description

mfp.admin.db.jndi.name Optional The JNDI name of the database. This
parameter is the normal mechanism to
specify the database. The default value
is java:comp/env/jdbc/mfpAdminDS.

mfp.admin.db.openjpa.ConnectionDriverName Optional

Conditionally mandatory

The fully qualified name of the database
connection driver class. Mandatory only
when the data source that is specified
by the mfp.admin.db.jndi.name
property is not defined in the
application server configuration.

mfp.admin.db.openjpa.ConnectionURL Optional

Conditionally mandatory

The URL for the database connection.
Mandatory only when the data source
that is specified by the
mfp.admin.db.jndi.name property is not
defined in the application server
configuration.

mfp.admin.db.openjpa.ConnectionUserName Optional

Conditionally mandatory

The ⌂user name for the database
connection. Mandatory only when the
data source that is specified by the
mfp.admin.db.jndi.name property is not
defined in the application server
configuration.

mfp.admin.db.openjpa.ConnectionPassword Optional

Conditionally mandatory

The password for the database
connection. Mandatory only when the
data source that is specified by the
mfp.admin.db.jndi.name property is not
defined in the application server
configuration.

mfp.admin.db.openjpa.Log Optional This property is passed to OpenJPA and
enables JPA logging. For more
information, see the Apache OpenJPA
User's Guide.

mfp.admin.db.type Optional This property defines the type of
database. The default value is inferred
from the connection URL.

Table 6-36. JNDI properties for administration service: licensing.

Property Optional or mandatory Description

mfp.admin.license.key.server.host v Optional for perpetual licenses

v Mandatory for token licenses

Host name of the Rational License
Key Server.

mfp.admin.license.key.server.port v Optional for perpetual licenses

v Mandatory for token licenses

Port number of the Rational
License Key Server.

Installing and configuring 6-179

http://openjpa.apache.org/docs/openjpa-0.9.0-incubating/manual/manual.html
http://openjpa.apache.org/docs/openjpa-0.9.0-incubating/manual/manual.html

Table 6-37. JNDI properties for administration service: JNDI configurations

Property Optional or mandatory Description

mfp.jndi.configuration Optional The name of the JNDI
configuration if the JNDI
properties (except this one)
must be read from a
property file that is injected
into the WAR file. If you do
not set this property, JNDI
properties are not read from
a property file.

mfp.jndi.file Optional The name of the file that
contains the JNDI
configuration if the JNDI
properties (except this one)
must be read from a file
installed in the web server. If
you do not set this property,
JNDI properties are not read
from a property file.

The administration service uses a live update service as an auxiliary facility to
store various configurations. Use these properties to configure how to reach the
live update service.

Table 6-38. JNDI properties for administration service: live update service

Property Optional or mandatory Description

mfp.config.service.url Optional The URL of the live update service.
The default URL is derived from the
URL of administration service by
adding config to the context root of
the administration service.

mfp.config.service.user Mandatory The user name that is used to access
the live update service. In a server
farm topology, the user name must
be the same for all the members of
the farm.

mfp.config.service.password Mandatory The password that is used to access
the live update service. In a server
farm topology, the password must be
the same for all the members of the
farm.

mfp.config.service.schema Optional The name of the schema that is used
by the live update service.

The administration service uses a push service as an auxiliary facility to store
various push settings. Use these properties to configure how to reach the push
service. Because the push service is protected by the OAuth security model, you
must set various properties to enable confidential clients in OAuth.

6-180 IBM MobileFirst Platform Foundation V8.0.0

Table 6-39.

Property Optional or mandatory Description

mfp.admin.push.url Optional The URL of the push service. If the
property is not specified, the push
service is considered disabled. If the
property is not properly set, the
administration service cannot contact
the push service and the
administration of push services in
MobileFirst Operations Console does
not work.

mfp.admin.authorization.server.url Optional The URL of the OAuth authorization
server that is used by the push
service. The default URL is derived
from the URL of the administration
service by changing the context root
to the context root of the first
installed runtime. If you install
multiple runtimes, it is best to set the
property. If the property is not set
properly, the administration service
cannot contact the push service and
the administration of push services in
MobileFirst Operations Console does
not work.

mfp.push.authorization.client.id Optional, conditionally
mandatory

The identifier of the confidential
client that handles OAuth
authorization for the push service.
Mandatory only if the
mfp.admin.push.url property is
specified.

mfp.push.authorization.client.secret Optional, conditionally
mandatory

The secret of the confidential client
that handles OAuth authorization for
the push service. Mandatory only if
the mfp.admin.push.url property is
specified.

mfp.admin.authorization.client.id Optional, conditionally
mandatory

The identifier of the confidential
client that handles OAuth
authorization for the administration
service. Mandatory only if the
mfp.admin.push.url property is
specified.

mfp.push.authorization.client.secret Optional, conditionally
mandatory

The secret of the confidential client
that handles OAuth authorization for
the administration service.
Mandatory only if the
mfp.admin.push.url property is
specified.

JNDI properties for MobileFirst Operations Console

The following properties can be set on the web application (mfp-admin-ui.war) of
MobileFirst Operations Console.

Installing and configuring 6-181

Table 6-40. JNDI properties for the MobileFirst Operations Console.

Property
Optional or
mandatory Description

mfp.admin.endpoint Optional Enables the MobileFirst Operations Console to locate the
MobileFirst Server administration REST service. Specify the
external address and context root of the
mfp-admin-service.war web application. In a scenario with
a firewall or a secured reverse proxy, this URI must be the
external URI and not the internal URI inside the local LAN.
For example, https://wl.net:443/mfpadmin.

mfp.admin.global.logout Optional Clears the WebSphere user authentication cache during the
console logout. This property is useful only for WebSphere
Application Server V7.

The default value is false.

mfp.admin.hsts Optional Set this property to true to enable HTTP Strict Transport
Security according to RFC 6797. For more information, see
the W3C Strict Transport Security page.

The default value is false.

mfp.admin.ui.cors Optional The default value is true.

For more information, see the W3C Cross-Origin Resource
Sharing page.

mfp.admin.ui.cors.strictssl Optional Set to false to allow CORS situations where the MobileFirst
Operations Console is secured with SSL (HTTPS protocol)
while the MobileFirst Server administration service is not, or
conversely. This property takes effect only if the
mfp.admin.ui.cors property is enabled.

To know how to set those properties, see “Setting up JNDI properties for
MobileFirst Server web applications” on page 6-171.
Related reference:
JNDI environment entries for MobileFirst runtime
When you configure the MobileFirst Server runtime for your application server,
you need to set the optional or mandatory JNDI properties.

List of JNDI properties for MobileFirst Server live update service
When you configure the MobileFirst Server live update service for your application
server, you can set the following JNDI properties.

The table lists the JNDI properties for the IBM relational database live update
service.

Table 6-41. JNDI properties for the live update service: IBM relational database

Property Optional or mandatory Description

mfp.db.relational.queryTimeout Optional Timeout for executing a query in RDBMS, in
seconds. A value of zero means an infinite
timeout. A negative value means the default (no
override).

In case no value is configured, a default value is
used. For more information, see
setQueryTimeout.

6-182 IBM MobileFirst Platform Foundation V8.0.0

http://www.w3.org/Security/wiki/Strict_Transport_Security
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://docs.oracle.com/javase/7/docs/api/java/sql/Statement.html#setQueryTimeout(int)

To know how to set those properties, see “Setting up JNDI properties for
MobileFirst Server web applications” on page 6-171.

List of JNDI properties for MobileFirst runtime
When you configure the MobileFirst Server runtime for your application server,
you need to set the optional or mandatory JNDI properties.

The following table lists the MobileFirst properties that are always available as
JNDI entries:

Table 6-42. MobileFirst properties available as JNDI entries.

Property name Description

mfp.admin.jmx.dmgr.host Mandatory. The host name of the deployment manager.
WebSphere Application Server Network Deployment only.

mfp.admin.jmx.dmgr.port Mandatory. The RMI or SOAP port of the deployment
manager. WebSphere Application Server Network
Deployment only.

mfp.admin.jmx.host Liberty only.

The host name for the JMX REST connection. For Liberty
collective, use the host name of the controller.

mfp.admin.jmx.port Liberty only.

The port number for the JMX REST connection. For Liberty
collective, the port of the REST connector must be identical
to the value of the httpsPort attribute that is declared in the
<httpEndpoint> element. This element is declared in the
server.xml file of the Liberty controller.

mfp.admin.jmx.user Optional.

WebSphere Application Server farm: the user name of the
SOAP connection.

Liberty collective: the user name of the controller
administrator that is defined in the <administrator-role>
element of the server.xml file of the Liberty controller.

mfp.admin.jmx.pwd Optional.

WebSphere Application Server farm: the user passsword of
the SOAP connection.

Liberty collective: the password of the controller
administrator that is defined in the <administrator-role>
element of the server.xml file of the Liberty controller.

mfp.admin.serverid Mandatory for server farms and Liberty collective, optional
otherwise.

Server farm: the server identifier. Must be different for each
server in the farm.

Liberty collective: the member identifier. The identifier must
be different for each member in the collective. The value
controller cannot be used as it is reserved for the collective
controller.

Installing and configuring 6-183

Table 6-42. MobileFirst properties available as JNDI entries (continued).

Property name Description

mfp.topology.platform Optional.

The server type. Valid values are:

v Liberty

v WAS

v Tomcat

If you do not set the value, the application tries to guess the
server type.

mfp.topology.clustermode Optional.

In addition to the server type, specify here the server
topology. Valid values:

v Standalone

v Cluster

v Farm

The default value is Standalone.

mfp.admin.jmx.replica Optional. For Liberty collective only.

Set this property only when the administration components
that manage this runtime are deployed in different Liberty
controllers (replicas).

Endpoint list of the different controller replicas with the
following syntax: replica-1 hostname:replica-1 port,
replica-2 hostname:replica-2 port,..., replica-n
hostname:replica-n port

mfp.analytics.console.url Optional.

The URL that is exposed by IBM MobileFirst Analytics that
links to the Analytics console. Set this property if you want
to access the Analytics console from the MobileFirst
Operations Console. For example,

http://<hostname>:<port>/analytics/console

mfp.analytics.password The password that is used if the data entry point for the IBM
MobileFirst Analytics is protected with basic authentication.

mfp.analytics.url The URL that is exposed by the IBM MobileFirst Analytics
that receives incoming analytics data. For example,

http://<hostname>:<port>/analytics-service/rest

mfp.analytics.username The user name that is used if the data entry point for the
IBM MobileFirst Analytics is protected with basic
authentication.

mfp.device.decommissionProcessingInterval Defines how often (in seconds) the decommissioning task is
executed. Default: 86400, which is one day.

mfp.device.decommission.when The number of days of inactivity after which a client device
is decommissioned by the device decommissioning task.
Default: 90 days.

6-184 IBM MobileFirst Platform Foundation V8.0.0

Table 6-42. MobileFirst properties available as JNDI entries (continued).

Property name Description

mfp.device.archiveDecommissioned.when The number of days of inactivity, after which a client device
that has been decommissioned is archived.

This task writes the client devices that were decommissioned
to an archive file. The archived client devices are written to a
file in the MobileFirst Server home\
devices_archive directory. The name of the file contains the
time stamp when the archive file is created. Default: 90 days.

mfp.licenseTracking.enabled A value that is used to enable or disable device tracking in
IBM MobileFirst Platform Foundation.

For performance reasons, you can disable device tracking
when IBM MobileFirst Platform Foundation runs only
Business-to-Consumer (B2C) apps. When device tracking is
disabled, the license reports are also disabled and no license
metrics are generated.

Possible values are true (default) and false.

mfp.runtime.temp.folder Defines the runtime temporary files folder. Uses the default
temporary folder location of the web container when not set.

mfp.adapter.invocation.url The URL to be used for invoking adapter procedures from
inside Java adapters, or JavaScript adapters that are invoked
using the rest endpoint. If this property is not set, the URL
of the currently executing request will be used (this is the
default behavior). This value should contain the full URL,
including the context root.

mfp.authorization.server Authorization-server mode. Can be one of the following
mode:

v embedded: Use the MobileFirst authorization server.

v external: Use an external authorization server. When
setting this value, you must also set the
mfp.external.authorization.server.secret and
mfp.external.authorization.server.introspection.url
properties for your external server.

mfp.external.authorization.server.secret Secret of the external authorization server. This property is
required when using an external authorization server,
meaning mfp.authorization.server is set to external and is
ignored otherwise.

mfp.external.authorization.server.introspection.urlURL of the introspection endpoint of the external
authorization server. This property is required when using
an external authorization server, meaning
mfp.authorization.server is set to external and is ignored
otherwise.

ssl.websphere.config Used to configure the keystore for an HTTP adapter. When
set to false (default), instructs the MobileFirst runtime to
use the MobileFirst keystore. When set to true, instructs the
MobileFirst runtime to use the WebSphere SSL configuration.

For more information, see WebSphere Application Server SSL
configuration and HTTP adapters.

To know how to set those properties, see “Setting up JNDI properties for
MobileFirst Server web applications” on page 6-171.

Installing and configuring 6-185

List of JNDI properties for MobileFirst Server push service
When you configure MobileFirst Server push notification for your application
server, you need to set the optional or mandatory JNDI properties.

Table 6-43. JNDI properties for Push service.

Property
Optional or
mandatory Description

mfp.push.db.type Optional
Database type. Possible values:
DB, CLOUDANT

Default: DB

mfp.push.db.queue.connections Optional
Number of threads in the thread
pool that does the database
operation.

Default: 3

mfp.push.db.cloudant.url Optional
The Cloudant account URL.
When this property is defined,
the Cloudant DB will be directed
to this URL.

mfp.push.db.cloudant.dbName Optional
The name of the database in the
Cloudant account. It must start
with a lowercase letter and
consist only of lowercase letters,
digits, and the characters _, $,
and -.

Default: mfp_push_db

mfp.push.db.cloudant.username Optional
The user name of the Cloudant
account, used to store the
database. when this property is
not defined, a relational database
is used.

mfp.push.db.cloudant.password Optional
The password of the Cloudant
account, used to store the
database. This property must be
set when
mfp.db.cloudant.username is set.

mfp.push.db.cloudant.doc.version Optional
The Cloudant document version.

mfp.push.db.cloudant.socketTimeout Optional
A timeout for detecting the loss
of a network connection for
Cloudant, in milliseconds. A
value of zero means an infinite
timeout. A negative value means
the default (no override).

Default. See https://github.com/
cloudant/java-
cloudant#advanced-configuration.

6-186 IBM MobileFirst Platform Foundation V8.0.0

https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration

Table 6-43. JNDI properties for Push service (continued).

Property
Optional or
mandatory Description

mfp.push.db.cloudant.connectionTimeout Optional
A timeout for establishing a
network connection for Cloudant,
in milliseconds. A value of zero
means an infinite timeout. A
negative value means the default
(no override).

Default. See https://github.com/
cloudant/java-
cloudant#advanced-configuration.

mfp.push.db.cloudant.maxConnections Optional
The Cloudant connector's max
connections.

Default. See https://github.com/
cloudant/java-
cloudant#advanced-configuration.

mfp.push.db.cloudant.ssl.authentication Optional
A Boolean value (true or false)
that specifies whether the SSL
certificate chain validation and
host name verification are
enabled for HTTPS connections
to the Cloudant database.

Default: True

mfp.push.db.cloudant.ssl.configuration Optional
[WAS Full Profile only] For
HTTPS connections to the
Cloudant database: The name of
an SSL configuration in the
WebSphere Application Server
configuration, to use when no
configuration is specified for the
host and port.

mfp.push.db.cloudant.proxyHost Optional
Cloudant connector's proxy host.

Default: See https://github.com/
cloudant/java-
cloudant#advanced-configuration.

mfp.push.db.cloudant.proxyPort Optional
Cloudant connector's proxy port.

Default: See https://github.com/
cloudant/java-
cloudant#advanced-configuration.

mfp.push.services.ext.security Optional
The security extension plugin.

mfp.push.security.endpoint Optional
The endpoint URL for the
authorization server.

Installing and configuring 6-187

https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration
https://github.com/cloudant/java-cloudant#advanced-configuration

Table 6-43. JNDI properties for Push service (continued).

Property
Optional or
mandatory Description

mfp.push.security.user Optional
The username to access the
authorization server.

mfp.push.security.password Optional
The password to access the
authorization server.

mfp.push.services.ext.analytics Optional
The analytics extension plugin.

mfp.push.analytics.endpoint Optional
The endpoint URL for the
analytics server.

mfp.push.analytics.user Optional
The username to access the
analytics server.

mfp.push.analytics.password Optional
The password to access the
analytics server.

mfp.push.analytics.events.appCreate Optional
The analytic event when the
application is created.

Default: true

mfp.push.analytics.events.appDelete Optional
The analytic event when the
application is deleted.

Default: true

mfp.push.analytics.events.deviceRegister Optional
The analytic event when the
device is registered.

Default: true

mfp.push.analytics.events.deviceUnregister Optional
The analytic event when the
device is unregistered.

Default: true

mfp.push.analytics.events.tagSubscribe Optional
The analytic event when the
device is subscribed to tag.

Default: true

mfp.push.analytics.events.tagUnsubscribe Optional
The analytic event when the
device is unsubscribed from tag.

Default: true

mfp.push.analytics.events.notificationSendSuccess Optional
The analytic event when the
notification is sent successfully.

Default: true

6-188 IBM MobileFirst Platform Foundation V8.0.0

Table 6-43. JNDI properties for Push service (continued).

Property
Optional or
mandatory Description

mfp.push.analytics.events.notificationSendFailure Optional
The analytic event when the
notification is failed to send.

Default: false

mfp.push.analytics.events.inactiveDevicePurge Optional
The analytic event when the
inactive devices are deleted.

Default: true

mfp.push.analytics.events.msgReqAccepted Optional
The analytic event when the
notification is accepted for
delivery.

Default: true

mfp.push.analytics.events.msgDispatchFailed Optional
The analytic event when the
notification dispatch failed.

Default: true

mfp.push.analytics.events.notificationDispatch Optional
The analytic event when the
notification is about to be
dispatched.

Default: true

mfp.push.internalQueue.maxLength Optional
The length of the queue which
holds the notification tasks before
dispatch.

Default: 200000

mfp.push.gcm.proxy.enabled Optional
Shows whether Google GCM
must be accessed through a
proxy.

Default: false

mfp.push.gcm.proxy.protocol Optional
Can be either http or https.

mfp.push.gcm.proxy.host Optional
GCM proxy host.

Negative value means default
port.

mfp.push.gcm.proxy.port Optional
GCM proxy port.

Default: -1

mfp.push.gcm.proxy.user Optional
Proxy user name, if the proxy
requires authentication.

Empty user name means no
authentication.

Installing and configuring 6-189

Table 6-43. JNDI properties for Push service (continued).

Property
Optional or
mandatory Description

mfp.push.gcm.proxy.password Optional
Proxy password, if the proxy
requires authentication.

mfp.push.gcm.connections Optional
Push GCM max connections.

Default : 10

mfp.push.apns.proxy.enabled Optional
Shows whether APNs must be
accessed through a proxy.

Default: false

mfp.push.apns.proxy.type Optional
APNs proxy type.

mfp.push.apns.proxy.host Optional
APNs proxy host.

mfp.push.apns.proxy.port Optional
APNs proxy port.

Default: -1

mfp.push.apns.proxy.user Optional
Proxy user name, if the proxy
requires authentication.

Empty user name means no
authentication.

mfp.push.apns.proxy.password Optional
Proxy password, if the proxy
requires authentication.

mfp.push.apns.connections Optional
Push APNs max connections.

Default : 3

mfp.push.apns.connectionIdleTimeout Optional
APNs Idle Connection Timeout.

Default : 0

To know how to set those properties, see “Setting up JNDI properties for
MobileFirst Server web applications” on page 6-171.

Configuring data sources
Find out some data source configuration details pertaining to the supported
databases.

Managing the DB2 transaction log size
When you deploy an application that is at least 40 MB with IBM MobileFirst
Platform Operations Console, you might receive a transaction log full error.

About this task

The following system output is an example of the transaction log full error
code.

6-190 IBM MobileFirst Platform Foundation V8.0.0

DB2 SQL Error: SQLCODE=-964, SQLSTATE=57011

The content of each application is stored in the MobileFirst administration
database.

The active log files are defined in number by the LOGPRIMARY and LOGSECOND
database configuration parameters, and in size by the LOGFILSIZ database
configuration parameter. A single transaction cannot use more log space than
LOGFILSZ * (LOGPRIMARY + LOGSECOND) * 4096 KB.

The DB2 GET DATABASE CONFIGURATION command includes information about the log
file size, and the number of primary and secondary log files.

Depending on the largest size of the MobileFirst application that is deployed, you
might need to increase the DB2 log space.

Procedure

Using the DB2 update db cfg command, increase the LOGSECOND parameter. Space is
not allocated when the database is activated. Instead, the space is allocated only as
needed.

Configuring DB2 HADR seamless failover for MobileFirst Server
and Application Center data sources
You must enable the seamless failover feature with WebSphere Application Server
Liberty profile and WebSphere Application Server. With this feature, you can
manage an exception when a database fails over and gets rerouted by the DB2
JDBC driver.

Note: DB2 HADR failover is not supported for Apache Tomcat.

By default with DB2 HADR, when the DB2 JDBC driver performs a client reroute
after detecting that a database failed over during the first attempt to reuse an
existing connection, the driver triggers
com.ibm.db2.jcc.am.ClientRerouteException, with ERRORCODE=-4498 and
SQLSTATE=08506. WebSphere Application Server maps this exception to
com.ibm.websphere.ce.cm.StaleConnectionException before it is received by the
application.

In this case, the application would have to catch the exception and execute again
the transaction. The MobileFirst and Application Center runtime environments do
not manage the exception but rely on a feature that is called seamless failover. To
enable this feature, you must set the enableSeamlessFailover JDBC property to "1".

WebSphere Application Server Liberty profile configuration

You must edit the server.xml file, and add the enableSeamlessFailover property
to the properties.db2.jcc element of the MobileFirst and Application Center data
sources. For example:
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLADMIN" currentSchema="WLADMSC"

serverName="db2server" portNumber="50000"
enableSeamlessFailover= "1"
user="worklight" password="worklight"/>

</dataSource>

Installing and configuring 6-191

WebSphere Application Server configuration

From the WebSphere Application Server administrative console for each
MobileFirst and Application Center data source:
1. Go to Resources > JDBC > Data sources > DataSource name.
2. Select New and add the following custom property, or update the values if the

properties already exist:
enableSeamlessFailover : 1

3. Click Apply.
4. Save your configuration.

For more information about how to configure a connection to an HADR-enabled
DB2 database, see Setting up a connection to an HADR-enabled DB2 database.

Handling stale connections
Configure your application server to avoid database timeout issues.

A StaleConnectionException is an exception that is generated by the Java
application server profile database connection code when a JDBC driver returns an
unrecoverable error from a connection request or operation. The
StaleConnectionException is raised when the database vendor issues an exception
to indicate that a connection currently in the connection pool is no longer valid.
This exception can happen for many reasons. The most common cause of
StaleConnectionException is due to retrieving connections from the database
connection pool and finding out that the connection has timed out or dropped
when it was unused for a long time.

You can configure your application server to avoid this exception.

Apache Tomcat configuration

MySQL
The MySQL database closes its connections after a period of non-activity
on a connection. This timeout is defined by the system variable called
wait_timeout. The default is 28000 seconds (8 hours).

When an application tries to connect to the database after MySQL closes
the connection, the following exception is generated:

com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: No operations allowed after statement closed.

Edit the server.xml and context.xml files, and for every <Resource>
element add the following properties:
v testOnBorrow="true"

v validationQuery="select 1"

For example:
<Resource name="jdbc/AppCenterDS"

type="javax.sql.DataSource"
driverClassName="com.mysql.jdbc.Driver"
...
testOnBorrow="true"
validationQuery="select 1"

/>

6-192 IBM MobileFirst Platform Foundation V8.0.0

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tdat_db2_hadr.html?cp=SSAW57_8.5.5%2F3-3-6-3-3-0-7-3&lang=en

WebSphere Application Server Liberty profile configuration

Edit the server.xml file and for every <dataSource> element (runtime and
Application Center databases) add a <connectionManager> element with the
agedTimeout property:
<connectionManager agedTimeout="timeout_value"/>

The timeout value depends mainly on the number of opened connections in
parallel but also on the minimum and maximum number of the connections in the
pool. Hence, you must tune the different connectionManager attributes to identify
the most adequate values. For more information about the connectionManager
element, see Liberty: Configuration elements in the server.xml file .

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. Use IBM DB2 or another database that is supported by WebSphere
Application Server to benefit from a configuration that is fully supported by IBM
Support.

WebSphere Application Server full profile configuration

DB2 or Oracle
To minimize the stale connection issues, check the connection pools
configuration on each data source in WebSphere Application Server
administration console.
1. Log in to the WebSphere Application Server administration console.
2. Select Resources > JDBC Providers > database_jdbc_provider > Data

Sources > your_data_source > Connection pool properties.
3. Set the Minimum connections value to 0.
4. Set the Reap time value to be lesser than the Unused timeout value.
5. Make sure that the Purge policy property is set to EntirePool (default).

For more information, see Connection pool settings.

MySQL

1. Log in to the WebSphere Application Server administration console.
2. Select Resources > JDBC > Data sources.
3. For each MySQL data source:

a. Click the data source.
b. Select Connection pool properties under Additional Properties.
c. Modify the value of the Aged timeout property. The value must be

lower than the MySQL wait_timeout system variable so that the
connections are purged before MySQL closes these connections.

d. Click OK.

Note: MySQL in combination with WebSphere Application Server Liberty
profile or WebSphere Application Server full profile is not classified as a
supported configuration. For more information, see WebSphere Application
Server Support Statement. Use IBM DB2 or another database that is
supported by WebSphere Application Server to benefit from a
configuration that is fully supported by IBM Support.

Installing and configuring 6-193

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/udat_conpoolset.html
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

Stale data after creating or deleting apps from MobileFirst
Operations Console
On a Tomcat 8 application server, if you use a MySQL database, some calls from
MobileFirst Operations Console to services return a 404 error.

On a Tomcat 8 application server, if you work with a MySQL database, when you
use MobileFirst Operations Console to delete an app, or add a new one, and try to
refresh the console a couple of times, you might see stale data. For example, users
might see an already deleted app in the list.

To avoid this problem, change the isolation level to READ_COMMITTED, either in the
data source, or in the database management system.

For the meaning of READ_COMMITTED, see the MySQL documentation at
http://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-
levels.html.
v To change the isolation level to READ_COMMITTED in the data source, modify the

server.xml Tomcat configuration file: In the <Resource name="jdbc/mfpAdminDS"
.../> section, add the defaultTransactionIsolation="READ_COMMITTED" attribute.

v To change the isolation level to READ_COMMITTED globally in the database
management system, refer to the SET TRANSACTION Syntax page of the
MySQL documentation at http://dev.mysql.com/doc/refman/5.7/en/set-
transaction.html.

Configuring logging and monitoring mechanisms
IBM MobileFirst Platform Foundation reports errors, warnings, and informational
messages into a log file. The underlying logging mechanism varies by application
server.

MobileFirst Server

IBM MobileFirst Platform Server (MobileFirst Server for short) uses the standard
java.util.logging package. By default, all MobileFirst logging goes to the
application server log files. You can control MobileFirst Server logging by using the
standard tools that are available in each application server. For example, if you
want to activate trace logging in WebSphere Application Server Liberty, add a trace
element to the server.xml file. To activate trace logging in WebSphere Application
Server, use the logging screen in the console and enable trace for MobileFirst logs.

MobileFirst logs all begin with com.ibm.mfp.

Application Center logs begin with com.ibm.puremeap.

For more information about the logging models of each application server,
including the location of the log files, see the documentation for the relevant
application server, as shown in the following table.

Table 6-44. Documentation for different server platforms.

Application server Location of documentation

Apache Tomcat http://tomcat.apache.org/tomcat-7.0-doc/
logging.html#Using_java.util.logging_(default)

WebSphere Application
Server Version 8.5 full profile

http://ibm.biz/knowctr#SSEQTP_8.5.5/
com.ibm.websphere.base.doc/ae/ttrb_trcover.html

6-194 IBM MobileFirst Platform Foundation V8.0.0

 http://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html
http://dev.mysql.com/doc/refman/5.7/en/set-transaction.html
http://tomcat.apache.org/tomcat-7.0-doc/logging.html#Using_java.util.logging_(default)
http://tomcat.apache.org/tomcat-7.0-doc/logging.html#Using_java.util.logging_(default)
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_trcover.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_trcover.html

Table 6-44. Documentation for different server platforms (continued).

Application server Location of documentation

WebSphere Application
Server Version 8.5 Liberty
profile

http://ibm.biz/knowctr#SSEQTP_8.5.5/
com.ibm.websphere.wlp.doc/ae/
rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0

Log level mappings

MobileFirst Server uses the java.util.logging API. The logging levels map to the
following levels:
v WL.Logger.debug: FINE
v WL.Logger.info: INFO
v WL.Logger.warn: WARNING
v WL.Logger.error: SEVERE

Log monitoring tools

For Apache Tomcat, you can use IBM Operations Analytics - Log Analysis or other
industry standard log file monitoring tools to monitor logs and highlight errors
and warnings.

For WebSphere Application Server, use the log viewing facilities that are described
in IBM Knowledge Center. The URLs are listed in the table in the “MobileFirst
Server” on page 6-194 section of this page.

Back-end connectivity

To enable trace to monitor back-end connectivity, see the documentation for your
specific application server platform in the table of section “MobileFirst Server” on
page 6-194 of this page. Use the com.ibm.mfp.server.js.adapter package and set
the log level to FINEST.

Audit log for administration operations

MobileFirst Operations Console stores an audit log for login, logout, and for all
administration operations, such as deploying apps or adapters or locking apps.
You can disable the audit log by setting the JNDI property mfp.admin.audit to
false on the web application of the MobileFirst administration service
(mfp-admin-service.war).

When the audit log is enabled, you can download it from MobileFirst Operations
Console by clicking the Audit log link in the footer of the page.

Login and authentication issues

To diagnose login and authentication issues, enable the package
com.ibm.mfp.server.security for trace and set the log level to FINEST.

Configuring license tracking
License tracking is enabled by default but can optionally be configured.

Installing and configuring 6-195

http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0
http://ibm.biz/knowctr#SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0
http://www.ibm.com/software/products/en/ibm-operations-analytics---log-analysis

About this task

License tracking is enabled by default. Read the following topics to learn how you
can configure license tracking. For more information about license tracking, see
“License tracking” on page 10-80

Configuring license tracking for client device and addressable
device
License tracking for client devices and addressable device is enabled by default.
License reports are available in the MobileFirst Operations Console. You can
specify the following JNDI properties to change the default settings for license
tracking.

About this task

Note: License tracking for client devices and addressable device is enabled by
default. Configure license tracking only if you need to change the default settings.

Note: If you have a contract that defines the use of token licensing, see also
“Installing and configuring for token licensing” on page 6-150.

License tracking for client devices and addressable device is enabled by default.
You can specify the following JNDI properties to change the default settings for
license tracking.

mfp.device.decommission.when
The number of days of inactivity after which a device is decommissioned by
the device decommissioning task. License reports do not count
decommissioned devices as active devices. The default value for the property
is 90 days. Do not set a value lower than 30 days if your software is licensed
by Client Device or by Addressable Device, or license reports might not be
sufficient to prove compliance.

mfp.device.archiveDecommissioned.when
A value, in days, that defines when decommissioned devices are placed in an
archive file when the decommissioning task is run. The archived devices are
written to a file in the IBM MobileFirst Platform Server home\devices_archive
directory. The name of the file contains the time stamp when the archive file is
created. The default value is 90 days.

mfp.device.decommissionProcessingInterval
Defines how often (in seconds) the decommissioning task is run. Default:
86400, which is one day. The decommissioning task performs the following
actions:
v Decommissions inactive devices, based on the

mfp.device.decommission.when setting.
v Optionally, archives older decommissioned devices, based on the

mfp.device.archiveDecommissioned.when setting.
v Generates the license tracking report.

mfp.licenseTracking.enabled
A value that is used to enable or disable license tracking in IBM MobileFirst
Platform Foundation. By default, license tracking is enabled. For performance
reasons, you can disable this flag when IBM MobileFirst Platform Foundation
is not licensed by Client Device or by Addressable Device. When device

6-196 IBM MobileFirst Platform Foundation V8.0.0

tracking is disabled, the license reports are also disabled and no license metrics
are generated. In that case, only IBM License Metric Tool records for
Application count are generated.

For more information about specifying JNDI properties, see “List of JNDI
properties for MobileFirst runtime” on page 6-183.

For more information about license tracking, see “License tracking” on page 10-80.

Configuring IBM License Metric Tool log files
IBM MobileFirst Platform Foundation generates IBM Software License Metric Tag
(SLMT) files. Versions of IBM License Metric Tool that support IBM Software
License Metric Tag can generate License Consumption Reports. Read this to
understand how to configure the location and the maximum size of the generated
files.

About this task

By default, the IBM Software License Metric Tag files are in the following
directories:
v On Windows: %ProgramFiles%\ibm\common\slm
v On UNIX and UNIX-like operating systems: /var/ibm/common/slm

If the directories are not writable, the files are created in the log directory of the
application server that runs the MobileFirst runtime environment.

You can configure the location and management of those files with the following
properties:
v license.metric.logger.output.dir: Location of the IBM Software License Metric

Tag files
v license.metric.logger.file.size: Maximum size of an SLMT file before a

rotation is performed. The default size is 1 MB.
v license.metric.logger.file.number: Maximum number of SLMT archive files to

keep in rotations. The default number is 10.

To change the default values, you must create a Java property file, with the format
key=value, and provide the path to the properties file through the
license_metric_logger_configuration JVM property.

For more information about IBM License Metric Tool reports, see “Integration with
IBM License Metric Tool” on page 10-84.

WebSphere Application Server SSL configuration and HTTP
adapters

By setting a property, you can let HTTP adapters benefit from WebSphere SSL
configuration.

By default, HTTP adapters do not use WebSphere SSL by concatenating the Java
Runtime Environment (JRE) truststore with the IBM MobileFirst Platform Server
keystore, which is described in “Configuring the MobileFirst Server keystore” on
page 7-316. See “Configuring SSL between MobileFirst adapters and back-end
servers by using self-signed certificates” on page 10-3.

Installing and configuring 6-197

To have HTTP adapters use the WebSphere SSL configuration, set the
ssl.websphere.config JNDI property to true. The setting has the following effects
in order of precedence:
1. Adapters running on WebSphere use the WebSphere keystore and not the IBM

MobileFirst Platform Server keystore.
2. If the ssl.websphere.alias property is set, the adapter uses the SSL

configuration that is associated with the alias as set in this property.

Installing and configuring the MobileFirst Analytics Server
The MobileFirst Analytics Server is delivered as two separate WAR files. For
convenience in deploying on WebSphere Application Server or WebSphere
Application Server Liberty, MobileFirst Analytics Server is also delivered as an
EAR file that contains the two WAR files.

Note: Do not install more than one instance of MobileFirst Analytics Server on a
single host machine. For more information about managing your cluster, see the
Elasticsearch documentation.

The analytics WAR and EAR files are included with the MobileFirst Server
installation. For more information, see “Distribution structure of MobileFirst
Server” on page 6-61.

When you deploy the WAR file, the MobileFirst Analytics Console is available at:
http://<hostname>:<port>/analytics/console

Example:
http://localhost:9080/analytics/console

For more information about how to install MobileFirst Analytics Server, see
“MobileFirst Analytics Server installation guide” on page 11-2.

For more information about how to configure IBM MobileFirst Analytics, see
“Configuration guide” on page 11-14.

Installing and configuring the Application Center
You install the Application Center as part of the MobileFirst Server installation.

The Application Center is part of MobileFirst Server. You can install the
Application Center with one of the following methods:
v Installation with IBM Installation Manager
v Installation with Ant tasks
v Manual installation

Optionally, you can create the database of your choice before you install
MobileFirst Server with the Application Center.

After you installed the Application Center in the web application server of your
choice, you have additional configuration to do. For more information, see
“Configuring Application Center after installation” on page 6-233.

If you chose a manual setup in the installer, see the documentation of the server of
your choice.

6-198 IBM MobileFirst Platform Foundation V8.0.0

https://www.elastic.co/guide/index.html

If you intend to install applications on iOS devices through the Application Center,
you must first configure the Application Center server with SSL.

For a list of installed files and tools, see “Distribution structure of MobileFirst
Server” on page 6-61.

Installing Application Center with IBM Installation Manager
With IBM Installation Manager, you can install Application Center, create its
database, and deploy it on an Application Server.

Before you begin

Verify that the user who runs IBM Installation Manager has the privileges that are
described in “File system prerequisites” on page 6-104.

Procedure

To install IBM Application Center with IBM Installation Manager, complete the
followings steps.
1. Optional: You can manually create databases for Application Center, as

described in “Optional creation of databases.” IBM Installation Manager can
create the Application Center databases for you with default settings.

2. Run IBM Installation Manager, as described in “Running IBM Installation
Manager” on page 6-40.

3. Select Yes to the question Install IBM Application Center.

Optional creation of databases
If you want to activate the option to install the Application Center when you run
the MobileFirst Server installer, you need to have certain database access rights
that entitle you to create the tables that are required by the Application Center.

If you have sufficient database administration credentials, and if you enter the
administrator user name and password in the installer when prompted, the
installer can create the databases for you. Otherwise, you need to ask your
database administrator to create the required database for you. The database needs
to be created before you start the MobileFirst Server installer.

The following topics describe the procedure for the supported database
management systems.

Creating the DB2 database for Application Center:

During IBM MobileFirst Platform Foundation installation, the installer can create
the Application Center database for you.

About this task

The installer can create the Application Center database for you if you enter the
name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the Application Center database
for you. For more information, see the DB2 Solution user documentation.

Installing and configuring 6-199

http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html

When you manually create the database, you can replace the database name (here
APPCNTR) and the password with a database name and password of your
choosing.

Important: You can name your database and user differently, or set a different
password, but ensure that you enter the appropriate database name, user name,
and password correctly across the DB2 database setup. DB2 has a database name
limit of 8 characters on all platforms, and has a user name and password length
limit of 8 characters for UNIX and Linux systems, and 30 characters for Windows.

Procedure

1. Create a system user, for example, named wluser in a DB2 admin group such
as DB2USERS, using the appropriate commands for your operating system. Give
it a password, for example, wluser. If you want multiple instances of IBM
MobileFirst Platform Server to connect to the same database, use a different
user name for each connection. Each database user has a separate default
schema. For more information about database users, see the DB2
documentation and the documentation for your operating system.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor

v On Linux or UNIX systems, navigate to ~/sqllib/bin and enter ./db2.
v Enter database manager and SQL statements similar to the following

example to create the Application Center database, replacing the user name
wluser with your chosen user names:
CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT APPCNTR
QUIT

3. The installer can create the database tables and objects for Application Center
in a specific schema. This allows you to use the same database for Application
Center and for a MobileFirst project. If the IMPLICIT_SCHEMA authority is
granted to the user created in step 1 (the default in the database creation script
in step 2), no further action is required. If the user does not have the
IMPLICIT_SCHEMA authority, you need to create a SCHEMA for the
Application Center database tables and objects.

Creating the MySQL database for Application Center:

During the MobileFirst installation, the installer can create the Application Center
database for you.

About this task

The installer can create the database for you if you enter the name and password
of the superuser account. For more information, see Securing the Initial MySQL
Accounts on your MySQL database server. Your database administrator can also
create the databases for you. When you manually create the database, you can
replace the database name (here APPCNTR) and password with a database name
and password of your choosing. Note that MySQL database names are
case-sensitive on UNIX.

6-200 IBM MobileFirst Platform Foundation V8.0.0

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

Procedure

1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;

Here, you need to replace Worklight-host with the name of the host on which
IBM MobileFirst Platform Foundation runs.

Creating the Oracle database for Application Center:

During the installation, the installer can create the Application Center database,
except for the Oracle 12c database type, or the user and schema inside an existing
database for you.

About this task

The installer can create the database, except for the Oracle 12c database type, or
the user and schema inside an existing database if you enter the name and
password of the Oracle administrator on the database server, and the account can
be accessed through SSH. Otherwise, the database administrator can create the
database or user and schema for you. When you manually create the database or
user, you can use database names, user names, and a password of your choosing.
Note that lowercase characters in Oracle user names can lead to trouble.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new general-purpose database named ORCL:
a. Use global database name ORCL_your_domain, and system identifier (SID)

ORCL.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts, because you must first create a user account.
c. On the Character Sets tab of the step Initialization Parameters, select Use

Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.
2. Create a database user either by using Oracle Database Control, or by using

the Oracle SQLPlus command-line interpreter.
v Using Oracle Database Control.

a. Connect as SYSDBA.
b. Go to the Users page: click Server, then Users in the Security section.
c. Create a user, for example, named APPCENTER. If you want multiple

instances of IBM MobileFirst Platform Server to connect to the same
general-purpose database you created in step 1, use a different user name
for each connection. Each database user has a separate default schema.

d. Assign the following attributes:
– Profile: DEFAULT
– Authentication: password
– Default tablespace: USERS

Installing and configuring 6-201

– Temporary tablespace: TEMP
– Status: Unlocked
– Add system privilege: CREATE SESSION
– Add system privilege: CREATE SEQUENCE
– Add system privilege: CREATE TABLE
– Add quota: Unlimited for tablespace USERS

v Using the Oracle SQLPlus command-line interpreter.
The commands in the following example create a user named APPCENTER for
the database:

CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER APPCENTER IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO APPCENTER;
DISCONNECT;

Installing Application Center in WebSphere Application Server
Network Deployment
To install Application Center in a set of WebSphere Application Server Network
Deployment servers, run IBM Installation Manager on the machine where the
deployment manager is running.

Procedure
1. When IBM Installation Manager prompts you to specify the database type,

select any option other than Apache Derby. IBM MobileFirst Platform
Foundation supports Apache Derby only in embedded mode, and this choice is
incompatible with deployment through WebSphere Application Server Network
Deployment.

2. In the installer panel in which you specify the WebSphere Application Server
installation directory, select the deployment manager profile.
Attention: Do not select an application server profile and then a single
managed server: doing so causes the deployment manager to overwrite the
configuration of the server regardless of whether you install on the machine on
which the deployment manager is running or on a different machine.

3. Select the required scope depending on where you want Application Center to
be installed. The following table lists the available scopes:

Table 6-45. Selecting the required scope.

Scope Explanation

Cell Installs Application Center in all application
servers of the cell.

Cluster Installs Application Center in all application
servers of the specified cluster.

Node (excluding clusters) Installs Application Center in all application
servers of the specified node that are not in
a cluster.

Server Installs Application Center in the specified
server, which is not in a cluster.

4. Restart the target servers by following the procedure in “Completing the
installation” on page 6-203.

6-202 IBM MobileFirst Platform Foundation V8.0.0

Results

The installation has no effect outside the set of servers in the specified scope. The
JDBC providers and JDBC data sources are defined with the specified scope. The
entities that have a cell-wide scope (the applications and, for DB2, the
authentication alias) have a suffix in their name that makes them unique. So, you
can install Application Center in different configurations or even different versions
of Application Center, in different clusters of the same cell.

Note: Because the JDBC driver is installed only in the specified set of application
servers, the Test connection button for the JDBC data sources in the WebSphere
Application Server administration console of the deployment manager might not
work.

What to do next

You need to complete the following additional configuration:
v If you use a front-end HTTP server, you need to configure the public URL

Completing the installation
When installation is complete, you must restart the web application server in
certain cases.

You must restart the web application server in the following circumstances:
v When you are using WebSphere Application Server with DB2 as database type.
v When you are using WebSphere Application Server and have opened it without

the application security enabled before you installed IBM MobileFirst Platform
Application Center or MobileFirst Server.
The MobileFirst installer must activate the application security of WebSphere
Application Server (if not active yet) to install Application Center. Then, for this
activation to take place, restart the application server after the installation of
MobileFirst Server completed.

v When you are using WebSphere Application Server Liberty or Apache Tomcat.
v After you upgraded from a previous version of MobileFirst Server.

If you are using WebSphere Application Server Network Deployment and chose an
installation through the deployment manager:
v You must restart the servers that were running during the installation and on

which the MobileFirst Server web applications are installed.
To restart these servers with the deployment manager console, select
Applications > Application Types > WebSphere enterprise applications >
IBM_Application_Center_Services > Target specific application status.

v You do not have to restart the deployment manager or the node agents.

Note: Only the Application Center is installed in the application server. A
MobileFirst Operations Console is not installed by default. To install a MobileFirst
Operations Console, you need to follow the steps in “Deploying MobileFirst Server
to the cloud” on page 9-1.

Default logins and passwords created by IBM Installation
Manager for the Application Center
IBM Installation Manager creates the logins by default for the Application Center,
according to your application server. You can use these logins to test the
Application Center.

Installing and configuring 6-203

WebSphere Application Server full profile

The login appcenteradmin is created with a password that is generated and
displayed during the installation.

All users authenticated in the application realm are also authorized to access the
appcenteradmin role. This is not meant for a production environment, especially if
WebSphere Application Server is configured with a single security domain.

For more information about how to modify these logins, see “Configuring the Java
EE security roles on WebSphere Application Server full profile” on page 6-234.

WebSphere Application Server Liberty profile
v The login demo is created in the basicRegistry with the password demo.
v The login appcenteradmin is created in the basicRegistry with the password

admin.

For more information about how to modify these logins, see “Configuring the Java
EE security roles on WebSphere Application Server Liberty profile” on page 6-236.

Apache Tomcat
v The login demo is created with the password demo.
v The login guest is created with the password guest.
v The login appcenteradmin is created with the password admin.

For more information about how to modify these logins, see “Configuring the Java
EE security roles on Apache Tomcat” on page 6-237.

Installing the Application Center with Ant tasks
Learn about the Ant tasks that you can use to install Application Center.

Creating and configuring the database for Application Center
with Ant tasks
If you did not manually create the database, you can use Ant tasks to create and
configure your database for Application Center. If your database already exists,
you can perform only the configuration steps with Ant tasks.

Before you begin

Make sure that a database management system (DBMS) is installed and running on
a database server, which can be on the same computer, or a different one.

The Ant tasks for Application Center are in the ApplicationCenter/configuration-
samples directory of the MobileFirst Server distribution.

If you want to start the Ant task from a computer where MobileFirst Server is not
installed, you must copy the following files to that computer:
v The library mf_server_install_dir/MobileFirstServer/mfp-ant-deployer.jar
v The directory that contains binary files of the aapt program, from the Android

SDK platform-tools package: mf_server_install_dir/ApplicationCenter/tools/
android-sdk

v The Ant sample files that are in mf_server_install_dir/ApplicationCenter/
configuration-samples

6-204 IBM MobileFirst Platform Foundation V8.0.0

Note: The mf_server_install_dir placeholder represents the directory where you
installed MobileFirst Server.

About this task
v If you did not create your database manually, as described in “Optional creation

of databases” on page 6-199, follow steps 1 to 3.
v If your database already exists, you must create only the database tables. Follow

steps 4 to 7.

Procedure

If you did not create your database manually, as described in “Optional creation of
databases” on page 6-199, complete the following steps:
1. Copy the sample Ant file that corresponds to your DBMS. The files for creating

a database are named after the following pattern:
create-appcenter-database-<dbms>.xml

2. Edit the Ant file, and replace the placeholder values with the properties at the
beginning of the file.

3. Run the following commands to create the Application Center database:
ant -f create-appcenter-database-<dbms>.xml databases

You can find the Ant command in mf_server_install_dir/shortcuts.
If the database already exists, then you must create only the database tables by
completing the following steps:
4. Copy the sample Ant file that corresponds to both your application server, and

your DBMS. The files for configuring an existing database are named after this
pattern:
configure-appcenter-<appServer>-<dbms>.xml

5. Edit the Ant file, and replace the placeholder values with the properties at the
beginning of the file.

6. Run the following commands to configure the database:
ant -f configure-appcenter-<appServer>-<dbms>.xml databases

You can find the Ant command in mf_server_install_dir/shortcuts.
7. Save the Ant file. You might need it later to apply a fix pack, or perform an

upgrade.
For more information, see “Deploying the Application Center Console and
Services with Ant tasks” on page 6-206.
If you do not want to save the passwords, you can replace them by
“************” (12 stars) for interactive prompting.

What to do next

Follow the procedure at “Deploying the Application Center Console and Services
with Ant tasks” on page 6-206.

See also:
v “Ant tasks for installation of Application Center” on page 6-304
v “Sample configuration files” on page 6-318

Installing and configuring 6-205

Deploying the Application Center Console and Services with Ant
tasks
Use Ant tasks to deploy the Application Center Console and Services to an
application server, and configure data sources, properties, and database drivers
that are used by Application Center.

Before you begin
v Complete the procedure at “Creating and configuring the database for

Application Center with Ant tasks” on page 6-204.
v You must run the Ant task on the computer where the application server is

installed, or the Network Deployment Manager for WebSphere Application
Server Network Deployment. If you want to start the Ant task from a computer
where MobileFirst Server is not installed, you must copy the following files and
directories to that computer:
– The library mf_server_install_dir/MobileFirstServer/mfp-ant-deployer.jar
– The web applications (WAR and EAR files) in mf_server_install_dir/

ApplicationCenter/console

– The directory that contains the binary files of the aapt program, from the
Android SDK platform-tools package: mf_server_install_dir/
ApplicationCenter/tools/android-sdk

– The Ant sample files that are in mf_server_install_dir/ApplicationCenter/
configuration-samples

Note: The mf_server_install_dir placeholder represents the directory where
you installed MobileFirst Server.

Procedure
1. Copy the Ant file that corresponds both to your application server, and your

DBMS. The files for configuring Application Center are named after the
following pattern:
configure-appcenter-<appserver>-<dbms>.xml

2. Edit the Ant file, and replace the placeholder values with the properties at the
beginning of the file.

3. Run the following command to deploy the Application Center Console and
Services to an application server:
ant -f configure-appcenter-<appserver>-<dbms>.xml install

You can find the Ant command in mf_server_install_dir/shortcuts.

Note: With these Ant files, you can also do the following actions:
v Uninstall Application Center, with the target uninstall.
v Update Application Center with the target minimal-update, to apply a fix

pack.
4. Save the Ant file. You might need it later to apply a fix pack or perform an

upgrade. If you do not want to save the passwords, you can replace them by
“************” (12 stars) for interactive prompting.

5. If you installed on WebSphere Application Server Liberty profile, or Apache
Tomcat, check that the aapt program is executable for all users. If needed, you
must set the proper user rights. For example, on UNIX / Linux systems:
$ chmod a+x mf_server_install_dir/ApplicationCenter/tools/android-sdk/*/aapt*

6-206 IBM MobileFirst Platform Foundation V8.0.0

Manually installing Application Center
A reconfiguration is necessary for the MobileFirst Server to use a database or
schema that is different from the one that was specified during its installation. This
reconfiguration depends on the type of database and on the kind of application
server.

On application servers other than Apache Tomcat, you can deploy Application
Center from two WAR files or one EAR file.

Restriction: Whether you install Application Center with IBM Installation Manager
as part of the MobileFirst Server installation or manually, remember that "rolling
updates" of Application Center are not supported. That is, you cannot install two
versions of Application Center (for example, V5.0.6 and V6.0.0) that operate on the
same database.

Configuring the DB2 database manually for IBM MobileFirst
Platform Application Center
You configure the DB2 database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the DB2 database for

Application Center” on page 6-199.
2. Create the tables in the database. This step is described in “Setting up your

DB2 database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your DB2 database manually for Application Center:

You can set up your DB2 database for Application Center manually.

About this task

Set up your DB2 database for Application Center by creating the database schema.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password worklight. For more information, see the DB2 documentation and the
documentation for your operating system.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across
the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called APPCNTR:

Installing and configuring 6-207

CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

4. Run DB2 with the following commands to create the APPCNTR tables, in a
schema named APPSCHM (the name of the schema can be changed). This
command can be run on an existing database that has a page size compatible
with the one defined in step 3.
db2 CONNECT TO APPCNTR
db2 SET CURRENT SCHEMA = ’APPSCHM’
db2 -vf product_install_dir/ApplicationCenter/databases/create-appcenter-db2.sql -t

Configuring Liberty profile for DB2 manually for Application Center:

You can set up and configure your DB2 database manually for Application Center
with WebSphere Application Server Liberty profile.

Before you begin

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/db2.
If that directory does not exist, create it. You can retrieve the file in one of two
ways:
v Download it from DB2 JDBC Driver Versions.
v Fetch it from the db2_install_dir/java on the DB2 server directory.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file as follows:
In this path, you can replace worklightServer by the name of your server.
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="APPCNTR" currentSchema="APPSCHM"

serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>

</dataSource>

The worklight placeholder after user= is the name of the system user with
CONNECT access to the APPCNTR database that you have previously created.
The worklight placeholder after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
worklight accordingly. Also, replace db2server with the host name of your DB2
server (for example, localhost, if it is on the same computer).
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

6-208 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

Configuring WebSphere Application Server for DB2 manually for Application
Center:

You can set up and configure your DB2 database manually for Application Center
with WebSphere Application Server.

About this task

Complete the DB2 database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a stand-alone server, you can use a directory such as

was_install_dir/optionalLibraries/IBM/Worklight/db2.
v For deployment to a WebSphere Application Server ND cell, use

was_install_dir/profiles/profile-name/config/cells/cell-name/
Worklight/db2.

v For deployment to a WebSphere Application Server ND cluster, use
was_install_dir/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/db2.

v For deployment to a WebSphere Application Server ND node, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/db2.

v For deployment to a WebSphere Application Server ND server, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/db2.

If this directory does not exist, create it.
2. Add the DB2 JDBC driver JAR file and its associated license files, if any, to the

directory that you determined in step 1.
You can retrieve the driver file in one of two ways:
v Download it from DB2 JDBC Driver Versions.
v Fetch it from the db2_install_dir/java directory on the DB2 server.

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database type to DB2.
e. Set Provider type to DB2 Using IBM JCC Driver.
f. Set Implementation Type to Connection pool data source.
g. Set Name to DB2 Using IBM JCC Driver.
h. Click Next.
i. Set the class path to the set of JAR files in the directory that you determined

in step 1, replacing was_install_dir/profiles/profile-name with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

j. Do not set Native library path.
k. Click Next.
l. Click Finish.
m. The JDBC provider is created.

Installing and configuring 6-209

http://www.ibm.com/support/docview.wss?uid=swg21363866

n. Click Save.
4. Create a data source for the Application Center database:

a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Set the Data source name to Application Center Database.
e. Set JNDI Name to jdbc/AppCenterDS.
f. Click Next.
g. Enter properties for the data source, for example:
v Driver type: 4
v Database Name: APPCNTR
v Server name: localhost
v Port number: 50000 (default)
Leave Use this data source in (CMP) selected.

h. Click Next.
i. Create JAAS-J2C authentication data, specifying the DB2 user name and

password as its properties. If necessary, go back to the data source creation
wizard, by repeating steps 4a to 4h.

j. Select the authentication alias that you created in the Component-managed
authentication alias combination box (not in the Container-managed
authentication alias combination box).

k. Click Next and Finish.
l. Click Save.
m. In Resources > JDBC > Data sources, select the new data source.
n. Click WebSphere Application Server data source properties.
o. Select the Non-transactional data source check box.
p. Click OK.
q. Click Save.
r. Click Custom properties for the data source, select property currentSchema,

and set the value to the schema used to create the Application Center tables
(APPSCHM in this example).

5. Test the data source connection by selecting Data Source and clicking Test
Connection.

Configuring Apache Tomcat for DB2 manually for Application Center:

If you want to manually set up and configure your DB2 database for Application
Center with Apache Tomcat server, use the following procedure.

About this task

Before you contiue, complete the DB2 database setup procedure.

Procedure

1. Add the DB2 JDBC driver JAR file.
You can retrieve this JAR file in one of the following ways:
v Download it from DB2 JDBC Driver Versions.
v Or fetch it from the directory db2_install_dir/java on the DB2 server) to

$TOMCAT_HOME/lib.

6-210 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

2. Prepare an XML statement that defines the data source, as shown in the
following code example.

<Resource auth="Container"
driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/AppCenterDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/APPCNTR:currentSchema=APPSCHM;"/>

The worklight parameter after username= is the name of the system user with
"CONNECT" access to the APPCNTR database that you have previously created.
The password parameter after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these entries accordingly.
DB2 enforces limits on the length of user names and passwords.
v For UNIX and Linux systems: 8 characters
v For Windows: 30 characters

3. Insert this statement in the server.xml file, as indicated in “Configuring
Apache Tomcat for Application Center manually” on page 6-227.

Configuring the Apache Derby database manually for Application
Center
You configure the Apache Derby database manually by creating the database and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database and the tables within them. This step is described in

“Setting up your Apache Derby database manually for Application Center.”
2. Configure the application server to use this database setup. Go to one of the

following topics:
v “Configuring Liberty profile for Derby manually for Application Center” on

page 6-212
v “Configuring WebSphere Application Server for Derby manually for

Application Center” on page 6-212
v “Configuring Apache Tomcat for Derby manually for Application Center” on

page 6-214

Setting up your Apache Derby database manually for Application Center:

You can set up your Apache Derby database for Application Center manually.

About this task

Set up your Apache Derby database for Application Center by creating the database
schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from Apache Derby: Downloads.

Installing and configuring 6-211

http://db.apache.org/derby/derby_downloads

For supported versions of Apache Derby, see “System requirements” on page
2-7.
The script displays ij version number.

2. At the command prompt, enter the following commands:
connect ’jdbc:derby:APPCNTR;user=APPCENTER;create=true’;
run ’<product_install_dir>/ApplicationCenter/databases/create-appcenter-derby.sql’;
quit;

Configuring Liberty profile for Derby manually for Application Center:

If you want to manually set up and configure your Apache Derby database for
Application Center with WebSphere Application Server Liberty profile, use the
following procedure.

Before you begin

Complete the Apache Derby database setup procedure before continuing.

Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:

<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="derbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/APPCNTR" user="APPCENTER"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool"/>

</dataSource>

Configuring WebSphere Application Server for Derby manually for Application
Center:

You can set up and configure your Apache Derby database manually for
Application Center with WebSphere Application Server.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
If this directory does not exist, create it.
v For a standalone server, you can use a directory such as

was_install_dir/optionalLibraries/IBM/Worklight/derby.

6-212 IBM MobileFirst Platform Foundation V8.0.0

v For deployment to a WebSphere Application Server ND cell, use
was_install_dir/profiles/profile-name/config/cells/cell-name/
Worklight/derby.

v For deployment to a WebSphere Application Server ND cluster, use
was_install_dir/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/derby.

v For deployment to a WebSphere Application Server ND node, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/derby.

v For deployment to a WebSphere Application Server ND server, use
was_install_dir/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/derby.

2. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/
lib/derby.jar to the directory determined in step 1.

3. Set up the JDBC provider.
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Database Type to User-defined.
e. Set class Implementation name to

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40.
f. Set Name to Worklight - Derby JDBC Provider.
g. Set Description to Derby JDBC provider for Worklight.
h. Click Next.
i. Set the Class path to the JAR file in the directory determined in step 1,

replacing was_install_dir/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

j. Click Finish.
4. Create the data source for the Worklight database.

a. In the WebSphere Application Server console, click Resources > JDBC >
Data sources.

b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source Name to Application Center Database.
e. Set JNDI name to jdbc/AppCenterDS.
f. Click Next.
g. Select the existing JDBC Provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the Application Center Database data source that you

created.
m. Under Additional Properties, click Custom properties.
n. Click databaseName.

Installing and configuring 6-213

o. Set Value to the path to the APPCNTR database that is created in “Setting up
your Apache Derby database manually for Application Center” on page
6-211.

p. Click OK.
q. Click Save.
r. At the top of the page, click Application Center Database.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.
u. Click OK.
v. Click Save.
w. In the table, select the Application Center Database data source that you

created.
x. Optional: Only if you are not on the console of a WebSphere Application

Server Deployment Manager, click test connection.

Configuring Apache Tomcat for Derby manually for Application Center:

You can set up and configure your Apache Derby database manually for
Application Center with the Apache Tomcat application server.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from product_install_dir/ApplicationCenter/tools/
lib/derby.jar to the directory $TOMCAT_HOME/lib.

2. Prepare an XML statement that defines the data source, as shown in the
following code example.

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/AppCenterDS"
username="APPCENTER"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/APPCNTR"/>

3. Insert this statement in the server.xml file, as indicated in “Configuring
Apache Tomcat for Application Center manually” on page 6-227.

Configuring the MySQL database manually for Application Center
You configure the MySQL database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the MySQL database

for Application Center” on page 6-200.
2. Create the tables in the database. This step is described in “Setting up your

MySQL database manually for Application Center” on page 6-215.
3. Perform the application server-specific setup as the following list shows.

6-214 IBM MobileFirst Platform Foundation V8.0.0

Setting up your MySQL database manually for Application Center:

You can set up your MySQL database for Application Center manually.

About this task

Complete the following procedure to set up your MySQL database.

Procedure

1. Create the database schema.
a. Run a MySQL command line client with the option -u root.
b. Enter the following commands:

CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’Worklight-host’IDENTIFIED BY ’worklight’;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
FLUSH PRIVILEGES;

USE APPCNTR;
SOURCE product_install_dir/ApplicationCenter/databases/create-appcenter-mysql.sql;

Where worklight before the "at" sign (@) is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM MobileFirst Platform Foundation runs.

2. Add the following property to your MySQL option file:
max_allowed_packet=256M

For more information about option files, see the MySQL documentation at
MySQL.

3. Add the following property to your MySQL option file: innodb_log_file_size
= 250M

For more information about the innodb_log_file_size property, see the MySQL
documentation, section innodb_log_file_size.

Configuring Liberty profile for MySQL manually for Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server Liberty profile, use the
following procedure.

Before you begin

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. You can use IBM DB2 or another database supported by WebSphere
Application Server to benefit from a configuration that is fully supported by IBM
Support.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:

Installing and configuring 6-215

http://dev.mysql.com
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="APPCNTR"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>

</dataSource>

where worklight after user= is the user name, worklight after password= is this
user's password, and mysqlserver is the host name of your MySQL server (for
example, localhost, if it is on the same machine).

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

Configuring WebSphere Application Server for MySQL manually for
Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server, use the following
procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty profile
or WebSphere Application Server full profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/mysql.
v For deployment to a WebSphere Application Server ND cell, use

WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight/mysql.

v For deployment to a WebSphere Application Serverr ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/mysql.

v For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/mysql.

v For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/mysql.

If this directory does not exist, create it.

6-216 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

2. Add the MySQL JDBC driver JAR file downloaded from Download
Connector/J to the directory determined in step 1.

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Create a JDBC provider named MySQL.
e. Set Database type to User defined.
f. Set Scope to Cell.
g. Set Implementation class to

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.
h. Set Database classpath to the JAR file in the directory determined in step 1,

replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

i. Save your changes.
4. Create a data source for the IBM Application Center database:

a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New to create a data source.
d. Type any name (for example, Application Center Database).
e. Set JNDI Name to jdbc/AppCenterDS.
f. Use the existing JDBC Provider MySQL, defined in the previous step.
g. Set Scope to New.
h. On the Configuration tab, select Non-transactional data source.
i. Click Next a number of times, leaving all other settings as defaults.
j. Save your changes.

5. Set the custom properties of the new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

portNumber = 3306
relaxAutoCommit=true
databaseName = APPCNTR
serverName = the host name of the MySQL server
user = the user name of the MySQL server
password = the password associated with the user name

6. Set the WebSphere Application Server custom properties of the new data
source.
a. In Resources > JDBC > Data sources, select the new data source.
b. Click WebSphere Application Server data source properties.
c. Select Non-transactional data source.
d. Click OK.
e. Click Save.

Configuring Apache Tomcat for MySQL manually for Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with the Apache Tomcat server, use the following procedure.

Installing and configuring 6-217

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/lib directory.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for Application Center manually” on
page 6-227.

<Resource name="jdbc/AppCenterDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/APPCNTR"/>

Configuring the Oracle database manually for IBM MobileFirst
Platform Application Center
You configure the Oracle database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the Oracle database for

Application Center” on page 6-201.
2. Create the tables in the database. This step is described in “Setting up your

Oracle database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your Oracle database manually for Application Center:

You can set up your Oracle database for Application Center manually.

About this task

Complete the following procedure to set up your Oracle database.

Procedure

1. Ensure that you have at least one Oracle database.
In many Oracle installations, the default database has the SID (name) ORCL. For
best results, specify Unicode (AL32UTF8) as the character set of the database.
If the Oracle installation is on a UNIX or Linux computer, make sure that the
database is started next time the Oracle installation is restarted. To this effect,
make sure that the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create the user APPCENTER, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.
v To create the user for the Application Center database/schema, by using

Oracle Database Control, proceed as follows:
a. Connect as SYSDBA.

6-218 IBM MobileFirst Platform Foundation V8.0.0

b. Go to the Users page.
c. Click Server, then Users in the Security section.
d. Create a user, named APPCENTER with the following attributes:

Profile: DEFAULT
Authentication: password
Default tablespace: USERS
Temporary tablespace: TEMP
Status: Unlocked
Add system privilege: CREATE SESSION
Add system privilege: CREATE SEQUENCE
Add system privilege: CREATE TABLE
Add quota: Unlimited for tablespace USERS

v To create the user by using Oracle SQLPlus, enter the following commands:
CONNECT SYSTEM/<SYSTEM_password>@ORCL
CREATE USER APPCENTER IDENTIFIED BY password DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;
GRANT CREATE SESSION, CREATE SEQUENCE, CREATE TABLE TO APPCENTER;
DISCONNECT;

3. Create the tables for the Application Center database:
a. Using the Oracle SQLPlus command-line interpreter, create the tables for

the Application Center database by running the create-appcenter-
oracle.sql file:
CONNECT APPCENTER/APPCENTER_password@ORCL
@product_install_dir/ApplicationCenter/databases/create-appcenter-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:
a. Download the JDBC driver from the Oracle website at Oracle: JDBC, SQLJ,

Oracle JPublisher and Universal Connection Pool (UCP):
b. Ensure that the Oracle JDBC driver is in the system path. The driver file is

ojdbc6.jar.

Configuring Liberty profile for Oracle manually for Application Center:

You can set up and configure your Oracle database manually for Application
Center with WebSphere Application Server Liberty profile by adding the JAR file
of the Oracle JDBC driver.

Before you begin

Before continuing, set up the Oracle database.

Procedure

1. Add the JAR file of the Oracle JDBC driver to $LIBERTY_HOME/wlp/usr/shared/
resources/oracle.
If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/wlp/
usr/servers/mobileFirstServer/server.xml file as shown in the following
JNDI code example:

Note: In this path, you can replace mobileFirstServer with the name of your
server.
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->

Installing and configuring 6-219

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

<dataSource jndiName="jdbc/AppCenterDS" transactional="false">
<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin"

serverName="oserver" portNumber="1521"
databaseName="ORCL"
user="APPCENTER" password="APPCENTER_password"/>

</dataSource>

where
v APPCENTER after user= is the user name,
v APPCENTER_password after password= is this user's password, and
v oserver is the host name of your Oracle server (for example, localhost if it

is on the same machine).

Note: For more information on how to connect the Liberty server to the Oracle
database with a service name, or with a URL, see the WebSphere Application
Server Liberty Core 8.5.5 documentation, section properties.oracle.

3. You can encrypt the database password with the securityUtility program in
<liberty_install_dir>/bin.

What to do next

For more steps to configure Application Center, see “Deploying the Application
Center WAR files and configuring the application server manually” on page 6-222.

Configuring WebSphere Application Server for Oracle manually for Application
Center:

If you want to manually set up and configure your Oracle database for Application
Center with WebSphere Application Server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/oracle.
v For deployment to a WebSphere Application Server ND cell, use

WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight/oracle.

v For deployment to a WebSphere Application Server ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/oracle.

v For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/oracle.

v For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/oracle.

If this directory does not exist, create it.
2. Add the Oracle ⌂ojdbc6.jar file downloaded from JDBC and Universal

Connection Pool (UCP) to the directory determined in step 1.

6-220 IBM MobileFirst Platform Foundation V8.0.0

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-5-0
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Complete the JDBC Provider fields as indicated in the following table:

Table 6-46. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver

Implementation type Connection pool data source

Name Oracle JDBC Driver

e. Click Next.
f. Set the class path to the JAR file in the directory determined in step 1,

replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}

g. Click Next.
The JDBC provider is created.

4. Create a data source for the Worklight database:
a. Click Resources > JDBC > Data sources.
b. Select the appropriate scope from the Scope combination box.
c. Click New.
d. Set Data source name to Oracle JDBC Driver DataSource.
e. Set JNDI name to jdbc/AppCenterDS.
f. Click Next.
g. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.
h. Click Next.
i. Set the URL value to jdbc:oracle:thin:@oserver:1521:ORCL, where oserver is

the host name of your Oracle server (for example, localhost, if it is on the
same machine).

j. Click Next twice.
k. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource

> Custom properties.
l. Set oracleLogPackageName to oracle.jdbc.driver.
m. Set user = APPCENTER.
n. Set password = APPCENTER_password.
o. Click OK and save the changes.
p. In Resources > JDBC > Data sources, select the new data source.
q. Click WebSphere Application Server data source properties.
r. Select the Non-transactional data source check box.
s. Click OK.
t. Click Save.

Installing and configuring 6-221

Configuring Apache Tomcat for Oracle manually for Application Center:

If you want to manually set up and configure your Oracle database for Application
Center with the Apache Tomcat server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/lib.
2. Prepare an XML statement that defines the data source, as shown in the

following code example. Insert this statement in the server.xml file, as
indicated in “Configuring Apache Tomcat for Application Center manually” on
page 6-227

<Resource name="jdbc/AppCenterDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521:ORCL"
username="APPCENTER"
password="APPCENTER_password"/>

Where APPCENTER after username= is the name of the system user with
"CONNECT" access to the APPCNTR database that you have previously created,
and APPCENTER_password after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these values accordingly.

Deploying the Application Center WAR files and configuring the
application server manually
The procedure to manually deploy the Application Center WAR files manually to
an application server depends on the type of application server being configured.

These manual instructions assume that you are familiar with your application
server.

Note: Using the MobileFirst Server installer to install Application Center is more
reliable than installing manually, and should be used whenever possible.

If you prefer to use the manual process, follow these steps to configure your
application server for Application Center. You must deploy the
appcenterconsole.war and applicationcenter.war files to your Application Center.
The files are located in product_install_dir/ApplicationCenter/console.

Configuring the Liberty profile for Application Center manually:

To configure WebSphere Application Server Liberty profile manually for
Application Center, you must modify the server.xml file.

About this task

In addition to modifications for the databases that are described in “Manually
installing Application Center” on page 6-207, you must make the following
modifications to the server.xml file.

6-222 IBM MobileFirst Platform Foundation V8.0.0

Procedure

1. Ensure that the <featureManager> element contains at least the following
<feature> elements:
<feature>jdbc-4.0</feature>
<feature>appSecurity-2.0</feature>
<feature>servlet-3.0</feature>
<feature>usr:MFPDecoderFeature-1.0</feature>

2. Add the following declarations for Application Center:
<!-- The directory with binaries of the ’aapt’ program, from the Android SDK’s

platform-tools package. -->
<jndiEntry jndiName="android.aapt.dir" value="product_install_dir/ApplicationCenter/tools/android-sdk"/>
<!-- Declare the Application Center Console application. -->
<application id="appcenterconsole"

name="appcenterconsole"
location="appcenterconsole.war"
type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
<classloader delegation="parentLast">
</classloader>

</application>

<!-- Declare the IBM Application Center Services application. -->
<application id="applicationcenter"

name="applicationcenter"
location="applicationcenter.war"
type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
<classloader delegation="parentLast">
</classloader>

</application>

<!-- Declare the user registry for the IBM Application Center. -->
<basicRegistry id="applicationcenter-registry"

realm="ApplicationCenter">
<!-- The users defined here are members of group "appcentergroup",

thus have role "appcenteradmin", and can therefore perform
administrative tasks through the Application Center Console. -->

<user name="appcenteradmin" password="admin"/>
<user name="demo" password="demo"/>
<group name="appcentergroup">

<member name="appcenteradmin"/>
<member name="demo"/>

</group>
</basicRegistry>

The groups and users that are defined in the basicRegistry are example logins
that you can use to test Application Center. Similarly, the groups that are
defined in the <security-role name="appcenteradmin"> for the Application
Center console and the Application Center service are examples. For more
information about how to modify these groups, see “Configuring the Java EE
security roles on WebSphere Application Server Liberty profile” on page 6-236.

3. If the database is Oracle, add the commonLibraryRef attribute to the class loader
of the Application Center service application.

Installing and configuring 6-223

...
<classloader delegation="parentLast" commonLibraryRef="OracleLib">
...

The name of the library reference (OracleLib in this example) must be the ID of
the library that contains the JDBC JAR file. This ID is declared in the procedure
that is documented in “Configuring Liberty profile for Oracle manually for
Application Center” on page 6-219.

4. Copy the Application Center WAR files to your Liberty server.
v On UNIX and Linux systems:

mkdir -p LIBERTY_HOME/wlp/usr/servers/server_name/apps
cp product_install_dir/ApplicationCenter/console/*.war LIBERTY_HOME/wlp/usr/servers/server_name/apps/

v On Windows systems:
mmkdir LIBERTY_HOME\wlp\usr\servers\server_name\apps
copy /B product_install_dir\ApplicationCenter\console\appcenterconsole.war
LIBERTY_HOME\wlp\usr\servers\server_name\apps\appcenterconsole.war
copy /B product_install_dir\ApplicationCenter\console\applicationcenter.war
LIBERTY_HOME\wlp\usr\servers\server_name\apps\applicationcenter.war

5. Copy the password decoder user feature.
v On UNIX and Linux systems:

mkdir -p LIBERTY_HOME/wlp/usr/extension/lib/features
cp product_install_dir/features/com.ibm.websphere.crypto_1.0.0.jar LIBERTY_HOME/wlp/usr/extension/lib/
cp product_install_dir/features/MFPDecoderFeature-1.0.mf LIBERTY_HOME/wlp/usr/extension/lib/features/

v On Windows systems:
mkdir LIBERTY_HOME\wlp\usr\extension\lib
copy /B product_install_dir\features\com.ibm.websphere.crypto_1.0.0.jar
LIBERTY_HOME\wlp\usr\extension\lib\com.ibm.websphere.crypto_1.0.0.jar
mkdir LIBERTY_HOME\wlp\usr\extension\lib\features
copy /B product_install_dir\features\MFPDecoderFeature-1.0.mf
LIBERTY_HOME\wlp\usr\extension\lib\features\MFPDecoderFeature-1.0.mf

6. Start the Liberty server.

What to do next

For more steps to configure Application Center, see “Configuring the Java EE
security roles on WebSphere Application Server Liberty profile” on page 6-236.

Configuring WebSphere Application Server for Application Center manually:

To configure WebSphere Application Server for Application Center manually, you
must configure variables, custom properties, and class loading policies.

Before you begin

Make sure that a WebSphere Application Server profile exists.

Procedure

1. Log on to the WebSphere Application Server administration console for your
IBM MobileFirst Platform Server.

2. Enable application security.
a. Click Security > Global Security.
b. Ensure that Enable administrative security is selected. Application

security can be enabled only if administrative security is enabled.
c. Ensure that Enable application security is selected.
d. Click OK.
e. Save the changes.

For more information, see Enabling security.

6-224 IBM MobileFirst Platform Foundation V8.0.0

http://ibm.biz/knowctr#SSEQTP_7.0.0/com.ibm.websphere.base.doc/info/aes/ae/tsec_csec2.html

3. Create the Application Center JDBC data source and provider.
See the appropriate section in “Manually installing Application Center” on
page 6-207.

4. Install the Application Center console WAR file.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Navigate to the MobileFirst Server installation directory
mfserver_install_dir/ApplicationCenter/console.

c. Select appcenterconsole.war and click Next.
d. On the How do you want to install the application? page, click Detailed,

and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the "Map context roots for web modules" page.
g. In the Context Root field, type /appcenterconsole.
h. Click Next until you reach the "Map security roles to users or groups"

page.
i. Select all roles, click Map Special Subjects and select All Authenticated in

Application's Realm.
j. Click Next until you reach the Summary page.
k. Click Finish and save the configuration.

5. Configure the class loader policies and then start the application:
a. Click Applications > Application types > WebSphere Enterprise

Applications.
b. From the list of applications, click appcenterconsole_war.
c. In the Detail Properties section, click the Class loading and update

detection link.
d. In the Class loader order pane, click Classes loaded with local class

loader first (parent last).
e. Click OK.
f. In the Modules section, click Manage Modules.
g. From the list of modules, click ApplicationCenterConsole.
h. In the Class loader order pane, click Classes loaded with local class

loader first (parent last).
i. Click OK twice.
j. Click Save.
k. Select appcenterconsole_war and click Start.

6. Install the WAR file for Application Center services.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Navigate to the MobileFirst Server installation directory
mfserver_install_dir/ApplicationCenter/console.

c. Select applicationcenter.war and click Next.

Installing and configuring 6-225

d. On the How do you want to install the application? page, click Detailed,
and then click Next.

e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the "Map resource references to resources" page.
g. Click Browser and select the data source with the jdbc/AppCenterDS JNDI

name.
h. Click Apply.
i. In the Context Root field, type /applicationcenter.
j. Click Next until you reach the "Map security roles to users or groups" page.
k. Select all roles, click Map Special Subjects, and select All Authenticated

in Application's Realm.
l. Click Next until you reach the Summary page.
m. Click Finish and save the configuration.

7. Repeat step 5.
a. Select applicationcenter.war from the list of applications in substeps b and

k.
b. Select ApplicationCenterServices in substep g.

8. Review the server class loader policy: Depending on your version of
WebSphere Application Server, click Servers > Server Types > Application
Servers or Servers > Server Types > WebSphere application servers and then
select the server.
v If the class loader policy is set to Multiple, do nothing.
v If the class loader policy is set to Single and Class loading mode is set to

Classes loaded with local class loader first (parent last), do nothing.
v If Classloader policy is set to Single and Class loading mode is set to

Classes loaded with parent class loader first, set Classloader policy to
Multiple and set the classloader policy of all applications other than
MobileFirst applications to Classes loaded with parent class loader first.

9. Save the configuration.
10. Configure a JNDI environment entry to indicate the directory with binary files

of the aapt program, from the Android SDK platform-tools package.
a. Determine a suitable directory for the aapt binary files in the WebSphere

Application Server installation directory.
v For a stand-alone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/mobilefirst/android-sdk.
v For deployment to a WebSphere Application Server Network

Deployment cell, use WAS_INSTALL_DIR/profiles/profile-name/config/
cells/cell-name/mobilefirst/android-sdk.

v For deployment to a WebSphere Application Server Network
Deployment cluster, use WAS_INSTALL_DIR/profiles/profile-name/
config/cells/cell-name/clusters/cluster-name/mobilefirst/android-
sdk.

v For deployment to a WebSphere Application Server Network
Deployment node, use WAS_INSTALL_DIR/profiles/profile-name/config/
cells/cell-name/nodes/node-name/mobilefirst/android-sdk.

v For deployment to a WebSphere Application Server Network
Deployment server, use WAS_INSTALL_DIR/profiles/profile-name/
config/cells/cell-name/nodes/node-name/servers/server-name/
mobilefirst/android-sdk.

6-226 IBM MobileFirst Platform Foundation V8.0.0

b. Copy the product_install_dir/ApplicationCenter/tools/android-sdk
directory to the directory that you determined in Substep a.

c. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

d. Configure the environment entry (JNDI property) android.aapt.dir, and
set as its value the directory that you determined in Substep a. The
WAS_INSTALL_DIR/profiles/profile-name profile is replaced with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

Results

You can now access the Application Center at http://<server>:<port>/
appcenterconsole, where server is the host name of your server and port is the port
number (by default 9080).

What to do next

For more steps to configure the Application Center, see “Configuring the Java EE
security roles on WebSphere Application Server full profile” on page 6-234.

Configuring Apache Tomcat for Application Center manually:

To configure Apache Tomcat for Application Center manually, you must copy JAR
and WAR files to Tomcat, add database drivers, edit the server.xml file, and then
start Tomcat.

Procedure

1. Add the database drivers to the Tomcat lib directory. See the instructions for
the appropriate DBMS in “Manually installing Application Center” on page
6-207.

2. Edit tomcat_install_dir/conf/server.xml.
a. Uncomment the following element, which is initially commented out:

<Valve className="org.apache.catalina.authenticator.SingleSignOn" />.
b. Declare the Application Center console and services applications and a user

registry:
<!-- Declare the IBM Application Center Console application. -->
<Context path="/appcenterconsole" docBase="appcenterconsole">

<!-- Define the AppCenter services endpoint in order for the AppCenter
console to be able to invoke the REST service.
You need to enable this property if the server is behind a reverse
proxy or if the context root of the Application Center Services
application is different from ’/applicationcenter’. -->

<!-- <Environment name="ibm.appcenter.services.endpoint"
value="http://proxy-host:proxy-port/applicationcenter"
type="java.lang.String" override="false"/>

-->

</Context>

<!-- Declare the IBM Application Center Services application. -->
<Context path="/applicationcenter" docBase="applicationcenter">
<!-- The directory with binaries of the ’aapt’ program, from

the Android SDK’s platform-tools package. -->
<Environment name="android.aapt.dir"

value="product_install_dir/ApplicationCenter/tools/android-sdk"
type="java.lang.String" override="false"/>

<!-- The protocol of the application resources URI.

Installing and configuring 6-227

This property is optional. It is only needed if the protocol
of the external and internal URI are different. -->

<!-- <Environment name="ibm.appcenter.proxy.protocol"
value="http" type="java.lang.String" override="false"/>

-->

<!-- The host name of the application resources URI. -->
<!-- <Environment name="ibm.appcenter.proxy.host"

value="proxy-host"
type="java.lang.String" override="false"/>

-->

<!-- The port of the application resources URI.
This property is optional. -->

<!-- <Environment name="ibm.appcenter.proxy.port"
value="proxy-port"
type="java.lang.Integer" override="false"/> -->

<!-- Declare the IBM Application Center Services database. -->
<!-- <Resource name="jdbc/AppCenterDS" type="javax.sql.DataSource" ... -->

</Context>

<!-- Declare the user registry for the IBM Application Center.
The MemoryRealm recognizes the users defined in conf/tomcat-users.xml.
For other choices, see Apache Tomcat’s "Realm Configuration HOW-TO"
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html . -->

<Realm className="org.apache.catalina.realm.MemoryRealm"/>

where you fill in the <Resource> element as described in one of the sections:
v “Configuring Apache Tomcat for DB2 manually for Application Center”

on page 6-210
v “Configuring Apache Tomcat for Derby manually for Application Center”

on page 6-214
v “Configuring Apache Tomcat for MySQL manually for Application

Center” on page 6-217
v “Configuring Apache Tomcat for Oracle manually for Application Center”

on page 6-222
3. Copy the Application Center WAR files to Tomcat.
v On UNIX and Linux systems:

cp product_install_dir/ApplicationCenter/console/*.war TOMCAT_HOME/webapps/

v On Windows systems:
copy /B product_install_dir\ApplicationCenter\console\appcenterconsole.war tomcat_install_dir\webapps\appcenterconsole.war
copy /B product_install_dir\ApplicationCenter\console\applicationcenter.war tomcat_install_dir\webapps\applicationcenter.war

4. Start Tomcat.

What to do next

For more steps to configure the Application Center, see “Configuring the Java EE
security roles on Apache Tomcat” on page 6-237.

Deploying the Application Center EAR file and configuring the
application server manually
As an alternative to the MobileFirst Server installer procedure, you can use a
manual procedure to deploy the Application Center EAR file and configure your
WebSphere application server manually.

6-228 IBM MobileFirst Platform Foundation V8.0.0

Before you begin

These manual instructions assume that you are familiar with your application
server.

About this task

The procedure to deploy the Application Center EAR file manually to an
application server depends on the type of application server. Manual deployment
is supported only for WebSphere Application Server Liberty profile and WebSphere
Application Server.

Tip: It is more reliable to install Application Center through the MobileFirst Server
installer than manually. Therefore, whenever possible, use the MobileFirst Server
installer. If, however, you prefer the manual procedure, deploy the
appcentercenter.ear file, which you can find in the product_install_dir/
ApplicationCenter/console directory.

Configuring the Liberty profile for Application Center manually:

After you deploy the Application Center EAR file, to configure WebSphere
Application Server Liberty profile manually for Application Center, you must
modify the server.xml file.

About this task

In addition to modifications for the databases that are described in “Manually
installing Application Center” on page 6-207, you must make the following
modifications to the server.xml file.

Procedure

1. Ensure that the <featureManager> element contains at least the following
<feature> elements:
<feature>jdbc-4.0</feature>
<feature>appSecurity-2.0</feature>
<feature>servlet-3.0</feature>
<feature>usr:MFPDecoderFeature-1.0</feature>

2. Add the following declarations for Application Center:
<!-- The directory with binaries of the ’aapt’ program, from the Android SDK’s platform-tools package. -->
<jndiEntry jndiName="android.aapt.dir" value="product_install_dir/ApplicationCenter/tools/android-sdk"/>

<!-- Declare the IBM Application Center application. -->
<application id="applicationcenter"

name="applicationcenter"
location="applicationcenter.ear"
type="ear">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
<classloader delegation="parentLast">
</classloader>

</application>

<!-- Declare the user registry for the IBM Application Center. -->
<basicRegistry id="applicationcenter-registry"

realm="ApplicationCenter">
<!-- The users defined here are members of group "appcentergroup",

Installing and configuring 6-229

thus have role "appcenteradmin", and can therefore perform
administrative tasks through the Application Center Console. -->

<user name="appcenteradmin" password="admin"/>
<user name="demo" password="demo"/>
<group name="appcentergroup">
<member name="appcenteradmin"/>
<member name="demo"/>

</group>
</basicRegistry>

The groups and users that are defined in the basicRegistry element are
example logins, which you can use to test Application Center. Similarly, the
groups that are defined in the <security-role name="appcenteradmin"> element
are examples. For more information about how to modify these groups, see
“Configuring the Java EE security roles on WebSphere Application Server
Liberty profile” on page 6-236.

3. If the database is Oracle, add the commonLibraryRef attribute to the class loader
of the Application Center application.
...
<classloader delegation="parentLast" commonLibraryRef="OracleLib">
...

The name of the library reference (OracleLib in this example) must be the ID of
the library that contains the JDBC JAR file. This ID is declared in the procedure
that is documented in “Configuring Liberty profile for Oracle manually for
Application Center” on page 6-219.

4. Copy the Application Center EAR files to your Liberty server.
v On UNIX and Linux systems:

mkdir -p LIBERTY_HOME/wlp/usr/servers/server_name/apps
cp product_install_dir/ApplicationCenter/console/*.ear LIBERTY_HOME/wlp/usr/servers/server_name/apps/

v On Windows systems:
mkdir LIBERTY_HOME\wlp\usr\servers\server_name\apps
copy /B product_install_dir\ApplicationCenter\console\applicationcenter.ear
LIBERTY_HOME\wlp\usr\servers\server_name\apps\applicationcenter.ear

5. Copy the password decoder user feature.
v On UNIX and Linux systems:

mkdir -p LIBERTY_HOME/wlp/usr/extension/lib/features
cp product_install_dir/features/com.ibm.websphere.crypto_1.0.0.jar LIBERTY_HOME/wlp/usr/extension/lib/
cp product_install_dir/features/MFPDecoderFeature-1.0.mf LIBERTY_HOME/wlp/usr/extension/lib/features/

v On Windows systems:
mkdir LIBERTY_HOME\wlp\usr\extension\lib
copy /B product_install_dir\features\com.ibm.websphere.crypto_1.0.0.jar
LIBERTY_HOME\wlp\usr\extension\lib\com.ibm.websphere.crypto_1.0.0.jar
mkdir LIBERTY_HOME\wlp\usr\extension\lib\features
copy /B product_install_dir\features\MFPDecoderFeature-1.0.mf
LIBERTY_HOME\wlp\usr\extension\lib\features\MFPDecoderFeature-1.0.mf

6. Start the Liberty server.

What to do next

For more steps to configure Application Center, see “Configuring the Java EE
security roles on WebSphere Application Server Liberty profile” on page 6-236.

Configuring WebSphere Application Server for Application Center manually:

After you deploy the Application Center EAR file, to configure WebSphere
Application Server profile manually for Application Center, you must configure
variables, custom properties, and class loader policies.

6-230 IBM MobileFirst Platform Foundation V8.0.0

Before you begin

Make sure that a WebSphere Application Server profile exists.

Procedure

1. Log on to the WebSphere Application Server administration console for your
IBM MobileFirst Platform Server.

2. Enable application security.
a. Click Security > Global Security.
b. Ensure that Enable administrative security is selected. Application security

can be enabled only if administrative security is enabled.
c. Ensure that Enable application security is selected.
d. Click OK.
e. Save the changes.

For more information, see Enabling security.
3. Create the Application Center JDBC data source and provider.

See the appropriate section in “Manually installing Application Center” on
page 6-207.

4. Install the Application Center EAR file.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Go to the MobileFirst Server installation directory mfserver_install_dir/
ApplicationCenter/console.

c. Select applicationcenter.ear, and then click Next.
d. On the How do you want to install the application? page, click Detailed,

and then click Next.
e. Click Next until you reach the "Map resource references to resources" page.
f. Click Browse and select the data source with the jdbc/AppCenterDS JNDI

name.
g. Click Next until you reach the "Map context roots for web modules" page.
h. In the Context Root fields, if they are not already set, type

/appcenterconsole for the ApplicationCenterConsole module and type
/applicationcenter for the ApplicationCenterServices module.

i. Click Next until you reach the "Map security roles to users or groups" page.
j. Select all roles, click Map Special Subjects and select All Authenticated in

Application's Realm.
k. Click Next until you reach the Summary page.
l. Click Finish and save the configuration.

5. Configure the class loader policies and then start the application:
a. Click Applications > Application types > WebSphere Enterprise

Applications.
b. From the list of applications, click AppCenterEAR.
c. In the Detail Properties section, click the Class loading and update

detection link.
d. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).

Installing and configuring 6-231

http://ibm.biz/knowctr#SSEQTP_7.0.0/com.ibm.websphere.base.doc/info/aes/ae/tsec_csec2.html

e. Click OK.
f. In the Modules section, click Manage Modules.
g. From the list of modules, click ApplicationCenterConsole.
h. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
i. Click OK.
j. From the list of modules, click ApplicationCenterServices.
k. In the Class loader order pane, click Classes loaded with local class loader

first (parent last).
l. Click OK twice.
m. Click Save.
n. Select AppCenterEAR and click Start.

6. Review the server class loader policy:
Depending on your version of WebSphere Application Server, click Servers >
Server Types > Application Servers or Servers > Server Types > WebSphere
application servers and then select the server.
v If the class loader policy is set to Multiple, do nothing.
v If the class loader policy is set to Single and Class loading mode is set to

Classes loaded with local class loader first (parent last), do nothing.
v If Classloader policy is set to Single and Class loading mode is set to

Classes loaded with parent class loader first, set Classloader policy to
Multiple and set the class loader policy of all applications other than
MobileFirst applications to Classes loaded with parent class loader first.

7. Save the configuration.
8. Configure a JNDI environment entry to indicate the directory with binary files

of the aapt program, from the Android SDK platform-tools package.
a. Determine a suitable directory for the aapt binary files in the WebSphere

Application Server installation directory.
v For a stand-alone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/mobilefirst/android-sdk.
v For deployment to a WebSphere Application Server Network Deployment

cell, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/mobilefirst/android-sdk.

v For deployment to a WebSphere Application Server Network Deployment
cluster, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/clusters/cluster-name/mobilefirst/android-sdk.

v For deployment to a WebSphere Application Server Network Deployment
node, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/mobilefirst/android-sdk.

v For deployment to a WebSphere Application Server Network Deployment
server, use WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-
name/nodes/node-name/servers/server-name/mobilefirst/android-sdk.

b. Copy the product_install_dir/ApplicationCenter/tools/android-sdk
directory to the directory that you determined in Substep a.

c. For WebSphere Application Server Network Deployment, click System
administration > Nodes, select the nodes, and click Full Synchronize.

d. Configure the environment entry (JNDI property) android.aapt.dir and set
as its value the directory that you determined in Substep a. The
WAS_INSTALL_DIR/profiles/profile-name profile is replaced with the
WebSphere Application Server variable reference ${USER_INSTALL_ROOT}.

6-232 IBM MobileFirst Platform Foundation V8.0.0

Results

You can now access the Application Center at http://<server>:<port>/
appcenterconsole, where server is the host name of your server and port is the port
number (by default 9080).

What to do next

For more steps to configure the Application Center, see “Configuring the Java EE
security roles on WebSphere Application Server full profile” on page 6-234.

Configuring Application Center after installation
After you install Application Center in the web application server that you
designated, you have additional configuration to do.

Configuring user authentication for Application Center
You configure user authentication and choose an authentication method. The
configuration procedure depends on the web application server that you use.

Application Center requires user authentication.

You must perform some configuration after the installer deploys Application
Center web applications in the web application server.

Application Center has two Java Platform, Enterprise Edition (Java EE) security
roles defined:
v The appcenteruser role that represents an ordinary user of Application Center

who can install mobile applications from the catalog to a mobile device
belonging to that user.

v The appcenteradmin role that represents a user who can perform administrative
tasks through the Application Center console.

You must map the roles to the corresponding sets of users.

If you choose to use an authentication method through a user repository such as
LDAP, you can configure Application Center so that you can use users and groups
with the user repository to define the Access Control List (ACL) of Application
Center. This procedure is conditioned by the type and version of the web

Figure 6-10. Java EE security roles of the Application Center and the components that they influence

Installing and configuring 6-233

application server that you use. See “Managing users with LDAP” on page 6-237
for information about LDAP used with Application Center.

After you configure authentication of the users of Application Center, which
includes configuring LDAP if you plan to use it, you can, if necessary, define the
endpoint of the application resources. You must then build the Application Center
mobile client. The mobile client is used to install applications on mobile devices.
See “Preparations for using the mobile client” on page 13-6 for how to build the
Application Center mobile client.
Related concepts:
“Managing users with LDAP” on page 6-237
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.
Related reference:
Preparations for using the mobile client
To use the mobile client to install apps on mobile devices, you must either generate
the app by using the provided Eclipse and Visual Studio projects or use the
version of the client provided for Android, iOS, or Windows 8 Universal, directly.

Configuring the Java EE security roles on WebSphere Application Server full
profile:

Configure security by mapping the Application Center Java EE roles to a set of
users for both web applications.

Before you begin

Review the definition of roles at “Configuring user authentication for Application
Center” on page 6-233.

Procedure

You define the basics of user configuration in the WebSphere Application Server
console. Access to the console is usually by this address:
https://localhost:9043/ibm/console/

1. Select Security > Global Security.
2. Select Security Configuration Wizard to configure users.

You can manage individual user accounts by selecting Users and Groups >
Manage Users.

3. If you deployed WAR files, map the appcenteruser and appcenteradmin roles to
a set of users as follows:
a. Select Servers > Server Types > WebSphere application servers.
b. Select the server.
c. In the Configuration tab, select Applications > Enterprise applications.

6-234 IBM MobileFirst Platform Foundation V8.0.0

d. Select IBM_Application_Center_Services.
e. In the Configuration tab, select Details > Security role to user/group

mapping.

f. Perform the necessary customization.
g. Click OK.
h. Repeat steps c to g to map the roles for the console web application; in step

d, select IBM_Application_Center_Console.
i. Click Save to save the changes.

4. If you deployed an EAR file, map the appcenteruser and appcenteradmin roles
to a set of users as follows:
a. Select Applications > Application Types > WebSphere application servers.
b. Click AppCenterEAR.
c. In the Detail Properties section, click Security role to user/group mapping.

Figure 6-11. Mapping the Application Center roles

Figure 6-12. Mapping the appcenteruser and appcenteradmin roles: user groups

Installing and configuring 6-235

d. Customize as necessary.
e. Click OK.
f. Click Save.

Configuring the Java EE security roles on WebSphere Application Server Liberty
profile:

Configure the Java EE security roles of the Application Center and the data source
in the server.xml file.

Before you begin

Review the definition of roles at “Configuring user authentication for Application
Center” on page 6-233.

In WebSphere Application Server Liberty profile, you configure the roles of
appcenteruser and appcenteradmin in the server.xml configuration file of the
server.

About this task

To configure the security roles, you must edit the server.xml file. In the
<application-bnd> element of each <application> element, create two
<security-role> elements. One <security-role> element is for the appcenteruser
role and the other is for the appcenteradmin role. Map the roles to the appropriate
user group name appcenterusergroup or appcenteradmingroup. These groups are
defined through the <basicRegistry> element. You can customize this element or
replace it entirely with an <ldapRegistry> element or a <safRegistry> element.

Then, to maintain good response times with a large number of installed
applications, for example with 80 applications, you should configure a connection
pool for the Application Center database.

Procedure

1. Edit the server.xml file.
For example:
<security-role name="appcenteradmin">

<group name="appcenteradmingroup"/>
</security-role>
<security-role name="appcenteruser">

<group name="appcenterusergroup"/>
</security-role>

You must include this example in the following location: :
v If you deployed WAR files, in the <application-bnd> element of each

<application> element: the appcenterconsole and applicationcenter
applications.

v If you deployed an EAR file, in the <application-bnd> element of the
applicationcenter application.

Replace the <security-role> elements that have been created during
installation for test purposes.
<basicRegistry id="appcenter">

<user name="admin" password="admin"/>
<user name="guest" password="guest"/>
<user name="demo" password="demo"/>
<group name="appcenterusergroup">

6-236 IBM MobileFirst Platform Foundation V8.0.0

<member name="guest"/>
<member name="demo"/>

</group>
<group name="appcenteradmingroup">
<member name="admin" id="admin"/>

</group>
</basicRegistry>

This example shows a definition of users and groups in the basicRegistry of
WebSphere Application Server Liberty. For more information about configuring
a user registry for WebSphere Application Server Liberty profile, see
Configuring a user registry for the Liberty profile.

2. Edit the server.xml file to define the AppCenterPool size.
<connectionManager id="AppCenterPool" minPoolSize="10" maxPoolSize="40"/>

3. In the <dataSource> element, define a reference to the connection manager:
<dataSource id="APPCNTR" jndiName="jdbc/AppCenterDS" connectionManagerRef="AppCenterPool"
...

</dataSource>

Configuring the Java EE security roles on Apache Tomcat:

You must configure the Java EE security roles for the Application Center on the
Apache Tomcat web application server.

Before you begin

Review the definition of roles at “Configuring user authentication for Application
Center” on page 6-233.

Procedure

1. In the Apache Tomcat web application server, you configure the roles of
appcenteruser and appcenteradmin in the conf/tomcat-users.xml file. The
installation creates the following users:
<user username="appcenteradmin" password="admin" roles="appcenteradmin"/>
<user username="demo" password="demo" roles="appcenteradmin"/>
<user username="guest" password="guest" roles="appcenteradmin"/>

2. You can define the set of users as described in the Apache Tomcat
documentation, Realm Configuration HOW-TO.

Managing users with LDAP
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.

LDAP is a way to centralize the user management for multiple web applications in
an LDAP Server that maintains a user registry. It can be used instead of specifying
one by one the users for the security roles appcenteradmin and appcenteruser.

If you plan to use an LDAP registry with the Application Center, you must
configure your WebSphere Application Server or your Apache Tomcat server to use
an LDAP registry to authenticate users.

In addition to authentication of users, configuring the Application Center for
LDAP also enables you to use LDAP to define the users and groups who can
install mobile applications through the Application Center. The means of defining
these users and groups is the Access Control List (ACL).

Since IBM Worklight V6.0, use the JNDI environment entries for defining LDAP
configuration properties.

Installing and configuring 6-237

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_sec_registries.html
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

Expert users could configure the application servers to use LDAP authentication by
using the methods that were documented in releases before IBM Worklight V6.0.

LDAP with WebSphere Application Server V8.x:

LDAP authentication is based on the federated repository configuration. ACL
management configuration of the Application Center uses the Virtual Member
Manager API.

You must configure LDAP based on the federated repository configuration. The
stand-alone LDAP registry is not supported.

Several different repositories, LDAP and non-LDAP, can be configured in the
federated repository.

For information about configuring federated repositories, see the WebSphere
Application Server V8.0 user documentation or the WebSphere Application Server
V8.5 user documentation, depending on your version.

Configuration of the Application Center for ACL management with LDAP

Some configuration details of ACL management are specific to the Application
Center, because it uses the Virtual Member Manager (VMM) API.

The Application Center refers to these VMM attributes for users:
uid represents the user login name.
sn represents the full name of the user.

For groups, the Application Center refers only to the VMM attribute cn.

If VMM attributes are not identical in LDAP, you must map the VMM attributes to
the corresponding LDAP attributes.

Configuring LDAP authentication for WebSphere Application Server V8.x:

Use LDAP to define users who can access the Application Center console and
users who can log in to the client.

About this task

You can configure LDAP based on the federated repository configuration only. This
procedure shows you how to use LDAP to define the roles appcenteradmin and
appcenteruser in WebSphere Application Server V8.x.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Security > Global security and verify that administrative security and

application security are enabled.
3. In the “User account repository” section, select Federated repositories.
4. Click Configure.
5. Add a repository and configure it.

a. Click Add Base entry to Realm.
b. Specify the value of Distinguished name of a base entry that uniquely

identifies entries in the realm and click Add Repository.

6-238 IBM MobileFirst Platform Foundation V8.0.0

http://ibm.biz/knowctr#/SSEQTP_8.0.0/as_ditamaps/welcome_base.html
http://ibm.biz/knowctr#/SSEQTP_8.0.0/as_ditamaps/welcome_base.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html
http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html

c. Select LDAP Repository.
d. Give this repository a name and enter the values that are required to

connect to your LDAP server.
e. Under Additional Properties, click LDAP entity types.
f. Configure the Group, OrgContainer, and PersonAccount properties. These

configuration details depend on your LDAP server.
6. Save the configuration, log out, and restart the server.
7. If you deployed WAR files, in the WebSphere Application Server console, map

the security roles to users and groups.
a. In the Configuration tab, select Applications > WebSphere Enterprise

applications.
b. Select IBM_Application_Center_Services.
c. In the Configuration tab, select Details > Security role to user/group

mapping.
d. For appcenteradmin and appcenteruser roles, select Map groups. This

selection enables you to select users and groups inside the WebSphere user
repository, including LDAP users and groups. The selected users can
access the Application Center as appcenteradmin or appcenteruser. You
can also map the roles to Special Subjects “All authenticated in
application realm” to give everyone in the WebSphere user repository,
including everyone registered in the LDAP registry, access to the
Application Center.

8. Repeat step 7 for IBM_Application_Center_Console.
Make sure that you select IBM_Application_Center_Console in step 7.b
instead of IBM_Application_Center_Services..

9. If you deployed an EAR file, in the WebSphere Application Server console,
map the security roles to users and groups.
a. Click Applications > Application Types > WebSphere enterprise

applications.
b. From the list of applications, click AppCenterEAR.
c. In the Detail Properties section, click Security role to user/group mapping.
d. For appcenteradmin and appcenteruser roles, select Map groups or Map

users to select users or groups inside the WebSphere user repository,
including LDAP users and groups.
The selected users can access the Application Center as appcenteradmin or
appcenteruser. You can also map the roles to Special Subjects “All
authenticated in application realm” to give access to the Application
Center to everyone in the WebSphere user repository, including everyone
registered in the LDAP registry.

10. Click Save to save your changes.

What to do next

You must enable ACL management with LDAP. See “Configuring LDAP ACL
management for WebSphere Application Server V8.x.”

Configuring LDAP ACL management for WebSphere Application Server V8.x:

Use LDAP to define the users and groups who can install mobile applications with
the Application Center with the Virtual Member Manager (VMM) API.

Installing and configuring 6-239

About this task

To configure ACL with LDAP, you define three properties: uid, sn, and cn. These
properties enable the login name and the full name of users and the name of user
groups to be identified in the Application Center. Then you enable ACL
management with VMM. You can configure LDAP based on the federated
repository configuration only.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Security > Global security.
3. In the User account repository section, select Configure.
4. Select your LDAP repository entry.
5. Under Additional Properties, select LDAP attributes (WebSphere Application

Server V8.0) or Federated repositories property names to LDAP attributes
mapping (WebSphere Application Server V8.5).

6. Select Add > Supported.
7. Enter these property values:

a. For Name enter your LDAP login attribute.
b. For Property name enter uid.
c. For Entity types enter the LDAP entity type.
d. Click OK.

8. Select Add > Supported.
a. For Name enter your LDAP attribute for full user name.
b. For Property name enter sn.
c. For Entity types enter the LDAP entity type.
d. Click OK.

9. Select Add > Supported to configure a group name:
a. For Name enter the LDAP attribute for your group name.

Figure 6-13. Associating LDAP login with uid property (WebSphere Application Server V8.0)

Figure 6-14. Associating LDAP full user name with sn property (WebSphere Application Server V8.0)

6-240 IBM MobileFirst Platform Foundation V8.0.0

b. For Property name enter cn.
c. For Entity types enter the LDAP entity type.
d. Click OK.

10. Enable ACL management with LDAP:
a. Select Servers > Server Types > WebSphere application servers.
b. Select the appropriate application server.

In a clustered environment you must configure all the servers in the
cluster in the same way.

c. In the Configuration tab, under “Server Infrastructure”, click the Java and
Process Management tab and select Process definition.

d. In the Configuration tab, under Additional Properties, select Java Virtual
Machine,

e. In the Configuration tab, under Additional Properties, select Custom
properties.

f. Enter the required property-value pairs in the form. To enter each pair,
click New, enter the property and its value, and click OK.
Property-value pairs:
v ibm.appcenter.ldap.vmm.active = true

v ibm.appcenter.ldap.active = true

v ibm.appcenter.ldap.cache.expiration.seconds = delay_in_seconds

g. Enter the delay in seconds before the LDAP cache expires. If you do not
enter a value, the default value is 86400, which is equal to 24 hours.
Changes to users and groups on the LDAP server become visible to the
Application Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The Application Center
maintains a cache of LDAP data and the changes become visible only after
the cache expires. By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or groups, you can call
this command to clear the cache of LDAP data:
acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.

Results

The following figure shows an example of custom properties with the correct
settings.

What to do next

1. Save the configuration and restart the server.

Figure 6-15. ACL management for Application Center with LDAP on WebSphere Application Server V8

Installing and configuring 6-241

2. To use the VMM API, you must assign the IdMgrReader role to the users who
run the VMM code, or to the group owners of these users. You must assign this
role to all users and groups who have the appcenteruser or
appcenteradminroles.

3. In the <was_home>\bin directory, where <was_home> is the home directory of
your WebSphere Application Server, run the wsadmin command.

4.

After connecting with the WebSphere Application Server administrative user,
run the following command:
$AdminTask mapIdMgrGroupToRole {-roleName IdMgrReader -groupId your_LDAP_group_id}

5. Run the same command for all the groups mapped to the appcenteruser and
appcenteradminroles.
For individual users who are not members of groups, run the following
command:
$AdminTask mapIdMgrUserToRole {-roleName IdMgrReader -userId your_LDAP_user_id}

You can assign the special subject “All Authenticated in Application's Realm”
as roles for appcenteruser and appcenteradmin. If you choose to assign this
special subject, IdMgrReader must be configured in the following way:
$AdminTask mapIdMgrGroupToRole {-roleName IdMgrReader -groupId ALLAUTHENTICATED}

6. Enter exit to end wsadmin.

LDAP with Liberty profile:

Use LDAP to authenticate users and to define the users and groups who can install
mobile applications with the Application Center by using the JNDI environment.

Using LDAP with Liberty profile requires you to configure LDAP authentication
and LDAP ACL management.

Configuring LDAP authentication for the Liberty profile:

You configure LDAP authentication by defining one or more LDAP registries in the
server.xml file and you map LDAP users and groups to Application Center roles.

About this task

You can configure LDAP authentication of users and groups in the server.xml file
by defining an LDAP registry or, since WebSphere Application Server Liberty
profile V8.5.5, a federated registry that uses several LDAP registries. Then, you
map users and groups to Application Center roles. The mapping configuration is
the same for LDAP authentication and basic authentication.

Procedure

1. To open the server.xml descriptor file, enter {server.config.dir}/server.xml
2. Insert one or several LDAP registry definitions after the <httpEndpoint>

element. Example for the LDAP registry:
<ldapRegistry baseDN="o=ibm.com" host="employees.com" id="Employees"

ldapType="IBM Tivoli Directory Server" port="389" realm="AppCenterLdap"
recursiveSearch="true">

<idsFilters
groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames))) " id="Employees"
userFilter="(&(emailAddress=%v)(objectclass=ibmPerson))"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember"
userIdMap="*:emailAddress"/>

</ldapRegistry>

6-242 IBM MobileFirst Platform Foundation V8.0.0

For information about the parameters that are used in this example, see the
WebSphere Application Server V8.5 user documentation.

3. Insert a security role definition after each Application Center application
definition.
v If you deployed WAR files: applicationcenter and appcenterconsole
v

If you deployed an EAR file:applicationcenter

Group names unique within LDAP
This sample code shows how to use the group names
ldapGroupForAppcenteruser and ldapGroupForAppcenteradmin when
they exist and are unique within LDAP.
<application-bnd>

<security-role name="appcenteruser" id="appcenteruser">
<group name="ldapGroupForAppcenteruser" />

</security-role>
<security-role name="appcenteradmin" id="appcenteradmin">

<group name="ldapGroupForAppcenteradmin" />
</security-role>

</application-bnd>

Group names not unique within LDAP
This sample code shows how to code the mapping when the group
names are not unique within LDAP. The groups must be specified with
the access-id attribute. The access-id attribute must refer to the realm
name that is used to specify the LDAP realm. In this sample code, the
realm name is AppCenterLdap. The remainder of the access-id attribute
specifies one of the LDAP groups named ldapGroup in a way that
makes it unique.
<application-bnd>

<security-role name="appcenteruser" id="appcenteruser">
<group name="ldapGroup"

id="ldapGroup"
access-id="group:AppCenterLdap/CN=ldapGroup,OU=myorg,

DC=mydomain,DC=AD,DC=myco,DC=com"/>
</security-role>
...

</application-bnd>

If applicable, use similar code to map the appcenteradmin role.

Configuring LDAP ACL management (Liberty profile):

Use LDAP to define the users and groups who can install mobile applications
through the Application Center. The means of defining these users and groups is
the Access Control List (ACL).

Purpose

To enable ACL management with LDAP. You enable ACL management after you
configure LDAP and map users and groups to Application Center roles. Only the
simple type of LDAP authentication is supported.

Properties

To be able to define JNDI entries, the following feature must be defined in the
server.xml file:
<feature>jndi-1.0</feature>

Installing and configuring 6-243

http://ibm.biz/knowctr#SSEQTP_8.5.5/as_ditamaps/was855_welcome_base_dist_iseries.html

Add an entry for each property in the <server> section of the server.xml file. This
entry should have the following syntax:
<jndiEntry jndiName="JNDI_property_name" value="property_value"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

Table 6-47. JNDI properties for configuring ACL management with LDAP in the server.xml file

Property Description

ibm.appcenter.ldap.active Set to true to enable LDAP; set to false to disable LDAP.

ibm.appcenter.ldap.federated.active Since WebSphere Application Server Liberty profile
V8.5.5: set to true to enable use of the federated registry;
set to false to disable use of the federated registry, which
is the default setting.

ibm.appcenter.ldap.connectionURL LDAP connection URL.

ibm.appcenter.ldap.user.base Search base of users.

ibm.appcenter.ldap.user.loginName LDAP login attribute.

ibm.appcenter.ldap.user.displayName LDAP attribute for the user name to be displayed, for
example, a person's full name.

ibm.appcenter.ldap.group.base Search base of groups.

ibm.appcenter.ldap.group.name LDAP attribute for the group name.

ibm.appcenter.ldap.group.uniquemember LDAP attribute that identifies the members of a group.

ibm.appcenter.ldap.user.groupmembership LDAP attribute that identifies the groups to which a user
belongs.

ibm.appcenter.ldap.group.nesting Management of nested groups: if nested groups are not
managed, set the value to false.

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of user login
name. Use %v as the placeholder for the login name
attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.displayName.filter LDAP user search filter for the attribute of user display
name. Use %v as the placeholder for the display name
attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the placeholder for
the group attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

6-244 IBM MobileFirst Platform Foundation V8.0.0

Table 6-47. JNDI properties for configuring ACL management with LDAP in the server.xml file (continued)

Property Description

ibm.appcenter.ldap.security.sasl The value of the security authentication mechanism when
the LDAP external SASL authentication mechanism is
required to bind to the LDAP server. The value depends
on the LDAP server; usually, it is set to “EXTERNAL”.

ibm.appcenter.ldap.security.binddn Property that identifies the distinguished name of the
user permitted to search the LDAP directory. Use this
property only if security binding is required.

ibm.appcenter.ldap.security.bindpwd Property that identifies the password of the user who is
allowed to search the LDAP directory. Use this property
only if security binding is required. The password can be
encoded with the "Liberty profile securityUtility" tool.
Run the tool and then set the value of this property to the
encoded password generated by the tool. The supported
encoding types are xor and aes.

Edit the Liberty profile server.xml file to check whether
the classloader is enabled to load the JAR file that decodes
the password.

ibm.appcenter.ldap.cache.expiration.seconds Delay in seconds before the LDAP cache expires. If no
value is entered, the default value is 86400, which is
equal to 24 hours.

Changes to users and groups on the LDAP server become
visible to the Application Center after a delay, which is
specified by
ibm.appcenter.ldap.cache.expiration.seconds. The
Application Center maintains a cache of LDAP data and
the changes only become visible after the cache expires.
By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or
groups, you can call this command to clear the cache of
LDAP data:

acdeploytool.sh -clearLdapCache -s serverurl
-c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache
for details.

ibm.appcenter.ldap.referral Property that indicates whether referrals are supported by
the JNDI API. If no value is given, the JNDI API will not
handle LDAP referrals. Possible values are:

v ignore: ignores referrals found in the LDAP server.

v follow: automatically follows any referrals found in the
LDAP server.

v throw: causes an exception to occur for each referral
found in the LDAP server.

See “JNDI properties for Application Center” on page 6-261 for a complete list of
LAPD properties that you can set.

Example of setting properties for ACL management with LDAP

This example shows the settings of the properties in the server.xml file required
for ACL management with LDAP.

Installing and configuring 6-245

<jndiEntry jndiName="ibm.appcenter.ldap.active" value="true"/>
<jndiEntry jndiName="ibm.appcenter.ldap.connectionURL" value="ldap://employees.com:636"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.loginName" value="uid"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.base" value="dc=ibm,dc=com"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.base" value="dc=ibm,dc=com"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.displayName" value="sn"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.name" value="cn"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.uniquemember" value="uniqueMember"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.groupmembership" value=ibm-allGroups"/>
<jndiEntry jndiName="ibm.appcenter.ldap.cache.expiration.seconds" value=43200"/>
<jndiEntry jndiName="ibm.appcenter.ldap.security.sasl" value=’"EXTERNAL"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.referral" value=’"follow"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.filter" value=’"(&(uid=%v)(objectclass=inetOrgPerson))"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.displayName.filter" value=’"(&(cn=%v)(objectclass=inetOrgPerson))"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.filter" value=’"(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))"’/>

LDAP with Apache Tomcat:

Configure the Apache Tomcat application server for LDAP authentication and
configure security (Java™ Platform, Enterprise Edition) in the web.xml file of the
Application Center.

To configure ACL management of the Application Center, configure LDAP for user
authentication, map the Java EE roles of the Application Center to the LDAP roles,
and configure the Application Center properties for LDAP authentication. Only the
simple type of LDAP authentication is supported.

Configuration of LDAP authentication (Apache Tomcat):

Define the users who can access the Application Center console and the users who
can log in with the mobile client by mapping Java Platform, Enterprise Edition
roles to LDAP roles.

Purpose

To configure ACL management of the Application Center, follow this process:
1. Configure LDAP for user authentication.
2. Map the Java Platform, Enterprise Edition (Java EE) roles of the Application

Center to the LDAP roles.
3. Configure theApplication Center properties for LDAP authentication.

Restriction: Only the simple type of LDAP authentication is supported.

You configure the Apache Tomcat server for LDAP authentication and configure
security (Java™ Platform, Enterprise Edition) in the web.xml file of theApplication
Center Services web application (applicationcenter.war) and of the Application
Center Console web application (appcenterconsole.war).

LDAP user authentication

You must configure a JNDIRealm in the server.xml file in the <Host> element. For
more information about configuring a realm, see the Realm Component on the
Apache Tomcat website.

Example of configuration on Apache Tomcat to authenticate against an LDAP
server

This example shows how to configure user authentication on an Apache Tomcat
server by comparing with the authorization of these users on a server enabled for
LDAP authentication.

6-246 IBM MobileFirst Platform Foundation V8.0.0

http://tomcat.apache.org/tomcat-7.0-doc/config/realm.html
http://tomcat.apache.org/tomcat-7.0-doc/config/realm.html

<Host appBase="webapps" autoDeploy="true" name="localhost" unpackWARs="true">
...
<Realm className="org.apache.catalina.realm.JNDIRealm"

connectionURL="ldap://bluepages.ibm.com:389"
userSubtree="true"
userBase="ou=bluepages,o=ibm.com"
userSearch="(emailAddress={0})"
roleBase="ou=ibmgroups,o=ibm.com"
roleName="cn"
roleSubtree="true"
roleSearch="(uniqueMember={0})"
allRolesMode="authOnly"
commonRole="appcenter"/>

...
</Host>

The value of connectionURL is the LDAP URL of your LDAP server.

The userSubtree, userBase, and userSearch attributes define how to use the name
that is given to the Application Center in login form (in the browser message box)
to match an LDAP user entry.

In the example, the definition of userSearch specifies that the user name is used to
match the email address of an LDAP user entry.

The basis or scope of the search is defined by the value of the userBase attribute.
In LDAP, an information tree is defined; the user base indicates a node in that tree.

Set the value of userSubtree to true; if it is set to false, the search runs only on
the direct child nodes of the user base. It is important that the search penetrates
the subtree and does not stop at the first level.

For authentication, you define only the userSubtree, userBase, and userSearch
attributes. The Application Center also uses Java EE security roles. Therefore, you
must map LDAP attributes to some Java EE roles. These attributes are used for
mapping LDAP attributes to security roles:
v roleBase

v roleName

v roleSubtree

v roleSearch

In this example, the value of the roleSearch attribute matches all LDAP entries
with a uniqueMember attribute whose value is the Distinguished Name (DN) of the
authenticated user.
v The roleBase attribute specifies a node in the LDAP tree below which the roles

are defined.
v The roleSubtree attribute indicates whether the LDAP search should search the

entire subtree, whose root is defined by the value of roleBase, or only the direct
child nodes.

v The roleName attribute defines the name of the LDAP attribute.
v The allRolesMode attribute specifies that you can use the asterisk (*) character as

the value of role-name in the web.xml file. This attribute is optional.
v The commonRole attribute adds a role that is shared by all authenticated users.

This attribute is optional.

Installing and configuring 6-247

Mapping the Java EE roles of the Application Center to LDAP roles

After you define the LDAP request for the Java EE roles, you must change the
web.xml file of the Application Center Services web application
(applicationcenter.war) and of the Application Center Console web application
(appcenterconsole.war) to map the Java EE roles of appcenteradmin and
appcenteruser to the LDAP roles.

These examples, where LDAP users have LDAP roles, called MyLdapAdmin and
MyLdapUser, show where and how to change the web.xml file. Replace the names
MyLdapAdmin and MyLdapUser with the roles that are defined in your LDAP. Modify
the following files:
v tomcat_install_dir/webapps/appcenterconsole/WEB-INF/web.xml

v tomcat_install_dir/webapps/applicationcenter/WEB-INF/web.xml

The security-role-ref element in the JAX_RS servlet
<servlet>

<servlet-name>...</servlet-name>
<servlet-class>...</servlet-class>

<init-param>
...

</init-param>
<load-on-startup>1</load-on-startup>
<security-role-ref>

<role-name>appcenteradmin</role-name>
<role-link>MyLdapAdmin</role-link>

</security-role-ref>
<security-role-ref>

<role-name>appcenteruser</role-name>
<role-link>MyLdapUser</role-link>

</security-role-ref>
</servlet>

The security-role element
<security-role>

<role-name>MyLdapAdmin</role-name>
</security-role>
<security-role>

<role-name>MyLdapUser</role-name>
</security-role>

The auth-constraint element

After you edit the security-role-ref and the security-role elements, you can use
the roles that are defined in the auth-constraint elements to protect the web
resources. Edit these roles for the appcenteradminConstraint element in both the
web.xml file of both appcenterconsole and applicationcenter, and for
the appcenteruserConstraint element in the appcenterconsole web.xml file.
<security-constraint>

<display-name>appcenteradminConstraint</display-name>
<web-resource-collection>

...
</web-resource-collection>
<auth-constraint>

<role-name>MyLdapAdmin</role-name>
</auth-constraint>
<user-data-constraint>

...
</user-data-constraint>

</security-constraint>

6-248 IBM MobileFirst Platform Foundation V8.0.0

and
<security-constraint>

<display-name>appcenteruserConstraint</display-name>
<web-resource-collection>

...
</web-resource-collection>
<auth-constraint>

<role-name>MyLdapUser</role-name>
</auth-constraint>
<user-data-constraint>

...
</user-data-constraint>

</security-constraint>

Configuring LDAP ACL management (Apache Tomcat):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center by defining the Application Center LDAP properties
through JNDI.

Purpose

To configure LDAP ACL management of the Application Center; add an entry for
each property in the <context> section of the IBM Application Center Services
application in the server.xml file. This entry should have the following syntax:

<Environment name="JNDI_property_name" value="property_value" type="java.lang.String" override="false"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

Table 6-48. Properties for configuring ACL management for LDAP in the server.xml file on Apache Tomcat

Property Description

ibm.appcenter.ldap.active Set to true to enable LDAP; set to false to disable
LDAP.

ibm.appcenter.ldap.connectionURL LDAP connection URL.

ibm.appcenter.ldap.user.base Search base of users.

ibm.appcenter.ldap.user.loginName LDAP login attribute.

ibm.appcenter.ldap.user.displayName LDAP attribute for the user name to be displayed, for
example, a person's full name.

ibm.appcenter.ldap.group.base Search base of groups.

ibm.appcenter.ldap.group.name LDAP attribute for the group name.

ibm.appcenter.ldap.group.uniquemember LDAP attribute that identifies the members of a group.

ibm.appcenter.ldap.user.groupmembership LDAP attribute that identifies the groups to which a user
belongs.

ibm.appcenter.ldap.group.nesting Management of nested groups: if nested groups are not
managed, set the value to false.

Installing and configuring 6-249

Table 6-48. Properties for configuring ACL management for LDAP in the server.xml file on Apache
Tomcat (continued)

Property Description

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of user login
name. Use %v as the placeholder for the login name
attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.displayName.filter LDAP user search filter for the attribute of user display
name. Use %v as the placeholder for the display name
attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the placeholder for
the group attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when the
properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.security.sasl The value of the security authentication mechanism
when the LDAP external SASL authentication mechanism
is required to bind to the LDAP server. The value
depends on the LDAP server; usually, it is set to
"EXTERNAL".

ibm.appcenter.ldap.security.binddn Property that identifies the distinguished name of the
user permitted to search the LDAP directory. Use this
property only if security binding is required.

ibm.appcenter.ldap.security.bindpwd Property that identifies the password of the user
permitted to search the LDAP directory. Use this
property only if security binding is required.

ibm.appcenter.ldap.cache.expiration.seconds Delay in seconds before the LDAP cache expires. If no
value is entered, the default value is 86400, which is
equal to 24 hours.

Changes to users and groups on the LDAP server
become visible to the Application Center after a delay,
which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The
Application Center maintains a cache of LDAP data and
the changes only become visible after the cache expires.
By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or
groups, you can call this command to clear the cache of
LDAP data:

acdeploytool.sh -clearLdapCache -s serverurl
c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache
for details.

6-250 IBM MobileFirst Platform Foundation V8.0.0

Table 6-48. Properties for configuring ACL management for LDAP in the server.xml file on Apache
Tomcat (continued)

Property Description

ibm.appcenter.ldap.referral Property that indicates whether referrals are supported
by the JNDI API. If no value is given, the JNDI API will
not handle LDAP referrals. Possible values are:

v ignore: ignores referrals found in the LDAP server.

v follow: automatically follows any referrals found in
the LDAP server.

v throw: causes an exception to occur for each referral
found in the LDAP server.

See “JNDI properties for Application Center” on page 6-261 for a complete list of
LAPD properties that you can set.

The example shows properties defined in the server.xml file.
<Environment name="ibm.appcenter.ldap.active" value="true" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.connectionURL" value="ldaps://employees.com:636" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.base" value="dc=ibm,dc=com" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.loginName" value="uid" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.displayName" value="cn" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.groupmembership" value="ibm-allGroups" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.base" value="dc=ibm,dc=com" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.name" value="cn" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.uniquemember" value="uniquemember" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.cache.expiration.seconds" value="43200" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.security.sasl" value="EXTERNAL" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.security.referral" value="follow" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.filter" value="(&(uid=%v)(objectclass=inetOrgPerson))" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.displayName.filter" value="(&(cn=%v)(objectclass=inetOrgPerson))" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.filter" value="(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))" type="java.lang.String" override="false"/>

Configuring properties of DB2 JDBC driver in WebSphere
Application Server
Add some JDBC custom properties to avoid DB2 exceptions from a WebSphere
Application Server that uses the IBM DB2 database.

About this task

When you use WebSphere Application Server with an IBM DB2 database, this
exception could occur:
Invalid operation: result set is closed. ERRORCODE=-4470, SQLSTATE=null

To avoid such exceptions, you must add custom properties in WebSphere
Application Server at the Application Center data source level.

Procedure
1. Log in to the WebSphere Application Server administration console.
2. Select Resources > JDBC > Data sources > Application Center DataSource

name > Custom properties and click New.
3. In the Name field, enter allowNextOnExhaustedResultSet.
4. In the Value field, type 1.
5. Change the type to java.lang.Integer.
6. Click OK.
7. Click New.
8. In the Name field, enter resultSetHoldability.
9. In the Value field, type 1.

Installing and configuring 6-251

10. Change the type to java.lang.Integer.
11. Click OK and save your changes.

Managing the DB2 transaction log size
When you upload an application that is at least 40 MB with IBM MobileFirst
Platform Application Center console, you might receive a transaction log full
error.

About this task

The following system output is an example of the transaction log full error
code.

DB2 SQL Error: SQLCODE=-964, SQLSTATE=57011

The content of each application is stored in the Application Center database.

The active log files are defined in number by the LOGPRIMARY and LOGSECOND
database configuration parameters, and in size by the LOGFILSIZ database
configuration parameter. A single transaction cannot use more log space than
LOGFILSZ * (LOGPRIMARY + LOGSECOND) * 4096 KB.

The DB2 GET DATABASE CONFIGURATION command includes information about the log
file size, and the number of primary and secondary log files.

Depending on the largest size of the MobileFirst application that is deployed, you
might need to increase the DB2 log space.

Procedure

Using the DB2 update db cfg command, increase the LOGSECOND parameter. Space is
not allocated when the database is activated. Instead, the space is allocated only as
needed.

Defining the endpoint of the application resources
When you add a mobile application from the Application Center console, the
server-side component creates Uniform Resource Identifiers (URI) for the
application resources (package and icons). The mobile client uses these URI to
manage the applications on your device.

Purpose

To manage the applications on your device, the Application Center console must
be able to locate the Application Center REST services and to generate the required
number of URI that enable the mobile client to find the Application Center REST
services.

By default, the URI protocol, host name, and port are the same as those defined in
the web application server used to access the Application Center console; the
context root of the Application Center REST services is applicationcenter. When
the context root of the Application Center REST services is changed or when the
internal URI of the web application server is different from the external URI that
can be used by the mobile client, the externally accessible endpoint (protocol, host
name, and port) of the application resources must be defined by configuring the
web application server. (Reasons for separating internal and external URI could be,
for example, a firewall or a secured reverse proxy that uses HTTP redirection.)

6-252 IBM MobileFirst Platform Foundation V8.0.0

The following figure shows a configuration with a secured reverse proxy that hides
the internal address (192.168...). The mobile client must use the external address
(appcntr.net).

Table 6-49. The endpoint properties

Property name Purpose Example

ibm.appcenter.services.endpoint This property enables the Application
Center console to locate the Application
Center REST services. The value of this
property must be specified as the external
address and context root of the
applicationcenter.war web application.
You can use the asterisk (*) character as
wildcard to specify that the Application
Center REST services use the same value
as the Application Center console. For
example: *://*:*/appcenter means use
the same protocol, host, and port as the
Application Center console, but use
appcenter as context root.

This property must be specified for the
Application Center console application.

https://appcntr.net:443/
applicationcenter

ibm.appcenter.proxy.protocol This property specifies the protocol
required for external applications to
connect to the Application Center.

https

ibm.appcenter.proxy.host This property specifies the host name
required for external applications to
connect to the Application Center.

appcntr.net

ibm.appcenter.proxy.port This property specifies the port required
for external applications to connect to the
Application Center.

443

See “JNDI properties for Application Center” on page 6-261 for a complete list of
endpoint properties that you can set.

Configuring the endpoint of application resources (full profile):

For the WebSphere Application Server full profile, configure the endpoint of the
application resources in the environment entries of the Application Center services
and the Application Center console applications. The procedure differs depending
on whether you deployed WAR files or an EAR file.

If you deployed WAR files:

Figure 6-16. Configuration with secured reverse proxy

Installing and configuring 6-253

About this task

Follow this procedure when you must change the URI protocol, host name, and
port used by the mobile client to manage the applications on your device. Since
IBM Worklight V6.0, you use JNDI environment entries.

For a complete list of JNDI properties, see “JNDI properties for Application
Center” on page 6-261.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Applications > Application Types > WebSphere enterprise

applications.
3. Click IBM Application Center Services.
4. In the Web Module Properties section, select Environment entries for Web

modules.
5. Assign the appropriate values for the following environment entries:

a. For ibm.appcenter.proxy.host, assign the host name.
b. For ibm.appcenter.proxy.port, assign the port number.
c. For ibm.appcenter.proxy.protocol, assign the external protocol.
d. Click OK and save the configuration.

6. Select Applications > Application Types > WebSphere enterprise
applications.

7. Click IBM Application Center Console.
8. In the Web Module Properties section, select Environment entries for Web

modules.
9. For ibm.appcenter.services.endpoint, assign the full URI of the Application

Center REST services (the URI of the applicationcenter.war file).
v In a scenario with a firewall or a secured reverse proxy, this URI must be

the external URI and not the internal URI inside the local LAN.
v You can use the asterisk (*) character as wildcard to specify that the

Application Center REST services use the same value as the Application
Center console.

For example: *://*:*/appcenter means use the same protocol, host, and port
as the Application Center console, but use appcenter as the context root.

10. Click OK and save the configuration.

If you deployed an EAR file:
Procedure

1. Log in to the WebSphere Application Server console.
2. Select Applications > Application Types > WebSphere enterprise applications.
3. Click AppCenterEAR.
4. In the Web Module Properties section, select Environment entries for Web

modules.
5. Assign the appropriate values for the following environment entries:

a. For ibm.appcenter.proxy.host, assign the host name.
b. For ibm.appcenter.proxy.port, assign the port number.
c. For ibm.appcenter.proxy.protocol, assign the external protocol.

6-254 IBM MobileFirst Platform Foundation V8.0.0

6. For ibm.appcenter.services.endpoint, assign the full URI of the Application
Center REST services (the URI of the applicationcenter.war file).
v In a scenario with a firewall or a secured reverse proxy, this URI must be the

external URI and not the internal URI inside the local LAN.
v You can use the asterisk (*) character as wildcard to specify that the

Application Center REST services use the same value as the Application
Center console.

For example: *://*:*/appcenter means use the same protocol, host, and port
as the Application Center console, but use appcenter as the context root.

7. Click OK and save the configuration.

Configuring the endpoint of the application resources (Liberty profile):

For the Liberty profile, configure the endpoint of the application resources through
the JNDI environment.

Purpose

Since IBM Worklight V6.0, follow this procedure when you must change the URI
protocol, host name, and port used by the Application Center client to manage the
applications on your device.

Properties

Edit the server.xml file. To be able to define JNDI entries, the <feature> element
must be defined correctly in the server.xml file:
<feature>jndi-1.0</feature>

Add an entry for each property in the <server> section of the server.xml file. This
entry should have the following syntax:
<jndiEntry jndiName="JNDI_property_name" value="property_value"/>

Where:

JNDI_property_name is the name of the property that you are adding.

property_value is the value of the property that you are adding.

Table 6-50. Properties in the server.xml file for configuring the endpoint of the application
resources

Property Description

ibm.appcenter.services.endpoint The URI of the Application Center REST
services. In a scenario with a firewall or a
secured reverse proxy, this URI must be the
external URI and not the internal URI inside
the local LAN.

ibm.appcenter.proxy.protocol The protocol of the application resources
URI. This property is optional. It is only
needed if the protocol of the external and of
the internal URI are different.

ibm.appcenter.proxy.host The host name of the application resources
URI.

Installing and configuring 6-255

Table 6-50. Properties in the server.xml file for configuring the endpoint of the application
resources (continued)

Property Description

ibm.appcenter.proxy.port The port of the application resources URI.
This property is optional. It is only needed if
the protocol of the external and of the
internal URI are different.

For a complete list of LAPD properties that you can set, see “JNDI properties for
Application Center” on page 6-261.

Example of setting properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file required
for configuring the endpoint of the application resources.
<jndiEntry jndiName="ibm.appcenter.services.endpoint" value=" https://appcntr.net:443/applicationcenter" />
<jndiEntry jndiName="ibm.appcenter.proxy.protocol" value="https" />
<jndiEntry jndiName="ibm.appcenter.proxy.host" value="appcntr.net" />
<jndiEntry jndiName="ibm.appcenter.proxy.port" value=" 443"/>

You can use the asterisk (*) character as wildcard to specify that the Application
Center REST services use the same value as the Application Center console. For
example: *://*:*/appcenter means use the same protocol, host, and port as the
Application Center console, but use appcenter as context root.

Configuring the endpoint of the application resources (Apache Tomcat):

For the Apache Tomcat server, configure the endpoint of the application resources
in the server.xml file.

Purpose

Since IBM Worklight V6.0, follow this procedure when you must change the URI
protocol, host name, and port used by the Application Center client to manage the
applications on your device.

Properties

Edit the server.xml file in the conf directory of your Apache Tomcat installation.

Add an entry for each property in the <context> section of the corresponding
application. This entry should have the following syntax:
<Environment name="JNDI_property_name" value="property_value" type="property_type" override="false"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

property_type is the type of the property you are adding.

6-256 IBM MobileFirst Platform Foundation V8.0.0

Table 6-51. Properties in the server.xml file for configuring the endpoint of the application resources

Property Type Description

ibm.appcenter.services.endpoint java.lang.String The URI of the Application Center REST
services (applicationcenter.war). In a
scenario with a firewall or a secured
reverse proxy, this URI must be the
external URI and not the internal URI
inside the local LAN.

ibm.appcenter.proxy.protocol java.lang.String The protocol of the application resources
URI. This property is optional. It is only
needed if the protocol of the external and
of the internal URI are different.

ibm.appcenter.proxy.host java.lang.String The host name of the application
resources URI.

ibm.appcenter.proxy.port java.lang.Integer The port of the application resources URI.
This property is optional. It is only
needed if the protocol of the external and
of the internal URI are different.

For a complete list of JNDI properties that you can set, see “JNDI properties for
Application Center” on page 6-261.

Example of setting server.xml properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file required
for configuring the endpoint of the application resources.

In the <context> section of the Application Center console application:
<Environment name="ibm.appcenter.services.endpoint" value="https://appcntr.net:443/applicationcenter" type="java.lang.String" override="false"/>

You can use the asterisk (*) character as wildcard to specify that the Application
Center REST services use the same value as the Application Center console. For
example: *://*:*/appcenter means use the same protocol, host, and port as the
Application Center console, but use appcenter as context root.

In the <context> section of the Application Center services application:
<Environment name="ibm.appcenter.services.endpoint" value="https://appcntr.net:443/applicationcenter" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.proxy.protocol" value="https" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.proxy.host" value="appcntr.net" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.proxy.port" value="443" type="java.lang.Integer" override="false"/>

Configuring Secure Sockets Layer (SSL)
Learn about configuring SSL for the Application Center on supported application
servers and the limitations of certificate verification on mobile operating systems.

You can configure the Application Center with SSL or without SSL, unless you
intend to install applications on iOS devices. For iOS applications, you must
configure the Application Center server with SSL.

SSL transmits data over the network in a secured channel. You must purchase an
official SSL certificate from an SSL certificate authority. The SSL certificate must be
compatible with Android and iOS. Self-signed certificates do not work with the
Application Center.

Installing and configuring 6-257

When the client accesses the server through SSL, the client verifies the server
through the SSL certificate. If the server address matches the address that is filed in
the SSL certificate, the client accepts the connection. For the verification to be
successful, the client must know the root certificate of the certificate authority.
Many root certificates are preinstalled on Android and iOS devices. The exact list
of pre-installed root certificates varies between versions of mobile operating
systems.

For information about the mobile operating system versions that support its
certificates, consult the SSL certificate authority.

If the SSL certificate verification fails, a normal web browser requests confirmation
to contact an untrusted site. The same behavior occurs when you use a self-signed
certificate that was not purchased from a certificate authority. When mobile
applications are installed, this control is not performed by a normal web browser,
but by operating system calls.

Some versions of Android, iOS, and Windows Phone operating systems do not
support this confirmation dialog in system calls. This limitation is a reason to
avoid self-signed certificates or SSL certificates that are not suited to mobile
operating systems. On Android, iOS, and Windows Phone operating systems, you
can install a self-signed CA certificate on the device to enable the device to handle
system calls regarding this self-signed certificate. This practice is not appropriate
for Application Center in a production environment, but it can be suitable during
the testing period. For details, see “Managing and installing self-signed CA
certificates in an Application Center test environment” on page 6-260.

Configuring SSL for WebSphere Application Server full profile:

Request a Secure Sockets Layer (SSL) certificate and process the received
documents to import them into the keystore.

About this task

This procedure indicates how to request an SSL certificate and import it and the
chain certificate into your keystore.

Procedure

1. Create a request to a certificate authority; in the WebSphere administrative
console, select Security > SSL certificate and key management > Key stores
and certificates > keystore > Personal certificate requests > New.
Where keystore identifies your keystore.
The request is sent to the certificate authority.

2. When you receive the SSL certificate, import it and the corresponding chain
certificate into your keystore by following the instructions provided by the
certificate authority. In the WebSphere administrative console, you can find the
corresponding option in Security > SSL certificate and key management >
Manage endpoint security configurations > node SSL settings > Key stores
and certificates > keystore > Personal certificates > certificate > Receive a
certificate from a certificate authority.
Where:
v node SSL settings shows the SSL settings of the nodes in your configuration.
v keystore identifies your keystore.
v certificate identifies the certificate that you received.

6-258 IBM MobileFirst Platform Foundation V8.0.0

3. Create an SSL configuration. See the instructions in the user documentation that
corresponds to the version of the WebSphere Application Server full profile that
supports your applications.
You can find configuration details in the WebSphere administrative console at
Security > SSL certificate and key management > Manage endpoint security
configurations > SSL Configurations.

Configuring SSL for Liberty profile:

Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
server.xml file to configure SSL on Liberty profile.

About this task

Follow the steps in this procedure to configure SSL on Liberty profile.

Procedure

1. Create a keystore for your web server; use the securityUtility with the
createSSLCertificate option. See Enabling SSL communication for the Liberty
profile for more information.

2. Import the SSL certificate and the corresponding chain certificate into your
keystore by following the instructions provided by the certificate authority.

3. Enable the ssl-1.0 Liberty feature in the server.xml file.
<featureManager>

<feature>ssl-1.0</feature>
</featureManager>

4. Add the keystore service object entry to the server.xml file. The keyStore
element is called defaultKeyStore and contains the keystore password. For
example:
<keyStore id="defaultKeyStore" location="/path/to/myKeyStore.p12"

password="myPassword" type="PKCS12"/>

5. Make sure that the value of the httpEndpoint element in the server.xml file
defines the httpsPort attribute. For example:
<httpEndpoint id="defaultHttpEndpoint” host="*" httpPort="9080” httpsPort="9443" >

6. Restart the web server. Now you can access the web server by
https://myserver:9443/...

Configuring SSL for Apache Tomcat:

Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
conf/server.xml file to define a connector for SSL on Apache Tomcat.

About this task

Follow the steps in this procedure to configure SSL on Apache Tomcat. See SSL
Configuration HOW-TO for more details and examples of configuring SSL for
Apache Tomcat.

Procedure

1. Create a keystore for your web server. You can use the Java keytool command
to create a keystore.
keytool -genkey -alias tomcat -keyalg RSA -keystore /path/to/keystore.jks

2. Import the SSL certificate and the corresponding chain certificate into your
keystore by following the instructions provided by the certificate authority.

Installing and configuring 6-259

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

3. Edit the conf/server.xml file to define a connector to use SSL. This connector
must point to your keystore.
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"

maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="/path/to/keystore.jks"
keystorePass="mypassword" />

4. Restart the web server. Now you can access the web server by
https://myserver:8443/...

Managing and installing self-signed CA certificates in an Application Center test
environment:

Use self-signed certificate authority (CA) certificates in test environments to install
applications with Application Center on a mobile device from a secured server.

Uploading or deleting a certificate:
Before you begin

When you install the Application Center mobile client from OTA (the bootstrap
page), the device user must upload and install the self-signed CA file before the
Application Center mobile client is installed.

About this task

When you use Application Center for a test installation, the administrator might
not have a real Secure Sockets Layer (SSL) certificate available. You might want to
use a self-signed CA certificate. Such certificates work if they get installed on the
device as root certificate.

As an administrator, you can easily distribute self-signed CA certificates to devices.

The following procedure focuses mostly on the iOS and Android environments.
Support for X.509 certificates comes from the individual mobile platforms, not from
IBM MobileFirst Platform Foundation. For more information about specific
requirements for X.509 certificates, see the documentation of each mobile platform.

Procedure

Managing self-signed certificates: in your role of administrator of Application
Center, you can access the list of registered self-signed CA certificates to upload or
delete certificates.
1. To display Application Center settings, click the gear icon .
2. To display the list of registered certificates, select Self Signed Certificates.
3. Upload or delete a certificate.
v To upload a self-signed CA certificate, in the Application Center console,

click Upload a certificate and select a certificate file.

Note: The certificate file must be in PEM file format. Typical file name
suffixes for this type of file are .pem, .key, .cer, .cert. The certificate must
be a self-signed one, that is, the values of the Issuer and Subject fields must
be the same. And the certificate must be a CA certificate, that is, it must have
the X509 extension named BasicConstraint set to CA:TRUE.

v To delete a certificate, click the trash can icon on the right of the certificate
file name in the list.

6-260 IBM MobileFirst Platform Foundation V8.0.0

Installing a self-signed CA certificate on a device:
About this task

Registered self-signed CA certificates are available through the bootstrap page at
http://hostname:portnumber/appcenterconsole/installers.html

Where:
v hostname is the name of the server that hosts the Application Center console.
v portnumber is the corresponding port number.

Procedure

1. Click the SSL Certificates tab.
2. To display the details of a certificate, select the appropriate registered

certificate.
3. To download and install the certificate on the device, click Install.

JNDI properties for Application Center
You can configure some JNDI properties for Application Center.

Table 6-52. List of the JNDI properties for Application Center.

Property Description

appcenter.database.type The database type, which is required only when the
database is not specified in appcenter.jndi.name.

appcenter.jndi.name The JNDI name of the database. This parameter is the
normal mechanism to specify the database. The default value
is java:comp/env/jdbc/AppCenterDS.

appcenter.openjpa.ConnectionDriverName The fully qualified class name of the database connection
driver class. This property is needed only when the database
is not specified in appcenter.jndi.name.

appcenter.openjpa.ConnectionPassword The password for the database connection. Set this property
only when the database is not specified in
appcenter.jndi.name.

appcenter.openjpa.ConnectionURL The URL for the database connection driver class. Set this
property only when the database is not specified in
appcenter.jndi.name.

appcenter.openjpa.ConnectionUserName The user name or the database connection. Set this property
only when the database is not specified in
appcenter.jndi.name.

ibm.appcenter.apns.p12.certificate.
isDevelopmentCertificate

Set this property to true to specify whether the certificate
that enables Application Center to send push notifications
about updates of iOS applications is a development
certificate. Set the property to false if it is not a
development certificate. See “Configuring the Application
Center server for connection to Apple Push Notification
Services” on page 13-16.

ibm.appcenter.apns.p12.certificate.location The path to the file of the development certificate that
enables Application Center to send push notifications about
updates of iOS applications. For example,
/Users/someUser/someDirectory/apache-tomcat/conf/
AppCenter_apns_dev_cert.p12. See “Configuring the
Application Center server for connection to Apple Push
Notification Services” on page 13-16.

Installing and configuring 6-261

Table 6-52. List of the JNDI properties for Application Center (continued).

Property Description

ibm.appcenter.apns.p12.certificate.password The password of the certificate that enables Application
Center to send push notifications about updates of iOS
applications is a development certificate. See “Configuring
the Application Center server for connection to Apple Push
Notification Services” on page 13-16.

ibm.appcenter.forceUpgradeDBTo60 The database design was changed starting from IBM
Worklight version 6.0. The database is automatically updated
when the Application Center web application starts. If you
want to repeat this update, you can set this parameter to
true and start the web application again. Later you can reset
this parameter to false.

ibm.appcenter.gcm.signature.googleapikey The Google API key that enables Application Center to send
push notifications about updates for Android applications.
For example, AIxaScCHg0VSGdgfOZKtzDJ44-oi0muUasMZvAs.
See “Configuring the Application Center server for
connection to Google Cloud Messaging” on page 13-14.

ibm.appcenter.ios.plist.onetimeurl Specifies whether URLs stored in iOS plist manifests use the
one-time URL mechanism without credentials. If you set this
property to true, the security level is medium, because
one-time URLs are generated with a cryptographic
mechanism so that nobody can guess the URL but do not
require the user to log in. Setting this property to false
provides maximal security, because the user is then required
to log in for each URL. However, requesting the user to log
in multiple times when you install an iOS application can
degrade the user experience. See “Installing the client on an
iOS mobile device” on page 13-54.

ibm.appcenter.ldap.active Specifies whether Application Center is configured for
LDAP. Set this property to true to enable LDAP or to false
to disable LDAP. See “Managing users with LDAP” on page
6-237.

ibm.appcenter.ldap.cache.expiration.seconds The Application Center maintains a cache of LDAP data and
the changes become visible only after the cache expires.
Specify the number of seconds during which an entry in the
LDAP cache is valid. Set this property to a value greater
than 3600 (1 hour) to reduce the amount of LDAP requests.
If no value is entered, the default value is 86400, which is
equal to 24 hours.

If you need to clear the cache of LDAP data manually, enter
this command:

acdeploytool.sh -clearLdapCache -s serverurl -c context
-u user -p password

See Using the stand-alone tool to clear the LDAP cache.

ibm.appcenter.ldap.connectionURL The URL to access the LDAP server when no Virtual
Member Manager (VMM) is used. See “Configuring LDAP
ACL management (Liberty profile)” on page 6-243 and
“Configuring LDAP ACL management (Apache Tomcat)” on
page 6-249.

6-262 IBM MobileFirst Platform Foundation V8.0.0

Table 6-52. List of the JNDI properties for Application Center (continued).

Property Description

ibm.appcenter.ldap.federated.active Specifies whether Application Center is configured for LDAP
with federated repositories. Since WebSphere Application
Server Liberty profile V8.5.5., set this property to true to
enable use of the federated registry. Set this property to
false to disable use of the federated registry, which is the
default setting. See “Managing users with LDAP” on page
6-237.

ibm.appcenter.ldap.group.base The search base to find groups when you use LDAP without
Virtual Member Manager (VMM). See “Configuring LDAP
ACL management (Liberty profile)” on page 6-243 and
“Configuring LDAP ACL management (Apache Tomcat)” on
page 6-249.

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the placeholder for the
group attribute.

This property is only required when LDAP users and groups
are defined in the same subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.group.name The group name attribute when you use LDAP without
Virtual Member Manager (VMM). See “Configuring LDAP
ACL management (Liberty profile)” on page 6-243 and
“Configuring LDAP ACL management (Apache Tomcat)” on
page 6-249.

ibm.appcenter.ldap.group.nesting Specifies whether the LDAP contains nested groups (that is,
groups in groups) when you use LDAP without Virtual
Member Manager (VMM). Setting this property to false
speeds up LDAP access because the groups are not searched
recursively. See “Configuring LDAP ACL management
(Liberty profile)” on page 6-243 and “Configuring LDAP
ACL management (Apache Tomcat)” on page 6-249.

ibm.appcenter.ldap.group.uniquemember Specifies the members of a group when you use LDAP
without Virtual Member Manager (VMM). This property is
the inverse of ibm.appcenter.ldap.user.groupmembership.
See “Configuring LDAP ACL management (Liberty profile)”
on page 6-243 and “Configuring LDAP ACL management
(Apache Tomcat)” on page 6-249.

ibm.appcenter.ldap.referral Specifies whether referrals are supported by the JNDI API. If
no value is specified, the JNDI API does not handle LDAP
referrals. Here are the possible values:

v ignore: Ignores referrals that are found in the LDAP
server.

v follow: Automatically follows any referrals that are found
in the LDAP server.

v throw: Causes an exception to occur for each referral
found in the LDAP server.

ibm.appcenter.ldap.security.binddn The distinguished name of the user that is allowed to search
the LDAP directory. Use this property only if security
binding is required.

Installing and configuring 6-263

Table 6-52. List of the JNDI properties for Application Center (continued).

Property Description

ibm.appcenter.ldap.security.bindpwd The password of the user that is permitted to search the
LDAP directory. Use this property only if security binding is
required.

The password can be encoded with the Liberty profile
securityUtility tool. Run the tool and then set the value of
this property to the encoded password that is generated by
the tool.

Edit the Liberty profile server.xml file to check whether the
classloader is enabled to load the JAR file that decodes the
password.See “Configuring LDAP ACL management
(Apache Tomcat)” on page 6-249.

ibm.appcenter.ldap.security.sasl Specifies the security authentication mechanism when the
LDAP external SASL authentication mechanism is required
to bind to the LDAP server. The value depends on the LDAP
server and it is typically set to EXTERNAL. When this property
is set, security authentication is required to connect to LDAP
without Virtual Member Manager (VMM). See “Configuring
LDAP ACL management (Liberty profile)” on page 6-243
and “Configuring LDAP ACL management (Apache
Tomcat)” on page 6-249.

ibm.appcenter.ldap.user.base The search base to find users when you use LDAP without
Virtual Member Manager (VMM). See “Configuring LDAP
ACL management (Liberty profile)” on page 6-243 and
“Configuring LDAP ACL management (Apache Tomcat)” on
page 6-249.

ibm.appcenter.ldap.user.displayName The display name attribute, such as the user's real name,
when you use LDAP without Virtual Member Manager
(VMM). See “Configuring LDAP ACL management (Liberty
profile)” on page 6-243 and “Configuring LDAP ACL
management (Apache Tomcat)” on page 6-249.

ibm.appcenter.ldap.displayName.filter LDAP user search filter for the attribute of
ibm.appcenter.ldap.user.displayName. Use %v as the
placeholder for the display name attribute.

This property is required only when LDAP users and groups
are defined in the same subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of
ibm.appcenter.ldap.user.loginName. Use %v as the
placeholder for the login name attribute.

This property is required only when LDAP users and groups
are defined in the same subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same value.

ibm.appcenter.ldap.user.groupmembership Specifies the groups of a member when you use LDAP
without Virtual Member Manager (VMM). This property is
the inverse of ibm.appcenter.ldap.group.uniquemember. This
property is optional, but if it is specified, LDAP access is
faster. See “Configuring LDAP ACL management (Liberty
profile)” on page 6-243 and “Configuring LDAP ACL
management (Apache Tomcat)” on page 6-249.

6-264 IBM MobileFirst Platform Foundation V8.0.0

Table 6-52. List of the JNDI properties for Application Center (continued).

Property Description

ibm.appcenter.ldap.user.loginName The login name attribute when you use LDAP without
Virtual Member Manager (VMM). See “Configuring LDAP
ACL management (Liberty profile)” on page 6-243 and
“Configuring LDAP ACL management (Apache Tomcat)” on
page 6-249.

ibm.appcenter.ldap.vmm.active Set this property to true to specify that LDAP is done
through Virtual Member Manager (VMM), or to false
otherwise. See “Configuring LDAP ACL management for
WebSphere Application Server V8.x” on page 6-239.

ibm.appcenter.ldap.vmm.adminpwd The password when LDAP is done through Virtual Member
Manager (VMM). See “Configuring LDAP ACL management
for WebSphere Application Server V8.x” on page 6-239.

ibm.appcenter.ldap.vmm.adminuser The user when LDAP is done through Virtual Member
Manager (VMM). See “Configuring LDAP ACL management
for WebSphere Application Server V8.x” on page 6-239.

ibm.appcenter.logging.formatjson This property has an effect only when
ibm.appcenter.logging.tosystemerror is set to true. If this
property is enabled, it formats JSON responses in logging
messages that are directed to System.Error. Setting this
property is helpful when you debug the server.

ibm.appcenter.logging.tosystemerror Specifies whether all logging messages are also directed to
System.Error. Setting this property is helpful when you
debug the server.

ibm.appcenter.openjpa.Log This property is passed to OpenJPA and enables JPA logging.
For details, see the Apache OpenJPA User's Guide.

ibm.appcenter.proxy.host If the Application Center server is behind a firewall or
reverse proxy, this property specifies the address of the host.
Setting this property allows a user outside the firewall to
reach the Application Center server. Typically, this property
is the address of the proxy. See “Defining the endpoint of
the application resources” on page 6-252.

ibm.appcenter.proxy.port If the Application Center server is behind a firewall or
reverse proxy, this property specifies the address of the host.
Setting this property allows a user outside the firewall to
reach the Application Center server. Typically, this property
is the port of the proxy, for example 443. It is needed only if
the protocol of the external URI and the protocol of the
internal URI are different. See “Defining the endpoint of the
application resources” on page 6-252.

ibm.appcenter.proxy.protocol If the Application Center server is behind a firewall or
reverse proxy, this property specifies the protocol (http or
https). Setting this property allows a user outside the
firewall to reach the Application Center server. Typically, this
property is set to the protocol of the proxy. For example,
appcntr.net. This property is needed only if the protocol of
the external and of the internal URI are different. See
“Defining the endpoint of the application resources” on page
6-252.

ibm.appcenter.proxy.scheme This property is just an alternative name for
ibm.appcenter.proxy.protocol.

Installing and configuring 6-265

http://openjpa.apache.org/builds/1.2.2/apache-openjpa-1.2.2/docs/manual/manual.html

Table 6-52. List of the JNDI properties for Application Center (continued).

Property Description

ibm.appcenter.push.schedule.period.amount Specifies the time schedule when you send push
notifications of application updates. When applications are
frequently changed on the server, set this property to send
batches of notifications. For example, send all notifications
that happened within the past hour, instead of sending each
individual notification.

ibm.appcenter.push.schedule.period.unit Specifies the unit for the time schedule when you send push
notifications of application updates.

ibm.appcenter.services.endpoint Enables the Application Center console to locate the
Application Center REST services. Specify the external
address and context root of the applicationcenter.war web
application. In a scenario with a firewall or a secured reverse
proxy, this URI must be the external URI and not the
internal URI inside the local LAN. For example,
https://appcntr.net:443/applicationcenter. See “Defining
the endpoint of the application resources” on page 6-252.

ibm.appcenter.services.iconCacheMaxAge Specifies the number of seconds during which cached icons
remain valid for the Application Center console and the
client. Application icons rarely change, therefore they are
cached. Specify values larger than 600 (10 min) to reduce the
amount of data transfer for the icons.

mfp.jndi.configuration Optional. If the JNDI configuration is injected into the WAR
files or provided as a shared library, the value of this
property is the name of the JNDI configuration. You can also
specify this value as a system property.

mfp.jndi.file Optional. If the JNDI configuration is stored as an external
file, the value of this property is the path of a file that
describes the JNDI configuration. You can also specify this
value as a system property.

Configuring WebSphere Application Server to support
applications in public app stores
Configure WebSphere Application Server full profile and Liberty profile before
access to public app stores through application links, because of the use of SSL
connections.

The constraint imposed by the use of SSL connections requires the root certificates
of public app stores to exist in the WebSphere truststore before you can use
application links to access these public stores. The configuration requirement
applies to both WebSphere Application Server full profile and Liberty profile.

The root certificate of Google play must be imported into the WebSphere truststore
before you can use application links to Google play.

The root certificate of Apple iTunes must be imported into the WebSphere
truststore before you can use application links to iTunes.

To use application links to Google play, see “Configuring WebSphere Application
Server to support applications in Google play” on page 6-267.

To use application links to Apple iTunes, see “Configuring WebSphere Application
Server to support applications in Apple iTunes” on page 6-267.

6-266 IBM MobileFirst Platform Foundation V8.0.0

Configuring WebSphere Application Server to support applications in Google
play:

Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Google play.

About this task

Follow this procedure to import the root certificate of Google play into the
WebSphere truststore. You must import this certificate before the Application
Center can support links to applications stored in Google Play.

Procedure

1. Log in to the WebSphere Application Server console and navigate to Security >
SSL certificate and key management > Key stores and certificates >
NodeDefaultTrustStore > Signer certificates.

2. Click Retrieve from port.
3. In the Host field, enter play.google.com.
4. In the Port field, enter 443.
5. In the Alias field, enter play.google.com.
6. Click Retrieve signer information.
7. Click OK and save the configuration.

Configuring WebSphere Application Server to support applications in Apple
iTunes:

Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Apple iTunes.

About this task

Follow this procedure to import the root certificate of Apple iTunes into the
WebSphere truststore. You must import this certificate before the Application
Center can support links to applications stored in iTunes.

Procedure

1. Log in to the WebSphere Application Server console and navigate to Security >
SSL certificate and key management > Key stores and certificates >
NodeDefaultTrustStore > Signer certificates.

2. Click Retrieve from port.
3. In the Host field, enter itunes.apple.com.
4. In the Port field, enter 443.
5. In the Alias field, enter itunes.apple.com.
6. Click Retrieve signer information.
7. Click OK and save the configuration.

Configuring Liberty profile when IBM JDK is used:

Configure Liberty profile to use default JSSE socket factories instead of SSL socket
factories of WebSphere Application Server when IBM JDK is used.

Installing and configuring 6-267

Purpose

The purpose is to configure the IBM JDK SSL factories to be compatible with
Liberty profile. This configuration is required only when IBM JDK is used. The
configuration does not apply for use of Oracle JDK. By default, IBM JDK uses the
SSL socket factories of WebSphere Application Server. These factories are not
supported by Liberty profile.

Exception when WebSphere Application Server SSL socket factories are used

If you use the IBM JDK of WebSphere Application Server, this exception could
occur because this JDK uses SSL socket factories that are not supported by the
Liberty profile. In this case, follow the requirements documented in
Troubleshooting tips.

java.net.SocketException: java.lang.ClassNotFoundException: Cannot find the specified class com.ibm.websphere.ssl.protocol.SSLSocketFactory
at javax.net.ssl.DefaultSSLSocketFactory.a(SSLSocketFactory.java:11)
at javax.net.ssl.DefaultSSLSocketFactory.createSocket(SSLSocketFactory.java:6)
at com.ibm.net.ssl.www2.protocol.https.c.afterConnect(c.java:161)
at com.ibm.net.ssl.www2.protocol.https.d.connect(d.java:36)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1184)
at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:390)
at com.ibm.net.ssl.www2.protocol.https.b.getResponseCode(b.java:75)
at com.ibm.ws.jmx.connector.client.rest.internal.RESTMBeanServerConnection.loadJMXServerInfo(RESTMBeanServerConnection.java:142)
at com.ibm.ws.jmx.connector.client.rest.internal.RESTMBeanServerConnection.<init>(RESTMBeanServerConnection.java:114)
at com.ibm.ws.jmx.connector.client.rest.internal.Connector.connect(Connector.java:315)
at com.ibm.ws.jmx.connector.client.rest.internal.Connector.connect(Connector.java:103)

Installation reference
Reference information about Ant tasks and configuration sample files for the
installation of IBM MobileFirst Platform Server, IBM MobileFirst Platform
Application Center, and IBM MobileFirst Analytics.

Ant configuredatabase task reference
Reference information for the configuredatabase Ant task. This reference
information is for relational databases only. It does not apply to Cloudant.

Overview

The configuredatabase Ant task creates the relational databases that are used by
MobileFirst Server administration service, MobileFirst Server live update service,
MobileFirst Server push service, MobileFirst runtime, and the Application Center
services. This Ant task configures a relational database through the following
actions:
v Checks whether the MobileFirst tables exist and creates them if necessary.
v If the tables exist for an older version of IBM MobileFirst Platform Foundation,

migrates them to the current version.
v If the tables exist for the current version of IBM MobileFirst Platform

Foundation, does nothing.

In addition, if one of the following conditions is met:
v The DBMS type is Derby.
v An inner element <dba> is present.
v The DBMS type is DB2, and the specified user has the permissions to create

databases.

Then, the task can have the following effects:
v Create the database if necessary (except for Oracle 12c, and Cloudant).

6-268 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_trouble.html

v Create a user, if necessary, and grants that user access rights to the database.

Note: The configuredatabase Ant task has not effect if you use it with Cloudant.

Attributes and elements for configuredatabase task

The configuredatabase task has the following attributes:

Table 6-53. Attributes for the configuredatabase Ant task

Attribute Description Required Default

kind The type of database:

In MobileFirst Server: MobileFirstRuntime,
MobileFirstConfig, MobileFirstAdmin, or push.

In Application Center: ApplicationCenter.

Yes None

includeConfigurationTables To specify whether to perform database
operations on both the live update service and
the administration service or on the
administration service only. The value is either
true or false.

No true

execute To specify whether to execute the
configuredatabase Ant task. The value is either
true or false.

No true

kind IBM MobileFirst Platform Foundation V8.0.0 supports four kinds of
database: MobileFirst runtime uses MobileFirstRuntime database.
MobileFirst Server administration service uses the MobileFirstAdmin
database. MobileFirst Server live update service uses the
MobileFirstConfig database. By default, it is created with
MobileFirstAdmin kind. MobileFirst Server push service uses the push
database.Application Center uses the ApplicationCenter database.

includeConfigurationTables

The includeConfigurationTables attribute can be used only when kind
attribute is MobileFirstAdmin. The valid value can be true or false. When
this attribute is set to true, the configuredatabase task performs database
operations on both the administration service database and the live update
service database in a single run. When this attribute is set to false, the
configuredatabase task performs database operations only on the
administration service database.

execute

The execute attribute enables or disables the execution of the
configuredatabase Ant task. The valid value can be true or false. When
this attribute is set to false, the configuredatabase task performs no
configuration or database operations.

The configuredatabase task supports the following elements:

Table 6-54. Inner elements for the configuredatabase Ant task

Element Description Count

<derby> The parameters for Derby. 0..1

<db2> The parameters for DB2. 0..1

<mysql> The parameters for MySQL. 0..1

Installing and configuring 6-269

Table 6-54. Inner elements for the configuredatabase Ant task (continued)

Element Description Count

<oracle> The parameters for Oracle. 0..1

<driverclasspath> The JDBC driver class path. 0..1

For each database type, you can use a <property> element to specify a JDBC
connection property for access to the database. The <property> element has the
following attributes:

Table 6-55. Attributes for the <property> element

Attribute Description Required Default

name The name of the
property.

Yes None

value The value for the
property.

Yes None

Apache Derby

The <derby> element has the following attributes:

Table 6-56. Attributes for the <derby> element

Attribute Description Required Default

database The database name. No MFPDATA, MFPADM, MFPCFG, MFPPUSH,
or APPCNTR, depending on kind.

datadir The directory that
contains the
databases.

Yes None

schema The schema name. No MFPDATA, MFPCFG, MFPADMINISTRATOR,
MFPPUSH, or APPCENTER, depending
on kind.

The <derby> element supports the following element:

Table 6-57. Inner element for the <derby> element

Element Description Count

<property> The JDBC connection
property.

0..∞

For the available properties, see Setting attributes for the database connection URL.

DB2

The <db2> element has the following attributes:

Table 6-58. Attributes for the <db2> element

Attribute Description Required Default

database The database name. No MFPDATA, MFPADM, MFPCFG,
MFPPUSH, or APPCNTR, depending
on kind.

6-270 IBM MobileFirst Platform Foundation V8.0.0

http://db.apache.org/derby/docs/10.11/ref/rrefattrib24612.html

Table 6-58. Attributes for the <db2> element (continued)

Attribute Description Required Default

server The host name of
the database server.

Yes None

port The port on the
database server.

No 50000

user The user name for
accessing databases.

Yes None

password The password for
accessing databases.

No Queried interactively

instance The name of the
DB2 instance.

No Depends on the server

schema The schema name. No Depends on the user

For more information about DB2 user accounts, see DB2 security model overview.

The <db2> element supports the following elements:

Table 6-59. Inner elements for the <db2> element

Element Description Count

<property> The JDBC connection
property.

0..∞

<dba> The database administrator
credentials.

0..1

For the available properties, see Properties for the IBM Data Server Driver for
JDBC and SQLJ.

The inner element <dba> specifies the credentials for the database administrators.
This element has the following attributes:

Table 6-60. Attributes for the <dba> element for DB2 databases

Attribute Description Required Default

user The user name for accessing database. Yes None

password The password or accessing database. No Queried interactively

The user that is specified in a <dba> element must have the SYSADM or SYSCTRL DB2
privilege. For more information, see Authorities overview.

The <driverclasspath> element must contain the JAR files for the DB2 JDBC
driver and for the associated license. You can retrieve those files in one of the
following ways:
v Download DB2 JDBC drivers from the DB2 JDBC Driver Versions page
v Or fetch the db2jcc4.jar file and its associated db2jcc_license_*.jar files from

the DB2_INSTALL_DIR/java directory on the DB2 server.

You cannot specify details of table allocations, such as the table space, by using the
Ant task. To control the table space, you must use the manual instructions in
section “DB2 database and user requirements” on page 6-65.

Installing and configuring 6-271

http://ibm.biz/knowctr#SSEPGG_10.1.0/com.ibm.db2.luw.admin.sec.doc/doc/c0021804.html
http://ibm.biz/knowctr#SSEPGG_10.1.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSEPGG_10.1.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSEPGG_10.1.0/com.ibm.db2.luw.admin.sec.doc/doc/c0055206.html
http://www.ibm.com/support/docview.wss?uid=swg21363866

MySQL

The element <mysql> has the following attributes:

Table 6-61. Attributes for the <mysql> element

Attribute Description Required Default

database The database name. No MFPDATA, MFPADM, MFPCFG,
MFPPUSH, or APPCNTR,
depending on kind.

server The host name of the database server. Yes None

port The port on the database server. No 3306

user The user name for accessing databases. Yes None

password The password for accessing databases. No Queried interactively

For more information about MySQL user accounts, see MySQL User Account
Management.

The <mysql> element supports the following elements:

Table 6-62. Inner elements for the <mysql> element

Element Description Count

<property> The JDBC connection
property.

0..∞

<dba> The database administrator
credentials.

0..1

<client> The host that is allowed to
access the database.

0..∞

For the available properties, see Driver/Datasource Class Names, URL Syntax and
Configuration Properties for Connector/J.

The inner element <dba> specifies the database administrator credentials. This
element has the following attributes:

Table 6-63. Attributes for the <dba> element for MySQL databases

Attribute Description Required Default

user The user name for accessing databases. Yes None

password The password for accessing databases. No Queried interactively

The user that is specified in a <dba> element must be a MySQL superuser account.
For more information, see Securing the Initial MySQL Accounts.

Each <client> inner element specifies a client computer or a wildcard for client
computers. These computers are allowed to connect to the database. This element
has the following attributes:

Table 6-64. Attribute for the <client> element for MySQL databases

Attribute Description Required Default

hostname The symbolic host name, IP address, or
template with % as a placeholder.

Yes None

For more information about the hostname syntax, see Specifying Account Names.

6-272 IBM MobileFirst Platform Foundation V8.0.0

http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/refman/5.5/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.5/en/account-names.html

The <driverclasspath> element must contain a MySQL Connector/J JAR file. You
can download that file from the Download Connector/J page.

Alternatively, you can use the <mysql> element with the following attributes:

Table 6-65. Alternative attributes for the <mysql> element

Attribute Description Required Default

url The database connection URL. Yes None

user The user name for accessing databases. Yes None

password The password for accessing databases. No Queried interactively

Note: If you specify the database with the alternative attributes, this database must
exist, the user account must exist, and the database must already be accessible to
the user. In this case, the configuredatabase task does not attempt to create the
database or the user, nor does it attempt to grant access to the user. The
configuredatabase task ensures only that the database has the required tables for
the current MobileFirst Server version. You do not have to specify the inner
elements <dba> or <client>.

Oracle

The element <oracle> has the following attributes:

Table 6-66. Attributes for the <oracle> element

Attribute Description Required Default

database The database name, or Oracle service
name.
Note: You must always use a service
name to connect to a PDB database.

No ORCL

server The host name of the database
server.

Yes None

port The port on the database server. No 1521

user The user name for accessing
databases. See the note under this
table.

Yes None

password The password for accessing
databases.

No Queried interactively

sysPassword The password for the user SYS. No Queried interactively if
the database does not
yet exist

systemPassword The password for the user SYSTEM. No Queried interactively if
the database or the user
does not exist yet

Note: For the user attribute, use preferably a user name in uppercase letters.
Oracle user names are generally in uppercase letters. Unlike other database tools,
the configuredatabase Ant task does not convert lowercase letters to uppercase
letters in the user name. If the configuredatabase Ant task fails to connect to your
database, try to enter the value for the user attribute in uppercase letters.

For more information about Oracle user accounts, see Overview of Authentication
Methods.

Installing and configuring 6-273

http://www.mysql.com/downloads/connector/j/
http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374

The <oracle> element supports the following elements:

Table 6-67. Inner elements for the <oracle> element

Element Description Count

<property> The JDBC connection
property.

0..∞

<dba> The database administrator
credentials.

0..1

For information about the available connection properties, see Class OracleDriver.

The inner element <dba> specifies the database administrator credentials. This
element has the following attributes:

Table 6-68. Attributes for the <dba> element for Oracle databases

Attribute Description Required Default

user The user name for accessing databases. Yes None

password The password for accessing databases. No Queried interactively

The <driverclasspath> element must contain an Oracle JDBC driver JAR file. You
can download Oracle JDBC drivers from JDBC, SQLJ, Oracle JPublisher and
Universal Connection Pool (UCP).

You cannot specify details of table allocation, such as the table space, by using the
Ant task. To control the table space, you can create the user account manually and
assign it a default table space before you run the Ant task. To control other details,
you must use the manual instructions in section “Oracle database and user
requirements” on page 6-65.

Alternatively, you can use the <oracle> element with the following attributes:

Table 6-69. Alternative attributes for the <oracle> element

Attribute Description Required Default

url The database connection URL. Yes None

user The user name for accessing databases. Yes None

password The password for accessing databases. No Queried interactively

Note: If you specify the database with the alternative attributes, this database must
exist, the user account must exist, and the database must already be accessible to
the user. In this case, the task does not attempt to create the database or the user,
nor does it attempt to grant access to the user. The configuredatabase task ensures
only that the database has the required tables for the current MobileFirst Server
version. You do not have to specify the inner element <dba>.

Ant tasks for installation of MobileFirst Operations Console,
MobileFirst Server artifacts, MobileFirst Server administration,
and live update services

The installmobilefirstadmin, updatemobilefirstadmin, and
uninstallmobilefirstadmin Ant tasks are provided for the installation of
MobileFirst Operations Console, the artifacts component, the administration
service, and the live update service.

6-274 IBM MobileFirst Platform Foundation V8.0.0

http://docs.oracle.com/cd/E11882_01/appdev.112/e13995/oracle/jdbc/OracleDriver.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Task effects

installmobilefirstadmin

The installmobilefirstadmin Ant task configures an application server to
run the WAR files of the administration and live update services as web
applications, and optionally, to install the MobileFirst Operations Console.
This task has the following effects:
v It declares the administration service web application in the specified

context root, by default /mfpadmin.
v It declares the live update service web application in a context root

derived from the specified context root of the administration service. By
default, /mfpadminconfig.

v For the relational databases, it declares data sources and on WebSphere
Application Server full profile, JDBC providers for the administration
services.

v It deploys the administration service and the live update service on the
application server.

v Optionally, it declaresMobileFirst Operations Console as a web
application in the specified context root, by default /mfpconsole. If the
MobileFirst Operations Console instance is specified, the Ant task
declares the appropriate JNDI environment entry to communicate with
the corresponding management service. For example,
<target name="adminstall">

<installmobilefirstadmin servicewar="${mfp.service.war.file}">
<console install="${mfp.admin.console.install}" warFile="${mfp.console.war.file}"/>

v Optionally, it declares the MobileFirst Server artifacts web application in
the specified context root /mfp-dev-artifacts when MobileFirst
Operations Console is installed.

v It configures the configuration properties for the administration service
by using JNDI environment entries. These JNDI environment entries also
give some additional information about the application server topology,
for example whether the topology is a stand-alone configuration, a
cluster, or a server farm.

v Optionally, it configures users that it maps to roles used by MobileFirst
Operations Console, and the administration and live update services
web applications.

v It configures the application server for use of JMX.
v Optionally, it configures the communication with the MobileFirst Server

push service.
v Optionally, it sets the MobileFirst JNDI environment entries to configure

the application server as a server farm member for the MobileFirst
Server administration part.

updatemobilefirstadmin

The updatemobilefirstadmin Ant task updates an already-configured
MobileFirst Server web application on an application server. This task has
the following effects:
v It updates the administration service WAR file. This file must have the

same base name as the corresponding WAR file that was previously
deployed.

v It updates the live update service WAR file. This file must have the same
base name as the corresponding WAR file that was previously deployed.

Installing and configuring 6-275

v It updates the MobileFirst Operations Console WAR file. This file must
have the same base name as the corresponding WAR file that was
previously deployed.

The task does not change the application server configuration, that is, the
web application configuration, data sources, JNDI environment entries,
user-to-role mappings, and JMX configuration.

uninstallmobilefirstadmin

The uninstallmobilefirstadmin Ant task undoes the effects of an earlier
run of installmobilefirstadmin. This task has the following effects:
v It removes the configuration of the administration service web

application with the specified context root. As a consequence, the task
also removes the settings that were added manually to that application.

v It removes the WAR files of the administration and live update services,
and MobileFirst Operations Console from the application server as an
option.

v For the relational DBMS, it removes the data sources and – on
WebSphere Application Server Full Profile – the JDBC providers for the
administration and live update services.

v For the relational DBMS, it removes the database drivers that were used
by the administration and live update services from the application
server.

v It removes the associated JNDI environment entries.
v On WebSphere Application Server Liberty and Apache Tomcat, it

removes the users configured by the installmobilefirstadmin
invocation.

v It removes the JMX configuration.

Attributes and elements

The installmobilefirstadmin, updatemobilefirstadmin, and
uninstallmobilefirstadmin Ant tasks have the following attributes:

Table 6-70. Attributes for the installmobilefirstadmin, updatemobilefirstadmin, and
uninstallmobilefirstadmin Ant tasks

Attribute Description RequiredDefault

contextroot The common prefix for URLs to the
administration service to get
information about MobileFirst
runtime environments, applications,
and adapters.

No /mfpadmin

id To distinguish different
deployments.

No Empty

environmentId To distinguish different MobileFirst
environments.

No Empty

servicewar The WAR file for the administration
service.

No The
mfp-admin-
service.war file is in
the same directory as
the
mfp-ant-deployer.jar
file.

6-276 IBM MobileFirst Platform Foundation V8.0.0

Table 6-70. Attributes for the installmobilefirstadmin, updatemobilefirstadmin, and
uninstallmobilefirstadmin Ant tasks (continued)

Attribute Description RequiredDefault

shortcutsDir The directory where to place
shortcuts.

No None

wasStartingWeight The start order for WebSphere
Application Server. Lower values
start first.

No 1

contextroot and id

The contextroot and id attributes distinguish different deployments of
MobileFirst Operations Console and the administration service.

In WebSphere Application Server Liberty profiles and in Tomcat
environments, the contextroot parameter is sufficient for this purpose. In
WebSphere Application Server Full profile environments, the id attribute is
used instead. Without this id attribute, two WAR files with the same
context roots might conflict and these files would not be deployed.

environmentId
Use the environmentId attribute to distinguish several environments,
consisting each of MobileFirst Server administration service and
MobileFirst runtime web applications, that must operate independently.
For example, with this option you can host a test environment, a
pre-production environment, and a production environment on the same
server or in the same WebSphere Application Server Network Deployment
cell. This environmentId attribute creates a suffix that is added to MBean
names that the administration service and the MobileFirst runtime projects
use when they communicate through Java Management Extensions (JMX).

servicewar
Use the servicewar attribute to specify a different directory for the
administration service WAR file. You can specify the name of this WAR file
with an absolute path or a relative path.

shortcutsDir
The shortcutsDir attribute specifies where to place shortcuts to the
MobileFirst Operations Console. If you set this attribute, you can add the
following files to that directory:
v mobilefirst-console.url - this file is a Windows shortcut. It opens the

MobileFirst Operations Console in a browser.
v mobilefirst-console.sh- this file is a UNIX shell script and opens the

MobileFirst Operations Console in a browser.
v mobilefirst-admin-service.url - this file is a Windows shortcut. It

opens in a browser and calls a REST service that returns a list of the
MobileFirst projects that can be managed in JSON format. For each listed
MobileFirst project, some details are also available about their artifacts,
such as the number of applications, the number of adapters, the number
of active devices, the number of decommissioned devices. The list also
indicates whether the MobileFirst project runtime is running or idle.

v mobilefirst-admin-service.sh - this file is a UNIX shell script that
provides the same output as the mobilefirst-admin-service.url file.

wasStartingWeight
Use the wasStartingWeight attribute to specify a value that is used in
WebSphere Application Server as a weight to ensure that a start order is

Installing and configuring 6-277

respected. As a result of the start order value, the administration service
web application is deployed and started before any other MobileFirst
runtime projects. If MobileFirst projects are deployed or started before the
web application, the JMX communication is not established and the
runtime cannot synchronize with the administration service database and
cannot handle server requests.

The installmobilefirstadmin, updatemobilefirstadmin, and
uninstallmobilefirstadmin Ant tasks support the following elements:

Table 6-71. Inner elements for the installmobilefirstadmin, updatemobilefirstadmin, and
uninstallmobilefirstadmin Ant tasks

Element Description Count

<applicationserver> The application server. 1

<configuration> The live update service. 1

<console> The administration console. 0..1

<database> The databases. 1

<jmx> To enable Java Management
Extensions.

1

<property> The properties. 0..∞

<push> The push service. 0..1

<user> The user to be mapped to a
security role.

0..∞

To specify a MobileFirst Operations Console

The <console> element collects information to customize the installation of the
MobileFirst Operations Console. This element has the following attributes:

Table 6-72. Attributes of the <console> element

Attribute Description Required Default

contextroot The URI of the
MobileFirst
Operations
Console.

No /mfpconsole

install To indicate
whether the
MobileFirst
Operations
Console must be
installed.

No Yes

warfile The console WAR
file.

No The mfp-admin-ui.war file is in the
same directory as
themfp-ant-deployer.jar file.

The <console> element supports the following element:

Table 6-73. Inner element for the <console> element

Element Description Count

<artifacts> The MobileFirst Server
artifacts.

0..1

6-278 IBM MobileFirst Platform Foundation V8.0.0

Table 6-73. Inner element for the <console> element (continued)

Element Description Count

<property> The properties. 0..∞

The <artifacts> element has the following attributes:

Table 6-74. Attributes for the <artifacts> element

Attribute Description Required Default value

install To indicate whether
the artifacts
component must be
installed.

No true

warFile The artifacts WAR
file.

No The
mfp-dev-
artifacts.war
file is in the
same directory
as the
mfp-ant-
deployer.jar
file

By using this element, you can define your own JNDI properties or override the
default value of the JNDI properties that are provided by the administration
service and the MobileFirst Operations Console WAR files.

The <property> element specifies a deployment property to be defined in the
application server. It has the following attributes:

Table 6-75. Attributes for the <property> element

Attribute Description Required Default value

name The name of the
property.

Yes None

value The value of the
property.

Yes None

By using this element, you can define your own JNDI properties or override the
default value of the JNDI properties that are provided by the administration
service and the MobileFirst Operations Console WAR files.

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server administration service” on page 6-174.

To specify an application server

Use the <applicationserver> element to define the parameters that depend on the
underlying application server. The <applicationserver> element supports the
following elements.

Installing and configuring 6-279

Table 6-76. Inner elements of the <applicationserver> element

Element Description Count

<websphereapplicationserver>
or <was>

The parameters for WebSphere Application
Server.

The <websphereapplicationserver> element (or
<was> in its short form) denotes a WebSphere
Application Server instance. WebSphere
Application Server full profile (Base, and Network
Deployment) are supported, so is WebSphere
Application Server Liberty Core and WebSphere
Application Server Liberty Network Deployment.

0..1

<tomcat> The parameters for Apache Tomcat. 0..1

The attributes and inner elements of these elements are described in Table 6-105 on
page 6-295 through Table 6-114 on page 6-298 of “Ant tasks for installation of
MobileFirst runtime environments” on page 6-293.

However, for the inner element of the <was> element for Liberty collective, see the
following table:

Table 6-77. Inner element of the <was> element for Liberty collective

Element Description Count

<collectiveController> A Liberty collective controller. 0..1

The <collectiveController> element has the following attributes:

Table 6-78. Attributes of the <collectiveController> element

Attribute Description Required Default value

serverName The name of the collective
controller.

Yes None

controllerAdminName The administrative user
name that is defined in the
collective controller. This is
the same user that is used to
join new members to the
collective.

Yes None

controllerAdminPassword The administrative user
password.

Yes None

createControllerAdmin To indicate whether the
administrative user must be
created in the basic registry
of the collective controller.
Possible values are true or
false.

No true

To specify the live update service configuration

Use the <configuration> element to define the parameters that depend on the live
update service. The <configuration> element has the following attributes.

6-280 IBM MobileFirst Platform Foundation V8.0.0

Table 6-79. Attributes of the <configuration> element

Attribute Description Required Default value

install To indicate whether the live
update service must be
installed.

Yes true

configAdminUser The administrator for the
live update service.

No. However, it is required for a
server farm topology.

If not defined, a
user is generated.

In a server farm
topology, the user
name must be the
same for all the
members of the
farm.

configAdminPassword The administrator password
for live update service user.

If a user is specified for
configAdminUser.

None.

In a server farm
topology, the
password must be
the same for all the
members of the
farm.

createConfigAdminUser To indicate whether to create
an admin user in the basic
registry of the application
server, if it is missing.

No true

warFile The live update service
WAR file.

No The
mfp-live-
update.war file is
in the same
directory as the
mfp-ant-
deployer.jar file.

The <configuration> element supports the following elements:

Table 6-80. Inner elements of the <configuration> element

Element Description Count

<user> The user for the live update service. 0..1

<property> The properties. 0..∞

The <user> element collects the parameters about a user to include in a certain
security role for an application.

Table 6-81. Attributes of the <user> element

Attribute Description Required Default value

role A valid security role
for the application.
Possible value:
configadmin.

Yes None

name The user name. Yes None

Installing and configuring 6-281

Table 6-81. Attributes of the <user> element (continued)

Attribute Description Required Default value

password The password if the
user needs to be
created.

No None

After you defined the users by using the <user> element, you can map them to
any of the following roles for authentication in MobileFirst Operations Console:
v configadmin

For more information about which authorizations are implied by the specific roles,
see “Configuring user authentication for MobileFirst Server administration” on
page 6-166.

Tip: If the users exist in an external LDAP directory, set only the role and name
attributes but do not define any passwords.

The <property> element specifies a deployment property to be defined in the
application server. It has the following attributes:

Table 6-82. Attributes for the <property> element

Attribute Description Required Default value

name The name of the
property.

Yes None

value The value of the
property.

Yes None

By using this element, you can define your own JNDI properties or override the
default value of the JNDI properties that are provided by the administration
service and the MobileFirst Operations Console WAR files.

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server administration service” on page 6-174.

To specify the push service configuration

Use the <push> element to define the parameters to configure the connection to the
push service. The <push> element has the following attribute.

Table 6-83. Attribute of the <push> element

Attribute Description Required Default value

configure To indicate whether to
configure the
connection to the
push service.

No false

The <push> element supports the following element:

Table 6-84. Inner element of the <push> element

Element Description Count

<authorization> The configuration of the authorization
server for the communication with the
push service. Mandatory if the
configure attribute is set to true.

1

6-282 IBM MobileFirst Platform Foundation V8.0.0

The <authorization> element collects information to configure the authorization
server for the authentication communication with other MobileFirst Server
components. This element has the following attributes:

Table 6-85. Attributes of the <authorization> element

Attribute Description Required Default value

auto To indicate whether
the authorization
server URL is
computed. The
possible values are
true or false.

Required on a WebSphere
Application Server Network
Deployment cluster or node.

true

authorizationURL The URL of the
authorization server.

If mode is not auto. The context
root of the
runtime on the
local server.

runtimeContextRoot The context root of
the runtime.

No /mfp

adminClientID The administration
service confidential ID
in the authorization
server.

Yes None

adminClientSecret The administration
service confidential
client password in the
authorization server.

Yes None

pushURL The URL of the push
service.

If mode is not auto. /imfpush on
the local
server.

pushClientID The push service
confidential client ID
in the authorization
server.

Yes None

pushClientSecret The push service
confidential password
in the authorization
server.

Yes None

auto If the value is set to true, the URL of the authorization server and the push
service is computed automatically by using the context root of the runtime
on the local application server. The auto mode is not supported if you
deploy on WebSphere Application Server Network Deployment on a
cluster.

authorizationURL
The URL of the authorization server. If the authorization server is the
MobileFirst runtime, the URL is the URL of the runtime. For example,
http://myHost:9080/mfp.

runtimeContextRoot
The context root of the runtime that is used to compute the URL of the
authorization server in the automatic mode.

adminClientID
The ID of this administration service instance as a confidential client of the
authorization server.

Installing and configuring 6-283

adminClientSecret
The secret key of this administration service instance as a confidential
client of the authorization server.

pushClientID
The ID of this push service instance as a confidential client of the
authorization server. If provided, the administration service registers it as a
confidential client.

pushClientSecret
The secret key of this push service instance as a confidential client of the
authorization server. If provided, the administration service registers it as a
confidential client.

To specify JMX communication between the MobileFirst Server
administration service and the MobileFirst projects

Use the <jmx> element to ensure that a JMX connection can be established between
the MobileFirst Server administration service and the MobileFirst runtime projects.
The <jmx> element has the following attributes, which depend on the underlying
application server.

Table 6-86. Attributes of the <jmx> element

Attribute Description Required Default

libertyAdminUser The administrator (for
Liberty only).

No None

libertyAdminPasswordThe administrator password
(for Liberty only).

No None

createLibertyAdminWhether the admin user must
be created in the basic
registry, if it does not exist
(for Liberty only).

No true

tomcatRMIPort The RMI port that Apache
Tomcat uses to connect to
MobileFirst projects (for
Tomcat only).

No 8686

tomcatSetEnvConfigTo prevent automatic
modification of setenv.bat
and setenv.sh scripts. The
valid values are manual and
auto.

No auto

Note: The libertyAdminUser and libertyAdminPassword attributes are not
mandatory, but if you define one of these attributes, you must also define the
other.

libertyAdminUser
libertyAdminCreate
libertyAdminPassword

You use these attributes to create an admin user in the server.xml file,
which is the configuration file for Liberty, in the basic registry section.

tomcatRMIPort
If the default port 8686 is not available on the system, you use this
attribute to specify a different port for JMX communication between the

6-284 IBM MobileFirst Platform Foundation V8.0.0

administration service and the managed MobileFirst projects. In this case,
the port values range from 1 to 65535.

tomcatSetEnvConfig

You use this attribute to allow or prevent the installmobilefirstadmin
and uninstallmobilefirstadmin Ant tasks from adding or removing
contents to the setenv.sh or setenv.bat script, in the
Tomcat_Root_Install_Dir/bin directory.

Important: Security warning. The default value auto does not secure the
JMX communication. This setting is not suitable for production
environments. In production environments, you must manually configure
JMX with authentication, as described in the Enabling JMX Remote page of
the Apache Tomcat user documentation.
Use the following values for this attribute:
v manual: The installmobilefirstadmin and uninstallmobilefirstadmin

Ant tasks do not update the setenv.bat and setenv.sh script for JMX
usage.
If you select the value manual, you must update the scripts manually to
define the RMI port that is used for JMX communications internally
between the administration service and the MobileFirst runtime
environment, whether this connection must be secured or not with user
or role authentication, or SSL. For more information, see the
documentation of the JVM that you are using.

v auto: The installmobilefirstadmin and uninstallmobilefirstadmin Ant
tasks update the setenv.bat and setenv.sh script automatically, for JMX
usage. If these scripts do not exist, they are created before they are
updated.
If you select the auto value, the following modifications are made to
extend the CATALINA_OPTS environment variable:
– For setenv.bat:

REM Allow to inspect the MBeans through jconsole
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote

REM Configure JMX.
set CATALINA_OPTS=%CATALINA_OPTS% -Djava.rmi.server.hostname=localhost
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.port=8686
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.authenticate=false
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.ssl=false

– For setenv.sh:
Allow to inspect the MBeans through jconsole
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote"

Configure JMX.
CATALINA_OPTS="$CATALINA_OPTS -Djava.rmi.server.hostname=localhost"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.port=8686"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.authenticate=false"
CATALINA_OPTS="$CATALINA_OPTS -Dcom.sun.management.jmxremote.ssl=false"

To specify a connection to the administration service database

The <database> element collects the parameters that specify a data source
declaration in an application server to access the administration service database.

Installing and configuring 6-285

http://tomcat.apache.org/tomcat-7.0-doc/monitoring.html#Enabling_JMX_Remote

You must declare a single database: <database kind="MobileFirstAdmin">. You
specify the <database> element similarly to the configuredatabase Ant task, except
that the <database> element does not have the <dba> and <client> elements. It
might have <property> elements.

The <database> element has the following attributes:

Table 6-87. Attributes of the <database> element

Attribute Description Required Default

kind The kind of database
(MobileFirstAdmin).

Yes None

validate To validate whether the
database is accessible.

No true

The <database> element supports the following elements. For more information
about the configuration of these database elements for relational DBMS, see
Table 6-118 on page 6-300 through Table 6-128 on page 6-304 in “Ant tasks for
installation of MobileFirst runtime environments” on page 6-293.

Table 6-88. Inner elements for the <database> element

Element Description Count

<db2> The parameter for DB2 databases. 0..1

<derby> The parameter for Apache Derby
databases.

0..1

<mysql> The parameter for MySQL
databases.

0..1

<oracle> The parameter for Oracle
databases.

0..1

<driverclasspath> The parameter for JDBC driver
class path (relational DBMS only).

0..1

To specify a user and a security role

The <user> element collects the parameters about a user to include in a certain
security role for an application.

Table 6-89. Attributes of the <user> element

Attribute Description Required Default

role A valid security role for
the application.

Yes None

name The user name. Yes None

password The password if the
user needs to be
created.

No None

After you defined users by using the <user> element, you can map them to any of
the following roles for authentication in the MobileFirst Operations Console.
v mfpmonitor

v mfpoperator

v mfpdeployer

6-286 IBM MobileFirst Platform Foundation V8.0.0

v mfpadmin

For information about which authorizations are implied by the specific roles, see
the chapter about the “REST API for the MobileFirst Server administration service”
on page 8-7.

Tip: If users exist in an external LDAP directory, set only the role and name
attributes but do not define any passwords.

Ant tasks for installation of MobileFirst Server push service
The installmobilefirstpush, updatemobilefirstpush, and
uninstallmobilefirstpush Ant tasks are provided for the installation of the push
service.

Task effects

installmobilefirstpush

The installmobilefirstpush Ant task configures an application server to
run the push service WAR file as web application. This task has the
following effects:
v It declares the push service web application in the /imfpush context root.

The context root cannot be changed.
v For the relational databases, it declares data sources and, on WebSphere

Application Server Full Profile, JDBC providers for push service.
v It configures the configuration properties for the push service by using

JNDI environment entries. These JNDI environment entries configure the
OAuth communication with the MobileFirst authorization server,
MobileFirst Analytics, and with Cloudant in case Cloudant is used.

updatemobilefirstpush

The updatemobilefirstpush Ant task updates an already-configured
MobileFirst Server web application on an application server. This task
updates the push service WAR file. This file must have the same base
name as the corresponding WAR file that was previously deployed.

uninstallmobilefirstpush

The uninstallmobilefirstpush Ant task undoes the effects of an earlier
run of installmobilefirstpush. This task has the following effects:
v It removes the configuration of the push service web application with

the specified context root. As a consequence, the task also removes the
settings that were added manually to that application.

v It removes the push service WAR file from the application server as an
option.

v For the relational DBMS, it removes the data sources and on WebSphere
Application Server Full Profile – the JDBC providers for the push
service.

v It removes the associated JNDI environment entries.

Attributes and elements

The installmobilefirstpush, updatemobilefirstpush, and
uninstallmobilefirstpush Ant tasks have the following attributes:

Installing and configuring 6-287

Table 6-90. Attributes for the installmobilefirstpush, updatemobilefirstpush, and
uninstallmobilefirstpush Ant tasks

Attribute Description RequiredDefault

id To distinguish different
deployments.

No Empty

warFile The WAR file for the push service. No The
../PushService/mfp-
push-service.war file
is relative to the
MobileFirstServer
directory that contains
the
mfp-ant-deployer.jar
file.

id

The id attribute distinguishes different deployments of the push service in
the same WebSphere Application Server cell. Without this id attribute, two
WAR files with the same context roots might conflict and these files would
not be deployed.

warFile
Use the warFile attribute to specify a different directory for the push
service WAR file. You can specify the name of this WAR file with an
absolute path or a relative path.

The installmobilefirstpush, updatemobilefirstpush, and
uninstallmobilefirstpush Ant tasks support the following elements:

Table 6-91. Inner elements for the installmobilefirstpush, updatemobilefirstpush, and
uninstallmobilefirstpush Ant tasks

Element Description Count

<applicationserver> The application server. 1

<analytics> The Analytics. 0..1

<authorization> The authorization server for
authenticating the
communication with other
MobileFirst Server
components.

1

<database> The databases. 1

<property> The properties. 0..∞

To specify the authorization server

The <authorization> element collects information to configure the authorization
server for the authentication communication with other MobileFirst Server
components. This element has the following attributes:

6-288 IBM MobileFirst Platform Foundation V8.0.0

Table 6-92. Attributes of the <authorization> element

Attribute Description Required Default value

auto To indicate whether
the authorization
server URL is
computed. The
possible values are
true or false.

Required on a WebSphere
Application Server Network
Deployment cluster or node.

true

authorizationURL The URL of the
authorization server.

If mode is not auto. The context
root of the
runtime on the
local server.

runtimeContextRoot The context root of
the runtime.

No /mfp

pushClientID The push service
confidential ID in the
authorization server.

Yes None

pushClientSecret The push service
confidential client
password in the
authorization server.

Yes None

auto If the value is set to true, the URL of the authorization server is computed
automatically by using the context root of the runtime on the local
application server. The auto mode is not supported if you deploy on
WebSphere Application Server Network Deployment on a cluster.

authorizationURL
The URL of the authorization server. If the authorization server is the
MobileFirst runtime, the URL is the URL of the runtime. For example:
http://myHost:9080/mfp.

runtimeContextRoot
The context root of the runtime that is used to compute the URL of the
authorization server in the automatic mode.

pushClientID
The ID of this push service instance as a confidential client of the
authorization server. The ID and the secret must be registered for the
authorization server. It can be registered by installmobilefirstadmin Ant
task, or from MobileFirst Operations Console.

pushClientSecret
The secret key of this push service instance as a confidential client of the
authorization server. The ID and the secret must be registered for the
authorization server. It can be registered by installmobilefirstadmin Ant
task, or from MobileFirst Operations Console.

The <property> element specifies a deployment property to be defined in the
application server. It has the following attributes:

Table 6-93. Attributes for the <property> element

Attribute Description Required Default value

name The name of the
property.

Yes None

Installing and configuring 6-289

Table 6-93. Attributes for the <property> element (continued)

Attribute Description Required Default value

value The value of the
property.

Yes None

By using this element, you can define your own JNDI properties or override the
default value of the JNDI properties that are provided by the push service WAR
file.

For more information about the JNDI properties, see “List of JNDI properties for
MobileFirst Server push service” on page 6-186.

To specify an application server

Use the <applicationserver> element to define the parameters that depend on the
underlying application server. The <applicationserver> element supports the
following elements:

Table 6-94. Inner elements of the <applicationserver> element

Element Description Count

<websphereapplicationserver>
or <was>

The parameters for WebSphere Application
Server.

The <websphereapplicationserver> element (or
<was> in its short form) denotes a WebSphere
Application Server instance. WebSphere
Application Server full profile (Base, and Network
Deployment) are supported, so is WebSphere
Application Server Liberty Core and WebSphere
Application Server Liberty Network Deployment.

0..1

<tomcat> The parameters for Apache Tomcat. 0..1

The attributes and inner elements of these elements are described in Table 6-105 on
page 6-295 through Table 6-114 on page 6-298 of “Ant tasks for installation of
MobileFirst runtime environments” on page 6-293.

However, for the inner element of the <was> element for Liberty collective, see the
following table:

Table 6-95. Inner element of the <was> element for Liberty collective

Element Description Count

<collectiveMember> A Liberty collective member. 0..1

The <collectiveMember> element has the following attributes:

Table 6-96. Attributes of the <collectiveMember> element

Attribute Description Required Default value

serverName The name of the collective
member.

Yes None

clusterName The cluster name that the
collective member belongs
to.

Yes None

6-290 IBM MobileFirst Platform Foundation V8.0.0

Note: If the push service and the runtime components are installed in the same
collective member, then they must have the same cluster name. If these
components are installed on distinct members of the same collective, the cluster
names can be different.

To specify Analytics

The <analytics> element indicates that you want to connect the MobileFirst push
service to an already installed MobileFirst Analytics service. It has the following
attributes:

Table 6-97. Attributes of the <analytics> element

Attribute Description Required Default

install To indicate whether to connect the push service to
MobileFirst Analytics.

No false

analyticsURL The URL of MobileFirst Analytics services. Yes None

username The user name. Yes None

password The password. Yes None

validate To validate whether MobileFirst Analytics Console
is accessible or not.

No true

install

Use the install attribute to indicate that this push service must be
connected and send events to MobileFirst Analytics. Valid values are true
or false.

analyticsURL

Use the analyticsURL attribute to specify the URL that is exposed by
MobileFirst Analytics, which receives incoming analytics data.

For example: http://<hostname>:<port>/analytics-service/rest

username

Use the username attribute to specify the user name that is used if the data
entry point for the MobileFirst Analytics is protected with basic
authentication.

password

Use the password attribute to specify the password that is used if the data
entry point for the MobileFirst Analytics is protected with basic
authentication.

validate

Use the validate attribute to validate whether the MobileFirst Analytics
Console is accessible or not, and to check the user name authentication
with a password. The possible values are true, or false.

To specify a connection to the push service database

The <database> element collects the parameters that specify a data source
declaration in an application server to access the push service database.

Installing and configuring 6-291

You must declare a single database: <database kind="Push">. You specify the
<database> element similarly to the configuredatabase Ant task, except that the
<database> element does not have the <dba> and <client> elements. It might have
<property> elements.

The <database> element has the following attributes:

Table 6-98. Attributes of the <database> element

Attribute Description Required Default

kind The kind of database (Push). Yes None

validate To validate whether the
database is accessible.

No true

The <database> element supports the following elements. For more information
about the configuration of these database elements for relational DBMS, see
Table 6-118 on page 6-300 through Table 6-128 on page 6-304 in “Ant tasks for
installation of MobileFirst runtime environments” on page 6-293.

Table 6-99. Inner elements for the <database> element

Element Description Count

<db2> The parameter for DB2 databases. 0..1

<derby> The parameter for Apache Derby
databases.

0..1

<mysql> The parameter for MySQL
databases.

0..1

<oracle> The parameter for Oracle
databases.

0..1

<cloudant> The parameter for Cloudant
databases.

0..1

<driverclasspath> The parameter for JDBC driver
class path (relational DBMS only).

0..1

Note: The attributes of the <cloudant> element are slightly different from the
runtime. For more information, see the following table:

Table 6-100. Attributes of the <cloudant> element

Attribute Description Required Default

url The URL of the
Cloudant account.

No https://
user.cloudant.com

user The user name of the
Cloudant account.

Yes None

password The password of the
Cloudant account.

No Queried interactively

6-292 IBM MobileFirst Platform Foundation V8.0.0

Table 6-100. Attributes of the <cloudant> element (continued)

Attribute Description Required Default

dbName The Cloudant
database name.
Important: This
database name must
start with a
lowercase letter and
contain only
lowercase characters
(a-z), Digits (0-9), any
of the characters _, $,
and -.

No mfp_push_db

Ant tasks for installation of MobileFirst runtime environments
Reference information for the installmobilefirstruntime,
updatemobilefirstruntime, and uninstallmobilefirstruntime Ant tasks.

Task effects

installmobilefirstruntime

The installmobilefirstruntime Ant task configures an application server
to run a MobileFirst runtime WAR file as a web application. This task has
the following effects.
v It declares the MobileFirst web application in the specified context root,

by default /mfp.
v It deploys the runtime WAR file on the application server.
v It declares data sources and – on WebSphere Application Server full

profile – JDBC providers for the runtime.
v It deploys the database drivers in the application server.
v It sets MobileFirst configuration properties through JNDI environment

entries.
v Optionally, it sets the MobileFirst JNDI environment entries to configure

the application server as a server farm member for the runtime.

updatemobilefirstruntime

The updatemobilefirstruntime Ant task updates a MobileFirst runtime
that is already configured on an application server. This task updates the
runtime WAR file. The file must have the same base name as the runtime
WAR file that was previously deployed. Other than that, the task does not
change the application server configuration, that is, the web application
configuration, data sources, and JNDI environment entries.

uninstallmobilefirstruntime
The uninstallmobilefirstruntime Ant task undoes the effects of an earlier
installmobilefirstruntime run. This task has the following effects.
v It removes the configuration of the MobileFirst web application with the

specified context root. The task also removes the settings that are added
manually to that application.

v It removes the runtime WAR file from the application server.
v It removes the data sources and – on WebSphere Application Server full

profile – the JDBC providers for the runtime.
v It removes the associated JNDI environment entries.

Installing and configuring 6-293

Attributes and elements

The installmobilefirstruntime, updatemobilefirstruntime, and
uninstallmobilefirstruntime Ant tasks have the following attributes:

Table 6-101. Attributes for the installmobilefirstruntime, updatemobilefirstruntime, and
uninstallmobilefirstruntime Ant tasks

Attribute Description RequiredDefault

contextroot The common prefix in URLs to the
application (context root).

No /mfp

id To distinguish different
deployments.

No Empty

environmentId To distinguish different MobileFirst
environments.

No Empty

warFile The WAR file for MobileFirst
runtime.

No The mfp-server.war
file is in the same
directory as the
mfp-ant-deployer.jar
file.

wasStartingWeight The start order for WebSphere
Application Server. Lower values
start first.

No 2

contextroot and id

The contextroot and id attributes distinguish different MobileFirst
projects.

In WebSphere Application Server Liberty profiles and in Tomcat
environments, the contextroot parameter is sufficient for this purpose. In
WebSphere Application Server full profile environments, the id attribute is
used instead.

environmentId
Use the environmentId attribute to distinguish several environments,
consisting each of MobileFirst Server administration service and
MobileFirst runtime web applications, that must operate independently.
You must set this attribute to the same value for the runtime application as
the one that was set in the <installmobilefirstadmin> invocation, for the
administration service application.

warFile

Use the warFile attribute to specify a different directory for the MobileFirst
runtime WAR file. You can specify the name of this WAR file with an
absolute path or a relative path.

wasStartingWeight
Use the wasStartingWeight attribute to specify a value that is used in
WebSphere Application Server as a weight to ensure that a start order is
respected. As a result of the start order value, the MobileFirst Server
administration service web application is deployed and started before any
other MobileFirst runtime projects. If MobileFirst projects are deployed or
started before the web application, the JMX communication is not
established and you cannot manage your MobileFirst projects.

The installmobilefirstruntime, updatemobilefirstruntime, and
uninstallmobilefirstruntime tasks support the following elements:

6-294 IBM MobileFirst Platform Foundation V8.0.0

Table 6-102. Inner elements for the installmobilefirstruntime,
updatemobilefirstruntime, and uninstallmobilefirstruntime Ant tasks

Element Description Count

<property> The properties. 0..∞

<applicationserver> The application server. 1

<database> The databases. 1

<analytics> The Analytics. 0..1

The <property> element specifies a deployment property to be defined in the
application server. It has the following attributes:

Table 6-103. Attributes for the <property> element.

Attribute Description Required Default value

name The name of the
property.

Yes None

value The value for the
property.

Yes None

The <applicationserver> element describes the application server to which the
MobileFirst application is deployed. It is a container for one of the following
elements:

Table 6-104. Inner elements for the <applicationserver> element

Element Description Count

<websphereapplicationserver>
or <was>

The parameters for
WebSphere Application
Server.

0..1

<tomcat> The parameters for
Apache Tomcat.

0..1

The <websphereapplicationserver> element (or <was> in its short form) denotes a
WebSphere Application Server instance. WebSphere Application Server full profile
(Base, and Network Deployment) are supported, so is WebSphere Application
Server Liberty Core and WebSphere Application Server Liberty Network
Deployment. The <websphereapplicationserver> element has the following
attributes:

Table 6-105. Attributes for the <websphereapplicationserver> or <was> element

Attribute Description Required Default

installdir WebSphere Application Server installation directory. Yes None

profile WebSphere Application Server profile, or Liberty. Yes None

user WebSphere Application Server administrator name. Yes, except
for Liberty

None

password WebSphere Application Server administrator
password.

No Queried interactively

Installing and configuring 6-295

Table 6-105. Attributes for the <websphereapplicationserver> or <was> element (continued)

Attribute Description Required Default

libertyEncoding The algorithm to encode data source passwords for
WebSphere Application Server Liberty. The possible
values are none, xor, and aes.

Whether the xor or aes encoding is used, the clear
password is passed as argument to the
securityUtility program, which is called through
an external process. You can see the password with
a ps command, or in the /proc file system on UNIX
operating systems.

No xor

jeeVersion For Liberty profile. To specify whether to install the
features of the JEE6 web profile or the JEE7 web
profile. Possible values are 6, 7, or auto.

No auto

configureFarm For WebSphere Application Server Liberty, and
WebSphere Application Server full profile (not for
WebSphere Application Server Network
Deployment edition and Liberty collective). To
specify whether the server is a server farm member.
Possible values are true or false.

No false

farmServerId A string that uniquely identify a server in a server
farm.

The MobileFirst Server administration services and
all the MobileFirst runtimes that communicate with
it must share the same value.

Yes None

It supports the following element for single-server deployment:

Table 6-106. Inner element for the <was> element (single-server deployment)

Element Description Count

<server> A single server. 0..1

The <server> element, which is used in this context, has the following attribute:

Table 6-107. The attribute of <server> element (single-server deployment)

Attribute Description Required Default

name The server name. Yes None

It supports the following elements for Liberty collective:

Table 6-108. Inner element of the <was> element for Liberty collective

Element Description Count

<collectiveMember> A Liberty collective member. 0..1

The <collectiveMember> element has the following attributes:

6-296 IBM MobileFirst Platform Foundation V8.0.0

Table 6-109. Attributes of the <collectiveMember> element

Attribute Description Required Default value

serverName The name of the collective
member.

Yes None

clusterName The cluster name that the
collective member belongs
to.

Yes None

serverId A string that uniquely
identifies the collective
member.

Yes None

controllerHost The name of the collective
controller.

Yes None

controllerHttpsPort The HTTPS port of the
collective controller.

Yes None

controllerAdminName The administrative user
name that is defined in the
collective controller. This is
the same user that is used to
join new members to the
collective.

Yes None

controllerAdminPassword The administrative user
password.

Yes None

createControllerAdmin To indicate whether the
administrative user must be
created in the basic registry
of the collective member.
Possible values are true or
false.

No true

It supports the following elements for Network Deployment:

Table 6-110. Inner elements for the <was> element (network deployment)

Element Description Count

<cell> The entire cell. 0..1

<cluster> All the servers of a cluster. 0..1

<node> All the servers in a node,
clusters excluded.

0..1

<server> A single server. 0..1

The <cell> element has no attributes.

The <cluster> element has the following attribute:

Table 6-111. Attribute for the <cluster> element (network deployment)

Attribute Description Required Default

name The cluster name. Yes None

The <node> element has the following attribute:

Installing and configuring 6-297

Table 6-112. Attribute for the <node> element (network deployment)

Attribute Description Required Default

name The node name. Yes None

The <server> element, which is used in a Network Deployment context, has the
following attributes:

Table 6-113. Attributes for the <server> element (network deployment)

Attribute Description Required Default

nodeName The node name. Yes None

serverName The server name. Yes None

The <tomcat> element denotes an Apache Tomcat server. It has the following
attribute:

Table 6-114. Attribute of the <tomcat> element

Attribute Description Required Default

installdir The installation directory of Apache
Tomcat. For a Tomcat installation that is
split between a CATALINA_HOME directory
and a CATALINA_BASE directory, specify
the value of the CATALINA_BASE
environment variable.

Yes None

configureFarmTo specify whether the server is a server
farm member. Possible values are true
or false.

No false

farmServerIdA string that uniquely identify a server
in a server farm.

The MobileFirst Server administration
services and all the MobileFirst
runtimes that communicate with it must
share the same value.

Yes None

The <database> element specifies what information is necessary to access a
particular database. The <database> element is specified like the
configuredatabase Ant task, except that it does not have the <dba> and <client>
elements. However, it might have <property> elements. The <database> element
has the following attributes:

Table 6-115. Attributes of the <database> element

Attribute Description Required Default

kind The kind of database
(MobileFirstRuntime).

Yes None

validate To validate whether the database is
accessible or not. The possible values
are true or false.

No true

The <database> element supports the following elements:

6-298 IBM MobileFirst Platform Foundation V8.0.0

Table 6-116. Inner elements for the <database> element

Element Description Count

<derby> The parameters for Derby. 0..1

<db2> The parameters for DB2. 0..1

<mysql> The parameters for
MySQL.

0..1

<oracle> The parameters for Oracle. 0..1

<driverclasspath> The JDBC driver class path. 0..1

The <analytics> element indicates that you want to connect the MobileFirst
runtime to an already installed MobileFirst Analytics console and services. It has
the following attributes:

Table 6-117. Attributes of the <analytics> element

Attribute Description Required Default

install To indicate whether to connect the MobileFirst
runtime to MobileFirst Analytics.

No false

analyticsURL The URL of MobileFirst Analytics services. Yes None

consoleURL The URL ofMobileFirst Analytics Console. Yes None

username The user name. Yes None

password The password. Yes None

validate To validate whether MobileFirst Analytics Console
is accessible or not.

No true

tenant The tenant for indexing data that is collected from a
MobileFirst runtime.

No Internal identifier

install

Use the install attribute to indicate that this MobileFirst runtime must be
connected and send events to MobileFirst Analytics. Valid values are true
or false.

analyticsURL

Use the analyticsURL attribute to specify the URL that is exposed by
MobileFirst Analytics, which receives incoming analytics data.

For example: http://<hostname>:<port>/analytics-service/rest

consoleURL

Use the consoleURL attribute to the URL that is exposed by MobileFirst
Analytics, which links to the MobileFirst Analytics console.

For example: http://<hostname>:<port>/analytics/console

username

Use the username attribute to specify the user name that is used if the data
entry point for the MobileFirst Analytics is protected with basic
authentication.

password

Installing and configuring 6-299

Use the password attribute to specify the password that is used if the data
entry point for the MobileFirst Analytics is protected with basic
authentication.

validate

Use the validate attribute to validate whether the MobileFirst Analytics
Console is accessible or not, and to check the user name authentication
with a password. The possible values are true, or false.

tenant

For more information about this attribute, see “Configuration properties”
on page 11-15.

To specify an Apache Derby database

The <derby> element has the following attributes:

Table 6-118. Attributes of the <derby> element

Attribute Description Required Default

database The database name. No MFPDATA, MFPADM, MFPCFG,
MFPPUSH, or APPCNTR,
depending on kind.

datadir The directory that contains the
databases.

Yes None

schema The schema name. No MFPDATA, MFPCFG,
MFPADMINISTRATOR,
MFPPUSH, or APPCENTER,
depending on kind.

The <derby> element supports the following element:

Table 6-119. Inner element for the <derby> element

Element Description Count

<property> The data source property
or JDBC connection
property.

0..∞

For more information about the available properties, see the documentation for
Class EmbeddedDataSource40. See also the documentation for Class
EmbeddedConnectionPoolDataSource40.

For more information about the available properties for a Liberty server, see the
documentation for properties.derby.embedded at Liberty profile: Configuration
elements in the server.xml file.

When the mfp-ant-deployer.jar file is used within the installation directory of
IBM MobileFirst Platform Foundation, a <driverclasspath> element is not
necessary.

6-300 IBM MobileFirst Platform Foundation V8.0.0

http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedDataSource40.html
http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedConnectionPoolDataSource40.html
http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedConnectionPoolDataSource40.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html

To specify a DB2 database

The <db2> element has the following attributes:

Table 6-120. Attributes of the <db2> element

Attribute Description Required Default

database The database name. No MFPDATA, MFPADM, MFPCFG,
MFPPUSH, or APPCNTR,
depending on kind.

server The host name of the database server. Yes None

port The port on the database server. No 50000

user The user name for accessing databases.
This user does not need extended
privileges on the databases. If you
implement restrictions on the database,
you can set a user with the restricted
privileges that are listed in “Database
users and privileges” on page 6-64.

Yes None

password The password for accessing databases. No Queried interactively

schema The schema name. No Depends on the user

For more information about DB2 user accounts, see DB2 security model overview.

The <db2> element supports the following element:

Table 6-121. Inner element for the <db2> element

Element Description Count

<property> The data source property
or JDBC connection
property.

0..∞

For more information about the available properties, see Properties for the IBM
Data Server Driver for JDBC and SQLJ.

For more information about the available properties for a Liberty server, see the
properties.db2.jcc section at Liberty profile: Configuration elements in the
server.xml file.

The <driverclasspath> element must contain JAR files for the DB2 JDBC driver
and the associated license. You can download DB2 JDBC drivers from DB2 JDBC
Driver Versions.

To specify a MySQL database

The <mysql> element has the following attributes:

Table 6-122. Attributes of the <mysql> element

Attribute Description Required Default

database The database name. No MFPDATA, MFPADM, MFPCFG,
MFPPUSH, or APPCNTR,
depending on kind.

server The host name of the database server. Yes None

Installing and configuring 6-301

http://ibm.biz/knowctr#SSEPGG_10.1.0/com.ibm.db2.luw.admin.sec.doc/doc/c0021804.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSEPGG_9.7.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

Table 6-122. Attributes of the <mysql> element (continued)

Attribute Description Required Default

port The port on the database server. No 3306

user The user name for accessing databases.
This user does not need extended
privileges on the databases. If you
implement restrictions on the database,
you can set a user with the restricted
privileges that are listed in “Database
users and privileges” on page 6-64.

Yes None

password The password for accessing databases. No Queried interactively

Instead of database, server, and port, you can also specify a URL. In this case, use
the following attributes:

Table 6-123. Alternative attributes for the <mysql> element

Attribute Description Required Default

url The URL for connection to the database. Yes None

user The user name for accessing databases.
This user does not need extended
privileges on the databases. If you
implement restrictions on the database,
you can set a user with the restricted
privileges that are listed in “Database
users and privileges” on page 6-64.

Yes None

password The password for accessing databases. No Queried interactively

For more information about MySQL user accounts, see MySQL User Account
Management.

The <mysql> element supports the following element:

Table 6-124. Inner element for the <mysql> element

Element Description Count

<property> The data source property
or JDBC connection
property.

0..∞

For more information about the available properties, see the documentation at
Driver/Datasource Class Names, URL Syntax and Configuration Properties for
Connector/J.

For more information about the available properties for a Liberty server, see the
properties section at Liberty profile: Configuration elements in the server.xml file.

The <driverclasspath> element must contain a MySQL Connector/J JAR file. You
can download it from Download Connector/J.

6-302 IBM MobileFirst Platform Foundation V8.0.0

http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://www.mysql.com/downloads/connector/j/

To specify an Oracle database

The <oracle> element has the following attributes:

Table 6-125. Attributes of the <oracle> element

Attribute Description Required Default

database The database name, or Oracle service
name.
Note: You must always use a service
name to connect to a PDB database.

No ORCL

server The host name of the database
server.

Yes None

port The port on the database server. No 1521

user The user name for accessing
databases. This user does not need
extended privileges on the databases.
If you implement restrictions on the
database, you can set a user with the
restricted privileges that are listed in
“Database users and privileges” on
page 6-64.

See the note under this table.

Yes None

password The password for accessing
databases.

No Queried interactively

Note: For the user attribute, use preferably a user name in uppercase letters.
Oracle user names are generally in uppercase letters. Unlike other database tools,
the installmobilefirstruntime Ant task does not convert lowercase letters to
uppercase letters in the user name. If the installmobilefirstruntime Ant task fails
to connect to your database, try to enter the value for the user attribute in
uppercase letters.

Instead of database, server, and port, you can also specify a URL. In this case, use
the following attributes:

Table 6-126. Alternative attributes of the <oracle> element

Attribute Description Required Default

url The URL for connection to the database. Yes None

user The user name for accessing databases.
This user does not need extended
privileges on the databases. If you
implement restrictions on the database,
you can set a user with the restricted
privileges that are listed in “Database
users and privileges” on page 6-64.

See the note under this table.

Yes None

password The password for accessing databases. No Queried interactively

Note: For the user attribute, use preferably a user name in uppercase letters.
Oracle user names are generally in uppercase letters. Unlike other database tools,
the installmobilefirstruntime Ant task does not convert lowercase letters to

Installing and configuring 6-303

uppercase letters in the user name. If the installmobilefirstruntime Ant task fails
to connect to your database, try to enter the value for the user attribute in
uppercase letters.

For more information about Oracle user accounts, see Overview of Authentication
Methods.

For more information about Oracle database connection URLs, see the Database
URLs and Database Specifiers section at Data Sources and URLs.

It supports the following element:

Table 6-127. Inner element for the <oracle> element

Element Description Count

<property> The data source property
or JDBC connection
property.

0..∞

For more information about the available properties, see the Data Sources and
URLs section at Data Sources and URLs.

For more information about the available properties for a Liberty server, see the
properties.oracle section at Liberty profile: Configuration elements in the
server.xml file.

The <driverclasspath> element must contain an Oracle JDBC driver JAR file. You
can download Oracle JDBC drivers from JDBC, SQLJ, Oracle JPublisher and
Universal Connection Pool (UCP).

The <property> element, which can be used inside <derby>, <db2>, <mysql>, or
<oracle> elements, has the following attributes:

Table 6-128. Attributes for the <property> element in a database-specific element

Attribute Description Required Default

name The name of the property. Yes None

type Java type of the property values,
usually java.lang.String/Integer/
Boolean.

No java.lang.String

value The value for the property. Yes None

Ant tasks for installation of Application Center
The <installApplicationCenter>, <updateApplicationCenter>, and
<uninstallApplicationCenter> Ant tasks are provided for the installation of the
Application Center Console and Services.

Task effects

<installApplicationCenter>

The <installApplicationCenter> task configures an application server to
run the Application Center Services WAR file as a web application, and to
install the Application Center Console. This task has the following effects:
v It declares the Application Center Services web application in the

/applicationcenter context root.

6-304 IBM MobileFirst Platform Foundation V8.0.0

http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm
http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

v It declares data sources, and on WebSphere Application Server full
profile, it declares also JDBC providers for Application Center Services.

v It deploys the Application Center Services web application on the
application server.

v It declares the Application Center Console as a web application in the
/appcenterconsole context root.

v It deploys the Application Center Console WAR file on the application
server.

v It configures configuration properties for Application Center Services by
using JNDI environment entries. The JNDI environment entries that are
related to the endpoint and proxies are commented. You must
uncomment them in some cases.

v It configures users that it maps to roles used by the Application Center
Console and Services web applications.

v On WebSphere Application Server, it configures the necessary custom
property for the web container.

<updateApplicationCenter>

The <updateApplicationCenter> task updates an already configured
Application Center application on an application server. This task has the
following effects:
v It updates the Application Center Services WAR file. This file must have

the same base name as the corresponding WAR file that was previously
deployed.

v It updates the Application Center Console WAR file. This file must have
the same base name as the corresponding WAR file that was previously
deployed.

The task does not change the application server configuration, that is, the
web application configuration, data sources, JNDI environment entries, and
user-to-role mappings. This task applies only to an installation that is
performed by using the <installApplicationCenter> task that is described
in this topic.

Note: On WebSphere Application Server Liberty profile, the task does not
change the features, which leaves a potential non-minimal list of features
in the server.xml file for the installed application.

<uninstallApplicationCenter>

The <uninstallApplicationCenter> Ant task undoes the effects of an
earlier run of <installApplicationCenter>. This task has the following
effects:
v It removes the configuration of the Application Center Services web

application with the /applicationcenter context root. As a consequence,
the task also removes the settings that were added manually to that
application.

v It removes both the Application Center Services and Console WAR files
from the application server.

v It removes the data sources and, on WebSphere Application Server full
profile, it also removes the JDBC providers for the Application Center
Services.

v It removes the database drivers that were used by Application Center
Services from the application server.

Installing and configuring 6-305

v It removes the associated JNDI environment entries.
v It removes the users who are configured by the

<installApplicationCenter> invocation.

Attributes and elements

The <installApplicationCenter>, <updateApplicationCenter>,
and <uninstallApplicationCenter> tasks have the following attributes:

Table 6-129. Attributes for the <installApplicationCenter>, <updateApplicationCenter>, and
<uninstallApplicationCenter> Ant tasks

Attribute Description RequiredDefault

id It distinguishes different
deployments in WebSphere
Application Server full profile.

No
Empty

servicewar The WAR file for the Application
Center Services.

No
The
applicationcenter.war
file is in the
application Center
console directory:
product_install_dir/
ApplicationCenter/
console.

shortcutsDir
The directory where you place the
shortcuts.

No
None

aaptDir
The directory that contains the aapt
program, from the Android SDK
platform-tools package.

No
None

id

In WebSphere Application Server full profile environments, the id attribute
is used to distinguish different deployments of Application Center Console
and Services. Without this id attribute, two WAR files with the same
context roots might conflict and these files would not be deployed.

servicewar

Use the servicewar attribute to specify a different directory for the
Application Center Services WAR file. You can specify the name of this
WAR file with an absolute path or a relative path.

shortcutsDir

The shortcutsDir attribute specifies where to place shortcuts to the
Application Center Console. If you set this attribute, the following files are
added to this directory:
v appcenter-console.url: This file is a Windows shortcut. It opens the

Application Center Console in a browser.
v appcenter-console.sh: This file is a UNIX shell script. It opens the

Application Center Console in a browser.

aaptDir

The aapt program is part of the IBM MobileFirst Platform Foundation
distribution: product_install_dir/ApplicationCenter/tools/android-sdk.

6-306 IBM MobileFirst Platform Foundation V8.0.0

If this attribute is not set, during the upload of an apk application,
Application Center parses it by using its own code, which might have
limitations.

The <installApplicationCenter>, <updateApplicationCenter>, and
<uninstallApplicationCenter> tasks support the following elements:

Table 6-130. Inner elements for the <installApplicationCenter>, < updateApplicationCenter>,
and <uninstallApplicationCenter> Ant tasks

Element Description Count

applicationserver The application server. 1

console The Application Center
console.

1

database The databases. 1

user The user to be mapped to a
security role.

0..∞

To specify an Application Center console

The <console> element collects information to customize the installation of the
Application Center Console. This element has the following attributes:

Table 6-131. Attributes for the <console> element

Attribute Description RequiredDefault

warfile The WAR file for the Application
Center Console.

No
The
appcenterconsole.war
file is in the
Application Center
console directory:
product_install_dir/
ApplicationCenter/
console.

To specify an application server

Use the <applicationserver> element to define the parameters that depend on the
underlying application server. The <applicationserver> element supports the
following elements.

Installing and configuring 6-307

Table 6-132. Inner elements for the <applicationserver> element

Element Description Count

websphereapplicationserver
or was

The parameters for WebSphere
Application Server.

The
<websphereapplicationserver>
element (or <was> in its short
form) denotes a WebSphere
Application Server instance.
WebSphere Application Server
full profile (Base, and
Network Deployment) are
supported, so is WebSphere
Application Server Liberty
Core. Liberty collective is not
supported for Application
Center.

0..1

tomcat The parameters for Apache
Tomcat.

0..1

The attributes and inner elements of these elements are described in tables
Table 6-105 on page 6-295 to Table 6-114 on page 6-298 of the page “Ant tasks for
installation of MobileFirst runtime environments” on page 6-293.

To specify a connection to the services database

The <database> element collects the parameters that specify a data source
declaration in an application server to access the services database.

You must declare a single database: <database kind="ApplicationCenter">. You
specify the <database> element similarly to the <configuredatabase> Ant task,
except that the <database> element does not have the <dba> and <client>
elements. It might have <property> elements.

The <database> element has the following attributes:

Table 6-133. Attributes for the <database> element

Attribute Description RequiredDefault

kind The kind of database
(ApplicationCenter).

Yes None

validate To validate whether the database is
accessible or not.

No True

The <database> element supports the following elements. For more information
about the configuration of these database elements, see Table 6-118 on page 6-300
to Table 6-128 on page 6-304 in “Ant tasks for installation of MobileFirst runtime
environments” on page 6-293

Table 6-134. Inner elements for the <database> element

Element Description Count

db2 The parameter for DB2
databases.

0..1

derby The parameter for Apache
Derby databases.

0..1

6-308 IBM MobileFirst Platform Foundation V8.0.0

Table 6-134. Inner elements for the <database> element (continued)

Element Description Count

mysql The parameter for MySQL
databases.

0..1

oracle The parameter for Oracle
databases.

0..1

driverclasspath The parameter for JDBC
driver class path.

0..1

To specify a user and a security role

The <user> element collects the parameters about a user to include in a certain
security role for an application.

Table 6-135. Attributes for the <user> element

Attribute Description RequiredDefault

role The user role appcenteradmin. Yes None

name The user name. Yes None

password The password, if you must create
the user.

No None

This Ant task supports only the appcenteradmin role. Users that are defined by
using the <user> element can be mapped only to the appcenteradmin role for
authentication in the Application Center Console.

Ant tasks for installation of MobileFirst Analytics
The installanalytics, updateanalytics, and <uninstallanalytics> Ant tasks are
provided for the installation of MobileFirst Analytics.

About these Ant tasks

The purpose of these Ant Tasks is to configure the MobileFirst Analytics console
and the MobileFirst Analytics service with the appropriate storage for the data on
an application server.

The task installs MobileFirst Analytics nodes that act as a master and data. For
more information, see “Cluster management and Elasticsearch” on page 11-19.

Task effects

<installanalytics>

The <installanalytics> Ant task configures an application server to run
IBM MobileFirst Analytics. This task has the following effects:
v It deploys the MobileFirst Analytics Service and the MobileFirst

Analytics Console WAR files on the application server.
v It declares the MobileFirst Analytics Service web application in the

specified context root /analytics-service.
v It declares the MobileFirst Analytics Console web application in the

specified context root /analytics.
v It sets MobileFirst Analytics Console and MobileFirst Analytics Services

configuration properties through JNDI environment entries.

Installing and configuring 6-309

v On WebSphere Application Server Liberty profile, it configures the web
container.

v Optionally, it creates users to use the MobileFirst Analytics Console.

<updateanalytics>

The <updateanalytics> Ant task updates the already configured
MobileFirst Analytics Service and MobileFirst Analytics Console web
applications WAR files on an application server. These files must have the
same base names as the project WAR files that were previously deployed.

The task does not change the application server configuration, that is, the
web application configuration and JNDI environment entries.

<uninstallanalytics>

The <uninstallanalytics> Ant task undoes the effects of an earlier
<installanalytics> run. This task has the following effects:
v It removes the configuration of both the MobileFirst Analytics Service

and the MobileFirst Analytics Console web applications with their
respective context roots.

v It removes the MobileFirst Analytics Service and the MobileFirst
Analytics Console WAR files from the application server.

v It removes the associated JNDI environment entries.

Attributes and elements

The <installanalytics>, <updateanalytics>, and <uninstallanalytics> tasks have
the following attributes:

Table 6-136. Attributes for the <installanalytics>, <updateanalytics>, and <uninstallanalytics>
Ant tasks

Attribute Description RequiredDefault

serviceWar The WAR file for the MobileFirst
Analytics Service

No The
analytics-
service.war file is in
the directory
Analytics.

serviceWar

Use the serviceWar attribute to specify a different directory for the
MobileFirst Analytics Services WAR file. You can specify the name of this
WAR file with an absolute path or a relative path.

The <installanalytics>, <updateanalytics>, and <uninstallanalytics> tasks
support the following elements:

Table 6-137. Inner elements for the <installanalytics>, <updateanalytics>, and
<uninstallanalytics> Ant tasks

Attribute Description RequiredDefault

console MobileFirst Analytics Yes 1

user The user to be mapped to a security
role.

No 0..∞

storage The type of storage. Yes 1

applicationserver The application server. Yes 1

6-310 IBM MobileFirst Platform Foundation V8.0.0

Table 6-137. Inner elements for the <installanalytics>, <updateanalytics>, and
<uninstallanalytics> Ant tasks (continued)

Attribute Description RequiredDefault

property Properties. No 0..∞

To specify a MobileFirst Analytics Console

The <console> element collects information to customize the installation of the
MobileFirst Analytics Console. This element has the following attributes:

Table 6-138. Attributes of the <console> element

Attribute Description RequiredDefault

warfile The console WAR file No The analytics-ui.war
file is in the
Analytics directory.

shortcutsdir The directory where you place the
shortcuts.

No None

warFile

Use the warFile attribute to specify a different directory for the MobileFirst
Analytics Console WAR file. You can specify the name of this WAR file
with an absolute path or a relative path.

shortcutsDir

The shortcutsDir attribute specifies where to place shortcuts to the
MobileFirst Analytics Console. If you set this attribute, you can add the
following files to that directory:
v analytics-console.url: This file is a Windows shortcut. It opens the

MobileFirst Analytics Console in a browser.
v analytics-console.sh: This file is a UNIX shell script. It opens the

MobileFirst Analytics Console in a browser.

Note: These shortcuts do not include the ElasticSearch tenant parameter.

The <console> element supports the following nested element:

Table 6-139. Inner element of the <console> element

Element Description Count

property Properties 0..∞

With this element, you can define your own JNDI properties.

The <property> element has the following attributes:

Table 6-140. Attributes of the <property> element

Attribute Description RequiredDefault

name The name of the property. Yes None

value The value of the property. Yes None

Installing and configuring 6-311

To specify a user and a security role

The <user> element collects the parameters about a user to include in a certain
security role for an application.

Table 6-141. Attributes of the <user> element

Attribute Description RequiredDefault

role A valid security role for the
application.

Yes None

name The user name. Yes None

password The password, if the user must be
created.

No None

After you defined users by using the <user> element, you can map them to any of
the following roles for authentication in the MobileFirst Operations Console:
v mfpmonitor

v mfpoperator

v mfpdeployer

v mfpadmin

To specify a type of storage for MobileFirst Analytics

The <storage> element indicates which underlying type of storage MobileFirst
Analytics uses to store the information and data it collects.

It supports the following element:

Table 6-142. Inner element of the <storage> element

Element Description Count

elasticsearch ElasticSearch cluster 1

The <elasticsearch> element collects the parameters about an ElasticSearch
cluster.

Table 6-143. Attributes of the <elasticsearch> element

Attribute Description RequiredDefault

clusterName The ElasticSearch cluster name. No worklight

nodeName The ElasticSearch node name. This
name must be unique in an
ElasticSearch cluster.

No worklightNode_<random
number>

mastersList A comma-delimited string that
contains the host name and ports of
the ElasticSearch master nodes in
the ElasticSearch cluster (For
example: hostname1:transport-
port1,hostname2:transport-port2)

No Depends on the
topology

dataPath The ElasticSearch cluster location. No Depends on the
application server

6-312 IBM MobileFirst Platform Foundation V8.0.0

Table 6-143. Attributes of the <elasticsearch> element (continued)

Attribute Description RequiredDefault

shards The number of shards that the
ElasticSearch cluster creates. This
value can be set only by the master
nodes that are created in the
ElasticSearch cluster.

No 5

replicasPerShard The number of replicas for each
shard in the ElasticSearch cluster.
This value can be set only by the
master nodes that are created in the
ElasticSearch cluster.

No 1

transportPort The port used for node-to-node
communication in the ElasticSearch
cluster.

No 9600

clusterName

Use the clusterName attribute to specify a name of your choice for the
ElasticSearch cluster.

An ElasticSearch cluster consists of one or more nodes that share the same
cluster name so you might specify the same value for the clusterName
attribute if you configure several nodes.

nodeName

Use the nodeName attribute to specify a name of your choice for the node to
configure in the ElasticSearch cluster. Each node name must be unique in
the ElasticSearch cluster even if nodes span on several machines.

mastersList

Use the mastersList attribute to provide a comma-separated list of the
master nodes in your ElasticSearch cluster. Each master node in this list
must be identified by its host name, and the ElasticSearch node-to-node
communication port. This port is 9600 by default, or it is the port number
that you specified with the attribute transportPort when you configured
that master node.

For example: hostname1:transport-port1, hostname2:transport-port2.

Note:

v If you specify a transportPort that is different than the default value
9600, you must also set this value with the attribute transportPort. By
default, when the attribute mastersList is omitted, an attempt is made
to detect the host name and the ElasticSearch transport port on all
supported application servers.

v If the target application server is WebSphere Application Server Network
Deployment cluster, and if you add or remove a server from this cluster
at a later point in time, you must edit this list manually to keep in sync
with the ElasticSearch cluster.

dataPath

Use the dataPath attribute to specify a different directory to store
ElasticsSearch data. You can specify an absolute path or a relative path.

Installing and configuring 6-313

If the attribute dataPath is not specified, then ElasticSearch cluster data is
stored in a default directory that is called analyticsData, whose location
depends on the application server:
v For WebSphere Application Server Liberty profile, the location is

${wlp.user.dir}/servers/serverName/analyticsData.
v For Apache Tomcat, the location is ${CATALINA_HOME}/bin/

analyticsData.
v For WebSphere Application Server and WebSphere Application Server

Network Deployment, the location is ${was.install.root}/profiles/
<profileName>/analyticsData.

The directory analyticsData and the hierarchy of sub-directories and files
that it contains are automatically created at run time, if they do not already
exist when the MobileFirst Analytics Service component receives events.

shards

Use the shards attribute to specify the number of shards to create in the
ElasticSearch cluster.

replicasPerShard

Use the replicasPerShard attribute to specify the number of replicas to
create for each shard in the ElasticSearch cluster.

Each shard can have zero or more replicas. By default, each shard has one
replica, but the number of replicas can be changed dynamically on an
existing index in the MobileFirst Analytics. A replica shard can never be
started on the same node as its shard.

transportPort

Use the transportPort attribute to specify a port that other nodes in the
ElasticSearch cluster must use when communicating with this node. You
must ensure that this port is available and accessible if this node is behind
a proxy or firewall.

To specify an application server

Use the <applicationserver> element to define the parameters that depend on the
underlying application server. The <applicationserver> element supports the
following elements.

Note: The attributes and inner elements of this element are described in tables 6
through 12 of “Ant tasks for installation of MobileFirst runtime environments” on
page 6-293.

Table 6-144. Inner elements of the <applicationserver> element

Element Description Count

websphereapplicationserver
or was

The parameters for WebSphere Application Server. 0..1

tomcat The parameters for Apache Tomcat. 0..1

To specify custom JNDI properties

The <installanalytics>, <updateanalytics>, and <uninstallanalytics> elements
support the following element:

6-314 IBM MobileFirst Platform Foundation V8.0.0

Table 6-145. Inner element of the <property> element

Element Description Count

property Properties 0..∞

By using this element, you can define your own JNDI properties.

This element has the following attributes:

Table 6-146. Attributes of the <property> element

Attribute Description RequiredDefault

name The name of the property. Yes None

value The value of the property. Yes None

Internal runtime databases
Learn about runtime database tables, their purpose, and order of magnitude of
data stored in each table. In relational databases, the entities are organized in
database tables.

Database used by MobileFirst Server runtime

The following table provides a list of runtime database tables, their descriptions,
and how they are used in relational databases.

Table 6-147. Common runtime database tables

Relational database table name Description Order of magnitude

LICENSE_TERMS Stores the various license metrics
captured every time the device
decommissioning task is run.

Tens of rows. This value does not exceed
the value set by the JNDI property
mfp.device.decommission.when property.
For more information about JNDI
properties, see “List of JNDI properties
for MobileFirst runtime” on page 6-183

ADDRESSABLE_DEVICE Stores the addressable device
metrics daily. An entry is also
added each time that a cluster is
started.

About 400 rows. Entries older than 13
months are deleted daily.

MFP_PERSISTENT_DATA Stores instances of client
applications that have registered
with the OAuth server, including
information about the device, the
application, users associated with
the client and the device status.

One row per device and application pair.

MFP_PERSISTENT_CUSTOM_ATTR Custom attributes that are
associated with instances of client
applications. Custom attributes are
application-specific attributes that
were registered by the application
per each client instance.

Zero or more rows per device and
application pair

MFP_TRANSIENT_DATA Authentication context of clients
and devices

Two rows per device and application
pair; if using device single sign-on an
extra two rows per device. For more
information about SSO, see “Configuring
device single sign-on (SSO)” on page
7-301.

Installing and configuring 6-315

Table 6-147. Common runtime database tables (continued)

Relational database table name Description Order of magnitude

SERVER_VERSION The product version. One row

Database used by MobileFirst Server administration service

The following table provides a list of administration database tables, their
descriptions, and how they are used in relational databases.

Table 6-148. Common administration database tables.

Relational database table
name Description Order of Magnitude

ADMIN_NODE Stores information about the
servers that run the
administration service. In a
stand-alone topology with
only one server, this entity is
not used.

One row per server; empty if
a stand-alone server is used.

AUDIT_TRAIL Stores an audit trail of all
administrative actions
performed with the
administration service.

Thousands of rows.

CONFIG_LINKS Stores the links to the live
update service. Adapters
and applications might have
configurations that are
stored in the live update
service, and the links are
used to find those
configurations.

Hundreds of rows. Per
adapter, 2-3 rows are used.
Per application, 4-6 rows are
used.

FARM_CONFIG Stores the configuration of
farm nodes when a server
farm is used.

Tens of rows; empty if no
server farm is used.

GLOBAL_CONFIG Stores some global
configuration data.

1 row.

PROJECT Stores the names of the
deployed projects.

Tens of rows.

PROJECT_LOCK Internal cluster
synchronization tasks.

Tens of rows.

TRANSACTIONS Internal cluster
synchronization table; stores
the state of all current
administrative actions.

Tens of rows.

MFPADMIN_VERSION The product version. One row.

Database used by MobileFirst Server live update service

The following table provides a list of live update service database tables, their
descriptions, and how they are used in relational databases.

6-316 IBM MobileFirst Platform Foundation V8.0.0

Table 6-149. Live update service tables

Relational database table name Description Order of magnitude

CS_SCHEMAS Stores the versioned
schemas that exist in the
platform.

One row per schema.

CS_CONFIGURATIONS Stores instances of
configurations for each
versioned schema.

One row per configuration

CS_TAGS Stores the searchable
fields and values for
each configuration
instance.

Row for each field name and
value for each searchable
field in configuration.

CS_ATTACHMENTS Stores the attachments
for each configuration
instance.

One row per attachment.

CS_VERSION Stores the version of the
MFP that created the
tables or instances.

Single row in the table with
the version of MFP.

Database used by MobileFirst Server push service

The following table provides a list of push service database tables, their
descriptions, and how they are used in relational databases.

Table 6-150. Push service tables

Relational database table name Description Order of magnitude

PUSH_APPS Push notification table;
stores details of push
applications.

One row per application.

PUSH_ENV Push notification table;
stores details of push
environments.

Tens of rows.

PUSH_TAGS Push notification table;
stores details of defined
tags.

Tens of rows.

PUSH_DEVICES Push notification table.
Stores a record per
device.

One row per device.

PUSH_SUBSCRIPTIONS Push notification table.
Stores a record per tag
subscription.

One row per device
subscription.

PUSH_MESSAGES Push notification table;
stores details of push
messages.

Tens of rows.

PUSH_MESSAGE_SEQUENCE_TABLE Push notification table;
stores the generated
sequence ID.

One row.

PUSH_VERSION The product version. One row.

For more information about setting up the databases, see “Setting up databases”
on page 6-63.

Installing and configuring 6-317

Sample configuration files
IBM MobileFirst Platform Foundation includes a number of sample configuration
files to help you get started with the Ant tasks to install the MobileFirst Server.

The easiest way to get started with these Ant tasks is by working with the sample
configuration files provided in the MobileFirstServer/configuration-samples/
directory of the MobileFirst Server distribution. For more information about
installing MobileFirst Server with Ant tasks, see “Installing with Ant Tasks” on
page 6-110

List of sample configuration files

Pick the appropriate sample configuration file. The following files are provided

Table 6-151. Sample configuration files provided with IBM MobileFirst Platform Foundation

Task Derby DB2 MySQL Oracle

Create databases
with database
administrator
credentials

create-
database-
derby.xml

create-
database-
db2.xml

create-
database-
mysql.xml

create-
database-
oracle.xml

Install
MobileFirst
Server on
Liberty

configure-
liberty-
derby.xml

configure-
liberty-db2.xml

configure-
liberty-
mysql.xml (See
Note on MySQL)

configure-
liberty-
oracle.xml

Install
MobileFirst
Server on
WebSphere
Application
Server full
profile, single
server

configure-was-
derby.xml

configure-was-
db2.xml

configure-was-
mysql.xml (See
Note on MySQL)

configure-was-
oracle.xml

Install
MobileFirst
Server on
WebSphere
Application
Server Network
Deployment

(See Note on
configuration
files)

configure-
wasnd-cluster-
derby.xml

configure-
wasnd-server-
derby.xml

configure-
wasnd-node-
derby.xml

configure-
wasnd-cell-
derby.xml

configure-
wasnd-cluster-
db2.xml

configure-
wasnd-server-
db2.xml

configure-
wasnd-node-
db2.xml

configure-
wasnd-cell-
db2.xml

configure-
wasnd-cluster-
mysql.xml (See
Note on MySQL)

configure-
wasnd-server-
mysql.xml (See
Note on MySQL)

configure-
wasnd-node-
mysql.xml (See
Note on MySQL)

configure-
wasnd-cell-
mysql.xml

configure-
wasnd-cluster-
oracle.xml

configure-
wasnd-server-
oracle.xml

configure-
wasnd-node-
oracle.xml

configure-
wasnd-cell-
oracle.xml

Install
MobileFirst
Server on
Apache Tomcat

configure-
tomcat-
derby.xml

configure-
tomcat-db2.xml

configure-
tomcat-
mysql.xml

configure-
tomcat-
oracle.xml

6-318 IBM MobileFirst Platform Foundation V8.0.0

Table 6-151. Sample configuration files provided with IBM MobileFirst Platform
Foundation (continued)

Task Derby DB2 MySQL Oracle

Install
MobileFirst
Server on
Liberty collective

Not relevant configure-
libertycollective-
db2.xml

configure-
libertycollective-
mysql.xml

configure-
libertycollective-
oracle.xml

Note on MySQL: : MySQL in combination with WebSphere Application Server
Liberty profile or WebSphere Application Server full profile is not classified as a
supported configuration. For more information, see WebSphere Application Server
Support Statement. Consider using IBM DB2 or another database that is supported
by WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Note on configuration files for WebSphere Application Server Network
Deployment: The configuration files for wasnd contain a scope that can be set to
cluster, node, server, or cell. For example, for configure-wasnd-cluster-
derby.xml, the scope is cluster. These scope types define the deployment target as
follows:
v cluster: To deploy to a cluster.
v server: To deploy to a single server that is managed by the deployment

manager.
v node: To deploy to all the servers that are running on a node, but that do not

belong to a cluster.
v cell: To deploy to all the servers on a cell.

Sample configuration files for MobileFirst Analytics
IBM MobileFirst Platform Foundation includes a number of sample configuration
files to help you get started with the Ant tasks to install the MobileFirst Analytics
Services, and the MobileFirst Analytics Console.

The easiest way to get started with the <installanalytics>, <updateanalytics>,
and <uninstallanalytics> Ant tasks is by working with the sample configuration
files provided in the Analytics/configuration-samples/ directory of the
MobileFirst Server distribution.

Step 1

Pick the appropriate sample configuration file. The following XML files are
provided. They are referred to as configure-file.xml in the next steps.

Table 6-152. Sample configuration files provided with IBM MobileFirst Platform Foundation

Task Application server

Install MobileFirst Analytics Services and
Console on WebSphere Application Server
Liberty profile

configure-liberty-analytics.xml

Install MobileFirst Analytics Services and
Console on Apache Tomcat

configure-tomcat-analytics.xml

Install MobileFirst Analytics Services and
Console on WebSphere Application Server
full profile

configure-was-analytics.xml

Installing and configuring 6-319

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

Table 6-152. Sample configuration files provided with IBM MobileFirst Platform
Foundation (continued)

Task Application server

Install MobileFirst Analytics Services and
Console on WebSphere Application Server
Network Deployment, single server

configure-wasnd-server-analytics.xml

Install MobileFirst Analytics Services and
Console on WebSphere Application Server
Network Deployment, cell

configure-wasnd-cell-analytics.xml

Install MobileFirst Analytics Services and
Console on WebSphere Application Server
Network Deployment, node

configure-wasnd-node.xml

Install MobileFirst Analytics Services and
Console on WebSphere Application Server
Network Deployment, cluster

configure-wasnd-cluster-analytics.xml

Note on configuration files for WebSphere Application Server Network
Deployment:

The configuration files for wasnd contain a scope that can be set to cluster,
node, server, or cell. For example, for configure-wasnd-cluster-
analytics.xml, the scope is cluster. These scope types define the
deployment target as follows:
v cluster: To deploy to a cluster.
v server: To deploy to a single server that is managed by the deployment

manager.
v node: To deploy to all the servers that are running on a node, but that do

not belong to a cluster.
v cell: To deploy to all the servers on a cell.

Step 2

Change the file access rights of the sample file to be as restrictive as possible. Step
3 requires that you supply some passwords. If you must prevent other users on the
same computer from learning these passwords, you must remove the read
permissions of the file for users other than yourself. You can use a command, such
as the following examples:
v On UNIX:

chmod 600 configure-file.xml

v On Windows:
cacls configure-file.xml /P Administrators:F %USERDOMAIN%\%USERNAME%:F

Step 3

Similarly, if your application server is WebSphere Application Server Liberty
profile, or Apache Tomcat, and the server is meant to be started only from your
user account, you must also remove the read permissions for users other than
yourself from the following files:
v For WebSphere Application Server Liberty profile: wlp/usr/servers/<server>/

server.xml

v For Apache Tomcat: conf/server.xml

6-320 IBM MobileFirst Platform Foundation V8.0.0

Step 4

Replace the placeholder values for the properties at the beginning of the file.

Note: The following special characters must be escaped when they are used in the
values of the Ant XML scripts:
v The dollar sign ($) must be written as $$, unless you explicitly want to reference

an Ant variable through the syntax ${variable}, as described in Properties
section of the Apache Ant Manual.

v The ampersand character (&) must be written as &, unless you explicitly
want to reference an XML entity.

v Double quotation marks (") must be written as ", except when it is inside a
string that is enclosed in single quotation marks.

Step 5

Run the command:
ant -f configure-file.xml install

This command installs your MobileFirst Analytics Services and MobileFirst
Analytics Console components in the application server.

To install updated MobileFirst Analytics Services and MobileFirst Analytics
Console components, for example if you apply a MobileFirst Server fix pack, run
the following command:
ant -f configure-file.xml minimal-update

To reverse the installation step, run the command:
ant -f configure-file.xml uninstall

This command uninstalls the MobileFirst Analytics Services and MobileFirst
Analytics Console components.

Installing and configuring 6-321

http://ant.apache.org/manual/properties.html

6-322 IBM MobileFirst Platform Foundation V8.0.0

Developing applications

The process for developing applications has steps that are common to all
environments: setting up a server, creating an initial server registration and
corresponding configuration files, creating a new (or opening an existing) project in
your chosen IDE, and adding the necessary SDK files to your IDE project. Also,
server-side adapters can be developed as needed for the application.

Each MobileFirst application consists of server-side and client-side development.
Before you can initially run your client app and connect to the server resources, the
client app needs to be registered to the server.

Setting up the environment

Regardless of the target device platform, all MobileFirst applications need to be set
up before they can be developed.
v Set up the IBM MobileFirst Platform Foundation Developer Kit if necessary. For

more information, see “The IBM MobileFirst Platform Foundation Developer
Kit” on page 7-9.

v Create a set of MobileFirst SDK files for adding to your application. For more
information, see “Acquiring the MobileFirst SDK from the MobileFirst
Operations Console” on page 7-26.

v Develop your client app.
v Register your app to the MobileFirst Development Server, which is installed

with the IBM MobileFirst Platform Foundation Developer Kit.
v Add server-side resources (adapters) for your app.

Using package-management tools to add the SDK to your
existing app
v To develop a native iOS application, use the MobileFirst iOS SDK with

CocoaPods. For more information, see “Adding MobileFirst SDK to an iOS
Xcode project using CocoaPods” on page 7-29.

v To develop a native Android application, use the MobileFirst Android SDK
using Gradle. For more information, see “Setting up Android Studio projects
with Gradle” on page 7-53.

v To develop a native Windows 8 Universal application or a Windows 10
Universal Windows Platform (UWP) application, use the MobileFirst Windows
Universal SDK with NuGet. For more information, see “Adding the MobileFirst
SDK by using NuGet” on page 7-66.

Developing the app

MobileFirst can be developed for Apple devices using the iOS Objective-C SDK,
Android-based devices using the Android Java SDK, web-browser devices using
the web JavaScript SDK, and Windows devices using the Windows C# SDK. In
addition, SDKs are provided for developing Cordova apps through a combination
of a native platform SDK (iOS or Android) and JavaScript.
v For native Android development, see “Developing native applications in

Android Studio” on page 7-52.

© Copyright IBM Corp. 2006, 2016 7-1

v For native iOS development, see “Developing native applications for iOS in
Xcode” on page 7-27

v For Windows development, see “Developing native C# applications for
Windows 10 Universal Windows Platform and Windows 8 Universal” on page
7-65.

v For web development, see “Developing web applications” on page 7-73.
v For Cordova development, see “Developing Cordova applications” on page 7-83.

Using server-side resources

When the client app can connect to the server, it can use server-side resources such
as adapters and security.
v Adapters can be developed in Java or JavaScript. See “Developing the server

side of a MobileFirst application” on page 7-187.
v The app can be secured in a number of ways. See “MobileFirst security

framework” on page 7-265.

Build and deployment

For more information about building and deploying applications to a test or
production server, see “Deploying MobileFirst applications to test and production
environments” on page 10-2.

Development concepts and overview
When you develop your app with MobileFirst tools, you must develop or
configure a variety of components and elements. Learning about the components
and elements involved when developing your app helps your development
proceed smoothly.

Applications
Applications are built for a target MobileFirst Server. They have a server-side
configuration on the target server. You must register your applications on the
MobileFirst Server before you can configure them.

In IBM MobileFirst Platform Foundation, applications are identified by the
following elements:
v An app ID
v A version number
v A target deployment platform

Note: The version number is not applicable to web applications. You cannot have
multiple versions of the same web application.
These identifiers are used on both the client side and the server side to ensure that
apps are deployed correctly and use only resources assigned to them. Different
parts of IBM MobileFirst Platform Foundation use various combinations of these
identifiers in different ways.

The app ID depends on the target deployment platform:

Android
For Android apps, the identifier is the application package name.

iOS For iOS apps, the identifier is the application bundle ID.

7-2 IBM MobileFirst Platform Foundation V8.0.0

Windows
For Windows apps, the identifier is application assembly name.

Web For web apps, the identifier is a unique ID that is assigned by the
developer.

If apps for different target platforms all have the same app ID, then IBM
MobileFirst Platform Foundation considers all of these apps to be the same app
with different platform instances. For example, the following apps are considered
to be different platform instances of the same app:
v An iOS app with a bundle ID of com.mydomain.mfp
v An Android app with a package name of com.mydomain.mfp
v A Windows 10 Universal Windows Platform app with an assembly name of

com.mydomain.mfp

v A web app with an assigned ID of com.mydomain.mfp.

The target deployment platform for the app is independent of whether the app
was developed as a native app or as a Cordova app. For example, the following
apps are both considered to be iOS apps in IBM MobileFirst Platform Foundation:
v An iOS app that you develop with Xcode and native code
v An iOS app that you develop with Cordova cross-platform development

technologies

Application configuration

An application is configured on both the client side and the server side. For native
and Cordova iOS, Android, and Windows applications, the client configuration is
stored in a client properties file (mfpclient.plist for iOS, mfpclient.properties
for Android, or mfpclient.resw for Windows). For web applications, the
configuration properties are passed as parameters to the SDK initialization method
(see “Initializing the MobileFirst SDK” on page 7-79). The client configuration
properties include the application ID and information such as the URL of the
MobileFirst Server runtime and security keys that are required to access to the
server. The server configuration for the app includes information like app
management status, web resources for Direct Update,configured security scopes,
and log configuration.

The client configuration must be defined before you build the application. The
client-app configuration properties must match the properties that are defined for
this app in the MobileFirst Server runtime. For example, security keys in the client
configuration must match the keys on the server. For non-web apps, you can
change the client configuration with the MobileFirst Platform CLI (mfpdev
command).

The server configuration for an app is tied to the combination of app ID, version
number, and target platform. The version number is not applicable to web apps.
You must register your app to a MobileFirst Server runtime before you can add
server-side configurations for the app.

Configuring the server side of an app is typically done with the MobileFirst
Operations Console. You can also configure the server side of an app with the
following methods:
v Grab existing JSON configuration files from the server with the mfpdev app pull

command, update the file, and upload the changed configuration with the
mfpdev app push command.

Developing applications 7-3

v Use the mfpadm program or Ant task.
For information about using mfpadm, see “Administering MobileFirst applications
through the command line” on page 10-47 and “Administering MobileFirst
applications through Ant” on page 10-23.

v Use the REST API of the MobileFirst administration service.
For information about the REST API, see “REST API for the MobileFirst Server
administration service” on page 8-7

You can also use these methods to automate configuring your MobileFirst Server.

Remember: You can modify the server configuration even while a MobileFirst
Server is running and receiving traffic from apps. You do not need to stop the
server to change the server configuration for an app.

On a production server, the app version typically corresponds to the version of the
application published to an app store. Some server configuration elements like the
configuration for app authenticity, are unique to the app published to the store.

MobileFirst Server
The server side of your mobile app is MobileFirst Server. MobileFirst Server gives
you access to features like application management and application security, as
well giving your mobile app secure access to your other backend systems through
adapters.

MobileFirst Server is the core component that delivers many IBM MobileFirst
Platform Foundation features, including the following features:
v Application management
v Application security, including authenticating devices and users and verifying

application authenticity
v Secure access to backend services through adapters
v Updating Cordova app Web resources with Direct Update
v Push notifications and push subscriptions
v App analytics

You need to use MobileFirst Server throughout your app's lifecycle from
development and test through to production deployment and maintenance. A
preconfigured server is available for you to use when you develop your app. For
information about the MobileFirst Development Server to use when you develop
your app, see “Setting up the MobileFirst Development Server” on page 7-12.

MobileFirst Server consists of the following components. All of these components
are also included in the MobileFirst Development Server. In simple cases, they are
all running on the same application server, but in a production or test
environment, the components can be run on different application servers. For
information about possible topologies for these MobileFirst Server components, see
“Topologies and network flows” on page 6-78.

MobileFirst Operations Console and the MobileFirst Server administration
service

The operations console is a web interface that you can use to view and edit
the MobileFirst Server configurations. You can also access the MobileFirst
Analytics Console from here.

7-4 IBM MobileFirst Platform Foundation V8.0.0

The context root for the operations console in the development server is
/mfpconsole.

The administration service is the main entry point for managing your apps.
You can access the administration service through a web-based interface
with the MobileFirst Operations Console. You can also access the
administration service with the mfpadm command-line tool or the
administration service REST API.

MobileFirst runtime

The runtime is the main entry point for a MobileFirst client app. The
runtime is also the default authorization server for the IBM MobileFirst
Platform Foundation OAuth implementation.

In advanced and rare cases, you can have multiple instances of a device
runtime in a single MobileFirst Server. Each instance has its own context
root. The context root is used to display the name of a runtime in the
operations console. Use multiple instances in cases where you require
different server-level configuration such as secret keys for keystore.

If you have only one instance of a device runtime in MobileFirst Server,
you do not typically need to know the runtime context root. For example,
when you register an application to a runtime with the mfpdev app
register command when the MobileFirst Server has only one runtime, the
application is registered automatically to that runtime.

MobileFirst Server push service

The push service is your main access point for push-related operations like
push notifications and push subscriptions. To contact the push services,
client apps use the URL of the runtime but replace the context root with
/mfppush. You can configure and manage the push service with the
MobileFirst Operations Console or the push service REST API.

If you run the push services in a separate application server from the
MobileFirst runtime, you must route the push service traffic to the correct
application server with your HTTP server.

MobileFirst Analytics and the MobileFirst Analytics Console

IBM MobileFirst Analytics is an optional component that provides a
scalable analytics feature that you can access from the MobileFirst
Operations Console. This analytics feature lets you search for patterns,
problems and platform usage statistics across logs and events that are
collected from devices, apps, and servers.

From the MobileFirst Operations Console, you can define filters to enable
or disable data forwarding to the analytics service. You can also filter the
type of information that is sent. On the client side, you can use the
client-side log capture API to send events and data to the analytics server.
For more information about the client-side log capture API, see “Logger
SDK” on page 11-37.

After you install and configure MobileFirst Server into the topology that you want,
any further configuration of MobileFirst Server and its applications can be done
entirely through any of the following methods:
v The MobileFirst Operations Console
v The MobileFirst Server administration service REST API
v The mfpadm command-line tool

Developing applications 7-5

After the initial installation and configuration, you do not need to access any
application server console or interface to configure IBM MobileFirst Platform
Foundation.

When you deploy your app to production, you can deploy your app to the
following MobileFirst Server production environments:
v On-premises.

For information about installing and configuring MobileFirst Server for your
on-premises environment, see “Installing IBM MobileFirst Platform Server” on
page 6-2.

v On the cloud
For information, see “Deploying MobileFirst Server to the cloud” on page 9-1

Adapters
Adapters in IBM MobileFirst Platform Foundation securely connect your back-end
systems to client applications and cloud services.

You can write adapters in either JavaScript or Java, and you can build and deploy
adapters as Maven projects. Adapters are deployed to a MobileFirst runtime in
MobileFirst Server.

In a production system, adapters typically run in a cluster of application servers.
Implement your adapters as REST services with no session information and stored
locally on the server to ensure that your adapter works well in a clustered
environment.

An adapter can have user-defined properties. These properties can be configured
on the server side without redeploying the adapter. For example, you can change
the URL that your adapter uses to access resources when you move from test to
production.

You can deploy an adapter to a MobileFirst runtime from the MobileFirst
Operations Console, by using the mfpdev adapter deploy command, or directly
from Maven.

For more information about adapters, see Adapters overview.

MobileFirst Operations Console overview
The MobileFirst Operations Console is a web application that provides a graphical
user interface to simplify some MobileFirst development and administration tasks.

You can open the console from a browser. If you have installed IBM MobileFirst
Platform Command Line Interface (CLI), you can also open the console by running
the mfpdev server console command. For more information, see “Opening the
MobileFirst Operations Console” on page 7-12.

To access the console, you need a valid user name and password, which is
assigned to you by your MobileFirst Server administrator according to your role.
The MobileFirst Development Server is preconfigured with the admin/admin
combination.

7-6 IBM MobileFirst Platform Foundation V8.0.0

Quick tour

The console is designed for development, deployment, management, and
monitoring tasks.

As a developer

v Develop applications for any environment and register them to
MobileFirst Server.

v See all your deployed applications and adapters at a glance. See the
Dashboard.

v Manage and configure registered applications, including remote
disablement, Direct Update, and security configurations for application
authenticity and user authentication.

v Set up push notification by deploying certificates, creating notification
tags, and sending notification.

v Create and deploy adapters.
v Download samples.

As an IT administrator

v Monitor various services.
v Search for devices that access MobileFirst Server and manage their

access rights.
v Update adapter configurations dynamically.
v Adjust client logger configurations through log profiles.
v Track how product licenses are used.

Getting Started

To get started with the MobileFirst Operations Console, see the Using the
MobileFirst Platform Operations Console tutorial.

Developing applications 7-7

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/setting-up-your-development-environment/console/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/setting-up-your-development-environment/console/

See also

For more information about the command-line interface for development, see “The
MobileFirst command-line interface (CLI)” on page 7-13.

For more information about users and roles, see “Configuring user authentication
for MobileFirst Server administration” on page 6-166.

Client app development environments
With IBM MobileFirst Platform Foundation, you can develop your mobile app in
the development environment of your choice as a native app or as a Cordova app.

You need two pieces in your development environment to develop a MobileFirst
client application: a MobileFirst SDK, and the MobileFirst Platform CLI (mfpdev).

Depending on the target platform, the MobileFirst SDK is available in different
ways:

Native iOS apps

You can add the MobileFirst SDK to Xcode by using CocoaPods, or you
can set up your development environment manually.

For more information about setting up your iOS development
environment, see “Developing native applications for iOS in Xcode” on
page 7-27.

Native Android apps

You can add the MobileFirst SDK to Android Studio with Gradle, or you
can set up your development environment manually.

For more information about setting up your Android development
environment, see “Developing native applications in Android Studio” on
page 7-52.

Native Windows apps

You can add the MobileFirst SDK to VisualStudio with NuGet, or you can
set up your development environment manually.

For more information about setting up your Windows development
environment, see “Developing native C# applications for Windows 10
Universal Windows Platform and Windows 8 Universal” on page 7-65.

Web apps

You can acquire the MobileFirst web SDK either from the IBM MobileFirst
Platform Operations Console or by using npm (node package manager), and
then manually add the SDK to your web project.

For more information about setting up your web development
environment, see “Developing web applications” on page 7-73.

Cordova apps

The MobileFirst SDK for Cordova is available as a plug-in that you can
obtain by using npm (node package manager).

You can use IBM MobileFirst Studio plug-in to develop Cordova apps. For
more information, see “IBM MobileFirst Studio plug-in for managing
Cordova projects in Eclipse” on page 7-114.

7-8 IBM MobileFirst Platform Foundation V8.0.0

For more information about setting up your environment to develop
MobileFirst apps with Cordova, see “Prerequisites for developing Cordova
apps with MobileFirst features” on page 7-84.

In addition to these development-platform specific installation methods, you can
also get the IBM MobileFirst Platform Foundation Developer Kit to give you all of
the components that you need to start developing your MobileFirst app.

When you develop your app, use the MobileFirst Platform CLI for the following
types of tasks:
v Configuring the client side of the application
v Updating the server-side configuration of the application
v Defining the target
v Previewing and updating Cordova apps

For more information about the MobileFirst Platform CLI, see “The MobileFirst
command-line interface (CLI)” on page 7-13.

Setting up the development environment
Install MobileFirst Development Server and MobileFirst Platform CLI before you
develop the client-side or the server-side of your MobileFirst application.

You need MobileFirst Development Server and MobileFirst Platform CLI for many
development tasks. You install these tools with IBM MobileFirst Platform
Foundation Developer Kit. The IBM MobileFirst Platform Foundation Developer
Kit can also be used to get the MobileFirst SDKs or to download starter code.

Getting started with MobileFirst development
To develop an application for any of the supported platforms, you follow the same
general pattern. You go through several basic steps to develop your application:
start the MobileFirst Development Server, open the MobileFirst Operations
Console, customize sample code, and create an adapter. Tutorials help you get
started.

Before you begin

To install a development server and open the console, see “Setting up the
MobileFirst Development Server” on page 7-12.

About this task

For step-by-step development instructions for each of the supported platforms, see
the Quick Start tutorials on the Developer Center website or “Getting started with
a sample MobileFirst application” on page 7-25.

The IBM MobileFirst Platform Foundation Developer Kit

The IBM MobileFirst Platform Foundation Developer Kit contains all you need to
start developing and testing MobileFirst applications. The kit includes many
components, such as:
v A version of MobileFirst Server, called the MobileFirst Development Server.
v The IBM MobileFirst Platform Command Line Interface (CLI).
v The migration assistance tool.
v Sample applications.

Developing applications 7-9

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/all-tutorials/

Installing the IBM MobileFirst Platform Foundation Developer Kit

Before you begin
v You must have IBM MobileFirst Platform Foundation V8.0.0.
v You must have computer with a supported OS X, Windows, or Linux operating

system installed. See “System requirements” on page 2-7 for more information
about supported operating systems.

v To install the IBM MobileFirst Platform Command Line Interface (CLI), you
must have Node.js 4.0.0 or later installed. If you do not have internet access, it
must be preinstalled. Otherwise, you can install Node.js as part of this
procedure, but internet access is required to do so.

Note: If you need to set up your development environment on a computer that
has no internet access, you can install components offline. See How to set up an
offline IBM MobileFirst development environment.

About this task

The IBM MobileFirst Platform Foundation Developer Kit is available for download
as a compressed file for your operating system. You download the file, uncompress
it, then install its components.

Procedure
1. Download the IBM MobileFirst Platform Foundation Developer Kit from the

Download page.
You download one of the following files, depending on your operating
system:
v OS X:mfp-devkit-mac-dddd-tttt.zip
v Linux: mfp-devkit-linux-dddd-tttt.bin
v Windows: mfp-devkit-windows-dddd-tttt.exe
where dddd is a date stamp and tttt is a time stamp.

2. Start the installation program as follows:
v OS X: Uncompress the mfp-devkit-mac-dddd-tttt.zip file and click or

double-click to launch the installation program.
v Linux: Type ./file_name.bin, where file_name.bin is the file you just

downloaded.
v Windows: Do one of the following:

– In Windows Explorer, navigate to the directory into which you
downloaded the file, and double-click the file.

– Open a command prompt window and navigate to the directory into
which you downloaded the file. Then, type file_name.exe, where
file_name.exe is the file you just downloaded.

This starts the installation program.
3. Follow the installation program prompts. You must accept both IBM and

non-IBM terms of the license agreement to continue.
4. Open a command prompt or terminal window, and navigate to the directory

in which you installed the IBM MobileFirst Platform Foundation Developer
Kit. You should find two subdirectories, license and mfp-server , a
README.txt file, and the following executable files for managing the
MobileFirst Development Server:
v sh files for OS X and Linux: run.sh, console.sh, stop.sh

7-10 IBM MobileFirst Platform Foundation V8.0.0

https://mobilefirstplatform.ibmcloud.com/blog/2016/03/31/howto-set-up-an-offline-ibm-mobilefirst-8-0-development-environment
https://mobilefirstplatform.ibmcloud.com/blog/2016/03/31/howto-set-up-an-offline-ibm-mobilefirst-8-0-development-environment
http://www.ibm.com/support/docview.wss?uid=swg2C4000039

v cmd files for Windows: run.cmdconsole.cmd, stop.cmd
5. From the command prompt or terminal window, start the MobileFirst

Development Server:
v For OS X or Linux, enter

./run.sh

v For Windows, enter
run

Starting the server might take a few minutes. When the message The server
mfp is ready to run a smarter planet is displayed, the server is up and
running.

Important: Do not close the command prompt or terminal window in which
you started the server. If you close the window, the server stops running.

Tip: You can also launch the server as a background process. To launch the
server in the background, use the -bg option. For example, for OS X: run.sh
-bg. If you run the server as a background process, you can close the
command prompt or terminal window without stopping the server.

6. Start the IBM MobileFirst Platform Operations Console:
v For OS X or Linux, enter

./console.sh

v For Windows, enter
console

7. Log in to the MobileFirst Operations Console. Use the following default login
credentials:
v User: admin
v Password: admin

8. Download and install the IBM MobileFirst Platform Command Line Interface
(CLI). To download and install the CLI, follow these steps:
a. From the MobileFirst Operations Console Dashboard, click Get Starter

Code.
b. From the Downloads page, select the Tools tab.
c. Under Developer CLI, click Download.
d. Save the file mfpdev-cli.tgz to your local computer.
e. (Required only if Node.js is not already installed. If Node.js is already

installed, skip this step.) Install Node.js, version 4.0.0 or later. To download
and install Node.js, click the link Node.js to be installed in the console.
This takes you to the Node.js web site. Follow the download and
installation instructions there.

Note: Alternatively, you can reach the Node.js web site by clicking this
link: Node.js web site

f. Open a command prompt or terminal window and run the following
command:
npm install -g --no-optional path_cli_file

where path_cli_file is the full path and name of the downloaded file,
including extension. For example, if the file is in the current working
directory:
npm install -g --no-optional mfpdev-cli.tgz

Developing applications 7-11

https://nodejs.org/

9. Optional: You can install the migration assistance tool by repeating step 8 on
page 7-11 and substituting the filename for the migration assistance tool
(mfp-migrate-cli.tgz) for the name of the CLI file (mfpdev-cli).

10. Download the IBM MobileFirst Platform Foundation SDK that is appropriate
to your target platform. For complete instructions, see “Acquiring the
MobileFirst SDK from the MobileFirst Operations Console” on page 7-26.

11. Optional: Obtain sample starter applications. From the IBM MobileFirst
Platform Operations Console, download onre or more sample starter
application. For complete instructions, see “Getting started with a sample
MobileFirst application” on page 7-25.

Results

You have a MobileFirst Development Server installed and running. You have the
IBM MobileFirst Platform Command Line Interface (CLI) installed, and (optionally)
you have one or more starter applications.

What to do next

To get familiar with MobileFirst development, try the starter app. For an example
of using the CLI to perform various development tasks, see “Getting started with
the MobileFirst CLI” on page 7-22.

Setting up the MobileFirst Development Server
Learn how to install and use MobileFirst Development Server, a pre-configured
MobileFirst Server that you can use for test and development.

MobileFirst Development Server is a preconfigured MobileFirst Server that you can
use for test and development. You install MobileFirst Development Server by
installing the IBM MobileFirst Platform Foundation Developer Kit. For more
information, see “The IBM MobileFirst Platform Foundation Developer Kit” on
page 7-9.

Starting the MobileFirst Development Server
Follow this procedure to start the development server.

Before you begin

Make sure that the development server is installed. To install a development
server, see “Installing the IBM MobileFirst Platform Foundation Developer Kit” on
page 7-10.

Procedure
1. Open a command line window.
2. Go to the server install directory.
3. Depending on your system, run the following command:
v In Mac and Linus, run the command ./run.sh.
v In Windows, run the command run.cmd.

Opening the MobileFirst Operations Console
You open the MobileFirst Operations Console by loading a URL to your browser.

7-12 IBM MobileFirst Platform Foundation V8.0.0

Before you begin

Make sure that the server is started. To start a development server that is installed
locally, see “Starting the MobileFirst Development Server” on page 7-12.

About this task

Procedure

In a browser window, load this URL: http://your-server-host:server-port/
mfpconsole.
For a list of supported browsers, see “System requirements” on page 2-7.
For example, if you run the MobileFirst Development Server locally, use
http://localhost:9080/mfpconsole
To access the console, you need a valid user name and password, which is
assigned to you by your MobileFirst Server administrator according to your role.
The MobileFirst Development Server is preconfigured with the admin/admin
combination.

Stopping the MobileFirst Development Server
Follow this procedure to stop the MobileFirst Development Server.

Before you begin

Make sure that the development server is installed. To install a development
server, see “Installing the IBM MobileFirst Platform Foundation Developer Kit” on
page 7-10.

Procedure
1. Open a command line window.
2. Go to the server install directory.
3. Depending on your system, run the following command:
v In Mac and Linux, run the command ./stop.sh.
v In Windows, run the command stop.cmd.

The MobileFirst command-line interface (CLI)
You can use the IBM MobileFirst Platform Command Line Interface (CLI) to
develop and manage applications, in addition to using the IBM MobileFirst
Platform Operations Console. Some aspects of the MobileFirst development process
must be done with the CLI.

The commands, all prefaced with mfpdev, support the following types of tasks:
v Registering apps with the MobileFirst Server
v Configuring your app
v Creating, building, and deploying adapters
v Previewing and updating Cordova apps

You can use the mfpdev commands on their own, or in parallel with the MobileFirst
Operations Console. You can also use the commands in scripts for automated
testing, build, and deployment flows.

The mfpdev commands have two modes: interactive mode and direct mode. In
interactive mode, you enter the command without options, and you are prompted
for responses. In direct mode, you enter the full command, including options, and

Developing applications 7-13

prompts are not provided. When applicable, the prompts are context-sensitive to
the target platform of the app, as determined by the directory from which you run
the command. Use the up and down arrow keys on your keyboard to move
through the selections, and press the Enter key when the selection you want is
highlighted and preceded by a > character.

Some mfpdev commands require connectivity to a MobileFirst Server. If a
MobileFirst Server is locally installed and running, these commands automatically
detect it and use it as the default server if no other server is explicitly set as the
default.

Tip: Another set of commands, the mfpadm commands, are available for
MobileFirst Server administration. For more information about these commands,
see “Administering MobileFirst applications through the command line” on page
10-47.

The IBM MobileFirst Platform Command Line Interface (CLI) (mfpdev commands)
supports development for all native and hybrid platforms that are supported by
IBM MobileFirst Platform Foundation. However, Android projects must be created
with Android Studio and Gradle. Android projects that are created with the Eclipse
and ADT (Android Developer Toolkit) are not supported by the mfpdev CLI. For
instructions on how to convert your Eclipse ADT Android project to an Android
Studio project, see Migrating from Eclipse ADT at the Android developer web site.

To install the MobileFirst Platform CLI, see “Installing the MobileFirst Platform
CLI” on page 7-15.

Prerequisite software for using the CLI
To use the IBM MobileFirst Platform Command Line Interface (CLI), you might
need some additional software, depending on your development environment and
application development goals.

You can obtain the IBM MobileFirst Platform Command Line Interface (CLI) in two
ways:
v It is included in the IBM MobileFirst Platform Foundation Developer Kit. For

more information about the IBM MobileFirst Platform Foundation Developer Kit,
see “The IBM MobileFirst Platform Foundation Developer Kit” on page 7-9.

v You can install it from Node Package manager (npm) or JazzHub. If you install
it from npm, you must first install Node.js, as described in the following section.

Software required for downloading the CLI from npm

Node Package Manager, or npm, is a public software repository. The MobileFirst
Platform CLI is hosted on JazzHub and npm.

You must install Node.js to be able to download the CLI from npm. For
information about installing Node.js, see the Node js web site.

Software required for adapter development

You can create, build, and deploy adapters with the CLI. If you plan to develop
adapters, you also need to download and install Maven and put the Maven
executable in your system path. For instructions for installing Maven, see Installing
Apache Maven.

For more information about MobileFirst adapters, see the Overview of adapters.

7-14 IBM MobileFirst Platform Foundation V8.0.0

http://developer.android.com/sdk/installing/migrate.html
https://nodejs.org/
https://maven.apache.org/install.html
https://maven.apache.org/install.html

Installing the MobileFirst Platform CLI
Install the IBM MobileFirst Platform Command Line Interface (CLI) so that you
can use the CLI to develop your app.

Before you begin
v You must have computer with a supported OS X, Windows, or Linux operating

system installed. See “System requirements” on page 2-7 for more information
about supported operating systems.

v You must have node.js version 4.0.0 or later installed. If you do not have it
installed, you can install it as part of the procedure on this page.

v If you want to install the CLI from the MobileFirst Operations Console, you
must have access to the MobileFirst Operations Console on an existing
MobileFirst Server. This can be a server running locally, such as the MobileFirst
Development Server, or it can be another (typically remote) MobileFirst Server.

v If you want to install the CLI directly from npm or JazzHub, you must have
internet access.

Note:

v If you need to set up your development environment on a computer that has no
internet access, you can install it offline. See How to set up an offline IBM
MobileFirst development environment.

v If you are installing the CLI from the IBM MobileFirst Platform Foundation
Developer Kit that is already downloaded, you do not need internet access. To
install the CLI from the IBM MobileFirst Platform Foundation Developer Kit, see
“Installing the IBM MobileFirst Platform Foundation Developer Kit” on page
7-10.

About this task

You can install the CLI from the MobileFirst Operations Console or directly from
npm. The CLI is provided as an npm (Node Package Manager) package, and you
use the npm install command to install it.

Note: You can also download the compressed (.zip) file packages from JazzHub.
Click the link that starts with hub.jazz.net from the npm page at the following
URL: www.npmjs.com/package/mfpdev-cli to go directly to the JazzHub web page
for the CLI.

Procedure

You can install the CLI in two main ways: from the MobileFirst Operations
Console or from npm.
v To install the CLI from theMobileFirst Operations Console:

1. From the MobileFirst Operations Console Dashboard, click Get Starter Code.
2. From the Downloads page, select the Tools tab.
3. Under Developer CLI, click Download.
4. Save the file mfpdev-cli.tgz to your local computer.
5. (Required only if Node.js is not already installed. If Node.js is already

installed, skip this step.) Install Node.js 4.0.0 or later. To download and
install Node.js, click the link Node.js to be installed in the console. This
takes you to the Node.js web site. Follow the download and installation
instructions there.

Developing applications 7-15

https://mobilefirstplatform.ibmcloud.com/blog/2016/03/31/howto-set-up-an-offline-ibm-mobilefirst-8-0-development-environment
https://mobilefirstplatform.ibmcloud.com/blog/2016/03/31/howto-set-up-an-offline-ibm-mobilefirst-8-0-development-environment

Note: Alternatively, you can reach the Node.js web site by clicking this link:
Node.js web site

6. Open a command prompt or terminal window and run the following
command:
npm install -g --no-optional path_cli_file

where path_cli_file is the full path and name of the downloaded file,
including extension. For example, if the file is in the current working
directory:
npm install -g --no-optional mfpdev-cli.tgz

v To install the CLI from npm:
1. (Required only if Node.js is not already installed. If Node.js is already

installed, skip this step.) Install Node.js 4.0.0 or later. To install Node.js, go to
the Node.js web site and follow the instructions.

2. Open a command prompt or terminal window and run the following
command:
npm install -g --no-optional mfpdev-cli.tgz@8.0

Results

The MobileFirst Platform CLI is installed.

What to do next

Define which MobileFirst Server you want to be the default, if you do not want to
use the factory default of http://localhost:9080. For more information, see
“Defining the target server of the MobileFirst Platform CLI.”

Defining the target server of the MobileFirst Platform CLI:

Before you start developing with MobileFirst Platform CLI, you must define the
MobileFirst Server that you use for developing and testing.

About this task

The following procedure applies only when you use MobileFirst Development
Server that is installed on another computer, or a MobileFirst Server other than
MobileFirst Development Server with its default configuration. If you use
MobileFirst Development Server locally on your computer, with its default
configuration then this procedure does not apply to you.

If the MobileFirst Platform CLI target server is not configured, it connects to
http://localhost:9080/mfpadmin with admin and admin as login credentials.

Procedure

1. Run mfpdev help server add to get a list of arguments to add a server.
2. Run mfpdev server add with the arguments that you need.
3. Run mfpdev server info to verify that the server is added.

Example

To add a default MobileFirst Development Server that runs on the computer
testserver.mydomain, run the command mfpdev server add myserver -url
http://testerver.mydomain:9080 -login admin -password admin -contextroot
mfpadmin -s.

7-16 IBM MobileFirst Platform Foundation V8.0.0

https://nodejs.org/
https://nodejs.org/

Command-line interface (CLI) summary
The mfpdev command-line consists of the following commands.

Table 7-1. MobileFirst Platform CLI summary

Command
prefix Command action Description

mfpdev app register Registers your app with a MobileFirst Server.

config Enables you to specify the back-end server and
runtime to use for your app. In addition, for
Cordova apps, enables you to configure several
additional aspects such as the default language
for system messages and whether to do a
checksum security check. Other configuration
parameters are included for Cordova apps.

pull Retrieves an existing app configuration from the
server.

push Sends an app's configuration to the server.

preview Enables you to preview your Cordova app
without requiring an actual device of the target
platform type. You can view the preview in either
the Mobile Browser Simulator or your web
browser.

webupdate Packages the application resources contained in
the www directory into a .zip file that can be used
for the Direct Update process.

mfpdev server info Displays information about the MobileFirst
Server.

add Adds a new server definition to your
environment

edit Enables you to edit a server definition.

remove Removes a server definition from your
environment.

console Opens the MobileFirst Operations Console.

clean Unregisters apps and removes adapters from the
MobileFirst Server.

mfpdev adapter create Creates an adapter.

build Builds an adapter.

build all Finds and builds all of the adapters in the current
directory and in its subdirectories.

deploy Deploys an adapter to the MobileFirst Server.

deploy all Finds all of the adapters in the current directory
and in its subdirectories, and deploys them to the
MobileFirst Server.

call Calls an adapter's procedure on the MobileFirst
Server.

push Sends an adapter configuration to the server.

pull Retrieves an existing adapter configuration from
the server.

Developing applications 7-17

Table 7-1. MobileFirst Platform CLI summary (continued)

Command
prefix Command action Description

mfpdev config Sets your configuration preferences for preview
browser type, preview timeout value, and server
timeout value for the mfpdev command-line
interface.

info Displays information about your environment,
including operating system, memory
consumption, node version, and command-line
interface version. If the current directory is a
Cordova application, information provided by the
Cordova cordova infocommand is also
displayed.

-v Displays the version number of the MobileFirst
Platform CLIcurrently in use.

-d, --debug Debug mode: Produces debug output.

-dd. --ddebug Verbose debug mode: Produces verbose debug
output.

-no-color Suppresses use of color in command output.

mfpdev help [<command type > |
[<command action>]]

Displays help for MobileFirst Platform CLI
(mfpdev) commands. With a arguments, displays
more specific help text for each command type or
command. For more information see
“Command-line interface (CLI) help.”

Command-line interface (CLI) help
You can run the help command to display full information about all MobileFirst
Platform CLI commands.

The mfpdev help command displays information about all commands in the CLI.
You can display different levels of information as follows:

Table 7-2. Displaying help for MobileFirst Platform CLI commands

To display... Type in your command window...

A summary of all commands mfpdev help

A summary of all application-related
commands

mfpdev help app

A summary of all server-related commands mfpdev help server

A summary of all adapter-related commands mfpdev help adapter

Details of a specific command mfpdev help <command> where <command> is
either two or three parts. See Examples.

Examples

mfpdev help
Displays summary of all commands.

mfpdev help server
Displays summary of all server-related commands.

mfpdev help adapter
Displays summary of all adapter-related commands.

7-18 IBM MobileFirst Platform Foundation V8.0.0

mfpdev help app register
Displays full description and syntax of mfpdev app register command.

mfpdev help config
Displays full description and syntax of mfpdev config command.

Interactive mode and direct mode
The IBM MobileFirst Platform Command Line Interface (CLI) supports two modes
of operation: interactive mode and direct mode.

The mfpdev commands have two modes: interactive mode and direct mode. In
interactive mode, you enter the command without options, and you are prompted
for responses. In direct mode, you enter the full command, including options, and
prompts are not provided. When applicable, the prompts are context-sensitive to
the target platform of the app, as determined by the directory from which you run
the command. Use the up and down arrow keys on your keyboard to move
through the selections, and press the Enter key when the selection you want is
highlighted and preceded by a > character.

Examples

Direct mode
You enter the full command, including its options and arguments on one
line and press the Enter key.

For example:
$ mfpdev server add Server1 --url https://acme.appserver.com:9080 --setdefault --login admin --password abcd999

This command creates a server profile for a MobileFirst Server that can be
reached at the specified URL, and has the administrative login user name
of admin and the password abcd999. The name of the new profile is
Server1, and it is specified to be the default server profile,

Interactive mode
You enter the command with no options or arguments and press the Enter
key. You are then prompted to set the available parameters one by one.

Example 1:
$ mfpdev server add

Entering this command initiates display of the following prompts, in
sequence:
Enter the name of the new server definition:
Enter the MobileFirst Server administrator login ID: (admin)
Enter the MobileFirst Server administrator password:
Save the admin password for this server? (Y/n)
Enter the context root of the MobileFirst Server administration services: (mfpadmin)
Enter the MobileFirst Server connection timeout in seconds: (30)
Make this server the default? (Y/n)

v Defaults are displayed in parenthesis. Press the Enter key to select the
default.

v Questions that require a yes or no answer display (Y/n) or (y/N). The
character in uppercase is the default. Press the Enter key to select the
default, or y (for yes) or n (for no) followed by the Enter key. For
example, if you press Enter after the last prompt in the example, the
server profile that you are defining becomes the default server profile.

Example 2:
$ mfpdev app config

Developing applications 7-19

Entering this command displays a list of possible configuration keys that
are applicable to your app. For example:
Select key
Server
Runtime
Direct Update Authenticity Public Key
Language Preferences
iOS Ignore File Extensions
>Changes completed, exit app config.

You toggle among the choices by pressing the up or down arrow keys on
your keyboard. You can also use the J and L keys, for down and up
respectively. The prompt (>) indicates the current focus. Press the Enter key
when the > prompt is next to the choice that you want to select.

Global command-line options
Several options work with any MobileFirst Platform CLI command.

You can use the following options with any mfpdev command. These options must
be entered in each command; they do not persist.

Option Description

-v, --version Prints this utility's version.

-d, --debug Produces debug log output.

-dd, --ddebug Produces verbose debug log output.

--no-color Suppresses use of special text colors for all
command line output. When specified, the
color settings for your operating system's
console are used for all error messages,
status messages and other CLI prompts.

Configuring the application from the CLI
You can set values for your application's configurable MobileFirst parameters with
the mfpdev app config command.

You can specify values for the settings that are listed in the following tables. The
settings in Table 1 apply to applications for all supported platforms: Cordova,
native iOS, native Android, and native Windows. The settings listed in Table 2
apply to Cordova applications only.

You can specify the required settings with the mfpdev app config command to use
direct mode. You can also enter only the mfpdev app config command to complete
the information with prompts. See “Interactive mode and direct mode” on page
7-19 for more information about direct and interactive modes.

Table 7-3. Settings for all supported target platforms

Setting Description

server Specifies the server profile to use to update MobileFirst
Server information. If a value is not passed then the default
server profile is used.

runtime Specifies the runtime to use on the specified MobileFirst
Server. The default is mfp.

7-20 IBM MobileFirst Platform Foundation V8.0.0

Table 7-3. Settings for all supported target platforms (continued)

Setting Description

language_preferences Specifies the default language to use for client system
messages.

To have the language default to the locale that is set on the
mobile device, enter a space.

Other possible values are:

v English: en

v French: fr

v Spanish: es

The default is English (en).

You can specify the following additional settings for Cordova apps:
v The direct update authentication public key
v Whether or not to enable the web resources checksum test
v What file extensions to ignore during the web resources checksum test

For the web resources checksum settings, each possible target platform (Android,
iOS, Windows 8, Windows Phone 8, and Windows 10 UWP) has a platform-specific
key for use in mfpdev direct mode. These keys begin with a string that represents
the platform name. For example,
windows10_security_test_web_resources_checksum is a true or false setting that
specifies whether to enable the web resources checksum test for Windows10 UWP.

Table 7-4. Settings for Cordova applications only.

Setting Description

direct_update_authenticity_public_key Specifies the public key for direct update authentication.
The key must be in Base64 format. For more information,
see “Implementing secure Direct Update on the client
side” on page 7-239.

ios_security_test_web_resources_checksum If set to true, enables the test for web resources checksum
for iOS Cordova apps. The default is false.

android_security_test_web_resources_checksum If set to true, enables the test for web resources checksum
for Android Cordova apps. The default is false.

windows10_security_test_web_resources_checksum If set to true, enables the test for web resources checksum
for Windows 10 UWP Cordova apps. The default is false.

windows8_security_test_web_resources_checksum If set to true, enables the test for web resources checksum
for Windows 8.1 Cordova apps. The default is false.

windowsphone8_security_test_web_resources_checksum If set to true, enables the test for web resources checksum
for Windows Phone 8.1 Cordova apps. The default is
false.

ios_security_ignore_file_extensions Specifies what file extensions to ignore during web
resources checksum testing for iOS Cordova apps. Separate
multiple extensions with commas. For
example: jpg,gif,pdf

android_security_ignore_file_extensions Specifies what file extensions to ignore during web
resources checksum testing for Android Cordova apps.
Separate multiple extensions with commas. For
example:jpg, gif,pdf

Developing applications 7-21

Table 7-4. Settings for Cordova applications only (continued).

Setting Description

windows10_security_ignore_file_extensions Specifies what file extensions to ignore during web
resources checksum testing for Windows 10 UWP Cordova
apps. Separate multiple extensions with commas. For
example: jpg,gif,pdf

windows8_security_ignore_file_extensions Specifies what file extensions to ignore during web
resources checksum testing for Windows 8.1 Cordova
apps. Separate multiple extensions with commas. For
example: jpg,gif,pdf

windowsphone8_security_ignore_file_extensions Specifies what file extensions to ignore during web
resources checksum testing for Windows Phone 8.1
Cordova apps. Separate multiple extensions with commas.
For example: jpg,gif,pdf

Getting started with the MobileFirst CLI
To get started with the CLI, create a MobileFirst Server profile, configure your app,
and register your MobileFirst app to the MobileFirst Server.

Before you begin

This sequence of steps assumes that you already have the following on your local
computer:
v The IBM MobileFirst Platform Command Line Interface (CLI). For information

about installing the CLI, see “Installing the MobileFirst Platform CLI” on page
7-15.

v A MobileFirst application that is under development, with its files contained in a
root directory and subdirectories. The application must already include the IBM
MobileFirst Platform Foundation SDK.

v Either a local MobileFirst Server running on your computer or connectivity to a
remote, running MobileFirst Server. The server can be a MobileFirst
Development Server, the server that is provided with the IBM MobileFirst
Platform Foundation Developer Kit. For information about installing and
starting the MobileFirst Development Server server, see “Setting up the
MobileFirst Development Server” on page 7-12. For information about installing
a full MobileFirst Server, see “Installing IBM MobileFirst Platform Server” on
page 6-2.

About this task

The numbered steps that follow describe a typical initial task flow from the
command line. These steps are followed by a series of commands that
demonstrates how you can create and manage adapters, including calling adapter
procedures, from the command line. Finally, examples are provided of some
optional command-line tasks.

Procedure
1. Create at least one MobileFirst Server profile with the mfpdev server add

command. For more information about this command, run mfpdev help
server add.

2. Optional: Configure your app with the mfpdev app config command. For
more information about this command, run mfpdev help app config.

7-22 IBM MobileFirst Platform Foundation V8.0.0

3. If you are using a local development server, start the MobileFirst Server. For a
remote server, verify with the administrator that the server is running. For
instructions on starting the server see “Installing IBM MobileFirst Platform
Server” on page 6-2.

4. Verify server access by opening the MobileFirst Operations Console for the
MobileFirst Server. Run mfpdev server console. For more information about
this command, run mfpdev help server console.

5. Change directories into your project. For example, run cd YourProject.
6. Register your app on the MobileFirst Server by running the mfpdev app

register. For more information about this command, run mfpdev help app
register. Also, see the information about registering your app in the IBM
Knowledge Center section for your app type. For example, for an iOS app, see
“Registering iOS applications to MobileFirst Server” on page 7-37).

7. Optional: (Cordova applications only) Preview your app by using the mfpdev
app preview command. For more information, run mfpdev help app preview.

Optional additional steps if your app uses an adapter

8. Create an adapter by running mfpdev adapter create. For more information
about this command, run mfpdev help adapter create.

9. Build the adapter by changing to the adapter directory and running mfpdev
adapter build. For example:
$ cd MyAdapter
$ mfpdev adapter build

For more information about this command, run mfpdev help adapter build.
10. Deploy the adapter by running mfpdev adapter deploy. For more information

about this command, run mfpdev help adapter deploy.
11. Call procedures on the deployed adapter by running mfpdev adapter call.

For more information about this command, run mfpdev help adapter call.
Other optional steps

12. Perform other tasks with the CLI whenever the need arises. For example:
v For cross-platform (Cordova) apps, you can display a preview of the app in

the built-in Mobile Browser Simulator or in your web browser.
v Also for Cordova apps, you can generate and deploy a compressed (.zip)

file of web resources to a MobileFirst Server with the mfpdev app webupdate
command. For more information about this command, run mfpdev help app
webupdate.

v You can display information about the available servers with the mfpdev
server info command. For more information about this command, run
mfpdev help server info.

v You can replicate app and adapter configuration settings from one
MobileFirst Server to another by using the mfpdev app pull and mfpdev app
push commands. For more information about these commands, run mfpdev
help app pull and mfpdev help app push .

v You can modify an existing server profile with the mfpdev server edit
command. For more information about this command, run mfpdev help
server edit.

Setting up an internal Maven repository for offline
development

If you do not have online access to The Central Repository, you can share
MobileFirst Maven artifacts in the internal repository of your organization.

Developing applications 7-23

Before you begin

Make sure that you have installed Apache Maven.

Procedure
1. Download the MobileFirst Platform Foundation Development Kit Installer.
2. Start MobileFirst Server and in a browser, load the MobileFirst Operations

Console from the following URL: http://<your-server-host:server-port>/
mfpconsole.

3. Click Download Center. Under Tools > Adapter Archetypes, click Download.
The mfp-maven-central-artifacts-adapter.zip archive is downloaded.

4. Add the adapter archetypes and security checks to the internal Maven
repository by running the install.sh script for Linux and Mac, or the
install.bat script for Windows.

5. The following JAR files are required by adapter-maven-api. Make sure they are
located either in developers' local .m2 folder, or in the Maven repository of
your organization. Download them from The Central Repository.
v javax.ws.rs:javax.ws.rs-api:2.0
v javax:javaee-web-api:6.0
v org.apache.httpcomponents:httpclient:4.3.4
v org.apache.httpcomponents:httpcore:4.3.2
v commons-logging:commons-logging:1.1.3
v javax.xml:jaxp-api:1.4.2
v org.mozilla:rhino:1.7.7
v io.swagger:swagger-annotations:1.5.6
v com.ibm.websphere.appserver.api:com.ibm.websphere.appserver.api.json:1.0
v javax.servlet:javax.servlet-api:3.0.1

Developing the client side of a MobileFirst application
This collection of topics relates to various aspects of developing the client side of a
MobileFirst application.

Developing MobileFirst applications
The process for developing applications has steps that are common to all
environments: setting up a server, creating an initial server registration and
corresponding configuration files, creating a new (or opening an existing) project in
your chosen IDE, and adding the necessary SDK files to your IDE project.

Setting up the development environment

Before you can build and run your app, register it with a running MobileFirst
Development Server. Read the following topics to learn how to set up your
development server, add the MobileFirst libraries to your application, and register
it with a server:
v Set up the MobileFirst Development Server, if necessary. See “Setting up the

MobileFirst Development Server” on page 7-12.
v Add the MobileFirst libraries for your application.

– “Developing native applications for iOS in Xcode” on page 7-27
– “Developing native applications in Android Studio” on page 7-52

7-24 IBM MobileFirst Platform Foundation V8.0.0

https://mobilefirstplatform.ibmcloud.com/downloads/

– “Developing native C# applications for Windows 10 Universal Windows
Platform and Windows 8 Universal” on page 7-65

– “Developing web applications” on page 7-73
– “Developing Cordova applications” on page 7-83

v Register the application to the MobileFirst Development Server.
– “Registering iOS applications to MobileFirst Server” on page 7-37
– “Registering Android applications to MobileFirst Server” on page 7-59
– “Registering Windows applications to MobileFirst Server” on page 7-68
– “Registering web applications to MobileFirst Server” on page 7-80
– “Registering Cordova applications to MobileFirst Server” on page 7-106

Developing your app

Once you have these resources in your IDE environment, you develop according to
the guidelines for your target language and specific behavior of the MobileFirst
API for that device platform. In addition, samples and documentation are provided
for development in Xcode for iOS, Android Studio for Android, and Visual Studio
for Windows.

Getting started with a sample MobileFirst application
Get a copy of a sample MobileFirst application to use as a starting point for
developing your own custom application.

Procedure
1. From the navigation sidebar of the IBM MobileFirst Platform Operations

Console, select Download Center.
2. On the Download Center page, select the Samples tab.
3. In the Application Samples section of the Samples tab are download options

that correspond to samples for the supported development platforms. Select the
appropriate download option, and follow the instructions in the dialog window
to save the archive file of the sample application to your preferred location.
When used with the MobileFirst Development Server from the IBM MobileFirst

Platform Foundation Developer Kit, the console displays both local () and

remote () download options. When used with another MobileFirst Server,
the console displays only remote download options. The local-download
options do not require an internet connection.

4. Extract the sample files from the downloaded archive file.

Results

The sample applications contain useful code examples that demonstrate how to use
the respective MobileFirst SDK and test the connection to the server. See the
README.md file in the extracted sample directory for specific information and usage
instructions.

You can add the sample to your IDE and use it as the starting point for your
development, or use the sample as a general reference for a functioning
application.

Developing applications 7-25

Acquiring the MobileFirst SDK from the MobileFirst
Operations Console

Get a copy of the MobileFirst SDK for manual integration with your application.

Before you begin

Run the IBM MobileFirst Platform Operations Console on the MobileFirst
Development Server, which is installed with the IBM MobileFirst Platform
Foundation Developer Kit. For more information, see IBM MobileFirst Platform
Foundation Developer Kit.

About this task

You can add MobileFirst functionality to an existing application, or upgrade from
an earlier version of the MobileFirst SDK, by manually adding the SDK files to
your application. Follow the outlined procedure to obtain the required SDK files
from the MobileFirst Operations Console.

Note: The SDK files are available locally from the console when using the
MobileFirst Development Server, and can be obtained without an internet
connection.

Procedure
1. From the navigation sidebar of the MobileFirst Operations Console, select

Download Center.
2. On the Download Center page, select the SDKs tab.
3. From the SDKs tab, select the local-download option for the SDK that you

want to download:

Follow the instructions in the dialog window to save the SDK archive file to
your preferred location.

4. Extract the SDK files from the downloaded archive file.

Results

For instructions on how to use the SDK, see the README.md file in the extracted
SDK directory, as well as the following documentation:
v For the iOS SDK, see “Setting up the Xcode project for iOS manually” on page

7-27.
v For the Android SDK, see “Setting up Android Studio projects with Gradle” on

page 7-53.
v For the Windows Universal SDK, see “Adding the MobileFirst SDK manually”

on page 7-65.
v For the web SDK, see “Adding the MobileFirst SDK to web applications” on

page 7-76.
v For the Cordova SDK, see “Adding MobileFirst features to an existing Cordova

app” on page 7-91.

7-26 IBM MobileFirst Platform Foundation V8.0.0

Developing native applications for iOS in Xcode
To create an IBM MobileFirst Platform Foundation app, you must set up the IBM
MobileFirst Platform Foundation SDK and configuration files, and add them to
your iOS Xcode project. Then you can start to develop your app.

Note: MobileFirst development is supported in Xcode from version 7.1 by using
iOS 8.0 and later.

To develop a native iOS application, you must add the MobileFirst framework files
to your Xcode project and register the app on the IBM MobileFirst Platform Server.
See “Registering iOS applications to MobileFirst Server” on page 7-37.

Note: Configuration and setup guidelines are provided for both Swift and
Objective-C Xcode projects. You can find many Swift code examples in the
Developer Center Tutorials.

You can add the MobileFirst frameworks to your Xcode project in one of the
following ways:
v Obtaining a set of MobileFirst framework files and manually copying them to

your Xcode project. See “Setting up the Xcode project for iOS manually.”
v Using CocoaPods. See “Adding MobileFirst SDK to an iOS Xcode project using

CocoaPods” on page 7-29.

The following topics show you how to set up an initial project and start
developing.

Methods of setting up your environment
You can prepare your environment for developing MobileFirst applications in
either of two ways: by copying the MobileFirst frameworks to your Xcode project
or by installing the files using CocoaPods.

After you have set up your environment, you can start developing your iOS code.

Setting up the Xcode project for iOS manually:

You can add MobileFirst functionality to your existing or new Xcode project. The
required framework and library files can be generated by IBM MobileFirst Platform
Foundation by using IBM MobileFirst Platform Operations Console and added to
your Xcode project. The Xcode project must be then configured correctly according
to your development goals.

Before you begin

You must have:
v Xcode 7.1 with iOS 8 or higher to develop your code
v A set of MobileFirst SDK files. See “Acquiring the MobileFirst SDK from the

MobileFirst Operations Console” on page 7-26.

About this task

Procedure

1. In your Xcode project, add the MobileFirst framework files to your project.
a. Select the project root icon in the project explorer.

Developing applications 7-27

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/all-tutorials/

b. Select File > Add Files and navigate to the folder that contains the
framework files created by IBM MobileFirst Platform Operations Console.

c. Click the Options button.
d. Select Copy items if needed and Create groups for any added folders.

Note: If you do not select the Copy items if needed option, the framework
files are not copied but are linked from their original location.

e. Select the main project (first option) and select the app target.
f. In the General tab, remove any frameworks that would get added

automatically to Linked Frameworks and Libraries.
g. Required: In Embedded Binaries, add the following frameworks:
v IBMMobileFirstPlatformFoundation.framework

v IBMMobileFirstPlatformFoundationOpenSSLUtils.framework

v IBMMobileFirstPlatformFoundationWatchOS.framework

v Localizations.bundle

Performing this step would automatically add these frameworks to Linked
Frameworks and Libraries.

h. In Linked Frameworks and Libraries, add the following frameworks:
v IBMMobileFirstPlatformFoundationJSONStore.framework

v sqlcipher.framework

v openssl.framework

i. Similarly, add optional frameworks. For more information about available
frameworks, see Adding optional frameworks manually.

Note: These steps copy the relevant MobileFirst frameworks to your project
and link them within the Link Binary with Libraries list in the Build
Phases tab. If you link the files to their original location (without choosing
the Copy items if needed option as described previously), you need to set
the Framework Search Paths as described below.

2. The frameworks added in Step 1, would be automatically added to the Link
Binary with Libraries section, in the Build Phases tab.

3. Optional: If you did not copy the framework files into your project as described
previously , perform the following steps by using the Copy items if needed
option, in the Build Phases tab.
a. Open the Build Settings page.
b. Find the Search Paths section.
c. Add the path of the folder that contains the frameworks to the Framework

Search Paths folder.
4. In the Deployment section of the Build Settings tab, select a value for the iOS

Deployment Target field that is greater than or equal to 8.0.
5. Optional: From Xcode 7, bitcode is set as the default. For limitations and

requirements see “Working with bitcode in iOS apps” on page 7-48. To disable
bitcode:
a. Open the Build Options section.
b. Set Enable Bitcode to No.

6. Beginning with Xcode 7, TLS must be enforced.
See “Enforcing TLS-secure connections in iOS apps” on page 7-46.

7-28 IBM MobileFirst Platform Foundation V8.0.0

Results

Your Xcode project is now ready for development.

You must import the headers for the IBMMobileFirstPlatformFoundation
framework:

Objective C
#import <IBMMobileFirstPlatformFoundation/IBMMobileFirstPlatformFoundation.h>

Swift
import IBMMobileFirstPlatformFoundation

What to do next

Before you can access server resources, you must register your app. See
“Registering iOS applications from the MobileFirst Platform CLI” on page 7-37. For
details about the mfpclient.plist file see “iOS client properties file” on page 7-41.

Adding MobileFirst SDK to an iOS Xcode project using CocoaPods:

You can add MobileFirst functionality to your existing or new Xcode project with
CocoaPods. Once your project is set up, you can continue developing your code.

Before you begin

Note: MobileFirst development is supported in Xcode from version 7.1 by using
iOS 8.0 and later.

You must have
v CocoaPods installed in your development environment (for more information,

see the "Getting Started" guide for CocoaPods installation)
v Xcode 7.1 with iOS 8.0 or higher for your development environment

About this task

You can create a IBM MobileFirst Platform Foundation Xcode project by adding
core frameworks and libraries with CocoaPods. Addtional optional CocoaPods may
be added.

Procedure

1. Create an Xcode project if one does not exist.
2. Open a command line in the Xcode project folder.
3. Run the pod init command to create a Podfile file.
4. Open the new Podfile file also at the Xcode project root.
5. Comment out or remove the entire existing content.
6. Add the following lines including the iOS version and save the changes:

source ’https://github.com/CocoaPods/Specs.git’
use_frameworks!
platform :ios, 9.0
target :name-of-the-target-in-xcode-project do

pod ’IBMMobileFirstPlatformFoundation’
end

Developing applications 7-29

http://guides.cocoapods.org/using/getting-started.html

7. Optional: If you want to add any optional features, add additional pods. For a
list of available features see Table 7-7 on page 7-34. Add an additional line for
each pod, for example:
pod ’IBMMobileFirstPlatformFoundationJSONStore’

Note:

The previous syntax imports the latest version of the
IBMMobileFirstPlatformFoundation pod. If you are not using the latest version
of MobileFirst, you need to add the full version number, including the major,
minor, and patch numbers. The patch number is in the format
YYYYMMDDHH. For example, for importing the specific patch version
8.0.2016021411 of the IBMMobileFirstPlatformFoundation pod the line would
look like this:
pod ’IBMMobileFirstPlatformFoundation’, ’8.0.2016021411’

Or to get the last patch for the minor version number the syntax such is
pod ’IBMMobileFirstPlatformFoundation’, ’~>8.0.0’

8. Optional: If you are developing for watchOS your Podfile must contain
sections corresponding to the main app and the watchOS extension:

#use the name of the app
xcodeproj ’MyWatchApp’

use_frameworks!

#use the name of the iOS target
target :MyWatchApp do

platform :ios, 9.0
pod ’IBMMobileFirstPlatformFoundation’
end

#use the name of the watch extension target
target :MyWatchApp WatchKit Extension do

platform :watchos, 2.0
pod ’IBMMobileFirstPlatformFoundation’

end

The previous targets must match your main iOS app and watchOS extension:

The main app section can contain any of the frameworks documented here:
Table 7-7 on page 7-34. However, only the IBMMobileFirstPlatformFoundation pod
is supported for the watchOS extension. For more information on watchOS, see
“Developing for watchOS 2” on page 7-48.

7-30 IBM MobileFirst Platform Foundation V8.0.0

9. Verify that the Xcode project is closed.
10. Run the pod install command. This command installs the

IBMMobileFirstPlatformFoundation pod and any other pods that are specified
in the Podfile and their dependencies. It then generates the pods project, and
integrates the client project with the MobileFirst SDK. It also adds other
required dependencies.

11. Open your ProjectName.xcworkspace file in Xcode by typing open
[ProjectName].xcworkspace from a command line. This file is in the same
directory as the [ProjectName].xcodeproj file.

12. The main framework is imported like this:
Swift:
import IBMMobileFirstPlatformFoundation

Objective C
#import <IBMMobileFirstPlatformFoundation/IBMMobileFirstPlatformFoundation.h>

13. Beginning with iOS9 TLS must be enforced, see “Enforcing TLS-secure
connections in iOS apps” on page 7-46.

Results

You can now start developing your native iOS application with the IBM
MobileFirst Platform Foundation integration.

What to do next

Before you can access server resources, you must register your app. See
“Registering iOS applications from the MobileFirst Platform CLI” on page 7-37. For
details about the mfpclient.plist file see “iOS client properties file” on page 7-41

Adding optional iOS frameworks
MobileFirst iOS functionality is provided by a collection of frameworks that can be
added to your app. Only one of these frameworks is required
(IBMMobileFirstPlatformFoundation). You can add optional frameworks according
to the features you want to implement in your app. You reduce the size of the app
by including only the frameworks required by your chosen features.

For an existing MobileFirst Xcode project , you can add frameworks manually by
linking the frameworks in Xcode or by using Cocoapods.

Table 7-5. Optional frameworks for iOS

Feature
Frameworks (linked in the Link Binary with Libraries list in the
Build Phases tab)

JSONStore IBMMobileFirstPlatformFoundationJSONStore

SQLCipher

In addition, import the
IBMMobileFirstPlatformFoundationJSONStore header to your code.
For more information on setup, see “JSONStore” on page 7-134.

OpenSSL openssl

IBMMobileFirstPlatformFoundationOpenSSLUtils

For more information on OpenSSL, see “Enabling OpenSSL for
iOS” on page 7-47

Developing applications 7-31

Table 7-5. Optional frameworks for iOS (continued)

Feature
Frameworks (linked in the Link Binary with Libraries list in the
Build Phases tab)

Push IBMMobileFirstPlatformFoundationPush

For more information, see “Push notification” on page 7-248.

In addition, import the IBMMobileFirstPlatformFoundationPush
header to your code.

watchOS IBMMobileFirstPlatformFoundationWatchOS. The watchOS
framework requires a different structure for the Xcode project. For
information on adding the watchOS framework, see Adding
watchOS frameworks.

Adding optional frameworks manually:

You can add optional MobileFirst features to your existing MobileFirst app project.
The required framework and library files can be generated by IBM MobileFirst
Platform Foundation by using IBM MobileFirst Platform Operations Console and
added to your Xcode project. The Xcode project must be then configured correctly
according to your development goals.

Before you begin

You must have
v A set of MobileFirst framework files (see “Acquiring the MobileFirst SDK from

the MobileFirst Operations Console” on page 7-26).
v An existing Xcode MobileFirst project which contains the core frameworks and

libraries (see “Setting up the Xcode project for iOS manually” on page 7-27 or
“Adding MobileFirst SDK to an iOS Xcode project using CocoaPods” on page
7-29).

About this task

Optional frameworks

In addition to the core MobileFirst framework many optional frameworks are
available. You can limit the size of your app by including only those frameworks
required by the features you use. Some optional frameworks require imported
headers in your code.

Table 7-6. Optional frameworks for iOS

Feature
Frameworks (linked in the Link Binary with Libraries list in the
Build Phases tab)

JSONStore IBMMobileFirstPlatformFoundationJSONStore

SQLCipher

In addition, import the
IBMMobileFirstPlatformFoundationJSONStore header to your code.
For more information on setup, see “JSONStore” on page 7-134.

7-32 IBM MobileFirst Platform Foundation V8.0.0

Table 7-6. Optional frameworks for iOS (continued)

Feature
Frameworks (linked in the Link Binary with Libraries list in the
Build Phases tab)

OpenSSL openssl

IBMMobileFirstPlatformFoundationOpenSSLUtils

For more information on OpenSSL, see “Enabling OpenSSL for
iOS” on page 7-47

Push IBMMobileFirstPlatformFoundationPush

For more information, see “Push notification” on page 7-248.

In addition, import the IBMMobileFirstPlatformFoundationPush
header to your code.

watchOS IBMMobileFirstPlatformFoundationWatchOS. The watchOS
framework requires a different structure for the Xcode project. For
information on adding the watchOS framework, see Adding
watchOS frameworks.

Procedure

1. In your Xcode project, add the MobileFirst framework files to your project.
a. Select the project root icon in the project explorer.
b. From the File menu, choose the Add Files option and navigate to the folder

that contains the framework files.
c. Click the Options button.
d. Select Copy items if needed and Create groups for any added folders

options.

Note: If you do not select the Copy items if needed option, the framework
files are not copied but are linked from their original location.

e. Select the main project (first option) in the Add to targets box.
f. Choose the framework files (from the previous table) relevant to your project

according to your chosen features.
g. Click Add.

Note: These steps copy the relevant MobileFirst frameworks to your project
and link them within the Link Binary with Libraries list in the Build
Phases tab. If you link the files to their original location (without choosing
the Copy items if needed option as described previously) you need to set
the Framework Search Paths as described below.

2. Optional: If you did not copy the framework files into your project as described
previously, using the Copy items if needed option, in the Build Phases tab:
a. Open the Build Settings page.
b. Find the Search Paths section.
c. Add the path of the folder that contains the frameworks to the Framework

Search Paths folder.

Results

You now have additional frameworks added to your project. Add the required
headers to your code according to the Table 7-6 on page 7-32 table.

Developing applications 7-33

You must import the headers for some of the frameworks. The syntax depends on
the development language:

Objective C:
#import <IBMMobileFirstPlatformFoundation/[frameworkname].h>

Swift:
import [frameworkname]

What to do next

Before you can accesss server resources, you must register your app. See
“Registering iOS applications from the MobileFirst Platform CLI” on page 7-37

Adding optional frameworks with CocoaPods:

You can add MobileFirst functionality to your existing MobileFirst Xcode project
with CocoaPods.

Before you begin

You must have CocoaPods installed in your development environment. In addition
you must have a fully functional MobileFirst Xcode project that contains the core
MobileFirst framework and libraries. For more information, see “Setting up the
Xcode project for iOS manually” on page 7-27 or “Adding MobileFirst SDK to an
iOS Xcode project using CocoaPods” on page 7-29.

About this task

The IBM MobileFirst Platform Foundation iOS SDK consists of a collection of pods,
available through CocoaPods, that you can add to your project. The pods
correspond to core and other functions that are exposed by IBM MobileFirst
Platform Foundation. The SDK contains the following optional pods for
MobileFirst development:

Table 7-7. Pods for installing optional frameworks

Pod Feature

IBMMobileFirstPlatformFoundationPush Adds the
IBMMobileFirstPlatformFoundationPush
framework for enabling Push. For more
information, see “Push notification” on page
7-248.

IBMMobileFirstPlatformFoundationJSONStore Implements the JSONStore feature. Include
this pod in your Podfile if you intend to use
the JSONStore feature in your app. See
“JSONStore” on page 7-134.

IBMMobileFirstPlatformFoundationOpenSSLUtilsContains the MobileFirst embedded
OpenSSL feature and loads automatically the
openssl framework. Include this pod in your
Podfile if you intend to use the OpenSSL
provided by MobileFirst. For more
information on OpenSSL options, see
“Enabling OpenSSL for iOS” on page 7-47.

7-34 IBM MobileFirst Platform Foundation V8.0.0

Procedure

1. Open a command line terminal at the location of your Xcode project.
2. Run the pod init command to create a Podfile file.
3. Open the new Podfile file also at the Xcode project root.
4. Comment out or remove the entire existing content.
5. Add the following lines including the iOS version and save the changes:

use_frameworks!
platform :ios, [version]
pod ’[pod_name]’

For example for the OpenSSL pod using Xcode 9 the file would look like this:
use_frameworks!
platform :ios, 9.0
pod ’IBMMobileFirstPlatformFoundationOpenSSLUtils’

Note: The previous syntax imports the latest version of the
IBMMobileFirstPlatformFoundationOpenSSLUtils pod. If you are are not using
the latest version of MobileFirst, you need to indicate the version. For
example, for importing the specific patch version 8.0.2016021411 for
IBMMobileFirstPlatformFoundationOpenSSLUtils the line would look like this:
pod ’IBMMobileFirstPlatformFoundationOpenSSLUtils’, ’8.0.2016021411’

6. Optional: If you are developing for watchOS your Podfile must contain
sections corresponding to the main app and the watchOS extension:

#use the name of the app
xcodeproj ’MyWatchApp’

use_frameworks!

#use the name of the iOS target
target :MyWatchApp do

platform :ios, 9.0
pod ’IBMMobileFirstPlatformFoundation’
end

#use the name of the watch extension target
target :MyWatchApp WatchKit Extension’ do

platform :watchos, 2.0
pod ’IBMMobileFirstPlatformFoundation’

end

Note: See the previous note about pod versions.

Developing applications 7-35

The targets must match your main iOS app and watchOS extension:

The main app section can contain any of the frameworks documented here.
However, only the IBMMobileFirstPlatformFoundation pod is supported for the
watchOS extension. For more information on watchOS, see “Developing for
watchOS 2” on page 7-48.
7. Verify that the Xcode project is closed.
8. Run the pod install command. This command installs the

IBMMobileFirstPlatformFoundation pod and any other pods that are specified
in the Podfile and their dependencies. It then generates the pods project, and
integrates the client project with the MobileFirst SDK. It also adds the
required non-MobileFirst dependencies.

9. Open your [ProjectName].xcworkspace file in Xcode by typing open
[ProjectName].xcworkspace from a command line. This file is in the same
directory as the [ProjectName].xcodeproj file.

10. You will need to import the headers for some of the frameworks. The main
framework is imported like this: If you are using Push or JSONStore you need
to include an independent import:
Push For Objective C:
#import
<IBMMobileFirstPlatformFoundationPush/IBMMobileFirstPlatformFoundationPush.h>

For Swift:
import IBMMobileFirstPlatformFoundationPush

JSONStore

For Objective C:
#import <IBMMobileFirstPlatformFoundationJSONStore/IBMMobileFirstPlatformFoundationJSONStore.h>

For Swift:
import IBMMobileFirstPlatformFoundationJSONStore

watchOS

For Objective C:
#import <IBMMobileFirstPlatformFoundationJSONStore/IBMMobileFirstPlatformFoundationWatchOS.h>

For Swift:
import IBMMobileFirstPlatformFoundationWatchOS

7-36 IBM MobileFirst Platform Foundation V8.0.0

Results

Your Xcode project can now include optional IBM MobileFirst Platform Foundation
features.

What to do next

Before you can accesss server resources, you must register your app. See
“Registering iOS applications to MobileFirst Server”

Registering iOS applications to MobileFirst Server
Register your iOS application to an instance of MobileFirst Server to establish
communication with the server and to provide the server with information about
your app. You can register your app by using the IBM MobileFirst Platform
Command Line Interface (CLI) or the IBM MobileFirst Platform Operations
Console.

Registering iOS applications from the MobileFirst Platform CLI:

You can use the IBM MobileFirst Platform Command Line Interface (CLI) to
register your iOS application to an instance MobileFirst Server.

Before you begin

v You must have the IBM MobileFirst Platform Command Line Interface (CLI)
installed. For more information, see “Installing the MobileFirst Platform CLI” on
page 7-15.

v You must have an instance of MobileFirst Server running. The server can be
running locally, or it can be a remote server, but it must be reachable from your
local computer. For more information, see “Setting up the MobileFirst
Development Server” on page 7-12, “Installing the IBM MobileFirst Platform
Foundation Developer Kit” on page 7-10, or “Installing IBM MobileFirst
Platform Server” on page 6-2.

v You must have a native iOS application on your local computer.

About this task

Once you have the client side of your iOS application initially defined, you can
prepare for further development tasks by registering it to a MobileFirst Server.

Tip: If the mfpdev app register command cannot determine the bundle ID, it will
prompt you to enter it. This can occur if value of the CFBundleIdentifier key in the
Info.plist file contains variables. To avoid this, manually edit theInfo.plist file
and enter the bundle ID without variables before you run the mfpdev app register
command.

Procedure

1. Check that the target MobileFirst Server is up and running.
2. Navigate to the directory that contains your app, or one of its subdirectories.
3. Register your app to the server. Use one of the following procedures:
v To register the app to the default server, run the following command:

mfpdev app register

Developing applications 7-37

Note: If you have not previously set a default server and a MobileFirst
Server is running on the local system, this command registers the app to the
local MobileFirst Server, and this server is made the default.

v To register your app to a server that is not the default server:
a. Create a server profile by running the mfpdev server add command. For

example:
mfpdev server add Server1 -url https://company.mobile.com:9080 -login admin -password secretPassword!

For more information about the mfpdev server add command, run mfpdev
help server add.

b. To register your app to the server that you just defined, run the mfpdev
app register command, and specify the server profile that you just
created. For example:
mfpdev app register Server1

For more information about this command, including optional parameters, run
mfpdev help app register.

Results

The app is registered to the target server. Data about the app that is obtained from
the platform properties file (Info.plist) such as application name, version number,
and app ID is sent to the server. If the client properties file mfpclient.plist
already exists, it is updated with the value of the server's URL. If the file did not
exist, a mfpclient.plist file that includes the server's URL is created at the root of
your project.

Note: If an existing mfpclient.plist file resides in another directory in the project
besides the root directory, the file will be updated with the server's URL.

What to do next

Copy the mfpclient.plist file and register it in your Xcode project. For more
information, see “iOS client properties file” on page 7-41.

You can proceed with other development tasks that depend on the MobileFirst
Server. For example, you can preview your app, test your app's security features,
and manage your app from the MobileFirst Operations Console.

Registering iOS applications from the MobileFirst Operations Console:

Register your iOS application to an instance of MobileFirst Server to establish
communication with the server and to provide the server with information about
your app.

Before you begin

You must have the IBM MobileFirst Platform Operations Console running on the
MobileFirst Server targeted for registration. For more information, see “The IBM
MobileFirst Platform Foundation Developer Kit” on page 7-9.

About this task

You can register an app on the server before or after setting up the Xcode
environment see Methods of setting up your environment. You must register your

7-38 IBM MobileFirst Platform Foundation V8.0.0

app to the server before developing code that accesses server resources.

Procedure

1. In the MobileFirst Operations Console, navigate to the Register Application
page by using one of the following methods:
v In the navigation sidebar, select New next to Appilcations.

v From the Dashboard, select Register an App.

2. On the Register an Application page, fill in the following values for the
application you are registering:

v Application Name: This is for display and can be any convenient value. It is
optional.

v Bundle ID: The bundle identifier from the Xcode project.
v Version: The version number of your iOS app.

The version number and bundle identifier are reported in the Identity
section of the General tab of your Xcode project.

Developing applications 7-39

These correspond to the values in the info.plist file.

Table 7-8. Registration values for iOS projects in the info.plist

registration value parameter in info.plist

Bundle identifier CFBundleIdentifier

Version CFBundleShortVersionString

Note: In the info.plist for projects created by Xcode, these values are
represented by variables. Therefore you need to check these values in the
Xcode project itself.

3. Click the Register application button.
4. From the main Dashboard page, your application is now listed under the

default mfp runtime.

Note: The mfp runtime is the default value for the WLServerContext parameter
in the mfpclient.plist file below.

5. Click the application name to display the main configuration page for your
app.

6. The main page for your app displays different configuration options for the
server-side registration of your app.

Click the Configuration Files tab.
7. The Client Configuration File tab displays a template for creating your

mfpclient.properties file. This file is used for connecting the client app to the
server.

7-40 IBM MobileFirst Platform Foundation V8.0.0

Results

Your iOS application is registered on the server.

What to do next

To complete the client-server registration, you must complete the required
properties in the mfpclient.plist file, copy, and register it in your Xcode project.
For more information, see “iOS client properties file.”

iOS client properties file
The mfpclient.plist file defines the client-side properties used for registering your
iOS app on the MobileFirst server.

The mfpclient.plist client property file contains the necessary information for
connecting to the server. The app registration consists of both the server- and
client-side components. Before you use the mfpclient.plist file in your native
application for iOS, you must define the properties as specified in the following
table. This file is created automatically when you register your app with the IBM
MobileFirst Platform Command Line Interface (CLI). For more information, see
“Registering iOS applications from the MobileFirst Platform CLI” on page 7-37. If
you register your application by using the IBM MobileFirst Platform Operations
Console, you must in addition create the file manually, reference it within your
Xcode project by selecting File > Add Files.

Table 7-9. Properties of the mfpclient.plist file

Property Description Example values

wlServerProtocol The communication protocol with the MobileFirst
Server.

http or https

wlServerHost The host name of the MobileFirst Server. 192.168.1.63

wlServerPort The port of the MobileFirst Server. 9080

wlServerContext The server context. /mfp/

wlPlatformVersion The MobileFirst version 8.0.20160214

languagePreferences Preferred language. en

Here is an example mfpclient.plist file.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>protocol</key>
<string>http</string>
<key>host</key>
<string>9.148.49.221</string>
<key>port</key>
<string>9080</string>
<key>wlServerContext</key>
<string>/mfp/</string>
<key>platformVersion</key>
<string>8.0.20160309</string>
<key>languagePreferences</key>
<string>en</string>

</dict>
</plist>

Developing applications 7-41

The mfpclient.plist file must be added to the root folder of the Xcode project,
referenced by the Xcode project, and linked to a target. To link the
mfpclient.plist file to one or more Xcode targets:
1. In Xcode, from the File > Add File menu, navigate to the mfpclient.plist file,,

select the file and click OK.
2. After the mfpclient.plist file appears in the navigation tree, select it to display

the Target Membership box. Select the relevant targets.

After you register the mfpclient.plist file within your Xcode project and register
your app on the server, you can start to develop code for accessing server
resources.

Creating some initial code in iOS
A simple startup process for iOS is described here with short samples for both
Objective C and Swift. Before trying the sample, make sure you have imported the
frameworks and added the necessary imports.

Accessing a server resource

In the ViewController.m file, after the ViewController loads (in the viewdidLoad
method of the ViewController), you can create a resource request without first
creating a client.

Objective C
((void)viewDidLoad{

[super viewDidLoad];
NSURL*url=[NSURL URLWithString:@"/adapters/javaAdapter/users/world"];
WLResourceRequest*request=[WLResourceRequest requestWithURL:url method:WLHttpMethodGet];
[request sendWithCompletionHandler:^(WLResponse*response,NSError*error){

if(error!=nil){
NSLog(@"Failure: %@",error.description);

}
else if(response!=nil){

// Will print "Hello world" in the Xcode Console.
NSLog(@"Success: %@",response.responseText);

}
}
];

}

Swift
override func viewDidLoad() {

super.viewDidLoad()
let url = NSURL(string: "/adapters/javaAdapter/users/world")
let request = WLResourceRequest(URL: url, method: WLHttpMethodGet)
request.sendWithCompletionHandler {
(WLResponse response, NSError error) -> Void in
if (error != nil){

NSLog("Failure: " + error.description) }
else if (response != nil){

NSLog("Success: " + response.responseText) }
}

}

7-42 IBM MobileFirst Platform Foundation V8.0.0

Testing the server connection without a server resource

If you have not created any server resources and you want to test the server
connection, you can test the token access. If you have not created any security
checks, the access token should be available. As in the previous example, in the
ViewController.m file, after the ViewController loads, you can request token
access without any scope.

Objective C
(void)viewDidLoad{

[super viewDidLoad];
[[WLAuthorizationManager sharedInstance] obtainAccessTokenForScope: @"" withCompletionHandler:^(AccessToken *accessToken, NSError *error) {

if (error != nil){
NSLog(@"Failure: %@",error.description);

}
else if (accessToken != nil){

NSLog(@"Success: %@",accessToken.value);
}

}];
}

Swift
override func viewDidLoad() {

super.viewDidLoad()
WLAuthorizationManager.sharedInstance().obtainAccessTokenForScope(nil) { (token, error) -> Void in

if (error != nil) {
print("Did not recieve an access token from server: " + error.description)

} else {
print("Received access token value: " + token.value)

}
}

}

For more information about logging, see “Logger SDK” on page 11-37.

For more information about adapters, see “Client access to adapters” on page
7-231.

Using Logger in Swift projects
In order to use OCLogger in Swift projects, you can configure your Swift application
by following the steps described in this section.

Procedure
1. Create a native MobileFirst application for iOS that uses Swift. For more

information, see “Developing native applications for iOS in Xcode” on page
7-27.

2. In the Xcode IDE, create a Swift file and name it
OCLoggerSwiftExtension.swift.

Figure 7-1. New Xcode File

Developing applications 7-43

3. Add the following code to the file:
import Foundation

extension OCLogger {
//Log methods with no metadata

func logTraceWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_TRACE, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

Figure 7-2. Swift File Type

Figure 7-3. Name a Swift File

7-44 IBM MobileFirst Platform Foundation V8.0.0

}

func logDebugWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_DEBUG, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

func logInfoWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_INFO, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

func logWarnWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_WARN, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

func logErrorWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_ERROR, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

func logFatalWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_FATAL, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

func logAnalyticsWithMessages(message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_ANALYTICS, message: message, args:getVaList(args), userInfo:Dictionary<String, String>())

}

//Log methods with metadata

func logTraceWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_TRACE, message: message, args:getVaList(args), userInfo:userInfo)

}

func logDebugWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_DEBUG, message: message, args:getVaList(args), userInfo:userInfo)

}

func logInfoWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_INFO, message: message, args:getVaList(args), userInfo:userInfo)

}

func logWarnWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_WARN, message: message, args:getVaList(args), userInfo:userInfo)

}

func logErrorWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_ERROR, message: message, args:getVaList(args), userInfo:userInfo)

}

func logFatalWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_FATAL, message: message, args:getVaList(args), userInfo:userInfo)

}

func logAnalyticsWithUserInfo(userInfo:Dictionary<String, String>, message:String, _ args: CVarArgType...) {
logWithLevel(OCLogger_ANALYTICS, message: message, args:getVaList(args), userInfo:userInfo)

}
}

4. Test that the Swift extension is working by using the Logger in Swift with the
following code:
OCLogger.setLevel(OCLogger_TRACE)
OCLogger.setCapture(true);

let logger : OCLogger = OCLogger.getInstanceWithPackage("MyTestLoggerPackage")

logger.logTraceWithMessages("Hello %@", "Trace");
logger.logTraceWithMessages("Hello Trace");

Developing applications 7-45

OCLoggerDebug("Hello Debug!");
OCLoggerDebug("Hello %@", package: "SomePackageName", args: "Debug!");

Results

Verify the output is similar to the following output:
SwiftHelloWorld[7591:4265124] [TRACE] [MyTestLoggerPackage] Hello Trace
SwiftHelloWorld[7591:4265124] [TRACE] [MyTestLoggerPackage] Hello Trace
SwiftHelloWorld[7591:4265124] [DEBUG] [IMF] viewDidLoad() in ViewController.swift:26 :: Hello Debug!
SwiftHelloWorld[7591:4265124] [DEBUG] [SomePackageName] viewDidLoad() in ViewController.swift:27 :: Hello Debug!

Note: The project name used in this example is SwiftHelloWorld. Your project
name will show in the output in place of SwiftHelloWorld. The code was added to
the viewDidLoad() function in the ViewController.swift file. Your output depends
on where you added the code in your project. The timestamps were removed from
this example for clarity.

Enforcing TLS-secure connections in iOS apps
From iOS 9, Transport Layer Security (TLS) protocol version 1.2 must be enforced
in all apps. You can disable this protocol and bypass the iOS 9 requirement for
development purposes.

About this task

Apple App Transport Security (ATS) is a new feature of iOS 9 that enforces best
practices for connections between the app and the server. By default, this feature
enforces some connection requirements that improve security. These include
client-side HTTPS requests and server-side certificates and connection ciphers that
conform to Transport Layer Security (TLS) version 1.2 using forward secrecy.

For development purposes, you can override the default behavior by specifying an
exception in the info.plist file in your app, as described in App Transport
Security Technote. However, in a full production environment, all iOS apps must
enforce TLS-secure connections for them to work properly.

To enable non-TLS connections, the following exception must appear in the
<projectname>info.plist file in the <project>\Resources folder:
<key>NSExceptionDomains</key>

<dict>
<key>yourserver.com</key>
<dict>

<!--Include to allow subdomains-->
<key>NSIncludesSubdomains</key>
<true/>

<!--Include to allow insecure HTTP requests-->
<key>NSTemporaryExceptionAllowsInsecureHTTPLoads</key>
<true/>

</dict>
</dict>

Procedure
1. To prepare for production, remove, or comment out the code that appears

earlier in this page.
2. Set up the client to send HTTPS requests by using the following entry to the

dictionary:

7-46 IBM MobileFirst Platform Foundation V8.0.0

https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/
https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/

<key>protocol</key>
<string>https</string>

<key>port</key>
<string>10443</string>

The SSL port number is defined on the server in server.xml in the
httpEndpoint definition.

3. Configure a server that is enabled for the TLS 1.2 protocol.
For more information, see Configuring MobileFirst Server to enable TLS V1.2.

4. Make settings for ciphers and certificates, as they apply to your setup.
For more information, see App Transport Security Technote, Secure
communications using Secure Sockets Layer (SSL) for WebSphere Application
Server Network Deployment, and Enabling SSL communication for the Liberty
profile.

Enabling OpenSSL for iOS
The MobileFirst iOS SDK uses native iOS APIs for cryptography. You can configure
the IBM MobileFirst Platform Foundation V8.0.0 to use the OpenSSL cryptography
library in iOS apps.

Encryption/decryption is provided with the following APIs:
WLSecurityUtils.encryptText() and WLSecurityUtils.decryptWithKey()

Option 1: Native encryption and decryption

Native encryption and decryption is provided by default, without using OpenSSL.
This is equivalent to explicitly setting the encryption or decryption behavior as
follows:

WLSecurityUtils enableOSNativeEncryption:YES

Option 2: Enabling OpenSSL

OpenSSL is disable by default. To enable it, proceed as follows:
1. Install the OpenSSL frameworks:
v With CocoaPods: Install the IBMMobileFirstPlatformFoundationOpenSSLUtils

pod with CocoaPods. See Adding OpenSSL with CocoaPods.
v Manually in Xcode: Link the

IBMMobileFirstPlatformFoundationOpenSSLUtils and openssl frameworks
manually in the Link Binary With Libraries section of the Build Phases tab.
See Adding OpenSSL frameworks manually.

2. The following code enables the OpenSSL option for the encryption/
decryption:
WLSecurityUtils enableOSNativeEncryption:NOThe code will now use the
OpenSSL implementation if found and otherwise throw an error if the
frameworks are not installed correctly.

With this setup, the encryption/decryption calls use OpenSSL as in previous
versions of the product.

Migration options

If you have an MobileFirst project that was written in an earlier version, you might
need to incorporate changes to continue using OpenSSL.

Developing applications 7-47

http://www.ibm.com/support/docview.wss?uid=swg21965659
https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html?cp=SSAW57_8.5.5%2F1-3-11-0-4-1-0
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html?cp=SSAW57_8.5.5%2F1-3-11-0-4-1-0

v If the application is not using encryption/decryption APIs and no encrypted
data is cached on the device, no action is needed.

v If the application is using encryption/decryption APIs, you have the option of
using these APIs with or without OpenSSL.

Migrating to native encryption

1. Make sure the default native encryption/decryption option is chosen
(see Option 1).

2. Migrating cached data: If the previous installation of IBM MobileFirst
Platform Foundation saved encrypted data to the device using
OpenSSL, OpenSSL frameworks must be installed as described in
Option 2. The first time the application attempts to decrypt the data it
will fall back to OpenSSL and then encrypt it using native encryption.
If the OpenSSL framework is not installed an error is thrown. This way
the data will be auto-migrated to native encryption allowing
subsequent releases to work without the OpenSSL framework.

Continuing with OpenSSL
If OpenSSL is required use the setup described in Option 2.

Working with bitcode in iOS apps
Starting with Xcode 7, bitcode is supported and enabled by default for all new
projects.

About this task

IBM MobileFirst Platform Foundation supports bitcode with some limitations (see
below).

Procedure
1. Go to the Build Settings tab for your Xcode project.
2. In the Build Options group, set Enable Bitcode to Yes or No.

Note: IBM MobileFirst Platform Foundation application-authenticity security
check is not supported with bitcode. For more information see “Enabling the
application-authenticity security check” on page 7-282.

Note: Bitcode is required for all watchOS projects.

Developing for watchOS 2
You can develop your watchOS 2 app with MobileFirst by setting the correct
frameworks, libraries, and build settings in Xcode.

Setting up watchOS 2 development in Xcode:

To set up the development environment for watchOS 2, create the Xcode project,
add the watchOS 2 framework, and set up the necessary targets.

About this task

You can create your watchOS 2 project in Xcode and add the watchOS 2
framework manually or with CocoaPods.

Procedure

1. Create a watchOS 2 app in Xcode.

7-48 IBM MobileFirst Platform Foundation V8.0.0

a. Choose the File->New->Project option; the Choose a template for your
new project dialog appears.

b. Choose the watchOS 2/Application option, click Next.
c. Name the project and click Next.
d. From the navigation dialog, choose the project folder.

The project navigation tree now contains a main app folder and a [project
name] WatchKit Extension folder and target.

2. Add the MobileFirst watchOS 2 framework.
v To install the necessary frameworks with CocoaPods, see “Adding

MobileFirst SDK to an iOS Xcode project using CocoaPods” on page 7-29 and
specifically the step for watchOS 2 (Adding frameworks for watchOS).

v To install the necessary frameworks manually:
a. Obtain the watchOS 2 framework from MobileFirst Operations Console.

See “Acquiring the MobileFirst SDK from the MobileFirst Operations
Console” on page 7-26.

b. Select the [project name] WatchKit Extension folder in the left navigation
pane.

c. From the File menu, choose Add Files.
d. Click the Options button and select the following:

1) Copy items if needed and Create groups options.
2) [project name] WatchKit Extension in the Add to targets section.

e. Click Add.

Now when you select the [project name] WatchKit Extension in the Targets
section:
– The framework path appears in the Framework Search Paths setting in

the Search Paths section of the Build Settings tab.
– The Link Binary With Libraries section of the Build Phases tab lists the

IBMMobileFirstPlatformFoundationWatchOS.framework file:

Developing applications 7-49

For information on how to set up frameworks for the main iOS app see
“Setting up the Xcode project for iOS manually” on page 7-27.

Note: WatchOS 2 requires bitcode. From Xcode 7 the Build Options is set to
Enable Bitcode Yes (Build Settings tab, Build Options section).

3. Register both the main app and the WatchKit extension on the server.
a. Run mfpdev app register for each Bundle ID: .
v com.worklight.[project_name]

v com.worklight.[project_name].watchkitextension

This creates two registered apps on the server. For more information on
registering iOS apps see “Registering iOS applications to MobileFirst
Server” on page 7-37.

b. In Xcode, from the File->Add File menu, navigate to the mfpclient.plist
file created by mfpdev and add it to the project.

c. Once the mfpclient.plist appears in the navigation tree select it to display
the Target Membership box. Select the WatchOSDemoApp WatchKit
Extension target in addition to the WatchOSDemoApp.

4. Beginning with Xcode 7 TLS must be enforced, see “Enforcing TLS-secure
connections in iOS apps” on page 7-46. Note that both the main app folder and
the WatchKit extension folder have info.plist files that need to be updated
accordingly.

Results

The Xcode project now contains a main app and a watchOS 2 app, each can be
developed independently. For Swift, the entry point for the watchOS 2 app is the
InterfaceController.swift file in the [project name] watchKit Extension folder.
For Objective C the entry point is ViewController.m.

To use the MobileFirst watchOS 2 API in your code, import the relevant header:

For Objective C:
#import <IBMMobileFirstPlatformFoundationWatchOS/IBMMobileFirstPlatformFoundationWatchOS.h>

For Swift:
import IBMMobileFirstPlatformFoundationWatchOS

7-50 IBM MobileFirst Platform Foundation V8.0.0

Setting up MobileFirst security for the iPhone app and the watchOS 2 app:

You can set up MobileFirst security for your iPhone app and watchOS 2 app by
registering each as a separate target on the IBM MobileFirst Platform Server.

Before you begin

For this example, you must have already created:
v An Xcode project with the MobileFirst frameworks installed using both a main

app and a watchkit extension, each registered separately on the MobileFirst
Server. See “Setting up watchOS 2 development in Xcode” on page 7-48.

v An adapter with a defined scope, and two security checks: one for
username/password and one for a pin code. For more information on the
configuring the security see “Security checks” on page 7-281.

.

About this task

The Apple Watch and iPhone devices differs physically. Therefore the security
checks for each must be appropriate for the available input devices. For example,
the Apple Watch is limited to a number pad and does not allow the usual
username/password security check. Therefore access to protected resources on the
server could be enabled using a pin code. Because of these and similar differences,
it is necessary to apply different security checks for each target.

Below is one example of creating an app with both an iPhone and an Apple Watch
target. This architecture allows each to have its own security check. The differing
security checks are just examples of how you can design features for each target.
Additional security checks might be available.

Procedure

1. Determine the scope and security checks defined by the protected resource. See
“Security-checks configuration” on page 7-297.

2. In the IBM MobileFirst Platform Operations Console:
a. Ensure that both apps are registered on the server:
v com.worklight.[project_name]

v com.worklight.[project_name].watchkitextension

b. Map the scopeName to the defined security checks:
v For com.worklight.[project_name] map it to the username/password

check.
v For com.worklight.[project_name].watchkitapp.watchkitextension map

it to the pin code security check.

Results

The Xcode project now contains a main app and a watchOS 2 app, each with its
own security check. For more results see the watchOS Tutorial.

WatchOS 2 limitations:

The MobileFirst SDK for watchOS 2 does not support all MobileFirst features.

Limitations

Developing applications 7-51

https://mobilefirstplatform.ibmcloud.com/blog/2016/04/01/apple-watchOS-2-0-support-in-mobilefirst-platform-foundation-8-0/

The optional frameworks that add features to the MobileFirst app are not provided
for watchOS 2 development. Some other features are limited by constraints
imposed by the watchOS 2 or Apple Watch device.

Table 7-10. watchOS 2 non-supported features

feature

openSSL not supported

JSONStore no supported

push not supported

message alerts displayed by the MobileFirst
code

not supported

application-authenticity validation not compatible with bitcode, and therefore
not supported

remote disable/notify requires customization (see below)

usernames/password security check use the pin code security check (see “Setting
up MobileFirst security for the iPhone app
and the watchOS 2 app” on page 7-51)

Remote disable/notify

With the IBM MobileFirst Platform Operations Console, you can configure the IBM
MobileFirst Platform Server to disable access (and return a message) to client
applications based on the version they are running (see “Remotely disabling
application access to protected resources” on page 10-17). Two options provide
default UI alerts:
v when the app is active but a messages is sent: Active and Notifying

v when the app is outdated and access is denied: Access Denied

For watchOS 2:
v To see messages where the app is set to Active and Notifying, a custom remote

disable challenge handler must be implemented and registered. The custom
challenge handler must be initialized with the security check
wl_remoteDisableRealm.

v In the case where the access is disabled (Access Denied) the client app receives
an error message in the failure callback or request delegate handler. The
developer can decide how to handle the error, either notifying the user through
the UI or writing to the log. In addition the above method of creating a custom
challenge handler can be used.

Developing native applications in Android Studio
To create an IBM MobileFirst Platform Foundation Android app add the necessary
SDK files to your Android Studio project and register your app.

To develop a native application, add the MobileFirst SDK files to your Android
Studio project. Then register your app using IBM MobileFirst Platform Operations
Console or the MobileFirst Platform CLI. Develop and compile your app.

You can set up your Android Studio to include the MobileFirst by using Gradle or
by using a manual or remote method of retrieving the files. For more information,
see “Methods of setting up your environment” on page 7-53.

7-52 IBM MobileFirst Platform Foundation V8.0.0

Once you have the IBM MobileFirst Platform Foundation SDK files set up in your
Xcode project, you can register your app on the server. For details, see “Registering
Android applications to MobileFirst Server” on page 7-59.

Note: The MobileFirst APIs cannot be activated from within an Android Service.

The following topics show you how to set up an initial project and start
developing.

Methods of setting up your environment
You can prepare your environment for developing MobileFirst applications by
copying several files to your Android Studio project.

You can add the IBM MobileFirst Platform Foundation for Android SDK files to
your Android Studio project from either remote or local files using Gradle.

Once you have added your SDK to your Android project and imported the
necessary classes into your code, you can add MobileFirst functionality to your
app.

Setting up Android Studio projects with Gradle:

Before you begin

Ensure that you set up Android Studio and the Android SDK properly. For more
information about how to set up your system, see Android Studio Overview.

Note: MobileFirst SDK is compatible with Android version Ice Cream Sandwich
(API level 14) and later.

About this task

The documented and supported development environment for Android
applications with MobileFirst SDK is now Android Studio. To develop a new
Android application with Android Studio and MobileFirst SDK, follow these steps.

Procedure

1. If you do not already have one, create an Android application in Android
Studio by using File > New > New Project wizard. Make sure the project
compiles without error.

Note: There are two versions of the build.gradle file created, one in the main
project folder and one in the \apps folder.

2. Make sure the [project]\build.gradle file has the jcenter() in list of
repositories in the allprojects{} closure.
allprojects {

repositories {
jcenter()
// other repositories

}
}

The following example shows a sample [project]\build.gradle file created by
the Android Studio wizard:
// Top-level build file where you can add configuration options common to all sub-projects/modules.

buildscript {

Developing applications 7-53

http://developer.android.com/tools/studio/index.html

repositories {
jcenter()

}
dependencies {

classpath ’com.android.tools.build:gradle:1.3.0’

// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files

}
}

allprojects {
repositories {

jcenter()
}

}

task clean(type: Delete) {
delete rootProject.buildDir

}

The actual contents of your file can vary, depending on whether other
repositories or dependencies have been added.

3. Add the following packaging options within your android{} closure in the
app\build.gradle file:
packagingOptions {

pickFirst ’META-INF/ASL2.0’
pickFirst ’META-INF/LICENSE’
pickFirst ’META-INF/NOTICE’

}

4. Depending on whether you are installing aar files from a local copy or
accessing them remotely, add the following lines to your app\build.gradle file.
a. If you are installing from remote copies of the files add this line to the

dependencies closure.
compile ’com.ibm.mobile.foundation:ibmmobilefirstplatformfoundation:8.0.+’

Note: In this example the latest version of 8.0 is imported. If you want to
import a specific version such as 8.0.2016021411, replace with the
MobileFirst version number you are using, including the major, minor, and
patch numbers. The patch number is in the format YYYYMMDDHH. For
example:
compile ’com.ibm.mobile.foundation:ibmmobilefirstplatformfoundation:8.0.2016021411’

The following is an example of an app/build.gradle file for adding the
SDK from remote files:
applyplugin: ’com.android.application’

repositories {
jcenter()

}
android {

compileSdkVersion 23
buildToolsVersion "23.0.2"

defaultConfig {
applicationId "com.example.myname.myapplicationandroidgradle"
minSdkVersion 23
targetSdkVersion 23
versionCode 1
versionName "1.0"

}
buildTypes {

release {
minifyEnabled false
proguardFiles getDefaultProguardFile(’proguard-android.txt’), ’proguard-rules.pro’

}
}
packagingOptions {

pickFirst ’META-INF/ASL2.0’
pickFirst ’META-INF/LICENSE’
pickFirst ’META-INF/NOTICE’

7-54 IBM MobileFirst Platform Foundation V8.0.0

}
}
dependencies {
compile ’com.ibm.mobile.foundation:ibmmobilefirstplatformfoundation:8.0.+’

}
}

b. Remove the proguardFiles line from the buildTypes enclosure and save the
file. Proguard is not supported in IBM MobileFirst Platform Foundation
V8.0.0. See Obfuscating Android code with ProGuard.

c. If you are installing from local files:
Add the following to the dependencies closure.
compile(name:’ibmmobilefirstplatformfoundation’, ext:’aar’)

Add a repositories enclosure:
repositories {

flatDir {
dirs ’libs’

}
}

Note: To acquire the necessary SDK files see “Acquiring the MobileFirst
SDK from the MobileFirst Operations Console” on page 7-26. Copy the
relevant aar files to the app\libs folder.
The following is an example of an app\build.gradle file for adding the SDK
from local files:
apply plugin: ’com.android.application’

repositories {
flatDir {

dirs ’libs’
}

}
android {

compileSdkVersion 23
buildToolsVersion "23.0.2"

defaultConfig {
applicationId "com.example.myname.myapplicationandroidgradle"
minSdkVersion 23
targetSdkVersion 23
versionCode 1
versionName "1.0"

}
buildTypes {

release {
minifyEnabled false
proguardFiles getDefaultProguardFile(’proguard-android.txt’), ’proguard-rules.pro’

}
}

packagingOptions {
pickFirst ’META-INF/ASL2.0’
pickFirst ’META-INF/LICENSE’
pickFirst ’META-INF/NOTICE’

}
}
dependencies {

compile(name:’ibmmobilefirstplatformfoundation’, ext:’aar’)
}

5. The imported SDK does not include the Javadocs. To add the Javadocs to your
project see “Registering Javadocs to an Android Studio Gradle project” on page
7-57.

6. For information on adding additional features see “Adding the optional
MobileFirst components with Gradle” on page 7-56.

7. Add the following lines to the AndroidManifest.xml file of your native app for
Android:
v <activity android:name="com.worklight.wlclient.ui.UIActivity" />

This line adds the ability for a designated MobileFirst UI activity to run in
the user application.

Developing applications 7-55

Note: If you want to automate this process you can add the following task
to the app\build.gradle file:

task(addUIActivity) << {
def manifestFile = file("src/main/AndroidManifest.xml")
def manifestText = manifestFile.getText()
if(!manifestText.contains("com.worklight.wlclient.ui.UIActivity")) {

def pattern = Pattern.compile("\\</application\\>")
def matcher = pattern.matcher(manifestText)
def manifestContent = matcher.replaceFirst("<activity android:name=\"com.worklight.wlclient.ui.UIActivity\"/>\n</application>")
manifestFile.write(manifestContent)

}
}
preBuild.dependsOn addUIActivity

v <uses-permission android:name="android.permission.INTERNET" />

This line adds internet access permissions to the user application.
8. Rebuild your application.

Results

You can now start developing your native Android application with the IBM
MobileFirst Platform Foundation SDK.

What to do next

Before you can access server resources, you must register your app. See
“Registering Android applications from the MobileFirst Platform CLI” on page
7-59. For details about the mfpclient.plist file see “Android client properties file”
on page 7-62. Once the app is registered you can write some initial code for testing
the server connection (“Some initial code for accessing the server” on page 7-63.

Adding the optional MobileFirst components with Gradle:

You can add more MobileFirst features to your Android application with Gradle.

Before you begin

Prerequisite: An existing Android Studio project with the app Gradle file set up to
add the core MobileFirst SDK. See “Setting up Android Studio projects with
Gradle” on page 7-53.

About this task

To add additional features, add the optional aar files to your Android Studio
project. Some additional steps for setting up Android Studio to support your
feature may exist.

These are the optional aar files:

Table 7-11. Android SDK

aar feature

ibmmobilefirstplatformfoundationpush.aar Push notifications. For more information on
setup see “Setting up push notifications” on
page 7-253.

ibmmobilefirstplatformfoundationjsonstore.aarJSONStore. For more information on setup
see “JSONStore” on page 7-134.

7-56 IBM MobileFirst Platform Foundation V8.0.0

Procedure

1. For each aar to be added, add entries to the build.gradle file.
a. For accessing and installing aar remotely, add a compile entry to the

dependencies enclosure in the app\build.gradle file. There should be an
existing compile entry for the main MobileFirst aar file.
dependencies {

compile ’com.ibm.mobile.foundation:ibmmobilefirstplatformfoundation:8.0.+’
compile ’com.ibm.mobile.foundation:ibmmobilefirstplatformfoundationpush:8.0.+’
compile ’com.ibm.mobile.foundation:ibmmobilefirstplatformfoundationjsonstore:8.0.+’

}

Note: In this example the latest version of 8.0 is imported. If you want to
import a specific version such as 8.0.2016021411, replace with the
MobileFirst version number you are using, including the major, minor, and
patch numbers. The patch number is in the format YYYYMMDDHH. For
example:
compile ’com.ibm.mobile.foundation:ibmmobilefirstplatformfoundation:8.0.2016021411’

b. For installing locally available aar files, copy the optional aar file to the
libs folder. Add a line to the dependency enclosure for each aar file
needed. This example adds all the optional and required SDKs.
dependencies {

compile(name:’ibmmobilefirstplatformfoundation’, ext:’aar’)
compile(name:’ibmmobilefirstplatformfoundationjsonstore’, ext:’aar’)
compile(name:’ibmmobilefirstplatformfoundationpush’, ext:’aar’)

}

Note: For information on obtaining the available optional aar files see
“Acquiring the MobileFirst SDK from the MobileFirst Operations Console”
on page 7-26.

2. Rebuild your application.
3. The imported SDK includes the Javadocs but they need to be linked in your

Android Studio project. For details see “Registering Javadocs to an Android
Studio Gradle project.”

Results

You can now start developing your native IBM MobileFirst Platform Foundation
Android app with additional features.

Registering Javadocs to an Android Studio Gradle project:

Before you begin

This task is necessary after you have installed the MobileFirst SDK using Gradle.

About this task

The MobileFirst Android Javadocs are included in the *.aar files imported by
Gradle. However you need to link them to their relevant library in Android Studio.

Procedure

1. In Android Studio make sure you are in the Project view, accessible from the
pull-down menu above the navigation bar:

Developing applications 7-57

a. Find the library name under the External Libraries node (the Javadoc file
appears below it).

b. Right-click on the library name . Choose Library Properties.

2. From the Library Properties dialog select the .
a. Navigate to the downloaded Javadoc JAR file

(ibmmobilefirstplatformfoundation-javadoc.jar) under
..\app\build\intermediates\exploded-aar\
ibmmobilefirstplatformfoundation\jars\assets\ and select it.

7-58 IBM MobileFirst Platform Foundation V8.0.0

b. Click OK.

Results

The Javadocs will now be available within your project.

Registering Android applications to MobileFirst Server
Register your Android application to an instance of MobileFirst Server to establish
communication with the server and to provide the server with information about
your app. You can register your app using the IBM MobileFirst Platform
Command Line Interface (CLI) or the IBM MobileFirst Platform Operations
Console.

Registering Android applications from the MobileFirst Platform CLI:

You can use the IBM MobileFirst Platform Command Line Interface (CLI) to
register your Android application to an instance of MobileFirst Server.

Before you begin

v You must have the IBM MobileFirst Platform Command Line Interface (CLI)
installed. For more information, see “Installing the MobileFirst Platform CLI” on
page 7-15.

v You must have an instance of MobileFirst Server running. The server can be
running locally, or it can be a remote server, but it must be reachable from your
local computer. For more information, see “Setting up the MobileFirst
Development Server” on page 7-12, “Installing the IBM MobileFirst Platform
Foundation Developer Kit” on page 7-10, or “Installing IBM MobileFirst
Platform Server” on page 6-2.

v You must have an Android application on your local computer.

Developing applications 7-59

About this task

Once you have the client side of your Android application initially defined, you
can prepare for further development tasks by registering it to a MobileFirst Server.

Procedure

1. Check that the target MobileFirst Server is up and running.
2. Navigate to the directory that contains your app, or one of its subdirectories.
3. Register your app to the server. Use one of the following procedures:
v To register the app to the default server, run the following command:

mfpdev app register

Note: If you have not previously set a default server and a MobileFirst
Server is running on the local system, this command registers the app to the
local MobileFirst Server, and this server is made the default.

v To register your app to a server that is not the default server:
a. Create a server profile by running the mfpdev server add command. For

example:
mfpdev server add Server1 -url https://company.mobile.com:9080 -login admin -password secretPassword!

For more information about the mfpdev server add command, run mfpdev
help server add.

b. To register your app to the server that you just defined, run the mfpdev
app register command, and specify the server profile that you just
created. For example:
mfpdev app register Server1

For more information about this command, including optional parameters, run
mfpdev help app register.

Results

The app is registered to the target server. Data about the app that is obtained from
the platform properties file (AndroidManifest.xml) such as application name,
version number, and app ID is sent to the server. If the client properties file
/app/src/main/assets/mfpclient.properties already exists, it is updated with the
value of the server's URL. If the file did not exist, a /app/src/main/assets/
mfpclient.properties file that includes the server's URL is created at the root of
your project.

What to do next

You can proceed with other development tasks that depend on the MobileFirst
Server. For example, you can preview your app, test your app's security features,
and manage your app from the MobileFirst Operations Console.

Registering Android applications from the MobileFirst Operations Console:

Register your Android application to an instance of MobileFirst Server to establish
communication with the server and to provide the server with information about
your app.

7-60 IBM MobileFirst Platform Foundation V8.0.0

Before you begin

You must have the IBM MobileFirst Platform Operations Console running on the
MobileFirst Server targeted for registration. For more information, see “The IBM
MobileFirst Platform Foundation Developer Kit” on page 7-9.

About this task

You can register an app on the server before or after setting up the Android Studio
environment (see “Methods of setting up your environment” on page 7-53). You
must register your app to the server before developing code that accesses server
resources.

Procedure

1. In the MobileFirst Operations Console, navigate to the Register Application
page by using one of the following methods:
v In the navigation sidebar, select New next to Appilcations.

v From the Dashboard, select Register an App.

2. On the Register an Application page, select the Android option.

3. Fill in the values for the application that you are registering.
If you created your app by using the Android Studio wizard, the version
number and package name and are defined in the app\build.gradle file in
your Android Studio project, in the defaultConfig enclosure:
defaultConfig {

applicationId "com.example.myapplication"
minSdkVersion 23
targetSdkVersion 23
versionCode 1
versionName "1.0"

}

v Application Name: This is for display and can be any convenient value. It is
optional.

v Package: The applicationId value specified in your app/build.gradle. For
more information, see http://tools.android.com/tech-docs/new-build-
system/applicationid-vs-packagename.

v Version: The versionName value found in your app/build.gradle.
If these parameters do not exist in the app\build.gradle, you can find them
in the AndroidManifest.xml file.

<manifest android:hardwareAccelerated="true" android:versionCode="2" android:versionName="0.0.2" ...>

4. Click the Register application button. From the main Dashboard page, your
application is now listed under the default mfp runtime.

Developing applications 7-61

http://tools.android.com/tech-docs/new-build-system/applicationid-vs-packagename
http://tools.android.com/tech-docs/new-build-system/applicationid-vs-packagename

Note: The mfp runtime is the default value for the WLServerContext parameter
in the mfpclient.properties file below.

5. Click the application name to display the main configuration page for your
app. The main page for your app displays different configuration options for
the server-side registration of your app.

6. Click the Configuration Files tab. The Client Configuration File section
displays a template for creating your mfpclient.properties file. This file is
used for connecting the client app to the server. For information on populating
the values in the file and copying it to your Android Studio project, see
“Android client properties file.”

Results

The app is registered on the target server.

What to do next

To complete the client-server registration, you must complete the required
properties in the mfpclient.properties file and copy it to your Android Studio
project. For more information, see “Android client properties file.”

Android client properties file
The mfpclient.properties file defines the properties that your native app for
Android requires to use the MobileFirst native API for Android.

The mfpclient.properties file is created when you register your Android app on
the MobileFirst Development Server (see “Registering Android applications to
MobileFirst Server” on page 7-59). If you register your using the IBM MobileFirst
Platform Operations Console you must create the file manually and place it within
your Android Studio project.

The following table lists the properties of the mfpclient.properties file, their
descriptions, and possible values.

Table 7-12. Properties and values of the mfpclient.properties file.

Property Description Example values

wlServerProtocol The communication protocol with the
MobileFirst Server.

http or https

wlServerHost The host name of the MobileFirst Server. 192.168.1.63
If the MobileFirst Server host has an IPV6 address, then use the mapped host name instead of providing the raw IP address. This is a known limitation.

wlServerPort The port of the MobileFirst Server. 9080

wlServerContext The server context. This value can be seen
in the MobileFirst Operations Console
dashboard. It is the value of the app's
runtime. By default the values is /mfp/.

/mfp/

wlPlatformVersion The MobileFirst version 8.0.20160214

languagePreferencesPreferred language. en

Below is an example mfpclient.properties file.

7-62 IBM MobileFirst Platform Foundation V8.0.0

wlServerProtocol=http
wlServerHost=9.148.49.221
wlServerPort=9080
wlServerContext=/mfp/
wlPlatformVersion=8.0.20160214
languagePreferences=en

Note: You can create this file manually and place it in the [project]\app\src\
main\assets folder of your Android Studio project folder. Add the assets folder if
it does not exist under the main folder. When you register the app by using
MobileFirst Platform CLI the mfpclient.properties file is created, along with the
correct values, and placed in the assets folder.

Some initial code for accessing the server
A simple startup process for Android-based applications for accessing the server is
described here.

The main activity

Before you can access the server resources, you must register the app on the server.
For more information, see “Registering Android applications to MobileFirst Server”
on page 7-59.

You must also deploy an adapter. For more information about using adapters, see
“Client access to adapters” on page 7-231.

This example is based on the sample code created in “Setting up Android Studio
projects with Gradle” on page 7-53.

Import the MFP client API and create an instance

Some imports are required to run this example:
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.util.Log;
import com.worklight.common.Logger;
import com.worklight.wlclient.api.WLAccessTokenListener;
import com.worklight.wlclient.api.WLAuthorizationManager;
import com.worklight.wlclient.api.WLClient;
import com.worklight.wlclient.api.WLFailResponse;
import com.worklight.wlclient.api.WLResourceRequest;
import com.worklight.wlclient.api.WLResponse;
import com.worklight.wlclient.api.WLResponseListener;
import com.worklight.wlclient.auth.AccessToken;
import com.worklight.wlclient.auth.WLAuthorizationManagerInternal;

import java.net.URI;
import java.net.URISyntaxException;

The WLClient is used throughout the application to connect to the server.

The resource request calls the getBankBalance adapter and writes messages to the
log for success or failure.

Replace the entire MainActivity with the code that follows.
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

Developing applications 7-63

WLClient client = WLClient.createInstance(this);
URI adapterPath = null;

try {
adapterPath = new URI("/adapters/javaAdapter/users/getBankBalance");
} catch (URISyntaxException e) {
e.printStackTrace();
}

WLResourceRequest request = new WLResourceRequest(adapterPath, WLResourceRequest.GET);
request.send(new WLResponseListener() {
@Override

public void onSuccess(WLResponse wlResponse) {
Log.i("MobileFirst Quick Start", "Success: " + wlResponse.getResponseText());

}
@Override

public void onFailure(WLFailResponse wlFailResponse) {
Log.i("MobileFirst Quick Start", "Failure: " + wlFailResponse.getErrorMsg());

}
});

}

Accessing the server without deploying an adapter

To test the server connectivity without deploying an adapter, request an access
token. If no security checks were added to your app, and the server can be
accessed, the token can be obtained. The token request is sent without a scope:
WLAuthorizationManager.getInstance().obtainAccessToken("", new MyObtainAuthorizationHeaderListener());

The entire MainActivity consists of creating the WLClient and requesting the access
token:
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
WLClient client = WLClient.createInstance(this);
URI adapterPath = null;
Logger.setContext(this);
WLAuthorizationManager.getInstance().obtainAccessToken("", new MyObtainAuthorizationHeaderListener());

}

The MyObtainAuthorizationHeaderListener listener returns success or error
messages.
class MyObtainAuthorizationHeaderListener implements WLAccessTokenListener {

@Override
public void onSuccess(AccessToken accessToken) {

Log.i("MobileFirst Quick Start", " Success ");
return;

}

@Override
public void onFailure(WLFailResponse wlFailResponse) {

String errorMsg=wlFailResponse.getErrorMsg();
if (errorMsg != null)

errorMsg=errorMsg.replace("\n","").replace("\r","").replace("\t","");
Log.i("MobileFirst Quick Start", "failure: " + errorMsg);
return;

}
}

The error or success message is printed to the Android monitor pane in Android
Studio.

7-64 IBM MobileFirst Platform Foundation V8.0.0

After your app connects successfully to the server, you can continue to develop
your app.

Developing native C# applications for Windows 10 Universal
Windows Platform and Windows 8 Universal

To develop a native C# application for Windows 10 Universal Windows Platform
(UWP) and Windows 8 Universal, you must create a Visual Studio project and then
add the IBM MobileFirst Platform Foundation SDK files to it.

When you create native API applications, you can choose to create a Windows 8
Universal environment that supports either desktops and tablets or phones or a
Windows 10 UWP environment. The contents of the associated application
descriptor file reflect your choice.

Methods of setting up your environment
You can prepare your environment for developing MobileFirst applications by
installing the IBM.MobileFirstPlatformFoundation NuGet package into your Visual
Studio project.

Adding the MobileFirst SDK manually:

You can prepare your environment for developing MobileFirst applications by
getting the framework and library files manually. The IBM MobileFirst Platform
Foundation SDK for Windows 8 and Windows 10 Universal Windows Platform
(UWP) is also available from NuGet.

About this task

You can add MobileFirst functionality to an existing application, or upgrade from
an earlier version of the MobileFirst SDK, by manually adding the SDK files to
your application. Follow the outlined procedure to obtain the required SDK files
and to prepare your development environment to build MobileFirst applications.

Procedure

1. Get the MobileFirst SDK from MobileFirst Operations Console.You can refer to
Acquiring the MobileFirst SDK from the MobileFirst Operations Console for
detailed instructions.

2. Extract the contents of the downloaded SDK obtained in step 1.
3. Open the Windows Universal native project in Visual Studio. Perform the

following steps.
a. Select Tools > NuGet Package Manager > Package Manager Settings.
b. Select Package Sources option. Click + icon to add new package source.
c. Provide a name for the package source (for example: windows8nuget).
d. Navigate to the MobileFirst SDK folder that was downloaded and extracted.

Click OK.
e. Click Update and then click OK.
f. Right-click the Solution project-name in Solution explorer tab, which is to

the right corner of the screen.
g. Select Manage NuGet Packages for Solutions > Online > windows8nuget.
h. Click Install option. You get the option to Select Projects.
i. Ensure that all the check boxes are checked. Click OK.
NuGet package gets installed into your project.

Developing applications 7-65

Results

Your Windows native project is now ready for development of MobileFirst
applications.

In your application, you must import the headers for the
IBMMobileFirstPlatformFoundation framework by using IBM.Worklight APIs.

Adding the MobileFirst SDK by using NuGet:

You can prepare your environment for developing MobileFirst applications by
getting the framework and library files through installing
IBM.MobileFirstPlatformFoundation package from NuGet. The IBM MobileFirst
Platform Foundation SDK for Windows 8 and Windows 10 Universal Windows
Platform (UWP) is available from NuGet.

About this task

Information on packages on NuGet is available on the Nuget Packages page at
https://www.nuget.org/packages. To add the MobileFirst SDK to your Visual
Studio Project, follow these steps:

Procedure

1. Create a Visual Studio C# Project for Windows Universal or open an existing
project or solution.

2. Select Tools > NuGet Package Manager > Package Manager Console.
3. Choose the project where you want to install the MobileFirst SDK.
4. Install the MobileFirst SDK by running the Install-Package

IBM.MobileFirstPlatformFoundation command.
Or,
You can also add the MobileFirst SDK to your Visual Studio Project by
right-clicking the References tab of your project and selecting Manage NuGet
Packages. Search for IBM.MobileFirstPlatformFoundation and click Install.

7-66 IBM MobileFirst Platform Foundation V8.0.0

https://www.nuget.org/packages

5. Optional: You can also add optional MobileFirst components by getting the
framework and library files through installing package from NuGet. For more
information, see Adding the optional MobileFirst components by using NuGet.

Results

You can now start developing your native Windows Universal applications with
the MobileFirst SDK.

Note: There is a known limitation with MobileFirst Windows 10 UWP apps when
the MobileFirst SDK is installed through the NuGet package.

Adding the optional MobileFirst components by using NuGet:

You can prepare your environment for developing MobileFirst applications with
optional components such as MobileFirst push by getting the framework and
library files through installing IBM.MobileFirstPlatformFoundationPush package
from NuGet. The MobileFirst SDK for Windows 8 and Windows 10 Universal
Windows Platform (UWP) is a prerequisite and is also available from NuGet.

About this task

Information on packages on NuGet is available on the Nuget Packages page at
https://www.nuget.org/packages. To add the optional MobileFirst push to your
Visual Studio Project, follow these steps:

Figure 7-4. Installing MobileFirst SDK using the Manage NuGet Packages

Developing applications 7-67

https://www.nuget.org/packages

Procedure

1. Create a Visual Studio C# Project for Windows Universal or open an existing
project or solution.

2. Select Tools > NuGet Package Manager > Package Manager Console.
3. Choose the project where you want to install the MobileFirst push component.
4. Install the MobileFirst push component by running the Install-Package

IBM.MobileFirstPlatformFoundationPush command.
Or,
You can also add the MobileFirst push component to your Visual Studio Project
by right-clicking the References tab of your project and selecting Manage
NuGet Packages. Search for IBM.MobileFirstPlatformFoundationPush and click
Install.

Results

You can now develop your native Windows Universal applications with the
capability to send push notifications by using the MobileFirst push component.

Related links

“Adding the MobileFirst SDK by using NuGet” on page 7-66
You can prepare your environment for developing MobileFirst applications by
getting the framework and library files through installing
IBM.MobileFirstPlatformFoundation package from NuGet. The IBM MobileFirst
Platform Foundation SDK for Windows 8 and Windows 10 Universal Windows
Platform (UWP) is available from NuGet.

Registering Windows applications to MobileFirst Server
Register your Windows application to an instance of MobileFirst Server to establish
communication with the server and to provide the server with information about
your app.

About this task

You can register your app by using the IBM MobileFirst Platform Command Line
Interface (CLI) or the IBM MobileFirst Platform Operations Console.

Registering Windows applications from the MobileFirst Platform CLI:

You can use the IBM MobileFirst Platform Command Line Interface (CLI) to
register your Windows application to an instance MobileFirst Server.

Before you begin

v You must have the IBM MobileFirst Platform Command Line Interface (CLI)
installed. For more information, see “Installing the MobileFirst Platform CLI” on
page 7-15.

v You must have an instance of MobileFirst Server running. The server can be
running locally, or it can be a remote server, but it must be reachable from your
local computer. For more information, see “Setting up the MobileFirst
Development Server” on page 7-12, “Installing the IBM MobileFirst Platform
Foundation Developer Kit” on page 7-10, or “Installing IBM MobileFirst
Platform Server” on page 6-2.

v You must have a native Windows application on your local computer.

7-68 IBM MobileFirst Platform Foundation V8.0.0

About this task

Once you have the client side of your Windows application initially defined, you
can prepare for further development tasks by registering it to a MobileFirst Server.

Registration occurs for only the app that corresponds to the current working
directory in which you run the mfpdev app register command. If the current
working directory is a Windows 8.1 Universal project that contains both Windows
8.1 desktop and Windows Phone 8.1 then both the desktop and Windows Phone
projects are registered. If the current working directory is the Windows or
WindowsPhone directory under the Windows 8.1 Universal project, or one of their
subdirectories, then registration occurs for only the project that corresponds to the
directory that you are in.

Procedure

1. Check that the target MobileFirst Server is up and running.
2. Navigate to the directory that contains your app, or one of its subdirectories.
3. Register your app to the server. Use one of the following procedures:
v To register the app to the default server, run the following command:

mfpdev app register

Note: If you have not previously set a default server and a MobileFirst
Server is running on the local system, this command registers the app to the
local MobileFirst Server, and this server is made the default.

v To register your app to a server that is not the default server:
a. Create a server profile by running the mfpdev server add command. For

example:
mfpdev server add Server1 -url https://company.mobile.com:9080 -login admin -password secretPassword!

For more information about the mfpdev server add command, run mfpdev
help server add.

b. To register your app to the server that you just defined, run the mfpdev
app register command, and specify the server profile that you just
created. For example:
mfpdev app register Server1

For more information about this command, including optional parameters, run
mfpdev help app register.

Results

The app is registered to the target server. Data about the app that is obtained from
its platform properties file (.appxmanifest) such as application name, version
number, and app ID is sent to the server. If the root client properties file
(mfpclient.resw) for each registered Windows platform exists, it is updated with
the value of the server's URL. If the file did not exist, a mfpclient.resw file is
created that includes the server's URL. The client properties files are located as
follows, depending on your specific Windows platform:
v Windows 10 UWP and stand-alone Windows 8.1 projects (either Windows 8.1

desktop or Windows Phone 8.1):/strings/mfpclient.resw

For Windows 8.1 Universal projects, two client properties files are created or
updated:
v Windows Phone 8.1: /WindowsPhone/strings/mfpclient.resw

Developing applications 7-69

v Windows 8.1 desktop:/Windows/strings/mfpclient.resw

What to do next

If the mfpclient.resw file was created when you ran mfpdev app register, then
the file is not linked into your Windows project in your IDE and you need to link
it. If the mfpclient.resw was created by using NuGet, then the file is already
linked into your project, but you need to update the properties in the file to
correspond to your target MobileFirst Server. For more information, see “Client
property file for Windows 10 Universal Windows Platform and Windows 8
Universal” on page 7-72.

You can proceed with other development tasks that depend on the MobileFirst
Server. For example, you can preview your app, test your app's security features,
and manage your app from the MobileFirst Operations Console.

Registering Windows applications from the MobileFirst Operations Console:

You can use the IBM MobileFirst Platform Operations Console to register your
Windows application to an instance of MobileFirst Server.

About this task

You must have the IBM MobileFirst Platform Operations Console running on the
MobileFirst Server targeted for registration. For more information, see “The IBM
MobileFirst Platform Foundation Developer Kit” on page 7-9.

You can register an app on the server before or after setting up the Visual Studio
environment (see “Methods of setting up your environment” on page 7-65). You
must register your app to the server before developing code that accesses server
resources.

Procedure

1. In the MobileFirst Operations Console, navigate to the Register Application
page by using one of the following methods:
v In the navigation sidebar, select New next to Appilcations.

v From the Dashboard, select Register an App.

2. On the Register Application page, select the Windows option and then select
the appropriate Windows platform you are working on.

7-70 IBM MobileFirst Platform Foundation V8.0.0

3. Update the following values for the application you are registering:
v Application Name: This is for display and can be any convenient value. It is

optional.
v Package identity name: This is typically the name of your Visual Studio

project and can be found in the Package.appxmanifest file in your Visual
Studio project.

v Version: The version number of your Windows app. This should match the
version as it appears in the Package.appxmanifest file.

4. Click the Register application button. From the main Dashboard page, your
application is now listed under the default mfp runtime.

Note: The mfp runtime is the default value for the wlServerContext parameter
in the mfpclient.resw file below.

5. Click the application name to display the main configuration page for your
app. The main page for your app displays different configuration options for
the server-side registration of your app.

Developing applications 7-71

6. Click the Configuration Files tab. The Client Configuration File tab displays a
template for creating your mfpclient.resw file. This file is used for connecting
the client app to the server. For information on populating the values in the file
and copying it to your Visual Studio project, see “Client property file for
Windows 10 Universal Windows Platform and Windows 8 Universal.”

Results

The app is registered on the target server.

What to do next

To complete the client-server registration, you must complete the required
properties in the mfpclient.resw file and copy it to your Visual Studio project.

Client property file for Windows 10 Universal Windows Platform
and Windows 8 Universal
This file defines the properties that your native app for Windows 10 Universal
Windows Platform (UWP) and Windows 8 Universal requires to use the
MobileFirst native API.

The mfpclient.resw client property file contains the necessary data to use the
MobileFirst API for Windows 8 Universal. This file is added to your Visual Studio
project, when you add the MobileFirst NuGet package. For more information, see
“Adding the MobileFirst SDK by using NuGet” on page 7-66.

You must define the properties of this client property file before you use it in your
native app for Windows 8 Universal.

The following table lists the properties of the mfpclient.resw file, their
descriptions, and possible examples for their values.

Table 7-13. Properties and values of the mfpclient.resw file.

Property Description Example values

wlServerProtocol The communication protocol with the
MobileFirst Server. The wlServerProtocol
property value can be https or http. In
production, use https.

http or https.

7-72 IBM MobileFirst Platform Foundation V8.0.0

Table 7-13. Properties and values of the mfpclient.resw file (continued).

Property Description Example values

wlServerHost The public URL of the MobileFirst Server
or of the cluster of MobileFirst Server. The
host name must be accessible from the
mobile devices. Do not use localhost,
even for development tests, or your device
or device simulators cannot reach the
server.

server.mycompany.com or
for tests an IP address, for
example 169.254.184.88.

wlServerPort The port of the MobileFirst Server, for the
protocol specified in wlServerProtocol.

9080 for the HTTP port of
the MobileFirst
Development Server.

wlServerContext The context root of the runtime component
of MobileFirst Server that the app is
registered to. The context root of the
default runtime component is /mfp/.

/mfp/

wlAppId The Package Identity Name, as registered
in the MobileFirst Operations Console.

Myapp.WindowsPhone

Note: The client property file is placed in the following path: strings/
mfpclient.resw.

When you register your app to a server with mfpdev app register, the client
property file is automatically updated. For more information about registering the
app with mfpdev, see “Registering Windows applications from the MobileFirst
Platform CLI” on page 7-68.

You can also update the client property file with mfpdev app config. For more
information, type mfpdev help app config.

Developing web applications
Use the IBM MobileFirst Platform Foundation web SDK to develop web
applications with MobileFirst capabilities, including security features and
application management.

Overview

You can develop mobile or Desktop MobileFirst web applications by using your
preferred development environment and tools. To add MobileFirst features and
capabilities to your client application, add the core module of the MobileFirst web
SDK (ibmmfpf.js), which provides access to the JavaScript client-side API for
development of web and cross-platform Cordova applications. To add MobileFirst
Analytics capabilities to your application, also add the analytics module of the web
SDK (ibmmfpfanalytics.js), which provides access to the JavaScript web analytics
client-side API. You can also use the provided GUI and CLI tools to configure,
manage, and secure your application.

Development steps

Follow the outlined procedure to develop your web application:
1. Select your preferred development tools and topology for developing the

application. Ensure that your selected topology satisfies the requirements of the
same-origin policy and “Google Chrome secure-origins policy” on page 7-75.

Developing applications 7-73

2. Download the sample MobileFirst starter web application (MFPStarterWeb), and
use it either as the basis for your application or as a general reference for a
functioning application. See “Getting started with a sample MobileFirst
application” on page 7-25. The sample application already includes both the
core and analytics modules of the web SDK. This step is optional.

3. Get the MobileFirst web SDK. See “Acquiring the MobileFirst web SDK” on
page 7-75.

4. Add the required SDK files to your web application. See “Adding the
MobileFirst SDK to web applications” on page 7-76. You can add the files to an
existing web application, or create a new application. The sample
MFPStarterWeb application already includes both the core and analytics modules
of the web SDK, and demonstrates how to initialize the SDK and use its APIs.

5. Add JavaScript code to initialize the web SDK. See “Initializing the MobileFirst
SDK” on page 7-79.

6. Develop your application. Use the JavaScript SDK APIs to add the required
features and functions to your application.

7. Register your application to an instance of MobileFirst Server. See “Registering
web applications to MobileFirst Server” on page 7-80.

8. Continue developing and testing your application.

Note: To use server-side features, such as adapters and security, you must first
register your application with a running instance of MobileFirst Server (see
Step 7). For more information about the server and its installation, see
“MobileFirst Server” on page 7-4 and “Setting up the development
environment” on page 7-9.

Same-origin policy

You are free to host the web resources of your application on your preferred web
server. However, when you select the development and production topologies, you
must consider the restrictions of the same-origin-policy security model, which is
designed to protect against potential security threats from unverified sources.
According to this policy, a browser allows web resources (such as scripts) to
interact only with resources that stem from the same origin (which is defined as a
combination of URI scheme, host name, and port number). For more information
about the same-origin policy, see The Web Origin Concept specification, and
specifically 3. Principles of the Same-Origin Policy.

Because both your web server and MobileFirst Server need to communicate with
your application, both servers must have the same web origin to satisfy the
same-origin policy. Use one of the following methods to ensure a single web origin
for your application:

Shared application server
Host your web resources on the same WebSphere Application Server as
your MobileFirst Server runtime.
To implement this method, create a Maven webapp project (using the
maven-archetype-webapp archetype), and build a web application archive
(.war file) that contains your application's web resources. For information
about creating Maven webapp projects, see Creating a webapp. Then, add
your Maven web application to the WebSphere Application Server that
hosts your MobileFirst Server, by editing the application server's
configuration file (server.xml). For detailed step-by-step instructions, see
Using WebSphere Liberty profile to serve the web application resources.

7-74 IBM MobileFirst Platform Foundation V8.0.0

https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454#section-3
https://maven.apache.org/plugins-archives/maven-archetype-plugin-1.0-alpha-7/examples/webapp.html
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/setting-up-your-development-environment/web-development-environment/#using-websphere-liberty-profile-to-serve-the-web-application-resources

Reverse proxy
Set up a reverse proxy between your client application and its servers, and
implement the proxy to redirect application requests to MobileFirst Server.
The proxy acts as a single origin for all interaction with the application's
web browser.
The sample MobileFirst starter web application (MFPStarterWeb) includes a
reverse-proxy Node.js server that you can install with the Node Package
Manager (npm), as outlined in the sample's README.md file.
For detailed information on how to create a custom Node.js server that acts
as a single origin for your MobileFirst web application, see Using Node.js.

Google Chrome secure-origins policy

In production, it is recommended that you use the HTTPS protocol (HTTP over
SSL) for the network communication with your web server and MobileFirst Server.
However, during the development process you might prefer to use non-secure
HTTP communication. In Google Chrome, HTTP communication with a remote
server (not localhost) might cause an error due to the Chrome secure-origins policy.
For more information about this policy, see Prefer Secure Origins For Powerful
New Features. You can overcome this error by starting Chrome with the
--unsafely-treat-insecure-origin-as-secure flag set to the IP address of your
HTTP server. You also need to set the --user-data-dir flag to a profile-session
directory. The following example overrides the security-origins policy for IP
address http://9.148.225.123:3000, and uses a /tmp/profle for the browser
session profile:

--args --unsafely-treat-insecure-origin-as-secure=http://9.148.225.123:3000 --user-data-dir=/tmp/profile

Acquiring the MobileFirst web SDK
Get a copy of the IBM MobileFirst Foundation web SDK for development of
MobileFirst web applications.

Procedure

You can get the MobileFirst web SDK by using either of the following methods:
v Download the SDK from the Node Package Manager (npm) public software

repository. The ibm-mfp-web-sdk npm package page displays the README.md file
of the SDK package.

Note: To download npm packages, you must first install the Node.js JavaScript
runtime. For information about installing Node.js, see the Node js web site.
From the command line, run the following command to download the SDK:
npm install ibm-mfp-web-sdk

The command creates, in the current directory, a node_modules directory that
contains the ibm-mfp-web-sdk SDK directory. Consider running the command
from the root directory of your web application to avoid manually copying the
SDK directory when you add the SDK files to the application.

v Download the SDK from the Download Center of the IBM MobileFirst Platform
Operations Console. This method does not require an internet connection. The
method is available when the console is run on the MobileFirst Development
Server from the IBM MobileFirst Platform Foundation Developer Kit. For
detailed instructions, see “Acquiring the MobileFirst SDK from the MobileFirst
Operations Console” on page 7-26. After you extract the downloaded archive
file, you have a copy of the ibm-mfp-web-sdk SDK directory.

Developing applications 7-75

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/setting-up-your-development-environment/web-development-environment/#using-node-js
https://www.chromium.org/Home/chromium-security/prefer-secure-origins-for-powerful-new-features
https://www.chromium.org/Home/chromium-security/prefer-secure-origins-for-powerful-new-features
https://www.npmjs.com/package/ibm-mfp-web-sdk
https://nodejs.org/

Results

You now have an SDK directory (ibm-mfp-web-sdk) with the required SDK files for
developing a client MobileFirst web application.

What to do next

Add the required SDK files to an existing or new web application to add IBM
MobileFirst Foundation capabilities and features, such as security, to the
application. For an overview of the SDK modules and instructions for adding the
modules to your application, see “Adding the MobileFirst SDK to web
applications.”

You can update your version of the MobileFirst web SDK, at any time, by running
the following command from the root directory of your web application: npm
update ibm-mfp-web-sdk. Remember that using npm requires Node js.

Adding the MobileFirst SDK to web applications
Add the MobileFirst web SDK to an existing or new web application to add IBM
MobileFirst Foundation capabilities to the application.

Before you begin

Get a copy of the MobileFirst web SDK, and save the ibm-mfp-web-sdk SDK
directory, or the containing npm_modules directory (if you downloaded the SDK
from npm), to the root directory of your web application. For information about
acquiring a copy of the web SDK, see “Acquiring the MobileFirst web SDK” on
page 7-75.

About this task

To use the APIs that are exported by the MobileFirst JavaScript web-SDK modules,
you must first load the appropriate modules into your web application:
v ibmmfpf.js - the core web-SDK module, which exports the JavaScript client-side

API. You must load this module to develop a MobileFirst web application. This
module enables you, for example, to add MobileFirst security capabilities to
your application.

v ibmmfpfanalytics.js (provided in the lib/analytics directory) - the
web-analytics module, which exports the MobileFirst JavaScript web analytics
client-side API. Use this module to add IBM MobileFirst Analytics capabilities to
your web application. For information about MobileFirst Analytics, see
“Analytics and Logger” on page 11-1.

Note: ibmmfpfanalytics.js depends on ibmmfpf.js, and must be loaded first
(when used).

The MobileFirst web SDK supports the common standards for loading JavaScript
modules:
v In the Asynchronous Module Definition (AMD) standard, JavaScript modules are

loaded asynchronously from JavaScript code. You use a module loader, such as
RequireJS, to define your asynchronous modules and their dependencies. Then,
you load the modules from the locations within your JavaScript code where the
modules are needed, without affecting the global namespace. This method is
especially suited for browser environments, and is commonly used in
development of client web applications.

7-76 IBM MobileFirst Platform Foundation V8.0.0

https://nodejs.org/
http://requirejs.org/

The sample MobileFirst starter web application (MFPStarterWeb), and the
web-application samples that are available from the Developer Center,
demonstrate how to use RequireJS to load the modules of the MobileFirst web
SDK asynchronously. For more information about the starter sample and how to
obtain a copy of the sample, see “Getting started with a sample MobileFirst
application” on page 7-25.

v In the CommonJs Modules standard, JavaScript modules are loaded
synchronously by importing the module into the global namespace. In web
applications that use this standard, you import the modules from the <head>
element of your main HTML file. This method is more suited for server
environments, and is commonly used in development of Node.js servers.

Use one of the following alternative procedures, which correspond to the described
load methods, to load the web-SDK modules:
v Asynchronous loading with RequiredJS
v Synchronous loading with HTML import

Note: The examples in the procedure assume that your SDK directory is found in
the root of your application directory. If you select to store it in a different location,
adjust the script paths in the examples. For example, if you downloaded the SDK
with npm and saved the node_modules directory that contains the SDK directory in
the root directory of your application, add node_modules/ before each SDK module
name.

Procedure
v Asynchronous loading with RequiredJS

1. Get the RequireJS JavaScript module loader. For detailed instructions, see the
RequireJS documentation.

Note: The code examples in the following steps assume that require.js and
your application's main HTML and JavaScript files are all stored in the
application's root directory, which is used as the RequireJs baseUrl. You can
select to save the scripts in different locations, and adjust the examples. For
more information, see the RequireJS documentation.

2. Load RequireJS by adding a <script> tag in the <head> tag of the
application's main HTML file (typically index.html). Set the <script> tag's
type attribute to text/javascript; set the src attribute to require.js; and set
the data-main attribute to the path to your application's main JavaScript file
(without the .js file extension) to instruct RequireJs to load the specified
script after require.js loads. For more information, including alternative
methods for adding require.js, see the RequireJS documentation. The
following example is for an application with an index.js JavaScript file that
is stored in the application's root directory together with the reuiqre.js
script:
<html>

<head>
<script type="text/javascript" src="require.js" data-main="index"></script>

</head>
</html>

3. Use the methods of the require object that is created by RequireJS to load
your application scripts from your application's JavaScript code.
There are different ways for loading your scripts with RequireJS. This step
demonstrates how to use the require.config method to configure module IDs
for the SDK JavaScript modules; and then use the RequireJS require function

Developing applications 7-77

https://github.ibm.com/MFPSamples
http://requirejs.org/docs/start.html#get
http://requirejs.org/
http://requirejs.org/docs/start.html#add

to load the module scripts by using the configured IDs instead of specifying
the script paths. For more information and for alternative methods, see the
RequireJS documentation.
a. In your application's main JavaScript file (for example, index.js), use the

config method of the require object that is created by RequireJs to
configure the SDK modules to load. The configuration specifies the paths
to the script modules, and assigns each module an ID that is later used to
load its script. The following example assigns the module ID ibmmfpf to
the ibmmfpf.js module, and the module ID ibmmfpfanalytics to the
ibmmfpfanalytics.js module.
require.config({

’paths’: {
’ibmmfpfanalytics’: ’ibm-mfp-web-sdk/lib/analytics/ibmmfpfanalytics’,
’ibmmfpf’: ’ibm-mfp-web-sdk/ibmmfpf’

}
});

Note:

– If you select to use ibmmfpfanalytics.js, you must add it before
ibmmfpf.js in the configuration paths.

– The names of the configured script modules are specified without the
.js extension.

b. Use the RequireJS require function to load the SDK modules that you
configured, from within your application’s JavaScript code. The modules
are loaded asynchronously into the local namespace when they are
needed. The following example uses the ibmmfpf and ibmmfpfanalytics
module IDs that you configured in the previous step to load the
ibmmfpf.js and ibmmfpfanalytics.js SDK modules:
require([’ibmmfpfanalytics’,’ibmmfpf’], function(wlanalytics, WL)

Note: If you select to use ibmmfpfanalytics.js, you must load it before
ibmmfpf.js.

v Synchronous loading with HTML import Load (import) the required modules
from the <head> tag of the application's main HTML file (typically, index.html)
by adding a <script> tag for each module. Set the script element's type attribute
to text/javascript, and set its src attribute to the name of the target module.
The following example loads both the core and analytics modules of the web
SDK:
<html>

<head>
...
<script src="ibm-mfp-web-sdk/lib/analytics/ibmmfpfanalytics.js"></script>
<script src="ibm-mfp-web-sdk/ibmmfpf.js"></script>

</head>
</html>

Note: If you select to use ibmmfpfanalytics.js, you must load it before
ibmmfpf.js.

What to do next

Use the initialization method of the core web API to initialize the SDK, and then
develop your application by using the web SDK APIs. For more information, see
“Initializing the MobileFirst SDK” on page 7-79.

7-78 IBM MobileFirst Platform Foundation V8.0.0

http://requirejs.org/docs/api.html

Initializing the MobileFirst SDK
Initialize the MobileFirst web SDK before using its APIs to develop your web
application.

Before you begin

Download the MobileFirst web SDK and add it to your web application. For more
information, see “Adding the MobileFirst SDK to web applications” on page 7-76.

About this task

Add the initialization code that is described in the following procedure to your
application's JavaScript code (for example, in index.js).

Procedure
1. Define an initialization-properties JSON object that sets the following

mandatory SDK initialization properties:
v mfpContextRoot - the context root of your application's MobileFirst Server

runtime.
v applicationId - a unique identifier for your application.

Note: The application ID that is set in this initialization option must be the
same ID that you provide when your register the application. For more
information, see “Registering web applications to MobileFirst Server” on
page 7-80.

For example, the following code defines an mfpInitProperties variable that sets
the context root of MobileFirst Server (mfpContextRoot) to /mfp (the default
context root of the MobileFirst Development Server), and sets the application
ID (applicationId) to com.example.myapplication:
var mfpInitProperties = {

’mfpContextRoot’ : ’/mfp’ ,
’applicationId’ : ’com.example.myapplication’

};

2. Call the WL.Client.init method of the core web-SDK module (ibmmfpf.js) to
initialize the SDK. Pass the initialization-properties JSON object that you
defined in the previous step (mfpInitProperties) as the parameter of this method.
Use a JavaScript promise to implement the initialization-completion logic of the
asynchronous init method, as demonstrated in the following example:
WL.Client.init(mfpInitProperties).then

(function(){
console.log(’MobileFirst web SDK initialized’);
// Application initialization logic

});

Note: For backwards compatibility with Cordova applications that use the
same MobileFirst client JavaScript API, you can select to implement the
initialization-completion logic in a wlCommonInit function instead of using a
JavaScript promise.

What to do next

You can now use the JavaScript client-side API to develop your application and
add MobileFirst capabilities. If you selected to add the web-analytics module of the
SDK (ibmmfpfanalytics.js), as outlined in “Adding the MobileFirst SDK to web

Developing applications 7-79

applications” on page 7-76, use the JavaScript web analytics client-side API to add
MobileFirst Analytics features to your application (see “Analytics and Logger” on
page 11-1).

To use server-side features, such as adapters and security, first register your
application to a running instance of MobileFirst Server. See “Registering web
applications to MobileFirst Server.”

Registering web applications to MobileFirst Server
Register your web application to an instance of MobileFirst Server to establish
communication with the server and provide the server with information about
your application. You can register the application by using either the IBM
MobileFirst Platform Command Line Interface (CLI) or the IBM MobileFirst
Platform Operations Console.

Registering web applications from the MobileFirst Platform CLI:

You can use the IBM MobileFirst Platform Command Line Interface (CLI) to
register your web application to an instance MobileFirst Server.

Before you begin

v Install the IBM MobileFirst Platform Command Line Interface (CLI). For more
information, see “Installing the MobileFirst Platform CLI” on page 7-15.

v Set up a running instance of MobileFirst Server. The server can run locally or it
can be a remote server, but you must be able to connect to the server from your
local development machine. For more information, see “Setting up the
MobileFirst Development Server” on page 7-12, “Installing the IBM MobileFirst
Platform Foundation Developer Kit” on page 7-10, or “Installing IBM
MobileFirst Platform Server” on page 6-2.

Procedure

From the command line, run one of the following MobileFirst Platform CLI
command variations to register your application to an instance of MobileFirst
Server:
v To register the application to the default MobileFirst Server, run the following

command, where <applicationId> is a unique identifier for your application:
mfpdev app register <applicationId>

For example, the following command registers an application with the
application ID com.example.myapplication to the default MobileFirst Server:
mfpdev app register com.example.myapplication

Note: If you did not previously set a default server, and an instance of
MobileFirst Server is running on your local system, the command registers the
application to the running local server and this server becomes the default
MobileFirst Server.

v To register your application to a server instance other than the default
MobileFirst Server, follow these steps:
1. Run the mfpdev server add command to create your preferred server profile.

For example:
mfpdev server add Server1 -url https://company.mobile.com:9080 -login admin -password secretPassword!

7-80 IBM MobileFirst Platform Foundation V8.0.0

For more information about the mfpdev server add command, run mfpdev help
server add.

2. Run the following command to register your application to the server that
you defined in the previous step, where <applicationId> is a unique identifier
for your application and <server> is the name of the server profile:
mfpdev app register <applicationId> <server>

Note: The application ID that is provided during registration must be
identical to the value of the applicationId initialization option that is set
when initializing the web SDK. For more information, see “Initializing the
MobileFirst SDK” on page 7-79.
For example, the following command registers an application with the
application ID com.example.myapplication to a Server1 MobileFirst Server:
mfpdev app register com.example.myapplication Server1

For more information about the mfpdev app register command, including
optional parameters, run mfpdev help app register.

Results

When the application is successfully registered to the target server, you can select it
from the Applications section in the navigation sidebar of the IBM MobileFirst
Platform Operations Console (under Versions or Web). The main application page
displays different server-side configuration options for your application.

In the application Configuration Files console tab, you can see the content of the
application's descriptor and runtime configuration files. The value of the
applicationId in the application descriptor is the application ID that you specified
when you registered the application.

Note: You cannot have multiple versions of the same web application. Therefore,
the applicationKey object of the application descriptor does not contain a version
property.

What to do next

You can proceed with other development tasks that depend on MobileFirst Server,
such as making server-side configurations, testing the application's security
features, and managing the application from the MobileFirst Operations Console.

Make sure to initialize the SDK from your application before calling any SDK APIs
other than the initialization method. For more information, see “Initializing the
MobileFirst SDK” on page 7-79.

Registering web applications from the MobileFirst Operations Console:

You can use the IBM MobileFirst Platform Operations Console to register your web
application to an instance of MobileFirst Server.

Before you begin

Run the IBM MobileFirst Platform Operations Console on the same instance of
MobileFirst Server to which you want to register your application. For information
about how to install the MobileFirst Development Server and run the console, see
“Installing the IBM MobileFirst Platform Foundation Developer Kit” on page 7-10.

Developing applications 7-81

Note: You can register an application to the server either before or after you set up
your development environment and start developing the application. However,
you must register your application before you can call the MobileFirst APIs from
your client application and communicate with the server.

Procedure

1. In the MobileFirst Operations Console, navigate to the Register Application
page by using one of the following methods:
v In the navigation sidebar, select New next to Appilcations.

v From the Dashboard, select Register an App.

2. On the Register Application page, provide the required input for registering
your web application, as demonstrated in the following image.

a. In the Application Name field, optionally enter a display name for your
application (for example, MyApplication). If you do not provide an
application name, the application ID is used also as the display name.

b. In the Choose Platform field, select Web.

7-82 IBM MobileFirst Platform Foundation V8.0.0

c. In the Application ID field, enter a unique identifier for your application
(for example, com.example.myapplication).

Note: The application ID that is provided during registration must be
identical to the value of the applicationId initialization option that is set
when initializing the web SDK. For more information, see “Initializing the
MobileFirst SDK” on page 7-79.

3. Select Register application to complete the registration.

Results

When the application is successfully registered to the target server, you can select it
from the Applications section in the navigation sidebar of the MobileFirst
Operations Console (under Versions or Web). The main application page displays
different server-side configuration options for your application.

In the application Configuration Files console tab, you can see the content of the
application's descriptor and runtime configuration files. The value of the
applicationId in the application descriptor is the application ID that you specified
when you registered the application.

Note: You cannot have multiple versions of the same web application. Therefore,
the applicationKey object of the application descriptor does not contain a version
property.

What to do next

You can proceed with other development tasks that depend on MobileFirst Server,
such as making server-side configurations, testing the application's security
features, and managing the application from the MobileFirst Operations Console.

Make sure to initialize the SDK from your application before calling any SDK APIs
other than the initialization method. For more information, see “Initializing the
MobileFirst SDK” on page 7-79.

Developing Cordova applications
To develop cross-platform MobileFirst applications, you use the open-source
Apache Cordova tooling and framework. Certain MobileFirst features specifically
support integration with Cordova apps.

Apache Cordova provides a web-based platform for developing apps using HTML,
CSS, and JavaScript within the application WebView interface. The WebView is
started by the native SDK. MobileFirst SDKs provide functionality for both stages
of the runtime, with a minimal number of necessary functions built on the native
MobileFirst SDK. In Cordova apps, you can write JavaScript code by using
standard web technologies such as CSS, HTML, and JavaScript, without requiring
recoding in each native mobile platform's development language. Instead,
applications execute within native wrappers targeted to each native platform. The
Crosswalk WebView, which can replace the native Cordova WebView, is newly
supported by the MobileFirst SDK in V8.0.0. . For more information, see
“Crosswalk WebView (Android)” on page 7-133.

To create Cordova apps that are enabled for MobileFirst features, you use your
preferred development tools that support Cordova such as the Apache Cordova
CLI, Ionic, or IntelliJ. You obtain some software, such as plug-ins, code to support

Developing applications 7-83

various target platforms, command-line tools, or an IDE directly from the supplier
of your development tools. Then, to use MobileFirst capabilities, such as back-end
services of MobileFirst Server, you add Cordova plug-ins that support MobileFirst
features to your app. These plug-ins are included in the IBM MobileFirst Platform
Foundation Developer Kit. You can also download these plug-ins from npm or
JazzHub. For information about creating the Cordova app and adding MobileFirst
Server functionality, see “Creating Cordova apps that include MobileFirst features”
on page 7-87.

Important: Cordova development tools are not provided with IBM MobileFirst
Platform Foundation.

After installing all necessary plug-ins, register your app on the server. For more
information, see “Registering Cordova applications to MobileFirst Server” on page
7-106.

Develop your own application code in your chosen IDE and view it by using
built-in emulators in Xcode, Android Studio, and Cordova (cordova emulate).
v For information about development issues specific to the native environment,

changes made to the startup code by the MobileFirst plug-in, details on starting
the Cordova WebView, see “Developing Cordova apps for Android” on page
7-121, “Developing Cordova apps for iOS” on page 7-124, and “Developing
Cordova apps for Windows” on page 7-128.

v For information about developing the WebView and IDE editors providing
autocomplete for the JavaScript API, see “Cordova WebView” on page 7-129.

The following topics provide details for each stage of development.

Prerequisites for developing Cordova apps with MobileFirst
features
To develop Cordova apps that include MobileFirst functionality, the following
software is required.

Requirements of Apache Cordova

You must have the software that is required by Apache Cordova for all of your
target platforms. For information about those requirements, refer to the platform
requirements documentation from Apache Cordova. For example:
v Android: https://cordova.apache.org/docs/en/latest/guide/platforms/

android/index.html
v Windows: https://cordova.apache.org/docs/en/latest/guide/platforms/win8/

index.html
v iOS: https://cordova.apache.org/docs/en/latest/guide/platforms/ios/

index.html

For more information, see the Apache Cordova documentation.

Node.js and Node Package Manager (npm)

Node Package Manager, or npm, is a public software repository. The Apache
Cordova command-line interface (CLI), the MobileFirst Platform CLI, and the
plug-ins that contain the MobileFirst SDK and other MobileFirst features are
hosted on JazzHub and npm.

7-84 IBM MobileFirst Platform Foundation V8.0.0

https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/win8/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/win8/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/

You must install Node.js version 4.0.0 or later to be able to download and run
packages from npm. For information about installing Node.js, see the Node js web
site. For information about installing npm, see How to install npm.

Note: You must install Node.js to obtain the Apache Cordova CLI from npm. You
can install the MobileFirst Platform CLI and the plug-ins that contain the
MobileFirst SDK and other MobileFirst features from npm or JazzHub, but
alternatively, they are provided with the IBM MobileFirst Platform Foundation
Developer Kit.

Cordova command-line interface (CLI)

To develop Cordova applications with MobileFirst features, you must have the
Apache Cordova command-line interface installed. You must have version 6.1.1.

You might want to use other development tools that support Apache Cordova as
part of your development environment. If so, they usually also require that you
install the Apache Cordova CLI. Make sure that your preferred Cordova
development tools support Cordova 6.1.1.

For information about installing the Cordova CLI, see Installing the Cordova CLI
at the Apache Cordova website.

MobileFirst components

For your MobileFirst development, you can choose whether to install the IBM
MobileFirst Platform Foundation Developer Kit or to separately install various
MobileFirst components.

IBM MobileFirst Platform Foundation Developer Kit

The IBM MobileFirst Platform Foundation Developer Kit contains, in one
package, all of the components of IBM MobileFirst Platform Foundation
that are needed to start developing your MobileFirst app.

If you use the IBM MobileFirst Platform Foundation Developer Kit, you
don't need additional MobileFirst components until you reach the stage in
your development process when you need the full features of MobileFirst
Server rather than the MobileFirst Development Server that is provided
with the IBM MobileFirst Platform Foundation Developer Kit. At some
point, you might also want to download the latest versions of MobileFirst
plug-ins that are available for download from the JazzHub repository or
npm.

For more information about the IBM MobileFirst Platform Foundation
Developer Kit, see “The IBM MobileFirst Platform Foundation Developer
Kit” on page 7-9.

Separate MobileFirst components

If you choose to install separate components, you need the following
elements:

IBM MobileFirst Platform Server

You can use either this stand-alone MobileFirst Server that is
provided with IBM MobileFirst Platform Foundation or the
MobileFirst Development Server that is provided with the IBM

Developing applications 7-85

https://nodejs.org/
https://nodejs.org/
http://blog.npmjs.org/post/85484771375/how-to-install-npm
https://cordova.apache.org/docs/en/latest/guide/cli/index.html

MobileFirst Platform Foundation Developer Kit. For more
information about the stand-alone MobileFirst Server, see
“MobileFirst Server” on page 7-4.

IBM MobileFirst Platform Command Line Interface (CLI)

The MobileFirst Platform CLI includes certain commands that
specifically support Cordova development.

You can download the latest version of the CLI with npm, or you
can use the version that is provided with the IBM MobileFirst
Platform Foundation Developer Kit. For more information about
the CLI, see “The MobileFirst command-line interface (CLI)” on
page 7-13.

Cordova plug-ins for enabling MobileFirst features in your app

To develop a Cordova application that includes IBM MobileFirst Platform
Foundation features, you must add MobileFirst plug-ins to your app. The plug-ins
are available in the IBM MobileFirst Platform Foundation Developer Kit, or you
can download them from npm or JazzHub. For more information, see “Cordova
plug-ins for MobileFirst features” on page 7-87.

Supported Cordova components for MobileFirst cross-platform
apps
These are the versions of Apache Cordova components that have been tested with
the current version of IBM MobileFirst Platform Foundation. Ensure that you are
using these versions to avoid possible compatibility issues.

You add these Cordova components to your application by using your preferred
Cordova development tools.

Platforms
v cordova-android: 5.1.1
v cordova-ios: 4.1.1
v cordova-windows: 4.3.2

Important: If you are updating your cordova-ios platform, you must use the
cordova rm platform ios command to uninstall the platform and then install it
using the cordova platform add ios command. The update fails if you use the
cordova platform update ios command. See “Known limitations” on page 3-25 for
more information.

Plug-ins

The following plug-ins are required by IBM MobileFirst Platform Foundation:
v cordova-plugin-device: 1.1.1
v cordova-plugin-dialogs: 1.2.0
v cordova-plugin-globalization: 1.0.2
v cordova-plugin-okhttp: 2.0.0

The following plug-ins are not required by IBM MobileFirst Platform Foundation
but are likely to be required by your app:
v cordova-plugin-splashscreen: 3.2.0
v cordova-plugin-whitelist: 1.2.1

7-86 IBM MobileFirst Platform Foundation V8.0.0

Tools

Cordova command line (Cordova CLI) : 6.1.1

Creating Cordova apps that include MobileFirst features
You can create a Cordova app that is enhanced with MobileFirst features in several
ways.

In all cases, you use your preferred Cordova development tools such as the
Apache Cordova command-line interface, the Ionic Framework, or IntelliJ to set up
and work with your app. Then, you add the IBM MobileFirst Platform Foundation
SDK and other MobileFirst features to your app in the form of Cordova plug-ins
that support MobileFirst features.

You can accomplish this in any of the following ways:
v When you initially create your Cordova app, specify to include the MobileFirst

template.
v Create a new Cordova app, and then add in the MobileFirst plug-ins.
v Add the MobileFirst plug-ins to an existing Cordova app.

Cordova plug-ins for MobileFirst features:

To add MobileFirst functionality to your app, you use Cordova plug-ins that
contain MobileFirst features.

The Cordova plug-ins for IBM MobileFirst Platform Foundation provide
MobileFirst functions such as support for adapters, security, monitoring, and server
access for Cordova apps that were initially created with non-IBM MobileFirst
Platform Foundation tools.

The plug-ins are included with the IBM MobileFirst Platform Foundation
Developer Kit, or you can download the latest versions from npm and JazzHub.
You download and install these hosted plug-ins by using third party tools, such as
the Cordova CLI or Ionic Framework CLI.

The following plug-ins are available:
v cordova-plugin-mfp

v cordova-plugin-mfp-push

v cordova-plugin-mfp-jsonstore

v cordova-plugin-mfp-fips

v cordova-plugin-mfp-encrypt-utils

The cordova-plugin-mfp plug-in contains the core MobileFirst functions and is
required. If you install either the cordova-plugin-mfp-push plug-in or the
cordova-plugin-mfp-jsonstore plug-in, the cordova-plugin-mfp is automatically
installed.

The cordova-plugin-mfp-jsonstore plug-in enables your app to use JSONstore. For
more information on JSONstore, see “JSONStore overview” on page 7-134.

The cordova-plugin-mfp-push plug-in provides permissions needed to use push
notification from the MobileFirst Server for Android and iOS apps. For more
information about push notification, see “Push notification” on page 7-248.

Developing applications 7-87

The cordova-plugin-mfp-fips plug-in provides FIPS 140-2 support for Android
platforms. For more information, see “FIPS 140-2 support” on page 10-75.

The cordova-plugin-mfp-encrypt-utils plug-in provides iOS OpenSSL
frameworks for encryption for Cordova applications with the iOS platform. For
more information, see “Enabling OpenSSL for Cordova iOS” on page 7-126.

Known limitation for Cordova application loaded with cordova-plugin-
mfp: cordova-plugin-statusbar will not work with Cordova application loaded
with cordova-plugin-mfp. For more information about the limitation and steps to
circumvent it, see “cordova-plugin-statusbar does not work with Cordova
application loaded with cordova-plugin-mfp.” on page 3-32.

Creating a new Cordova app with the MobileFirst template:

You can use a template to easily create a simple Cordova app that is enabled for
IBM MobileFirst Platform Foundation. You can use this app as a starting point to
build your own.

Before you begin

v You must have Cordova development tools installed. This example uses the
Apache Cordova CLI. If you use other Cordova development tools, some of
your steps will be different. Refer to your Cordova tool documentation for
instructions.

v You must have the IBM MobileFirst Platform Command Line Interface (CLI)
installed. For more information, see “Installing the MobileFirst Platform CLI” on
page 7-15.

v You must have internet access.
v You must have node.js version 4.0.0 or later installed.

About this task

The template creates a simple mobile app that displays the text Hello World. To
create your Cordova application with the template, you add the template when
you initially create your Cordova app with your Cordova development tools.

The template automatically adds the following plug-ins to your app:
cordova-plugin-mfp, cordova-plugin-whitelist and cordova-plugin-splashscreen.
The cordova-plugin-mfp plug-in is required for a MobileFirst Cordova app. Most
applications will need the cordova-plugin-whitelist and cordova-plugin-
splashscreen plug-ins. If your app will not need these, you can remove them after
the app is initially created.

The following steps show how to create your app with the template by using the
Apache Cordova CLI:

Procedure

Enter the following command in your command window, where AppName is the
name of the new app:
cordova create AppName --template cordova-template-mfp

7-88 IBM MobileFirst Platform Foundation V8.0.0

Results

In the www directory of your of your app, (AppName/www), the index.html file
contains a simple app that displays Hello World.

What to do next

Add platforms, additional MobileFirst plug-ins, and optionally, other plug-ins to
your app. For more information, see “Creating a new Cordova app without the
MobileFirst template.” If your app does not need the cordova-plugin-whitelist or
cordova-plugin-splashscreen plug-ins, you can remove them.

To further develop your app with features that depend on the MobileFirst Server,
register your app with the server. For more information, see “Registering Cordova
applications from the MobileFirst Platform CLI” on page 7-107.

Important: (Android and iOS development only.) If you are developing your app
for the Android or iOS platforms, when you add the platform to your app that
contains the cordova-plugin-mfp plug-in, an existing file in your app is replaced
by a version of the file that is provided by MobileFirst Platform Foundation. These
files are:
v Android: The file MainActivity.java is replaced. Your original

MainActivity.java file is backed up and renamed MainActivity.original.
v iOS: File main.m is replaced. Your original main.m file is backed up and renamed

main.m.bak.

If you made any changes to the original versions of these files, you must merge the
changes that you made into the new version of the file that is provided by IBM
MobileFirst Platform Foundation.

Creating a new Cordova app without the MobileFirst template:

You can create a new Cordova app that contains MobileFirst features with a few
simple commands.

Before you begin

v You must have Cordova development tools installed. This example uses the
Apache Cordova CLI. If you use other Cordova development tools, some of
your steps will be different. Refer to your Cordova tool documentation for
instructions.

v You must have the IBM MobileFirst Platform Command Line Interface (CLI)
installed. For more information, see “Installing the MobileFirst Platform CLI” on
page 7-15.

v You must have internet access.
v You must have node.js version 4.0.0 or later installed.

About this task

You enter all of the commands in the following steps from your command
window.

Developing applications 7-89

Procedure

1. To initially create your Cordova application, enter cordova create AppName
where AppName is the name of the application that you are creating. For
example, the following command creates an application named MyApp:
cordova create MyApp

Important: You can optionally include a MobileFirst template when you
initially create your app. In this case, some Cordova plug-ins are added for you
automatically. For more information, see “Creating a new Cordova app with
the MobileFirst template” on page 7-88.

2. Enter cd AppName to change to the root directory of your new app.
3. To add platforms to your app, enter cordova platform add platform where

platform is ios, windows, or android, or any combination of these platforms.

Important: Verify that the version of the platform that you add is supported by
IBM MobileFirst Platform Foundation. For a list of minimum supported
platform version levels, see “Supported Cordova components for MobileFirst
cross-platform apps” on page 7-86. The latest available platform versions will
be downloaded by default with the commands described in this step. To
download a previous version of a platform, specify the version number by
using the syntax cordova platform add platform@version. For example:
cordova platform add windows@4.3.0.
For example, the following command adds the iOS, Android, and Windows
platforms:
cordova platform add ios android windows

4. To add the IBM MobileFirst Platform Foundation SDK plug-in, enter cordova
plugin add cordova-plugin-mfp.

Note: If you used the MobileFirst template when you created your app, you do
not have to complete this step because the cordova-plugin-mfp plug-in has
already been added to your app.

5. To add additional Cordova plug-ins for MobileFirst, enter cordova plugin add
plugin where plugin is one of the following:
v cordova-plugin-mfp-push

v cordova-plugin-mfp-jsonstore

v cordova-plugin-mfp-fips

v cordova-plugin-mfp-encrypt-utils

For example, the following command installs MobileFirst FIPS 140-2 for
Android and JSONStore support:
cordova plugin add cordova-plugin-mfp-fips cordova-plugin-mfp-jsonstore

6. Optional: Add other Cordova plug-ins that might be used by your app. For
more information see The Command-Line Interface ("Add Plugin Features"
section) on the Apache Cordova web site.
For example, to add the Cordova whitelist plug-in:
cordova plugin add cordova-plugin-whitelist

Or, for example, to add the CrossWalk plug-in:
cordova plugin add cordova-plugin-crosswalk-webview --variable XWALK_VERSION="org.xwalk:xwalk_core_library:15+"

Note: Some versions of CrossWalk can cause a problem when you run the app
on an Android emulator. For more information, see “Known limitations” on
page 3-25.

7-90 IBM MobileFirst Platform Foundation V8.0.0

https://cordova.apache.org/docs/en/latest/guide/cli/index.html
https://cordova.apache.org/docs/en/latest/guide/cli/index.html

Results

You now have a Cordova app that is enabled for IBM MobileFirst Platform
Foundation. In the case of the example used here, the Cordova application MyApp
has the iOS and Android platforms installed, and also has FIPS 140-2 support for
Android and JSONStore support (for all platforms) installed. The Cordova whitelist
and CrossWalk plug-ins are optionally installed.

What to do next

To further develop your app with features that depend on the MobileFirst Server,
register your app with the server. For more information, see “Registering Cordova
applications from the MobileFirst Platform CLI” on page 7-107.

Important: (Android and iOS development only.) If you are developing your app
for the Android or iOS platforms, when you add the platform to your app that
contains the cordova-plugin-mfp plug-in, an existing file in your app is replaced
by a version of the file that is provided by MobileFirst Platform Foundation. These
files are:
v Android: The file MainActivity.java is replaced. Your original

MainActivity.java file is backed up and renamed MainActivity.original.
v iOS: File main.m is replaced. Your original main.m file is backed up and renamed

main.m.bak.

If you made any changes to the original versions of these files, you must merge the
changes that you made into the new version of the file that is provided by IBM
MobileFirst Platform Foundation.

Adding MobileFirst features to an existing Cordova app:

You can add capabilities provided by IBM MobileFirst Platform Foundation to an
existing Cordova app that you created with Apache Cordova, Ionic, or other
third-party tools by adding the IBM MobileFirst Platform Foundation SDK to your
app. The SDK is provided in the form of Cordova plug-ins.

Before you begin

v You must already have a Cordova application on your system that you created
with third-party tools such as the Apache Cordova command-line interface or
the Ionic Framework command-line interface.

v Your existing Cordova app must already include the applicable Apache Cordova
platforms. The version of a platform must be at least the version supported by
IBM MobileFirst Platform Foundation. For a list of minimum supported platform
version levels, see “Supported Cordova components for MobileFirst
cross-platform apps” on page 7-86. If a platform in your app is at a lower
version level than is in this list, upgrade to the version level on the list.

v Your existing Cordova app most likely includes some Apache Cordova plug-ins.
The version of any Apache Cordova plug-in that is used by your app must be at
least the version supported by IBM MobileFirst Platform Foundation. For a list
of minimum supported plug-in version levels, see “Supported Cordova
components for MobileFirst cross-platform apps” on page 7-86. If a plug-in in
your app is at a lower version level than is in this list, upgrade to the version
level on the list.

Developing applications 7-91

v You must have the Cordova Command-Line Interface (CLI) installed, and any
prerequisites installed that are required for using the Cordova CLI for your
target platforms. For more information, see The Command-Line Interface on the
Apache Cordova web site.

v You must have the IBM MobileFirst Platform Command Line Interface (CLI)
installed. For more information, see “Installing the MobileFirst Platform CLI” on
page 7-15.

v You must have internet access.
v You must have node.js version 4.0.0 or later installed.

About this task

You can add any of the following plug-ins to your app.
v cordova-plugin-mfp

v cordova-plugin-mfp-push

v cordova-plugin-mfp-jsonstore

v cordova-plugin-mfp-fips

v cordova-plugin-mfp-encrypt-utils

The cordova-plugin-mfp provides the MobileFirst SDK and is required. See
“Cordova plug-ins for MobileFirst features” on page 7-87 for information about the
function of each of the other plug-ins.

Procedure

1. To review the readme file for the plug-ins that you want, navigate to the
download page for each one on the npm web site in your web browser. Use
one or more of the following URLs, depending on the plug-in:
v https://www.npmjs.com/package/cordova-plugin-mfp
v https://www.npmjs.com/package/cordova-plugin-mfp-push
v https://www.npmjs.com/package/cordova-plugin-mfp-jsonstore
v https://www.npmjs.com/package/cordova-plugin-mfp-fips
v https://www.npmjs.com/package/cordova-plugin-mfp-encrypt-utils

Note: You can also download the compressed (.zip) file packages from
JazzHub. Click the link that starts with hub.jazz.net from the npm page for a
given plug-in to reach the download page.

2. On your local system, navigate to the root folder of your Cordova app.
3. Run one of the following commands, depending on which plug-ins you want

to install.

Note: The following steps use the Cordova CLI. If you are using different
Cordova-compatible tools, the procedure might differ.

Important: Check your app's components for compatibility issues, to make sure
that they will work with the latest plug-ins. The latest available versions of
plug-ins will be downloaded by default with the commands described in this
step. To download a specific version of a plug-in, specify the version number
by using the syntax cordova plugin add plugin_name@version. For example, to
download the latest published plug-in for IBM MobileFirst Platform
Foundation 8.0, use cordova plugin add cordova-plugin-mfp@8.0. If you want
to import a specific version such as 8.0.2016021411, replace with the version

7-92 IBM MobileFirst Platform Foundation V8.0.0

http://cordova.apache.org/docs/en/5.1.1/guide/cli/index.html
https://www.npmjs.com/package/cordova-plugin-mfp
https://www.npmjs.com/package/cordova-plugin-mfp-push
https://www.npmjs.com/package/cordova-plugin-mfp-jsonstore
https://www.npmjs.com/package/cordova-plugin-mfp-fips
https://www.npmjs.com/package/cordova-plugin-mfp-encrypt-utils

number you are using, including the major minor and patch numbers. The
patch number is in the format YYYYMMDDHH.. For example: cordova plugin add
cordova-plugin-mfp@8.0.2016021411.
IBM MobileFirst Platform Foundation
v To install the core MobileFirst Cordova plug-in:

cordova plugin add cordova-plugin-mfp

Or if you acquired the Cordova SDK from MobileFirst Operations Console
cordova plugin add <unzip_dir>/plugins/cordova-plugin-mfp

Where <unzip_dir> is the directory where you unzipped the acquired SDK.
v To install the cordova-plugin-mfp-push and cordova-plugin-mfp plug-ins:

cordova plugin add cordova-plugin-mfp-push

v To install the cordova-plugin-mfp-jsonstore and cordova-plugin-mfp
plug-ins:
cordova plugin add cordova-plugin-mfp-jsonstore

v To install the cordova-plugin-mfp-fips and cordova-plugin-mfp plug-ins:
cordova plugin add cordova-plugin-mfp-fips

v To install the cordova-plugin-mfp-encrypt-utils and cordova-plugin-mfp
plug-ins:
cordova plugin add cordova-plugin-mfp-encrypt-utils

Note: If you install cordova-plugin-mfp by itself, you can add the
cordova-plugin-mfp-push , cordova-plugin-mfp-jsonstore ,
cordova-plugin-mfp-fips or cordova-plugin-mfp-encrypt-utils plug-ins later
by specifying them with the cordova plugin add command.

Results

The IBM MobileFirst Platform Foundation SDK plug-ins for Cordova are installed.

What to do next

You can now start developing the IBM MobileFirst Platform Foundation
capabilities in your Cordova app.

To further develop your app with features that depend on the MobileFirst Server,
register your app with the server. For more information, see “Registering Cordova
applications from the MobileFirst Platform CLI” on page 7-107.

Important: (Android and iOS development only.) If you are developing your app
for the Android or iOS platforms, when you add the platform to your app that
contains the cordova-plugin-mfp plug-in, an existing file in your app is replaced
by a version of the file that is provided by MobileFirst Platform Foundation. These
files are:
v Android: The file MainActivity.java is replaced. Your original

MainActivity.java file is backed up and renamed MainActivity.original.
v iOS: File main.m is replaced. Your original main.m file is backed up and renamed

main.m.bak.

If you made any changes to the original versions of these files, you must merge the
changes that you made into the new version of the file that is provided by IBM
MobileFirst Platform Foundation.

Developing applications 7-93

Inside your Cordova app
Some aspects of your Cordova app are changed when you enable it for IBM
MobileFirst Platform Foundation.

The Cordova configuration file, config.xml, now includes MobileFirst information
and resources such as splash screens and icons are provided when you use the
MobileFirst template.

The Cordova configuration file:

The Cordova config.xml file is the global configuration file of the application.

The Cordova configuration file is a mandatory XML file that contains application
metadata, and is stored in the root directory of the app. The file is automatically
generated when you create a Cordova application. You can then modify it to add
custom properties.

You can find more general information about this file in the Apache Cordova
config.xml documentation.

To know more about any MobileFirst-specific configuration, refer to the following
sections.

Structure of the config.xml file

To view detailed information about any MobileFirst-specific configuration, click the
element name in the file description, or in the alphabetical list that follows the
description.
<?xml version=’1.0’encoding=’utf-8’?>
<widget>

<name>...</name>
<description>...</description>
<author>...</author>
<content/>
<plugin/>
<access/>
<allow-intent/>
<platform>

<allow-intent/>
<icon/>
<splash/>
<update/>

</platform>
<mfp:platformVersion>...</mfp:platformVersion>
<mfp:directUpdateAuthenticityPublicKey>...</mfp:directUpdateAuthenticityPublicKey>
<mfp:languagePreferences>...</mfp:languagePreferences>
<mfp:clientCustomInit/>
<mfp:server/>
<mfp:ios>

<mfp:appChecksum>...</mfp:appChecksum>
<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:ios>
<mfp:android>

<mfp:appChecksum>...</mfp:appChecksum>
<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

7-94 IBM MobileFirst Platform Foundation V8.0.0

http://cordova.apache.org/docs/en/edge/config_ref_index.md.html
http://cordova.apache.org/docs/en/edge/config_ref_index.md.html

</mfp:android>
<mfp:windows>

<mfp:appChecksum>...</mfp:appChecksum>
<mfp:windowsphone8>

<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:windowsphone8>
<mfp:windows8>

<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:windows8>
<mfp:windows10>

<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:windows10>
</mfp:windows>

</widget>

config.xml elements

v <mfp:android>

v <mfp:appChecksum>

v <mfp:clientCustomInit/>

v <mfp:directUpdateAuthenticityPublicKey>

v <mfp:ios>

v <mfp:languagePreferences>

v <mfp:platformVersion>

v <mfp:sdkChecksum>

v <mfp:security>

v <mfp:server/>

v <mfp:testWebResourcesChecksum/>

v <mfp:windows>

v <mfp:windows8>

v <mfp:windowsphone8>

v <mfp:windows10>

v <widget>

<widget>

Syntax
<widget id="my.mfp.cordova.with.push.plugin"

version="1.0.5"
xmlns="http://www.w3.org/ns/widgets"
xmlns:cdv="http://cordova.apache.org/ns/1.0"
xmlns:mfp="http://www.ibm.com/mobilefirst/cordova-plugin-mfp">

...
</widget>

Description
See the Apache Cordova config.xml documentation.

MobileFirst-specific attributes

Developing applications 7-95

http://cordova.apache.org/docs/en/edge/config_ref_index.md.html

v id: This is the application package name that was specified when the
Cordova project was created. If this value is manually changed after the
application was registered with the MobileFirst Server, then the
application must be registered again.

v xmlns:mfp: Required. Set by default. It is the MobileFirst plug-in XML
namespace.

Back to top

<mfp:platformVersion>

Syntax
<mfp:platformVersion>8.0.0.00.20160205-2039</mfp:platformVersion>

Contained in
<widget>

Configuration
Set by default. Must not be changed.

Description
Required. The product version on which the application was developed.

Back to top

<mfp:directUpdateAuthenticityPublicKey>

Syntax
<mfp:directUpdateAuthenticityPublicKey>public_key_string</mfp:directUpdateAuthenticityPublicKey>

Contained in
<widget>

Configuration
Set with the mfpdev app config direct_update_authenticity_public_key
<value> command.

For more details about themfpdev app config command, type mfpdev help
app config in your command window.

Description
Optional. When you enable the Direct Update Authenticity feature, the
direct update package is digitally signed during deployment. After the
client downloaded the package, a security check is run to validate the
package authenticity. This string value is the public key that will be used
to authenticate the direct update .zip file. For more information, see
“Implementing secure Direct Update on the client side” on page 7-239.

Note: This element value is only supported by the platforms that support
direct update: Cordova iOS and Cordova Android.

Back to top

<mfp:languagePreferences>

Syntax
<mfp:languagePreferences>en</mfp:languagePreferences>

Contained in
<widget>

7-96 IBM MobileFirst Platform Foundation V8.0.0

Configuration
Set with the mfpdev app config language_preferences <value> command.

For more details about the mfpdev app config command, type mfpdev help
app config in your command window.

Description
Optional. Contains a comma-separated list of locales to display system
messages.

Back to top

<mfp:clientCustomInit>

Syntax
<mfp:clientCustomInit enabled="false"/>

Contained in
<widget>

Configuration
Edited manually. You can set the enabled attribute value to either true or
false.

Description
Controls how the WL.Client.init method is called. By default, this value is
set to false and the WL.Client.init method is automatically called after the
MobileFirst plug-in is initialized. Set this value to true for the client code to
explicitly control when WL.Client.init is called.

Attributes

v enabled: Valid values are true and false.

Back to top

<mfp:server>

Syntax
<mfp:server

url="http://10.0.0.1:9080"
runtime="mfp" />

Contained in
<widget>

Configuration

v The server url value is set with the mfpdev app config server
command.

v The server runtime value is set with the mfpdev app config runtime
command.

For more details about the mfpdev app config command, type mfpdev help
app config in your command window.

Description
Default remote server connection information, which the client application
uses to communicate with the MobileFirst Server.

Attributes

v url: The url value specifies the MobileFirst Server protocol, host, and
port values that the client will use to connect to the server by default.

Developing applications 7-97

v runtime: The runtime value specifies the MobileFirst Server runtime to
which the application was registered. For more information about the
MobileFirst runtime, see “MobileFirst Server overview” on page 6-2.

Back to top

<mfp:ios>

Syntax
<mfp:ios>

<mfp:appChecksum>...</mfp:appChecksum>
<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:ios>

Contained in
<widget>

Contains

v <mfp:appChecksum>

v <mfp:sdkChecksum>

v <mfp:security>

Description
This element contains all MobileFirst-related client application
configuration for the iOS platform.

Back to top

<mfp:android>

Syntax
<mfp:android

<mfp:appChecksum>...</mfp:appChecksum>
<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:android>

Contained in
<widget>

Contains

v <mfp:appChecksum>

v <mfp:sdkChecksum>

v <mfp:security>

Description
This element contains all MobileFirst-related client application
configuration for the Android platform.

Back to top

<mfp:windows>

Syntax

7-98 IBM MobileFirst Platform Foundation V8.0.0

<mfp:windows>
<mfp:appChecksum>...</mfp:appChecksum>
<mfp:windowsphone8>

<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:windowsphone8>
<mfp:windows8>

<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:windows8>
<mfp:windows10>

<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:windows10>
</mfp:windows>

Contained in
<widget>

Contains

v <mfp:appChecksum>

v <mfp:windowsphone8>

v <mfp:windows8>

v <mfp:windows10/>

Description

This element contains all MobileFirst-related client application
configuration for the Windows platforms.

Back to top

<mfp:windows8>

Syntax
<mfp:windows8>

<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:windows8>

Contained in
<mfp:windows>

Contains

v <mfp:sdkChecksum>

v <mfp:security>

Description
This element contains all MobileFirst-related client application
configuration for Windows 8.1 platforms.

Note: Windows Phone 8.1 configuration is contained under the
<mfp:windowsphone8> element.

Back to top

Developing applications 7-99

<mfp:windowsphone>

Syntax
<mfp:windowsphone8>

<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:windowsphone8>

Contained in
<mfp:windows>

Contains

v <mfp:sdkChecksum>

v <mfp:security>

Description
This element contains all MobileFirst-related client application
configuration for the Windows Phone 8.1 platform.

Back to top

<mfp:windows10>

Syntax
<mfp:windows10>

<mfp:sdkChecksum>...</mfp:sdkChecksum>
<mfp:security>

<mfp:testWebResourcesChecksum/>
</mfp:security>

</mfp:windows10>

Contained in
<mfp:windows>

Contains

v <mfp:sdkChecksum>

v <mfp:security>

Description

This element contains all MobileFirst-related client application
configuration for Windows 10 Universal Windows Platform (UWP).

Back to top

<mfp:appChecksum>

Syntax
<mfp:appChecksum>1234567890</mfp:appChecksum>

Contained in
<mfp:ios>, <mfp:android>, and <mfp:windows>.

Configuration
Not user-configurable. The checksum value is updated when the mfpdev
app webupdate command is run.

For more details about the mfpdev app webupdate command, type mfpdev
help app webupdate in your command window.

7-100 IBM MobileFirst Platform Foundation V8.0.0

Description
This value is the checksum of application web resources. It is calculated
when mfpdev app webupdate is run.

Back to top

<mfp:sdkChecksum>

Syntax
<mfp:sdkChecksum>2101152546</mfp:sdkChecksum>

Contained in
<mfp:ios>, <mfp:android>, <mfp:windowsphone8>, <mfp:windows8>, and
<mfp:windows10>.

Configuration
Not user-configurable. This value is set by default.

Description
This value is the IBM MobileFirst Platform SDK checksum that is used to
identify unique IBM MobileFirst Platform SDK levels.

Back to top

<mfp:security>

Syntax
<mfp:security>

<mfp:testWebResourcesChecksum
enabled="false"
ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3/>

</mfp:security>

Contained in
<mfp:ios>, <mfp:android>, <mfp:windowsphone8>, <mfp:windows8>, and
<mfp:windows10>.

Contains
<mfp:testWebResourcesChecksum/>

Description

This element contains the client application's platform-specific
configuration for MobileFirst security.

Back to top

<mfp:testWebResourcesChecksum>

Syntax
<mfp:testWebResourcesChecksum

enabled="false"
ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>

Contained in
<mfp:security>

Configuration

v The enabled attribute is set with the mfpdev app config
android_security_test_web_resources_checksum <value> command.

v The ignoreFileExtensions attribute is set with the mfpdev app config
android_security_ignore_file_extensions <value> command.

Developing applications 7-101

For more details about the mfpdev app config command, type mfpdev help
app config in your command window.

Description
Controls whether the application verifies the integrity of its web resources
each time it starts running on the mobile device.

Attributes

v enabled: Valid values are true and false. If this attribute is set to true, the
application calculates the checksum of its web resources and compares
this checksum with a value that was stored when the application was
first run.

v ignoreFileExtensions: Checksum calculation can take a few seconds,
depending on the size of the web resources. To make it faster, you can
provide a list of file extensions to be ignored in this calculation. This
value is ignored when the enabled attribute value is false.

Back to top

Cordova app resources:

You need certain resources as part of your Cordova app. In most cases, they are
generated for you when you create your Cordova app with your preferred
Cordova development tools. If you use the IBM MobileFirst Platform Foundation
template, then splash screens and icons are also provided.

You can use a project template that is provided by IBM for use with Cordova
projects that are enabled to use MobileFirst features. If you use this MobileFirst
template, the following resources are made available to you as a starting point. If
you do not use the MobileFirst template, all of the resources are provided except
splash screens and icons.

You add the template by specifying the --template option and the MobileFirst
template when you initially create your Cordova project. For more information
about using this template, see “Creating a new Cordova app with the MobileFirst
template” on page 7-88.

If you change the default file names and paths of any resources, you must also
specify such changes in the Cordova configuration file (config.xml). In addition, in
some cases, you can change the default names and paths with the mfpdev app
config command. If you can change names and paths with the mfpdev app config
command, it is noted in the section about the specific resource.

Cordova configuration file (config.xml)

The Cordova configuration file is a required XML file that contains application
metadata and is stored in the root directory of the app. The file is automatically
generated when you create a Cordova application. You can modify it to add
custom properties by using the mfpdev app config command. For more
information about this file, see “The Cordova configuration file” on page 7-94.

Main file (index.html)

This main file is an HTML5 file that contains the application skeleton. This file
loads all the web resources (scripts and stylesheets) that are necessary to define the
general components of the application and to hook to required document events.
You can find this file in the <your project name>/www directory.

7-102 IBM MobileFirst Platform Foundation V8.0.0

You can change the name of this file with the mfpdev app config command.

Thumbnail image

The thumbnail image provides a graphical identification for the application on the
MobileFirst Operations Console. It must be a square image, preferably of size 90 by
90 pixels.

A default thumbnail image is provided when you use the template. You can
override the default image by using the same file name with a replacement image.
You can find thumbnail.png in <your project name>/www/img.

You can change the name or path of this file with the mfpdev app config
command.

Splash image

The splash image is displayed while the application is being initialized.

If you use the MobileFirst default template, splash images are provided. These
default images are stored in the following directories:
v iOS: <your project name>/res/screen/ios/
v Android: <your project name>/res/screen/android/
v Windows: <your project name>/res/screen/windows/

Various default splash images are included that are appropriate for different
displays, and for iOS and Windows, different versions of the operating system. You
can replace the default image that is provided by the template with your own
splash image, or add an image if you did not use the template.

When you use the MobileFirst template to build your app for the Android
platform, the cordova-plugin-splashscreen plug-in is installed. When this plug-in
is integrated, the splash images that Cordova uses are displayed instead of the
images that are used by MobileFirst. The images in the folder with the screen.png
format are the Cordova standard splash images. You can specify which splash
images display by changing the settings in the Cordova config.xml file.

If you do not use the MobileFirst template, the default splash images that are
displayed are the images that are used by the MobileFirst plug-in. The file names
of the default MobileFirst source splash images are in the form
splash-string.9.png.

For more information about using your own splash images, see “Adding custom
splash screens and icons to Cordova apps” on page 7-104.

Application icons

Default images for application icons are provided with the template. These default
images are stored in the following directories:
v iOS: <your project name>/res/icon/ios/
v Android: <your project name>/res/icon/android/
v Windows: <your project name>/res/icon/windows/

You can replace the default image with your own image. Your custom application
image must match the size of the default application image that you are replacing,

Developing applications 7-103

and must use the same file name. Various default images are provided, appropriate
to different displays and operating system versions. For more information about
using your own icon images, see “Adding custom splash screens and icons to
Cordova apps.”

Stylesheets

The app code can include CSS files to define the application view.

The stylesheet files are located in the <your project name>/www/css directory, and
are copied to the following platform-specific folders:
v iOS: <your project name>/platforms/ios/www/css
v Android: <your project name>/platforms/android/assets/www/css
v Windows: <your project name>/platforms/windows/www/css

Scripts

Your app code can include JavaScript files that implement various functions of
your app such as interactive user interface components, business logic, and
back-end query integration.

The JavaScript file index.js is provided by the template, and is located in the
<your project name>/www/js folder. This file is copied to the following
platform-specific folders:
v iOS: <your project name>/platforms/ios/www/js
v Android: <your project name>/platforms/android/assets/www/js
v Windows: <your project name>/platforms/windows/assets/www/js

Adding custom splash screens and icons to Cordova apps:

You can supply your own splash screens or icons in Cordova apps. You can add
them, or replace existing images that are provided with the MobileFirst template,
the cordova-plugin-mfp plug-in, or the cordova-plugin-splashscreen.

About this task

If you used the cordova-plugin-mfp plug-in, and you did not use the MobileFirst
template or add the Cordova cordova-plugin-splashscreen plug-in to your app,
you can replace the images for icons and splash screens that are provided by IBM
MobileFirst Platform Foundation with your own images. If you used the template,
then you can replace the splash images that the Cordova app uses, as they are the
files that are displayed.

You must create a new folder to hold the splash images and icons, and modify the
config.xml configuration file to point to them.

Procedure

1. Create a folder inside the root directory of your Cordova project. The folder can
be in any level of nested subfolder when the parent folder is under the
Cordova project root.

2. Place your source splash image and icon images in this folder.
3. Update the config.xml configuration file to point to your custom files.

7-104 IBM MobileFirst Platform Foundation V8.0.0

v If you have an Android app, the requirements to for identifying the splash
images depends on whether you created the app with or without the
MobileFirst template.

Splash screens
If you did not use the MobileFirst template when you created your
app, the splash images that are displayed are those that are retrieved
from the MobileFirst images location. The target file paths and file
names must remain exactly as in the example when you do not use
the template. Change the source paths and file names (src) to the
path of the files that you want to display. Add lines similar to the
following example between the <platform name="android"> and
</platform> tags in the config.xml file:

<update src="res/screen/android/splash-hdpi.9.png" target="res/drawable-hdpi/splash.9.png" />
<update src="res/screen/android/splash-ldpi.9.png" target="res/drawable-ldpi/splash.9.png" />
<update src="res/screen/android/splash-mdpi.9.png" target="res/drawable-mdpi/splash.9.png" />
<update src="res/screen/android/splash-xhdpi.9.png" target="res/drawable-xhdpi/splash.9.png" />
<update src="res/screen/android/splash-xxhdpi.9.png" target="res/drawable-xxhdpi/splash.9.png" />

If you used the MobileFirst template when you created your app,
you must update the splash images that Cordova uses. Change the
source paths and file names (src) to the path of the files that you
want to display. Add lines similar to the following example between
the <platform name="android"> and </platform> tags in the
config.xml file:

<splash density="land-hdpi" src="res/screen/android/screen-hdpi-landscape.png" />
<splash density="land-ldpi" src="res/screen/android/screen-ldpi-landscape.png" />
<splash density="land-mdpi" src="res/screen/android/screen-mdpi-landscape.png" />
<splash density="land-xhdpi" src="res/screen/android/screen-xhdpi-landscape.png" />
<splash density="hdpi" src="res/screen/android/screen-hdpi-portrait.png" />
<splash density="ldpi" src="res/screen/android/screen-ldpi-portrait.png" />
<splash density="mdpi" src="res/screen/android/screen-mdpi-portrait.png" />
<splash density="xhdpi" src="res/screen/android/screen-xhdpi-portrait.png" />

Icons The file names of the icon files must be the same as the entries in the
following example. The paths can be any path. The name of each
image corresponds to its size.

<icon src="res/icon/android/icon-96-xhdpi.png" />
<icon density="mdpi" src="res/icon/android/icon-48-mdpi.png" />
<icon density="hdpi" src="res/icon/android/icon-72-hdpi.png" />
<icon density="xhdpi" src="res/icon/android/icon-96-xhdpi.png" />
<icon density="xxhdpi" src="res/icon/android/icon-144-xxhdpi.png" />
<icon density="xxxhdpi" src="res/icon/android/icon-192-xxxhdpi.png" />

v If you have an iOS app, add lines similar to the following example between
the <platform name="ios"> and </platform> tags:

Splash screens

The paths and file names of the splash screen files must be the same
as the names in the following example. The name of each image
corresponds to its size.

<splash height="480" src="res/screen/ios/Default⌂iphone.png" width="320" />
<splash height="1024" src="res/screen/ios/Default-Portrait⌂ipad.png" width="768" />
<splash height="2048" src="res/screen/ios/Default-Portrait@2x⌂ipad.png" width="1536" />
<splash height="768" src="res/screen/ios/Default-Landscape⌂ipad.png" width="1024" />
<splash height="1536" src="res/screen/ios/Default-Landscape@2x⌂ipad.png" width="2048" />
<splash height="1136" src="res/screen/ios/Default-568h@2x⌂iphone.png" width="640" />
<splash height="1334" src="res/screen/ios/Default-667h⌂iphone.png" width="750" />
<splash height="2208" src="res/screen/ios/Default-736h⌂iphone.png" width="1242" />
<splash height="1242" src="res/screen/ios/Default-736h-Landscape⌂iphone.png" width="2208" />

Icons

Developing applications 7-105

The file names of the icon files must be the same as the names in the
following example. The paths can be any path. The name of each
image corresponds to its size.

<icon height="167" src="res/icon/ios/icon-83.5@2x.png" width="167"/>
<icon height="57" src="res/icon/ios/icon.png" width="57" />
<icon height="114" src="res/icon/ios/icon@2x.png" width="114" />
<icon height="40" src="res/icon/ios/icon-40.png" width="40" />
<icon height="80" src="res/icon/ios/icon-40@2x.png" width="80" />
<icon height="50" src="res/icon/ios/icon-50.png" width="50" />
<icon height="100" src="res/icon/ios/icon-50@2x.png" width="100" />
<icon height="60" src="res/icon/ios/icon-60.png" width="60" />
<icon height="120" src="res/icon/ios/icon-60@2x.png" width="120" />
<icon height="180" src="res/icon/ios/icon-60@3x.png" width="180" />
<icon height="72" src="res/icon/ios/icon-72.png" width="72" />
<icon height="144" src="res/icon/ios/icon-72@2x.png" width="144" />
<icon height="76" src="res/icon/ios/icon-76.png" width="76" />
<icon height="152" src="res/icon/ios/icon-76@2x.png" width="152" />
<icon height="29" src="res/icon/ios/icon-small.png" width="29" />
<icon height="58" src="res/icon/ios/icon-small@2x.png" width="58" />
<icon height="87" src="res/icon/ios/icon-small@3x.png" width="87" />

v If you have a Windows app, add lines similar to the lines in the following
example between the <platform name="windows"> and </platform> tags:

Splash screens

The paths and file names of the splash screen files must be the same
as the names in the following example. The name of each image
corresponds to its size.

<splash src="res/screen/windows/SplashScreen.scale-100.png" width="620" height="300"/>
<splash src="res/screen/windows/SplashScreenPhone.scale-240.png" width="1152" height="1920"/>
<splash src="res/screen/windows/Wide310x150Logo.scale-100.png" width="310" height="150"/>
<splash src="res/screen/windows/Wide310x150Logo.scale-240.png" width="744" height="360"/>

Icons

The file names of the icon files must be the same as the names in the
following example. The paths can be any path. The name of each
image corresponds to its size.

<icon src="res/icon/windows/Square30x30Logo.scale-100.png" width="30" height="30" />
<icon src="res/icon/windows/Square44x44Logo.scale-100.png" width="44" height="44" />
<icon src="res/icon/windows/Square44x44Logo.scale-240.png" width="106" height="106" />
<icon src="res/icon/windows/Square70x70Logo.scale-100.png" width="70" height="70" />
<icon src="res/icon/windows/Square71x71Logo.scale-100.png" width="71" height="71" />
<icon src="res/icon/windows/Square71x71Logo.scale-240.png" width="170" height="170" />
<icon src="res/icon/windows/Square150x150Logo.scale-100.png" width="150" height="150" />
<icon src="res/icon/windows/Square150x150Logo.scale-240.png" width="360" height="360" />
<icon src="res/icon/windows/Square310x310Logo.scale-100.png" width="310" height="310" />
<icon src="res/icon/windows/StoreLogo.scale-100.png" width="50" height="50" />
<icon src="res/icon/windows/StoreLogo.scale-240.png" width="120" height="120" />

What to do next

For more information about splash images and icons, see the Apache Cordova
page about splash images.

Registering Cordova applications to MobileFirst Server
Register your Cordova application to an instance of MobileFirst Server to establish
communication with the server and to provide the server with information about
your app. You can register your app by using the IBM MobileFirst Platform
Command Line Interface (CLI) or the IBM MobileFirst Platform Operations
Console.

7-106 IBM MobileFirst Platform Foundation V8.0.0

https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-splashscreen/
https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-splashscreen/

Once you have registered your client application on the server, your app can access
the server resources. For details on how to test the server registration from your
client app see “Some initial WebView code for connecting to the server” on page
7-130.

Note: If you do not register before running the app, the mfpclient file is not
created in the [platform]\assets folder and the following error appears at
runtime:
java.lang.RuntimeException: Client configuration file mfpclient.properties not found
in application assets. Use the MFC CLI command ’mfpdev app register’ to create the file.

You must register your app before running it. If you want to run the app before
registering (for example if you have no server), you can create the mfpclient file
by running cordova prepare from the Cordova app root folder.

However this mfpclient file does not contain the necessary connection values. You
cannot run an application that includes requests to server resources, without
properly registering the app.

To view the initial app in an emulator, after creating it with Cordova and the
MobileFirst plug-in, you can run it after running cordova prepare.

Registering Cordova applications from the MobileFirst Platform CLI:

You can use the IBM MobileFirst Platform Command Line Interface (CLI) to
register your Cordova application to an instance MobileFirst Server.

Before you begin

v You must have the IBM MobileFirst Platform Command Line Interface (CLI)
installed. For more information, see “Installing the MobileFirst Platform CLI” on
page 7-15.

v You must have an instance of MobileFirst Server running. The server can be
running locally, or it can be a remote server, but it must be reachable from your
local computer. For more information, see “Setting up the MobileFirst
Development Server” on page 7-12, “Installing the IBM MobileFirst Platform
Foundation Developer Kit” on page 7-10, or “Installing IBM MobileFirst
Platform Server” on page 6-2.

v You must have a Cordova application on your local computer, with platforms
already installed. For more information, see The Command-Line Interface at the
Apache Cordova web site.

About this task

Once you have the client side of your Cordova application initially defined, you
can prepare for further development tasks by registering it to a MobileFirst Server.

Procedure

1. Check that the target MobileFirst Server is up and running.
2. Navigate to the directory that contains your app, or one of its subdirectories.

Important:

v If the current directory is platforms/platform or one of its subdirectories, the
registration occurs for only the corresponding platform.

Developing applications 7-107

https://cordova.apache.org/docs/en/latest/guide/cli/index.html

v For the Windows platform, if you want to register only specific versions of
the Windows app, use the --windows option of the mfpdev app register
command to specify the versions. For example: mfpdev app register
--windows windows,windowsphone8 registers the app for Windows 10
Universal and Windows Phone 8.1. mfpdev app register --windows
windows8 registers the Windows 8.1 desktop portion of your Cordova app.

3. Register your app to the server. Use one of the following procedures:
v To register the app to the default server, run the following command:

mfpdev app register

Note: If you have not previously set a default server and a MobileFirst
Server is running on the local system, this command registers the app to the
local MobileFirst Server, and this server is made the default.

v To register your app to a server that is not the default server:
a. Create a server profile by running the mfpdev server add command. For

example:
mfpdev server add Server1 -url https://company.mobile.com:9080 -login admin -password secretPassword!

For more information about the mfpdev server add command, run mfpdev
help server add.

b. To register your app to the server that you just defined, run the mfpdev
app register command, and specify the server profile that you just
created. For example:
mfpdev app register Server1

For more information about this command, including optional parameters, run
mfpdev help app register.

4. To propagate the changes to all the target platforms of your Cordova app, run
the cordova prepare command.. The server URL is copied into the config.xml
files that are located in each platform's subdirectory.

Results

The app is registered to the target server. Data about the app that is obtained from
the config.xml file such as application name, version number, and app ID is sent
to the server. The root client properties file config.xml is updated with the value
of the server's URL, as are the copies of config.xml that reside in subdirectories
that correspond to each of the app's platforms.

What to do next

You can proceed with other development tasks that depend on the MobileFirst
Server. For example, you can preview your app, test your app's security features,
and manage your app from the MobileFirst Operations Console.

Registering Cordova apps from the MobileFirst Operations Console:

Register your Cordova application to an instance of MobileFirst Server to establish
communication with the server and to provide the server with information about
your app. You must register your app to the server before running or testing code
that accesses server resources.

7-108 IBM MobileFirst Platform Foundation V8.0.0

Before you begin

You must have the IBM MobileFirst Platform Operations Console running on the
MobileFirst Server targeted for registration. For more information, see “The IBM
MobileFirst Platform Foundation Developer Kit” on page 7-9.

About this task

Each platform of a Cordova app is registered as an independent application on the
MobileFirst Server. However in the IBM MobileFirst Platform Operations Console
they are grouped together under a single display name and application id. To
register your Cordova MobileFirst app using IBM MobileFirst Platform Operations
Console, register each platform according to the native app registration procedure,
using the same display name and application id for each platform. For information
on how to register each app see “Registering iOS applications from the MobileFirst
Operations Console” on page 7-38, “Registering Android applications from the
MobileFirst Operations Console” on page 7-60, or “Registering Windows
applications from the MobileFirst Operations Console” on page 7-70.

Each platform appears as a separate app in the console, under a single display
name and application id in the left pane, regardless of whether the Cordova app
was registered with IBM MobileFirst Platform Operations Console or with
MobileFirst Platform CLI.

Results

Your Cordova applications are registered on the server. Regardless of the method
used for registering, each platform app needs to be managed separately in regard
to the options provided by the console (management, security, authenticity, etc.).

Previewing Cordova web resources with the Mobile Browser
Simulator
You can preview the web resources of your app and test some of your JavaScript
code with Mobile Browser Simulator.

Restriction: The Mobile Browser Simulator supports the following web browsers:
v Firefox version 38 and later
v Chrome 49 and later
v Safari 9 and later

Developing applications 7-109

Restriction: You preview your web resources with Mobile Browser Simulator, but
not all MobileFirst JavaScript APIs are supported by the simulator. In particular,
the OAuth protocol is not fully supported. However, you can test calls to adapters
with WLResourceRequest. In this case,
v Security checks are not run on the server-side and security challenges are not

sent to the client that runs in Mobile Browser Simulator.
v If you do not use MobileFirst Development Server, register a confidential client

that has the adapter's scope in its list of allowed scopes. You can define a
confidential client with the MobileFirst Operations Console, by using the
Runtime/Settings menu. For more information about confidential clients, see
“Confidential clients” on page 7-279.

Note: MobileFirst Development Server includes a confidential client "test" that
has an unlimited allowed scope ("*"). By default mfpdev app preview uses this
confidential client.

To test your application with a device simulator, use instead cordova emulate.

To preview your Cordova web resources with Mobile Browser Simulator, use the
following procedure
1. If you plan to use the connection with the server, start your test server. You

start MobileFirst Development Server with the run command in the server
installation directory. For more information, see “Starting the MobileFirst
Development Server” on page 7-12.

2. Use mfpdev app preview. For example, to preview the iOS platform of your
application, with an update when you modify the web resource, type
$ mfpdev app preview ios --type mbs -wp

To preview the same application and test an adapter on a server that is not
MobileFirst Development Server, type
$ mfpdev app preview ios --type mbs -wp --clientid clientid --secret clientsecret

Where
v clientid is the ID of the confidential client to use
v cliensecret is the secret of the confidential client to use

For more information about mfpdev app preview, you can type
$ mfpdev help app preview

The following figure shows the display of the Mobile Browser Simulator.

7-110 IBM MobileFirst Platform Foundation V8.0.0

Cordova app security
IBM MobileFirst Platform Foundation provides security features that help you
protect your Cordova apps.

Much of the content in a cross-platform app can be more easily modified by an
unauthorized person than for a native app. Because much of the common content
in a cross-platform app is in a readable format, IBM MobileFirst Platform
Foundation provides features that can provide a higher level of security for your
cross-platform Cordova apps. See “MobileFirst security framework” on page 7-265
for information about security options that are not mentioned in this topic. Use the
following features to improve security on your Cordova apps:

“Encrypting the web resources of your Cordova packages” on page 7-112
Encrypts the contents in the www folder of your Cordova app, and decrypts
it when the app is installed and run for the first time. This encryption
makes it more difficult for someone to view or modify the content in that
folder while the app is packaged.

“Enabling the web resources checksum feature” on page 7-113
Ensures the integrity of the app when it starts by comparing the contents
to the baseline checksum results that were gathered the first time the app
was started. This test helps prevent the modification of an app that is
already installed.

“Enabling FIPS 140-2” on page 10-77
Ensures that the encryption algorithms that are used to encrypt data at rest
and data in motion are compliant with the Federal Information Processing
Standards (FIPS) 140-2 standard.

Developing applications 7-111

“Certificate pinning” on page 7-185
Helps you prevent man-in-the-middle attacks by associating a host with its
expected public key.

Encrypting the web resources of your Cordova packages:

You can use the MobileFirst Platform CLI to encrypt the content in the www folder
of the .apk or .ipa packages of your Cordova web apps.

Before you begin

v You must have the Cordova development tools installed. This example uses the
Apache Cordova CLI. If you use other Cordova development tools, some of
your steps will be different. Refer to your Cordova tool documentation for
instructions.

v You must have the MobileFirst Platform CLI installed. For more information, see
“Installing the MobileFirst Platform CLI” on page 7-15.

v You must have the IBM MobileFirst Platform Foundation plug-in. See “Cordova
plug-ins for MobileFirst features” on page 7-87 for more information about the
plug-in.

The best time to complete this procedure is after finishing your app development
and are ready to deploy the app. If you run any of the following commands after
you complete the web resources encryption procedure, the content that was
encrypted becomes decrypted:
v cordova prepare

v cordova build

v cordova run

v cordova emulate

v mfpdev app webupdate

v mfpdev app preview

If you run one of the listed commands after you encrypt the web resources, you
must complete this procedure again to encrypt the web resources.

About this task

To minimize the risk of someone viewing and modifying your web resources while
it is in the .apk or .ipa package, you can use the IBM MobileFirst Platform
Foundation mfpdev app webencrypt command or the mfpwebencrypt flag to encrypt
the information. This procedure does not provide encryption that is impossible to
defeat, but it provides a basic level of obfuscation.

To encrypt the content in the package of your Cordova app with the MobileFirst
Platform CLI, complete the following steps:

Procedure

1. Open a terminal window and navigate to the root directory of the Cordova app
that you want to encrypt.

2. Prepare the app by entering one of the following commands:
v cordova prepare

v mfpdev app webupdate

3. Complete one of the following procedures to encrypt the content:
v Enter the following command:

7-112 IBM MobileFirst Platform Foundation V8.0.0

mfpdev app webencrypt

Tip: You can view information about the mfpdev app webencrypt command
by entering mfpdev help app webencrypt.

v You can also encrypt the web resources of your Cordova packages by adding
the mfpwebencrypt flag to the cordova compile or to the cordova build
command when you build your packages.
cordova compile -- --mfpwebencrypt

cordova build -- --mfpwebencrypt

The operating system information in the www folder is replaced by a
resources.zip file that contains the encrypted content.
If your app is for the Android operating system and the resources.zip file is
larger than 1 MB, the resources.zip file is divided into smaller 768 KB .zip
files that are named resources.zip.nnn. The variable nnn is a number from 001
through 999.

4. Test the application with the encrypted resources by using the emulator that is
provided with the platform-specific tools. For example, you can use the
emulator in Android Studio for Android, or Xcode for iOS.

Note: Do not use the following Cordova commands to test the application after
you encrypt it:
v cordova run

v cordova emulate

These commands refresh the content that was encrypted in the www folder, and
saves it again as decrypted content. If you use these commands, remember to
complete the procedure again to encrypt it before you publish the app.

Enabling the web resources checksum feature:

Use the web resources checksum feature to verify the integrity of your
cross-platform app.

Before you begin

v You must have the Cordova development tools installed. This example uses the
Apache Cordova CLI. If you use other Cordova development tools, some of
your steps will be different. Refer to your Cordova tool documentation for
instructions.

v You must have the MobileFirst Platform CLI installed. For more information, see
“Installing the MobileFirst Platform CLI” on page 7-15.

v You must have the IBM MobileFirst Platform Foundation plugin.
v You must add the platform to your Cordova project before you can enable the

web resources checksum feature for that operating system by entering the
cordova platform add [android|ios|windows] command.

About this task

When it is enabled, the web resources checksum feature compares the original web
resources of an app when it is started to a stored baseline that was captured the
first time that app was started. This is a good way of identifying any differences in
the app that might indicate that the app was modified. This procedure is
compatible with the Direct Update feature.

Developing applications 7-113

To enable the web resources checksum feature for a Cordova app, complete the
following steps:

Procedure

1. In a terminal window, navigate to the root directory of your target app.
2. Enter the following command to enable the web resources checksum feature for

an operating system environment of your Cordova app:
mfpdev app config [android|ios|windows10|windows8|
windowsphone8]_security_test_web_resources_checksum true

For example:
mfpdev app config android_security_test_web_resources_checksum true

You can disable the feature by replacing true in the command with false.

Tip: You can view information about the mfpdev app config command by
entering mfpdev help app config.

3. Enter the following command to identify the types of files that you want to
ignore during the checksum test:
mfpdev app config [android|ios|windows10|windows8|
windowsphone8]_security_ignore_file_extensions [file_extension1,file_extension2]

Multiple extensions must be separated by a comma with no spaces between
them. For example:
mfpdev app config android_security_ignore_file_extensions jpg,png,pdf

Important: Running this command overwrites the values that are set.
The more files that the web resources checksum scans for its test, the longer it
takes for the app to open. You can specify the extension of a file type to skip,
which might improve the speed of starting the app.

Results

Your app has the web resources checksum feature enabled.

What to do next

1. Run the following command to integrate the changes into your app:
cordova prepare

2. Build your app by entering the following command:
cordova build

3. Run your app by entering the following command:
cordova run

Related concepts:
“Command-line interface (CLI) help” on page 7-18
You can run the help command to display full information about all MobileFirst
Platform CLI commands.

IBM MobileFirst Studio plug-in for managing Cordova projects in
Eclipse
The IBM MobileFirst Studio plug-in helps you manage your Cordova project in the
Eclipse development environment.

7-114 IBM MobileFirst Platform Foundation V8.0.0

Cordova projects are typically managed by entering commands on the Cordova
command line. After integrating the IBM MobileFirst Studio plug-in into your
Eclipse environment, you can run the following commands on your Cordova app
without leaving the Eclipse development environment:
v Open server console
v Preview app
v Register app
v Encrypt app
v Pull app
v Push app
v Update app

You can also open your project in Android Studio or Xcode directly from the
Eclipse interface.

Integrating the MobileFirst Studio plug-in to manage a Cordova project in
Eclipse:

You can integrate the IBM MobileFirst Studio plug-in into your Eclipse
development environment to run extra commands on your Cordova projects from
an Eclipse menu.

Before you begin

Be sure that you have the following prerequisites before you start the procedure:
v A Mars Java EE version of Eclipse, or later.
v Java JRE version 7, or later.
v Node.js version 4.x, or later.
v The Cordova command-line interface, version 6.1.1, or later.
v The IBM MobileFirst Platform Command Line Interface (CLI). For more

information, see “The MobileFirst command-line interface (CLI)” on page 7-13.
v An internet connection.

About this task

This procedure includes instructions for setting up the IBM MobileFirst Studio
plug-in for Eclipse with or without The Eclipse Hybrid Mobile (THyM) version 2.0
plug-in integrated with your Eclipse environment. The THyM plug-in simplifies
some of the management tasks of your Cordova projects in the Eclipse
environment. These tasks include installing Cordova plug-ins directly from the
Eclipse interface and creating Cordova projects directly in the Eclipse environment.
The instructions apply to both situations, so follow the procedure that applies to
your situation.

To integrate the IBM MobileFirst Studio plug-in into your Eclipse environment and
manage a Cordova project in Eclipse, complete the following steps:

Procedure

1. Install the IBM MobileFirst Studio Eclipse plug-in.
a. Search for the IBM MobileFirst Studio Plug-in in the Eclipse marketplace.
b. Select IBM MobileFirst Studio Plugins, and click Next.
c. Accept the license terms and click Finish.

Developing applications 7-115

d. Restart Eclipse.
2. Optional: With the THyM plug-in: Install the THyM plug-in. The THyM

plug-in is an optional open source plug-in that helps you manage your
Cordova app in the Eclipse development environment. THyM is not required to
use the IBM MobileFirst Studio plug-in, but it simplifies some of the Cordova
project management within the Eclipse environment. IBM does not support
issues that result from the THyM plug-in. Steps that refer to the THyM plug-in
are provided as a convenience.
a. Open your Eclipse development environment and select Help > Eclipse

Marketplace.
b. Search for the plug-in for THyM 2.0, or later, and click Install.

Restriction: Only THyM version 2.0, or later, is supported.
c. Confirm that you want to install the THyM plug-in by ensuring that the

check boxes for Eclipse Thym 2.0.0 and Hybrid Mobile Application
Development Tools are selected. Click Confirm.

d. Read and accept the license agreement; then, click Finish.
e. Restart Eclipse.

3. Create your Cordova project, if necessary. If you already have an existing
project that you are importing, skip to step 4 on page 7-117 if you are not using
the THyM plug-in procedure, or to steps 5 on page 7-117 or 6 on page 7-117 if
you are following the procedure with the THyM plug-in.
v With the THyM plug-in:

a. Select File > New > Other > Mobile > Hybrid Mobile (Cordova)
Application Project, and click Next.

b. Specify a name for your project, and click Next.
c. Specify each platform, or engine, that your app uses, and click Finish.

The platforms that are supported in IBM MobileFirst Platform Foundation
are Android, iOS, and Windows Universal.

Tip: Click Download... to retrieve any engines that are not available to
select.

v Without the THyM plug-in:
a. In your terminal window, go to the directory where you want to create

your Cordova app.
b. Create your Cordova app by entering the following command:

cordova create app_name app_identifier directory_for_app

where the following are true:

app_name
The name of your app.

app_identifier
The unique identifier for your app.

directory_for_app
The directory where you want to create your app.

c. In your terminal window, change to the root directory of your Cordova
app.

d. Add the platforms for your app by entering the following command:
cordova platform add [ios | android | windows]

7-116 IBM MobileFirst Platform Foundation V8.0.0

Repeat this step for each platform that you want to add.
4. Without the THyM plug-in only: Add the IBM MobileFirst Platform Foundation

Cordova plug-in to your Cordova project.
a. Go to the root directory of your Cordova project in the terminal window.
b. Enter the following command to add the plug-in:

cordova plugin add cordova-plugin-mfp

5. Import your project into Eclipse, if necessary. If your existing Cordova project
was created in Eclipse with the THyM plug-in installed, then you do not have
to import it again.
v With the THyM plug-in:

a. Open the Eclipse development environment, and create a new project by
selecting: File > Import > General > Import Cordova project, and click
Next.

b. Browse to the location of the project. Select it and click OK.
c. Select the project and click Finish.

v Without the THyM plug-in:
a. Open the Eclipse development environment, and create a new project by

selecting: File > New > Project > General > Project, and click Next.
b. Enter a name for your project.
c. Clear the check box for Default location.
d. Browse to the root directory of your existing Cordova project.
e. Select the Cordova project and click Finish.

Note: If your Cordova project is in the same path as your Eclipse
workspace, the Finish button is not active.

Important: The IBM MobileFirst Platform Foundation Cordova plug-in must
be installed in your Cordova project when you import it into Eclipse when
you are not using the THyM plug-in. See step 4 for instructions about
installing the IBM MobileFirst Cordova plug-in when you are not using the
THyM plug-in.

6. With the THyM plug-in only: Install the IBM MobileFirst Platform Foundation
Cordova plug-in to your project in Eclipse.
a. Right-click the name of your Cordova project in the Eclipse navigation.
b. Select Install a Cordova Plug-in.
c. Use the search string of "mfp" to find and install the cordova-plugin-mfp.
d. Read and accept the license agreement; then, click Finish.
e. Restart Eclipse.

Results

You can access the IBM MobileFirst Studio plug-in menu by right-clicking the
name of your Cordova project in the Eclipse development environment. See
Table 7-14 on page 7-118 for the commands that are supported and their actions.

Running MobileFirst Studio plug-in commands in Eclipse:

After you integrate the IBM MobileFirst Studio plug-in into your Eclipse
development environment, you can run extra IBM MobileFirst Platform
Foundation commands on your Cordova projects from within your Eclipse
development environment.

Developing applications 7-117

Before you begin

Be sure that you have the following prerequisites before you start the procedure:
v A Mars Java EE version of Eclipse, or later, with the IBM MobileFirst Studio

plug-in installed.
v Java JRE version 7, or later.
v Node.js version 4.x, or later.
v The Cordova command-line interface, version 6.1.1, or later.
v The IBM MobileFirst Platform Command Line Interface (CLI), version 8.0, or

later. For more information, see “The MobileFirst command-line interface (CLI)”
on page 7-13.

v An internet connection.
v A Cordova project that has the cordova-plugin-mfp installed.

Important: To use this function, you must have installed the IBM MobileFirst
Studio plug-in as explained in “Integrating the MobileFirst Studio plug-in to
manage a Cordova project in Eclipse” on page 7-115.

About this task

The IBM MobileFirst Studio plug-in commands that you run in Eclipse
automatically run on the default server that is specified in your IBM MobileFirst
Platform Command Line Interface (CLI) server settings. The default target server is
the local server at: http://localhost:9080/mfpadmin. You can change the default
server setting by using your IBM MobileFirst Platform Command Line Interface
(CLI). For more information about how to define servers, see “Defining the target
server of the MobileFirst Platform CLI” on page 7-16.

To run an IBM MobileFirst Studio plug-in command from the Eclipse menu,
complete the following steps:

Procedure

1. Right-click the name of your Cordova project in your Eclipse navigation pane.
2. Select the IBM MobileFirst Studio plug-ins menu.
3. Select the command that you want to run from the following options:

Table 7-14. Commands that are available with the IBM MobileFirst Studio plug-in

IBM MobileFirst Studio
plug-in menu option Action

IBM MobileFirst Platform
Command Line Interface
(CLI) equivalent
Tip: For more information
about each of these
commands, enter the
specified command on the
command line and add help
after mfpdev.

Open server console When the server definition
exists, opens the console so
you can view the actions of
the specified server.

mfpdev server console

Preview app Opens the app in the mobile
browser (MBS) preview
mode.

mfpdev app preview

7-118 IBM MobileFirst Platform Foundation V8.0.0

Table 7-14. Commands that are available with the IBM MobileFirst Studio
plug-in (continued)

IBM MobileFirst Studio
plug-in menu option Action

IBM MobileFirst Platform
Command Line Interface
(CLI) equivalent
Tip: For more information
about each of these
commands, enter the
specified command on the
command line and add help
after mfpdev.

Register app Registers the app with the
server that is specified in
your server definitions.

mfpdev app register

Encrypt app Runs the web resource
encryption tool on your app.

mfpdev app webencrypt

Pull app Retrieves the existing app
configuration from the server
that is specified in the server
definition.

mfpdev app pull

Push app Sends the app configuration
of your current app to the
server that is specified in the
build definition so you can
reuse it for another app.

mfpdev app push

Update app Packages the contents of the
www folder in a .zip file, and
replaces the version on the
server with the package.

mfpdev app webupdate

Setting the debug level for the MobileFirst Studio plug-in in Eclipse:

With the IBM MobileFirst Studio plug-in, you can view the log output information
for your Cordova project in the Eclipse console and control the amount of
information that is displayed.

Before you begin

Be sure that you have the following prerequisites before you start the procedure:
v A Mars Java EE version of Eclipse, or later, with the IBM MobileFirst Studio

plug-in installed.
v Java JRE version 7, or later.
v Node.js version 4.x, or later.
v The Cordova command-line interface, version 6.1.1, or later.
v The IBM MobileFirst Platform Command Line Interface (CLI).
v An internet connection.
v A Cordova project that has the cordova-plugin-mfp plug-in installed.

Important: To use this function, you must have installed the IBM MobileFirst
Studio plug-in as explained in “Integrating the MobileFirst Studio plug-in to
manage a Cordova project in Eclipse” on page 7-115.

Developing applications 7-119

About this task

You can select to display either the normal log messages in the Eclipse console, or
more verbose messaging that can help you isolate a problem. Because of the
amount of detail that is provided when verbose debug mode is on, activate this
mode only when you are troubleshooting a problem. To change the setting,
complete the following steps:

Procedure

1. In your Eclipse development interface, select Window > Preferences. This
mode displays verbose debug logs so you can view them in the Eclipse console
window while you are previewing the app.

2. Select MobileFirst Studio Plugins.
3. Ensure that Enable debug mode is selected.
4. Apply the changes, and click OK. The verbose log messages are displayed in

the Eclipse console.

Results

If selected, the debug mode is set to display verbose messages in the Eclipse
console. If not selected, standard logging messages are displayed.

Opening a Cordova project in a platform development environment:

With the IBM MobileFirst Studio plug-in, you can open your Cordova project in
the platform IDE directly from Eclipse.

Before you begin

Be sure that you have the following prerequisites before you start the procedure:
v A Mars Java EE version of Eclipse, or later, with the IBM MobileFirst Studio

plug-in installed.
v Java JRE version 7, or later.
v Node.js version 4.x, or later.
v The Cordova command-line interface, version 6.1.1, or later.
v The IBM MobileFirst Platform Command Line Interface (CLI).
v An internet connection.
v A Cordova project with an iOS or Android platform, and the

cordova-plugin-mfp plug-in installed.

Important: To use this function, you must install the IBM MobileFirst Studio
plug-in as explained in “Integrating the MobileFirst Studio plug-in to manage a
Cordova project in Eclipse” on page 7-115.

About this task

After you create a Cordova project and add the iOS or Android platform, you
might want to open the project within the Xcode or Android Studio environment.
You can open it directly from within the Eclipse environment if you have the IBM
MobileFirst Studio plug-in.

Important: Do not edit the code in your projects in the Android Studio or Xcode
environment. Changes that are made in the IDE only apply to the platform that is

7-120 IBM MobileFirst Platform Foundation V8.0.0

open and can be overwritten by information at the project level.
To open the project in the native IDE, complete the following steps:

Procedure

1. Ensure that your path to Android Studio is set correctly by selecting
Preferences > MobileFirst Studio Plugins.
v In a Windows environment, specify the directory that contains the bin file,

which is often C:\Program Files\Android\Android Studio.
v In an OSX environment, specify the directory that contains the Android

Studio application, which is often /Applications.
2. Import your Android project into Android Studio before launching it from

Eclipse. You only have to do this the first time that you are launching the
Android project from Eclipse.
a. Open Android Studio.
b. Select File > New > Import project....
c. Select the project folder, the build.gradle file, or the settings.gradle file

for the project that you want to import. You can usually find the
build.gradle file and the settings.gradle file in the c:\dir\project_name\
platforms\android directory.

You can open your Cordova project that contains the Android platform in
Android Studio directly from the Eclipse IDE.

3. Open your Cordova project in the Eclipse development environment.
4. Right-click the project and select Run as... > Xcode project or Run as... >

Android Studio project to open the project in the native environment. If you
are not in an OSX environment, then the Xcode project option is not available.

Results

The project opens in the selected development environment.

Developing Cordova apps for Android
The Cordova app can run on the Android platform. Once the app is initiated using
the native code of the Android OS, the WebView is loaded and the MobileFirst
integration is accessed through the JavaScript API.

The MobileFirst integration allows you to build a Cordova app that uses the
Cordova API and custom plug-ins (see “Creating a new Cordova app without the
MobileFirst template” on page 7-89). The resulting app includes a seamless
integration and you can develop the WebView in various IDEs that support
JavaScript (see “Editing WebView (JavaScript) code” on page 7-129). Or you can
view your project setup in Android Studio and customize the setup, add splash
screens, configure the app or use the emulators to view the app.

Cordova offers a default WebView for JavaScript development or the Crosswalk
WebView based on the Chrome browser. After you apply the Crosswalk plug-in to
your Cordova app (see “Crosswalk WebView (Android)” on page 7-133) the
Crosswalk WebView is used without requiring any further configuration.

The following topics show briefly the Cordova app setup for Android.

Running a Cordova Project in Android Studio:

Develop your Cordova app with MobileFirst for Android using Android Studio.

Developing applications 7-121

Before you begin

You must have a Cordova app project set up with Apache Cordova CLI (see
“Creating a new Cordova app without the MobileFirst template” on page 7-89).

Procedure

1. If you have not already done so, from the command line run
cordova prepare

This creates the mfpclient.properties file in the assets folder. If this file does
not exist, you cannot run your app.

2. Open the project in Android Studio.
a. From Android Studio select File->New->Import Project.
b. Navigate to the build.gradle file in project name and click OK.

3. In the project navigator pane the project looks like this:

Table 7-15. Android Studio navigation pane

Android Studio navigation pane Description of selected files

AndroidManifest.xml

One of the functions of the
AndroidManifest.xml file is list the start up
code for the app.

MainActivity.java

The start up code for the app.

config.xml

Various configurations including:

v Calls hooks.

v Points to the default html page:

<content src="index.html" />

www

Contains the JavaScript, HTML, and CSS
files loaded into the WebView.

index.html

The initial html page loaded by the
WebView, defined in the config.xml file.

mfpclient.properties

The file containing information for
connecting to the MobileFirst server. See

4. Run your application to view it in the emulator.
a. From the Run menu choose Run Android.
b. Choose a device from the Device Chooser dialog.

7-122 IBM MobileFirst Platform Foundation V8.0.0

The app is displayed in the emulator.

What to do next

You now have your Cordova project set up in Android Studio. You must register
your app before you can start writing your code. See “Registering Cordova
applications to MobileFirst Server” on page 7-106.

Cordova application with MobileFirst start-up flow:

In Android Studio, you can review the start-up process of the Cordova app for
Android with MobileFirst.

The MobileFirst Cordova plug-in cordova-plugin-mfp has native asynchronous
bootstrap sequence. The bootstrap sequence must be completed before the Cordova
application loads the application's main html file.

Adding the cordova-plugin-mfp plug-in to a Cordova application instruments the
application's AndroidManifest file and the MainActivity extending the
CordovaActivity native code to perform the MobileFirst initialization. MobileFirst
can also be used in Cordova applications configured with the Crosswalk WebView.

The application native code instrumentation consists of:
v Adding com.worklight.androidgap.api.WL API calls to perform the MobileFirst

initialization.
v In the AndroidManifest.xml file adding

– An activity called MFPLoadUrlActivity to allow proper MobileFirst
initialization in case the cordova-plugin-crosswalk-webview has been
installed.

– A custom attribute android:name="com.ibm.MFPApplication" to the
<application> element (see below).

Implementing WLInitWebFrameworkListener and creating the WL object

The MainActivity.java file creates the initial MainActivity class extending the
CordovaActivity class. The WLInitWebFrameworkListener receives notification when
the MobileFirst framework is initialized.
public class MainActivity extends CordovaActivity implements WLInitWebFrameworkListener {

The MFPApplication class is called from within onCreate and creates a MobileFirst
client instance (com.worklight.androidgap.api.WL) that is used throughout the
app. The onCreate method initializes the WebView framework.
@Overridepublic void onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState);

if (!((MFPApplication)this.getApplication()).hasCordovaSplashscreen()) {
WL.getInstance().showSplashScreen(this);

}
init();
WL.getInstance().initializeWebFramework(getApplicationContext(), this);

}

The MFPApplication class has two functions:
v Defines the showSplashScreen method for loading a splash screen if one exists.

For more information on controlling splash screens see .

Developing applications 7-123

v Creates two listeners for enabling analytics. These listeners can be removed if
not needed. For more information on Cordova and MobileFirst analytics see
“MobileFirst Cordova plug-in initialization for analytics.”

Loading the WebView

The cordova-plugin-mfp plug-in adds an activity to the AndroidManifest.xml file
that is required for initializing the Crosswalks WebView:

<activity android:name="com.ibm.MFPLoadUrlActivity" />.

This activity is used to ensure the asynchronous initialization of the Crosswalk
WebView as follows:

After the MobileFirst framework is initialized and ready to load in the WebView,
the onInitWebFrameworkComplete connects to the URL if WLInitWebFrameworkResult
succeeds.
public void onInitWebFrameworkComplete(WLInitWebFrameworkResult result){
if (result.getStatusCode() == WLInitWebFrameworkResult.SUCCESS) {
super.loadUrl(WL.getInstance().getMainHtmlFilePath());

} else {
handleWebFrameworkInitFailure(result);

}
}

For details on the WebView development see “Cordova WebView” on page 7-129.

MobileFirst Cordova plug-in initialization for analytics:

The MobileFirst Cordova plug-in prepares your app for sending analytics data to
the server. If your app does not use analytics, this code can be removed.

After startup create two listeners for receiving device events. In the WebView
JavaScript code, the data can then be sent with WL.Analytics.send().
WLAnalytics.init(this);
WLAnalytics.addDeviceEventListener(WLAnalytics.DeviceEvent.NETWORK);
WLAnalytics.addDeviceEventListener(WLAnalytics.DeviceEvent.LIFECYCLE);

The MobileFirst Cordova plug-in inserts this listener code into the onCreate
method of MFPApplication. If not needed it can be removed.

The WL.Analytics.send() must be added as needed in the index.js file, or any
subsequently added JavasScript files.

For more information on MobileFirst see “Analytics and Logger” on page 11-1.

Developing Cordova apps for iOS
Details relevant to developing Cordova apps for iOS with MobileFirst are provided
here.

Note: MobileFirst development is supported in Xcode from version 7.1 by using
iOS 8.0 and later.

Note: The MobileFirst iOS SDK supports ARC (Automatic Reference
Counting).The default MobileFirst application that is generated for the
iPhone/iPad environment also supports ARC. Refer to the Apple documentation
for more details on ARC.

7-124 IBM MobileFirst Platform Foundation V8.0.0

https://developer.apple.com/library/ios/releasenotes/objectivec/rn-transitioningtoarc/Introduction/Introduction.html

Cordova iOS applications with MobileFirst start-up flow:

The MobileFirst framework is initialized in the iOS platform to display a WebView
in the Cordova app with MobileFirst.

main.m

In the main.m file the MobileFirst plug-in replaces the default main application
AppDelegate with MFPAppDelegate.
#import <UIKit/UIKit.h>
int main(int argc, char *argv[]) {
@autoreleasepool

{
int retVal = UIApplicationMain(argc, argv, nil, @"MFPAppDelegate");
return retVal;

}
}

MFPAppDelegate.m

The MFPAppDelegate.m file is found in the plugins folder. This replaces the default
Cordova AppDelegate.m file and initializes the MobileFirst framework before the
view controller loads the WebView .

The didFinishLaunchingWithOptions method initializes the framework:
[[WL sharedInstance] initializeWebFrameworkWithDelegate:self];

Once the initialization succeeds the wlInitWebFrameworkDidCompleteWithResult
checks that the MobileFirst framework has been loaded, invokes
wlInitDidCompleteSuccessfully and creates listeners for receiving data (see
“MobileFirst Cordova plug-in initialization for analytics” on page 7-124. The
wlInitDidCompleteSuccessfully creates a cordovaViewController that connects to
the default index.html page.

Once the iOS Cordova app is built in Xcode without errors, you can proceed to
add features to the native platform and WebView.

MobileFirst Cordova plug-in initialization of analytics:

The MobileFirst Cordova plug-in prepares your iOS app for sending analytics data
to the server. If your app does not require analytics, this code can be removed.

MFPAppDelegate.m

The MobileFirst plug-in adds two lines for creating the listeners after the web
framework initialization is complete and web resources are ready to be used. These
appear in the wlInitWebFrameworkDidCompleteWithResult function in the
MFPAppDelegate.m file.
[[WLAnalytics sharedInstance] addDeviceEventListener:NETWORK];
[[WLAnalytics sharedInstance] addDeviceEventListener:LIFECYCLE];

These lines can be removed if not needed.

To send analytics data to the server, the developer must explicitly add the call
within index.js or any subsequently added JavaScript files:
WL.Analytics.send()

Developing applications 7-125

For more information on MobileFirst analytics see “MobileFirst Cordova plug-in
initialization for analytics” on page 7-124.

Enabling OpenSSL for Cordova iOS:

The MobileFirst iOS SDK uses native iOS APIs for cryptography. You can configure
the MobileFirst V8.0.0 to use the OpenSSL cryptography library in your Cordova
iOS app.

The encryption/decryption functionalities are provided with the following
Javascript APIs:

WL.SecurityUtils.encryptText

WL.SecurityUtils.decryptWithKey

Option 1: Native encryption/decryption

By default MobileFirst provides native encryption/decryption, without using
OpenSSL. This is equivalent to explicitly setting the encryption/decryption
behavior:

WL.SecurityUtils.enableNativeEncryption(true)

Option 2: Enabling OpenSSL

MobileFirst provided OpenSSL is disabled by default.

To install the necessary frameworks for supporting OpenSSL, first install the
Cordova plug-in:

cordova plugin add cordova-plugin-mfp-encrypt-utils

The following code enables the OpenSSL option for the encryption/decryption:

WL.SecurityUtils.enableNativeEncryption(false)

With this setup, the encryption/decryption calls use OpenSSL as in previous
versions of MobileFirst.

Migration options

If you have an IBM MobileFirst Platform Foundation project written in an earlier
version, you may need to incorporate changes to continue using OpenSSL.
v If the application is not using encryption/decryption APIs, and no encrypted

data is cached on the device, no action is needed.
v If the application is using encryption/decryption APIs you have the option of

using these APIs with or without OpenSSL.
– Migrating to native encryption:

1. Make sure the default native encryption/decryption option is chosen (see
Option 1).

2. Migrating cached data: If the previous installation of IBM MobileFirst
Platform Foundation saved encrypted data to the device using OpenSSL,
but the native encryption/decryption option is now chosen, the stored
data must be decrypted. The first time the application attempts to decrypt

7-126 IBM MobileFirst Platform Foundation V8.0.0

the data it will fall back to OpenSSL and then encrypt it using native
encryption. This way the data will be auto-migrated to native encryption.

Note: To allow the decryption from OpenSSL, you must add the
OpenSSL frameworks by installing the Cordova plug-in:

cordova plugin add cordova-plugin-mfp-encrypt-utils

– Continuing with OpenSSL: If OpenSSL is required use the setup described in
Option 2.

Enforcing TLS-secure connections for Cordova iOS:

From iOS 9 Transport Layer Security (TLS) protocol version 1.2 must be enforced
in all iOS apps. You can disable this and bypass the iOS 9 requirement for
development purposes.

About this task

Apple’s App Transport Security (ATS) is a new feature of iOS 9 that enforces best
practices for connections between the app and the server. By default, this feature
enforces some connection requirements that improve security. These include
client-side HTTPS requests and server-side certificates and connection ciphers that
conform to Transport Layer Security (TLS) version 1.2 using forward secrecy.

For development purposes, you can override the default behavior by specifying an
exception in the Info.plist file in your app, as described in App Transport
Security Technote. However, in a full production environment, all iOS apps must
enforce TLS-secure connections for them to work properly.

To enable non-TLS connections, the following exception must appear in the
<projectname>info.plist file in the <project>\Resources folder:
<key>NSExceptionDomains</key>

<dict>
<key>yourserver.com</key>
<dict>

<!--Include to allow subdomains-->
<key>NSIncludesSubdomains</key>
<true/>

<!--Include to allow insecure HTTP requests-->
<key>NSTemporaryExceptionAllowsInsecureHTTPLoads</key>
<true/>

</dict>
</dict>

Procedure

1. To prepare for production, remove or comment out the code that appears
earlier in this page.

2. Set up the client to send HTTPS requests by using the following entry to the
dictionary:
<key>protocol</key>
<string>https</string>

<key>port</key>
<string>10443</string>

The SSL port number is defined on the server in server.xml in the
httpEndpoint definition.

Developing applications 7-127

https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/
https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/

3. Configure a server that is enabled for the TLS 1.2 protocol. For more
information, see Configuring MobileFirst Server to enable TLS V1.2.

4. Make settings for ciphers and certificates, as they apply to your setup. For
more information, see App Transport Security Technote, Secure communications
using Secure Sockets Layer (SSL) for WebSphere Application Server Network
Deployment, and Enabling SSL communication for the Liberty profile.

Developing Cordova apps for Windows
The Cordova app can run on the Windows platform. The MobileFirst integration
allows you to build a Cordova app that uses the Cordova API and custom
plug-ins.

About this task

To use MobileFirst to build a Cordova app that makes use of the Cordova API and
custom plug-ins, see “Creating a new Cordova app without the MobileFirst
template” on page 7-89. The resulting app includes a seamless integration and you
can develop the WebView in various IDEs that support JavaScript. See “Editing
WebView (JavaScript) code” on page 7-129. Or you can also choose to view your
project setup in Visual Studio and customize the setup, add splash screens,
configure the app or use the emulators to view the app.

The following topics helps you with the Cordova app setup for Windows.

Viewing a Cordova Project in Windows Visual Studio:

MobileFirst supports three different types of Windows Universal environments -
Windows 8.1 Desktop, Windows Phone 8.1, and Windows 10 Universal Windows
Platform (UWP).

About this task

Ensure that you have a Cordova app set up with Apache Cordova CLI. See
“Creating a new Cordova app without the MobileFirst template” on page 7-89.

Note: For Windows 10 UWP apps, you need to have Visual Studio 2015.

Procedure

1. Navigate to the directory <Cordova_application_name>/platforms/windows.
2. Choose between either of the following methods to open your project.
v Double click to open the solution file, cordovaApp.sln.

– To work with a Windows project, choose the appropriate version in the
Solution Explorer pane. You can choose between Windows 8.1 Desktop,
Windows Phone 8.1 or Windows 10 UWP. Right-click the required project
name and select, Set as StartUp Project.

v Choose to click the appropriate .jsproj file to open the project. The
following versions of Windows are supported:
– For Windows 8.1 Desktop, Cordovaapp.Windows.jsproj
– For Windows Phone 8.1, Cordovaapp.Phone.jsproj
– For Windows 10 UWP, CordovaApp.Windows10.jsproj

The following folders and files are part of the project:
v The .appxmanifest file contains the app name and info, as well as package

information:

7-128 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/docview.wss?uid=swg21965659
https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/csec_sslsecurecom.html?cp=SSAW57_8.5.5%2F1-8-2-33-4-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html?cp=SSAW57_8.5.5%2F1-3-11-0-4-1-0

– For Windows Phone 8.1: package.phone.appxmanifest
– For Windows 8.1 Desktop: package.windows.appxmanifest
– For Windows 10 UWP: package.windows10.appxmanifest

v The config.xml file contains various configurations, that includes the Calls
hooks. The config.xml also points to the default html page: <content
src="index.html" />.

v The www folder contains the JavaScript, HTML, and CSS files loaded into the
WebView.

v The index.html is present in the www folder. It is the initial HTML page
loaded by the WebView, defined in the config.xml file.

v The mfpclient.properties file contains information for connecting to the
MobileFirst server.

Cordova application with MobileFirst start-up flow:

In Visual Studio, you can review the start-up process of the Cordova app for
Windows with MobileFirst.

About this task

The MobileFirst Cordova plug-in, cordova-plugin-mfp has native asynchronous
bootstrap sequence. The bootstrap sequence must be completed before the Cordova
application loads the application's main HTML file.

Adding the cordova-plugin-mfp plug-in to a Cordova application adds the
index.html file to the application's appxmanifest file. This extends the
CordovaActivity native code to perform the MobileFirst initialization.

Cordova WebView
Once the native platform (iOS, Android or Windows) initializes the web
framework, you can access MobileFirst functionality from the WebView with
JavaScript.

You can use Cordova plug-ins or HTML 5 to create JavaScript API to call
user-interface controls that are common to most environments, such as modal
pop-up windows, loading screens, or tab bars.

From MobileFirst 8.0 you can integrate Crosswalk WebView with your Cordova
MobileFirst app. See “Crosswalk WebView (Android)” on page 7-133.

Whether you choose to integrate Crosswalk or use the default Cordova WebView a
wide range of MobileFirst functionality is available using JavaScript. See “Some
initial WebView code for connecting to the server” on page 7-130.

Editing WebView (JavaScript) code:

Editing the WebView resources is more convenient using an IDE that provides
autocompletion for JavaScript.

Xcode, Android Studio, and Visual Studio provide full editing capabilities for
editing Objective C, Swift, C#, and Java, however they may be limited in how they
assist the editing of JavaScript. To facilitate JavaScript editing, the MobileFirst
Cordova project contains a defintion file for providing autocomplete for
MobileFirst API elements.

Developing applications 7-129

Each MobileFirst Cordova plug-in provides a d.ts configuration file for each
MobileFirst JavaScript files. The d.ts file name matches the corresponding
JavaScript file name and is located within the plug-in folder. For example for the
main MobileFirst SDK the file is here:

[myapp]\plugins\cordova-plugin-mfp\typings\worklight.d.ts

This definition provides autocomplete for all IDEs with TypeScript support:

TypeScript Playground

Visual Studio Code

WebStorm

WebEssentials

Eclipse

The resources (HTML and JavaScript files) for the WebView are located in the
[myapp]\www folder. When the project is built with the cordova build command, or
the cordova prepare command is run, these resources are copied to the
corresponding www folder in the [myapp]\platforms\ios\www, [myapp]\platforms\
android\assets\www, or myapp]\platforms\windows\www folder.

When you open the main app folder with one of the previous IDEs, the context is
preserved. The IDE editor will now be linked to the relevant d.ts files and
autocomplete the MobileFirst API elements as you type.

Some initial WebView code for connecting to the server:

Most of your Cordova app is developed using the web resources. After creating
your Cordova app and adding the MobileFirst plug-in you can add MobileFirst
functionality.

WebView files

In this example a simple index.html file creates the initial screen containing a
single button. This button is defined in the imported index.js file.

Note: When running the Cordova CLI build or prepare command, the web
resources in main [projectname]\www folder are copied to each platform's www
folder ([projectname]\platforms\[platform]\assets\www). Therefore in this case
you need to edit the main www copy if you are going to build with the Cordova
command. If you are going to build with platform IDE such as Android Studio or
Xcode, you need to edit the local platform copy.

After creating your Cordova app using the Apache tools and adding the
MobileFirst plug-in, the index.html and JavaScript files do not include any
examples of the MobileFirst API. Here is an example of accessing a server resource
(adapter).

Note: You need to register your app before you can access the server. For more
information, see “Registering Cordova applications to MobileFirst Server” on page
7-106.

7-130 IBM MobileFirst Platform Foundation V8.0.0

http://www.typescriptlang.org/Playground/
http://www.microsoft.com/visualstudio/eng
http://www.jetbrains.com/webstorm/
http://visualstudiogallery.msdn.microsoft.com/6ed4c78f-a23e-49ad-b5fd-369af0c2107f
https://github.com/palantir/eclipse-typescript

The index.html file

The app starts up with the initial index.html The button is included in the html:
<div><button id ="resourceRequestBTN" style="float:left; margin-top:10px;">Resource Request</button> </div>

<html>
<head>

<meta http-equiv="Content-Security-Policy" content="default-src ’self’ data: gap: https://ssl.gstatic.com ’unsafe-eval’; style-src ’self’ ’unsafe-inline’; media-src *">
<meta name="format-detection" content="telephone=no">
<meta name="msapplication-tap-highlight" content="no">
<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1, minimum-scale=1, width=device-width">
<link rel="stylesheet" type="text/css" href="css/index.css">
<title>Hello World</title>

</head>
<body>

<div class="app">
<h1>Apache Cordova</h1>
<div id="deviceready" class="blink">

<p class="event listening">Connecting to Device</p>
<p class="event received">Device is Ready</p>

</div>
<div><button id ="resourceRequestBTN" style="float:left; margin-top:10px;">Resource Request</button> </div>

</div>
<script type="text/javascript" src="cordova.js"></script>
<script type="text/javascript" src="js/index.js"></script>

</body>
</html>

The resourceRequestBTN button is defined in the index.js file.

The index.js file

The index.js adds the listener to the resourceRequestBTN button which calls the
resourceRequestGetBalance function.

document.getElementById("resourceRequestBTN").addEventListener("click", resourceRequestGetBalance, false);

The resourceRequestGetBalance function requests the server resource (an adapter)
and returns either the response or an error.

function resourceRequestGetBalance(){
try{

var request = new WLResourceRequest(’/adapters/account/balance’, WLResourceRequest.GET);
request.send().then(

function(response) {
var response = JSON.stringify(response);

console.log("response " + response);
alert(response);
// success flow, the result can be found in response.responseJSON

},
function(error) {

console.log("error " + error);
// failure flow
// the error code and description can be found in error.errorCode and error.errorMsg fields respectively

}
).fail(function(){
console.log("WLResourceRequest failure");

});
}catch(err){
console.log("exception:"+ err);
}

}

For information on creating and deploying the adapter see “Developing the server
side of a MobileFirst application” on page 7-187.

Developing applications 7-131

Testing the connection to the server without deploying an adapter

If you want to test the app registration and connection to the server without the
need for deploying an adapter, you can test a request for an access token. If no
security checks have been added to your app the access token will succeed once
the registration and connectivity to the server are working.

To test the security token access replace the resource button with this button in the
file:
<div id="btn1"> <button id ="getToken">getToken</button> </div>

In the index.js file replace the resource button listener with the access token
button listener for invoking getToken:
document.getElementById("getToken").addEventListener("click", getToken, false);

and add the getToken function
function getToken() {

WLAuthorizationManager.obtainAccessToken().then(function(token) {
alert("success: "+JSON.stringify(token))

},function(error) {
alert("failure: "+JSON.stringify(error))

});
}

If the connection succeeds you will see the contents of the token. If not the error is
displayed.

The sample index.js file for the resource request check:

The entire index.js file for testing the resource request appears below.
var app = {

// Application Constructor
initialize: function() {

this.bindEvents();
},
// Bind Event Listeners
//
// Bind any events that are required on startup. Common events are:
// ’load’, ’deviceready’, ’offline’, and ’online’.
bindEvents: function() {

document.addEventListener(’deviceready’, this.onDeviceReady, false);
},
// deviceready Event Handler
//
// The scope of ’this’ is the event. In order to call the ’receivedEvent’
// function, we must explicitly call ’app.receivedEvent(...);’
onDeviceReady: function() {

app.receivedEvent(’deviceready’);
document.getElementById("resourceRequestBTN").addEventListener("click", resourceRequestGetBalance, false);

},
// Update DOM on a Received Event
receivedEvent: function(id) {

var parentElement = document.getElementById(id);
var listeningElement = parentElement.querySelector(’.listening’);
var receivedElement = parentElement.querySelector(’.received’);

listeningElement.setAttribute(’style’, ’display:none;’);
receivedElement.setAttribute(’style’, ’display:block;’);

console.log(’Received Event: ’ + id);
}

7-132 IBM MobileFirst Platform Foundation V8.0.0

};

app.initialize();

function resourceRequestGetBalance(){
try{

var request = new WLResourceRequest(’/adapters/account/balance’, WLResourceRequest.GET);
request.send().then(

function(response) {
var response = JSON.stringify(response);

console.log("response " + response);
alert(response);
// success flow, the result can be found in response.responseJSON

},
function(error) {

console.log("error " + error);
// failure flow
// the error code and description can be found in error.errorCode and error.errorMsg fields respectively

}
).fail(function(){
console.log("WLResourceRequest failure");

});
}catch(err){
console.log("exception:"+ err);
}

}

Crosswalk WebView (Android):

You can replace the default WebView in your MobileFirst Cordova app with
Crosswalk.

About this task

From MobileFirst V8.0.0 you can integrate Crosswalk WebView with your Cordova
MobileFirst app.

Crosswalk provides an improved WebView using an internal browser based on
Chrome.

To get started with Crosswalk install the Crosswalk plug-in to your Cordova
project:
cordova plugin add cordova-plugin-crosswalk-webview

Once your app is created, your res\xml\config.xml file contains this line and the
Crosswalk WebView is automatically chosen:

<preference name="webView" value="org.crosswalk.engine.XWalkWebViewEngine" />

Note: The cordova-plugin-crosswalk-webview plug-in may use deprecated NDK
integration. To allow Android Studio to build the application add a file name
gradle.properties to the platform\android folder containing the following line:
android.useDeprecatedNdk=true

For more information about loading the MobileFirst Crosswalk WebView see
“Loading the WebView” on page 7-124.

WKWebView (iOS):

You can replace the default UIWebView in your MobileFirst hybrid iOS Cordova
app with WKWebView.

Developing applications 7-133

About this task

From IBM MobileFirst Platform Foundation V8.0.0, you can integrate WKWebView
with your hybrid iOS Cordova MobileFirst app.

WKWebView provides an improved WebView. WKWebView displays interactive
web content, such as for an in-app browser.

Procedure

To get started with WKWebView, install the WKWebView plug-in to your Cordova
project.
cordova plugin add cordova-plugin-wkwebview-engine

Results

After your app is created, Cordova uses the WKWebView component instead of
the default UIWebView component.

Note: To learn about known issues with WKWebView plug-in, see
wkwebview-known-issues.

JSONStore
Learn about JSONStore.

JSONStore overview
JSONStore features add the ability to store JSON documents in MobileFirst
applications.

JSONStore is a lightweight, document-oriented storage system that is included as a
feature of IBM MobileFirst Platform Foundation, and enables persistent storage of
JSON documents. Documents in an application are available in JSONStore even
when the device that is running the application is offline. This persistent,
always-available storage can be useful for customers, employees, or partners, to
give them access to documents when, for example, there is no network connection
to the device.

For JSONStore API reference information for Cordova applications, see
WL.JSONStore in the API reference section. Cordova applications are supported for
iOS, Android, Windows 10 Universal Windows Platform and Windows 8
Universal.

For JSONStore API reference information for native iOS applications, see the
JSONStore Class Reference in the API reference section.

For JSONStore API reference information for native Android applications, see the
com.worklight.jsonstore.api Package in the API reference section.

Here is a high-level summary of what JSONStore provides:
v A developer-friendly API that gives developers the ability to populate the local

store with documents, and to update, delete, and search across documents.
v Persistent, file-based storage matches the scope of the application.
v AES 256 encryption of stored data provides security and confidentiality. You can

segment protection by user with password-protection, in the case of more than
one user on a single device.

7-134 IBM MobileFirst Platform Foundation V8.0.0

https://ibm.biz/Bd4wPi

v Ability to keep track of local changes.

A single store can have many collections, and each collection can have many
documents. It is also possible to have a MobileFirst application that contains
multiple stores. For information, see “JSONStore multiple user support” on page
7-171.

Note: Because it is familiar to developers, relational database terminology is used
in this documentation at times to help explain JSONStore. There are many
differences between a relational database and JSONStore however. For example,
the strict schema that is used to store data in relational databases is different from
JSONStore's approach. With JSONStore, you can store any JSON content, and index
the content that you need to search.

Figure 7-5. A basic graphic representation of JSONStore.

Figure 7-6. Components and their interaction with the server when you use JSONStore for data synchronization.

Developing applications 7-135

Features table

Compare JSONStore features to those features of other data storage technologies
and formats.

JSONStore is a JavaScript API for storing data inside Cordova applications that use
the MobileFirst plug-in, an Objective-C API for native iOS applications, and a Java
API for native Android applications. For reference, here is a comparison of
different JavaScript storage technologies to see how JSONStore compares to them.

JSONStore is similar to technologies such as LocalStorage, Indexed DB, Cordova
Storage API, and Cordova File API. The table shows how some features that are
provided by JSONStore compare with other technologies. The JSONStore feature is
only available on iOS and Android devices and simulators.

Table 7-16. A comparison of data storage technologies..

JSONStore LocalStorage IndexedDB
Cordova
Storage Cordova File

Android
Support
(Cordova &
Native
Applications)

⌂ ⌂ ⌂ ⌂ ⌂

iOS Support
(Cordova &
Native
Applications)

⌂ ⌂ ⌂ ⌂ ⌂

Windows 10
Universal
Windows
Platform and
Windows 8
Universal
(Cordova
Applications)

⌂ ⌂ ⌂ - ⌂

Data
encryption

⌂ - - - -

Maximum
Storage

Available
Space

~5 MB >5 MB Available
Space

Available
Space

Reliable
Storage (See
Note 2)

⌂ - - ⌂ ⌂

Keep Track of
Local
Changes

⌂ - - - -

Multi-user
support

⌂ - - - -

Indexing ⌂ - ⌂ ⌂ -

Type of
Storage

JSON
Documents

Key/Value
Pairs

JSON
Documents

Relational
(SQL)

Strings

Note: 2. Reliable Storage means that your data is not deleted unless one of the
following events occurs:

7-136 IBM MobileFirst Platform Foundation V8.0.0

v The application is removed from the device.
v One of the methods that removes data is called.

General JSONStore terminology
Learn about general JSONStore terminology.

JSONStore document

A document is the basic building block of JSONStore.

A JSONStore document is a JSON object with an automatically generated identifier
(_id) and JSON data. It is similar to a record or a row in database terminology. The
value of _id is always a unique integer inside a specific collection. Some functions
like the add, replace, and remove methods in the JSONStoreInstance class take an
Array of Documents/Objects. These methods are useful to perform operations on
various Documents/Objects at a time.

Example

Single document
var doc = { _id: 1, json: {name: ’carlos’, age: 99} };

Example

Array of documents
var docs = [

{ _id: 1, json: {name: ’carlos’, age: 99} },
{ _id: 2, json: {name: ’tim’, age: 100} }

]

JSONStore collection

A JSONStore collection is similar to a table, in database terminology

Example

Customer collection
[

{ _id: 1, json: {name: ’carlos’, age: 99} },
{ _id: 2, json: {name: ’tim’, age: 100} }

]

This code is not the way that the documents are stored on disk, but it is a good
way to visualize what a collection looks like at a high level.

JSONStore store

A store is the persistent JSONStore file that contains one or more collections.

A store is similar to a relational database, in database terminology. A store is also
referred to as a JSONStore.

JSONStore search fields

A search field is a key/value pair.

Developing applications 7-137

Search fields are keys that are indexed for fast lookup times, similar to column
fields or attributes, in database terminology.

Extra search fields are keys that are indexed but that are not part of the JSON data
that is stored. These fields define the key whose values (in the JSON collection) are
indexed and can be used to search more quickly.

Valid data types are: string, boolean, number, and integer. These types are only
type hints, there is no type validation. Furthermore, these types determine how
indexable fields are stored. For example, {age: ’number’} will index 1 as 1.0 and
{age: ’integer’} will index 1 as 1.

Examples

Search fields and extra search fields.
var searchField = {name: ’string’, age: ’integer’};
var additionalSearchField = {key: ’string’};

It is only possible to index keys inside an object, not the object itself. Arrays are
handled in a pass-through fashion, meaning that you cannot index an array or a
specific index of the array (arr[n]), but you can index objects inside an array.

Indexing values inside an array.
var searchFields = {

’people.name’ : ’string’, // matches carlos and tim on myObject
’people.age’ : ’integer’ // matches 99 and 100 on myObject

};

var myObject = {
people : [

{name: ’carlos’, age: 99},
{name: ’tim’, age: 100}

]
};

JSONStore queries

Queries are objects that use search fields or extra search fields to look for
documents.

The example presumes that the name search field is of type string and the age
search field is of type integer.

Examples

Find documents with name that matches carlos:
var query1 = {name: ’carlos’};

Find documents with name that matches carlos and age matches 99:
var query2 = {name: ’carlos’, age: 99};

JSONStore query parts

Query parts are used to build more advanced searches. Some JSONStore
operations, such as some versions of find or count take query parts. Everything
within a query part is joined by AND statements, while query parts themselves are
joined by OR statements. The search criteria returns a match only if everything

7-138 IBM MobileFirst Platform Foundation V8.0.0

within a query part is true. You can use more than one query part to search for
matches that satisfy one or more of the query parts.

Find with query parts operate only on top-level search fields. For example: name,
and not name.first. Use multiple collections where all search fields are top-level to
get around this. The query parts operations that work with non top-level search
fields are: equal, notEqual, like, notLike, rightLike, notRightLike, leftLike, and
notLeftLike. The behavior is undetermined if you use non-top-level search fields.

Enabling JSONStore
To use JSONStore in MobileFirst applications, you must take steps to enable it.

About this task

For iOS native apps, you must import the JSONStore iOS framework into your
Xcode project.You can obtain the JSONStore feature in two ways:
v You can import the JSONStore framework manually or with CocoaPods. For

more information, see “Setting up the Xcode project for iOS manually” on page
7-27.

v
To use CocoaPods:
– You must have CocoaPods, the dependency manager for Xcode projects

installed in your development environment. For more information, see the
"Getting Started" guide for CocoaPods installation.

– Your application must be set up to use CocoaPods. For more information, see
Using CocoaPods.

– You must have an existing Podfile. If one does not exist, create one by using
the pod init command. For more information, see Using CocoaPods.

1. Create a Podfile file or edit an existing one.
a. Create a new file named Podfile by using the pod init command.
b. Open the Podfile file that is in the root directory of the project with a

text editor.
c. Add the following lines and save the file:

pod ’IBMMobileFirstPlatformFoundationJSONStore’

Note: The above syntax imports assumes you are using the latest version
of the IBMMobileFirstPlatformFoundation. If you are are not using the
latest version of MobileFirst, you need to indicate the version. For
example, for importing the latest pod for 8.0.0
IBMMobileFirstPlatformFoundation the line would look like this:
pod ’IBMMobileFirstPlatformFoundationJSONStore’, ’~> 8.0.0’

2. Open Terminal and navigate to the location of the Podfile file.
3. Verify that the Xcode project is closed.
4. Type pod install to run the pod install command.

This command installs the JSONStore Framework for IBM MobileFirst
Platform Foundation, called the
IBMMobileFirstPlatformFoundationJSONStore.framework component, and
integrates it with the mobile application Xcode project.

v You must import the JSONStore.h header file in your code to use the JSONStore
API. For Objective C add #import
<IBMMobileFirstPlatformFoundationJSONStore/

Developing applications 7-139

http://guides.cocoapods.org/using/getting-started.html
http://guides.cocoapods.org/using/using-cocoapods.html
http://guides.cocoapods.org/using/using-cocoapods.html

IBMMobileFirstPlatformFoundationJSONStore.h>. For Swift, add import
IBMMobileFirstPlatformFoundationJSONStore.

For more information about creating native MobileFirst iOS applications, see
“Developing native applications for iOS in Xcode” on page 7-27.

For native Android applications, you must add the files using gradle. For more
information about creating native MobileFirst Android applications, see “Setting up
Android Studio projects with Gradle” on page 7-53.

After adding the JSONStore SDK, you can use the classes inside the
com.worklight.jsonstore.api package to use JSONStore.

For Cordova applications, you must add the cordova-plugin-mfp-jsonstore
plug-in to your MobileFirst Cordova app. For more information see “Adding
MobileFirst features to an existing Cordova app” on page 7-91.

JSONStore API concepts
JSONStore provides API reference information for Cordova Android, iOS,
Windows 8 Universal, and native Android and iOS applications.

Store

Open and initialize a collection

Starts one or more collections. Starting or provisioning a JSONStore collection
means that the persistent storage that is used to contain collections and documents
is created, if it does not exist. If the store is encrypted and a correct password is
passed, the required security procedures to make the data accessible are run. There
is minimal effort in initializing all the collections when an application starts.

After you open a collection, an accessor to the collection is available, which gives
access to collection APIs. It allows developers to call functions such as find, add,
and replace on an initialized collection.

It is possible to initialize multiple times with different collections. New collections
are initialized without affecting collections that are already initialized.

Destroy

Completely wipes data for all users, destroys the internal storage, and clears
security artifacts. The destroy function removes the following data:
v All documents.
v All collections.
v All stores. For more information, see “JSONStore multiple user support” on page

7-171.
v All JSONStore metadata and security artifacts. For more information, see

“JSONStore security” on page 7-169.

Close all

Locks access to all the collections in a store until the collections are reinitialized.
Where initialize can be considered a login, close can be considered a logout.

7-140 IBM MobileFirst Platform Foundation V8.0.0

Start, commit, and rollback transaction

A transaction is a set of operations that must all succeed for the operations to
manipulate the store. If any operation fails, the transaction can be rolled back to
revert the store to its previous state. After a transaction is started, it is important
that you handle committing or rolling back your transactions to prevent excess
processing. Three operations exist in the Store API for transactions:
v

Start transaction
Begin a snapshot in which the store is reverted to if the transaction fails.

v

Commit transaction
Inform the store that all operations in the transaction succeeded, and all
changes can be finalized.

v

Rollback transaction
Inform the store that an operation in the transaction failed, and all
changes must be discarded.

Note: Due to system limitations with multi-threaded transactions, transactions are
not supported in Android 2.3.x for Cordova applications. To use transactions in a
Cordova application in Android 2.3.x, you can create a Cordova plug-in that uses
the native Android JSONStore API to execute the code for the transaction. The
whole transaction must be done in the same thread because multi-threaded
transactions do not work properly in Android 2.3.x.

Collection

Store and add a document

You can add a document or array of documents to a collection. You can also pass
an array of objects (for example [{name: ’carlos’}, {name: ’tim’}]) instead of a
single object. Every object in the array is stored as a new document inside the
collection.

Remove a document

Marks one or more documents as removed from a collection. Removed documents
are not returned by the find or count operations.

Find All Documents, Find Documents by Id, and Find With Query

You can find documents in a collection by their search fields and extra search
fields. An internal search field, _id, holds a unique integer identifier that can be
used to find the document (Find by Id). You can search for documents with the
following APIs:
v

Find All Documents
Returns every document in a collection.

v

Find All Dirty Documents
Returns every document in a collection that is marked dirty.

Developing applications 7-141

v

Find by Id
Find the document with the corresponding _id search key value.

v

Find With Query or Query Parts
Find all documents that match a query or all query parts. For more
information, see the Search Query format section at “Additional
references” on page 7-143.

Filter returns what is being indexed, which might be different than what was
saved to a collection. Some examples of unexpected results are:
1. If your search field has uppercase letters, the result is returned in all lowercase

letters.
2. If you pass something that is not a string, it is indexed as a string. For example,

1 is '1', 1.0 is '1.0', true is '1', and false is '0'.
3. If your filter criteria includes non top-level search fields, you might get a single

string with all the terms that are joined by a special identifier (-@-). For
example, ’carlos-@-mike-@-dgonz’.

Replace a document and change documents

You can use the Replace API to replace the contents of a document in the
collection with new data, which is based on the _id. If the data contains the _id
field of a document in the database, the document is replaced with the data and all
search fields are reindexed for that document.

The Change API is similar to the Replace API, but the Replace is based on a set of
search field criteria instead of _id. The Replace API can be emulated by
performing the Change API with the search field criteria of only _id. All search
fields in the search field criteria must exist in the documents in the store, and in
the data that is passed to the Change API.

Count All Documents, Count All Dirty Documents, and Count With
Query

The Count API returns an integer number by counting the total number of
documents that match the query. There are three Count APIs:
v

Count All Documents
Give the total count of all documents in the collection.

v

Count All Dirty Documents
Give the total number of documents in the collection that are currently
marked dirty.

v

Count With Query or Query Parts
Give the total number of documents that match a specific search query.
For more information, see the Search Query format section at
“Additional references” on page 7-143.

7-142 IBM MobileFirst Platform Foundation V8.0.0

Remove Collection and Clear Collection

Removing a collection deletes all data that is associated with a collection, and
causes the collection accessor to be no longer usable.

Clearing a collection deletes all documents in the collection. This operation keeps
the collection open after it completes.

Mark Clean

The Mark Clean API is used to remove the dirty flag from a document in the
collection, and deletes the document completely from the collection if it was
marked dirty by a remove document operation. The Mark Clean API is useful
when used with the Find All Dirty Documents API to sync the collection with a
remote database.

Additional references

Search Query format

When an API requires a search query, a common format is followed for the
collection. A query consists of an array of objects where each key/value pair is
ANDed together. Each object in the array is ORed together. For example:
[{fn: "Mike", age: 30}, {fn: "Carlos", age: 36}]

is represented as (with fuzzy search):
(fn LIKE "%Mike%" AND age LIKE "%30%") OR (fn LIKE "%Carlos%" AND age LIKE "%36%")

Search Query Parts format

The following examples use pseudocode to convey how query parts work. A query
such as {name: ’carlos’, age: 10} can be passed a modifier such as {exact:
true}, which ensures only items that exactly match name and age are returned.
Query parts give you the flexibility of adding modifiers to any part of the query.
For example:
queryPart1 = QueryPart().like(’name’, ’carlos’).lessThan(’age’, 10);

The previous example is transformed into something like:
(’name’ LIKE %carlos%) AND (age < 10)

You can also create another query part, for example:
queryPart2 = QueryPart().equal(’name’, ’mike’)

When you add various query parts with the find API, for example:
find([queryPart1, queryPart2]

You get something like:
((’name’ LIKE %carlos%) AND (age < 10)) OR (name EQUAL ’mike’)

Limit and Offset

Passing a limit to an API's options restricts the number of results by the number
specified. It is also possible to pass an offset to skip results by the number
specified. To pass an offset, a limit must also be passed. This API is useful for
implementing pagination or for optimization. By limiting the data to a subset that

Developing applications 7-143

is necessary, the memory and processing power is reduced.

Fuzzy Search versus Exact Search

The default behavior is fuzzy searching, which means that queries return partial
results. For example, the query {name: ’carl’} finds ’carlos’ and ’carl’ (for
example, name LIKE ’%carl%’). When {exact: true} is passed, matches are exact
but not case-sensitive. For example, ’hello’ matches ’Hello’ (for example,
name.toLowerCase() = ’hello’). Integer matching is not type-sensitive. For
example, "1" matches both "1" and "1.0". Numbers are stored as their decimal
representation. For example, "1" is stored as "1.0". Boolean values are indexed as
1 (true) and 0 (false).

Troubleshooting JSONStore
Find information to help resolve issues that you might encounter when you use
the JSONStore API.

JSONStore troubleshooting overview:

Find information to help resolve issues that you might encounter when you use
the JSONStore API.

Provide information when you ask for help

It is better to provide more information than to risk not providing enough
information. The following list is a good starting point for the information that is
required to help with JSONStore issues.
v Operating system and version. For example, Windows XP SP3 Virtual Machine

or Mac OSX 10.8.3.
v Eclipse version. For example, Eclipse Indigo 3.7 Java EE.
v JDK version. For example, Java SE Runtime Environment (build 1.7).
v IBM MobileFirst Platform Foundation version. For example, IBM Worklight

V5.0.6 Developer Edition.
v iOS version. For example, iOS Simulator 6.1 or iPhone 4S iOS 6.0 (deprecated,

see “Deprecated features and API elements” on page 3-17).
v Android version. For example, Android Emulator 4.1.1 or Samsung Galaxy

Android 4.0 API Level 14.
v Windows version. For example, Windows 8, Windows 8.1, or Windows Phone

8.1.
v adb version. For example, Android Debug Bridge version 1.0.31.
v Logs, such as Xcode output on iOS or logcat output on Android.

Try to isolate the issue

Follow these steps to isolate the issue to more accurately report a problem.
1. Reset the emulator (Android) or simulator (iOS) and call the destroy API to

start with a clean system.
2. Ensure that you are running on a supported production environment.
v Android >= 2.3 ARM v7/ARM v8/x86 emulator or device
v iOS >= 6.0 simulator or device (deprecated)
v Windows Phone Silverlight 8.0 ARM/x86 emulator or device
v Windows 8.0-8.1 ARM/x86/x64 simulator or device

7-144 IBM MobileFirst Platform Foundation V8.0.0

3. Try to turn off encryption by not passing a password to the init or open APIs.
4. Look at the SQLite database file that is generated by JSONStore. Encryption

must be turned off.
v Android emulator:

$ adb shell
$ cd /data/data/com.<app-name>/databases/wljsonstore
$ sqlite3 jsonstore.sqlite

v iOS simulator:
$ cd ~/Library/Application Support/iPhone Simulator/7.1/Applications/<id>/Documents/wljsonstore
$ sqlite3 jsonstore.sqlite

v Windows Phone Silverlight 8:
$ cd C:\Data\Users\DefApps\AppData\<id>\Local\wljsonstore
$ sqlite3 jsonstore.sqlite

v Windows 8 Universal simulator
$ cd C:\Users\<username>\AppData\Local\Packages\<id>\LocalState\wljsonstore
$ sqlite3 jsonstore.sqlite

v

Note: JavaScript only implementation that runs on a web browser (Firefox,
Chrome, Safari, Internet Explorer) does not use an SQLite database. The file
is stores in HTML5 LocalStorage.

v Look at the searchFields with .schema and select data with SELECT * FROM
<collection-name>;. To exit sqlite3, type .exit. If you pass a user name to
the init method, the file is called <username>.sqlite. If you do not pass a
user name, the file is called jsonstore.sqlite by default.

5. (Android only) Enable verbose JSONStore.
adb shell setprop log.tag.jsonstore-core VERBOSE
adb shell getprop log.tag.jsonstore-core

6. Use the debugger.

Common issues

Understanding the following JSONStore characteristics can help resolve some of
the common issues that you might encounter.
v The only way to store binary data in JSONStore is to first encode it in base64.

Store file names or paths instead of the actual files in JSONStore.
v Accessing JSONStore data from native code is possible only in IBM MobileFirst

Platform Foundation V6.2.0.
v There is no limit on how much data you can store inside JSONStore, beyond

limits that are imposed by the mobile operating system.
v JSONStore provides persistent data storage. It is not only stored in memory.
v The init API fails when the collection name starts with a digit or symbol. IBM

Worklight V5.0.6.1 and later returns an appropriate error:
4 BAD_PARAMETER_EXPECTED_ALPHANUMERIC_STRING

v There is a difference between a number and an integer in search fields. Numeric
values like 1 and 2 are stored as 1.0 and 2.0 when the type is number. They are
stored as 1 and 2 when the type is integer.

v If an application is forced to stop or crashes, it always fails with error code -1
when the application is started again and the init or open API is called. If this
problem happens, call the closeAll API first.

v The JavaScript implementation of JSONStore expects code to be called serially.
Wait for an operation to finish before you call the next one.

Developing applications 7-145

v Transactions are not supported in Android 2.3.x for Cordova applications. For
more information, see “JSONStore API concepts” on page 7-140.

v When you use JSONStore on a 64-bit device, you might see the following error:
java.lang.UnsatisfiedLinkError: dlopen failed: "..." is 32-bit instead of 64-bit

This error means that you have 64-bit native libraries in your Android project,
and JSONStore does not currently work when you use these libraries. To
confirm, go to src/main/libs or src/main/jniLibs under your Android project,
and check whether you have the x86_64 or arm64-v8a folders. If you do, delete
these folders, and JSONStore can work again.

Store internals:

See an example of how JSONStore data is stored.

The key elements in this simplified example:
v _id is the unique identifier (for example, AUTO INCREMENT PRIMARY KEY).
v json contains an exact representation of the JSON object that is stored.
v name and age are search fields.
v key is an extra search field.

Example

Table 7-17. Contents of a store in JSONStore

_id key name age JSON

1 c carlos 99 {name: 'carlos',
age: 99}

2 t time 100 {name: 'tim', age:
100}

When you search by using one of the following queries or a combination of them:
{_id : 1}, {name: ’carlos’}, {age: 99}, {key: ’c’}, the returned document is
{_id: 1, json: {name: ’carlos’, age: 99} }.

The other internal JSONStore fields are:

_dirty
Determines whether the document was marked as dirty or not. This field is
useful to track changes to the documents. For more information, see
“JSONStore API concepts” on page 7-140 or “Work with external data” on page
7-174.

_deleted
Marks a document as deleted or not. This field is useful to remove objects
from the collection, to later use them to track changes with your backend and
decide whether to remove them or not.

_operation
A string that reflects the last operation to be performed on the document (for
example, replace).

JSONStore errors:

Learn about JSONStore errors.

7-146 IBM MobileFirst Platform Foundation V8.0.0

Possible JSONStore error codes that are returned are listed in “JSONStore error
codes” on page 7-148.

JavaScript

JSONStore uses an error object to return messages about the cause of failures.

When an error occurs during a JSONStore operation (for example the find, and
add methods in the JSONStoreInstance class) an error object is returned. It provides
information about the cause of the failure.

Example
var errorObject = {

src: ’find’, // Operation that failed.
err: -50, // Error code.
msg: ’PERSISTENT_STORE_FAILURE’, // Error message.
col: ’people’, // Collection name.
usr: ’jsonstore’, // User name.
doc: {_id: 1, {name: ’carlos’, age: 99}}, // Document that is related to the failure.
res: {...} // Response from the server.

}

Not all the key/value pairs are part of every error object. For example, the doc
value is only available when the operation failed because of a document (for
example the remove method in the JSONStoreInstance class) failed to remove a
document.

Objective-C

All of the APIs that might fail take an error parameter that takes an address to an
NSError object. If you don not want to be notified of errors, you can pass in nil.
When an operation fails, the address is populated with an NSError, which has an
error and some potential userInfo. The userInfo might contain extra details (for
example, the document that caused the failure).

Example
// This NSError points to an error if one occurs.
NSError* error = nil;

// Perform the destroy.
[JSONStore destroyDataAndReturnError:&error];

Java

All of the Java API calls throw a certain exception, depending on the error that
happened. You can either handle each exception separately, or you can catch
JSONStoreException as an umbrella for all JSONStore exceptions.

Example
try {

WL.JSONStore.closeAll();
}

catch(JSONStoreException e) {
// Handle error condition.

}

Developing applications 7-147

JSONStore error codes:

Definitions of the error codes that are related to JSONStore.

-100 UNKNOWN_FAILURE
Unrecognized error.

-75 OS_SECURITY_FAILURE
This error code is related to the requireOperatingSystemSecurity flag. It can
occur if the destroy API fails to remove security metadata that is protected by
operating system security (Touch ID with passcode fallback), or the init or
open APIs are unable to locate the security metadata. It can also fail if the
device does not support operating system security, but operating system
security usage was requested.

-50 PERSISTENT_STORE_NOT_OPEN
JSONStore is closed. Try calling the open method in the JSONStore class class
first to enable access to the store.

-48 TRANSACTION_FAILURE_DURING_ROLLBACK
There was a problem with rolling back the transaction.

-47 TRANSACTION_FAILURE_DURING_REMOVE_COLLECTION
Cannot call removeCollection while a transaction is in progress.

-46 TRANSACTION_FAILURE_DURING_DESTROY
Cannot call destroy while there are transactions in progress.

-45 TRANSACTION_FAILURE_DURING_CLOSE_ALL
Cannot call closeAll while there are transactions in place.

-44 TRANSACTION_FAILURE_DURING_INIT
Cannot initialize a store while there are transactions in progress.

-43 TRANSACTION_FAILURE
There was a problem with transactions.

-42 NO_TRANSACTION_IN_PROGRESS
Cannot commit to rolled back a transaction when there is no transaction is
progree.

-41 TRANSACTION_IN_POGRESS
Cannot start a new transaction while another transaction is in progress.

-40 FIPS_ENABLEMENT_FAILURE
Something is wrong with FIPS.

-24 JSON_STORE_FILE_INFO_ERROR
Problem getting the file information from the file system.

-23 JSON_STORE_REPLACE_DOCUMENTS_FAILURE
Problem replacing documents from a collection.

-22 JSON_STORE_REMOVE_WITH_QUERIES_FAILURE
Problem removing documents from a collection.

-21 JSON_STORE_STORE_DATA_PROTECTION_KEY_FAILURE
Problem storing the Data Protection Key (DPK).

-20 JSON_STORE_INVALID_JSON_STRUCTURE
Problem indexing input data.

-12 INVALID_SEARCH_FIELD_TYPES
Check that the types that you are passing to the searchFields are
stringinteger,number, orboolean.

7-148 IBM MobileFirst Platform Foundation V8.0.0

-11 OPERATION_FAILED_ON_SPECIFIC_DOCUMENT
An operation on an array of documents, for example the replace method can
fail while it works with a specific document. The document that failed is
returned and the transaction is rolled back. On Android, this error also occurs
when trying to use JSONStore on unsupported architectures.

-10 ACCEPT_CONDITION_FAILED
The accept function that the user provided returned false.

-9 OFFSET_WITHOUT_LIMIT
To use offset, you must also specify a limit.

-8 INVALID_LIMIT_OR_OFFSET
Validation error, must be a positive integer.

-7 INVALID_USERNAME
Validation error (Must be [A-Z] or [a-z] or [0-9] only).

-6 USERNAME_MISMATCH_DETECTED
To log out, a JSONStore user must call the closeAll method first. There can be
only one user at a time.

-5 DESTROY_REMOVE_PERSISTENT_STORE_FAILED
A problem with the destroy method while it tried to delete the file that holds
the contents of the store.

-4 DESTROY_REMOVE_KEYS_FAILED
Problem with the destroy method while it tried to clear the keychain (iOS) or
shared user preferences (Android).

-3 INVALID_KEY_ON_PROVISION
Passed the wrong password to an encrypted store.

-2 PROVISION_TABLE_SEARCH_FIELDS_MISMATCH
Search fields are not dynamic. It is not possible to change search fields without
calling the destroy method or the removeCollection method before you call
the init or openmethod with the new search fields. This error can occur if you
change the name or type of the search field. For example: {key: ’string’} to
{key: ’number’} or {myKey: ’string’} to {theKey: ’string’}.

-1 PERSISTENT_STORE_FAILURE
Generic Error. A malfunction in native code, most likely calling the init
method.

0 SUCCESS
In some cases, JSONStore native code returns 0 to indicate success.

1 BAD_PARAMETER_EXPECTED_INT
Validation error.

2 BAD_PARAMETER_EXPECTED_STRING
Validation error.

3 BAD_PARAMETER_EXPECTED_FUNCTION
Validation error.

4 BAD_PARAMETER_EXPECTED_ALPHANUMERIC_STRING
Validation error.

5 BAD_PARAMETER_EXPECTED_OBJECT
Validation error.

6 BAD_PARAMETER_EXPECTED_SIMPLE_OBJECT
Validation error.

Developing applications 7-149

7 BAD_PARAMETER_EXPECTED_DOCUMENT
Validation error.

8 FAILED_TO_GET_UNPUSHED_DOCUMENTS_FROM_DB
The query that selects all documents that are marked dirty failed. An example
in SQL of the query would be: SELECT * FROM [collection] WHERE _dirty > 0.

9 NO_ADAPTER_LINKED_TO_COLLECTION
To use functions like the push and load methods in the JSONStoreCollection
class, an adapter must be passed to the init method.

10 BAD_PARAMETER_EXPECTED_DOCUMENT_OR_ARRAY_OF_DOCUMENTS
Validation error

11
INVALID_PASSWORD_EXPECTED_ALPHANUMERIC_STRING_WITH_LENGTH_GREATER_THAN_ZERO

Validation error

12 ADAPTER_FAILURE
Problem calling WL.Client.invokeProcedure, specifically a problem in
connecting to the MobileFirst Server adapter. This error is different from a
failure in the adapter that tries to call a backend.

13 BAD_PARAMETER_EXPECTED_DOCUMENT_OR_ID
Validation error

14 CAN_NOT_REPLACE_DEFAULT_FUNCTIONS
Calling the enhance method in the JSONStoreCollection class to replace an
existing function (find and add) is not allowed.

15 COULD_NOT_MARK_DOCUMENT_PUSHED
Push sends the document to an adapter but JSONStore fails to mark the
document as not dirty.

16 COULD_NOT_GET_SECURE_KEY
To initiate a collection with a password there must be connectivity to the
MobileFirst Server because it returns a 'secure random token'. IBM Worklight
V5.0.6 and later allows developers to generate the secure random token locally
passing {localKeyGen: true} to the init method via the options object.

17 FAILED_TO_LOAD_INITIAL_DATA_FROM_ADAPTER
Could not load data because WL.Client.invokeProcedure called the failure
callback.

18 FAILED_TO_LOAD_INITIAL_DATA_FROM_ADAPTER_INVALID_LOAD_OBJ
The load object that was passed to the init method did not pass the
validation.

19 INVALID_KEY_IN_LOAD_OBJECT
There is a problem with the key used in the load object when you call the add
method.

20 UNDEFINED_PUSH_OPERATION
No procedure is defined for pushing dirty documents to the server. For
example: the init method (new document is dirty, operation = 'add') and the
push method (finds the new document with operation = 'add') were called, but
no add key with the add procedure was found in the adapter that is linked to
the collection. Linking an adapter is done inside the init method.

21 INVALID_ADD_INDEX_KEY
Problem with extra search fields.

7-150 IBM MobileFirst Platform Foundation V8.0.0

22 INVALID_SEARCH_FIELD
One of your search fields is invalid. Verify that none of the search fields that
are passed in are _id,json,_deleted, or _operation.

23 ERROR_CLOSING_ALL
Generic Error. An error occurred when native code called the closeAll method.

24 ERROR_CHANGING_PASSWORD
Unable to change the password. The old password passed was wrong, for
example.

25 ERROR_DURING_DESTROY
Generic Error. An error occurred when native code called the destroy method.

26 ERROR_CLEARING_COLLECTION
Generic Error. An error occurred in when native code called the
removeCollection method.

27 INVALID_PARAMETER_FOR_FIND_BY_ID
Validation error.

28 INVALID_SORT_OBJECT
The provided array for sorting is invalid because one of the JSON objects is
invalid. The correct syntax is an array of JSON objects, where each object
contains only a single property. This property searches the field with which to
sort, and whether it is ascending or descending. For example: {searchField1 :
⌂€œASC⌂€⌂}.

29 INVALID_FILTER_ARRAY
The provided array for filtering the results is invalid. The correct syntax for
this array is an array of strings, in which each string is either a search field or
an internal JSONStore field. For more information, see “Store internals” on
page 7-146.

30 BAD_PARAMETER_EXPECTED_ARRAY_OF_OBJECTS
Validation error when the array is not an array of only JSON objects.

31 BAD_PARAMETER_EXPECTED_ARRAY_OF_CLEAN_DOCUMENTS
Validation error.

32 BAD_PARAMETER_WRONG_SEARCH_CRITERIA
Validation error.

JSONStore examples
Learn about how to get started with JSONStore examples.

JavaScript API examples:

You can use JSONStore for Cordova applications that use the MobileFirst plug-in.

The following sections contain example implementations for JavaScript with
JSONStore APIs. Other helpful topics include:
v “JSONStore overview” on page 7-134 - Learn about key concepts.
v “Enabling JSONStore” on page 7-139 - Learn how to enable JSONStore in

different environments.
v “JSONStore API concepts” on page 7-140 - Learn about general information

about the APIs that apply to all implementations of the JSONStore API.
v “Troubleshooting JSONStore” on page 7-144 - Learn how to debug and

understand possible errors.

Developing applications 7-151

v “JSONStore advanced topics” on page 7-169 - Learn about security, multiple user
support, performance, and concurrency.

v Class JSONStoreInstance - Learn about JSONStore APIs for JavaScript.
v “Work with external data” on page 7-174 - Explains how to get data from an

external source and send changes back to the external source.

Initialize and open connections, get an Accessor, and add data
var collectionName = ’people’;

// Object that defines all the collections.
var collections = {

// Object that defines the ’people’ collection.
people : {

// Object that defines the Search Fields for the ’people’ collection.
searchFields : {name: ’string’, age: ’integer’}

}
};

// Optional options object.
var options = {

// Optional username, default ’jsonstore’.
username : ’carlos’,

// Optional password, default no password.
password : ’123’,

// Optional local key generation flag, default false.
localKeyGen : false

};

WL.JSONStore.init(collections, options)

.then(function () {

// Data to add, you probably want to get
// this data from a network call (e.g. MobileFirst Adapter).
var data = [{name: ’carlos’, age: 10}];

// Optional options for add.
var addOptions = {

// Mark data as dirty (true = yes, false = no), default true.
markDirty: true

};

// Get an accessor to the people collection and add data.
return WL.JSONStore.get(collectionName).add(data, addOptions);

})

.then(function (numberOfDocumentsAdded) {
// Add was successful.

})

.fail(function (errorObject) {
// Handle failure for any of the previous JSONStore operations (init, add).

});

Find - locate documents inside the Store
var collectionName = ’people’;

// Find all documents that match the queries.

7-152 IBM MobileFirst Platform Foundation V8.0.0

var queryPart1 = WL.JSONStore.QueryPart()
.equal(’name’, ’carlos’)
.lessOrEqualThan(’age’, 10)

var options = {
// Returns a maximum of 10 documents, default no limit.
limit: 10,

// Skip 0 documents, default no offset.
offset: 0,

// Search fields to return, default: [’_id’, ’json’].
filter: [’_id’, ’json’],

// How to sort the returned values, default no sort.
sort: [{name: WL.constant.ASCENDING}, {age: WL.constant.DESCENDING}]

};

WL.JSONStore.get(collectionName)

// Alternatives:
// - findById(1, options) which locates documents by their _id field
// - findAll(options) which returns all documents
// - find({’name’: ’carlos’, age: 10}, options) which finds all documents
// that match the query.
.advancedFind([queryPart1], options)

.then(function (arrayResults) {
// arrayResults = [{_id: 1, json: {name: ’carlos’, age: 99}}]

})

.fail(function (errorObject) {
// Handle failure.

});

Replace - change the documents that are already stored inside a Collection
var collectionName = ’people’;

// Documents will be located with their ’_id’ field
// and replaced with the data in the ’json’ field.
var docs = [{_id: 1, json: {name: ’carlitos’, age: 99}}];

var options = {

// Mark data as dirty (true = yes, false = no), default true.
markDirty: true

};

WL.JSONStore.get(collectionName)

.replace(docs, options)

.then(function (numberOfDocumentsReplaced) {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

Remove - delete all documents that match the query
var collectionName = ’people’;

// Remove all documents that match the queries.
var queries = [{_id: 1}];

Developing applications 7-153

var options = {

// Exact match (true) or fuzzy search (false), default fuzzy search.
exact: true,

// Mark data as dirty (true = yes, false = no), default true.
markDirty: true

};

WL.JSONStore.get(collectionName)

.remove(queries, options)

.then(function (numberOfDocumentsRemoved) {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

Count - gets the total number of documents that match a query
var collectionName = ’people’;

// Count all documents that match the query.
// The default query is ’{}’ which will
// count every document in the collection.
var query = {name: ’carlos’};
var options = {

// Exact match (true) or fuzzy search (false), default fuzzy search.
exact: true

};

WL.JSONStore.get(collectionName)

.count(query, options)

.then(function (numberOfDocumentsThatMatchedTheQuery) {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

Destroy - wipes data for all users, destroys the internal storage, and clears
security artifacts
WL.JSONStore.destroy()

.then(function () {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

Security - close access to all opened Collections for the current user
WL.JSONStore.closeAll()

.then(function () {
// Handle success.

})

7-154 IBM MobileFirst Platform Foundation V8.0.0

.fail(function (errorObject) {
// Handle failure.

});

Security - change the password that is used to access a Store
// The password should be user input.
// It is hard-coded in the example for brevity.
var oldPassword = ’123’;
var newPassword = ’456’;

var clearPasswords = function () {
oldPassword = null;
newPassword = null;

};

// Default username if none is passed is: ’jsonstore’.
var username = ’carlos’;

WL.JSONStore.changePassword(oldPassword, newPassword, username)

.then(function () {

// Make sure you do not leave the password(s) in memory.
clearPasswords();

// Handle success.
})

.fail(function (errorObject) {

// Make sure you do not leave the password(s) in memory.
clearPasswords();

// Handle failure.
});

Push - get all documents that are marked as dirty, send them to a MobileFirst
adapter, and mark them clean
var collectionName = ’people’;
var dirtyDocs;

WL.JSONStore.get(collectionName)

.getAllDirty()

.then(function (arrayOfDirtyDocuments) {
// Handle getAllDirty success.

dirtyDocs = arrayOfDirtyDocuments;

var procedure = ’procedure-name-1’;
var adapter = ’adapter-name’;

var resource = new WLResourceRequest("adapters/" + adapter + "/" + procedure, WLResourceRequest.GET);
resource.setQueryParameter(’params’, [dirtyDocs]);
return resource.send();

})

.then(function (responseFromAdapter) {
// Handle invokeProcedure success.

// You may want to check the response from the adapter
// and decide whether or not to mark documents as clean.
return WL.JSONStore.get(collectionName).markClean(dirtyDocs);

})

.then(function () {
// Handle markClean success.

})

Developing applications 7-155

.fail(function (errorObject) {
// Handle failure.

});

Pull - get new data from a MobileFirst adapter
var collectionName = ’people’;

var adapter = ’adapter-name’;
var procedure = ’procedure-name-2’;

var resource = new WLResourceRequest("adapters/" + adapter + "/" + procedure, WLResourceRequest.GET);

resource.send()

.then(function (responseFromAdapter) {
// Handle invokeProcedure success.

// The following example assumes that the adapter returns an arrayOfData,
// (which is not returned by default),
// as part of the invocationResult object,
// with the data that you want to add to the collection.
var data = responseFromAdapter.responseJSON

// Example:
// data = [{id: 1, ssn: ’111-22-3333’, name: ’carlos’}];

var changeOptions = {

// The following example assumes that ’id’ and ’ssn’ are search fields,
// default will use all search fields
// and are part of the data that is received.
replaceCriteria : [’id’, ’ssn’],

// Data that does not exist in the Collection will be added, default false.
addNew : true,

// Mark data as dirty (true = yes, false = no), default false.
markDirty : false

};

return WL.JSONStore.get(collectionName).change(data, changeOptions);
})

.then(function () {
// Handle change success.

})

.fail(function (errorObject) {
// Handle failure.

});

Check whether a document is dirty
var collectionName = ’people’;
var doc = {_id: 1, json: {name: ’carlitos’, age: 99}};

WL.JSONStore.get(collectionName)

.isDirty(doc)

.then(function (isDocumentDirty) {
// Handle success.

// isDocumentDirty - true if dirty, false otherwise.
})

.fail(function (errorObject) {
// Handle failure.

});

7-156 IBM MobileFirst Platform Foundation V8.0.0

Check the number of dirty documents
var collectionName = ’people’;

WL.JSONStore.get(collectionName)

.countAllDirty()

.then(function (numberOfDirtyDocuments) {
// Handle success.

})

.fail(function (errorObject) {
// Handle failure.

});

Remove a Collection
var collectionName = ’people’;

WL.JSONStore.get(collectionName)

.removeCollection()

.then(function () {
// Handle success.

// Note: You must call the ’init’ API to re-use the empty collection.
// See the ’clear’ API if you just want to remove all data that is inside.

})

.fail(function (errorObject) {
// Handle failure.

});

Clear all data that is inside a Collection
var collectionName = ’people’;

WL.JSONStore.get(collectionName)

.clear()

.then(function () {
// Handle success.

// Note: You might want to use the ’removeCollection’ API
// instead if you want to change the search fields.

})

.fail(function (errorObject) {
// Handle failure.

});

Start a transaction, add some data, remove a document, commit the transaction
and roll back the transaction if there is a failure
WL.JSONStore.startTransaction()

.then(function () {
// Handle startTransaction success.
// You can call every JSONStore API method except:
// init, destroy, removeCollection, and closeAll.

var data = [{name: ’carlos’}];

return WL.JSONStore.get(collectionName).add(data);
})

Developing applications 7-157

.then(function () {

var docs = [{_id: 1, json: {name: ’carlos’}}];

return WL.JSONStore.get(collectionName).remove(docs);
})

.then(function () {

return WL.JSONStore.commitTransaction();
})

.fail(function (errorObject) {
// Handle failure for any of the previous JSONStore operation.
//(startTransaction, add, remove).

WL.JSONStore.rollbackTransaction()

.then(function () {
// Handle rollback success.

})

.fail(function () {
// Handle rollback failure.

})

});

Get file information
WL.JSONStore.fileInfo()
.then(function (res) {

//res => [{isEncrypted : true, name : carlos, size : 3072}]
})

.fail(function () {
// Handle failure.

});

Search with like, rightLike, and leftLike
// Match all records that contain the search string on both sides.
// %searchString%
var arr1 = WL.JSONStore.QueryPart().like(’name’, ’ca’); // returns {name: ’carlos’, age: 10}
var arr2 = WL.JSONStore.QueryPart().like(’name’, ’los’); // returns {name: ’carlos’, age: 10}

// Match all records that contain the search string on the left side and anything on the right side.
// searchString%
var arr1 = WL.JSONStore.QueryPart().rightLike(’name’, ’ca’); // returns {name: ’carlos’, age: 10}
var arr2 = WL.JSONStore.QueryPart().rightLike(’name’, ’los’); // returns nothing

// Match all records that contain the search string on the right side and anything on the left side.
// %searchString
var arr = WL.JSONStore.QueryPart().leftLike(’name’, ’ca’); // returns nothing
var arr2 = WL.JSONStore.QueryPart().leftLike(’name’, ’los’); // returns {name: ’carlos’, age: 10}

Objective-C API examples:

You can use JSONStore for MobileFirst applications.

The following sections contain example implementations for iOS devices with
JSONStore APIs. Other helpful topics include:
v “JSONStore overview” on page 7-134 - Learn about key concepts.

7-158 IBM MobileFirst Platform Foundation V8.0.0

v “Enabling JSONStore” on page 7-139 - Learn how to enable JSONStore in
different environments.

v “JSONStore API concepts” on page 7-140 - Learn about general information
about the APIs that apply to all implementations of the JSONStore API.

v “Troubleshooting JSONStore” on page 7-144 - Learn how to debug and
understand possible errors.

v “JSONStore advanced topics” on page 7-169 - Learn about security, multiple user
support, performance, and concurrency.

v JSONStore Class Reference - Learn about JSONStore APIs for Objective-C.
v “Work with external data” on page 7-174 - Explains how to get data from an

external source and send changes back to the external source.

Initialize and open connections, get an Accessor, and add data
// Create the collections object that will be initialized.
JSONStoreCollection* people = [[JSONStoreCollection alloc] initWithName:@"people"];
[people setSearchField:@"name" withType:JSONStore_String];
[people setSearchField:@"age" withType:JSONStore_Integer];

// Optional options object.
JSONStoreOpenOptions* options = [JSONStoreOpenOptions new];
[options setUsername:@"carlos"]; //Optional username, default ’jsonstore’
[options setPassword:@"123"]; //Optional password, default no password

// This object will point to an error if one occurs.
NSError* error = nil;

// Open the collections.
[[JSONStore sharedInstance] openCollections:@[people] withOptions:options error:&error];

// Add data to the collection
NSArray* data = @[@{@"name" : @"carlos", @"age": @10}];
int newDocsAdded = [[people addData:data andMarkDirty:YES withOptions:nil error:&error] intValue];

Initialize with a secure random token from the server
[WLSecurityUtils getRandomStringFromServerWithBytes:32

timeout:1000
completionHandler:^(NSURLResponse *response,

NSData *data,
NSError *connectionError) {

// You might want to see the response and the connection error
// before moving forward.

// Get the secure random string by using the data that is
// returned from the generator on the server.
NSString* secureRandom = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

JSONStoreCollection* ppl = [[JSONStoreCollection alloc] initWithName:@"people"];
[ppl setSearchField:@"name" withType:JSONStore_String];
[ppl setSearchField:@"age" withType:JSONStore_Integer];

// Optional options object.
JSONStoreOptions* options = [JSONStoreOptions new];
[options setUsername:@"carlos"]; //Optional username, default ’jsonstore’
[options setPassword:@"123"]; //Optional password, default no password
[options setSecureRandom:secureRandom]; //Optional, default one will be generated locally

// This points to an error if one occurs.
NSError* error = nil;

[[JSONStore sharedInstance] openCollections:@[ppl] withOptions:options error:&error];

// Other JSONStore operations (e.g. add, remove, replace, etc.) go here.
}];

Developing applications 7-159

Find - locate documents inside the Store
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Add additional find options (optional).
JSONStoreQueryOptions* options = [JSONStoreQueryOptions new];
[options setLimit:@10]; // Returns a maximum of 10 documents, default no limit.
[options setOffset:@0]; // Skip 0 documents, default no offset.

// Search fields to return, default: [’_id’, ’json’].
[options filterSearchField:@"_id"];
[options filterSearchField:@"json"];

// How to sort the returned values , default no sort.
[options sortBySearchFieldAscending:@"name"];
[options sortBySearchFieldDescending:@"age"];

// Find all documents that match the query part.
JSONStoreQueryPart* queryPart1 = [[JSONStoreQueryPart alloc] init];
[queryPart1 searchField:@"name" equal:@"carlos"];
[queryPart1 searchField:@"age" lessOrEqualThan:@10];

NSArray* results = [people findWithQueryParts:@[queryPart1] andOptions:options error:&error];

// results = @[@{@"_id" : @1, @"json" : @{ @"name": @"carlos", @"age" : @10}}];

for (NSDictionary* result in results) {

NSString* name = [result valueForKeyPath:@"json.name"]; // carlos.
int age = [[result valueForKeyPath:@"json.age"] intValue]; // 10
NSLog(@"Name: %@, Age: %d", name, age);

}

Replace - change the documents that are already stored inside a Collection
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// Find all documents that match the queries.
NSArray* docs = @[@{@"_id" : @1, @"json" : @{ @"name": @"carlitos", @"age" : @99}}];

// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the replacement.
int docsReplaced = [[people replaceDocuments:docs andMarkDirty:NO error:&error] intValue];

Remove - delete all documents that match the query
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Find document with _id equal to 1 and remove it.
int docsRemoved = [[people removeWithIds:@[@1] andMarkDirty:NO error:&error] intValue];

Count - gets the total number of documents that match a query
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// Count all documents that match the query.
// The default query is @{} which will
// count every document in the collection.
JSONStoreQueryPart *queryPart = [[JSONStoreQueryPart alloc] init];
[queryPart searchField:@"name" equal:@"carlos"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the count.
int countResult = [[people countWithQueryParts:@[queryPart] error:&error] intValue];

7-160 IBM MobileFirst Platform Foundation V8.0.0

Destroy - wipes data for all users, destroys the internal storage, and clears
security artifacts
// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the destroy.
[[JSONStore sharedInstance] destroyDataAndReturnError:&error];

Security - close access to all opened Collections for the current user
// This object will point to an error if one occurs.
NSError* error = nil;

// Close access to all collections in the store.
[[JSONStore sharedInstance] closeAllCollectionsAndReturnError:&error];

Security - change the password that is used to access a Store
// The password should be user input.
// It is hardcoded in the example for brevity.
NSString* oldPassword = @"123";
NSString* newPassword = @"456";
NSString* username = @"carlos";

// This object will point to an error if one occurs.
NSError* error = nil;

// Perform the change password operation.
[[JSONStore sharedInstance] changeCurrentPassword:oldPassword withNewPassword:newPassword forUsername:username error:&error];

// Remove the passwords from memory.
oldPassword = nil;
newPassword = nil;

Push - get all documents that are marked as dirty, send them to a MobileFirst
adapter, and mark them clean
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs
NSError* error = nil;

// Return all documents marked dirty
NSArray* dirtyDocs = [people allDirtyAndReturnError:&error];

// ACTION REQUIRED: Handle the dirty documents here
// (e.g. send them to a MobileFirst Adapter).

// Mark dirty documents as clean
int numCleaned = [[people markDocumentsClean:dirtyDocs error:&error] intValue];

Pull - get new data from a MobileFirst adapter
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// ACTION REQUIRED: Get data (e.g. MobileFirst Adapter).
// For this example, it is hardcoded.
NSArray* data = @[@{@"id" : @1, @"ssn": @"111-22-3333", @"name": @"carlos"}];

int numChanged = [[people changeData:data withReplaceCriteria:@[@"id", @"ssn"] addNew:YES markDirty:NO error:&error] intValue];

Check whether a document is dirty
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Check if document with _id ’1’ is dirty.
BOOL isDirtyResult = [people isDirtyWithDocumentId:1 error:&error];

Developing applications 7-161

Check the number of dirty documents
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Check if document with _id ’1’ is dirty.
int dirtyDocsCount = [[people countAllDirtyDocumentsWithError:&error] intValue];

Remove a Collection
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Remove the collection.
[people removeCollectionWithError:&error];

Clear all data that is inside a Collection
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// This object will point to an error if one occurs.
NSError* error = nil;

// Remove the collection.
[people clearCollectionWithError:&error];

Start a transaction, add some data, remove a document, commit the transaction
and roll back the transaction if there is a failure
// Get the accessor to an already initialized collection.
JSONStoreCollection* people = [[JSONStore sharedInstance] getCollectionWithName:@"people"];

// These objects will point to errors if they occur.
NSError* error = nil;
NSError* addError = nil;
NSError* removeError = nil;

// You can call every JSONStore API method inside a transaction except:
// open, destroy, removeCollection and closeAll.
[[JSONStore sharedInstance] startTransactionAndReturnError:&error];

[people addData:@[@{@"name" : @"carlos"}] andMarkDirty:NO withOptions:nil error:&addError];

[people removeWithIds:@[@1] andMarkDirty:NO error:&removeError];

if (addError != nil || removeError != nil) {

// Return the store to the state before start transaction was called.
[[JSONStore sharedInstance] rollbackTransactionAndReturnError:&error];

} else {
// Commit the transaction thus ensuring atomicity.
[[JSONStore sharedInstance] commitTransactionAndReturnError:&error];

}

Get file information
// This object will point to an error if one occurs
NSError* error = nil;

// Returns information about files JSONStore uses to persist data.
NSArray* results = [[JSONStore sharedInstance] fileInfoAndReturnError:&error];
// => [{@"isEncrypted" : @(true), @"name" : @"carlos", @"size" : @3072}]

Java API examples:

You can use JSONStore for Cordova applications that use the MobileFirst plug-in.

The following sections contain example implementations for Android devices with
JSONStore APIs. Other helpful topics include:
v “JSONStore overview” on page 7-134 - Learn about key concepts.

7-162 IBM MobileFirst Platform Foundation V8.0.0

v “Enabling JSONStore” on page 7-139 - Learn how to enable JSONStore in
different environments.

v “JSONStore API concepts” on page 7-140 - Learn about general information
about the APIs that apply to all implementations of the JSONStore API.

v “Troubleshooting JSONStore” on page 7-144 - Learn how to debug and
understand possible errors.

v “JSONStore advanced topics” on page 7-169 - Learn about security, multiple user
support, performance, and concurrency.

v Package com.worklight.jsonstore.api - Learn about JSONStore APIs for Java.
v “Work with external data” on page 7-174 - Explains how to get data from an

external source and send changes back to the external source.

Initialize and open connections, get an Accessor, and add data
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
List<JSONStoreCollection> collections = new LinkedList<JSONStoreCollection>();
// Create the collections object that will be initialized.
JSONStoreCollection peopleCollection = new JSONStoreCollection("people");
peopleCollection.setSearchField("name", SearchFieldType.STRING);
peopleCollection.setSearchField("age", SearchFieldType.INTEGER);
collections.add(peopleCollection);

// Optional options object.
JSONStoreInitOptions initOptions = new JSONStoreInitOptions();
// Optional username, default ’jsonstore’.
initOptions.setUsername("carlos");
// Optional password, default no password.
initOptions.setPassword("123");

// Open the collection.

WLJSONStore.getInstance(ctx).openCollections(collections, initOptions);

// Add data to the collection.
JSONObject newDocument = new JSONObject("{name: ’carlos’, age: 10}");
JSONStoreAddOptions addOptions = new JSONStoreAddOptions();
addOptions.setMarkDirty(true);
peopleCollection.addData(newDocument, addOptions);

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations (init, add).
throw ex;

} catch (JSONException ex) {
// Handle failure for any JSON parsing issues.

throw ex;
}

Initialize with a secure random token from the server
// Fill in the blank to get the Android application context.
Context ctx = getContext();

// Do an AsyncTask because networking cannot occur inside the activity.
AsyncTask<Context, Void, Void> aTask = new AsyncTask<Context, Void, Void>() {

protected Void doInBackground(Context... params) {
final Context context = params[0];

// Create the request listener that will have the
// onSuccess and onFailure callbacks:
WLRequestListener listener = new WLRequestListener() {

public void onFailure(WLFailResponse failureResponse) {

Developing applications 7-163

// Handle Failure.
}

public void onSuccess(WLResponse response) {
String secureRandom = response.getResponseText();

try {
List<JSONStoreCollection> collections = new LinkedList<JSONStoreCollection>();
// Create the collections object that will be initialized.
JSONStoreCollection peopleCollection = new JSONStoreCollection("people");
peopleCollection.setSearchField("name", SearchFieldType.STRING);
peopleCollection.setSearchField("age", SearchFieldType.INTEGER);
collections.add(peopleCollection);

// Optional options object.
JSONStoreInitOptions initOptions = new JSONStoreInitOptions();

// Optional username, default ’jsonstore’.
initOptions.setUsername("carlos");

// Optional password, default no password.
initOptions.setPassword("123");

initOptions.setSecureRandom(secureRandom);

// Open the collection.
WLJSONStore.getInstance(context).openCollections(collections, initOptions);

// Other JSONStore operations (e.g. add, remove, replace, etc.) go here.
}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations (init, add).
ex.printStackTrace(); }

}
};

// Get the secure random from the server:
// The length of the random string, in bytes (maximum is 64 bytes).
int byteLength = 32;
SecurityUtils.getRandomStringFromServer(byteLength, context, listener);
return null;

}
};
aTask.execute(ctx);

Find - locate documents inside the Store
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

JSONStoreQueryParts findQuery = new JSONStoreQueryParts();
JSONStoreQueryPart part = new JSONStoreQueryPart();
part.addLike("name", "carlos");
part.addLessThan("age", 99);
findQuery.addQueryPart(part);

// Add additional find options (optional).
JSONStoreFindOptions findOptions = new JSONStoreFindOptions();

// Returns a maximum of 10 documents, default no limit.
findOptions.setLimit(10);
// Skip 0 documents, default no offset.
findOptions.setOffset(0);

7-164 IBM MobileFirst Platform Foundation V8.0.0

// Search fields to return, default: [’_id’, ’json’].
findOptions.addSearchFilter("_id");
findOptions.addSearchFilter("json");

// How to sort the returned values, default no sort.
findOptions.sortBySearchFieldAscending("name");
findOptions.sortBySeachFieldDescending("age");

// Find documents that match the query.
List<JSONObject> results = peopleCollection.findDocuments(findQuery, findOptions);

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations
throw ex;

}

Replace - change the documents that are already stored inside a Collection
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Documents will be located with their ’_id’ field
//and replaced with the data in the ’json’ field.
JSONObject replaceDoc = new JSONObject("{_id: 1, json: {name: ’carlitos’, age: 99}}");

// Mark data as dirty (true = yes, false = no), default true.
JSONStoreReplaceOptions replaceOptions = new JSONStoreReplaceOptions();
replaceOptions.setMarkDirty(true);

// Replace the document.
peopleCollection.replaceDocument(replaceDoc, replaceOptions);

}
catch (JSONStoreException ex) {
// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Remove - delete all documents that match the query
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Documents will be located with their ’_id’ field.
int id = 1;

JSONStoreRemoveOptions removeOptions = new JSONStoreRemoveOptions();

// Mark data as dirty (true = yes, false = no), default true.
removeOptions.setMarkDirty(true);

// Replace the document.
peopleCollection.removeDocumentById(id, removeOptions);

}
catch (JSONStoreException ex) {
// Handle failure for any of the previous JSONStore operations
throw ex;

}
catch (JSONException ex) {
// Handle failure for any JSON parsing issues.
throw ex;

}

Developing applications 7-165

Count - gets the total number of documents that match a query
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Count all documents that match the query.
JSONStoreQueryParts countQuery = new JSONStoreQueryParts();
JSONStoreQueryPart part = new JSONStoreQueryPart();

// Exact match.
part.addEqual("name", "carlos");
countQuery.addQueryPart(part);

// Replace the document.
int resultCount = peopleCollection.countDocuments(countQuery);
JSONObject doc = peopleCollection.findDocumentById(resultCount);
peopleCollection.replaceDocument(doc);

}
catch (JSONStoreException ex) {

throw ex;
}

Destroy - wipes data for all users, destroys the internal storage, and clears
security artifacts
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Destroy the Store.
WLJSONStore.getInstance(ctx).destroy();

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations
throw ex;

}

Security - close access to all opened Collections for the current user
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Close access to all collections.
WLJSONStore.getInstance(ctx).closeAll();

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Security - change the password that is used to access a Store
// The password should be user input.
// It is hard-coded in the example for brevity.
String username = "carlos";
String oldPassword = "123";
String newPassword = "456";

// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
WLJSONStore.getInstance(ctx).changePassword(oldPassword, newPassword, username);

7-166 IBM MobileFirst Platform Foundation V8.0.0

}
catch (JSONStoreException ex) {

// Handle failure for any of the previous JSONStore operations.
throw ex;

}
finally {

// It is good practice to not leave passwords in memory
oldPassword = null;
newPassword = null;

}

Push - get all documents that are marked as dirty, send them to a MobileFirst
adapter, and mark them clean
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Check if document with _id 3 is dirty.
List<JSONObject> allDirtyDocuments = peopleCollection.findAllDirtyDocuments();

// Handle the dirty documents here (e.g. calling an adapter).

peopleCollection.markDocumentsClean(allDirtyDocuments);
} catch (JSONStoreException ex) {
// Handle failure for any of the previous JSONStore operations
throw ex;

}

Pull - get new data from a MobileFirst adapter
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Pull data here and place in newDocs. For this example, it is hard-coded.
List<JSONObject> newDocs = new ArrayList<JSONObject>();
JSONObject doc = new JSONObject("{id: 1, ssn: ’111-22-3333’, name: ’carlos’}");
newDocs.add(doc);

JSONStoreChangeOptions changeOptions = new JSONStoreChangeOptions();

// Data that does not exist in the collection will be added, default false.
changeOptions.setAddNew(true);

// Mark data as dirty (true = yes, false = no), default false.
changeOptions.setMarkDirty(true);

// The following example assumes that ’id’ and ’ssn’ are search fields,
// default will use all search fields
// and are part of the data that is received.
changeOptions.addSearchFieldToCriteria("id");
changeOptions.addSearchFieldToCriteria("ssn");

int changed = peopleCollection.changeData(newDocs, changeOptions);
}
catch (JSONStoreException ex) {
// Handle failure for any of the previous JSONStore operations.
throw ex;

}
catch (JSONException ex) {
// Handle failure for any JSON parsing issues.
throw ex;

}

Developing applications 7-167

Check whether a document is dirty
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Check if document with id ’3’ is dirty.
boolean isDirty = peopleCollection.isDocumentDirty(3);

}
catch (JSONStoreException ex) {
// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Check the number of dirty documents
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Get the count of all dirty documents in the people collection.
int totalDirty = peopleCollection.countAllDirtyDocuments();

}
catch (JSONStoreException ex) {
// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Remove a Collection
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Remove the collection. The collection object is
// no longer usable.
peopleCollection.removeCollection();

}
catch (JSONStoreException ex) {
// Handle failure for any of the previous JSONStore operations.
throw ex;

}

Clear all data that is inside a Collection
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

// Clear the collection.
peopleCollection.clearCollection();

}
catch (JSONStoreException ex) {
// Handle failure for any of the previous JSONStore operations.
throw ex;

}

7-168 IBM MobileFirst Platform Foundation V8.0.0

Start a transaction, add some data, remove a document, commit the transaction
and roll back the transaction if there is a failure
// Fill in the blank to get the Android application context.
Context ctx = getContext();

try {
// Get the already initialized collection.
JSONStoreCollection peopleCollection = WLJSONStore.getInstance(ctx).getCollectionByName("people");

WLJSONStore.getInstance(ctx).startTransaction();

JSONObject docToAdd = new JSONObject("{name: ’carlos’, age: 99}");
// Find documents that match query.
peopleCollection.addData(docToAdd);

//Remove added doc.
int id = 1;
peopleCollection.removeDocumentById(id);

WLJSONStore.getInstance(ctx).commitTransaction();
}
catch (JSONStoreException ex) {
// Handle failure for any of the previous JSONStore operations.

// An exception occured. Take care of it to prevent further damage.
WLJSONStore.getInstance(ctx).rollbackTransaction();

throw ex;
}
catch (JSONException ex) {
// Handle failure for any JSON parsing issues.

// An exception occured. Take care of it to prevent further damage.
WLJSONStore.getInstance(ctx).rollbackTransaction();

throw ex;
}

Get file information
Context ctx = getContext();
List<JSONStoreFileInfo> allFileInfo = WLJSONStore.getInstance(ctx).getFileInfo();

for(JSONStoreFileInfo fileInfo : allFileInfo) {
long fileSize = fileInfo.getFileSizeBytes();
String username = fileInfo.getUsername();
boolean isEncrypted = fileInfo.isEncrypted();

}

JSONStore advanced topics
Learn about JSONStore advanced topics.

JSONStore security:

You can secure all of the collections in a store by encrypting them.

To encrypt all of the collections in a store, pass a password to the init (JavaScript)
or open (Native iOS and Native Android) API. If no password is passed, none of
the documents in the store collections are encrypted.

Some security artifacts (for example salt) are stored in the keychain (iOS), shared
preferences (Android), isolated storage (Windows 8 Phone), or the credential locker

Developing applications 7-169

(Windows 8). The store is encrypted with a 256-bit Advanced Encryption Standard
(AES) key. All keys are strengthened with Password-Based Key Derivation
Function 2 (PBKDF2).

Data encryption is only available on Android, iOS, Windows 8 Phone, and
Windows 8 environments. You can choose to encrypt data collections for an
application, but you cannot switch between encrypted and plain-text formats, or to
mix formats within a store.

The key that protects the data in the store is based on the user password that you
provide. The key does not expire, but you can change it by calling the
changePassword API.

The data protection key (DPK) is the key that is used to decrypt the contents of the
store. The DPK is kept in the iOS keychain even if the application is uninstalled. To
remove both the key in the keychain and everything else that JSONStore puts in
the application, use the destroy API. This process is not applicable to Android
because the encrypted DPK is stored in shared preferences and wiped out when
the application is uninstalled.

The first time that JSONStore opens a collection with a password, which means
that the developer wants to encrypt data inside the store, JSONStore needs a
random token. That random token can be obtained from the client or from the
server.

When the localKeyGen key is present in the JavaScript implementation of the
JSONStore API, and it has a value of true, a cryptographically secure token is
generated locally. Otherwise, the token is generated by contacting the server, thus
requiring connectivity to the MobileFirst Server. This token is required only the
first time that a store is opened with a password. The native implementations
(Objective-C and Java) generate a cryptographically secure token locally by default,
or you can pass one through the secureRandom option.

The trade-off is between opening a store offline and trusting the client to generate
that random token (less secure), or opening the store with access to the MobileFirst
Server (requires connectivity) and trusting the server (more secure).

Windows 8 Universal encryption:

You can secure all of the collections in a store by encrypting them.

JSONStore uses SQLCipher as its underlying database technology. SQLCipher is a
build of SQLite that is produced by Zetetic, LLC adds a layer of encryption to the
database.

JSONStore uses SQLCipher on all platforms. On Android and iOS a free, open
source version of SQLCipher is available, known as the Community Edition and is
incorporated into the versions of JSONStore that is included in IBM MobileFirst
Platform Foundation. The Windows versions of SQLCipher are only available
under a commercial license and cannot be directly redistributed by IBM
MobileFirst Platform Foundation.

Instead, JSONStore for Windows 8 Universal include SQLite as the underlying
database. If you need to encrypt data for either of these platforms, you need to

7-170 IBM MobileFirst Platform Foundation V8.0.0

http://sqlcipher.net/

acquire your own version of SQLCipher and swap out the SQLite version that is
included in IBM MobileFirst Platform Foundation. For more information, see
“SQLCipher on Windows 8 Universal.”

If you do not need encryption, the JSONStore is fully functional (minus
encryption) by using the SQLite version in IBM MobileFirst Platform Foundation.

SQLCipher on Windows 8 Universal:

To use JSONStore encryption on Windows, you must replace SQLite with
SQLCipher.

Replacing SQLite with SQLCipher for Windows 8 Universal:

To use JSONStore encryption on Windows 8 Universal, you must replace SQLite
with SQLCipher.

Procedure

1. Run the SQLCipher for Windows Runtime 8.1 extension that comes with the
SQLCipher for Windows Runtime Commercial Edition.

2. After the extension finishes installing, locate the SQLCipher version of the
sqlite3.dll file that was just created. There is one for x86, one for x64, and
one for ARM.
C:\Program Files (x86)\Microsoft SDKs\Windows\v8.1\ExtensionSDKs\SQLCipher.WinRT81\3.0.1\Redist\Retail\<platform>

3. Copy and replace this file to your MobileFirst application.
<Worklight project name>\apps\<application name>\windows8\native\buildtarget\<platform>

JSONStore multiple user support:

With JSONStore, you can create multiple stores that contain different collections in
a single MobileFirst application.

The init (JavaScript) or open (Native iOS and Native Android) API can take an
options object with a user name. Different stores are separate files in the file
system. The user name is used as the file name of the store. These separate stores
can be encrypted with different passwords for security and privacy reasons.
Calling the closeAll API removes access to all the collections. It is also possible to
change the password of an encrypted store by calling the changePassword API.

An example use case would be various employees that share a physical device (for
example an iPad or Android tablet) and MobileFirst application. In addition, if the
employees work different shifts and handle private data from different customers
while they use the MobileFirst application, multiple user support is useful.

JSONStore performance:

Learn about the factors that can affect JSONStore performance.

Network

v IBM MobileFirst Platform Foundation provides APIs for getting information
about the network, for example, WL.Device.getNetworkInfo (JavaScript). Ideally,
getting and sending data from and to a MobileFirst adapter should be done
when the application is using a WiFi network.

v Check network connectivity before you perform operations, such as sending all
dirty documents to a MobileFirst adapter.

Developing applications 7-171

v The amount of data that is sent over the network to a client heavily affects
performance. Send only the data that is required by the application, instead of
copying everything inside your backend database.

v If you are using a MobileFirst adapter, consider setting the compressResponse
flag to true. That way, responses are compressed, which generally uses less
bandwidth and has a faster transfer time than without compression.

Memory

v When you use the JavaScript API, JSONStore documents are serialized and
deserialized as Strings between the Native (Objective-C, Java, or C#) Layer and
the JavaScript Layer. One way to mitigate possible memory issues is by using
limit and offset when you use the find API. That way, you limit the amount of
memory that is allocated for the results and can implement things like
pagination (show X number of results per page).

v Instead of using long key names that are eventually serialized and deserialized
as Strings, consider mapping those long key names into smaller ones (for
example:myVeryVeryVerLongKeyName to k or key). Ideally, you map them to short
key names when you send them from the adapter to the client, and map them to
the original long key names when you send data back to the backend.

v Consider splitting the data inside a store into various collections. Have small
documents over various collections instead of monolithic documents in a single
collection. This consideration depends on how closely related the data is and the
use cases for said data.

v When you use the add API with an array of objects, it is possible to run into
memory issues. To mitigate this issue, call these methods with fewer JSON
objects at a time.

v JavaScript and Java have garbage collectors, while Objective-C has Automatic
Reference Counting. Allow it to work, but do not depend on it entirely. Try to
null references that are no longer used and use profiling tools to check that
memory usage is going down when you expect it to go down.

CPU

v The amount of search fields and extra search fields that are used affect
performance when you call the add method, which does the indexing. Only
index the values that are used in queries for the find method.

v By default, JSONStore tracks local changes to its documents. This behavior can
be disabled, thus saving a few cycles, by setting the markDirty flag to false
when you use the add, remove, and replace APIs.

v Enabling security adds some overhead to the init or open APIs and other
operations that work with documents inside the collection. Consider whether
security is genuinely required. For example, the open API is much slower with
encryption because it must generate the encryption keys that are used for
encryption and decryption.

v The replace and remove APIs depend on the collection size as they must go
through the whole collection to replace or remove all occurrences. Because it
must go through each record, it must decrypt every one of them, which makes it
much slower when encryption is used. This performance hit is more noticeable
on large collections.

v The count API is relatively expensive. However, you can keep a variable that
keeps the count for that collection. Update it every time that you store or
remove things from the collection.

v The find APIs (find, findAll, and findById) are affected by encryption, since
they must decrypt every document to see whether it is a match or not. For find

7-172 IBM MobileFirst Platform Foundation V8.0.0

by query, if a limit is passed, it is potentially faster as it stops when it reaches
the limit of results. JSONStore does not need to decrypt the rest of the
documents to figure out if any other search results remain.

More information

For more information about JSONStore performance, see the JSONStore
performance blog post.

JSONStore concurrency:

Learn about JSONStore concurrency.

JavaScript

Most of the operations that can be performed on a collection, such as add and find,
are asynchronous. These operations return a jQuery promise that is resolved when
the operation completes successfully and rejected when a failure occurs. These
promises are similar to success and failure callbacks.

A jQuery Deferred is a promise that can be resolved or rejected. The following
examples are not specific to JSONStore, but are intended to help you understand
their usage in general.

The Options Object with onSuccess and onFailure callbacks that were used in
JSONStore for IBM Worklight V5.0.5 are deprecated in favor of promises.

Instead of promises and callbacks, you can also listen to JSONStore success
(’WL/JSONSTORE/SUCCESS’) and failure (’WL/JSONSTORE/FAILURE’ events. Perform
actions that are based on the arguments that are passed to the event listener.

Example promise definition
var asyncOperation = function () {

// Assumes that you have jQuery defined via $ in the environment
var deferred = $.Deferred();

setTimeout(function() {
deferred.resolve(’Hello’);

}, 1000);

return deferred.promise();
};

Example promise usage
// The function that is passed to .then is executed after 1000 ms.
asyncOperation.then(function (response) {

// response = ’Hello’
});

Example callback definition
var asyncOperation = function (callback) {

setTimeout(function() {
callback(’Hello’);

}, 1000);
};

Example callback usage
// The function that is passed to asyncOperation is executed after 1000 ms.
asyncOperation(function (response) {

// response = ’Hello’
});

Developing applications 7-173

https://www.ibm.com/developerworks/community/blogs/worklight/entry/jsonstore_performance_breakdown
https://www.ibm.com/developerworks/community/blogs/worklight/entry/jsonstore_performance_breakdown

Example events
$(document.body).on(’WL/JSONSTORE/SUCCESS’, function (evt, data, src, collectionName) {

// evt - Contains information about the event
// data - Data that is sent ater the operation (add, find, etc.) finished
// src - Name of the operation (add, find, push, etc.)
// collectionName - Name of the collection

});

Objective-C

When you use the Native iOS API for JSONStore, all operations are added to a
synchronous dispatch queue. This behavior ensures that operations that touch the
store are executed in order on a thread that is not the main thread. For more
information, see the Apple documentation at Grand Central Dispatch (GCD).

Java

When you use the Native Android API for JSONStore, all operations are executed
on the main thread. You must create threads or use thread pools to have
asynchronous behavior. All store operations are thread-safe.

Work with external data:

Learn about the different concepts that are required to work with external data.

For the actual API examples, see “JSONStore examples” on page 7-151.

Pull

Many systems use the term pull to refer to getting data from an external source.

There are three important pieces:

External Data Source
This source can be a database, a REST or SOAP API, or many others. The
only requirement is that it must be accessible from either the MobileFirst
Server or directly from the client application. Ideally, you want this source
to return data in JSON format.

Transport Layer
This source is how you get data from the external source into your internal
source, a JSONStore collection inside the store. One alternative is a
MobileFirst adapter.

Internal Data Source API
This source is the JSONStore APIs that you can use to add JSON data to a
collection.

Note: You can populate the internal store with data that is read from a file, an
input field, or hardcoded data in a variable. It does not have to come exclusively
from an external source that requires network communication.

Example pull scenario

All of the following code examples are written in pseudocode that looks similar to
JavaScript.

7-174 IBM MobileFirst Platform Foundation V8.0.0

https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html#//apple_ref/c/func/dispatch_sync

Note: Use MobileFirst adapters for the Transport Layer. Some of the advantages of
using MobileFirst adapters are XML to JSON, security, filtering, and decoupling of
server-side code and client-side code.

External Data Source: Backend REST endpoint
Imagine that you have a REST endpoint that read data from a database
and returns it as an array of JSON objects.
app.get(’/people’, function (req, res) {

var people = database.getAll(’people’);

res.json(people);
});

The data that is returned can look like the following example:
[{id: 0, name: ’carlos’, ssn: ’111-22-3333’},
{id: 1, name: ’mike’, ssn: ’111-44-3333’},
{id: 2, name: ’dgonz’ ssn: ’111-55-3333’)]

Transport Layer: MobileFirst adapter
Imagine that you created an adapter that is called people and you defined
a procedure that is called getPeople. The procedure calls the REST
endpoint and returns the array of JSON objects to the client. You might
want to do more work here, for example, return only a subset of the data
to the client.
function getPeople () {

var input = {
method : ’get’,
path : ’/people’

};

return MFP.Server.invokeHttp(input);
}

On the client, you can use the WLResourceRequest API to get the data.
Additionally, you might want to pass some parameters from the client to
the MobileFirst adapter. One example is a date with the last time that the
client got new data from the external source through the MobileFirst
adapter.

var adapter = ’people’;
var procedure = ’getPeople’;

var resource = new WLResourceRequest(’/adapters’ + ’/’ + adapter + ’/’ + procedure, WLResourceRequest.GET);
resource.send()
.then(function (responseFromAdapter) {

// ...
});

Note: You might want to take advantage of the compressResponse, timeout,
and other parameters that can be passed to the WLResourceRequest API.

Alternatively, you can skip the MobileFirst adapter and use something like
jQuery.ajax to directly contact the REST endpoint with the data that you
want to store.
$.ajax({

type: ’GET’,
url: ’http://example.org/people’,

Developing applications 7-175

})
.then(function (responseFromEndpoint) {

// ...
});

Internal Data Source API: JSONStore
After you have the response from the backend, you can work with that
data by using JSONStore.

JSONStore provides a way to track local changes. It enables some APIs to
mark documents as dirty. The API records the last operation that was
performed on the document, and when the document was marked as dirty.
You can then use this information to implement features like data
synchronization.

The change API takes the data and some options:

replaceCriteria
These search fields are part of the input data. They are used to locate
documents that are already inside a collection. For example, if you
select:
[’id’, ’ssn’]

as the replace criteria, pass the following array as the input data:
[{id: 1, ssn: ’111-22-3333’, name: ’Carlos’}]

and the people collection already contains the following document:
{_id: 1,json: {id: 1, ssn: ’111-22-3333’, name: ’Carlitos’}}

The change operation locates a document that matches exactly the
following query:
{id: 1, ssn: ’111-22-3333’}

Then the change operation performs a replacement with the input data
and the collection contains:
{_id: 1, json: {id:1, ssn: ’111-22-3333’, name: ’Carlos’}}

The name was changed from Carlitos to Carlos. If more than one
document matches the replace criteria, then all documents that match
are replaced with the respective input data.

addNew
When no documents match the replace criteria, the change API looks at
the value of this flag. If the flag is set to true, the change API creates a
new document and adds it to the store. Otherwise, no further action is
taken.

markDirty
Determines whether the change API marks documents that are
replaced or added as dirty.

An array of data is returned from the MobileFirst adapter:
.then(function (responseFromAdapter) {

var accessor = WL.JSONStore.get(’people’);

var data = responseFromAdapter.responseJSON;

var changeOptions = {
replaceCriteria : [’id’, ’ssn’],

7-176 IBM MobileFirst Platform Foundation V8.0.0

addNew : true,
markDirty : false

};

return accessor.change(data, changeOptions);
})

.then(function() {
// ...

})

You can use other APIs to track changes to the local documents that are
stored. Always get an accessor to the collection that you perform
operations on.
var accessor = WL.JSONStore.get(’people’)

Then, you can add data (array of JSON objects) and decide whether you
want it to be marked dirty or not. Typically, you want to set the markDirty
flag to false when you get changes from the external source. Then, set the
flag to true when you add data locally.
accessor.add(data, {markDirty: true})

You can also replace a document, and opt to mark the document with the
replacements as dirty or not.
accessor.replace(doc, {markDirty: true})

Similarly, you can remove a document, and opt to mark the removal as
dirty or not. Documents that are removed and marked dirty do not show
up when you use the find API. However, they are still inside the collection
until you use the markClean API, which physically removes the documents
from the collection. If the document is not marked as dirty, it is physically
removed from the collection.
accessor.remove(doc, {markDirty: true})

Push

Many systems use the term push to refer to sending data to an external source.

There are three important pieces:

Internal Data Source API
This source is the JSONStore API that returns documents with local-only
changes (dirty).

Transport Layer
This source is how you want to contact the external data source to send
the changes.

External Data Source
This source is typically a database, REST or SOAP endpoint, among others,
that receives the updates that the client made to the data.

Example push scenario

All of the following code examples are written in pseudocode that looks similar to
JavaScript.

Note: Use MobileFirst adapters for the Transport Layer. Some of the advantages of
using MobileFirst adapters are XML to JSON, security, filtering, and decoupling of
server-side code and client-side code.

Developing applications 7-177

Internal Data Source API: JSONStore
After you have an accessor to the collection, you can call the getAllDirty
API to get all documents that are marked as dirty. These documents have
local-only changes that you want to send to the external data source
through a transport layer.
var accessor = WL.JSONStore.get(’people’);

accessor.getAllDirty()

.then(function (dirtyDocs) {
// ...

});

The dirtyDocs argument looks like the following example:
[{_id: 1,

json: {id: 1, ssn: ’111-22-3333’, name: ’Carlos’},
_operation: ’add’,
_dirty: ’1395774961,12902’}]

The fields are:

_id
Internal field that JSONStore uses. Every document is assigned a
unique one.

json
The data that was stored.

_operation
The last operation that was performed on the document. Possible
values are add, store, replace, and remove.

_dirty
A time stamp that is stored as a number to represent when the
document was marked dirty.

Transport Layer: MobileFirst adapter
You can choose to send dirty documents to a MobileFirst adapter. Assume
that you have a people adapter that is defined with an updatePeople
procedure.

.then(function (dirtyDocs) {
var adapter = ’people’,
procedure = ’updatePeople’;

var resource = new WLResourceRequest(’/adapters/’ + adapter + ’/’ + procedure, WLResourceRequest.GET)
resource.setQueryParameter(’params’, [dirtyDocs]);
return resource.send();

})

.then(function (responseFromAdapter) {
// ...

})

Note: You might want to take advantage of the compressResponse, timeout,
and other parameters that can be passed to the WLResourceRequest API.
On the MobileFirst Server, the adapter has the updatePeople procedure,
which might look like the following example:
function updatePeople (dirtyDocs) {

var input = {
method : ’post’,
path : ’/people’,

7-178 IBM MobileFirst Platform Foundation V8.0.0

body: {
contentType : ’application/json’,
content : JSON.stringify(dirtyDocs)

}
};

return MFP.Server.invokeHttp(input);
}

Instead of relaying the output from the getAllDirty API on the client, you
might have to update the payload to match a format that is expected by
the backend. You might have to split the replacements, removals, and
inclusions into separate backend API calls.

Alternatively, you can iterate over the dirtyDocs array and check the
_operation field. Then, send replacements to one procedure, removals to
another procedure, and inclusions to another procedure. The previous
example sends all dirty documents in bulk to the MobileFirst adapter.

var len = dirtyDocs.length;
var arrayOfPromises = [];
var adapter = ’people’;
var procedure = ’addPerson’;
var resource;

while (len--) {

var currentDirtyDoc = dirtyDocs[len];

switch (currentDirtyDoc._operation) {

case ’add’:
case ’store’:

resource = new WLResourceRequest(’/adapters/people/addPerson’, WLResourceRequest.GET);
resource.setQueryParameter(’params’, [currentDirtyDoc]);

arrayOfPromises.push(resource.send());

break;

case ’replace’:
case ’refresh’:

resource = new WLResourceRequest(’/adapters/people/replacePerson’, WLResourceRequest.GET);
resource.setQueryParameter(’params’, [currentDirtyDoc]);

arrayOfPromises.push(resource.send());

break;

case ’remove’:
case ’erase’:

resource = new WLResourceRequest(’/adapters/people/removePerson’, WLResourceRequest.GET);
resource.setQueryParameter(’params’, [currentDirtyDoc]);

arrayOfPromises.push(resource.send());
}

}

$.when.apply(this, arrayOfPromises)
.then(function () {

var len = arguments.length;

Developing applications 7-179

while (len--) {
// Look at the responses in arguments[len]

}
});

Alternatively, you can skip the MobileFirst adapter and contact the REST
endpoint directly.
.then(function (dirtyDocs) {

return $.ajax({
type: ’POST’,
url: ’http://example.org/updatePeople’,
data: dirtyDocs

});
})

.then(function (responseFromEndpoint) {
// ...

});

External Data Source: Backend REST endpoint
The backend accepts or rejects changes, and then relays a response back to
the client. After the client looks at the response, it can pass documents that
were updated to the markClean API.
.then(function (responseFromAdapter) {

if (responseFromAdapter is successful) {
WL.JSONStore.get(’people’).markClean(dirtyDocs);

}
})

.then(function () {
// ...

})

After documents are marked as clean, they do not show up in the output
from the getAllDirty API.

JSONStore analytics:

You can enable the collection of analytics information for Android and iOS.

Overview

You can collect key pieces of analytics information that are related to JSONStore
with the MobileFirst platform.

File information
File information is collected once per application session if the JSONStore
API is called with the analytics flag set to true. An application session is
defined as loading the application into memory and removing it from
memory. You can use this information to determine how much space is
being used by JSONStore content in the application.

Performance metrics
Performance metrics are collected every time a JSONStore API is called
with information about the start and end times of an operation. You can
use this information to determine how much time various operations take
in milliseconds.

Examples

7-180 IBM MobileFirst Platform Foundation V8.0.0

iOS
JSONStoreOpenOptions* options = [JSONStoreOpenOptions new];
[options setAnalytics:YES];

[[JSONStore sharedInstance] openCollections:@[...] withOptions:options error:nil];

Android
JSONStoreInitOptions initOptions = new JSONStoreInitOptions();
initOptions.setAnalytics(true);

WLJSONStore.getInstance(...).openCollections(..., initOptions);

JavaScript

This example applies only when the application is running on the Android or iOS
environments.
var options = {

analytics : true
};

WL.JSONStore.init(..., options);

JSONStore security utilities
Learn about JSONStore security utilities.

JSONStore security utilities overview:

The MobileFirst client-side API provides some security utilities to help protect your
user's data. Features like JSONStore are great if you want to protect JSON objects.
However, it is not recommended to store binary blobs in a JSONStore collection.

Instead, store binary data on the file system, and store the file paths and other
metadata inside a JSONStore collection. If you want to protect files like images,
you can encode them as base64 strings, encrypt it, and write the output to disk.
When it is time to decrypt the data, you can look up the metadata in a JSONStore
collection, read the encrypted data from the disk, and decrypt it using the
metadata that was stored. This metadata can include the key, salt, Initialization
Vector (IV), type of file, path to the file, and others.

At a high level, the SecurityUtils API provides the following APIs:
v Key generation - Instead of passing a password directly to the encryption

function, this key generation function uses Password Based Key Derivation
Function v2 (PBKDF2) to generate a strong 256-bit key for the encryption API. It
takes a parameter for the number of iterations. The higher the number, the more
time it takes an attacker to brute force your key. Use a value of at least 10,000.
The salt must be unique and it helps ensure that attackers have a harder time
using existing hash information to attack your password. Use a length of 32
bytes.

v Encryption - Input is encrypted by using the Advanced Encryption Standard
(AES). The API takes a key that is generated with the key generation API.
Internally, it generates a secure IV, which is used to add randomization to the
first block cipher. Text is encrypted. If you want to encrypt an image or other
binary format, turn your binary into base64 text by using these APIs. This
encryption function returns an object with the following parts:
– ct (cipher text, which is also called the encrypted text)
– IV

Developing applications 7-181

– v (version, which allows the API to evolve while still being compatible with
an earlier version)

v Decryption - Takes the output from the encryption API as input, and decrypts
the cipher or encrypted text into plain text.

v Remote random string - Gets a random hex string by contacting a random
generator on the MobileFirst Server. The default value is 20 bytes, but you can
change the number up to 64 bytes.

v Local random string - Gets a random hex string by generating one locally, unlike
the remote random string API, which requires network access. The default value
is 32 bytes and there is not a maximum value. The operation time is
proportional to the number of bytes.

v Encode base64 - Takes a string and applies base64 encoding. Incurring a base64
encoding by the nature of the algorithm means that the size of the data is
increased by approximately 1.37 times the original size.

v Decode base64 - Takes a base64 encoded string and applies base64 decoding.

JSONStore security utilities setup:

Ensure that you import the following files to use the JSONStore security utilities
APIs.

iOS
#import "WLSecurityUtils.h"

Android
import com.worklight.wlclient.api.SecurityUtils

JavaScript

No setup is required.

JSONStore security utilities examples:

Learn about JSONStore security utilities examples.

JSONStore security utilities iOS examples:

Learn about JSONStore security utilities iOS examples.

Encryption and decryption
// User provided password, hardcoded only for simplicity.
NSString* password = @"HelloPassword";

// Random salt with recommended length.
NSString* salt = [WLSecurityUtils generateRandomStringWithBytes:32];

// Recomended number of iterations.
int iterations = 10000;

// Populated with an error if one occurs.
NSError* error = nil;

// Call that generates the key.
NSString* key = [WLSecurityUtils generateKeyWithPassword:password

andSalt:salt
andIterations:iterations
error:&error];

// Text that is encrypted.
NSString* originalString = @"My secret text";
NSDictionary* dict = [WLSecurityUtils encryptText:originalString

withKey:key
error:&error];

7-182 IBM MobileFirst Platform Foundation V8.0.0

// Should return: ’My secret text’.
NSString* decryptedString = [WLSecurityUtils decryptWithKey:key

andDictionary:dict
error:&error];

Encode and decode base64
// Input string.
NSString* originalString = @"Hello world!";

// Encode to base64.
NSData* originalStringData = [originalString dataUsingEncoding:NSUTF8StringEncoding];
NSString* encodedString = [WLSecurityUtils base64StringFromData:originalStringData length:originalString.length];

// Should return: ’Hello world!’.
NSString* decodedString = [[NSString alloc] initWithData:[WLSecurityUtils base64DataFromString:encodedString] encoding:NSUTF8StringEncoding];

Get remote random
[WLSecurityUtils getRandomStringFromServerWithBytes:32

timeout:1000
completionHandler:^(NSURLResponse *response, NSData *data, NSError *connectionError) {

// You might want to see the response and the connection error before moving forward.

// Get the secure random string.
NSString* secureRandom = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

}];

Get local random
NSString* secureRandom = [WLSecurityUtils generateRandomStringWithBytes:32];

JSONStore security utilities Android examples:

Learn about JSONStore security utilities Android examples.

Encryption and decryption
String password = "HelloPassword";
String salt = SecurityUtils.getRandomString(32);
int iterations = 10000;

String key = SecurityUtils.generateKey(password, salt, iterations);

String originalText = "Hello World!";

JSONObject encryptedObject = SecurityUtils.encrypt(key, originalText);

// Deciphered text will be the same as the original text.
String decipheredText = SecurityUtils.decrypt(key, encryptedObject);

Encode and decode base64
import android.util.Base64;

String originalText = "Hello World";
byte[] base64Encoded = Base64.encode(text.getBytes("UTF-8"), Base64.DEFAULT);

String encodedText = new String(base64Encoded, "UTF-8");

byte[] base64Decoded = Base64.decode(text.getBytes("UTF-8"), Base64.DEFAULT);

// Decoded text will be the same as the original text.
String decodedText = new String(base64Decoded, "UTF-8");

Get remote random
Context context; // This is the current Activity’s context.
int byteLength = 32;

// Listener calls the callback functions after it gets the response from the server.
WLRequestListener listener = new WLRequestListener(){
@Override
public void onSuccess(WLResponse wlResponse) {
// Implement the success handler.

}

@Override
public void onFailure(WLFailResponse wlFailResponse) {
// Implement the failure handler.
}

Developing applications 7-183

};

SecurityUtils.getRandomStringFromServer(byteLength, context, listener);

Get local random
int byteLength = 32;
String randomString = SecurityUtils.getRandomString(byteLength);

JSONStore security utilities JavaScript examples:

Learn about JSONStore security utilities JavaScript examples.

Encryption and decryption
// Keep the key in a variable so that it can be passed to the encrypt and decrypt API.
var key;

// Generate a key.
WL.SecurityUtils.keygen({

password: ’HelloPassword’,
salt: Math.random().toString(),
iterations: 10000

})

.then(function (res) {

// Update the key variable.
key = res;

// Encrypt text.
return WL.SecurityUtils.encrypt({
key: key,
text: ’My secret text’

});
})

.then(function (res) {

// Append the key to the result object from encrypt.
res.key = key;

// Decrypt.
return WL.SecurityUtils.decrypt(res);

})

.then(function (res) {

// Remove the key from memory.
key = null;

//res => ’My secret text’
})

.fail(function (err) {
// Handle failure in any of the previously called APIs.

});

Encode and decode base64
WL.SecurityUtils.base64Encode(’Hello World!’)
.then(function (res) {

return WL.SecurityUtils.base64Decode(res);
})
.then(function (res) {

//res => ’Hello World!’
})
.fail(function (err) {

// Handle failure.
});

Get remote random
WL.SecurityUtils.remoteRandomString(32)
.then(function (res) {

// res => deba58e9601d24380dce7dda85534c43f0b52c342ceb860390e15a638baecc7b
})
.fail(function (err) {

// Handle failure.
});

7-184 IBM MobileFirst Platform Foundation V8.0.0

Get local random
WL.SecurityUtils.localRandomString(32)
.then(function (res) {
// res => 40617812588cf3ddc1d1ad0320a907a7b62ec0abee0cc8c0dc2de0e24392843c

})
.fail(function (err) {
// Handle failure.

});

Certificate pinning
Use certificate pinning to help prevent man-in-the-middle attacks.

When communicating over public networks it is essential to send and receive
information securely. The protocol widely used to secure these communications is
SSL/TLS. (SSL/TLS refers to Secure Sockets Layer or to its successor, TLS, or
Transport Layer Security.) SSL/TLS uses digital certificates to provide
authentication and encryption. To trust that a certificate is genuine and valid, it is
digitally signed by a root certificate belonging to a trusted certificate authority
(CA). Operating systems and browsers maintain lists of trusted CA root certificates
so that they can easily verify certificates that the CAs have issued and signed.

Protocols that rely on certificate chain verification, such as SSL/TLS, are vulnerable
to a number of dangerous attacks, including man-in-the-middle attacks, which
occur when an unauthorized party is able to view and modify all traffic passing
between the mobile device and the backend systems.

IBM MobileFirst Platform Foundation provides an API to enable certificate pinning.
This API is supported in native iOS, native Android, and cross-platform Cordova
MobileFirst applications.

Certificate pinning process

Certificate pinning is the process of associating a host with its expected public key.
Because you own both the server-side code and the client-side code, you can
configure your client code to accept only a specific certificate for your domain
name, instead of any certificate that corresponds to a trusted CA root certificate
recognized by the operating system or browser.

A copy of the certificate is placed in your client application. During the SSL
handshake (first request to the server), the IBM MobileFirst Platform Foundation
client SDK verifies that the public key of the server certificate matches the public
key of the certificate that is stored in the app.

Important:

v Some mobile operating systems might cache the certificate validation check
result. Therefore, your code should call the certificate pinning API before making
a secured request. Otherwise, any subsequent request might skip the certificate
validation and pinning check.

v Calling this method a second time overrides the previous pinning operation.

If pinning is successful, the public key inside the provided certificate is used to
verify the integrity of the MobileFirst Server certificate during the secured request
SSL/TLS handshake. If pinning fails, all SSL/TLS requests to the server are
rejected by the client application.

Developing applications 7-185

Certificate setup

You must use a certificate purchased from a certificate authority. Self-signed
certificates are not supported. For compatibility with the supported environments,
make sure to use a certificate that is encoded in DER (Distinguished Encoding
Rules, as defined in the International Telecommunications Union X.690 standard)
format.

You must place the certificate in both the MobileFirst Server and in your
application. Place the certificate as follows:
1. In the MobileFirst Server: (WebSphere Application Server, WebSphere

Application Server Liberty, or Apache Tomcat). Consult the documentation for
your specific application server for information about how to configure
SSL/TLS and certificates.

2. In your application:
v Native iOS: add the certificate to the application bundle
v Native Android: place the certificate in the assets folder
v Cross-platform (Cordova): place the certificate in the app-name\www\

certificates folder

Certificate pinning API

Certificate pinning consists of a single API method, that has a parameter
certificateFilename, where certificateFilename is the name of the certificate file.

Native Android
Syntax:

public void pinTrustedCertificatePublicKey(String certificateFilename) throws IllegalArgumentException

Example:
WLClient.getInstance().pinTrustedCertificatePublicKey("myCertificate.cer");

The certificate pinning method will throw an exception in two cases:
v The file does not exist
v The file is in the wrong format

Native iOS
Syntax:
pinTrustedCertificatePublicKeyFromFile:(NSString*) certificateFilename;

Example:
[[WLClient sharedInstance]pinTrustedCertificatePublicKeyFromFile:@"myCertificate.cer"];

The certificate pinning method will raise an exception in two cases:
v The file does not exist
v The file is in the wrong format

Cross-platform (Cordova)
Syntax:
WL.Client.pinTrustedCertificatePublicKey(’certificateFilename’).then(onSuccess,onFailure)

The certificate pinning method returns a promise:
v The certificate pinning method will call the onSuccess method in case of

successful pinning.

7-186 IBM MobileFirst Platform Foundation V8.0.0

v The certificate pinning method will trigger the onFailure callback in two
cases:
– The file does not exist
– The file is in the wrong format

Example:
WL.Client.pinTrustedCertificatePublicKey(’myCertificate.cer’).then(onSuccess,onFailure)

Later, if a secured request is made to a server whose certificate is not
pinned, the onFailure callback of the specific request (for example,
WL.Client.connect or WLResourceRequest) is called.

For more details on the certificate pinning API, see the following reference sections:
v Native Android: Java client-side API WLClient class.
v Native iOS: Objective-C client-side API WLClient class.
v Cross-platform (Cordova): JavaScript client-side API WL.Client class.

Developing the server side of a MobileFirst application
This collection of topics relates to various aspects of developing the server-side
components of a MobileFirst application.

Adapters overview
Adapters contain the server-side code of applications that are deployed on and
serviced by IBM MobileFirst Platform Foundation.

MobileFirst adapters are deployed to a runtime in the IBM MobileFirst Platform
Server and are used to securely connect client applications to enterprise back-end
systems and cloud services. Adapters deliver data and perform any necessary
server-side logic on this data.

Adapters support DevOps needs:
v You can “hot deploy” adapters, meaning deploy, undeploy, and redeploy them

at run time. This capability lends great flexibility to the MobileFirst server-side
development process.

v An adapter can have user-defined properties that can be configured by
administration personnel, without redeploying the adapter. This feature lets you
customize adapter behavior for different environments, for example
development, testing, and production.

Adapters provide other benefits:
v Universality: Adapters support multiple integration technologies and back-end

information systems.
v Read-only and transactional capabilities: Adapters support read-only and

transactional access modes to back-end systems.
v Rapid development and testing: Use tools such as Apache Maven and

MobileFirst Platform CLI. Adapters use simple XML syntax and are easily
configured with the JavaScript API or Java API.

v Security: Adapters use an OAuth-based security framework that enables you to
protect enterprise resources. There are built-in annotations that let you quickly
define the scope for authorization permissions of the resources.

Developing applications 7-187

v Transparency: Data that is retrieved from back-end applications is exposed in a
uniform manner, regardless of the adapter type. Application developers can
access data uniformly, regardless of its source, format, and protocol.

Adapters as Maven projects

Apache Maven is a popular tool for building and managing Java-based projects.
Starting with IBM MobileFirst Platform Foundation V8.0.0, you can create, build,
deploy, and configure a MobileFirst adapter as a Maven project.

For more information, see “Adapters as Apache Maven projects” on page 7-189.

Adapters and third-party dependencies

Every adapter has its own isolated sandbox, in which all its classes are running
without knowing about or interrupting the sandboxes of other adapters. It is
possible to include third-party libraries that are required by the adapter code by
defining them as Maven dependencies in the adapter project pom.xml file. For more
information, see “Third-party Maven dependencies” on page 7-192.

Note: There are certain limitations in the use of third-party dependencies in
adapters. For more information, see “Adapters and third-party dependencies” on
page 3-27.

Development Language

Adapters can be developed in either in JavaScript or in Java. The source code of
the adapter in both cases has access to a rich server API, which enables it to
perform operations on the server side, such as calling other adapters, getting the
user identity, and more. For more information, see “MobileFirst Java adapters” on
page 7-192 and “MobileFirst JavaScript adapters” on page 7-204.

Lifecycle

The adapter lifecycle comprises four stages:

Develop
You develop your adapter to meet your needs. You can start by
downloading a sample adapter from the Download Center in the IBM

Figure 7-7. MobileFirst adapters

7-188 IBM MobileFirst Platform Foundation V8.0.0

https://maven.apache.org/what-is-maven.html

MobileFirst Platform Operations Console, then develop it further using an
IDE that supports Maven, such as Eclipse or IntelliJ.
v For more information about developing adapters with Eclipse or IntelliJ,

see the following tutorials: Using IntelliJ to Develop MobileFirst Java
Adapters and Developing Adapters in Eclipse.

v For information on additional facilities for developing adapters, see
“Developing Java adapter code” on page 7-200 and “Developing
JavaScript adapter code” on page 7-218.

Test and debug
MobileFirst Platform CLI makes it easy to test adapter code. It is also
possible to use external tools such as Swagger, Postman or cURL to test the
adapter. For more information, see “Tools for testing and debugging
adapters” on page 7-230.

Deploy to staging and production environments
After development and testing have been completed, you deploy the
adapter to a running MobileFirst Server.
v You can use the IBM MobileFirst Platform Operations Console to deploy

the adapter. For more information, see “Deploying Java adapters” on
page 7-198 and “Deploying JavaScript adapters” on page 7-216.

v It is also possible to automate the build and deploy process by using
Apache Maven or Apache Ant deployer tasks. For more information, see
“Administering MobileFirst applications through Ant” on page 10-23.

Configure
After developers have implemented the properties to be used in the
adapter, administration staff can configure it on-the-fly, without having to
redeploy it. For more information, see “Configuring adapters” on page
7-227.

Adapters as Apache Maven projects
When you use Maven projects to create, deploy, test, and configure adapters, you
benefit from Maven's simple project setup, efficient dependency management, and
supported IDEs, such as IntelliJ and Eclipse.

Maven repositories

Up-to-date Maven artifacts that support MobileFirst adapters are available at The
Central Repository under the GroupId com.ibm.mfp. When you build a Maven
project, Maven checks your pom.xml file to identify which dependency to
download.

If your organization does not permit online access to The Central Maven
Repository, your administrator must set up a local repository to hold and share
MobileFirst artifacts. For more information, see “Setting up an internal Maven
repository for offline development” on page 7-23.

Java adapter Maven projects

When you create a new Java adapter, a Maven project with the following structure
is produced:

Developing applications 7-189

https://mobilefirstplatform.ibmcloud.com/blog/2016/03/31/using-intellij-to-develop-adapters/
https://mobilefirstplatform.ibmcloud.com/blog/2016/03/31/using-intellij-to-develop-adapters/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/developing-adapters
http://search.maven.org/
http://search.maven.org/

v pom.xml: The Maven Project Object Model (POM) file is in the root folder. It
contains references to the adapter-maven-api, adapter-maven-plugin, and
mfp-security-checks-base adapter artifacts that were developed by MobileFirst.
For more details, see Maven adapter artifacts.

v adapter.xml: The adapter-descriptor file is under src/main/adapter-resources.
For more details, see “The Java adapter-descriptor file” on page 7-194.

v <package>: Java package that contains the JAX-RS application and all the source
files that it needs. They are located under src/main/java/. For more details, see
“Implementing the JAX-RS service of the adapter” on page 7-200.

JavaScript adapter Maven projects

When you create a new JavaScript adapter, a Maven project with the following
structure is produced:

v pom.xml: The Maven Project Object Model (POM) file is in the root folder. It
contains references to the adapter-maven-api, adapter-maven-plugin, and
mfp-security-checks-base adapter artifacts that were developed by MobileFirst.
For more details, see Maven adapter artifacts.

v adapter.xml: The adapter-descriptor file is under src/main/adapter-resources.
For more details, see “The JavaScript adapter-descriptor file” on page 7-206.

v <adapter-name>-impl.js: Contains the JavaScript source files.

Figure 7-8. Java adapter Maven project

Figure 7-9. JavaScript adapter Maven project

7-190 IBM MobileFirst Platform Foundation V8.0.0

Maven adapter artifacts

MobileFirst adapters contain three main artifacts, which are referenced in the
pom.xml file:

Maven adapter API

adapter-maven-api contains the MobileFirst code and third-party
dependencies that the adapter needs to compile properly.

Maven adapter plug-in

adapter-maven-plugin is a Maven plugin that is used to build the adapter
and deploy it. It is also used to pull and push adapter configuration. The
plug-in is defined in the pom.xml as follows:
<plugin>

<groupId>com.ibm.mfp</groupId>
<artifactId>adapter-maven-plugin</artifactId>
<version>8.0.0</version>
<extensions>true</extensions>

</plugin>

The plug-in has four goals: build, deploy, configpull, and configpush:
v

The build goal creates the adapter file by zipping the relevant files from
the project and adding the dependencies to the adapter file. The goal
creates the adapter file in the target directory with the name
<adapter-name>.adapter. The build goal runs automatically as part of
the packaging phase of the Maven lifecycle.

v
The deploy goal deploys the adapter file to the server. To use this goal,
ensure that the following values in your pom.xml file are correct.
<properties>

<!-- MobileFirst adapter deployment properties -->
<mfpfUrl>http://localhost:9080/mfpadmin</mfpfUrl>
<mfpfUser>admin</mfpfUser>
<mfpfPassword>admin</mfpfPassword>
<mfpfRuntime>mfp</mfpfRuntime>

</properties>

The parameter mfpfUrl is the URL to the server where the adapter is
deployed. If you are using HTTPS as the protocol, the connection to the
server is encrypted. The parameters mfpfUser and mfpfPassword are the
user name and password of the administration service. The parameter
mfpfRuntime defines the target runtime to deploy to.

Note: The adapter-maven-plugin deploy goal does not support server
certificate checking or host name checking. Use it in development only.
For production purposes, use the Ant deployer instead. For more
information, see “Administering MobileFirst applications through Ant”
on page 10-23.
For more information about deploying adapters with Maven, see
Deploying JavaScript adapters and Deploying Java adapters.

v The configpull goal pulls the configuration for an adapter from the
MobileFirst Server and writes it to the file specified for the
mfpfConfigFile parameter. For more information about configuring
adapters in MobileFirst Server, see “Configuring adapters” on page
7-227. To run this goal, do either of the following:

Developing applications 7-191

– Set the mfpfConfigFile parameter in the pom.xml file to point to an
output file name.

– Pass an output file name by using the DmfpfConfigFile option in a
command. For example:
mvn adapter:configpull [-DmfpfConfigFile =<path to file>]

The result is a JSON object.
v The configpush goal pushes the adapter configuration from the file

name defined for the mfpfConfigFile parameter to the MobileFirst
Server. For more information about configuring adapters in MobileFirst
Server, see “Configuring adapters” on page 7-227. To run this goal, do
either of the following:
– Set the mfpfConfigFile parameter in the pom.xml file to point to an

output file name.
– Pass an output file name by using the DmfpfConfigFile option in a

command. For example:
mvn adapter:configpush [-DmfpfConfigFile=<path to file>]

The result is a JSON object.

Custom security base classes
The mfp-security-checks-base dependency provides base classes that enable
you to implement custom security checks in adapters. If your adapter does
not use custom security checks, you can delete or comment out this
dependency:
<dependency>

<groupId>com.ibm.mfp</groupId>
<artifactId>mfp-security-checks-base</artifactId>
<version>8.0.0</version>

</dependency>

For more information about implementing custom security, see
“Security-checks implementation” on page 7-289.

Third-party Maven dependencies

Use Maven's dependency mechanism to package any artifact into your adapter. For
information on limitations in using dependencies, see “Adapters and third-party
dependencies” on page 3-27.

Note:

v If the artifact is not a Maven artifact, you can add it as a dependency by using
the systemPath element. For more information, see Introduction to the
Dependency Mechanism.

v If you wish to use the dependency without packaging it in the adapter, use the
provided scope.

MobileFirst Java adapters
With IBM MobileFirst Platform Foundation, you can create, test, and deploy
adapters that are written in Java.

For more general information about MobileFirst adapters, see “Adapters overview”
on page 7-187.

7-192 IBM MobileFirst Platform Foundation V8.0.0

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#System_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#System_Dependencies

Benefits of MobileFirst Java adapters

In addition to benefits that adapters provide in general, Java adapters also provide
these:
v Java adapters are based on the JAX-RS specification.
v Java adapters expose a full REST API to the client, giving you full control over

the URL structure, the content types, the request and response headers, content,
and encoding.

v Java adapters let you define custom MobileFirst security checks for granting
client access to protected resources.

The Java adapter framework

Figure 1 illustrates how a mobile device can access any Java adapter from its REST
endpoint. The REST interface is protected by the MobileFirst OAuth security filter,
meaning that the client needs to obtain an access token to access the adapter
resources. Each of the resources of the adapter has its own URL, so it is possible to
protect MobileFirst endpoints using any firewall. The REST interface invokes the
Java code (JAX-RS service) to handle incoming requests. The Java code can
perform operations on the server by using the Java MobileFirst Server API. In
addition, the Java code can connect to the enterprise system to fetch data, update
data, or perform any other operation that the enterprise system exposes.

Figure 7-10. The Java adapter framework

Developing applications 7-193

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html

The Java adapter-descriptor file
Learn about the function and structure of the Java adapter-descriptor file.

You use the adapter.xml descriptor file to declare the display name, description,
class name of the JAX-RS application and security checks procedures that are
exposed by a Java adapter to applications and to other adapters. The elements,
subelements, and attributes of the JavaScript adapter XML file are described in the
following sections.

The adapter.xml descriptor file is located in the adapter-resources folder, under
<Java_adapter>/src/main/.

The adapter element

The adapter element is the root element of the adapter configuration file. It has the
following structure, which consists of both attributes and subelements:
<?xml version="1.0" encoding="UTF-8"?>
<mfp:adapter name="JavaAdapter1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mfp="http://www.ibm.com/mfp/integration">

<displayName>JavaAdapter1</displayName>
<description>JavaAdapter1</description>

<JAXRSApplicationClass>com.acme.JavaAdapter1Application</JAXRSApplicationClass>

<securityCheckDefinition
name="UserAuthenticationSC"
class="com.my_company.package.MyUserAuthenticationSecurityCheck">
<property

name="maxAttempts"
displayName="Maximum attempts"
defaultValue="3"
description="Maximum allowed user-authentication attempts"/>

</securityCheckDefinition>

<property name="path" description="The path after the host name" defaultValue="/feed">
</mfp:adapter>

The adapter element attributes

name

Mandatory.

The name of the adapter. This name must be unique within the MobileFirst
Server. It can contain alphanumeric characters and underscores, and must
start with a letter. After you define and deploy an adapter, you cannot
modify its name.

The adapter element subelements

The adapter element has the following subelements.

displayName

Optional.

7-194 IBM MobileFirst Platform Foundation V8.0.0

The name of the adapter that is displayed in the MobileFirst Operations
Console. If this element is not specified, the value of the name attribute is
used instead.

description

Optional.

Additional information about the adapter. Displayed in the MobileFirst
Operations Console.

JAXRSApplicationClass

Mandatory for exposing an /adapter endpoint.Defines the class name of
the JAX-RS application of this adapter. In the example, it is
com.acme.JavaAdapter1Application. For more information, see
“Implementing the JAX-RS service of the adapter” on page 7-200.

securityCheckDefinition

Optional.

Defines a security-check object. For a full reference of the
securityCheckDefinition element, see “The <securityCheckDefinition>
element” on page 7-295.

property

Optional.

Declares a user-defined property.
v User-defined properties are shown in the MobileFirst Operations

Console in the Configurations tab for the relevant adapter. The values
that developers assign to them during the creation of the adapter can be
overridden in the console, without redeploying the adapter.

v User-defined properties can be read using the interface and then further
customized at run time. For more information, see “Configuring
adapters” on page 7-227.

The property element has the following structure:
<property name="unique-name"

description="value"
defaultValue="value"
type="value"

/>

The property element has the following attributes.

name

Mandatory.

The name of the property. This name must be unique within the
adapter. It can contain alphanumeric characters and underscores,
and must start with a letter.

description

Optional.

A user-friendly description of the property. This is the name that is
displayed in the MobileFirst Operations Console.

defaultValue

Mandatory.

Developing applications 7-195

Defines the default value of this property. This is the value the
property will have if it is not overridden.

type

Optional.

The property type. If not specified, a string is assumed. The
following values are valid:
v string: Default. Any string value is allowed.
v integer: Any integer value is allowed.
v boolean: Only true or false are allowed.
v enumerator: Only specific values are allowed. This is specified by

using a JSON array notation. For example the enumerator
[’first’, ’second’] allows only the values first and second.

Working with Java adapters
Learn how to develop and deploy JavaScript adapters.

Creating Java adapters:

You create adapters either with Maven or with the MobileFirst Platform CLI.

Creating adapters with Maven:
Before you begin

To work with Maven, ensure that you have it installed. For more information, see
https://maven.apache.org/install.html.

Procedure

In the command line, cd to the location for the new Maven project, then type in
the following command:
mvn archetype:generate
-DarchetypeGroupId=com.ibm.mfp
-DarchetypeArtifactId=adapter-maven-archetype-java
-DarchetypeVersion=<latest_version>
-DgroupId=<created_project_groupId>
-DartifactId=<created_project_artifactId>
-Dpackage=<created_project_java_package>
-Dversion=<created_project_version>

The following is an explanation of the parameters for the archetype:generate
command:

archetypeGroupId
Archetype group ID. Identifies the MobileFirst adapter archetype template.
Specify com.ibm.mfp in all cases.

archetypeArtifactId
Archetype artifact ID. Identifies the MobileFirst adapter archetype
template. Specify adapter-maven-archetype-java.

archetypeVersion
Archetype version. Identifies the MobileFirst adapter archetype template.
Specify the latest version that is available in the repository.

groupId
Sets the group of the new Maven project. Specify your own value. For
more information, see What is the POM?.

7-196 IBM MobileFirst Platform Foundation V8.0.0

https://maven.apache.org/install.html
https://maven.apache.org/pom.html#What_is_the_POM

artifactId
Sets the artifact ID of the new Maven project. This value will later be used
as the adapter name. Specify your own value.

Note: The artifact ID can contain alphanumeric characters and
underscores, and must start with a letter.

package
Sets the Java package name in src/main/java. Specify your own value. The
default is <groupId>.

version
Sets the version of the new Maven project. Set your own value. The default
is 1.0-SNAPSHOT.

Creating adapters with MobileFirst Platform CLI:
Before you begin

Ensure that you have installed MobileFirst Platform CLI and Maven.

Procedure

In the command prompt, run the following command:
mfpdev adapter create <adapter_name> -t <adapter_type> -p <adapter_package_name> -g <maven_project_groupid>

The following is an explanation of the parameters for the mfpdev adapter create
command:

adapter_name
Adapter name. Specify a value.

adapter_type
Adapter type. Specify Java.

adapter_package_name
Java adapter package name in src/main/java. Specify a value.

maven_project_groupid
Group ID of the Maven project.

Creating adapters with the MobileFirst Operations Console:
Procedure

You can also create an adapter in the MobileFirst Operations Console by clicking
New in the Adapters area and following the instructions.

Building Java adapters:

You build Java adapters with Maven or MobileFirst Platform CLI.

Building adapters with Maven:
Before you begin

To work with Maven, ensure that you have it installed. For more information, see
https://maven.apache.org/install.html.

Developing applications 7-197

https://maven.apache.org/install.html

Procedure

At the command prompt, run the mvn install command to build the Maven
project. An .adapter archive file is generated in the target folder.

Building adapters with MobileFirst Platform CLI:
Before you begin

Ensure that you have installed MobileFirst Platform CLI and Maven.

Procedure

1. At the command prompt, cd to the root folder of the Maven project.
2. Run mfpdev adapter build to build the Maven project. An .adapter archive file

is generated in the target folder.

Tip: You can also find and build all of the adapters that are in the current
directory and its subdirectories by entering mfpdev adapter build all while
you are in that directory.

Deploying Java adapters:

You deploy a Java adapter with Maven, or the MobileFirst Platform CLI.

Configuring the deploy goal:
About this task

The deploy goal deploys the adapter file to the server. Before you deploy the
adapter, ensure that the values in your pom.xml file that relate to the deploy goal
are correct. For more information, see The deploy goal.

Deploying adapters with Maven:
Before you begin

To work with Maven, ensure that you have it installed. For more information, see
https://maven.apache.org/install.html.

Procedure

1. At the command prompt, navigate to the root folder of the project.
2. Run one of the following commands:
v mvn adapter:deploy to deploy the adapter.
v mvn install adapter:deploy to build and deploy the adapter.

Note: The deploy command is available only during development.

Deploying adapters with MobileFirst Platform CLI:
Before you begin

Ensure that you have installed MobileFirst Platform CLI and Maven.

Procedure

1. At the command prompt, navigate to the root folder of the project.
2. Run the mfpdev adapter deploy -x command to deploy the adapter.

7-198 IBM MobileFirst Platform Foundation V8.0.0

https://maven.apache.org/install.html

The -x option deploys the adapter to the MobileFirst Server that is specified in
the pom.xml file of the adapter. If you leave out the option, CLI uses the default
server that is specified in the CLI settings.

Tip: You can also find and deploy all of the adapters that are in the current
directory and its subdirectories by entering mfpdev adapter deploy all while
you are in that directory.
For more CLI deployment options, run the command: mfpdev help adapter
deploy.

Note: The deploy command is available only during development.

Deploying adapters with the MobileFirst Operations Console:
Procedure

You can also deploy an adapter in the MobileFirst Operations Console by selecting
Deploy Adapter in the Actions menu and following the instructions.

Pushing Java adapter configurations:

You push Java adapter configurations to the server with Maven or MobileFirst
Platform CLI.

Pushing adapter configurations with Maven:
Before you begin

To work with Maven, ensure that you have it installed and that the mvn command
is identified in your system path. For more information about installing Maven, see
https://maven.apache.org/install.html.

Procedure

See “Maven adapter artifacts” on page 7-191 for the procedure for pushing the
configurations with Maven.

Pushing adapter configurations with MobileFirst Platform CLI:
Before you begin

Ensure that you have installed MobileFirst Platform CLI and Maven.

Procedure

1. At the command prompt, cd to the root directory of the adapter project. This
directory was created with your adapter, and has the same name as the
adapter. The config.json file is in this directory.

2. Run mfpdev adapter push to push the adapter configuration to the default
server.

Pulling Java adapter configurations:

You pull Java adapter configurations from the server with Maven or MobileFirst
Platform CLI.

Pulling adapter configurations with Maven:

Developing applications 7-199

https://maven.apache.org/install.html

Before you begin

To work with Maven, ensure that you have it installed and that the mvn command
is identified in your system path. For more information about installing Maven, see
https://maven.apache.org/install.html.

Procedure

See “Maven adapter artifacts” on page 7-191 for the procedure for pulling the
configurations with Maven.

Pulling adapter configurations with MobileFirst Platform CLI:
Before you begin

Ensure that you have installed MobileFirst Platform CLI and Maven.

Procedure

1. At the command prompt, cd to the root directory of the adapter project. This
directory was created with your adapter, and has the same name as the
adapter. If the config.json file is not in this directory, it is created.

2. Run mfpdev adapter pull to pull the adapter configuration from the default
server.

Developing Java adapter code
Learn about implementing the JAX-RS service in the adapter and the Java server
side API.

Implementing the JAX-RS service of the adapter:

To implement the JAX-RS service of the adapter, you must first implement the
JAX-RS application class, then implement the JAX-RS resources classes.

Implementing the JAX-RS application class:
About this task

The JAX-RS application class tells the JAX-RS framework which resources are
included in the application. Any resource can have a separate set of URLs.
Traditionally the application class should extend javax.ws.rs.core.Application and
implement the method getClasses or getSingletons that will be called by the
JAX-RS framework to get information about this application.

In the following example, a JAX-RS application defines three resources: Resource1,
UsersResource, and MyResourceSingleton. The first two are provided by the
getClasses method, while the last is provided by getSingletons.
import java.util.HashSet;
import java.util.Set;
import javax.ws.rs.core.Application;

public class MyApplication extends Application{

@Override
public Set<Class<?>> getClasses() {

HashSet<Class<?>> classes = new HashSet<Class<?>>();
classes.add(Resource1.class);
classes.add(UsersResource.class);
return classes;

}

7-200 IBM MobileFirst Platform Foundation V8.0.0

https://maven.apache.org/install.html

@Override
public Set<Object> getSingletons() {

Set<Object> singletons = new HashSet<Object>();
singletons.add(MyResourceSingleton.getInstance());
return singletons;

}
}

Note: The example demonstrates how to write a pure JAX-RS application using
getClasses and getSingletons. A quicker alternative is to use extends
MFPJAXRSApplication. The MFPJAXRSApplication class scans the package for
JAX-RS 2.0 resources and automatically creates a list. Additionally, its init method
is called by MobileFirst Server as soon as the adapter is deployed, before it starts
serving, and when the MobileFirst runtime starts up.

Implementing a JAX-RS resource:
About this task

A JAX-RS resource is a POJO (plain old Java object) which is mapped to a root
URL and has Java methods for serving requests to this root URL and its sub-URLs.
For example:

import java.util.ArrayList;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.Status;

@Path("/users")
//This is the root URL of the resource ("/users")
public class UsersResource {

//Instead of this static field, it could be a users DAO that works with Database or cloud storage
static ArrayList<User> users = new ArrayList<User>();

@GET
@Produces(MediaType.APPLICATION_JSON)
//This will serve: GET /users
public ArrayList<User> getUsers(){

return users;
}

@Path("/{userId}")
@Produces(MediaType.APPLICATION_JSON)
//This will serve: GET /users/{userId}
public User getUser(@PathParam("userId") String userId){

return findUserById(userId);
}

@POST
@Consumes(MediaType.APPLICATION_JSON)
//This will serve: POST /users
public void addUser(User u) {

users.add(u);
}

@PUT
@Consumes(MediaType.APPLICATION_JSON)
//This will serve: PUT /users

Developing applications 7-201

public Response updateUser(User u) {
User user = findUserById(u.getId());
if (user == null){

return Response.status(Status.NOT_FOUND)
.entity("User with ID: "+u.getId()+" not found")
.build();

}
users.remove(user);
users.add(u);
return Response.ok().build();

}

@DELETE
@Path("/{userId}")
//This will serve: DELETE /users/{userId}
public void deleteUser(@PathParam("userId") String userId){

User user = findUserById(userId);
users.remove(user);

}

private User findUserById(String userId) {
//TODO implement...
return null;

}
}

The resource just shown is mapped to the URL /users and serves the following
requests:

Table 7-18. Resource requests.

Request Description

GET /users Gets all users list

POST /user Adds a new user

GET /users/{userId} Gets a specific user with id userId

PUT /users Updates an existing user

DELETE /users/{userId} Deletes a user with id userId

The JAX-RS framework does the mapping from the simple Java object User to a
JSON object and conversely, thereby making it easier for the service developer to
use without taking care of repeating conversion-related code. The implementation
also helps in extracting parameter values from the URL and from the query string
without having to parse it manually.

Configuring protection of JAX-RS resources:
About this task

A JAX-RS adapter resource is protected by default by the MobileFirst security
framework, meaning that access to the resource requires a valid access token. See
“OAuth resource protection” on page 7-271. You can configure the resource
protection by using the @OAuthSecurity annotation to assign a custom security
scope, or to disable resource protection. For detailed configuration instructions, see
Configure protection of Java API for RESTful Web Services (JAX-RS) resources.

7-202 IBM MobileFirst Platform Foundation V8.0.0

Java server-side API:

Java adapters can use the IBM MobileFirst Platform Server Java API to perform
server-related operations such as: calling other adapters, getting values of
configuration properties, reporting activities to IBM MobileFirst Analytics, and
getting the identity of the request issuer.

The Java API has four interfaces, corresponding to four categories: authentication,
adapters, configuration, and analytics:
v AdapterSecurityContext
v AdaptersAPI
v ConfigurationAPI
v AnalyticsAPI

To access an interface, use the @ annotation. For example, to access the
AdaptersAPI interface, write:
@Context
AdaptersAPI adaptersApi;

Examples of the use of the API are provided in the following sections.

AdapterSecurityContext
The security API provides access to the security context of the client, and
the client registration data. To use the API, add an instance of
AdapterSecurityContext with the @Context annotation. The following
sample uses the API to get the display name of the authenticated user:
@Context
AdapterSecurityContext securityContext;

@OAuthSecurity(scope = "userLogin")
@GET
@Produces(MediaType.TEXT_PLAIN)
public String sayHello() {

AuthenticatedUser user = securityContext.getAuthenticatedUser();
return "Hello " + user.getDisplayName();

}

AdaptersAPI
The adapters API makes it easy to perform requests to other adapters in
the same server.

The following example shows how to use the adapters API to call a
JavaScript adapter:
@Path("/")
public class JavaAdapter1Resource {

static Logger logger = Logger.getLogger(JavaAdapter1Resource.class.getName());

// Get access to AdaptersAPI
@Context AdaptersAPI adaptersAPI;
@GET
@Path("/calljs")
@Produces("application/json")
public JSONObject callJSAdapterExample() throws Exception {

//Using helper method to create a request to the JS adapter
HttpUriRequest req = adaptersAPI.createJavascriptAdapterRequest("JSAdapter", "getStories");
//Execute the request and get the response
HttpResponse resp = adaptersAPI.executeAdapterRequest(req);
//Convert the response to JSON since we know that JS adapters always return JSON
JSONObject json = adaptersAPI.getResponseAsJSON(resp);
//Return the json response as the response of the current request
return json;

}

Developing applications 7-203

ConfigurationAPI
The configuration API enables the adapter to read server-side configuration
properties. These properties are defined in one of two places: as adapter
configuration or as JNDI entries.

For example, assume you have a user-defined property, databaseName. To
get its value, you could write the following code:
String databaseName = configurationApi.getPropertyValue("databaseName");

For more information, see “Configuring adapters” on page 7-227.

AnalyticsAPI
The Analytics API reports information to IBM MobileFirst Analytics.

For example, to send the string Getting account balance, you might write:
@Context
AnalyticsAPI analyticsApi;
@GET
public String customScopeProtected() {

analyticsApi.logActivity("Getting account balance");
// perform operation
}

Implementing connectivity in Java adapters

Unlike JavaScript adapters, Java adapters are not provided with built-in
connectivity. You can implement connectivity by using custom properties in the
adapter descriptor file. For more information, see “Configuring adapters” on page
7-227. The Java Adapters tutorial on the Developer Center website demonstrates
this feature.

MobileFirst JavaScript adapters
With IBM MobileFirst Platform Foundation, you can create, test, and deploy
adapters that are written in JavaScript.

For more general information about MobileFirst adapters, see “Adapters overview”
on page 7-187.

Benefits of MobileFirst JavaScript adapters

In addition to benefits that adapters provide in general, JavaScript adapters also
provide these:
v Fast development: Adapters are developed in JavaScript and XSL. Developers

employ flexible and powerful server-side JavaScript to produce succinct and
readable code for integrating with back-end applications and processing data.
Developers can also use XSL to transform hierarchical back-end data to JSON.

v REST Interface: With the REST interface, you can benefit from the OAuth 2.0
security framework. For more information, see “Client access to adapters” on
page 7-231.

JavaScript adapter types

IBM MobileFirst Platform Foundation V8.0.0 supports HTTP and SQL adapters:
v With a HTTP adapter, you can send GET or POST HTTP requests and retrieve

data from the response headers and body. HTTP adapters work with RESTful
and SOAP-based services, and can read structured HTTP sources such as RSS
feeds.

7-204 IBM MobileFirst Platform Foundation V8.0.0

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/java-adapters

v With an SQL adapter, you can communicate with any SQL data source. You can
use plain SQL queries or stored procedures.

The JavaScript adapter framework

The adapter framework mediates between the mobile apps and the enterprise. A
typical flow is depicted in the following diagram.
v The connectivity and auto-conversions are facilities that are provided with IBM

MobileFirst Platform Foundation.
v The back-end application, JavaScript code and XSLT components in the

MobileFirst Server are supplied by the adapter or app developer.

v An adapter provides a set of services, called procedures. Mobile apps invoke
procedures by issuing Ajax requests.

v The procedure retrieves information from the back-end application.
v The back-end application then returns data in some format:

– If this format is JSON, the MobileFirst Server keeps the data intact.

Figure 7-11. The JavaScript adapter framework

Developing applications 7-205

– If this format is not JSON, the MobileFirst Server automatically converts it to
JSON. Alternatively, you can provide an XSL transformation (XSLT) to convert
the data to JSON. In this case, the returned content type from the back end
must be XML. Then, you can use an XSLT to filter the data.

v The JavaScript implementation of the procedure receives the JSON data,
performs any additional processing, and returns it to the calling app.

Note:

v Writing an adapter that pulls large amounts of data and transfers it to the client
application is discouraged because the data must be processed twice: once at the
adapter and once again at the client application.

v HTTP POST requests are used for client-server communications between the
MobileFirst application and the MobileFirst Server. Parameters must be supplied
in a plain text or numeric format. To transfer images (or any other type of file
data), they must first be encoded in Base64 format.

The JavaScript adapter-descriptor file
Learn about the function and structure of the Java adapter-descriptor file.

You use the adapter.xml descriptor file to configure adapter connectivity to the
back-end system and to declare the procedures that are exposed by the adapter to
applications and to other adapters. The elements, subelements, and attributes of
the JavaScript adapter XML file are described in the following sections.

The adapter.xml descriptor file is located in the adapter-resources folder, under
<JavaScript_adapter>/src/main/.

The adapter element

The adapter element is the root element of the adapter configuration file. The
following example shows the structure, which consists of both attributes and
subelements:
<mfp:adapter name="Backend_adap"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mfp="http://www.ibm.com/mfp/integration"
xmlns:http="http://www.ibm.com/mfp/integration/http">

<displayName>Backend_adap</displayName>
<description>Backend_adap</description>
<connectivity>
<connectionPolicy>...</connectionPolicy>

</connectivity>
</mfp:adapter>

The adapter element attributes

The <adapter> element contains the following attributes.

name

Mandatory.

The name of the adapter. This name must be unique within the MobileFirst
Server. It can contain alphanumeric characters and underscores, and must
start with a letter. After you define and deploy an adapter, you cannot
modify its name.

7-206 IBM MobileFirst Platform Foundation V8.0.0

The adapter element subelements

The adapter element has the following subelements.

displayName

Optional.

The name of the adapter that is displayed in the MobileFirst Operations
Console. If this element is not specified, the value of the name attribute is
used instead.

description

Optional.

Additional information about the adapter. Displayed in the MobileFirst
Operations Console.

connectivity

Mandatory.

Defines the mechanism by which the adapter connects to the back-end
application. It contains the connectionPolicy subelement. The
connectionPolicy subelement is mandatory, and it defines connection
properties. The structure of this subelement depends on the integration
technology of the back-end application. For more information about
connectionPolicy, see “HTTP adapter connectionPolicy element” on page
7-209 and “SQL adapter connectionPolicy element” on page 7-213.

procedure

Mandatory.

Defines a process for accessing a service that is exposed by a back-end
application. Occurs once for each procedure that is exposed by the adapter.
An example is shown in Implementing JavaScript SQL adapters.

The procedure element has the following structure:
<procedure

name="unique-name"
audit="value"
scope="value"
secured="value"

/>

The procedure element has the following attributes.

name

Mandatory.

The name of the procedure. This name must be unique within the
adapter. It can contain alphanumeric characters and underscores,
and must start with a letter.

audit

Optional.

Defines whether calls to the procedure are logged in the audit log.
The log file is Project Name/server/log/audit/audit.log.

The following values are valid.
v true: Calls to the procedure are logged in the audit log.

Developing applications 7-207

v false: Default. Calls to the procedure are not logged in the audit
log.

scope

Optional.

The security scope that protects the adapter resource procedure, as
a string of zero or more space-separated scope elements. A scope
element can be a keyword that is mapped to a security check, or
the name of a security check. The default value of the scope
attribute is an empty string. When the value of the secured
attribute is false, the scope attribute is ignored.

For information on OAuth resource protection, see “OAuth
resource protection” on page 7-271. For detailed instructions on
how to configure resource protection for a JavaScript resource
procedure, including how to configure a protecting scope, see
Configure protection of JavaScript resources.

secured

Optional.

Defines whether the adapter resource procedure is protected by the
MobileFirst security framework. The following values are valid:
v true: Default. The procedure is protected. Calls to the procedure

require a valid access token.
v false: The procedure is not protected. Calls to the procedure do

not require an access token. When this value is set, the scope
attribute is ignored. To understand the implications of disabling
resource protection, see “Unprotected resources” on page 7-271.

For information on OAuth resource protection, see “OAuth
resource protection” on page 7-271. For detailed instructions on
how to configure resource protection for a JavaScript resource
procedure, including how to disable resource protection, see
Configure protection of JavaScript resources.

securityCheckDefinition

Optional.

Defines a security-check object. For a full reference of the
securityCheckDefinition element, see “The <securityCheckDefinition>
element” on page 7-295.

property

Optional.

Declares a user-defined property.
v User-defined properties are shown in the MobileFirst Operations

Console in the Configurations tab for the relevant adapter. The values
that developers assign to them during the creation of the adapter can be
overridden in the console, without redeploying the adapter.

v User-defined properties can be read using the and then further
customized at run time. For more information, see “Configuring
adapters” on page 7-227.

The property element has the following structure:

7-208 IBM MobileFirst Platform Foundation V8.0.0

<property name="unique-name"
description="value"
defaultValue="value"
type="value"

/>

Note: If the adapter.xml file of a JavaScript adapter contains <procedure>
elements, the <property> elements must always appear below them.
The property element has the following attributes.

name

Mandatory.

The name of the property. This name must be unique within the
adapter. It can contain alphanumeric characters and underscores,
and must start with a letter.

description

Optional.

A user-friendly description of the property. This is the name that is
displayed in the MobileFirst Operations Console.

defaultValue

Mandatory.

Defines the default value of this property. This is the value the
property will have if it is not overridden.

type

Optional.

The property type. If not specified, a string is assumed. The
following values are valid:
v string: Default. Any string value is allowed.
v integer: Any integer value is allowed.
v boolean: Only true or false are allowed.
v enumerator: Only specific values are allowed. This is specified by

using a JSON array notation. For example the enumerator
[’first’, ’second’] allows only the values first and second.

HTTP adapter connectionPolicy element:

The connectionPolicy element of the adapter-descriptor file lets you configure
settings for your adapter's HTTP connection.

This page describes only the connectionPolicy element of the adapter-descriptor
file. For information about other elements, see “The JavaScript adapter-descriptor
file” on page 7-206.

Structure

The following example of a connectionPolicy element shows its structure.
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType"; cookiePolicy="cookie-policy" maxRedirects="10">

<protocol>protocol</protocol>
<domain>host-name</domain>
<port>host-port</port>
<connectionTimeoutInMilliseconds>connection_timeout</connectionTimeoutInMilliseconds>

Developing applications 7-209

<socketTimeoutInMilliseconds>socket_timeout</socketTimeoutInMilliseconds>
<authentication> ... </authentication>
<proxy> ... </proxy>
<sslCertificateAlias>ssl-certificate-alias</sslCertificateAlias>
<sslCertificatePassword>ssl-certificate-password</sslCertificatePassword>
<maxConcurrentConnectionsPerNode>max_concurrent_connections</maxConcurrentConnectionsPerNode>

</connectionPolicy>

Attributes

The connectionPolicy element has the following attributes.

xsi:type

Mandatory.

The value of this attribute must be http:HTTPConnectionPolicyType.

cookiePolicy

Optional.

This attribute sets how the HTTP adapter handles cookies that arrive from
the back-end application. The following values are valid.
v BEST_MATCH: default value
v BROWSER_COMPATIBILITY

v RFC_2109

v RFC_2965

v NETSCAPE

v IGNORE_COOKIES

For more information about these values, see HTTP components.

maxRedirects

Optional.

The maximum number of redirects that the HTTP adapter can follow. This
attribute is useful when the back-end application sends circular redirects as
a result of some error, such as authentication failures. If this attribute is set
to 0, the adapter does not attempt to follow redirects at all, and the HTTP
302 response is returned to the user. The default value is 10.

Subelements

The connectionPolicy element has the following subelements.

protocol

Optional.

The URL protocol to use. The following values are valid.
v http: default
v https

domain

Mandatory.

The host address.

port

Optional.

7-210 IBM MobileFirst Platform Foundation V8.0.0

http://hc.apache.org/httpclient-3.x/cookies.html

The port address.

sslCertificateAlias

Optional for regular HTTP authentication and simple SSL authentication.

Mandatory for mutual SSL authentication.

The alias of the adapter private SSL key, which is used by the HTTP
adapter key manager to access the correct SSL certificate in the keystore.
For more information about the keystore setup process, see “Using SSL in
HTTP adapters” on page 7-222.

sslCertificatePassword

Optional for regular HTTP authentication and simple SSL authentication.

Mandatory for mutual SSL authentication.

The password of the adapter private SSL key, which is used by the HTTP
adapter key manager to access the correct SSL certificate in the keystore.
For more information about the keystore setup process, see “Using SSL in
HTTP adapters” on page 7-222.

authentication

Optional.

Authentication configuration of the HTTP adapter. The HTTP adapter can
use one of two authentication protocols. Define the <authentication>
element, as follows:
v Basic authentication

<authentication>
<basic/>

</authentication>

v Digest authentication
<authentication>

<digest/>
</authentication>

The connection policy can contain a <serverIdentity> element. This
feature applies to all authentication schemes. For example:
<authentication>

<basic/>
<serverIdentity>

<username></username>
<password></password>

</serverIdentity>
</authentication>

proxy

Optional.

The proxy element specifies the details of the proxy server to use when
accessing the back-end application. Add a proxy element inside the
connectionPolicy element. The proxy details must include the protocol
domain and port. If the proxy requires authentication, add a nested
authentication element inside proxy. This element has the same structure
as the one used to describe the authentication protocol of the adapter. For
more information, see the authentication element.

The following example shows a proxy that requires basic authentication
and uses a server identity.

Developing applications 7-211

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>http</protocol>
<domain>www.bbc.co.uk</domain>
<proxy>
<protocol>http</protocol>
<domain>wl-proxy</domain>
<port>8167</port>
<authentication>
<basic/>
<serverIdentity>

<username>${proxy.user}</username>
<password>${proxy.password}</password>

</serverIdentity>
</authentication>

</proxy>
</connectionPolicy>

maxConcurrentConnectionsPerNode

Optional.

Defines the maximum number of concurrent connections, which the
MobileFirst Server can open to the back end.

IBM MobileFirst Platform Foundation does not limit the incoming service
requests from applications. This subelement can be configured at the
application server level. This product limits only the number of concurrent
HTTP connections to the back-end service.

The default number of concurrent HTTP connections is 50. You can modify
this number based on the expected concurrent requests to the adapter and
the maximum requests allowed on the back-end service. You can also
configure the back-end service to limit the number of concurrent incoming
requests.

Consider a two-node system, where the expected load on the system is 100
concurrent requests and the back-end service can support up to 80
concurrent requests. You can set maxConcurrentConnectionsPerNode to 40.
This setting ensures that no more than 80 concurrent requests are made to
the back-end service.

If you increase the value, the back-end application needs more memory. To
avoid memory issues, do not to set this value too high. Instead, estimate
the average and peak number of transactions per second, and evaluate
their average duration. Then, calculate the number of required concurrent
connections as indicated in this example, and add a 5-10% margin. Then,
monitor your back end, and adjust this value as required, to ensure that
your back-end application can process all incoming requests.

When you deploy adapters to a cluster, set the value of this attribute to the
maximum required load divided by the number of cluster members.

For more information about how to size your back-end application, see the
Scalability and Hardware Sizing document and its accompanying hardware
calculator spreadsheet at Developer Center website for IBM MobileFirst
Platform Foundation.

connectionTimeoutInMilliseconds

Optional.

The timeout in milliseconds until a connection to the back-end can be
established. Setting this timeout does not ensure that a timeout exception
occurs after a specific time elapses after the invocation of the HTTP
request.

7-212 IBM MobileFirst Platform Foundation V8.0.0

https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-8-0
https://mobilefirstplatform.ibmcloud.com/learn-more/scalability-and-hardware-sizing-8-0

If you pass a different value for this parameter in the invokeHTTP()
JavaScript function, you can override the value that is defined here. For
more information, see the WL.Server class.

socketTimeoutInMilliseconds

Optional.

The timeout in milliseconds between two consecutive packets, starting
from the connection packet. Setting this timeout does not ensure that a
timeout exception occurs after a specific time elapses after the invocation
of the HTTP request.

If you pass a different value for the socketTimeoutInMilliseconds
parameter in the invokeHttp() JavaScript function, you can override the
value that is defined here. For more information, see the WL.Server class.

SQL adapter connectionPolicy element:

The connectionPolicy element of the adapter-descriptor file lets you configure
settings for your adapter's SQL connection.

This page describes only the connectionPolicy element of the adapter-descriptor
file. For information about other elements, see “The JavaScript adapter-descriptor
file” on page 7-206.

Structure

The connectionPolicy element has two options for connection:
v The dataSourceDefinition subelement for development mode
v The dataSourceJNDIName subelement for production mode

Attributes

The connectionPolicy element has one attribute:

xsi:type

Mandatory.

The value of this attribute must be set to sql:SQLConnectionPolicy.

Subelements

The connectionPolicy element must contain one of the following two subelements.

dataSourceDefinition

Optional

Contains the parameters that are needed to connect to a data source. The
adapter creates a connection for each request.

For example:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceDefinition>
<driverClass>com.mysql.jdbc.Driver</driverClass>
<url>jdbc:mysql://localhost:3306/mysqldbname</url>
<user>user_name</user>
<password>password</password>

</dataSourceDefinition>
</connectionPolicy>

Developing applications 7-213

dataSourceJNDIName

Optional.

Connect to the data source by using the JNDI name of a data source that is
provided by the application server. The adapter takes the connection from
the server connection pool that is associated with the JNDI name.

Application servers provide a way to configure data sources. For more
information, see “Installing MobileFirst Server to an application server” on
page 6-100. For example:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceJNDIName>my-adapter-ds</dataSourceJNDIName>
</connectionPolicy>

Working with JavaScript adapters
Learn how to develop, build, deploy, push, and pull Java adapters.

Creating JavaScript adapters:

You create adapters with Maven, the MobileFirst Platform CLI, or the MobileFirst
Operations Console.

Creating adapters by using Maven:
Before you begin

To work with Maven, ensure that you have it installed. For more information, see
https://maven.apache.org/install.html.

Procedure

In the command line, cd to the location for the new Maven project, then type in
the following command:
mvn archetype:generate
-DarchetypeGroupId=com.ibm.mfp
-DarchetypeArtifactId=<adapter-maven-archetype-type>
-DarchetypeVersion=<latest_version>
-DgroupId=<created_project_groupId>
-DartifactId=<created_project_artifactId>
-Dversion=<created_project_version>

The following is an explanation of the parameters for the archetype:generate
command:

archetypeGroupId
Archetype group ID. Identifies the MobileFirst adapter archetype template.
Specify com.ibm.mfp in all cases.

archetypeArtifactId
Archetype artifact ID. Identifies the MobileFirst adapter archetype
template. Specify one of the following:
v adapter-maven-archetype-http to create a JavaScript adapter with HTTP

connectivity
v adapter-maven-archetype-sql to create a JavaScript adapter with SQL

connectivity

archetypeVersion
Archetype version. Identifies the MobileFirst adapter archetype template.
Specify the latest version available in the repository.

7-214 IBM MobileFirst Platform Foundation V8.0.0

https://maven.apache.org/install.html

groupId
Sets the group of the new Maven project. Specify your own value. For
more information, see What is the POM?

artifactId
Sets the artifact ID of the new Maven project. This value will later be used
as the adapter name. Specify your own value.

Note: The artifact ID can contain alphanumeric characters and
underscores, and must start with a letter.

version
Sets the version of the new Maven project. Set your own value. The default
is 1.0-SNAPSHOT.

Creating adapters using MobileFirst Platform CLI:
Before you begin

Ensure that you have installed MobileFirst Platform CLI and Maven.

Procedure

In the command prompt, run the following command:
mfpdev adapter create <adapter_name> -t <adapter_type>
-p <adapter_package_name> -g <maven_project_groupid>

The following is an explanation of the parameters for the mfpdev adapter create
command:

adapter_name
Adapter name. Specify a value.

adapter_type
Adapter type. Specify one of the following:
v HTTP to create a JavaScript adapter with HTTP connectivity
v SQL to create a JavaScript adapter with SQL connectivity

maven_project_groupid
Group ID of the Maven project.

Creating adapters with the MobileFirst Operations Console:
Procedure

You can also create an adapter in the MobileFirst Operations Console by clicking
New in the Adapters area and following the instructions.

Building JavaScript adapters:

You build JavaScript adapters with Maven or MobileFirst Platform CLI.

Building adapters with Maven:
Before you begin

To work with Maven, ensure that you have it installed. For more information, see
https://maven.apache.org/install.html.

Developing applications 7-215

https://maven.apache.org/pom.html#What_is_the_POM
https://maven.apache.org/install.html

Procedure

At the command prompt, run the mvn install command to build the Maven
project. An .adapter archive file is generated in the target folder.

Building adapters with MobileFirst Platform CLI:
Before you begin

Ensure that you have installed MobileFirst Platform CLI and Maven.

Procedure

1. At the command prompt, cd to the root folder of the Maven project.
2. Run mfpdev adapter build to build the Maven project. An .adapter archive file

is generated in the target folder.

Tip: You can also find and build all of the adapters that are in the current
directory and its subdirectories by entering mfpdev adapter build all while
you are in that directory.

Deploying JavaScript adapters:

You deploy a JavaScript adapter with Maven, or the MobileFirst Platform CLI.

Configuring the deploy goal:
About this task

The deploy goal deploys the adapter file to the server. Before you deploy the
adapter, ensure that the values in your pom.xml file that relate to the deploy goal
are correct. For more information, see The deploy goal.

Deploying adapters with Maven:
Before you begin

To work with Maven, ensure that you have it installed. For more information, see
https://maven.apache.org/install.html.

Procedure

1. At the command prompt, navigate to the root folder of the project.
2. Run one of the following commands:
v mvn adapter:deploy to deploy the adapter.
v mvn install adapter:deploy to build and deploy the adapter.

Note: The deploy command is available only during development.

Deploying adapters with MobileFirst Platform CLI:
Before you begin

Ensure that you have installed MobileFirst Platform CLI and Maven.

Procedure

1. At the command prompt, navigate to the root folder of the project.
2. Run the mfpdev adapter deploy -x command to deploy the adapter.

7-216 IBM MobileFirst Platform Foundation V8.0.0

https://maven.apache.org/install.html

The -x option deploys the adapter to the MobileFirst Server that is specified in
the pom.xml file of the adapter. If you leave out the option, CLI uses the default
server that is specified in the CLI settings.

Tip: You can also find and deploy all of the adapters that are in the current
directory and its subdirectories by entering mfpdev adapter deploy all while
you are in that directory.
For more CLI deployment options, run the command: mfpdev help adapter
deploy.

Note: The deploy command is available only during development.

Deploying adapters with the MobileFirst Operations Console:
Procedure

You can also deploy an adapter in the MobileFirst Operations Console by selecting
Deploy Adapter in the Actions menu and following the instructions.

Pushing JavaScript adapter configurations:

You push JavaScript adapter configurations to the server with Maven or
MobileFirst Platform CLI.

Pushing adapter configurations with Maven:
Before you begin

To work with Maven, ensure that you have it installed and that the mvn command
is identified in your system path. For more information about installing Maven, see
https://maven.apache.org/install.html.

Procedure

See “Maven adapter artifacts” on page 7-191 for the procedure for pushing the
configurations with Maven.

Pushing adapter configurations with MobileFirst Platform CLI:
Before you begin

Ensure that you have installed MobileFirst Platform CLI and Maven.

Procedure

1. At the command prompt, cd to the root directory of the adapter project. This
directory was created with your adapter, and has the same name as the
adapter. The config.json file is in this directory.

2. Run mfpdev adapter push to push the adapter configuration to the default
server.

Pulling JavaScript adapter configurations:

You pull JavaScript adapter configurations from the server with Maven or
MobileFirst Platform CLI.

Pulling adapter configurations with Maven:

Developing applications 7-217

https://maven.apache.org/install.html

Before you begin

To work with Maven, ensure that you have it installed and that the mvn command
is identified in your system path. For more information about installing Maven, see
https://maven.apache.org/install.html.

Procedure

See “Maven adapter artifacts” on page 7-191 for the procedure for pulling the
configurations with Maven.

Pulling adapter configurations with MobileFirst Platform CLI:
Before you begin

Ensure that you have installed MobileFirst Platform CLI and Maven.

Procedure

1. At the command prompt, cd to the root directory of the adapter project. This
directory was created with your adapter, and has the same name as the
adapter. If the config.json file is not in this directory, it is created.

2. Run mfpdev adapter pull to pull the adapter configuration from the default
server.

Developing JavaScript adapter code
Learn about implementing JavaScript adapters.

JavaScript adapters and global variables

The IBM MobileFirst Platform Server does not rely on HTTP sessions. In a
deployment that involves multiple nodes, a client request can be processed by one
server in a cluster and the next request by another. You should not rely on global
variables to keep data from one request to the next.

Adapter response threshold

Adapter calls are not designed to return huge chunks of data because the adapter
response is stored in MobileFirst Server memory as a string. Thus, data that
exceeds the amount of available memory might cause an out-of-memory exception
and the failure of the adapter invocation. To prevent such failure, you configure a
threshold value from which the MobileFirst Server returns gzipped HTTP
responses. The HTTP protocol has standard headers to support gzip compression.
The client application must also be able to support gzip content in HTTP.

Server side

In the MobileFirst Operations Console, under Runtimes > Settings > GZIP
compression threshold for adapter responses, set the desired threshold
value and save. The default value is 20 KB.

Note: By saving the change in the MobileFirst Operations Console, the
change is effective immediately in the runtime.

Client side
Ensure that you enable the client to parse a gzip response, by setting the
value of the Accept-Encoding headers to gzip in every client request.
Examples follow:

Android native apps

7-218 IBM MobileFirst Platform Foundation V8.0.0

https://maven.apache.org/install.html

WLResourceRequest req = new WLResourceRequest(new URI("/adapters/sampleAdapter/procedure"), WLResourceRequest.GET);
req.addHeader("Accept-Encoding", "gzip");
req.send(myListener);

Javascript for Cordova apps
var request = new WLResourceRequest(’/adapters/sampleAdapter/procedure’, WLResourceRequest.GET);
request.addHeader(’Accept-Encoding’,'gzip');
request.send().then(

function(response) {
// success flow, the result can be found in response.responseJSON

},
function(error) {

// failure flow
// the error code and description can be found in error.errorCode and error.errorMsg fields respectively

}
);

Implementing JavaScript HTTP adapters:

Learn to develop a JavaScript HTTP adapter.

Before you begin

The example here shows how to implement an adapter that connects with
back-end HTTP services by using the connectivity facilities that are provided with
MobileFirst Server. You can learn more about connectivity in “The JavaScript
adapter framework” on page 7-205 and “HTTP adapter connectionPolicy element”
on page 7-209.

HTTP adapters work with RESTful and SOAP-based services, and can read
structured HTTP sources such as RSS feeds.

You can easily customize HTTP adapters with simple server-side JavaScript code.
For example, you can set up server-side filtering if necessary. The retrieved data
can be in XML, HTML, JSON, or plain text format.

There are three parts to the implementation of a JavaScript adapter:
v Configuring the adapter.xml descriptor file:

– In the connectionPolicy element, you declare the parameters that relate to the
HTTP connection over which the adapter connects. For more information, see
“HTTP adapter connectionPolicy element” on page 7-209.

– You declare each procedure that you implement in the JavaScript source files,
by using a procedure element. For more information, see HTTP adapter
procedure element.

v Implementing procedure logic in JavaScript source files.
v (Optional) Using XSL to filter received records and fields.

This page also shows you how to call a SOAP-based service in the HTTP adapter.

Configuring the adapter.xml descriptor file:
Procedure

1. In the adapter-descriptor file, configure the following parameters inside the
connectivityelement:
v Set the protocol to http or https.
v Set the HTTP domain to the domain part of the HTTP URL.
v Set the TCP Port.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<mfp:adapter name="JavaScriptHTTP"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Developing applications 7-219

xmlns:mfp="http://www.ibm.com/mfp/integration"
xmlns:http="http://www.ibm.com/mfp/integration/http">

<displayName>JavaScriptHTTP</displayName>
<description>JavaScriptHTTP</description>
<connectivity>

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>https</protocol>
<domain>mobilefirstplatform.ibmcloud.com</domain>
<port>443</port>
<connectionTimeoutInMilliseconds>30000</connectionTimeoutInMilliseconds>
<socketTimeoutInMilliseconds>30000</socketTimeoutInMilliseconds>
<maxConcurrentConnectionsPerNode>50</maxConcurrentConnectionsPerNode>

</connectionPolicy>
</connectivity>

</mfp:adapter>

2. Declare a getFeed procedure to get an RSS feed and a getFeedFiltered
procedure to specify XSL transformation options on the feed data.

Note: The name of the procedure that you declare in the adapter-descriptor file
must be identical to the name you use when you implement the procedure
itself.
<procedure name="getFeed"/>
<procedure name="getFeedFiltered"/>

JavaScript procedure implementation:
Before you begin

A service URL is used for procedure invocations. Some parts of the URL are
constant. For example, http://example.com/. Other parts of the URL can be
parameterized, that is, substituted at run time by parameter values that are
provided to the MobileFirst procedure. The following URL parts can be
parameterized:
v Path elements
v Query string parameters
v Fragments

For more information about advanced adapter options, such as cookies, headers,
and encoding, see “HTTP adapter connectionPolicy element” on page 7-209.

Procedure

Call an HTTP request by using the MFP.Server.invokeHttp function. Note that
MFP.Server.invokeHttp requires an input parameter object, which must specify the
following options:
v The HTTP method: GET, POST, PUT, or DELETE
v The returned content type: XML, JSON, HTML, or plain
v The service path
v The query parameters (optional)
v The request body (optional)
v The transformation type (optional)

For a complete list of options, see the MFP.Server.invokeHttp function.
function getFeed() {

var input = {
method : ’get’,

7-220 IBM MobileFirst Platform Foundation V8.0.0

returnedContentType : ’xml’,
path : "feed.xml"

};

return MFP.Server.invokeHttp(input);
}

XSL transformation filtering:
Before you begin

You can also apply XSL transformation to the received data. For example, to filter
the feed data.

Procedure

1. Create a filtered.xsl file in the same location as the JavaScript
implementation file.

2. Specify the transformation options in the input parameters of the
getFeedFiltered procedure invocation.
function getFeedFiltered() {

var input = {
method : ’get’,
returnedContentType : ’xml’,
path : "feed.xml",
transformation : {

type : ’xslFile’,
xslFile : ’filtered.xsl’

}
};

return MFP.Server.invokeHttp(input);
}

Creating a SOAP-based service request:
Before you begin

You can use the MFP.Server.invokeHttp function to create a SOAP envelope.

Procedure

1. To call a SOAP-based service in a JavaScript HTTP adapter, encode the SOAP
XML envelope within the request body by using ECMAScript for XML (E4X).
var request =

<soap:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<GetCitiesByCountry xmlns="http://www.webserviceX.NET">

<CountryName>{countryName}</CountryName>
</GetCitiesByCountry>

</soap:Body>
</soap:Envelope>;

2. Use the MFP.Server.invokeHttp (options) function to call a request for a SOAP
service. The options argument is a JSON object that must include the following
properties:
v A method property: usually POST
v A returnedContentType property: usually XML
v A path property: a service path
v A body property: content (SOAP XML as a string) and contentType

Developing applications 7-221

var input = {
method: ’post’,
returnedContentType: ’xml’,
path: ’/globalweather.asmx’,
body: {

content: request.toString(),
contentType: ’text/xml; charset=utf-8’

}
};

var result = MFP.Server.invokeHttp(input);

Using SSL in HTTP adapters:

You can use SSL in an HTTP adapter with simple and mutual authentication to
connect to back-end services.

About this task

Configure the MobileFirst Server to use SSL in an HTTP adapter by performing the
steps described here.

Note: SSL represents transport level security, which is independent of basic
authentication. It is possible to do basic authentication either over HTTP or HTTPS.

Procedure

1. Set the URL protocol of the HTTP adapter to https.
2. Store SSL certificates in the MobileFirst Server keystore. See “Configuring the

MobileFirst Server keystore” on page 7-316.
SSL with mutual authentication

If you use SSL with mutual authentication, you must also perform the following
steps:
3. Generate your own private key for the HTTP adapter or use one provided by a

trusted authority.
4. If you generated your own private key, export the public certificate of the

generated private key and import it into the back-end truststore.
5. Define an alias and password for the private key in the connectionPolicy

element of the adapter-descriptor XML file, adapter.xml. The
sslCertificateAlias and sslCertificatePassword subelements are described
in “HTTP adapter connectionPolicy element” on page 7-209.

Implementing JavaScript SQL adapters:

Learn to develop a JavaScript SQL adapter.

Before you begin

The example in this page shows how to implement an adapter that connects with a
MySQL database by using the connectivity facilities that are provided with
MobileFirst Server. You can learn more about connectivity in “The JavaScript
adapter framework” on page 7-205 and “SQL adapter connectionPolicy element”
on page 7-213.

To connect to an SQL database, JavaScript code needs a JDBC connector driver for
the specific database type. You must download the appropriate JDBC connector

7-222 IBM MobileFirst Platform Foundation V8.0.0

driver and add it as a dependency in your Maven project. For more information
about adding dependencies, see System Dependencies.

There are two parts to the implementation of a JavaScript adapter:
v Configuring the adapter.xml descriptor file:

– In the connectionPolicy element, you declare the parameters of the SQL
database to which the adapter connects. For more information, see “SQL
adapter connectionPolicy element” on page 7-213.

– You declare each procedure that you implement in the JavaScript source files,
by using a procedure element. For more information, see SQL adapter
procedure element.

v Implementing procedure logic in JavaScript source files.

Configuring the adapter.xml descriptor file:
Procedure

1. In the adapter-descriptor file, inside the connectivityelement:, configure the
following parameters:
v JDBC driver class
v Database URL
v Username
v Password
<?xml version="1.0" encoding="UTF-8"?>
<mfp:adapter name="JavaScriptSQL"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mfp="http://www.ibm.com/mfp/integration"
xmlns:sql="http://www.ibm.com/mfp/integration/sql">

<displayName>JavaScriptSQL</displayName>
<description>JavaScriptSQL</description>
<connectivity>

<connectionPolicy xsi:type="sql:SQLConnectionPolicy">
<dataSourceDefinition>

<driverClass>com.mysql.jdbc.Driver</driverClass>
<url>jdbc:mysql://localhost:3306/mobilefirst_training</url>
<user>mobilefirst</user>
<password>mobilefirst</password>

</dataSourceDefinition>
</connectionPolicy>

</connectivity>

</mfp:adapter>

2. Declare a procedure for connecting to the database with a plain SQL query and
one for connecting with a stored procedure.

Note: The name of the procedure that you declare in the adapter-descriptor file
must be identical to the name you use when implementing the procedure itself.
<procedure name = "getAccountTransactions1" />
<procedure name = "getAccountTransactions2" />

JavaScript procedure implementation: SQL statement query:
Procedure

1. Assign your SQL query to a variable.
2. Add parameters, if necessary.

Developing applications 7-223

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#System_Dependencies

var getAccountsTransactionsStatement = "SELECT transactionId, fromAccount, toAccount, transactionDate, transactionAmount, transactionType " +
"FROM accounttransactions " +
"WHERE accounttransactions.fromAccount = ? OR accounttransactions.toAccount = ? " +
"ORDER BY transactionDate DESC " +
"LIMIT 20;";

3. Use the MFP.Server.invokeSQLStatement function to call prepared queries.
function getAccountTransactions1(accountId){

// MFP.Server.invokeSQLStatement calls prepared queries

4. Return the result to the application or to another procedure.
return MFP.Server.invokeSQLStatement({

preparedStatement : getAccountsTransactionsStatement,
parameters : [accountId, accountId]

});

JavaScript procedure implementation: SQL stored procedure:
Procedure

Run an SQL stored procedure by using the MFP.Server.invokeSQLStoredProcedure
function. Specify an SQL stored procedure name as an invocation parameter.
// Invoke stored SQL procedure and return invocation result
function getAccountTransactions2 (accountId){

// To run a SQL stored procedure, use the MFP.Server.invokeSQLStoredProcedure method
return MFP . Server . invokeSQLStoredProcedure ({

procedure : "getAccountTransactions" ,
parameters : [accountId]

});
}

Using multiple parameters:
Procedure

When using multiple parameters in an SQL query, make sure to accept the
variables in the function and pass them to the MFP.Server.invokeSQLStatement or
MFP.Server.invokeSQLStoredProcedure parameters in an array.
var getAccountsTransactionsStatement = "SELECT transactionId, fromAccount, toAccount, transactionDate, transactionAmount, transactionType " +

"FROM accounttransactions " +
"WHERE accounttransactions.fromAccount = ? AND accounttransactions.toAccount = ? " +
"ORDER BY transactionDate DESC " +
"LIMIT 20;";

//Invoke prepared SQL query and return invocation result
function getAccountTransactions1(fromAccount, toAccount){

return MFP.Server.invokeSQLStatement({
preparedStatement : getAccountsTransactionsStatement,
parameters : [fromAccount, toAccount]

});
}

Output: JSON object:
Results

Assuming that the following is the result set:

Table 7-19. Database entries

fromAccount toAccount transactionAmounttransactionDate transactionId transactionType

"12345" "54321" 180.00 "2009-03-
11T11:08:39.000Z"

"W06091500863" "Funds
Transfer"

"12345" null 130.00 "2009-03-
07T11:09:39.000Z"

"W214122\/
5337"

"ATM
Withdrawal"

Then the resulting JSON object is:

7-224 IBM MobileFirst Platform Foundation V8.0.0

{
"isSuccessful": true,
"resultSet": [{
"fromAccount": "12345",
"toAccount": "54321",
"transactionAmount": 180.00,
"transactionDate": "2009-03-11T11:08:39.000Z",
"transactionId": "W06091500863",
"transactionType": "Funds Transfer"

}, {
"fromAccount": "12345",
"toAccount": null,
"transactionAmount": 130.00,
"transactionDate": "2009-03-07T11:09:39.000Z",
"transactionId": "W214122\/5337",
"transactionType": "ATM Withdrawal"

}]
}

v The isSuccessful property defines whether the invocation was successful.
v The resultSet object is an array of returned records.

– To access the resultSet object on the client-side, write:
result.invocationResult.resultSet

– To access the resultSet object on the server-side, write:
result.ResultSet

JavaScript server-side API:

JavaScript adapters can use the IBM MobileFirst Platform Server JavaScript API to
perform server-related operations such as: calling other adapters, logging adapter
activity, getting values of configuration properties, reporting activities to IBM
MobileFirst Analytics, and getting the identity of the request issuer.

MFP.Server and MFP.Logger

The JavaScript server-side API is provided in two classes:
v MFP.Server: for server operations
v MFP.Logger: for logging

Examples of the use of the API are provided in the following sections.

Security
The MFP.Server.getTokenIntrospectionData function provides access to the
security context of the client and the client registration data. The following
sample uses the function to get the display name of the authenticated user:
AuthenticatedUser user =

securityContext.getAuthenticatedUser();
return "Hello " + user.getDisplayName();

}

Calling adapter procedures
The MFP.Server.invokeProcedure makes it easy to perform requests to
other adapters in the same server.

The following example shows how to use this function to call a JavaScript
adapter:

Developing applications 7-225

function callAnotherProcedure() {
var invocationData = {

adapter : “JsAdapter”, procedure :
“getStories”

};
return MFP.Server.invokeProcedure();}

For more information, see “Configuring adapters” on page 7-227.

Configuration properties
The MFP.Server.getPropertyValue function enables the adapter to read a
property from the adapter configuration.

For example, assume you have a user-defined property, databaseName. To
get its value, you could write the following code:
var dbName = MFP.Server.getPropertyValue('databaseName');

For more information, see “Configuring adapters” on page 7-227.

Analytics
The MFP.Server.logActivity function reports information to IBM
MobileFirst Analytics.

For example, to send the string Getting account balance, you might write:
function getBalance(user) {

MFP.Server.logActivity('Getting account balance);
// perform operation

}

Logging
The JavaScript API provides logging capabilities through the MFP.Logger
class. It contains four functions that correspond to four standard logging
levels.

Calling Java code from a JavaScript adapter:

Follow these instructions to instantiate Java objects and call their methods from
JavaScript code in your adapter.

Before you begin

Attention: The name of any Java package to which you refer from within an
adapter must start with the domains com, org, or net.

Procedure

1. Instantiate a Java object by using the new keyword and apply the method on
the newly instantiated object.

2. Optional: Assign a JavaScript variable to be used as a reference to the newly
instantiated object. For example:
var x = new MyJavaClass();
var y = x.myMethod(1, "a");

3. Add the Java classes in either of the following ways:
v As source files of the JavaScript adapter, under <adapter>/src/main/java/

<package>.
v As Maven dependencies. See “Third-party Maven dependencies” on page

7-192.

7-226 IBM MobileFirst Platform Foundation V8.0.0

Example

The following snippets demonstrate how to invoke custom Java classes from the
JavaScript code in your adapter. Assume you are adding a class Calculator to your
Java class and that it contains a static method addTwoIntegers and an instance
method subtractTwoIntegers:
public class Calculator {

// Add two integers
public static int addTwoIntegers (int first, int second){

return first+second ;
}

// Subtract two integers
public int subtractTwoIntegers (int first, int second){

return first-second ;
}

}

Invoke the static Java method and use the full class name to reference it directly
function addTwoIntegers (a, b){

return {
result: com.sample.customcode.Calculator.addTwoIntegers (a, b)
};

}

Use the instance method: create a class instance and invoke the instance method
from it

function subtractTwoIntegers (a, b){
var calcInstance = new com.sample.customcode.Calculator();
return {

result: calcInstance.subtractTwoIntegers (a, b)
};

}

Configuring adapters
Learn how you can override properties during run time, without having to
redeploy adapters.

About this task

Starting with V8.0.0 of MobileFirst Server, administrators can use the MobileFirst
Operations Console to modify the behavior of an adapter that has been deployed.
After configuration has been modified, the changes take effect in the server
immediately, without the need to redeploy the adapter, or restart the server. For
more information, see “Configuring adapter properties with MobileFirst Operations
Console” on page 7-228 in this page.

There are two levels of properties that can be modified on-the-fly:
v In both SQL and HTTP JavaScript adapters, you can configure the predefined

properties that relate to the connection policy. For a full description of all these
properties, see “HTTP adapter connectionPolicy element” on page 7-209 and
“SQL adapter connectionPolicy element” on page 7-213.

v In all adapters, you can also configure user-defined properties. For more
information about creating user-defined properties, see “Creating user-defined
adapter properties” on page 7-228 in this page.

Developing applications 7-227

Creating user-defined adapter properties
About this task

You use a property element for each user-defined property you want to add. For
more information on the property element, see property element of the JavaScript
adapter XML file, or property element of the Java adapter XML file.

Procedure
1. Open the adapter-descriptor (adapter.xml) file for your adapter in an editor.
2. For each new property, add a property element to the file, as follows:

<property name="unique-name"
description="value"
defaultValue="value"
type="value"

/>

Note: If the adapter.xml file of a JavaScript adapter contains procedure
elements, the property elements must always appear below them.

3. Save the adapter.xml file.
4. To apply your changes and make your custom properties available in the

MobileFirst Server, build your adapter and deploy it to an instance of the
server.

Results

After you successfully deploy an adapter with custom properties to the server, you
make the value of the properties available to the adapter code with a call to the
appropriate API:
v For JavaScript: MFP.Server.getPropertyValue (propertyName)
v For Java: ConfigurationAPI.getPropertyValue (propertyName)

See “Using user-defined property values in adapter code” on page 7-229 in this
page.

Configuring adapter properties with MobileFirst Operations
Console
About this task

Both the built-in connection policy properties as well as the user-defined properties
can be overridden in the MobileFirst Operations Console.

Example

Assume that you have deployed a JavaScript adapter JavaSQL to MobileFirst
Server. Assume that the adapter.xml descriptor file contains three user-defined
properties, as follows:
<mfp:adapter name="JavaSQL"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mfp="http://www.ibm.com/mfp/integration"
xmlns:sql="http://www.ibm.com/mfp/integration/sql">

<displayName>JavaSQL</displayName>
<description>JavaSQL</description>
<connectivity>

<connectionPolicy xsi:type="sql:SQLConnectionPolicy">
<dataSourceDefinition>

<driverClass>com.mysql.jdbc.Driver</driverClass>
<url>jdbc:mysql://localhost:3306/mydb</url>
<user>myUsername</user>
<password>myPassword</password>

7-228 IBM MobileFirst Platform Foundation V8.0.0

</dataSourceDefinition>
</connectionPolicy>

</connectivity>

<!-- Procedures -->
<procedure name="procedure1"/>

<!-- Custom properties -->
<property name="DB_url" displayName="Database URL" defaultValue="jdbc:mysql://127.0.0.1:3306/mobilefirst_training" />
<property name="DB_username" displayName="Database username" defaultValue="mobilefirst" />
<property name="DB_password" displayName="Database password" defaultValue="mobilefirst" />

</mfp:adapter>

You can view the configuration settings by clicking the Configurations tab under
mfp Runtime > adapter_name. The predefined connection policy parameters are
displayed under Connectivity. Beneath them, under Parameters, are the
user-defined properties settings. In this example, Database URL, Database
username, and Database password.

Administrators can modify the values that are shown and save. The changes take
effect immediately, without redeploying the adapter.

Sharing adapter configurations
About this task

Customized adapter properties appear in the modified adapter configuration file in
the Configuration files tab of MobileFirst Operations Console. Use the configpull
and configpush goals to share the custom configuration. See Maven adapter
plug-in.

Using user-defined property values in adapter code
About this task

There are both Java and JavaScript server-side APIs that enable you to retrieve
properties defined in the adapter.xml file or in MobileFirst Operations Console.

Figure 7-12. User-defined adapter properties in the MobileFirst Operations Console

Developing applications 7-229

v In Java, use the ConfigurationAPI class. Inside your Java class, add the following
at the class level:
@Context
ConfigurationAPI configurationAPI ;

Then you can use the configurationAPI instance to get properties:
configurationAPI.getPropertyValue ("DB_url");

When the adapter configuration is modified from the MobileFirst Operations
console, the JAX-RS application class is reloaded and its init method is called
again.

Note: The getServerJNDIProperty method can also be used to retrieve a JNDI
property from your server configuration.

v In JavaScript, use the MFP.Server.getPropertyValue(propertyName) function to
retrieve properties:
MFP.Server.getPropertyValue("name");

Tools for testing and debugging adapters
MobileFirst Java adapters expose a full REST API that enables you to test
functionality by issuing HTTP requests.

You can test adapters using MobileFirst Platform CLI, as well as third-party tools
such as Swagger and Postman.

The base URL for an adapter is:

<server-address>/<context-root>/api/adapters/<adaptername>.

Testing adapters with MobileFirst Platform CLI

To test an adapter by using CLI, you call it by running the mfpdev adapter
call command.

For more information on the command, see “Command-line interface (CLI)
summary” on page 7-17, or run the mfpdev help adapter call command.

Testing adapters with Swagger UI
MobileFirst Development Server ships with a built-in Swagger UI which
displays a graphical representation of the Swagger document for the
endpoints that are exposed by adapters. From the MobileFirst Operations
Console, display the Swagger UI by clicking View Swagger Docs in the
Resources tab of the adapter.

7-230 IBM MobileFirst Platform Foundation V8.0.0

Swagger-UI provides a convenient way of testing adapters, by letting you
specify the appropriate parameters for every adapter endpoint. In addition,
it is able to implicitly obtain a token for any scope that is used by the
adapter, thus avoiding the need to manually obtain the token.

Testing adapters with external Swagger tools

MobileFirst Server exposes an endpoint that provides Swagger 2.0
documentation so that you can test adapters with any tool that parses
Swagger 2.0 JSON format. The URL of the endpoint is:<server-
ip>:<server-port>/<context-root>/api/adapterdoc/<adaptername>

Testing adapters with REST clients such as Postman

You can use Postman or similar tools to test HTTP requests and pass the
following parameters:
v URL parameters
v Path parameters
v Body parameters
v Headers

If your resource is protected by a security scope, perform the necessary
steps for acquiring an access token and accessing the protected resource.
See “Acquiring access tokens” on page 7-280 and “Accessing protected
resources” on page 7-281.

Debugging Java adapters
You debug the Java code in an adapter just as you do in any remote Java
debug. Connect to MobileFirst Server on the debug port using your
favorite IDE. The debug port varies from server to server. In a MobileFirst
Server that is based onWebSphere® Application Server Liberty profile, it is
10777 by default.

Client access to adapters
Mobile clients can access both Java and JavaScript adapters from the /adapters
endpoint on the server.

Figure 7-13. Viewing a Swagger Document

Developing applications 7-231

The URL pattern for accessing the /adapters endpoint is as follows:
http(s)://<server>:<port>/<Context>/api/adapters/<adapter-name>/*

For example, assuming that http://mfp-server-host/project is the IBM
MobileFirst Platform Foundation project URL, and the project contains one Java
adapter named adapter1 and the adapter has a resource with path /res1, then
/res1 is accessible from the following URL:
http://mfp-server-host/project/api/adapters/adapter1/res1

Note: Using the /adapters endpoint is the recommended way to access IBM
MobileFirst Platform Foundation adapters. This endpoint supports both JavaScript
and Java adapters and is protected by an OAuth security mechanism.

Accessing adapters from a mobile client

IBM MobileFirst Platform Foundation provides a client API for accessing OAuth
protected resources such as adapters. If you choose to use MobileFirst client for
that purpose, it will automatically handle security for you. The following examples
demonstrate how to use the client API to access an adapter resource:

Cordova JavaScript client
var request = new WLResourceRequest("adapters/adapter1/res1", WLResourceRequest.GET);

request.send().then(
function(response) {

alert(JSON.stringify(response));
},

function(error) {
alert(JSON.stringify(error));

}
);

Native Android client
WLResourceRequest req = new WLResourceRequest(new URI("adapters/adapter1/res1"), WLResourceRequest.GET);
req.send(new WLResponseListener(){

@Override
public void onSuccess(WLResponse response) {

// handle success

}
@Override
public void onFailure(WLFailResponse response) {

// handle failure

}});

Native iOS client
NSString static *const RESOURCE_URL = @"adapters/adapter1/res1";
WLResourceRequest *request = [WLResourceRequest requestWithURL:[NSURL URLWithString:RESOURCE_URL] method:WLHttpMethodGet];
[request sendWithCompletionHandler:^(WLResponse *response, NSError *error) {

NSString *httpStatus = [NSString stringWithFormat:@"%d", [response status]];
self.httpStatusTextField.text = httpStatus;
if (error != nil) {

[self updateView:[error description]];
} else {

[self updateView:[response responseText]];
}

}];

Native Windows 10 UWP and Windows 8 Universal
WLResourceRequest req = new WLResourceRequest("adapters/adapter1/res1", WLResourceRequest.GET);
InvokeListener listener = new InvokeListener();
req.send(listener);

7-232 IBM MobileFirst Platform Foundation V8.0.0

public class InvokeListener : WLResponseListener {
public void onSuccess(WLResponse response){

//handle success
}

public void onFailure(WLFailResponse response){
//handle failure

}
}

RESTful access to Java adapters

You call an existing Java adapter over HTTP via REST URLs.

The URL pattern is as follows:
http(s)://<server>:<port>/<Context>/adapters/<adapter-name>/*

For example:
http://<hostname>:<port>/mfp/adapters/TodaysNews/getStory?story=world

Java adapters support all REST features, so you can use all HTTP request methods,
headers, query parameters, and more.

RESTful access to JavaScript adapters

You call existing JavaScript adapter procedures over HTTP via REST URLs.

The URL pattern is as follows:
http(s)://<server>:<port>/<Context>/api/adapters/<adapter-name>/<procedure-name>

For example:
http://<hostname>:<port>/mfp/api/adapters/TodaysNews/getStories?params=[’world’]

Both the GET and POST methods can be used to call the adapter procedure. The
procedure arguments are passed as the value of a parameter called params. This
parameter is a query parameter for GET requests and a form parameter for POST
requests. The value must be a JSON array of parameters that are provided in order.

Note: For successful invocations, the status code of the HTTP response is set to
200 (OK). The response body contains the JSON output that resulted from the
invocation of the JavaScript adapter. If an error occurred during adapter
invocation, the status code is set to 500 (Internal Server Error).

Troubleshooting an error when an application or an adapter is
pushed to a MobileFirst Server

Symptoms
When you push an application or an adapter to a MobileFirst Server, a message
reports the following error: Runtime '<YourRuntime>' is not available on this
server.

Causes
All applications and adapters are pushed to a MobileFirst Server runtime. The
runtime is defined by the MobileFirst server that is running. Before you push these
applications and adapters to the MobileFirst Server, make sure the server is

Developing applications 7-233

running. The error that you encountered indicates that the CLI cannot locate the
associated runtime on the target MobileFirst Server.

The CLI cannot detect a runtime on a MobileFirst Server in the following cases:
v The MobileFirst Server is not running.
v No network connection is established between the system that runs the CLI and

the MobileFirst Server.
v You have not deployed the runtime to the MobileFirst Server.

Resolving the problem
1. Confirm that the MobileFirst Server is running.

Local MobileFirst Server

a. Start your MobileFirst Server if it is not running.

Remote MobileFirst Server

a. Run the mfpdev server info command and identify the target
remote server. Note the corresponding URL and Name values.

b. Ping the host specified in the target server URL. Do not include the
port or protocol. For example: ping remotehost.com. If the host is
unreachable or the pings timeout, contact the server administrator
to have the server started and verify that no network connectivity
issues exist.

c. Assuming the server is running, run the mfpdev server info
<server> command, where <server> is the Name value from the
previous mfpdev server info command.

d. If the MobileFirst Server information is displayed, the MobileFirst
Server is running. Otherwise, contact your server administrator to
start the MobileFirst Server. For more information, enter mfpdev
help server info on the IBM MobileFirst Platform Foundation
command line interface.

2. If you know that the MobileFirst Server is running, confirm that the required
runtime is installed and running on that MobileFirst Server. For both a local
and remote server:
a. Run the mfpdev server info command and identify the target remote server

Name value. The local MobileFirst Server name is typically local.
b. Run the mfpdev server info <server> command, where <server> is the Name

value from step 2a.
c. Look at the command output and find the runtimes listed under the

Runtime section.
d. Determine whether you are pushing to one of the runtimes that are listed in

step 2c by looking at the log output of the push command. The log output
should include the following information:
Pushing app_name_or_adapter_name to server: ’server_url’
runtime:’runtime_name’.

e. If you are not using one of the runtimes in step 2c, complete one of the
following steps:
v Specify the name of the target runtime when you run the mfpdev app

push command. Run the mfpdev help app push command for more
information about how to specify the name of the runtime.

v Change the runtime name in your app config by entering the following
command:
mfpdev app config runtime runtime_name

7-234 IBM MobileFirst Platform Foundation V8.0.0

Updating Cordova client apps directly
With direct updates, you deliver updated web resources directly to deployed client
applications.

Subject to the terms and conditions of the target platform, organizations are not
required to upload new app versions to the app store or market. By using the
Direct Update feature, you can quickly update application web resources (HTML,
JavaScript, and CSS) without going through the vendor (Apple/Google) app store
review process.

Direct Update is activated automatically when web resources are deployed in the
MobileFirst Server. Once activated, it will be enforced on every request to a
protected resource. When you use the Direct Update feature and the web resources
checksum feature is enabled, a new checksum base is established with each Direct
Update.

Direct Update is not intended for updating native code.

Supported platforms

Direct Update is available only for iOS and Android Cordova apps.

Prerequisites

If the MobileFirst Server was upgraded by using a fix pack, it continues to serve
direct updates properly. However, if a recently built Direct Update archive (.zip
file) is uploaded, it can halt updates to older clients. The reason is that the archive
contains the version of the cordova-plugin-mfp plug-in. Before it serves that
archive to a mobile client, the server compares the client version with the plug-in
version. If both versions are close enough (meaning that the three most significant
digits are identical), Direct Update occurs normally. Otherwise, MobileFirst Server
silently skips the update. One solution for the version mismatch is to download
the cordova-plugin-mfp with the same version as the one in your original Cordova
project and regenerate the Direct Update archive.

Incremental and full Direct Update

Client applications built on IBM MobileFirst Platform Foundation V8.0.0:
v Receive an incremental update if the web resources of the application are only one

build behind those in the application that is now being deployed. Only the web
resources that were changed since the last deployment are downloaded and
updated.

v Receive a full update if the web resources of the application are more than one
build behind those in the application that is now being deployed.

Secure and non-secure Direct Update

For secure Direct Update to work, deploy a user-defined keystore file in
MobileFirst Server and include a copy of the matching public key in the client
application. If the client is not configured with a public key, MobileFirst Server
uses the default server keystore to sign Direct Update but does not enforce
signature matching.

Developing applications 7-235

If secure Direct Update was enabled and the archive signature was compromised,
the client halts the update. Failures such as these are reported in the server logs.

Note: Failures such as these might also prevent correct adapter invocation.

For more information about implementing secure Direct Update, see
“Implementing secure Direct Update on the client side” on page 7-239.

Direct Update in development, testing, and production

For development and testing purposes, developers typically use Direct Update by
simply uploading an archive to the development server. While this process is easy
to implement, it is not very secure. For this phase, an internal RSA key pair that is
extracted from an embedded MobileFirst self-signed certificate is used.

For the phases of live production or even pre-production testing, however, it is
strongly recommended to implement secure Direct Update before you publish your
application to the app store. Secure Direct Update requires an RSA key pair that is
extracted from a real CA signed server certificate.

To implement secure Direct Update, deploy a user-defined keystore to the
MobileFirst Server and copy the matching public key to the client application. For
more information about implementing secure Direct Update, see “Implementing
secure Direct Update on the client side” on page 7-239.

Note: Take care that you do not modify the keystore configuration after the
application was published, updates that are downloaded can no longer be
authenticated without reconfiguring the application with a new public key and
republishing the application. Without performing these two steps, Direct Update
fails on the client.

For more information, see “The Direct Update lifecycle.”

Direct Update data transfer rates

At optimal conditions, a single MobileFirst Server can push data to clients at the
rate of 250 MB per second. If higher rates are required, consider a cluster or a
CDN service.

For more information, see “Serving Direct Update requests from a CDN” on page
7-241.

The Direct Update lifecycle
Package and upload updated web resources to the MobileFirst Server. Deployed
client Cordova apps can then download them with Direct Update.

A Direct Update scenario

The following diagram shows a typical production scenario. Web resources of a
Cordova application that was published to an app store and downloaded to users'
devices are updated directly.

7-236 IBM MobileFirst Platform Foundation V8.0.0

1. The user downloads the application that was published in the app store. The
application is marked and is published as V1.0.

2. Using CLI, the developer generates a package of updated web resources and
deploys it to MobileFirst Server

3. Each time the client application makes a resource request to the MobileFirst
Server, it checks for updates to the web resources. If any are found, the client is
notified and is prompted to download the modified files, for example, a new
HTML file.

4. After the download finishes, the general version of the application as shown on
the user's device and as shown in the MobileFirst Operations Console is V1.0;
however, internally, the web resources that it contains were revised slightly (call
it V1.1). The only evidence that something changed is the application
checksum, in addition to several internal files that changed too.

Creating and deploying updated web resources to MobileFirst
Server

To make modified web resources available to deployed client Cordova
applications, you package and upload them as an archive (.zip file) to the
MobileFirst Server.

About this task

You use either MobileFirst Platform CLI or MobileFirst Operations Console to
perform procedures on the updated web resources package:
v You can use MobileFirst Platform CLI commands to generate and upload the

archive.
v You can use the MobileFirst Operations Console only to upload an existing

archive.

Figure 7-14. Direct update cycle

Developing applications 7-237

Creating and deploying updated web resources to the default
MobileFirst Server
Procedure
1. From the command line, navigate to the root of the Cordova project.
2. Run the command:

mfpdev app webupdate

The updated web resources are packaged to an archive and uploaded to the
default MobileFirst Server that is running in the developer workstation. The
packaged web resources are located in the <cordova-project-root-folder>/
mobilefirst/ folder.
The archive in the mobilefirst folder contains important metadata. It embeds
the version of the cordova-plugin-mfp plug-in. Before it serves that archive to a
mobile client, the server compares the client version with the plug-in version. If
both versions are close enough (meaning that the three most significant digits
are identical), Direct Update occurs normally. Otherwise, MobileFirst Server
silently skips the update.

Creating and deploying updated web resources to a non-default
MobileFirst Server
Procedure
1. Build the archive.
2. Run the command:

mfpdev app webupdate [server-name] [runtime-name]

For example:
mfpdev app webupdate myQAServer MyBankApps

Uploading a previously generated archive
Procedure

Run the command:
mfpdev app webupdate [server-name] [runtime-name] --file [path-to-packaged-web-resources]

For example:
mfpdev app webupdate myQAServer MyBankApps --file mobilefirst/ios/com.mfp.myBankApp-1.0.1.zip

Uploading packaged web resources with the MobileFirst
Operations Console
Procedure
1. Build the archive.

mfpdev app webupdate --build

2. Display the MobileFirst Operations Console from the following URL:
http://localhost:9080/mfpconsole/

7-238 IBM MobileFirst Platform Foundation V8.0.0

3. Click an application version in the navigation sidebar.
4. Click Upload Web Resources Archive and in the file chooser that is displayed,

choose the archive for upload.

Implementing secure Direct Update on the client side
You can configure client applications to validate the authenticity of a Direct Update
package that is downloaded from the MobileFirst Server or CDN.

About this task

For secure Direct Update to work, a user-defined keystore file must be deployed in
MobileFirst Server and a copy of the matching public key must be included in the
deployed client application. For more information, see Secure and non-secure
Direct Update.

This topic describes how to bind a public key to new client applications and
existing client applications that were upgraded. For more information on
configuring the keystore in MobileFirst Server, see “Configuring the MobileFirst
Server keystore” on page 7-316.

The server provides a built-in keystore that can be used for testing secure Direct
Update for development phases.

Note: After you bind the public key to the client application and rebuild it, you do
not need to upload it again to the MobileFirst Server. However, if you previously
published the application to the market, without the public key, you must
republish it.

For development purposes, the following default, dummy public key is provided
with MobileFirst Server:
-----BEGIN PUBLIC KEY-----
MIIDPjCCAiagAwIBAgIEUD3/bjANBgkqhkiG9w0BAQsFADBgMQswCQYDVQQGEwJJTDELMAkGA1UECBMCSUwxETA
PBgNVBAcTCFNoZWZheWltMQwwCgYDVQQKEwNJQk0xEjAQBgNVBAsTCVdvcmtsaWdodDEPMA0GA1UEAxMGV0wgRG
V2MCAXDTEyMDgyOTExMzkyNloYDzQ3NTAwNzI3MTEzOTI2WjBgMQswCQYDVQQGEwJJTDELMAkGA1UECBMCSUwxE
TAPBgNVBAcTCFNoZWZheWltMQwwCgYDVQQKEwNJQk0xEjAQBgNVBAsTCVdvcmtsaWdodDEPMA0GA1UEAxMGV0wg

Figure 7-15. MobileFirst Operations Console for uploading an archive

Developing applications 7-239

RGV2MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAzQN3vEB2/of7KAvuvyoIt0T7cjaSTjnOBm0N3+q
zx++dh92KpNJXj/a3o4YbwJXkJ7jU8ykjCYvjXRf0hme+HGhiIVwxJo54iqh76skDS5m7DaseFdndZUJ4p7NFVw
I5ixA36ZArSZ/Pn/ej56/RRjBeRI7AEGXUSGojBUPA6J6DYkwaXQRew9l+Q1kj4dTigyKL5Os0vNFaQyYu+bT2E
vnOixQ0DXm94IqmHZamZKbZLrWcOEfuAsSjKYOdMSM9jkCiHaKcj7fpEZhUxRRs7joKs1Ri4ihs6JeUvMEiG4gK
l9V3FP/Huy0pfkL0F8xMHgaQ4c/lxS/s3PV0OEg+7wIDAQABMA0GCSqGSIb3DQEBCwUAA4IBAQAgEhhqRl2Rgkt
MJeqOCRcT3uyr4XDK3hmuhEaE0nOvLHi61PoLKnDUNryWUicK/W+tUP9jkN5xRckdzG6TJ/HPySmZ7Adr6QRFu+
xcIMY+/S8j4PHLXBjoqgtUMhkt7S2/thN/VA6mwZpw4Ol0Pa2hyT2TkhQoYYkRwYCk9pxmuBCoH/eCWpSxquNny
RwrY25x0YzccXUaMI8L3/3hzq3mW40YIMiEdpiD5HqjUDpzN1funHNQdsxEIMYsWmGAwOdV5slFzyrH+ErUYUFA
pdGIdLtkrhzbqHFwXE0v3dt+lnLf21wRPIqYHaEu+EB/A4dLO6hm+IjBeu/No7H7TBFm
-----END PUBLIC KEY-----

Important: Do not use the public key for production purposes. See “Direct Update
in development, testing, and production” on page 7-236.

There are many tools available for generating certificates and extracting public
keys from a keystore. The following example demonstrates the procedures with the
JDK keytool utility and openSSL.

Procedure
1. Extract the public key from the keystore file that is deployed in the MobileFirst

Server.

Note: The public key must be Base64 encoded.
For example, assume that the alias name is mfp-server and the keystore file is
keystore.jks.
a. To generate a certificate, issue the following command:

keytool -export -alias mfp-server -file certfile.cert
-keystore keystore.jks -storepass keypassword

A certificate file is generated.
b. Issue the following command to extract the public key:

openssl x509 -inform der -in certfile.cert -pubkey -noout

Note: Keytool alone cannot extract public keys in Base64 format.
2. Perform one of the following procedures:
v Copy the resulting text, without the BEGIN PUBLIC KEY and END PUBLIC KEY

markers into the mfpclient property file of the application, immediately after
wlSecureDirectUpdatePublicKey.

v From the command prompt, issue the following command:
mfpdev app config direct_update_authenticity_public_key <public_key>

For <public_key>, paste the text that results from Step 1, without the BEGIN
PUBLIC KEY and END PUBLIC KEY markers.

3. Run the cordova build command to save the public key in the application.

Default Direct Update user interface
Learn about the default user interface of the Direct Update feature.

Default UI for Direct Update

When the app receives an update from the MobileFirst Server, it starts
downloading the newly deployed resources, as shown in the following figures. If
the download fails mid-way, the direct update resumes from where the download
was broken the previous time.

7-240 IBM MobileFirst Platform Foundation V8.0.0

The user notifications in the following figures show the default method of
implementing Direct Update.

Serving Direct Update requests from a CDN
You can configure Direct Update requests to be served from a CDN (content
delivery network) instead of from the MobileFirst Server.

Advantages of using a CDN

Using a CDN instead of the MobileFirst Server to serve Direct Update requests has
the following advantages:
v Removes network overheads from the MobileFirst Server.
v Increases transfer rates higher than the 250 MB/second limit when serving

requests from a MobileFirst Server.
v Ensures a more uniform Direct Update experience for all users regardless of

their geographical location.

General requirements

To serve Direct Update requests from a CDN, ensure that your configuration
conforms to the following conditions:
v The CDN must be a reverse proxy in front of the MobileFirst Server (or in front

of another reverse proxy if needed).
v When building the application from your development environment, set up your

target server to the CDN host and port instead of the host and port of the
MobileFirst Server. For example, when running the MobileFirst Platform CLI
command mfpdev server add, provide the CDN host and port.

Figure 7-16. Default Direct Update notices

Developing applications 7-241

v In the CDN administration panel, you need to mark the following Direct Update
URLs for caching to ensure that the CDN passes all requests to the MobileFirst
Server except for the Direct Update requests. For Direct Update requests, the
CDN determines whether it obtained the content. If it has, it returns it without
going to the MobileFirst Server; if not, it goes to the MobileFirst Server, gets the
Direct Update archive (.zip file), and stores it for the next requests for that
specific URL. For applications that are built with V8.0.0 of IBM MobileFirst
Platform Foundation, the Direct Update URL is: PROTOCOL://DOMAIN:PORT/
CONTEXT_PATH/api/directupdate/VERSION/CHECKSUM/TYPE.
The PROTOCOL://DOMAIN:PORT/CONTEXT_PATH prefix is constant for all runtime
requests. For example:http://my.cdn.com:9080/mfp/api/directupdate/0.0.1/
742914155/full?appId=com.ibm.DirectUpdateTestApp&clientPlatform=android

In the example, there are additional request parameters that are also part of the
request.

v The CDN must allow caching of the request parameters. Two different Direct
Update archives might differ only by the request parameters.

v The CDN must support TTL on the Direct Update response. The support is
needed to support multiple direct updates for the same version.

v The CDN must not change or remove the HTTP headers that are used in the
MobileFirst server-client protocol.

Example configuration

This example is based on using an Akamai CDN configuration that caches the
Direct Update archive. The following tasks are completed by the network
administrator, the MobileFirst administrator, and the Akamai administrator:

Network administrator

1. Create another domain in the DNS for your MobileFirst Server. For
example, if your server domain is yourcompany.com you need to create
an additional domain such as cdn.yourcompany.com.

2. In the DNS for the new cdn.yourcompany.com domain, set a CNAME
to the domain name that is provided by Akamai. For example,
yourcompany.com.akamai.net.

MobileFirst administrator
Set the new cdn.yourcompany.com domain as the MobileFirst Server URL
for the MobileFirst applications. For example, for the Ant builder task, the
property is: <property name="wl.server" value="http://
cdn.yourcompany.com/${contextPath}/"/>

Akamai administrator

1. Open the Akamai property manager and set the property host name to
the value of the new domain.

2. On the Default Rule tab, configure the original MobileFirst Server host
and port, and set the Custom Forward Host Header value to the newly
created domain.

7-242 IBM MobileFirst Platform Foundation V8.0.0

3. From the Caching Option list, select No Store.

4. From the Static Content configuration tab, configure the matching
criteria according to the Direct Update URL of the application. For
example, create a condition that states If Path matches one of
direct_update_URL.

5. Set values similar to the following values to configure the caching
behavior to make cache the Direct Update URL and to set TTL.

Table 7-20. Configuring caching.

Field Value

Caching Option Cache

Force Revaluation of Stale Objects Serve stale if unable to validate

Max-age 3 minutes

Developing applications 7-243

6. Configure the cache key behavior to use all request parameters in the
cache key (you must do so to cache different Direct Update archives for
different applications or versions). For example, from the Behavior list,
select Include all parameters (preserve order from request).

7. Save and activate the configuration.

Customizing the Direct Update user interface and process
You can change the default user interface for the Direct Update dialog boxes and
the messages that are displayed to the user.

You can control the direct update process without presenting a user interface to the
user and control what happens when the direct update process fails.

Override the handleDirectUpdate function of the Direct Update challenge handler
to customize the direct update process and interface in iOS and Android
applications. The handleDirectUpdate function is defined inside worklights.js. It
has the following format:
wl_directUpdateChallengeHandler.handleDirectUpdate = function (directUpdateData,directUpdateContext){...}

The function accepts the following arguments:

directUpdateData
A JSON object that contains the downloadSize property that represents the
files size in bytes of the update package to be downloaded from server.

directUpdateContext
A JavaScript object that exposes a .start() and .stop() function that start
and stop the Direct Update flow.

If the web resources are newer on the MobileFirst Server than in the application,
Direct Update challenge data is added to the server response. Whenever the
MobileFirst client-side framework detects this direct update challenge, it invokes
the wl_directUpdateChallengeHandler.handleDirectUpdate function.

The function provides a default Direct Update design: a default message dialog
that is displayed when a Direct Update is available and a default progress screen
that is displayed when the direct update process is initiated. For examples of
default screens, see “Default Direct Update user interface” on page 7-240. You can
implement custom Direct Update user interface behavior or customize the Direct
Update dialog box by overriding this function and implementing your own logic.

The following example handleDirectUpdate function implements a custom message
in the Direct Update dialog. Add this code into the www/js/index.js file of the
Cordova project .
wl_directUpdateChallengeHandler.handleDirectUpdate = function(directUpdateData, directUpdateContext) {

navigator.notification.confirm(// Creates a dialog.
’Custom dialog body text’,
// Handle dialog buttons.
directUpdateContext.start();

},
’Custom dialog title text’,
[’Update’]

);
};

7-244 IBM MobileFirst Platform Foundation V8.0.0

The result is shown in Figure 1.

You can start the direct update process by running the
directUpdateContext.start() method whenever the user clicks the dialog button.
The default progress screen, which resembles the one in previous versions of
MobileFirst Server is shown.

This method supports the following types of invocation:
v When no parameters are specified, IBM MobileFirst Platform Server uses the

default progress screen.
v When a listener function such as

directUpdateContext.start(directUpdateCustomListener) is supplied, the direct
update process runs in the background while the process sends lifecycle events
to the listener. The custom listener must implement the following methods:
var directUpdateCustomListener = {

onStart : function (totalSize){ },
onProgress : function (status , totalSize , completedSize){ },
onFinish : function (status){ }

};

Figure 7-17. Custom update notice

Developing applications 7-245

The listener methods are started during the direct update process according to
following rules:
v onStart is called with the totalSize parameter that holds the size of the update

file.
v onProgress is called multiple times with status DOWNLOAD_IN_PROGRESS,

totalSize, and completedSize (the volume that is downloaded so far).
v onProgress is called with status UNZIP_IN_PROGRESS.
v onFinish is called with one of the following final status codes:

Table 7-21. Status codes for the onFinish rule

Status code Description

SUCCESS Direct update finished with no errors.

CANCELED Direct update was canceled (for example,
because the stop() method was called).

FAILURE_NETWORK_PROBLEM There was a problem with a network
connection during the update.

FAILURE_DOWNLOADING The file was not downloaded completely.

FAILURE_NOT_ENOUGH_SPACE There is not enough space on the device to
download and unpack the update file.

FAILURE_UNZIPPING There was a problem unpacking the update
file.

FAILURE_ALREADY_IN_PROGRESS The start method was called while direct
update was already running.

FAILURE_INTEGRITY Authenticity of update file cannot be
verified.

FAILURE_UNKNOWN Unexpected internal error.

If you implement a custom direct update listener, you must ensure that the app is
reloaded when the direct update process is complete and the onFinish() method
has been called. You must also call
wl_directUpdateChalengeHandler.submitFailure() if the direct update process fails
to complete successfully.

The following example shows an implementation of a custom direct update
listener:
var directUpdateCustomListener = {
onStart: function(totalSize){
//show custom progress dialog

},
onProgress: function(status,totalSize,completedSize){
//update custom progress dialog

},
onFinish: function(status){

if (status == ’SUCCESS’){
//show success message
WL.Client.reloadApp();

}
else {
//show custom error message

//submitFailure must be called is case of error
wl_directUpdateChallengeHandler.submitFailure();

}
}

};

wl_directUpdateChallengeHandler.handleDirectUpdate = function(directUpdateData, directUpdateContext){

7-246 IBM MobileFirst Platform Foundation V8.0.0

WL.SimpleDialog.show(’Update Avalible’, ’Press update button to download version 2.0’, [{
text : ’update’,
handler : function() {
directUpdateContext.start(directUpdateCustomListener);

}
}]);

};

Scenario: Running UI-less direct updates

IBM MobileFirst Platform Foundation supports UI-less direct update when the
application is in the foreground.

To run UI-less direct updates, implement directUpdateCustomListener. Provide
empty function implementations to the onStart and onProgress methods. Empty
implementations cause the direct update process to run in the background.

To complete the direct update process, the application must be reloaded. The
following options are available:
v The onFinish method can be empty as well. In this case, direct update will

apply after the application has restarted.
v You can implement a custom dialog that informs or requires the user to restart

the application. (See the following example.)
v The onFinish method can enforce a reload of the application by calling

WL.Client.reloadApp().

Here is an example implementation of directUpdateCustomListener:
var directUpdateCustomListener = {
onStart: function(totalSize){
},
onProgress: function(status,totalSize,completeSize){
},
onFinish: function(status){
WL.SimpleDialog.show(’New Update Available’, ’Press reload button to update to new version’, [{
text : WL.ClientMessages.reload,
handler : WL.Client.reloadApp

}]);
}

};

Implement the wl_directUpdateChallengeHandler.handleDirectUpdate function.
Pass the directUpdateCustomListener implementation that you have created as a
parameter to the function. Make sure
directUpdateContext.start(directUpdateCustomListener) is called. Here is an
example wl_directUpdateChallengeHandler.handleDirectUpdate implementation:
wl_directUpdateChallengeHandler.handleDirectUpdate = function(directUpdateData, directUpdateContext){

directUpdateContext.start(directUpdateCustomListener);
};

Note: When the application is sent to the background, the direct-update process is
suspended.

Scenario: Handling a direct update failure

This scenario shows how to handle a direct update failure that might be caused,
for example, by loss of connectivity. In this scenario, the user is prevented from
using the app even in offline mode. A dialog is displayed offering the user the
option to try again.

Developing applications 7-247

Create a global variable to store the direct update context so that you can use it
subsequently when the direct update process fails. For example:
var savedDirectUpdateContext;

Implement a direct update challenge handler. Save the direct update context here.
For example:
wl_directUpdateChallengeHandler.handleDirectUpdate = function(directUpdateData, directUpdateContext){

savedDirectUpdateContext = directUpdateContext; // save direct update context

var downloadSizeInMB = (directUpdateData.downloadSize /
1048576).toFixed(1).replace(".", WL.App.getDecimalSeparator());
var directUpdateMsg = WL.Utils.formatString(WL.ClientMessages.directUpdateNotificationMessage, downloadSizeInMB);

WL.SimpleDialog.show(WL.ClientMessages.directUpdateNotificationTitle, directUpdateMsg, [{
text : WL.ClientMessages.update,
handler : function() {
directUpdateContext.start(directUpdateCustomListener);

}
}]);

};

Create a function that starts the direct update process by using the direct update
context. For example:
restartDirectUpdate = function () {
savedDirectUpdateContext.start(directUpdateCustomListener);

// use saved direct update context to restart direct update
};

Implement directUpdateCustomListener. Add status checking in the onFinish
method. If the status starts with “FAILURE”, open a modal only dialog with the
option “Try Again”. For example:
var directUpdateCustomListener = {
onStart: function(totalSize){
alert(’onStart: totalSize = ’ + totalSize + ’Byte’);

},
onProgress: function(status,totalSize,completeSize){
alert(’onProgress: status = ’ + status + ’ completeSize = ’ + completeSize + ’Byte’);

},
onFinish: function(status){
alert(’onFinish: status = ’ + status);
var pos = status.indexOf("FAILURE");
if (pos > -1) {
WL.SimpleDialog.show(’Update Failed’, ’Press try again button’, [{
text : "Try Again",
handler : restartDirectUpdate // restart direct update

}]);
}

}
};

When the user clicks the Try Again button, the application restarts the direct
update process.

Push notification
Push notification is the ability of a mobile device to receive messages that are
pushed from a server. Notifications are received regardless of whether the
application is currently running.

Notifications can take several forms, and are platform-dependent:
v Alert: a pop-up text message
v Badge, Tile: a graphical representation that includes a short text or image
v Banner, Toast: a pop-up text message at the top of the device display that

disappears after it has been read

7-248 IBM MobileFirst Platform Foundation V8.0.0

v Audio alert

The IBM MobileFirst Platform Foundation unified push notification mechanism
enables sending of mobile notifications to mobile devices. Notifications are sent
through the vendor infrastructure. For example, iPhone notifications are sent from
the MobileFirst Server to specialized Apple servers, and from there to the relevant
phones. The unified push notification mechanism makes the entire process of
communicating with the users and devices completely transparent to the
developer.

The following diagram shows an example of a push notification mechanism where
notifications are sent from the MobileFirst Server to specialized servers or
gateways and from there to the relevant phones.

Push notification currently works for SMS, WNS, iOS and Android. iOS apps use
the Apple Push Notification Service (APNs), Android apps use Google Cloud
Messaging (GCM), and Windows apps use Windows Push Notification Services
(WNS). For more information about setting up push notification for each platform,
see “Setting up push notifications” on page 7-253.

Proxy settings

Use the proxy settings to set the optional proxy through which notifications are
sent to APNs and GCM. You can set the proxy by using the push.apns.proxy.*
and push.gcm.proxy.* configuration properties. For more information, see “List of
JNDI properties for MobileFirst Server push service” on page 6-186.

Note: WNS does not have proxy support.

Architecture

Unlike other IBM MobileFirst Platform Foundation services, the push server
requires outbound connections to Apple and Google servers using ports that are
defined by these companies.

Figure 7-18. Push notification mechanism

Developing applications 7-249

Push notification architecture
You can create an IBM MobileFirst Platform Foundation push notification
architecture using the enterprise back-end calling method, in which an enterprise
back end uses a IBM MobileFirst Platform Foundation adapter to deliver messages
to a MobileFirst Server cluster.

This architecture relies on the enterprise back-end system to deliver messages to a
MobileFirst Server cluster by calling push REST APIs.

With this architecture, the flow is as follows:
1. The request is routed to one of the MobileFirst Server instances, which sends a

push message to a provider.
2. In this flow, all MobileFirst Server instances can send push notifications, but for

a specific request only one of the server instances performs the task.
3. The enterprise back-end initiates calls to the load balancer.

The advantage of this method are that all MobileFirst Server can be used to send
push notifications, so you can add more servers if you must send more messages
per second. The disadvantage of this method is that every push message is a
transaction on the MobileFirst Server. You can mitigate this overhead by sending a
number of messages together or by having the IBM MobileFirst Platform
Foundation adapter procedure that is invoked call the back-end for a batch of
messages rather than single messages.

Getting started with push notifications
Learn how to get started to add push notification support to your IBM MobileFirst
Platform Foundation app.

Figure 7-19. Enterprise back-end push notification architecture

7-250 IBM MobileFirst Platform Foundation V8.0.0

Before you begin
v Set up your development environment. For more information, see “Setting up

the development environment” on page 7-9.
v Create an application. For more information, see “Developing the client side of a

MobileFirst application” on page 7-24.

About this task

To get started with push notification, go to the Development Center website and
review the tutorials about push notification. However, if you need to learn how to
migrate an existing IBM MobileFirst Platform Foundation to V8.0.0, read about the
concept changes in “Migrating to push notifications from event source-based
notifications” on page 5-54 and follow the instructions in “Migration scenarios” on
page 5-56.

Procedure
1. Go to the Notifications tutorial page on the Development Center website.
2. Review the tutorials for your preferred development platform.

Security for push notification clients
Every client interacting with push must provide a valid access token with the
required scopes.

For mobile client applications, IBM MobileFirst Platform Foundation SDK
orchestrates the OAuth flow so that the mobile client application obtains a valid
access token with the required scope.

The back-end server applications must register as confidential clients and must
also implement the OAuth flow with the IBM MobileFirst Platform Foundation
authorization server to obtain a valid access token with the required scopes.

For information on push scopes and the semantics that server applications can use
as appropriate when obtaining a token, see Table 7-22. For information on
configuring a confidential client, see “Confidential clients” on page 7-279.

Table 7-22. Push scopes and semantics

Scope Meaning

apps.read Permission to read application resource.

apps.write Permission to create, update, delete
application resource.

gcmConf.read Permission to read GCM configuration
settings (API Key and SenderId).

gcmConf.write Permission to update, delete GCM
configuration settings.

apnsConf.read Permission to read APNs configuration
settings.

apnsConf.write Permission to update, delete APNs
configuration settings.

devices.read Permission to read device.

devices.write Permission to create, update delete device.

subscriptions.read Permission to read subscriptions.

Developing applications 7-251

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/notifications/

Table 7-22. Push scopes and semantics (continued)

Scope Meaning

subscriptions.write Permission to create, update, delete
subscriptions.

messages.write Permission to send push notifications.

webhooks.write Permission to read event-notifications.

webhooks.read Permission to read event-notifications.

smsConf.read Permission to read SMS configuration
settings.

smsConf.write Permission to update, delete SMS
configuration settings.

wnsConf.read Permission to read WNS configuration
settings.

wnsConf.write Permission to update, delete WNS
configuration settings.

Related links

“Obtaining tokens”
Every client interacting with push must provide a valid access token with the
required scopes for making Push REST API calls. A simple example on how to
obtain the token and use the push REST API is shown.

Obtaining tokens
Every client interacting with push must provide a valid access token with the
required scopes for making Push REST API calls. A simple example on how to
obtain the token and use the push REST API is shown.

About this task

For mobile client applications, IBM MobileFirst Platform Foundation SDK
orchestrates the OAuth flow so that the mobile push client application obtains a
valid access token with the required scope.

Procedure
1. You will have to POST a request to the URL http(s)://<host>:<port>/mfp/api/

az/v1/token to get an access token.
2. Before you can POST the request, you will need to set the scope parameters in

the Body.
For information on push scopes and the semantics that server applications can
use as appropriate when obtaining a token, see Table 7-22 on page 7-251.

3. Now set the Authorization header by providing the confidential client
credentials. For information on configuring a confidential client, see
“Confidential clients” on page 7-279.

Figure 7-20. Setting the scope

7-252 IBM MobileFirst Platform Foundation V8.0.0

4. Submit the POST request to get the access token.

Access token is obtained and is set as value of the Authorization header in the
subsequent push REST API invocation.

Setting up push notifications
You can send push notifications to mobile devices via the MobileFirst Server. You
can set up push notifications on Android and iOS.

Figure 7-21. Provide confidential client credentials for Basic Auth

Figure 7-22. Authorization header value set

Figure 7-23. Invoking push REST API with access token

Developing applications 7-253

About this task

The process for setting up push notifications varies significantly for each platform,
and for Android and iOS you must refer to documentation for those products. For
more information about the processes for each platform, see the following tasks:

Setting up push notifications for Android
To set up push notifications for Android devices and to enable push for Cordova
applications for Android, you must use the Google Cloud Messaging (GCM)
service. In order to use GCM, you need a valid Google account.

Before you begin

Before you set up push notifications for Android in IBM MobileFirst Platform
Foundation, you must have an existing Google API project in the Google
Developers Console (http://code.google.com/apis/console). This project must
have a server key credential defined.

To configure a new API project in the Google Developers Console, go to
https://developers.google.com/mobile/add

For more information about the credentials required for GCM, review the GCM
components and credentials table descriptions on the Google Cloud Messaging:
Oveview page at Google Developers.

Procedure
1. Gather the following information about your Google API project from Google

Developers Console (http://code.google.com/apis/console):

Project number
The project number is a globally unique numerical value created when
you create your Google API project. Be careful not to use either the
project name or project ID as the senderID value.

You can find the project number in the Google Developers Console
dashboard by expanding your project and recording the value under
Project number.

Server key
Make sure that the server key is not restricted to any specific URL. For
more information about how to create the key, see API keys.

You can get your server API from Credentials page in Google
Developers Console by selecting API Manager > Credentials.

2. If your organization has a firewall that restricts the traffic to or from the
Internet, you must do the following steps:
a. Configure the firewall to allow connectivity with GCM in order for your

GCM client apps to receive messages. The ports to open are 5228, 5229, and
5230. GCM typically uses only 5228, but it sometimes uses 5229 and 5230.
GCM does not provide specific IP, so you must allow your firewall to accept
outgoing connections to all IP addresses contained in the IP blocks listed in
Google's ASN of 15169. For more information, see Implementing an HTTP
Connection Server.

b. Ensure that your firewall accepts outgoing connections from IBM
MobileFirst Platform Foundation push notification service to
android.googleapis.com on port 443.

3. You can set the certificates using any of the following methods:

7-254 IBM MobileFirst Platform Foundation V8.0.0

http://code.google.com/apis/console
https://developers.google.com/mobile/add
https://developers.google.com/cloud-messaging/gcm#apikey
https://developers.google.com/cloud-messaging/gcm#apikey
https://developers.google.com/cloud-messaging/gcm
https://developers.google.com/cloud-messaging/gcm
http://code.google.com/apis/console
https://developers.google.com/console/help/new/#api-keys
https://developers.google.com/cloud-messaging/http
https://developers.google.com/cloud-messaging/http

v Using the IBM MobileFirst Platform Operations Console. See “Configuring
push notification settings” on page 7-259.

v Using “Push GCM Settings (PUT)” on page 8-228 API.
v Using the “REST API for the MobileFirst Server administration service” on

page 8-7.
4. To set up Google Play Services in your Android project, see

https://developers.google.com/android/guides/setup.

Setting up push notifications for iOS
To set up push notifications for iOS devices, you must use the Apple Push
Notification Service (APNs). To use APNs, you must be a registered Apple iOS
Developer and obtain an APNs certificate for your application.

Before you begin

Ensure that the following servers are accessible from IBM MobileFirst Platform
Foundation:
v Sandbox servers:

– gateway.sandbox.push.apple.com:2195
– feedback.sandbox.push.apple.com:2196

v Production servers:
– gateway.push.apple.com:2195
– feedback.push.apple.com:2196

Procedure
1. Follow the required steps to obtain your APNs certificate and password. For

more information, see the developerWorks® article Understanding and setting
up artifacts required to use iOS devices and APNS in a development
environment.

2. You can set the certificates using any of the following methods:
v Using the IBM MobileFirst Platform Operations Console. See “Configuring

push notification settings” on page 7-259.
v Using “Push APNS settings (PUT)” on page 8-225 API.
v Using the “REST API for the MobileFirst Server administration service” on

page 8-7.
3. Install the Entrust CA root certificate by using SSL port 443.

While you work in development mode, rename your certificate file to
apns-certificate-sandbox.p12. When you move to production, rename your
certificate file to apns-certificate-production.p12. In both cases, place the
certificate file in the environment root folder or in the application root folder.
When the hybrid application has both iPhone and iPad environments, separate
certificates are necessary for push notification. In that case, place those
certificates in the corresponding environment folders.

Note: The environment root folder takes the highest priority.

Results

Your push notification setup is now complete.

Developing applications 7-255

https://developers.google.com/android/guides/setup
https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en
https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en
https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en

Setting up push notifications for Windows
To set up push notifications for Windows devices, you must use the Windows
Push Notification Services (WNS). In order to use WNS, you must have a valid
Windows Store account.

Procedure
1. Create a Windows Store account at Windows Dev Center Dashboard.
2. Register your app with Windows Dev Center Dashboard and obtain the

following credentials for your app.
v Name
v Publisher
v Package Security Identifier (SID)
v Client Secret

3. You can set the certificates using any of the following methods:
v Using the IBM MobileFirst Platform Operations Console. See “Configuring

push notification settings” on page 7-259.
v Using “Push WNS Settings (PUT)” on page 8-232 API.
v Using the “REST API for the MobileFirst Server administration service” on

page 8-7.
You can also associate your Windows project with the application in the
Windows Store by right-clicking on the project and selecting Store > Associate
App with the Store.

Results

Your push notifications setup is now complete.

Broadcast notifications
Broadcast notifications are notification messages that are targeted to all the devices
that have the IBM MobileFirst Platform Foundation application installed and
configured for push notifications.

Broadcast notifications are enabled by default with any IBM MobileFirst Platform
Foundation application that is enabled for push notification. For more information
about configuring your application for push notifications, see “Setting up push
notifications” on page 7-253.

Any IBM MobileFirst Platform Foundation application that is enabled for push
notification has a predefined subscription to the Push.ALL tag, which is used by
MobileFirst Server to broadcast notification messages to all the devices. To disable
broadcast notification for native app, use unsubscribetag method of MFPPush
class, with the tag name Push.ALL.

If you want to disable broadcast notification for hybrid app, use the
unsubscribetag method of MFPPush class. To disable broadcast notification for
Android native, use the unsubscribetag method of “Java client-side push API for
Android apps” on page 8-6.

For more information about sending broadcast notification, see “Broadcast
notification” on page 7-258 section in “Sending push notifications” on page 7-258.

7-256 IBM MobileFirst Platform Foundation V8.0.0

http://dev.windows.com/en-us/dashboard

Tag-based notifications
Tag notifications are notification messages that are targeted to all the devices that
are subscribed to a particular tag.

Tags-based notifications allow segmentation of notifications based on subject areas
or topics. Notification recipients can choose to receive notifications only if it is
about a subject or topic that is of interest. Therefore, tags-based notification
provides a means to segment recipients. This feature enables you to define tags
and send or receive messages by tags. A message is targeted to only the devices
that are subscribed to a tag.

You must first create the tags for the application, set up the tag subscriptions and
then initiate the tag-based notifications. For more information, see “Setting up
tag-based notifications.”

For more information about sending tag-based notification, see “Tag-based
notification” on page 7-258 section in “Sending push notifications” on page 7-258.

Setting up tag-based notifications
Subscriptions tie together a device registration and a tag. When a device is
unregistered from a tag, all associated subscriptions are automatically unsubscribed
from the device itself.

About this task

In a scenario where there are multiple users of a device, subscriptions should be
implemented in mobile applications based on user log-in criteria. For example, the
subscribe call is made after a user successfully logs in to an application and the
unsubscribe call is made explicitly as part of the logout action handling.

To receive notifications that are targeted to a particular tag, subscribe the
application to the tags that you have defined. To set up tag subscriptions, use the
methods of the MFPPush class. For native application, use the methods of
MFPPush class.

Results

While the tag subscription exists, IBM MobileFirst Platform Foundation can
produce push notifications for the subscribed tag.

What to do next

After you have set up tag subscriptions, you can send a notification. For more
information, see “Tag-based notification” on page 7-258 section in “Sending push
notifications” on page 7-258.

Unicast notifications
Unicast notifications are notification messages that are targeted to a particular
device or a userID.

Unicast notifications do not require any additional setup and are enabled by
default when the IBM MobileFirst Platform Foundation application is enabled for
push notifications. For more information about configuring your application for
push notifications, see “Setting up push notifications” on page 7-253.

Developing applications 7-257

For more information about sending Unicast notification, see “Unicast notification”
section in “Sending push notifications.”

Note: Unicast notification does not contain any tag in its payload.

Sending push notifications
When you have set up push notification, as tag-based or broadcast-enabled, you
can send push notifications from the server.

You can send push notifications using the methods:
v By using MobileFirst Operations Console, two types of notifications can be sent:

tag and broadcast. For more information, see “Sending push notification with
the MobileFirst Operations Console” on page 7-259.

v By using “Push Message (POST)” on page 8-236 REST API. All forms of
notifications can be sent: tag, broadcast, and authenticated.

v By using “REST API for the MobileFirst Server administration service” on page
8-7. All forms of notifications can be sent: tag, broadcast, and authenticated.

You can send the following notifications using the push notification service:

Broadcast notification

You must set up broadcast notifications to send a notification for the required
applications.

For more information, see “Broadcast notifications” on page 7-256.

Tag-based notification

You must set up tag subscriptions to send a notification for the required
applications.

For more information, see “Setting up tag-based notifications” on page 7-257.

Unicast notification

The userId(s) must be the user IDs that were used to subscribe to the push
notification event source. The user ID in the user subscription can come from the
underlying security context or be a user ID explicitly set by your mobile app. A
user ID explicitly set by your mobile app is also called an application user ID
(appUserId).

Note: Unicast notification does not contain any tag in its payload. The notification
message can target multiple devices or users by specifying multiple deviceIDs or
userIDs respectively, in the target block of POST message API.

Platform or environment-based notification

You can send a platform or environment-based notification in the following way:
v Specify the platform or platforms as an array in the target.platform object. The

supported platforms are as follows:
– A (Apple)
– G (Google)
– W (Windows)

7-258 IBM MobileFirst Platform Foundation V8.0.0

Sending push notification with the MobileFirst Operations
Console
The IBM MobileFirst Platform Operations Console provides a GUI for an
administrator to work with push notification to update credentials, setup tags and
send notifications.

About this task

For IBM MobileFirst Platform Foundation configuration with push notification
service enabled, every application created would automatically be registered with
push notifications. The application contains configuration information; such as the
Apple Push Notification Service (APNs) and Google Cloud Message (GCM)
configuration details. This information is required by the push notification service
to send messages.

The following topics guides you on configuring your push notification settings,
creating tags and sending notifications. You can also go through the steps on how
to configure a confidential client and enable scope mapping elements to security
checks.

Configuring push notification settings:

You must configure push notification for every app that is created.

About this task

Complete the steps to configure the push notification settings:

Procedure

1. To configure the push notification settings for your application, use one of the
following methods:
v Expand mfp runtime > Applications > application name > Push.

v Click the Set Up Push icon in the Next Steps section of the main page for
your app.

Developing applications 7-259

2. In the Push Notifications Settings panel, proceed as follows:
v Update the Server API Key and Sender ID fields. Click Save.

Creating tags for push notification:

By creating tags, you can enable push notifications to be sent to subscribers.

About this task

You can send push notification to users who have chosen to subscribe to tags. To
create a tag, complete the steps:

Procedure

1. In the Tags pane, click New to create a new tag.
2. In the New Tag window, provide a suitable name and description. Click Save.

Figure 7-24. Providing the GCM Push Credentials

7-260 IBM MobileFirst Platform Foundation V8.0.0

The new tag is generated.

Figure 7-25. Providing a tag name and description

Figure 7-26. Tags created successfully

Developing applications 7-261

Sending push notifications to subscribers:

After configuring push notification settings and creating tags, you can choose to
send either tag-based notifications or broadcast notifications to subscribers.

About this task

Complete the steps to send push notifications to subscribers:

Procedure

1. Click the Send Notifications tab to choose and select the notifications that
needs to be sent.

2. Choose to send notifications based on any of the following criteria:
v All: Broadcast message. Sends notifications to all subscribers and devices.
v Devices by Tags: Tag-based notification. Tags represent topics of interest to

the user. This option sends notifications to subscribers who might have
subscribed to a particular tag. The Tag Name and Notification Text fields are
mandatory.

v Single device: Broadcast message. To send notifications only to a specified
device. The Device ID and Notification Text fields are mandatory.

v iOS devices: Broadcast message. To send notifications to all iOS devices.

3. Click Send to send push notification to subscribers.

Figure 7-27. Send Notifications pane

7-262 IBM MobileFirst Platform Foundation V8.0.0

Defining scope mapping elements to security checks:

IBM MobileFirst Platform Foundation allows mapping custom scope elements to
security checks with which you can define application-specific security logic for
accessing protected resources.

About this task

Your app would need scope element push.mobileclient to be defined, for the
client app to access push server. No security checks will be enforced if you do not
map the scope to security checks.

Complete the steps to define the scope elements:

For information on push scopes, see Table 7-22 on page 7-251.

Procedure

1. In the MobileFirst Operations Console, navigate to <Your application> >
Security > Scope Elements Mapping > New.

2. In the Add New Scope-Element Mapping window, provide the scope element
as push.mobileclient and click Add.

Note: The push.mobileclient is a predefined scope.

Configuring a confidential client:

IBM MobileFirst Platform Foundation V8.0.0 allows you to connect a confidential
(or non-mobile) client to mobile services in a secure way.

Figure 7-28. Adding new scope element

Developing applications 7-263

About this task

You can provide confidential applications with a back-end service access to the
push notification service. Ensure that you have gone through the steps to register
the confidential client.

Procedure

1. Register the confidential client.
For more information, see “Registering confidential clients” on page 7-279.

2. Be sure to become familiar with push scopes and their semantics, so that server
applications use them as appropriate when they obtain a token.
For more information about push scopes, see “Security for push notification
clients” on page 7-251.

Sending SMS notifications
You can send short message service (SMS) messages, commonly known as text
messages, to user devices. To be able to receive SMS notifications, user must
register to the notification by using their phone number.

The SMS notification framework extends the push notification framework. SMS
notification capability is supported for Apple, Google, and Windows Phone 8
devices that support SMS functions.

Setting up SMS notification
You can send short message service (SMS) messages, commonly known as text
messages, to user devices. Learn about the configuration that is required to send
and receive SMS notifications.

About this task

The procedure to set up push server to send SMS notifications is described.

Procedure
1. Set up the SMS notification infrastructure by updating the SMS settings.

Refer to Push SMS Settings (PUT) API for details.
2. To receive SMS notifications, register the device with the phone number by

following one of the approaches:
v From the app, provide the phone number options parameter of the

registerDevice method in the MFPPush.
v Use Push Device Registration (POST) API with the phone number in the

payload.
3. To send SMS notifications, use the Push Message (POST) API.

Set the notificationType parameter in the payload to a value of 2 or 3.

REST Services APIs
You can use REST Services APIs to work with Push notifications.

Use REST API Administration Services for adapters and applications.

Use “REST API for the MobileFirst Server push service” on page 8-197 to access
Push functions from a REST API endpoint.

7-264 IBM MobileFirst Platform Foundation V8.0.0

Troubleshooting push notification problems
Find information to help resolve push notification issues that you might encounter.

iOS push notification

Problem
The push notification fails to send, and you see the following exception in
the server log:

com.notnoop.exceptions.InvalidSSLConfig: java.io.IOException: Error in loading the keystore: Private key decryption error:
(java.security.InvalidKeyException: Illegal key size)

at com.notnoop.apns.internal.Utilities.newSSLContext(Utilities.java:88)

at com.ibm.pushworks.server.notification.apns.ApplicationConnection.createBuilderWithCertificate(ApplicationConnection.java:180)
at com.ibm.pushworks.server.notification.apns.ApplicationConnection.<init>(ApplicationConnection.java:59)

...

Actions to take

1. Download the unrestricted version of the JCE policy files.
a. Log in to Unrestricted SDK JCE policy files.
b. Select Unrestricted JCE Policy files for SDK for all newer versions

(Version 1.4.2 and higher).
c. Click Continue and finish the download process.

The .zip archive contains the following files:
v readme.txt

v local_policy.jar

v US_export_policy.jar

2. Update the JCE policy files for the server environment.
a. Stop the server.
b. Use the new local_policy.jar file and the new

US_export_policy.jar file to replace the old local_policy.jar file
and the US_export_policy.jar file that are found in the
<jdk_path>/jre/lib/security folder.

Note: The <jdk_path> might be bundled with the server.
c. Restart the server.

MobileFirst security framework
The MobileFirst security framework implements the security capabilities of IBM
MobileFirst Platform Foundation, which are used to secure your mobile
applications and protect your resources.

Overview of the MobileFirst security framework
Learn about the security framework of IBM MobileFirst Platform Foundation (the
security framework), its building blocks, and the related authorization flows for
protecting your resources and securing your applications.

The security framework is based on the OAuth 2.0 protocol, as defined in the
OAuth Specification. According to this protocol, a resource can be protected by a
scope that defines the required permissions for accessing the resource. To access a
protected resource, the client must provide a matching access token, which
encapsulates the scope of the authorization that is granted to the client.

Developing applications 7-265

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://tools.ietf.org/html/rfc6749

The OAuth protocol separates the roles of the authorization server and the
resource server on which the resource is hosted. The authorization server manages
the client authorization and token generation. The resource server uses the
authorization server to validate the access token that is provided by the client, and
ensure that it matches the protecting scope of the requested resource.

The security framework is built around an authorization server that implements
the OAuth protocol, and exposes the OAuth endpoints with which the client
interacts to obtain access tokens. The framework provides the building blocks for
implementing a custom authorization logic on top of the authorization server and
the underlying OAuth protocol. By default, MobileFirst Server functions also as the
authorization server. However, you can configure an IBM WebSphere DataPower
appliance to act as the authorization server and interact with MobileFirst Server.

OAuth scopes, security checks, and challenge handlers

In the OAuth model, a resource is protected by a scope, which is string of zero or
more space-separated scope elements. Each scope element represents a logical
authorization permission. The MobileFirst security framework maps scope
elements into security checks, which implement the actual authorization logic.

A security check is a server-side entity that implements the security logic for
protecting server-side application resources. A simple example of a security check
is a user-login security check that receives the credentials of a user, and verifies the
credentials against a user registry. Another example is the predefined MobileFirst
application-authenticity security check, which validates the authenticity of the
mobile application and thus protects against unlawful attempts to access the
application's resources. Server-side developers can write security checks that
implement their required authorization logic. The framework also contains
predefined security checks, for example for validating the authenticity of a mobile
application.

A security check typically issues security challenges that require the client to
respond in a specific way to pass the check. This handshake occurs as part of the
OAuth access-token-acquisition flow. The client uses challenge handlers to handle
challenges from security checks. A challenge handler is a client-side entity that
implements the client-side security logic and the related user interaction.

For each security check that issues a challenge, a matching client challenge handler
must be registered in the application code. The MobileFirst client API includes
preregistered challenge handlers for the predefined security checks. To support a
custom security check, the client-side developer must implement and register a
challenge handler for that security check in the application code.

Application developers protect access to their resources by defining the required
scope for each protected resource, and implementing the related security checks
and challenge handlers. The server-side security framework and the client-side API
handle the OAuth message exchange and the interaction with the authorization
server transparently, allowing developers to focus only on the authorization logic.

End-to-end authorization flow

Following is an outline of the end-to-end flow for authorizing client access to a
protected resource. The flow consists of two main stages:

7-266 IBM MobileFirst Platform Foundation V8.0.0

1. The client obtains an access token for the protected resources, after passing the
required security checks (as defined in the resource's protecting scope). See
Obtaining an access token.

2. The client uses the access token to access the protected resource. Before
granting the client access to the resource, the access token is validated. See
Accessing a protected resource by using an access token.

Obtaining an access token
The client obtains an access token from the authorization server by
following these steps, as illustrated in Figure 1:
1. Registration - the client registers itself with MobileFirst Server. As part

of the registration, the client provides a public key that will be used for
authenticating its identity (see Step 4). This phase occurs once in the
lifetime of a mobile application instance. If the application-authenticity
security check is enabled for a mobile client application, the
authenticity of the application is validated during its registration (see
“Application-authenticity security check” on page 7-282).

2. Access-token request - the client requests an access token with a certain
scope. The requested scope should map to the same security checks as
the scope of the protected resource that the client wants to access, and
can optionally also map to additional security checks.
If the client does not have prior knowledge about the scope of the
protected resource, it can first request an access token with an empty
scope, and try to access the resource with the obtained token. The client
will receive a response with a 403 (Forbidden) error and the required
scope of the requested resource.

3. Authorization - MobileFirst Server runs the security checks to which
the scope of the client's request is mapped. The authorization server
either grants or rejects the client's request based on the results of these
checks. If a mandatory application scope is defined, the security checks
of this scope are run in addition to the checks of the requested scope.

4. Token generation - after successful authorization, the client is redirected
to the authorization server's token endpoint, where it is authenticated
by using the public key that was provided as part of the client's
registration (see Step 1). Upon successful authentication, the
authorization server issues the client a digitally signed access token that
encapsulates the client's ID, the requested scope, and the token's
expiration time.

Developing applications 7-267

Note: The "MobileFirst Server" box in Figure 1 embodies both the
functions that are provided specifically by MobileFirst Server, and the
functions that are provided by the authorization server. The authorization
server can be either MobileFirst Server (default) or WebSphere DataPower.

Accessing a protected resource by using an access token
After obtaining an access token, the client attaches the obtained token to
subsequent requests to access protected resources. The resource server uses
the authorization server's introspection endpoint to validate the token. The
validation includes using the token's digital signature to verify the client's
identity, verifying that the scope matches the authorized requested scope,
and ensuring that the token has not expired. When the token is validated,
the client is granted access to the resource. The protected resource can be
hosted on an instance of MobileFirst Server (see Figure 2) or on an external
server (see Figure 3).

Figure 7-29. Obtaining an access token

7-268 IBM MobileFirst Platform Foundation V8.0.0

Figure 7-30. Protecting a resource on MobileFirst Server

Developing applications 7-269

Note: The "MobileFirst Server" box in Figure 2 and Figure 3 embodies both
the functions that are provided specifically by MobileFirst Server, and the
functions that are provided by the authorization server. The authorization
server can be either MobileFirst Server (default) or WebSphere DataPower.

Related information

For more detailed information and specific development guidelines, see the
following related topics:
v “Access tokens” on page 7-303
v “Client security APIs” on page 7-305
v “Configuring a mandatory application scope” on page 7-276
v “Configuring IBM WebSphere DataPower as the OAuth authorization server” on

page 7-314
v “Endpoints of the MobileFirst Server production server” on page 6-164
v “Mapping scope elements” on page 7-277
v “OAuth resource protection” on page 7-271
v “Security checks” on page 7-281

Figure 7-31. Protecting a resource on an external server

7-270 IBM MobileFirst Platform Foundation V8.0.0

OAuth resource protection
Learn how to configure and customize OAuth protection for your resources.

Protected resources
In the OAuth model, a protected resource is a resource that requires an
access token. You can use the MobileFirst security framework to protect
both resources that are hosted on an instance of MobileFirst Server, and
resources on an external server. You protect a resource by assigning it a
scope that defines the required permissions for acquiring an access token
for the resource. See “Overview of the MobileFirst security framework” on
page 7-265. Mobile-application access to protected resources is restricted
also by the mandatory application scope.
MobileFirst adapter resources are protected by default, meaning that an
access token is required to access such resources even when no scope is
explicitly assigned to the resource. You can disable the default resource
protection.
The resource scope can contain custom scope elements that are mapped to
security checks at the application level.

Note: An empty scope is also a valid scope, and requires an access token.

Unprotected resources
An unprotected resource is a resource that does not require an access
token. The MobileFirst security framework does not manage access to
unprotected resources, and does not validate or check the identity of
clients that access these resources. Therefore, features such as Direct
Update, blocking device access, or remotely disabling an application, are
not supported for unprotected resources. See “Updating Cordova client
apps directly” on page 7-235 and “Mobile-application management” on
page 10-15.

Configuring resource protection
v To configure protection of adapter resources that are hosted on MobileFirst

Server, see Configure adapter resource protection.
– Java API for RESTful Web Services (JAX-RS) adapter resources
– JavaScript adapter resources

v To configure protection of resources that are hosted on an external server
(external resources), see Protect resources on external servers.
– Protect resources on any Java server. See “MobileFirst Java Token Validator”

on page 7-274.
– Protect resources on WebSphere Application Server Java servers (Full or

Liberty profile). See “MobileFirst OAuth Trust Association Interceptor (TAI)
for protecting resources on WebSphere Java servers” on page 7-275.

– Protect resources on Node.js servers. See “MobileFirst Node.js resource
protection” on page 7-275.

v To define a mandatory application scope, which is applied to any request by the
application to access a protected resource, see “Configuring a mandatory
application scope” on page 7-276.

v To map custom scope elements to security checks, see “Mapping scope
elements” on page 7-277.

Configuring adapter resource protection
Learn how to configure MobileFirst OAuth protection for your adapter resources.

Developing applications 7-271

About this task

Configure the authorization logic for protecting your adapter resources by
assigning custom scopes to your resources, or by disabling the default protection of
the MobileFirst security framework (see “OAuth resource protection” on page
7-271).
v Configure protection of Java API for RESTful Web Services (JAX-RS) resources

– Configure a resource scope
– Disable resource protection

v Configure protection of JavaScript resources
– Configure a resource scope
– Disable resource protection

Procedure

Configure the protection of your adapter resources by following the outlined
procedure for your target development environment:
v Configure protection of Java API for RESTful Web Services (JAX-RS)

resources

In Java, you configure resource protection by using the @OAuthSecurity
annotation type, which is declared in the MobileFirst com.ibm.mfp.adapter.api
package.
This annotation can be applied either to a specific resource method or to an
entire resource class. Method-level annotations override class-level annotations.
The annotation can be used either to set the resource's protecting scope, or to
disable resource protection and define an unprotected resource.

Configure a resource scope
To assign a protecting scope to a JAX-RS resource or resource class, add
the @OAuthSecurity annotation to the resource or class declaration, and
set the scope element of the annotation to your preferred scope:
@OAuthSecurity(scope = "[scopeElement1 scopeElement2 ...]")

Set the scope to a space-separated list of zero or more scope elements
(see OAuth scopes). The default value of the annotation's scope element
is an empty string.
When the enabled element of the @OAuthSecurity annotation is set to
false, the scope element is ignored. See Disable resource protection.

Note: A class scope applies to all of the resources in the class, except for
resources that have their own @OAuthSecurity annotation.

Examples

– The following code protects an helloUser method with a scope that
contains UserAuthentication and Pincode scope elements:
@GET
@Path("/{username}")
@OAuthSecurity(scope = "UserAuthentication Pincode")
public String helloUser(@PathParam("username") String name){

...
}

– The following code protects a WebSphereResources class with the
predefined LtpaBasedSSO security check:

7-272 IBM MobileFirst Platform Foundation V8.0.0

@Path("/users")
@OAuthSecurity(scope = "LtpaBasedSSO")
public class WebSphereResources {

...
}

Disable resource protection
To entirely disable OAuth protection of your resource or resource class,
add the @OAuthSecurity annotation to the resource or class declaration,
and set the value of the enabled element to false:
@OAuthSecurity(enabled = false)

The default value of the annotation’s enabled element is true. When the
enabled element is set to false, the scope element is ignored, and the
resource or resource class is not protected. See “Unprotected resources”
on page 7-271.

Note: When you assign a scope to a resource method that is contained
in an unprotected class, the method is protected despite the class
annotation, provided you do not also set the enabled element to false in
the resource annotation.

Examples

– The following code disables resource protection for a helloUser
method:
@GET
@Path("/{username}")
@OAuthSecurity(enabled = "false")
public String helloUser(@PathParam("username") String name){

...
}

– The following code disables resource protection for a
MyUnprotectedResources class.
@Path("/users")
@OAuthSecurity(enabled = "false")
public class MyUnprotectedResources {

...
}

v Configure protection of JavaScript resources

In JavaScript, you configure resource protection as part of the definition of the
adapter resource procedure, by setting the relevant attribute values of the
<procedure> element in the adapter-descriptor (adapter.xml file). See the
documentation of this element, and its subelements and attributes, in Structure
of JavaScript adapters. You can configure the procedure either to set the
resource's protecting scope, or to disable resource protection and define an
unprotected resource.

Configure a resource scope
To assign a protecting scope to a JavaScript resource procedure, set the
scope attribute of the <procedure> element to your preferred scope, as a
space-separated list of zero or more scope elements (see OAuth scopes):
<procedure name="procedureName" scope="[scopeElement1 scopeElement2 ...]">

When the secured attribute of the <procedure> element is set to false,
the scope attribute is ignored. See Disable resource protection.

Developing applications 7-273

Example
The following code protects a userName procedure with a scope that
contains UserAuthentication and Pincode scope elements:
<procedure name="userName" scope="UserAuthentication Pincode">

Disable resource protection
To entirely disable OAuth protection of your resource procedure, set the
secured attribute of the <procedure> element to false:
<procedure name="procedureName" secured="false">

When the enabled attribute is set to false, the scope attribute is ignored,
and the resource is not protected. See “Unprotected resources” on page
7-271

Example
The following code disables resource protection for a userName
procedure:
<procedure name="userName" secured="false">

What to do next

Rebuild your adapter and deploy it to an instance of MobileFirst Server to apply
your configuration.
When working with IBM MobileFirst Platform Operations Console, remember to
refresh the console browser page after you deploy the adapter.

Before moving to production, make sure that the security checks that are contained
in your configured scopes are implemented and available for your resources via an
adapter that is deployed to the same MobileFirst Server instance as your resource
adapter. See “Security-checks implementation” on page 7-289.

External resources protection
Learn how to use the MobileFirst security framework to protect resources that are
stored on external servers (external resources).

To protect external resources, you add a resource filter with an access-token
validation module to the external resource server. The token-validation module
uses the introspection endpoint of the security framework's authorization server to
validate MobileFirst access tokens before granting the OAuth client access to the
resources. See “Overview of the MobileFirst security framework” on page 7-265,
and specifically “Accessing a protected resource by using an access token” on page
7-268 and the illustration in Figure 3 (Protecting a resource on an external server).
You can use the MobileFirst REST API for the MobileFirst runtime to create your
own access-token validation module for any external server. Alternatively, use one
of the provided MobileFirst extensions for protecting external Java resources, as
outlined in the following topics.

MobileFirst Java Token Validator:

Use the MobileFirst Java Token Validator access-token validation module to protect
resources on any external Java server.

MobileFirst Java Token Validator is provided as a Java library
(mfp-java-token-validator-8.0.0.jar). The library exposes an API that
encapsulates and simplifies the interaction with the authorization server's
introspection endpoint.

7-274 IBM MobileFirst Platform Foundation V8.0.0

You can get a copy of the Java library Token Validator library by using any of the
following methods:
v Download mfp-java-token-validator from the Maven repository.
v Get a copy of the library from the <product_install_dir>/MobileFirstServer/

external-server-libraries/ directory (where <product_install_dir> is the
directory in which you installed IBM MobileFirst Platform Foundation).

For detailed information on how to install, configure, and use this validation
module, see the Java Token Validator tutorial.

Note: To protect Java resources on WebSphere Application Server or WebSphere
Application Server Liberty servers, you can use the MobileFirst OAuth TAI filter,
which uses the Java Token Validator validation module. See “MobileFirst OAuth
Trust Association Interceptor (TAI) for protecting resources on WebSphere Java
servers.”

MobileFirst OAuth Trust Association Interceptor (TAI) for protecting resources
on WebSphere Java servers:

Use the MobileFirst OAuth Trust Association Interceptor (TAI) filter to protect Java
resources that are hosted on a WebSphere Application Server with the Full or
Liberty profile.

The MobileFirst OAuth TAI resource-server filter uses the MobileFirst Java Token
Validator validation module (see “MobileFirst Java Token Validator” on page
7-274). The filter is provided as a Java library (com.ibm.imf.oauth-8.0.0.jar).

You can get a copy of the OAuth TAI filter by using any of the following methods:
v Download a copy of the library from theIBM MobileFirst Platform Operations

Console: from the console Dashboard, select Download Center, and then select
the Tools tab. In the OAuth Security Java Extension section, select Download
and save the artifacts archive file to your preferred location.

v Get a copy of the library from the <product_install_dir>/MobileFirstServer/
external-server-libraries/ directory (where <product_install_dir> is the
directory in which you installed IBM MobileFirst Platform Foundation).

For detailed information on how to install, configure, and use the MobileFirst
OAuth TAI filter, see the Trust Association Interceptor tutorial.

MobileFirst Node.js resource protection:

Use the MobileFirst Node.js framework to protect Java resources (APIs) that are
hosted on an external Node.js server.

The MobileFirst Node.js framework is provided as an npm module:
passport-mfp-token-validation. This module provides a passport validation
strategy and a verification function for validating access tokens that are issued by
the MobileFirst security framework.

To install the passport-mfp-token-validation Node.js module, run the following
command from the command line:
npm install passport-mfp-token-validation

For detailed information on how to install, configure, and use
passport-mfp-token-validation, see the Node.js Validator tutorial.

Developing applications 7-275

http://search.maven.org/#search|ga|1|a%3A%22mfp-java-token-validator%22
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/protecting-external-resources/jtv/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/protecting-external-resources/tai/
https://www.npmjs.org/package/passport-mfp-token-validation
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/protecting-external-resources/node-js/

Configuring a mandatory application scope
Configure a mandatory application scope to define application-specific
authorization logic.

Before you begin

To use custom scope elements in your mandatory application scope, first map the
required scope elements to security checks. See “Mapping scope elements” on page
7-277.

About this task

You can define a mandatory scope for your client application. When an application
attempts to access a protected resource, the security framework maps the
mandatory application scope to security checks. The framework runs these checks
(if exist) in addition to the security checks of the requested resource scope. Follow
the outlined procedure to define a mandatory application scope.

Note:

v As with any other security scope, the mandatory application scope is not
applied when accessing an unprotected resource. See “Unprotected resources”
on page 7-271.

v The access token that is granted for the resource scope does not contain the
mandatory application scope. See “Structure of the MobileFirst access token” on
page 7-304.

Procedure

Define the mandatory application scope by using one of the following alternative
methods:
v Using the IBM MobileFirst Platform Operations Console (the console)

1. Select your application version from the Applications section of the console's
navigation sidebar, and then select the application Security tab.

2. In the Mandatory Application Scope section, select Create New.
3. In the Configure Mandatory Application Scope dialog window, select a scope

element or security check from the items in the Select elements and security
checks list, and select Add. The selection is from among custom scope
elements that were mapped for your application, custom security checks
defined in adapters that are deployed to the same MobileFirst Server instance
as your application, and the predefined MobileFirst security checks.
Repeat this step as needed to add more scope elements and security checks
to the scope.

To undo your configuration and eliminate the mandatory application scope, in
the Mandatory Application Scope section of the console's application Security
tab, delete all the scope elements that you previously added.

v Editing the application-descriptor file

1. Create a local copy of the application-descriptor JSON file. See “Application
configuration” on page 7-3.

2. Edit your local copy to define a mandatoryScope property object, and set the
property value to a scope string that contains a space-separated list of your
selected scope elements:
"mandatoryScope": "ScopeElement1 [ScopeElement2 ...]"

7-276 IBM MobileFirst Platform Foundation V8.0.0

A scope element can be the name of a custom scope element that was
mapped for your application, a custom security check defined in an adapter
that is deployed to the same MobileFirst Server instance as your application,
or a predefined MobileFirst security check.
For example, the following definition configures a mandatory application
scope that contains the predefined application-authenticity security check
(appAuthenticity) and a custom PincodeValidation scope element that was
mapped for the application:
"mandatoryScope": "appAuthenticity PincodeValidation"

3. Deploy your copy of the application-descriptor JSON file to MobileFirst
Server. See “Application configuration” on page 7-3.

To undo your configuration and eliminate the mandatory application scope,
create a new copy of the application-descriptor file, and delete the
mandatoryScope property definition or set the value to an empty string. Then
redeploy the descriptor file to the server.

Results

After you successfully configure a mandatory application scope, you can see your
defined mandatory application scope in the Mandatory Application Scope table
on the application Security console page. In addition, you can see the
mandatory-scope property definition in the application descriptor: in the console,
go to the application Configuration Files tab. In the Application-Descriptor JSON
File section you can see a copy of the application-descriptor JSON file. Search for
the mandatoryScope property object in this file.

Mapping scope elements
Map custom scope elements to security checks to define application-specific
security logic.

About this task

An OAuth scope is composed of zero or more scope elements, and each scope
element is mapped to zero or more security checks (see OAuth scopes and security
checks). You can define custom scope elements for your application, which map to
any of the predefined or custom security checks that are available for the
application.

The application scope mapping provides multiple advantages.
v Access the same resource from multiple applications, and customize the

authorization logic of each application by using different maps for the same
scope elements of the protecting resource scope.

v Reuse the same mandatory scope for multiple applications, and customize the
authorization logic of each application by using different maps of the contained
scope elements. See “Configuring a mandatory application scope” on page 7-276.

v Dynamically change the application's authorization logic by changing the
scope-element maps. For example, you can define an empty scope element, and
remap it to a new security check when the check becomes available.

Procedure

Map scope elements to security checks by using one of the following alternative
methods:
v Using IBM MobileFirst Platform Operations Console (the console)

Developing applications 7-277

1. Select your application version from the Applications section of the console's
navigation sidebar, and then select the application Security tab.

2. In the Scope-Elements Mapping section, select Add to Scope.
3. In the Add New Scope-Element Mapping dialog window, provide a name for

the new element, select zero or more security checks to which to map the
element, and then select Add. A scope-mapping table that reflects your
configuration is displayed in the Scope-Elements Mapping section of the
Security tab.
Repeat this step as needed to map more scope elements.

You can delete or edit a defined scope element by selecting the relevant action
icon for this element in the application's scope-mapping table.

v Editing the application-descriptor file

1. Create a local copy of the application-descriptor JSON file. See “Application
configuration” on page 7-3.

2. Edit your local copy to define a scopeElementMapping object. In this object,
define data pairs that are each composed of the name of your selected scope
element, and a string of zero or more space-separated security checks to
which the element maps. Replace ScopeElement<n> and SecurityCheck<n> with
the names of the relevant scope element and security check:
"scopeElementMapping": {

"ScopeElement1": "[SecurityCheck1 SecurityCheck2 ...]",
["ScopeElement2": "[SecurityCheck1 SecurityCheck2 ...]"
...]

}

For example, the following code maps two scope elements:
a. The UserAuth scope element is mapped to a custom UserAuthentication

security check
b. The SSOUserValidation scope element is mapped to the predefined

LtpaBasedSSO security check, and to a custom CredentialsValidation
security check.

"scopeElementMapping": {
"UserAuth": "UserAuthentication",
"SSOUserValidation": "LtpaBasedSSO CredentialsValidation"

}

3. Deploy your copy of the application-descriptor JSON file to MobileFirst
Server. See “Application configuration” on page 7-3.

You can edit this definition at any time, as needed. To remove all scope-element
mapping for your application, create a new copy of the application-descriptor
file, delete the scopeElementMapping object, and redeploy the descriptor file to
the server.

Results

After you successfully map one or more scope elements, you can see your defined
scope elements in the Scope-Elements Mapping table on the application Security
console page. In addition, you can see the scope-mapping property definition in
the application descriptor: in the console, go to the application Configuration Files
tab. In the Application-Descriptor JSON File section, you can see a copy of the
application-descriptor JSON file. Search for the scopeElementMapping property
definition in this file. This definition object contains one or more name/value data
pairs of the following format:
"ScopeElement": "[SecurityCheck1 SecurityCheck2 ...]"

7-278 IBM MobileFirst Platform Foundation V8.0.0

For example, the following code maps two scope elements:
1. The UserAuth scope element is mapped to a custom UserAuthentication

security check
2. The SSOUserValidation scope element is mapped to the predefined

LtpaBasedSSO security check, and to a custom CredentialsValidation security
check.

"scopeElementMapping": {
"UserAuth": "UserAuthentication",
"SSOUserValidation": "LtpaBasedSSO CredentialsValidation"

}

Confidential clients
Learn how to allow confidential clients to connect to mobile services in a secure
way. For example, you can grant a back-end service access to the Push service.

Overview

Confidential clients are clients that are capable of maintaining the confidentiality of
their authentication credentials. You can use the MobileFirst authorization server to
grant confidential clients access to protected resources, in accordance with the
OAuth specification. This feature allows you to grant access to your resources to
non-mobile clients, such as performance-testing applications. You begin by
registering a confidential client with MobileFirst Server. As part of the registration,
you provide the credentials of the confidential client, which consist of an ID and a
secret. In addition, you set the client's allowed scope, which determines the scopes
that can be granted to this client. When a registered confidential client requests an
access token from the authorization server, the server authenticates the client by
using the registered credentials, and verifies that the requested scope matches the
client’s allowed scope.

Registering confidential clients

Register and manage confidential clients by using IBM MobileFirst Platform
Operations Console (the console):
1. Select Runtime Settings in the console navigation sidebar, and then select the

Confidential Clients tab.
2. Select Create New to register a new confidential client.
3. In the Create Confidential Client dialog window, provide the requested

configuration parameters:
v Display Name - an optional display name that is used to refer to the

confidential client. The default display name is the value of the ID parameter.
v ID - a unique identifier of the confidential client.
v Secret - the secret that is used to authenticate the identity of the client.
v Allowed Scope - the client's allowed scope. The scope is a space-separated list

of scope elements. See OAuth scopes.
An element of an allowed scope can also include the special asterisk
wildcard character (*), which signifies any sequence of zero or more
characters. For example, if the scope element is "send*", the confidential
client can be granted access to scopes that contain any scope element that
starts with "send", such as "sendMessage". The asterisk wildcard can be
placed at any position within the scope element, and can also appear more
than once.
An allowed-scope parameter that consists of a single asterisk character (*)
indicates that the confidential client can be granted a token for any scope.

Developing applications 7-279

4. Select Save. You can now see your new registered client in the
confidential-clients table.
You can delete clients or edit their registration information, at any time, by
selecting the relevant action icon for the client entry in the table.

You might also see in the console's confidential-clients table the following
preregistered MobileFirst confidential clients:
v "admin" and "push" - these clients are used for supporting push notifications

from the administration service. These clients are automatically registered when
the server starts with the push service enabled.

Note: If you delete any of these clients, notifications from the administration
service to the push service stop working until the server is restarted.

v "Test Client" - this client is preregistered with MobileFirst Development Server,
and can be used for testing. The ID and secret of the Test Client confidential
client are both "test", and the client has an unlimited allowed scope ("*").

Acquiring access tokens

To obtain an access token, the confidential client sends an access-token request
with the "client_credentials" grant type, as described in the OAuth specification.
The token request is an HTTP POST request that is sent to the URL of the token
endpoint. The URL pattern for accessing the token endpoint is as follows (replace
the <...> placeholders with your custom data):
http(s)://<server_ip>:<server_port>/<project_name>/api/az/v1/token

In the request, include the HTTP authorization header. The authorization server
uses this header to authenticate the confidential client. Follow these steps to
construct the authorization header:
1. Create a string that consists of the client ID and secret, separated by a colon (:).

For example, for a testClient ID and a testSecret secret, use the string
testClient:testSecret.

2. Encode the result string to Base64 format.
3. Add the string "Basic " before the encoded Base64 string.

For example, the authorization header for the client ID testClient and the client
secret testSecret is formed in the following manner:
Authorization: Basic dGVzdENsaWVudDp0ZXN0U2VjcmV0

In addition to the authorization header, add the following two parameters to the
request, using the application/x-www-form-urlencoded format:
v grant_type - this value must be set to "client_credentials".
v scope - the requested scope, as a space-separated list of zero or more scope

elements. See OAuth scopes.

When the authorization server receives the request, it authenticates the confidential
client, and verifies that the requested scope is included in the client's allowed
scope (as defined during registration). Each scope element in the requested scope
must match one of the elements in the allowed scope (including wildcard
expressions). If the request is accepted, the server issues an access token with the
requested scope, and passes it to the client as a JSON object within the response.
Following is an example of a response JSON object; (actual access tokens are longer
than shown in the example):

7-280 IBM MobileFirst Platform Foundation V8.0.0

https://tools.ietf.org/html/rfc6749#section-4.4.2

{
"access_token": "eyJhbGciOiJSUzI1NiIsImp3ay",
"token_type": "Bearer",
"expires_in": 3600,
"scope": "sendMessage"

}

For more information about access tokens, see “Access tokens” on page 7-303. For
information about the access-token response, see “Access-token response” on page
7-305.

Accessing protected resources

After the confidential client acquires an access token, it can use this token to access
protected resources, such as adapter resources or MobileFirst Server endpoints. The
client provides the access token by adding an HTTP authorization header to the
HTTP request. The value of the header is constructed by inserting the string
"Bearer " before the access token. Following is an example of a resource-request
header:
Authorization: Bearer eyJhbGciOiJSUzI1NiIsImp3ay

Security checks
Learn how to create custom security checks, use the predefined MobileFirst
security checks, and configure the behavior of your security checks at the adapter
and application levels.

Security checks

Security checks constitute the basic server-side building block of the MobileFirst
security framework. A security check is a server-side entity that implements a
specific authorization logic. You protect a resource by assigning it a scope that
maps to zero or more security checks. The security framework ensures that only a
client that passes all of the security checks of the protecting scope is granted access
to the resource. See “Overview of the MobileFirst security framework” on page
7-265. You can use security checks to authorize access both to resources that are
hosted on MobileFirst Server and to resources on an external resource server. See
“OAuth resource protection” on page 7-271.

A security check can be used to validate data from different sources, including
v Client data, such as login credentials (for example, user name and password, or

a pin code), or application-authenticity data.
v Server-side state

Custom security checks are implemented and defined within MobileFirst adapters:
the developer implements a security-check class in Java code, and configures it in
the adapter descriptor. See “Security-checks implementation” on page 7-289.

The architecture of the security framework is modular and flexible. The
implementation of the security check is not inherently dependent of any specific
resource or application. You can reuse the same security check to protect different
resources, and use different security-check combinations for various authorization
flows. For enhanced flexibility, a security-check class exposes configuration
properties that can be customized at the adapter level both in the security-check
definition and during run time. You can also customize the configuration logic at
the application level. See “Security-checks configuration” on page 7-297.

Developing applications 7-281

You can create custom security checks, and use any of the predefined MobileFirst
security checks. See “Security-checks implementation” on page 7-289 and
“Predefined MobileFirst security checks.”.

Predefined MobileFirst security checks
Learn about the predefined MobileFirst security checks.

Protect your resources by including any of the predefined security checks that are
provided as part of IBM MobileFirst Platform Foundation in your custom OAuth
scopes (see “OAuth resource protection” on page 7-271). You can also customize
the configuration of the predefined security checks for a specific application (see
“Configuring application security-check properties” on page 7-299). Proceed to the
following topics for detailed information on each of the predefined security checks,
and its configurable properties.

Application-authenticity security check:

Lean how to use the MobileFirst application-authenticity security check to validate
the authenticity of your application and achieve enhanced resource protection.

Overview of MobileFirst application-authenticity validation

Use the predefined application-authenticity security check (appAuthenticity) to
protect against unlawful attempts by fake or tampered applications to access your
protected resources (APIs). When enabled, this check validates the authenticity of
the application before providing it with any services. The application-authenticity
security check is enabled by deploying to the server an application-authenticity file
that you create with the MobileFirst application-authenticity tool: see “Enabling the
application-authenticity security check.” The security framework uses this file to
validate the authenticity of the application. By default, the security check is run
during the application's runtime registration with MobileFirst Server, which occurs
the first time an instance of the application attempts to connect to the server.
However, as with any MobileFirst security check, you can also include this
predefined check in custom security scopes: see OAuth scopes and security checks.
For example, you can choose to add this check to the mandatory application scope:
see “Configuring a mandatory application scope” on page 7-276.

The application-authenticity security check is supported for native iOS, native
Android, native Windows 10 Universal Windows Platform and Windows 8
Universal, and cross-platform Cordova MobileFirst applications.

Proceed to the next topics to learn how to enable and configure the
application-authenticity security check.

Enabling the application-authenticity security check:

Enable the predefined MobileFirst application-authenticity security check to protect
against attempts by fake or tampered applications to access your resources (APIs).

About this task

You enable the application-authenticity security check by creating an
application-authenticity file, and deploying the file to MobileFirst Server. You can
select whether to separate the file creation and deployment steps, or consolidate
them into one step:
v One-step authenticity-file generation and deployment with mfpadm

7-282 IBM MobileFirst Platform Foundation V8.0.0

v Two-step authenticity-file generation and deployment

Procedure

v
v One-step authenticity-file generation and deployment with mfpadm

Run the app version set authenticity-data command of the mfpadm command
line program, or the <app-version> <set-authenticity-data> command through
an mfpadm Ant task. Set the command's file argument or attribute to the
location of your application binary file. This command will generate an
application-authenticity file for your application, and store the file on the server.

v Two-step authenticity-file generation and deployment

1. Get the MobileFirst application-authenticity Java tool, mfp-app-authenticity-
tool.jar, by using either of the following alternative methods:
– Download the tool from IBM MobileFirst Platform Operations Console

(the console): from the console Dashboard, select Download Center, and
then select the Tools tab. Under Applicaiton-Authenticity Tool, select
Download and save the file to your preferred location.

– Copy the tool from the <product_install_dir>/MobileFirstServer/
external-server-libraries/ directory (where <product_install_dir> is the
directory in which you installed IBM MobileFirst Platform Foundation).

2. Generate a unique application-authenticity file: from the command line, run
the application-authenticity tool with one of the following command
variations:
–

java -jar <path to mfp-app-authenticity-tool.jar>
<app_binary> [<authenticity_file>]

– java -jar <path to mfp-app-authenticity-tool.jar>

When no parameters are provided, the application-authenticity tool runs
in an interactive mode. You are then prompted to enter the path to your
application binary file (app_binary), and optionally also the path to your
target application-authenticity file (authenticity_file).
mfp-app-authenticity-tool parameters
app_binary

Mandatory path to your application binary file.
- For Android, refer to your .apk application file. This file must

be signed. For more information about signing Android
applications, see the Android documentation: Signing Your
Applications.
Note that the Google Play multiple APK feature cannot be used
together with the MobileFirst application-authenticity
validation. For information about multiple APK, see the
Android documentation: Multiple APK Support.

- For iOS, refer to your .ipa application file. If your application
must support both 32-bit and 64-bit execution, provide a single
.ipa file that includes both 32-bit and 64-bit code.
Note that bitcode-enabled applications cannot be used together
with the MobileFirst application-authenticity validation. See
“Working with bitcode in iOS apps” on page 7-48.

- For Windows 10 Universal Windows Platform (UWP) and
Windows 8.1 Universal, refer to your .appx application file, or
to a .appx file from a bundle.

authenticity_file
Optional path to the generated application-authenticity file. By

Developing applications 7-283

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/google/play/publishing/multiple-apks.html

default, the tool generates an <application-binary base file
name>.authenticity_data file in the same directory as the
provided application binary file (app_binary).

Example
The following command is run from the directory that contains the
application-authenticity tool, and does not set the optional authenticity_file
parameter. The command generates a my_ios_app.authenticity_data
application-authenticity file in the same directory as the input
my_ios_app.ipa application binary: /Users/myname/.
java -jar mfp-app-authenticity-tool.jar /Users/myname/my_ios_app/my_ios_app.ipa

3. Deploy your generated application-authenticity file to MobileFirst Server, by
using either MobileFirst Operations Console or mfpadm:
– In the console,

a. Select your application version from the Applications section of the
console's navigation sidebar, and then select the application
Authenticity tab.

b. Select Upload Authenticity File, browse to your generated
application-authenticity file, and upload the file.

– Run the app version set authenticity-data command of the mfpadm
command line program, or run the <app-version> <set-authenticity-
data> command through an mfpadm Ant task. Set the command's file
argument or attribute to the location of your application-authenticity data
file.

When your application-authenticity file is successfully deployed to the server,
a relevant message is displayed in the console.

Results

When your application-authenticity file is deployed to the server, the Status value
in the application Authenticity console tab is set to "Enabled", indicating that the
security check is enabled for your application.

You can retrieve a copy of the application-authenticity file that is deployed for
your application on the server, by running the app version get authenticity-data
command of the mfpadm command line program, or the <app-version>
<get-authenticity-data> command through an mfpadm Ant task.

You can disable the application-authenticity security check at any time, by using
one of the following methods:
v In the application Authenticity console tab, select Delete Authenticity File.
v Run the app version delete authenticity-data command of the mfpadm

command line program, or the <app-version> <delete-authenticity-data>
command through an mfpadm Ant task.

Configuring the application-authenticity security check:

Configure the predefined MobileFirst application-authenticity security check to
match your specific requirements.

About this task

The predefined application-authenticity security check (appAuthenticity) has a
single configurable property: expirationSec. This property sets the expiration

7-284 IBM MobileFirst Platform Foundation V8.0.0

period for a successful security-check state. The expiration period determines the
minimal interval for invoking the check again after a successful execution.

You can configure the value of the expirationSec application-authenticity
security-check property, as outlined in the following procedure.

Note: The procedure explains how to use IBM MobileFirst Platform Operations
Console to configure the property value. Alternatively, you can also set the
property value directly in the application-descriptor file. For detailed information,
see “Configuring application security-check properties” on page 7-299.

Procedure

1. In MobileFirst Operations Console, select your application version from the
Applications section of the navigation sidebar, and then select the application
Security tab.

2. In the Security-Check Configurations section, select Create New.
3. In the Configure Security-Check Properties window, configure the

application-authenticity security check:
a. In the Security Check field, select appAuthenticity from the list.
b. In the Expiration Period, Successful State (seconds) field, set your

preferred expiration period for a successful state of the security check, in
seconds.

When the configuration is done, you can see and edit your appAuthenticity
security-check configuration in the Security-Check Configurations table of the
application Security tab. See “Configuring application security-check
properties” on page 7-299.

LTPA-based single sign-on (SSO) security check:

Learn how to use the MobileFirst LTPA-based SSO security check to use a
back-end service to authenticate users by using SSO LTPA tokens.

See “The MobileFirst LTPA-based SSO security check” on page 7-288 and
“Configuring the LTPA-based SSO security check” on page 7-289.

LTPA Overview

A lightweight third-party authentication (LTPA) token is a type of security token
that is used by IBM WebSphere Application Server and other IBM products. LTPA
can be used to send the credentials of an authenticated user to back-end services. It
can also be used as a single sign-on (SSO) token between the user and multiple
servers.

Figure 7-32 on page 7-286 shows a simple client <-> server flow with LTPA.

Developing applications 7-285

After a user logs in to the server, the server generates an LTPA token, which is an
encrypted hash that contains authenticated user information. The token is signed
by a private key that is shared among all the servers that want to decode it. The
token is usually in cookie form for HTTP services. By sending the token as a
cookie, the need for subsequent user interaction is avoided.

LTPA tokens have a configurable expiration time to reduce the possibility of
session hijacking.

Reverse proxy with LTPA

Your infrastructure can also use the LTPA token to communicate with a back-end
server that acts on behalf of the user. In a reverse-proxy topology, the user cannot
directly access the back-end server. The reverse proxy can be used to authenticate a
user's identity, and then send the LTPA token of the authenticated user to back-end
servers. This configuration ensures that access to MobileFirst Server cannot be
obtained until a user is authenticated. This is useful, for example, when you do not
want to use IBM MobileFirst Platform Foundation to handle vital user credentials,
or when you want to use an existing authentication setup. Enterprise environments
should use a reverse proxy, such as IBM WebSphere DataPower or IBM Security
Access Manager, in the DMZ, and place the MobileFirst Server in the intranet.

In a reverse-proxy implementation, MobileFirst Server must be configured for
LTPA authentication to get the user identity.

Figure 7-33 on page 7-287 shows an LTPA flow between a client and a back-end
server using a reverse proxy.

Figure 7-32. Simple LTPA-based client <-> server flow

7-286 IBM MobileFirst Platform Foundation V8.0.0

MobileFirst integration with a reverse proxy

You can use a reverse proxy to enable enterprise connectivity within a MobileFirst
environment, and to provide authentication services to IBM MobileFirst Platform
Foundation.

General architecture

Reverse proxies typically front MobileFirst Server instances as part of the
deployment, as shown in Figure 7-34, and follow the gateway pattern.

The MFP icon represents an instance of MobileFirst Server. The GW icon
represents a reverse-proxy gateway, such as WebSphere DataPower. In
addition to protecting MobileFirst resources from the Internet, the reverse
proxy provides termination of HTTPS (SSL) connections and
authentication. The reverse proxy can also act as a policy enforcement
point (PEP).

When a gateway is used, an application (A) on a device (D) uses the public
URI that is advertised by the gateway instead of the internal MobileFirst
Server URI. The public URI can be exposed as a setting within the

Figure 7-33. Reverse-proxy LTPA flow

Figure 7-34. Integration with reverse proxy

Developing applications 7-287

application, or can be built in during promotion of the application to
production, before the application is published to public or private
application stores.

Authentication at the gateway

If authentication ends at the gateway, IBM MobileFirst Platform
Foundation can be informed of the authenticated user by a shared context,
such as a custom HTTP header or a cookie. By using the extensible
authentication framework, you can configure IBM MobileFirst Platform
Foundation to use the user identity from one of these mechanisms, and
establish a successful log in. Figure 7-35 shows a typical authentication
flow for this gateway topology.

This configuration was successfully tested with WebSphere DataPower for
LTPA-based authentication. On successful authentication, the gateway
forwards an LTPA token (in the form of an HTTP cookie) to WebSphere
Application Server, which validates the LTPA token and creates a caller
principal. IBM MobileFirst Platform Foundation can use this caller
principal, as needed.

The MobileFirst LTPA-based SSO security check

The predefined MobileFirst LTPA-based single-sign on (SSO) security check
(LtpaBasedSSO) enables integration of IBM MobileFirst Platform Foundation with
the WebSphere Application Server LTPA protocol. This security check allows you to
integrate instances of MobileFirst Server within an LTPA-based gateway topology,
as described in the previous sections, and use a back-end service to authenticate
users by using an SSO LTPA token.

This predefined security check can be used as any other security check in the
MobileFirst security framework (see “Security checks” on page 7-281): you can
map a custom scope element to this check, and use the check (or a scope element
that contains it) in a protecting resource scope or in a mandatory application scope.
See “OAuth resource protection” on page 7-271.

Figure 7-35. Authentication flow

7-288 IBM MobileFirst Platform Foundation V8.0.0

You can also configure the behavior of this security check for your application, as
outlined in the next topic.

Configuring the LTPA-based SSO security check:

Learn how to configure the predefined MobileFirst LTPA-based single sign-on
(SSO) security check.

About this task

The predefined LTPA-based single sign-on (SSO) security check (LtpaBasedSSO)
has a single configurable property: expirationSec. This property sets the expiration
period for a successful security-check state. The expiration period determines the
minimal interval for invoking the check again after a successful execution.

You can configure the value of this expirationSec property, as outlined in the
following procedure.

Note: The procedure explains how to use the IBM MobileFirst Platform Operations
Console to configure the property value. Alternatively, you can also set the
property value directly in the application-descriptor file. For detailed information,
see “Configuring application security-check properties” on page 7-299.

Procedure

1. Open a MobileFirst Operations Console window. Select your application
version from the Applications section of the navigation sidebar, and then select
the application Security tab.

2. In the Security-Check Configurations section, select Create New.
3. In the Configure Security-Check Properties window, configure the LTPA-based

SSO security check:
a. In the Security Check field, select LtpaBasedSSO from the list.
b. In the Expiration Period, Successful State (seconds) field, set your

preferred expiration period for a successful state of the security check, in
seconds.

When the configuration is done, you can see and edit your LtpaBasedSSO
security-check configuration in the Security-Check Configurations table of the
application Security tab. See “Configuring application security-check
properties” on page 7-299.

Security-checks implementation
Learn how to implement security checks that provide custom authorization logic.

Overview

The development of a security check involves the following server-side steps:
1. Create a security-check class that implements the security-check interface

(SecurityCheck). For more information about the requirements of this class, see
“The security-check contract” on page 7-291. You can start your development
by extending one of the provided security-check base classes. See “The
security-check base and sample classes” on page 7-290.

2. Optionally create a security-check configuration class that implements the
security-check configuration interface (SecurityCheckConfiguration). You can
start with the abstract implementation of this interface, the
SecurityCheckConfigurationBase class, or with one of the provided sample

Developing applications 7-289

implementations that extend this class. For more information, see “The
security-check contract” on page 7-291 and “The security-check base and
sample classes.”

3. Define one or more security checks of a custom security-check class type. See
“Defining security checks” on page 7-294.

Note:

v The MobileFirst security framework requires that you implement a custom
security check as part of an adapter that is deployed to MobileFirst Server. You
implement the security-check class by using the MobileFirst security server-side
Java API, and you define an instance of this class in the adapter-descriptor file
(adapter.xml). You can implement and define security checks either in the same
adapter that defines your resources, or in a separate dedicated adapter, as you
prefer.

v The outlined steps do not need to be executed in the specified order, and they
can be done in stages. For example, you can define an empty security-check
definition, and add configuration properties when the related security-check
configuration is ready. But be aware of the following considerations:
– To deploy an adapter that defines a security check, the security check's class

must be available in the same adapter, either as part of the adapter source
code or as via an external library.

– To correctly define the configuration properties in the security-check
definition, you need to know which properties are supported for the
referenced class and what are their value restrictions.

After you define a security-check class and deploy it to MobileFirst Server, you can
customize the value of its properties both for the specific server instance and for a
specific application version. See “Configuring runtime adapter security-check
properties” on page 7-298 and “Configuring application security-check properties”
on page 7-299. The administrator can edit these configurations before going to
production, and after the application is already in production.

The security-check base and sample classes

To facilitate and accelerate your development process, IBM MobileFirst Platform
Foundation provides base abstract implementations of the SecurityCheck interface.
In addition, a base abstract implementation of the SecurityCheckConfiguration
interface is provided (SecurityCheckConfigurationBase), as well as complementary
sample security-check configuration classes for each of the provided base
security-check classes. Start out with the base security-check implementation (and
related sample configuration) that best fits your development needs, and extend
and modify the implementation as needed.

ExternalizableSecurityCheck
This class implements the required externalization of the security check as
a JSON object, and also implements a security-check state mechanism.

ExternalizableSecurityCheck creates a security-check configuration of the
sample ExternalizableSecurityCheckConfig class.

CredentialsValidationSecurityCheck
This class extends the ExternalizableSecurityCheck class and adds an
implementation that validates user credentials as a condition for accessing
a protected resource. The implementation allows a limited number of login
attempts during a certain interval, after which the security check is blocked
for a configured period. In the case of a successful login, the state of the

7-290 IBM MobileFirst Platform Foundation V8.0.0

security check remains successful for a configured period, during which
the user can access the requested resource.

CredentialsValidationSecurityCheck creates a security-check configuration
of the sample CredentialsValidationSecurityCheckConfig class, which
extends ExternalizableSecurityCheckConfig and defines the configurable
properties of the security check and their default values.

For guidelines on how to implement and configure the
CredentialsValidationSecurityCheck security check, and how to implement
complementary client-side challenge handlers, see the
CredentialsValidationSecurityCheck tutorials.

UserAuthenticationSecurityCheck
This class extends the CredentialsValidationSecurityCheck class and adds
to it an implementation that creates a user identity that can be used to
identify the current user. The class also implements a sample "remember
me" function, which uses a user identify that is stored in the registration
service as the active user.

UserAuthenticationSecurityCheck creates a security-check configuration of
the sample UserAuthenticationSecurityCheckConfig class, which extends
CredentialsValidationSecurityCheckConfig.

For guidelines on how to implement and configure the
UserAuthenticationSecurityCheck security check, and how to implement
complementary client-side challenge handlers, see the
UserAuthenticationSecurityCheck tutorials.

The ExternalizableSecurityCheck and ExternalizableSecurityCheckConfig classes are
included in the com.ibm.mfp.server.security.external.checks.impl package of the
core MobileFirst server-side Java API.
The CredentialsValidationSecurityCheck,
CredentialsValidationSecurityCheckConfig, UserAuthenticationSecurityCheck, and
UserAuthenticationSecurityCheckConfig classes are available as part of the
MobileFirst com.ibm.mfp.security.checks.base Java Maven library, which you can
download from the Maven repository or from the IBM MobileFirst Platform
Operations Console: from the console Dashboard, select Download Center, select
the Tools tab, and choose the Download option in the Security Checks section.

The security-check contract:

Learn about the MobileFirst security-check contract, which is defined by the
SecurityCheck and SecurityCheckConfiguration interfaces.

Overview

Every security check must implement the
com.ibm.mfp.server.security.external.SecurityCheck interface (the security-check
interface). This interface constitutes the basic contract between the security check
and the MobileFirst security framework. Custom security checks are implemented
as a Java security-check class within a MobileFirst adapter (see “Security-checks
implementation” on page 7-289). The security-check implementation must fulfill
the following requirements:
v Functions - the security check must provide the client-authorization and

introspection functions. See “Security-check functions” on page 7-292.

Developing applications 7-291

https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/credentials-validation/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/user-authentication/
http://search.maven.org/#search|ga|1|a%3A%22mfp-security-checks-base%22

v State management - the security check must manage its state, including creation,
disposal, and current-state management. See “Security-check state management”
on page 7-293.

v Configuration - the security check must create a security-check configuration
object, which defines the supported security-check configuration properties, and
validates the types and values of customizations of the basic configuration. See
“Security-check configuration” on page 7-293.

For a complete reference of the SecurityCheck interface, see the code
documentation of this interface. In addition, review the implementation and
documentation of the provided abstract security-check base classes. These classes
implement some of the requirements of the security-check contract, such as state
management, and demonstrates how to implement other custom functions. See
“The security-check base and sample classes” on page 7-290.

Security-check functions

A security check provides two main functions to the security framework:

Authorization
The framework uses the SecurityCheck.authorize method to authorize
client requests. When the client requests access to a specific OAuth scope,
the framework maps the scope elements into security checks (see OAuth
scopes and security checks). For each security check in the scope, the
framework calls the authorize method to request authorization for a scope
that contains the scope elements that mapped to this security check. This
scope is provided in the method's scope parameter. The security check
adds its response to the AuthorizationResponse object that is passed to it
within the response parameter. The response contains the name of the
security check and the response type, which can be success, failure, or a
challenge (see AuthorizationResponse.ResponseType). When the response
contains a challenge object or custom success or failure data, the
framework passes the data to the client's security-check challenge handler
within a JSON object. For success, the response also contains the scope for
which the authorization was requested (as set in the scope parameter), and
the expiration time for the granted authorization. To grant the client access
to the requested scope, the authorize method of each of the scope's security
checks must return success, and all expiration times must be later than the
current time.

Introspection
The framework uses the SecurityCheck.introspect method to retrieve
introspection data for a resource server. This method is called for each
security check that is contained in the scope for which introspection was
requested. As with the authorize method, the introspect method receives a
scope parameter that contains the scope elements that mapped to this
security check. Before returning the introspection data, the method verifies
that the current state of the security check still supports the authorization
that was previously granted for this scope. If the authorization is still valid,
the introspect method adds its response to the IntrospectionResponse
object that is passed to it within the response parameter. The response
contains the name of the security check, the scope for which the
authorization was requested (as set in the scope parameter), the expiration
time for the granted authorization, and the requested custom introspection
data. If authorization can no longer be granted (for example, if the
expiration time for a previous successful state elapses), the method returns
without adding a response.

7-292 IBM MobileFirst Platform Foundation V8.0.0

Note:

v The security framework collects the processing results from the security checks,
and passes relevant data to the client. The framework processing is entirely
ignorant of the states of the security checks.

v Calls to the authorize or introspect methods can result in a change in the current
state of the security check, even if the expiration time of the current state did not
elapse.

Security-check state management

Security checks are stateful, meaning that the security check is responsible for
tracking and retaining its interaction state. On each authorization or introspection
request, the security framework retrieves the states of relevant security checks from
external storage (usually, distributed cache). At the end of request processing, the
framework stores the security-check states back in external storage.

The security check contract requires that a security check
v Implement the java.io.Externalizable interface. The security check uses this

interface to manage the serialization and deserialization of its state.
v Define an expiration time and an inactivity timeout for its current state. The

state of the security check represents a stage in the authorization process, and
cannot be indefinite. The specific periods for the state's validity and maximum
inactivity time are set in the security-check implementation, according to the
implemented logic. The security check informs the framework of its selected
expiration time and inactivity timeout via the implementation of the
getExpiresAt and getInactivityTimeoutSec methods of the SecurityCheck
interface.

Security-check configuration

A security check can expose configuration properties, whose values can be
customized both at the adapter and at the application level. The security-check
definition of a specific class determines which of the supported configuration
properties of this class to expose, and can customize the default values set in the
class definition. See “Defining security checks” on page 7-294. The property values
can be further customized, dynamically, both for the adapter that defines the
security checks, and for each application that uses the check. See “Security-checks
configuration” on page 7-297. A security-check class exposes its supported
properties by implementing a createConfiguration method, which creates an
instance of a security-check configuration class that implements the
com.ibm.mfp.server.security.external.SecurityCheckConfiguration interface (the
security-check configuration interface). This interface complements the SecurityCheck
interface, and is also part of the security-check contract. The security check can
create a configuration object that does not expose any properties, but the
createConfiguration method must return a valid configuration object and cannot
return null. For a complete reference of the SecurityCheckConfiguration interface,
see the code documentation of this interface. In addition, review the
implementation and documentation of the provided abstract security-check base
class and the sample configuration-class implementations. See “The security-check
base and sample classes” on page 7-290.

The security framework calls the security-check's createConfiguration method
during deployment, which occurs for any adapter or application configuration
change. The method's properties parameter contains the properties that are
defined in the adapter's security-check definition, and their current customized

Developing applications 7-293

values (or the default value if there was no customization). The implementation of
the security-check configuration should validate the values of the received
properties, and provide methods for returning the validation results. The
security-check configuration must implement getErrors, getWarnings, and getInfo
methods. The abstract security-check configuration base class,
SecurityCheckConfigurationBase also defines and implements custom
getStringProperty, getIntProperty, and addMessage methods. See the code
documentation of this class for details.

Note: The names and values of the configuration properties in the security-check
definition and in any adapter or application customization, must match the
supported properties and allowed values, as defined in the configuration class.

Defining security checks:

Learn how to define custom security checks.

Before you begin

Ensure that the security-check class that you want to use in your definition is
available in your adapter project, either as part of the source code or via an
external library. See “Security-checks implementation” on page 7-289.

About this task

A security check is an instance of a security-check class, which is defined in the
adapter descriptor. The defined security check can be used within a security scope
to apply a specific resource-protection logic. Follow the outlined procedure to
define a custom security check:

Procedure

1. Add a security-check definition: in the adapter-descriptor file (adapter.xml),
add a <securityCheckDefinition> element of a security-check class that is
available in your adapter project. For a detailed reference of the security-check
definition element and usage guidelines, see “The <securityCheckDefinition>
element” on page 7-295.

2. To apply your changes and make your security check available for inclusion in
security scopes, build your adapter and deploy it to an instance of MobileFirst
Server (the server). See “Working with Java adapters” on page 7-196 and
“Working with JavaScript adapters” on page 7-214.

Results

After you successfully deploy an adapter with a security-check definition to the
server, this security check can be used within security scopes and scope elements
of any adapter or application that are deployed or registered to the same server
instance. See “OAuth resource protection” on page 7-271.

You can also see your security check and its configuration information, and make
runtime configuration changes, from IBM MobileFirst Platform Operations Console
(the console):

Note: When deploying an adapter during an active console session, you need to
refresh the console page to reflect your changes.

7-294 IBM MobileFirst Platform Foundation V8.0.0

v Select your adapter from the Adapters section of the console's navigation
sidebar, and then select the adapter Configuration Files tab. In the
Adapter-Descriptor XML File section, you can see the server copy of your
adapter descriptor, including the <securityCheckDefinition> element that defines
your custom security check and its configurable properties.

v Select the Security Checks tab for your adapter. Search for the name of your
security check, as set in the name attribute of your security-check definition
element (<securityCheckDefinition>). You can see a list of all the configuration
properties that you exposed in the security-check definition. The properties are
referenced by the value of their configured displayName attribute, or by the
value of the name attribute when no display name is configured. If you set the
property's description attribute in the definition, this description is also
displayed.
For each property, the value that is configured in the defaultValue attribute is
shown as the current value. You can change the value to override the default
value from your security-check definition. You can also restore, at any time, the
original default values from your security-check definition.
You can modify the property values on this page to customize the security-check
configuration for this specific MobileFirst Server instance. See “Configuring
runtime adapter security-check properties” on page 7-298.

v Select an application version from the Applications section of the console's
navigation sidebar (provided at least one application is registered with this
instance of the server). Then select the application Security tab. If you choose to
map scope elements or define a mandatory application scope, you can select
your security check from among the custom security checks: see “Mapping
scope elements” on page 7-277 and “Configuring a mandatory application
scope” on page 7-276. If you choose to configure security-check properties, you
can see your defined properties and their descriptions (if provided). You can also
see the default property values, as set it the security-check definition or
overwritten in the adapter runtime configuration. See “Configuring application
security-check properties” on page 7-299.

The <securityCheckDefinition> element:

Learn how to use the <securityCheckDefinition> adapter-descriptor element to
define a custom security check.

Overview

You define a security check by adding a <securityCheckDefinition> XML element
within the <mfp:adapter> element of your adapter-descriptor file (adapter.xml).
Each security check is an instance of a security-check class. See “Defining security
checks” on page 7-294. The security-check definition can contain zero or more
<property> subelements that represent configurable security-check properties.
Following is a reference of the <securityCheckDefinition> element, its attributes,
and subelements.

Syntax
<securityCheckDefinition name="securityCheckName"

class="securityCheckClass">
<property name="propertyName" displayName="propertyDisplayName"

defaultValue="defaultPropertyValue"
description="propertyDescription>"/>

</securityCheckDefinition>

Developing applications 7-295

Attributes

The <securityCheckDefinition> element accepts the following mandatory attributes:

name The name of the defined security check.

class The type of the security check, as a full path to a security-check class
implementation that is available in the same adapter as the definition
(either as source code or via an external library). For example,
com.my_company.package.SampleSecurityCheck for a SampleSecurityCheck
class that is implemented in a com.my_company.package package.

The <property> subelement

The security-check definition can contain <property> elements for any
configuration property that is supported by the security-check's class. The
supported configurations are defined in the security-check configuration class (of
the SecurityCheckConfiguration interface type) that is created by the security-check
class. When defining your security check, you can decide which of the supported
properties to expose, and override the configuration class's default property values.
For supported properties that are not referenced in the security-check definition,
the security check relies on the default configuration-class values.
The properties that you expose in the security-check definition can be further
customized, at run time, both at the adapter level and at the application level.

<property> attributes
The <property> subelement of the <securityCheckDefinition> element
accepts the following attributes:

Mandatory attributes

name The name of a security-check configuration property that is
supported by the class of the security-check definition (via its
security-check configuration class).

defaultValue
The default value to use for this property. This value overrides the
default value set in the related security-check configuration class.

Optional attributes

displayName
The display name to use for this property. MobileFirst Operations
Console uses the display name when referencing the property. The
default display name is the value of the name attribute.

description
A textual description of the property and its purpose. When
provided, MobileFirst Operations Console displays the description
as a hint for fields that contain the property's value.

Note: For the purposes of using the console, you do not need to
include the default property value in the description string. The
console displays the default-value information based on the value
of the defaultValue attribute.

Example

The following example defines a UserAuthenticationSC security check of a custom
MyUserAuthenticationSecurityCheck security-check class, which is implemented in

7-296 IBM MobileFirst Platform Foundation V8.0.0

the com.my_company.package Java package.
The custom security-check class extends the sample MobileFirst abstract
UserAuthenticationSecurityCheck base class, and creates a custom
MyUserAuthenticationSecurityCheckConfiguration class that extends the sample
UserAuthenticationSecurityCheckConfig class. The custom security check inherits
all the configuration properties of the extended sample class and its ancestor
classes (CredentialsValidationSecurityCheckConfig and
ExternalizableSecurityCheckConfig): inactivityTimeoutSec (default value = 0),
maxAttempts (default value = 1), attemptingStateExpirationSec (default value =
120), successStateExpirationSec (default value = 3,600),
failureStateExpirationSec (default value = 0), rememberMeDurationSec (default
value = 0).In addition, the custom configuration class defines a pinCode property
(default value = 1234).
The custom security-check definition exposes only the pinCode, maxAttempts,
attemptingStateExpirationSec, and failureStateExpirationSec properties. Of
these properties, it customizes the default values of the pinCode, maxAttempts, and
failureStateExpirationSec properties, changing them to 9876, 3, and 180.

<securityCheckDefinition name="UserAuthenticationSC" class="com.my_company.package.MyUserAuthenticationSecurityCheck">
<property name="pinCode" displayName="Pin Code"

defaultValue="9876"
description="A four-digit pin code"/>

<property name="maxAttempts" displayName="Maximum attempts"
defaultValue="3"
description="Maximum allowed user-authentication attempts"/>

<property name="attemptingStateExpirationSec" displayName="Expiration Period, Attempting State (seconds)"
defaultValue="120"
description="Expiration period for an attepmpting security-check state, in seconds"/>

<property name="failureStateExpirationSec" displayName="Expiration Period, Failed State (seconds)"
defaultValue="180"
description="Expiration period for a failed security-check state, in seconds"/>

</securityCheckDefinition>

Security-checks configuration
Learn about the security-check configuration hierarchy, and how to configure
security-check properties at the adapter and at the application levels.

The definition of a predefined or custom security check exposes zero or more
configuration properties. The documentation of the predefined security checks lists
the properties that are supported for each check, and their default values: see
“Predefined MobileFirst security checks” on page 7-282. For custom security
checks, the configuration properties are exposed in the definition of the security
check in the adapter descriptor, which also sets the default property values: see
“Defining security checks” on page 7-294. The default values of custom
security-check configuration properties can be customized, at the adapter level, for
a specific MobileFirst Server instance. The values of both custom and predefined
security-check configuration properties can be further customized for a specific
application version. See the detailed customization instructions in the following
topics:
v “Configuring runtime adapter security-check properties” on page 7-298
v “Configuring application security-check properties” on page 7-299

Note:
v The security-check definition, which contains the basic configuration, is defined

in the XML descriptor file of the adapter that defines the security check.
v Runtime adapter customizations of the defined configuration properties for a

specific server instance are defined in the adapter runtime-configuration JSON
file.

Developing applications 7-297

v Application customizations of the security-check configuration properties are
defined in the application-descriptor JSON file.

Configuring runtime adapter security-check properties:

Learn how to configure adapter security-check properties for a specific MobileFirst
Server instance.

About this task

The definition of a custom security check exposes zero or more configuration
properties, and defines their default values. You can see the security-check
definitions of an adapter that is deployed to MobileFirst Server in the server's copy
of the adapter-descriptor XML file. See “Defining security checks” on page 7-294.
The security-check configuration that is set in the definition applies to all instances
of MobileFirst Server to which you deploy the adapter that defines the security
check. Follow the outlined procedure to dynamically customize the security-check
configuration for a specific instance of MobileFirst Server, without changing the
original security-check definition, or having to redeploy the adapter.

Note: Runtime adapter customizations of the security-check configuration
properties are defined in the adapter runtime-configuration JSON file.

Procedure

Customize the adapter configuration of your selected security check for a specific
instance of MobileFirst Server by using one of the following methods:
v Using IBM MobileFirst Platform Operations Console (the console)

1. In the Adapters section of the console's navigation sidebar, select the adapter
that defines the security checks that you want to configure, and then select
the Security Checks tab. You can see a list of all the security checks that are
defined in the selected adapter. For each security check, you can select View
to see a list of the security check's properties and their current values, the
default values from the security-check definition (when the default differs
from the current value), and the property description (if provided in the
definition).

2. Change the values of the properties that you want to customize for this
MobileFirst Server instance. Then select Save at the end of the
security-check's properties list.
You can always restore the original property configuration values of the
security-check definition by selecting Restore Default Values.

v Editing the adapter runtime-configuration file

1. Create a local copy of the adapter runtime-configuration JSON file. You can
use either of the following methods to copy the content of the file, and then
paste it into a local file:
– In the Adapters section of the MobileFirst Operations Console navigation

sidebar, select the adapter that defines the security checks that you want
to configure, and then select the Configuration Files tab. The content of
the runtime-configuration file is displayed in the Adapter
Runtime-Configuration JSON File section. You can use the file-copy icon
next to the displayed file to copy the content.

– Run the show user-config command of the mfpadm command-line
program or Ant task.

2. In your local copy of the configuration file, look for a
securityCheckDefinitions object within the adapter object. If the object does

7-298 IBM MobileFirst Platform Foundation V8.0.0

not exist, create it. In this object, find or create an object that is named as
your selected security check (SecurityCheckName in the following template):
"securityCheckDefinitions": {

"SecurityCheckName": {
}

}
}

3. In your security-check object (SecurityCheckName), find or add a properties
object. For each available configuration property that you want to configure,
add within the properties object a pair of configuration-property name and
value:
"securityCheckDefinitions": {

"SecurityCheckName": {
"properties": {

"property1Name": "property1Value",
["property2Name": "property2Value",
...]

}
}

}

Example
The following example sets the values of the maxAttempts and
failureExpirationSec properties of a custom UserAuthenticationSC security
check to 4 and 90:
"securityCheckDefinitions": {

"UserAuthenticationSC": {
"properties": {

"maxAttempts": "4",
"failureExpirationSec: "90"

}
}

}

4. Deploy your copy of the adapter runtime-configuration JSON file to
MobileFirst Server. You can do this by running the set user-config
command of the mfpadm command-line program or Ant task.

You can repeat this procedure, at any time, to customize the security-check
configuration. You can also deploy the same configuration file to other instances
of MobileFirst Server on which the same adapter is deployed, or reuse relevant
portions of the configuration in other adapter configuration files.

Results

After completing the configuration changes, you can see your defined property
values in the console, both in the adapter Security Checks page and in the
Adapter Runtime-Configuration JSON File section on the adapter Configuration
Files page.
If you select to customize the configuration of the same security check for a
specific application, the console displays your customized property values as the
default values for the application configuration. See “Configuring application
security-check properties.”

Configuring application security-check properties:

Learn how to customize the security-check configurations for a specific application
version.

Developing applications 7-299

About this task

You can make application-specific changes to the default values of any predefined
or custom security-check property that is exposed on the same MobileFirst Server
instance as your application. The documentation of the predefined security checks
lists the properties that are supported for each check, and their default values. See
“Predefined MobileFirst security checks” on page 7-282. For custom security
checks, the basic configuration is defined in the adapter descriptor file, and can be
overridden for a specific server instance in the adapter runtime-configuration file.
See “Security-checks configuration” on page 7-297. In addition, for the custom
security checks the MobileFirst security framework provides an application-specific
property for enabling device SSO. See “Configuring device single sign-on (SSO)”
on page 7-301. The IBM MobileFirst Platform Operations Console for your
MobileFirst Server instance displays the available security checks and their
properties, including the property values, default values, and descriptions (if
provided in the definition). Follow the outlined procedure to customize the
property values for your application.

Note: Application customizations of the security-check configuration properties are
defined in the application-descriptor JSON file. See “Application configuration” on
page 7-3.

Procedure

Configure the security checks that are used by your application by using one of the
following alternative methods:
v Using IBM MobileFirst Platform Operations Console (the console)

1. Select your application version from the Applications section of the console's
navigation sidebar, and then select the application Security tab.

2. In the Security-Check Configurations section, select Create New, or select
the edit icon for an existing security-check configuration (if exists).

3. In the Configure Security-Check Properties dialog window, select the security
check that you want to configure from among the displayed list of available
predefined and custom security checks. The dialog window displays a list of
the supported properties of your selected security check, their current values,
the default values (if they differ from the current values), and their
descriptions (if provided). Edit the values that you want to change, and
select OK to submit your changes.

Note: In some cases, the dialog window spawns multiple pages. Use the
arrow keys to change pages and see all the supported properties.

You can delete or edit your security-check configuration, at any time, by
selecting the relevant action icon for your security check in the security-check
configurations table.

v Editing the application-descriptor file

1. Create a local copy of the application-descriptor JSON file. See “Application
configuration” on page 7-3.

2. In your local copy of the descriptor file, look for a
securityCheckConfigurations object. If the object does not exist, create it. In
this object, find or create an object that is named as your selected security
check (SecurityCheckName in the following template). Within the
security-checks object, add a pair of configuration-property name and value
for each available configuration property that you want to configure:

7-300 IBM MobileFirst Platform Foundation V8.0.0

"SecurityCheckConfigurations": {
"SecurityCheckName": {

"property1Name": "property1Value",
["property2Name": "property2Value",
...]

}
}

}

Example
The following example sets the values of the maxAttempts and
failureExpirationSec properties of a custom UserAuthenticationSC security
check to 2 and 60:
"SecurityCheckConfigurations": {

"UserAuthenticationSC": {
"properties": {

"maxAttempts": "2",
"failureExpirationSec: "60"

}
}

}

3. Deploy your copy of the application-descriptor JSON file to MobileFirst
Server. See “Application configuration” on page 7-3.

You can repeat this procedure, at any time, to customize the security-check
configuration. You can also deploy the same descriptor file to other instances of
MobileFirst Server on which the same application is registered, or reuse relevant
portions of the configuration in other application-descriptor files.

Results

After completing the configuration changes, you can see in the Security-Check
Configurations table on the application Security console page a list of the
properties that you configured and their current and default values. In addition,
you can see your property configurations in the application descriptor: in the
console, go to the application Configuration Files tab. In the Application-
Descriptor JSON File section, you can see a copy of the application-descriptor
JSON file. Search for the name of the configured security check within the
securityCheckConfigurations object. The nested security-check object should
contain the names and values of your configured properties. In the following
template, replace SecurityCheckName with the name of the security check that you
configured:
"SecurityCheckConfigurations": {

"SecurityCheckName": {
"property1Name": "property1Value",
["property2Name": "property2Value",
...]

}
}

}

Configuring device single sign-on (SSO):

Enable device single sign-on (SSO) to share the state of a security check among
multiple applications on the same device.

About this task

You can enable device single sign-on (SSO) for any custom security check to share
the state of this check with other application instances that are running on the

Developing applications 7-301

same device. For example, you can use device SSO to implement an authentication
flow whereby successful user log in from one application is applicable also to other
applications on the same device.

Device SSO is configured in the application-descriptor JSON file by using the
predefined enableSSO security-check configuration property.

Note:

v While device SSO can technically be enabled for any custom security check,
ensure that enabling this feature matches the logic of the target security check.
Namely, avoid enabling device SSO for security checks that are inherently
specific to your application, such as application-authenticity validation.

v Configuration of the device SSO property is done only at the application level.
You do not define or configure the enableSSO property as part of the
implementation of a custom security check.

v Using device SSO might have performance implications.
v The remember-me feature of the UserAuthenticationSecurityCheck base class

cannot be used together with a device-SSO configuration.

Procedure

Enable device SSO for a specific security check by using one of the following
alternative methods:
v Using IBM MobileFirst Platform Operations Console (the console)

1. Select your application version from the Applications section of the console's
navigation sidebar, and then select the application Security tab.

2. In the Security-Check Configurations section, select Create New, or select
the edit icon for an existing security-check configuration (if exists).

3. In the Configure Security-Check Properties dialog window, select the custom
security check for which you want to enable device SSO.

4. Locate the Enable Device SSO configuration field, and select true. You can
also configure other properties of the security check. When you are done,
select OK to apply your changes.

You can delete or edit your security-check configuration, including the
device-SSO configuration, at any time, by selecting the relevant action icon for
your security check in the security-check configurations table.

v Editing the application-descriptor file

1. Create a local copy of the application-descriptor JSON file. See “Application
configuration” on page 7-3.

2. Edit your local copy to enable device SSO for your selected custom security
check: device SSO is enabled by setting the enableSSO property of a custom
security check to true. The property configuration is contained within a
security-check object that is nested in a securityCheckConfigurations object.
Locate these objects in your application descriptor file, or create them if they
are missing. In the following template, replace SecurityCheckName with the
name of your selected security check:
"securityCheckConfigurations": {

"SecurityCheckName": {
[...]
"enableSSO": true

}
}

7-302 IBM MobileFirst Platform Foundation V8.0.0

For example, the following descriptor-file snippet enables enableSSO property
for a UserAuthenticationSC security check that also configures other
properties:
"securityCheckConfigurations": {

"UserAuthenticationSC": {
"maxAttempts": "4",
"failureStateExpirationSec": "120",
"enableSSO": true

}
}

3. Deploy your copy of the application-descriptor JSON file to MobileFirst
Server. See “Application configuration” on page 7-3.

To disable device SSO for your security check, create a new copy of the
application-descriptor file, delete the enableSSO configuration or set the property
value to false, and redeploy the descriptor file to the server.

Results

After you successfully enable device SSO for your selected security check, you can
see in the Security-Check Configurations table on the application Security console
page, that the value of the Enable Device SSO property for your configured
security check is true. In addition, you can see the device-SSO property definition
in the application descriptor: in the console, go to the application Configuration
Files tab. In the Application-Descriptor JSON File section, you can see a copy of
the application-descriptor JSON file. Search for the name of the configured security
check within the securityCheckConfigurations object. The nested security-check
object should contain an "enableSSO": true entry. In the following template,
replace SecurityCheckName with the name of the security check that you configured:
"securityCheckConfigurations": {

"SecurityCheckName": {
[...]
"enableSSO": true

}
}

To test device SSO, enable this feature for the same security check from multiple
applications. Then attempt to access resources that are protected by this security
check from multiple applications on the same device. You should be required to
pass the security check only once, for the first resource request. For example, for a
user-login scenario, after you successfully log in from one application, the log in
from the second application on the same device should succeed automatically,
without any user input.

Access tokens
Learn more about the access tokens that are generated by the security framework,
and how to configure these tokens.

A MobileFirst access token is a digitally signed entity that describes the
authorization permissions of a client. After the client's authorization request for a
specific scope is granted, and the client is authenticated, the authorization server's
token endpoint sends the client an HTTP response that contains the requested
access token. For more about the authorization flow and token-generation process,
see “End-to-end authorization flow” on page 7-266.

Developing applications 7-303

Note: The access token is signed with the MobileFirst Server keystore. For
production-level security, configure the server to use your own keystore. See
“Configuring the MobileFirst Server keystore” on page 7-316.

Structure of the MobileFirst access token

The MobileFirst access token contains the following information:
v Client ID - a unique identifier of the client.
v Scope - the scope for which the token was granted (see OAuth scopes). This

scope does not include the mandatory application scope (see “Configuring a
mandatory application scope” on page 7-276).

v Token-expiration time - the time at which the token becomes invalid (expires), in
seconds. See “Token expiration.”

Token expiration

The granted access token remains valid until its expiration time elapses. The access
token's expiration time is set to the shortest expiration time from among the
expiration times of all the security checks in the scope. But if the period until the
shortest expiration time is longer than the application's maximum token-expiration
period, the token's expiration time is set to the current time plus the maximum
expiration period. The default maximum token-expiration period (validity
duration) is 3,600 seconds (1 hour), but it can be configured by setting the value of
the maxTokenExpiration application-descriptor property. See “Configuring the
maximum access-token expiration period.”

Configuring the maximum access-token expiration period
Configure the maximum validity duration (expiration period) of access tokens that
are obtained by the application.

About this task

A generated MobileFirst access token has an expiration period, which determines
the duration for which the token is valid. See.“Token expiration.” The maximum
access-token expiration period is configured by setting the value of the
maxTokenExpiration property of the application descriptor. The default value of
this property is 3,600 seconds (1 hour). Follow the outlined procedure to configure
this property.

Procedure

Configure the application’s maximum access-token expiration period by using one
of the following alternative methods:
v Using the IBM MobileFirst Platform Operations Console (the console)

1. Select your application version from the Applications section of the console's
navigation sidebar, and then select the application Security tab.

2. In the Token Configuration section, set the value of the Maximum
Token-Expiration Period (seconds) field to your preferred value, and select
Save to save the change.
You can repeat this procedure, at any time, to change the maximum
token-expiration period, or select Restore Default Values to restore the
default value.

v Editing the application-descriptor file

7-304 IBM MobileFirst Platform Foundation V8.0.0

1. Create a local copy of the application-descriptor JSON file. See “Application
configuration” on page 7-3.

2. Edit your local copy to define a maxTokenExpiration key and set its value to
the maximum access-token expiration period, in seconds:
"maxTokenExpiration": max_token_expiration_period

For example, the following code sets the application's maximum
token-expiration period to 7,200 seconds (2 hours):
{

...
"maxTokenExpiration": 7200

}

3. Deploy your copy of the application-descriptor JSON file to MobileFirst
Server. See “Application configuration” on page 7-3.

Access-token response
Learn about the structure of a successful response to a client's access-token
acquisition request.

Note: The structure of a valid access-token response is relevant if you use the
low-level WLAuthorizationManager class and manage the OAuth interaction
between the client and the authorization and resource servers yourself, or if you
use a confidential client. If you are using the high-level WLResourceRequest class,
which encapsulates the OAuth flow for accessing protected resources, the security
framework handles the processing of access-token responses for you. See “Client
security APIs” and “Confidential clients” on page 7-279.

A successful HTTP response to an access-token request contains a JSON object with
the access token and additional data. Following is an example of a valid-token
response from the authorization server; (actual access tokens are longer than
shown in the example):
HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"token_type": "Bearer",
"expires_in": 3600,
"access_token": "yI6ICJodHRwOi8vc2VydmVyLmV4YW1",
"scope": "scopeElement1 scopeElement2"

}

The token-response JSON object has these property objects:
v token_type - the token type is always "Bearer", in accordance with the OAuth

2.0 Bearer Token Usage specification.
v expires_in - the expiration time of the access token, in seconds.
v access_token - the generated access token.
v scope - the requested scope.

The expires_in and scope information is also contained in the token
(access_token). See “Structure of the MobileFirst access token” on page 7-304.

Client security APIs
Learn about the MobileFirst security client APIs for issuing resource requests and
handling security challenges.

Developing applications 7-305

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750

OAuth resource-request APIs

IBM MobileFirst Platform Foundation provides two alternative sets of OAuth client
APIs for accessing protected resources:
v The WLResourceRequest class is a high-level API that encapsulates the OAuth

flow for accessing a protected resource, and handles the required interaction
with the authorization and resource servers. See the documentation of this class
for your development platform and programming language.

v The WLAuthorizationManager class is a low-level API for managing the OAuth
interaction between the client and the authorization server. In addition, you need
to write the code for interacting with the resource server. Sample custom
resource-request implementations, which use the WLAuthorizationManager
class, are provided to help get your started. See the documentation of this class
and the provided sample for your development platform and programming
language:
– “Objective-C custom resource-request implementation sample” on page 7-308
– “Java custom resource-request implementation sample” on page 7-309
– “JavaScript custom resource-request implementation sample” on page 7-311
– “C# custom resource-request implementation sample” on page 7-312

Challenge-handler APIs

The client application uses challenge handlers to handle the client-side security
logic and the related user interaction, and respond to security challenges. See
“OAuth scopes, security checks, and challenge handlers” on page 7-266. You must
implement and register a challenge handler for each custom security check that is
applicable to your application (namely, security checks that are used to protect
resources that are required by the application). In addition, you can customize the
default MobileFirst challenge handler for displaying the user interface (UI) of the
mobile-application management features (see “Mobile-application management” on
page 10-15).

Creating a challenge handler
When communicating directly with MobileFirst Server, create a MobileFirst
security-check challenge handler:
v In iOS Objective C or Swift code, create a class that extends the

SecurityCheckChallengeHandler class.
v In Android Java code, create a class that extends the

SecurityCheckChallengeHandler class.
v In Windows C# code, create a class that extends the

Worklight.SecurityCheckChallengeHandler class.
v In web application or cross-platform (hybrid) Cordova application

JavaScript code, call the WL.Client method
createSecurityCheckChallengeHandler (which both creates and registers
the challenge handler).

In gateway topologies, create a custom gateway challenge handler:
v In iOS Objective C or Swift code, create a class that extends the

GatewayChallengeHandler class.
v In Android Java code, create a class that extends the

GatewayChallengeHandler class.
v In Windows C# code, create a class that extends the

GatewayChallengeHandler class.

7-306 IBM MobileFirst Platform Foundation V8.0.0

v In web application or cross-platform (hybrid) Cordova application
JavaScript code, call the WL.Client method
createGatewayChallengeHandler (which both creates and registers the
challenge handler).

Registering a challenge handler
Use the relevant API to register your challenge handler:
v In iOS Objective C or Swift code, call the WLClientWLClient method

registerChallengeHandler.
v In Android Java code, call the WLClient method

registerChallengeHandler.
v In Windows C# code, call the WorklightClient method

RegisterChallengeHandler. See “C# client-side API for Windows 10
Universal Windows Platform and Windows 8 Universal apps” on page
8-6.

v In web application or cross-platform (hybrid) Cordova application
JavaScript code, call the WL.Client method
createSecurityCheckChallengeHandler or
createGatewayChallengeHandler (which both creates and registers the
challenge handler).

The security-challenge object
The security challenge is passed to the application within a JSON object
that contains data pairs of a security-check name and an optional JSON
object with additional data (or null if no additional data is required):
{

"challenges": {
"SecurityCheck1":null,
"SecurityCheck2":{
"PropertyName": "PropertyValue"

[...]
}

}
}

Sample implementations and guidelines
You can find sample challenge-handler implementations and related
development guidelines in the following IBM MobileFirst Platform
Foundation Development Center tutorials. See the relevant tutorial for your
development platform.
v The CredentialsValidationSecurityCheck tutorials demonstrate how to

implement a challenge handler for the
CredentialsValidationSecurityCheck security-check base class (see “The
security-check base and sample classes” on page 7-290).

v The UserAuthenticationSecurityCheck tutorials demonstrate how to
implement a challenge handler for the UserAuthenticationSecurityCheck
security-check base class (see “The security-check base and sample
classes” on page 7-290).

Sample custom resource-request implementations using
WLAuthorizationManager
Sample custom OAuth resource-request implementations that use the
WLAuthorizationManager class.

Select the sample that matches your development platform and programming
language.

Developing applications 7-307

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refobjc-worklight-ios/html/Classes/WLClient.html
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/credentials-validation/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/authentication-and-security/user-authentication/

Objective-C custom resource-request implementation sample:

An Objective-C sample for acquiring data from a protected resource by using the
MobileFirst WLAuthorizationManager class.

The sample contains two methods of a class that implements
NSURLConnectionDelegate. The sample implements a standard OAuth flow: first,
a resource request is sent without an access token. This request is expected to fail
with an authorization error. Then, WLAuthorizationManager is used to obtain an
access token for the resource's protecting scope, and the request is sent again with
the obtained access token as an authorization header. The resource request is
created by using a standard NSMutableURLRequest object.

/**
* Sends a request to access the specified protected resource.
**/
- (void) sendRequest {

// Set the resource URL
NSString *resourceString = @"http://localhost:3000/MyResource/MyProtectedProcedure";

// Create the request to access the resource URL
NSMutableURLRequest *request = [NSMutableURLRequest requestWithURL:[NSURL URLWithString:resourceString]];

if(_accessToken) {
// Add an access token to the request
[request addValue:_accessToken.asAuthorizationRequestHeaderField forHTTPHeaderField:@"Authorization"];

}

// Create a URL connection that sends the request. The response is returned via the connection:didReceiveResponse delegate.
NSURLConnection *conn = [[NSURLConnection alloc] initWithRequest:request delegate:self];

}

/**
* NSURLConnectionDelegate didReceiveResponse method, which implements the MobileFirst OAuth authorization flow.
**/
-(void) connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse *)response {

WLAuthorizationManager *authorizationManager = [WLAuthorizationManager sharedInstance];

// Check whether access to the resource requires authorization
if([authorizationManager isAuthorizationRequiredForResponse:response]) {

// Get the status from the response
int status = (int)[(NSHTTPURLResponse *)response statusCode];
NSString *scope;

switch (status) {
case 401: // Invalid-token error (invalid_token)

// Clear the access token (if exists)
[authorizationManager clearAccessToken:_accessToken];
break;

case 403: // Insufficient-scope error (insufficient_scope)
// Get the resource scope from response
scope = [authorizationManager resourceScopeFromResponse:response];
break;

case 409: // Server-conflict error
// Resend the request
[self sendRequest];
return;

default: // Authorization-server error
NSLog(@"%@",@"Error from the authorization server");
return;

}

// Obtain an access token for the scope from the authorization server
[authorizationManager obtainAccessTokenForScope:scope withCompletionHandler:^(AccessToken *accessToken, NSError *error) {

if (!error) {
// Save the access token
_accessToken = accessToken;
[self sendRequest];

} else {
// Error obtaining an access token
NSLog(@"%@",[error localizedDescription]);

}
}];

7-308 IBM MobileFirst Platform Foundation V8.0.0

}
else { // The resource does not require authorization

// Initialize an object that will be used to receive the response data from the resource
_responseData = [[NSMutableData alloc] init];
NSLog(@"Meta-data response from resource: %@",[response description]);

}
}

Java custom resource-request implementation sample:

This sample demonstrates how to get data from a protected resource by using a
custom HttpRequest object and the MobileFirst AuthorizationManager API.

The sample implements a standard OAuth flow: first, a resource request is sent
without an access token. This request is expected to fail with an authorization
error. Then, WLAuthorizationManager is used to obtain an access token for the
resource's protecting scope, and the request is sent again with the obtained access
token as an authorization header. The resource request is created by using a
standard HttpURLConnection object.

package com.sample.oauthdemoandroid;

import android.os.AsyncTask;

import com.worklight.wlclient.api.WLAccessTokenListener;
import com.worklight.wlclient.api.WLAuthorizationManager;
import com.worklight.wlclient.api.WLClient;
import com.worklight.wlclient.api.WLFailResponse;
import com.worklight.wlclient.auth.AccessToken;

import java.io.IOException;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.List;
import java.util.Map;

public class CustomRequestAsyncTask extends AsyncTask<Object, Void, Void> {

public static final String HEADER_AUTHORIZATION = "Authorization";
private Object[] params;

@Override
protected Void doInBackground(Object[] params) {

android.os.Debug.waitForDebugger(); // for debugging
this.params = params;
sendRequest(null);
return null;

}

private void sendRequest(AccessToken accessToken) {
HttpURLConnection urlConnection = null;
try {

// Create the request to access the resource URL
URL url = new URL(WLClient.getInstance().getServerUrl().toString() + params[0]);
urlConnection = (HttpURLConnection) url.openConnection();
if (accessToken != null) {

// Add an access token to the request
urlConnection.setRequestProperty(HEADER_AUTHORIZATION, accessToken.getAsAuthorizationRequestHeader());

}

// Send the request
Map<String, List<String>> headerFields = urlConnection.getHeaderFields();

// Check whether the request succeeded
int responseCode = urlConnection.getResponseCode();
if (200 <= responseCode && responseCode <= 299) {

Developing applications 7-309

customRequestSuccess(urlConnection);
} else {

// Check whether access to the resource requires authorization
WLAuthorizationManager wlAuthorizationManager = WLAuthorizationManager.getInstance();
if (wlAuthorizationManager.isAuthorizationRequired(responseCode, headerFields)) {

switch (responseCode) {
case 409: // Server-conflict error

// Resend the request
sendRequest(accessToken);
break;

case 401: // Invalid access token, or no access token
// Clear the access token (if exists)
if (accessToken != null) {

wlAuthorizationManager.clearAccessToken(accessToken);
}
// Obtain a valid access token and resend the request
resendWithAccessToken(headerFields);
break;

case 403: // Insufficient-scope error
// Get the resource scope from the response and resend the request
resendWithAccessToken(headerFields);
break;

default: // Unexpected error
customRequestFailure(urlConnection);

}

} else {
customRequestFailure(urlConnection);

}
}

} catch (IOException e) {
e.printStackTrace();

} finally {
if (urlConnection != null) {

urlConnection.disconnect();
}

}
}

private void customRequestSuccess(HttpURLConnection urlConnection) throws IOException {
// TODO: Implement the method.

}

private void customRequestFailure(HttpURLConnection urlConnection) throws IOException {
// TODO: Implement the method.

}

private void resendWithAccessToken(Map<String, List<String>> headerFields) {
WLAuthorizationManager wlAuthorizationManager = WLAuthorizationManager.getInstance();
// Get the resource request from the response
String scope = wlAuthorizationManager.getResourceScope(headerFields);
// Obtain an access token and resend the request
CustomRequestObtainAccessTokenListener customRequestObtainAccessTokenListener = new CustomRequestObtainAccessTokenListener();
wlAuthorizationManager.obtainAccessToken(scope, customRequestObtainAccessTokenListener);

}

private class CustomRequestObtainAccessTokenListener implements WLAccessTokenListener {

@Override
public void onSuccess(AccessToken accessToken) {

sendRequest(accessToken);
}

@Override
public void onFailure(WLFailResponse response) {

7-310 IBM MobileFirst Platform Foundation V8.0.0

// TODO: Implement the method.
}

}
}

JavaScript custom resource-request implementation sample:

A JavaScript sample for acquiring data from a protected resource by using the
MobileFirst WLAuthorizationManager class.

The sample implements a standard OAuth flow: first, a resource request is sent
without an access token. This request is expected to fail with an authorization
error. Then, WLAuthorizationManager is used to obtain an access token for the
resource's protecting scope, and the request is sent again with the obtained access
token as an authorization header. The resource request is created by using a
standard XMLHttpRequest object.
function sendCustomRequest() {

sendRequest(’http://localhost:3000/v1/apps/1234/test’, null)
.always(

function(response) {
alert(response);

}
);

}

/**
* Sends a request with the provided access token to the specified protected-resource URL.
**/
function sendRequest(url, accessToken) {

// Use JavaScript promises for asynchronous operations
var dfd = WLJQ.Deferred();

// Create the custom resource request
var xhr = new XMLHttpRequest();
xhr.open(’GET’, url, true);

xhr.onreadystatechange = function() {
if (xhr.readyState == 4) {

var status = xhr.status;
if (status >= 200 && status <= 299) {

dfd.resolve(xhr.responseText);
}
else {

var headers = xhr.getAllResponseHeaders();

// Check whether access to the resource requires authorization
if (WLAuthorizationManager.isAuthorizationRequired(status, headers)) {

if (status === 409) { // Server-conflict error
// Resend the request
sendRequest(url, accessToken)

.then(
function(response) {

dfd.resolve(response);
},
function(error) {

dfd.reject(error);
}

);
} else if (status === 401) { // Invalid access token, or no access token

// Check whether the access token is invalid
if (isInvalidTokenError(xhr)) {

// Clear the invalid access token
WLAuthorizationManager.clearAccessToken(accessToken).always(

function() {

Developing applications 7-311

// Obtain a valid access token and resend the request
resendWithAccessToken(null);

});
} else {

// Obtain a valid access token and resend the request
resendWithAccessToken(null);

}
} else { // status = 403 - insufficient-scope error

// Get the resource scope from the response
var scope = WLAuthorizationManager.getResourceScope(headers);
// Obtain an access token for the scope
resendWithAccessToken(scope);

}
} else { // Unexpected error

dfd.reject("Failure - received response " + xhr.responseText);
}

}
}

};

// If an access token was obtained, add the token to the request as an authorization header
if (accessToken !== null) {

xhr.setRequestHeader("Authorization", accessToken.asAuthorizationRequestHeader);
}

xhr.send();

return dfd.promise();

function resendWithAccessToken(scope) {
WLAuthorizationManager.obtainAccessToken(scope)

.then(
function(accessToken) {

// The access token was obtained successfully.
// Construct the request again, and add the access token as an authorization header
sendRequest(url, accessToken)

.then(
function(response) {

dfd.resolve(response);
},
function(error) {

dfd.reject(error);
}

);
},
function(error) {

// Failed to obtain an access token. Reject the request.
dfd.reject(error);

}
);

}
}

function isInvalidTokenError(xhr) {
var authHeader = xhr.getResponseHeader(’WWW-Authenticate’);
return (authHeader.indexOf("invalid_token") >= 0);

}

C# custom resource-request implementation sample:

This sample demonstrates how to get data from a protected resource by using a
HttpWebRequest object and the MobileFirst WLAuthorizationManager API for
Windows 8 Universal app.

7-312 IBM MobileFirst Platform Foundation V8.0.0

After a response was first received, the WLAuthorizationManager class determines
whether this response is a MobileFirst protocol response. If so, the user gets the
scope, obtains the authorization header for this scope, and requests the protected
resource one more time.

class WebReqInfo {
public HttpWebRequest request = null;

}

private async void externalOAuthFlow() {
// Create a HttpWebrequest object to the desired URL.
HttpWebRequest request = (HttpWebRequest)WebRequest.Create("http://localhost:3000/v1/apps/1234/test");
request.BeginGetResponse(new AsyncCallback(responseCallback), new WebReqInfo(){ request=request });

}

private void responseCallback(IAsyncResult asyncResult) {
WebReqInfo wReqInfo = null;
HttpWebResponse response = null;
try {

/* Send the request to the server and wait for it to complete */
wReqInfo = (WebReqInfo)asyncResult.AsyncState;

// Get response
response = wReqInfo.request.EndGetResponse(asyncResult) as HttpWebResponse;

WLResponse newResponse = new WLResponse(response);
int sCode = newResponse.getStatus().GetHashCode();

// Check that the response conforms to the MFP protocol
if (WLAuthorizationManager.getInstance().isAuthorizationRequired(response)) {

// Get required scope from response
String scope = WLAuthorizationManager.getInstance().getAuthorizationScope(response);

//Obtain authorization header for the scope
WLAuthorizationManager.getInstance().obtainAuthorizationHeader(scope, new MyResponseListener());

}
else {

// At this point a response from the resource was received, process it:
processResponse(response)

}
} catch (Exception e) {

Debug.WriteLine("Exception during request");
}

}

public class MyResponseListener : WLResponseListener {
HttpWebRequest request;
public MyResponseListener(HttpWebRequest request) {

this.request = request;
}
class WebReqInfo {

public HttpWebRequest request = null;
}

// This method will be invoked if an authorization header was obtained successfully:
public void onSuccess(WLResponse response) {

// Add the obtained authorization header to the original request
WLAuthorizationManager.getInstance().addCachedAuthorizationHeader(request);
try {

// Resend the request
request.BeginGetResponse(new AsyncCallback(resendRequestCallback), new WebReqInfo(){request=request });

} catch (Exception e) {
Debug.WriteLine("Unable to obtain token");

}
}

Developing applications 7-313

// This method will be invoked if an authorization header was not obtained:
public void onFailure(WLFailResponse response) {

Debug.WriteLine("Unable to obtain Token");
}

private void resendRequestCallback(IAsyncResult asyncResult) {
WebReqInfo wReqInfo = null;
HttpWebResponse response = null;
try {

/* Send the request to the server and wait for it to complete */
wReqInfo = (WebReqInfo)asyncResult.AsyncState;
response = wReqInfo.request.EndGetResponse(asyncResult) as HttpWebResponse;
processResponse(response);

} catch (Exception e) {
Debug.WriteLine("Exception during request");

}
}

}

For more information about WLAuthorizationManager, see “C# client-side API for
Windows 10 Universal Windows Platform and Windows 8 Universal apps” on
page 8-6.

Configuring IBM WebSphere DataPower as the OAuth
authorization server

About this task

The MobileFirst security framework is built around an authorization server that
implements the OAuth protocol, and exposes the OAuth endpoints with which the
client interacts. MobileFirst Server implements custom security logic and advanced
security features on top of the authorization server. By default, MobileFirst Server
functions also as the OAuth authorization server. However, you can configure IBM
WebSphere DataPower (DataPower) to act as the authorization server, and interact
with MobileFirst Server. This design provides you with enhanced flexibility in
setting up production topologies, for example, deploying the DataPower
authorization server in the DMZ.

Note: The basic building blocks of the security framework (security checks and
challenge handlers) are unaffected by this mode. The behavior of the building
blocks is the same regardless of whether the authorization server is MobileFirst
Server or DataPower.

The integration of the MobileFirst security framework with DataPower as the
authorization server is achieved by using the provided MobileFirst DataPower
pattern file, dp-external-az-pattern.zip. You can get this file from the IBM
MobileFirst Platform Operations Console: from the console Dashboard, select
Download Center, and then select the Tools tab. In the MobileFirst External
Authorization Server Pattern section of the Tools tab, select Download and save
the pattern to your preferred location..

To use DataPower as the authorization server, deploy the provided pattern to your
DataPower appliance and configure MobileFirst Server to interact with DataPower
as the authorization server, as outlined in the following procedure.

Note: When using DataPower as the authorization server, configure client
applications to connect to the DataPower appliance instead of connecting directly
to MobileFirst Server. For example, in an iOS application, set the wlServerHost and

7-314 IBM MobileFirst Platform Foundation V8.0.0

wlServerPort properties in mfpclient.plist to the host IP address and port of the
DataPower appliance. If you are using a self-signed SSL certificate for DataPower,
you also need to import this certificate into the client application.

Procedure
v Preliminary steps

1. Create a key pair for the DataPower SSL certificate with a public key named
azserver-sscert.pem and a private key named azserver-privkey.pem. The
exact procedure for creating the SSL key pair for production depends on
your certificate authority, and therefore cannot be documented here.
However, during development you can run the following commands from a
command-line terminal to create a self-signed certificate:
openssl req -x509 -newkey rsa:4096 -keyout azserver-privkey.pem \
-out azserver-sscert.pem -days 365 -nodes

2. Create a key to be used by DataPower for encryption of OAuth tokens. The
key is a hexadecimal string whose size is at least 32 bytes. Save the key to a
file named key. Following is a sample key:
0xabcd1234abcd1234abcd1234abcd1234abcd1234abcd1234abcd1234abcd1234

3. Create a secret file that is named secret. This secret is used by DataPower to
authenticate itself with MobileFirst Server. The secret file is a text file that
contains a JSON object with a secret entry whose string value defines the
secret. The following sample defines a "12345" secret:
{"secret":"12345"}

v Deploying the MobileFirst DataPower pattern
In the WebGUI of your DataPower appliance,
1. Create a new DataPower domain.
2. Switch to the new domain, and upload the file that contains the public and

private SSL-certification keys that you created in preliminary Step 1
(azserver-sscert.pem and azserver-privkey.pem) to the cert:/// directory.

3. Upload the key file that you created in preliminary Step 2 to the same
directory.

4. Upload the secret file that you created in preliminary Step 3 to the local:///
directory.

5. Select Blueprint Console in the WebGUI navigation sidebar. Then select the
Patterns tab, and import the pattern by selecting the graphical import button
(next to the New Pattern button): .

6. Select the pattern archive file (dp-external-az-pattern.zip), and wait for the
import to complete.

7. Select Deploy, and provide the input in the four required fields: enter a
name for the service, the URL of your MobileFirst Server, and the DataPower
IP address and port that you want the authorization server to listen to.

8. After the pattern is deployed, select the Services tab to ensure that the new
authorization service started successfully.

v Configuring MobileFirst Server to work with DataPower

1. Add the following JNDI entries to the application-server configuration file of
your MobileFirst Server (server.xml). Replace the your_secret placeholder
with the secret that you defined in your secret file in preliminary Step 3 (for
example, "12345"). This secret is used for authenticating the DataPower
appliance.

Developing applications 7-315

<jndiEntry jndiName="mfp/mfp.authorization.server" value="external"/>
<jndiEntry jndiName="mfp.external.authorization.server.secret" value="your_secret"/>
<jndiEntry jndiName="mfp.external.authorization.server.introspection.url"

value=“https://<DataPower host address>:8443/az/v1/introspection"/>

2. Import the DataPower public-key certificate file (azserver-sscert.pem) into
the WebSphere Application Server Liberty keystore of your MobileFirst
Server to allow the server to connect over SSL. You can run the following
commands to import the key into the keystore:
openssl x509 -outform der -in azserver-sscert.pem -out azserver-sscert.der
keytool -import -keystore key.jks -file azserver-sscert.der

The first command takes the certificate and converts it into DER format. The
second command uses the Java keytool utility to import the certificate into
the WebSphere Application Server Liberty keystore of your MobileFirst
Server.

3. Create a special empty scope-element mapping to be used by DataPower.
You need to create this mapping in every application that is registered with
MobileFirst Server. To create a mapping, select the Security tab on the
application page, and then select Create New under Security-Elements
Mapping. In the Add New Scope-Element Mapping dialog window, create a
new mapping (for example, a mapping named none), and leave the Scope
Element field empty (do not map the scope to any security check). Select
Add to complete the mapping.

v Protecting resources with an empty scope

To protect a resource by requiring an access token, you need to explicitly set the
resource's protecting scope to the empty scope element that you mapped in Step
3 of the server-configuration procedure. For information about how to protect
your resources with a scope, see “OAuth resource protection” on page 7-271. On
the client side, call WLResourceRequest with a scope parameter that is set to the
same empty scope element.

Configuring the MobileFirst Server keystore
Configure MobileFirst Server to use your own keystore for production-level
security.

About this task

A keystore is a repository of security keys and certificates that is used to verify and
authenticate the validity of parties involved in a network transaction. The
MobileFirst Server keystore defines the identity of MobileFirst Server instances,
and is used to digitally sign OAuth tokens and Direct Update packages. In
addition, when a MobileFirst adapter communicates with a back-end server using
mutual HTTPS (SSL) authentication, the keystore is used to validate the SSL-client
identity of the MobileFirst Server instance.

For production-level security, during the move from development to production
the administrator must configure MobileFirst Server to use a user-defined keystore.
The default MobileFirst Server keystore is intended to be used only during
development.

Note:

v To use the keystore to verify the authenticity of a Direct Update package,
statically bind the application with the public key of the MobileFirst Server
identity that is defined in the keystore. See “Implementing secure Direct Update
on the client side” on page 7-239.

7-316 IBM MobileFirst Platform Foundation V8.0.0

v Reconfiguring the MobileFirst Server keystore after production should be
considered carefully. Changing the configuration has the following potential
effects:
– The client might need to acquire a new OAuth token in place of a token

signed with the previous keystore. In most cases, this process is transparent to
the application.

– If the client application is bound to a public key that does not match the
MobileFirst Server identity in the new keystore configuration, Direct Update
fails. To continue getting updates, bind the application with the new public
key, and republish the application. Alternatively, change the keystore
configuration again to match the public key to which the application is
bound. See “Implementing secure Direct Update on the client side” on page
7-239.

– For mutual SSL authentication, if the SSL-client identity alias and password
that are configured in the adapter are not found in the new keystore, or do
not match the SSL certifications, SSL authentication fails. See the adapter
configuration information in Step 2 of the following procedure.

Follow these steps to configure MobileFirst Server to use your own keystore:

Procedure
1. Create a Java keystore (JKS) or PKCS 12 keystore file with an alias that contains

a key pair that defines the identity of your MobileFirst Server. If you already
have an appropriate keystore file, skip to the next step.

Note: The type of the alias key-pair algorithm must be RSA. The following
instructions explain how to set the algorithm type to RSA when using the
keytool utility.
You can use a third-party tool to create the keystore file. For example, you can
generate a JKS keystore file by running the Java keytool utility with the
following command (where <keystore name> is the name of your keystore and
<alias name> is your selected alias):
keytool -keystore <keystore name> -genkey -alias <alias name> -keylag RSA

The following sample command generates a my_company.keystore JKS file with
a my_alias alias:
keytool -keystore my_company.keystore -genkey -alias my_alias -keyalg RSA

The utility prompts you to provide different input parameters, including the
passwords for your keystore file and alias.

Note: You must set the -keyalg RSA option to set the type of the generated key
algorithm to RSA instead of the default DSA.
To use the keystore for mutual SSL authentication between a MobileFirst
adapter and a back-end server, also add a MobileFirst SSL-client identity alias
to the keystore. You can do this by using the same method that you used to
create the keystore file with the MobileFirst Server identity alias, but provide
instead the alias and password for the SSL-client identity.

2. Configure MobileFirst Server to use your keystore: in the IBM MobileFirst
Platform Operations Console navigation sidebar, select Runtime Settings, and
then select the Keystore tab. Follow the instructions on this tab to configure
your user-defined MobileFirst Server keystore. The steps include uploading
your keystore file, indicating its type, and providing your keystore password,
the name of your MobileFirst Server identity alias, and the alias password.

Developing applications 7-317

When configured successfully, the Status changes to "User Defined". Otherwise,
an error is displayed and the status remains "Default".
The SSL-client identity alias (if used) and its password are configured in the
descriptor file of the relevant adapter, within the <sslCertificateAlias> and
<sslCertificatePassword> subelements of the <connectionPolicy> element. See
“HTTP adapter connectionPolicy element” on page 7-209.

7-318 IBM MobileFirst Platform Foundation V8.0.0

API reference

To develop your native or hybrid applications, refer to the MobileFirst API in
JavaScript, Java Platform, Java for Android, and Objective-C for iOS.

Use the MobileFirst API to develop your applications in JavaScript, Java Platform,
Java for Android, and Objective-C for iOS.

MobileFirst client-side API
This collection of topics documents the application programming interface (API)
for each IBM MobileFirst Platform Foundation client platform.

JavaScript client-side API
You can use JavaScript API to develop apps for all environments.

You can find the description of the API in the following file: JavaScript client-side
API.

The other topics in this section contain additional information that you need to use
this API to full advantage.

The options Object
The options object contains properties that are common to all methods. It is used
in all asynchronous calls to the IBM MobileFirst Platform Server

Pass an options object for all asynchronous calls to MobileFirst Server. The options
object contains properties that are common to all methods. Sometimes it is
augmented by properties that are only applicable to specific methods. These
additional properties are detailed as part of the description of the specific methods.

The common properties of the options object are as follows:
options = {

onSuccess: success-handler-function(response),
onFailure: failure-handler-function(response),
invocationContext: invocation-context

};

The meaning of each property is as follows:

© Copyright IBM Corp. 2006, 2016 8-1

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_javascript_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_javascript_client_api.zip

Table 8-1. Options object properties

Property Description

onSuccess Optional. The function to be invoked on
successful completion of the asynchronous
call.

The syntax of the onSuccess function is:

success-handler-function(response)

where response is an object that contains at a
minimum the following property:

invocationContext
The invocationContext object that
was originally passed to the
MobileFirst Server in the options
object, or undefined if no
invocationContext object was
passed.

status The HTTP response status
Note: For methods for which the response
object contains additional properties, these
properties are detailed as part of the
description of the specific method.

8-2 IBM MobileFirst Platform Foundation V8.0.0

Table 8-1. Options object properties (continued)

Property Description

onFailure Optional. The function to be invoked when
the asynchronous call fails. Such failures
include both server-side errors, and
client-side errors that occurred during
asynchronous calls, such as server
connection failure or timed out calls.
Note: The function is not called for
client-side errors that stop the execution by
throwing an exception.

The syntax of the onFailure function is:

failure-handler-function(response)

where response is an object that contains the
following properties:

invocationContext
The invocationContext object that
was originally passed to the
MobileFirst Server in the options
object, or undefined if no
invocationContext object was
passed.

errorCode
An error code string. All error
codes that can be returned are
defined as constants in the
WL.ErrorCode object in the
worklight.js file.

errorMsg
An error message that is provided
by the MobileFirst Server. This
message is for the developer's use
only, and should not be displayed
to the user. It will not be translated
to the user's language.

status The HTTP response status
Note: For methods for which the response
object contains additional properties, these
properties are detailed as part of the
description of the specific method.

API reference 8-3

Table 8-1. Options object properties (continued)

Property Description

invocationContext Optional. An object that is returned to the
success and failure handlers.

The invocationContext object is used to
preserve the context of the calling
asynchronous service upon returning from
the service.

For example, the invokeProcedure method
might be called successively, using the same
success handler. The success handler needs
to be able to identify which call to
invokeProcedure is being handled. One
solution is to implement the
invocationContext object as an integer, and
increment its value by one for each call of
invokeProcedure. When it invokes the
success handler, the MobileFirst framework
passes to it the invocationContext object of
the options object associated with the
invokeProcedure method. The value of the
invocationContext object can be used to
identify the call to invokeProcedure with
which the results that are being handled are
associated.

The WL.ClientMessages object
You can see a list of the system messages that are stored in the WL.ClientMessages
object, and enable the translation of these system messages.

The WL.ClientMessages object is an object that stores the system messages that are
defined in the worklight/messages/messages.json file. This file is in the
environment folder of the projects that you generated with IBM MobileFirst
Platform Foundation. To enable the translation of a system message, you must
override the value of this message in the WL.ClientMessages object, as indicated in
the following code example:
WL.ClientMessages.invalidUsernamePassword="The custom user name and password are not valid";

Note: You must override the system messages on a global JavaScript level because
some parts of the code run only after the application successfully initialized.

JavaScript client-side push API
You can use JavaScript push API to run push functions in the client-side
applications.

You can find the description of the API in the following file: JavaScript client-side
push API.

JavaScript web analytics client-side API
You can use the web JavaScript API to develop MobileFirst analytics for your web
apps. This API is written in pure JavaScript and is not dependent on any other
platform SDKs.

8-4 IBM MobileFirst Platform Foundation V8.0.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_javascript_client_push_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_javascript_client_push_api.zip

You can find the description of the API in the following file: JavaScript web
analytics client-side API.

Note: This SDK must be installed together with the MobileFirst web SDK. See
“Developing web applications” on page 7-73.

Objective-C client-side API for iOS apps
Use this API to develop native app for iOS environment.

You can access MobileFirst services from iOS applications by using this Objective-C
client-side API.

Note: To develop native iOS applications, you can also use Apple Swift. This
language is compatible with Objective-C. The instructions for the configuration and
setup for both types of Xcode projects are provided.

For more information, see “Developing MobileFirst applications” on page 7-24.

You can find the description of the API in the following file: Objective-C client-side
API for iOS apps.

Objective-C client-side push API for iOS apps
Use this push API to develop apps for the iOS environment.

Use the Objective-C client-side push API for iOS apps that IBM MobileFirst
Platform Foundation provides if you want to access MobileFirst services from iOs
applications. For more information about this API, expand the entry for this topic
in the Contents panel and see the Overview topic.

You can find the description of the API in the following file: Objective-C client-side
push API for iOS apps.

Objective-C client-side API for hybrid apps
Use this API to develop hybrid apps for iOS environment.

You can use the WL class to handle the initialization of your MobileFirst hybrid
application and extend WLAppDelegate class to use the MobileFirst framework
API.

You can find the description of the API in the following file: Objective-C client-side
API for hybrid apps.

Java client-side API for Android apps
You can use Java API to develop apps for the Android environment.

Use the Java client-side API for Android apps that IBM MobileFirst Platform
Foundation provides if you want to access MobileFirst services from Android
mobile applications.

You can use this API to develop native apps. If you develop hybrid apps, you can
also use the relevant part of this API, either directly by using the WL.NativePage
API or by using Cordova.

API reference 8-5

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_javascript_web_analytics_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_javascript_web_analytics_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_objc_ios_native_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_objc_ios_native_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_objc_ios_native_client_push_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_objc_ios_native_client_push_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_objc_ios_hybrid_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_objc_ios_hybrid_client_api.zip

You can find the description of the API in the following file: Java client-side API
for Android apps.

Java client-side push API for Android apps
You can use Java push API to develop apps for the Android environment.

Use the Java client-side push API for Android apps that IBM MobileFirst Platform
Foundation provides if you want to access MobileFirst services from Android
mobile applications.

You can find the description of the API in the following file: Java client-side push
API for Android apps.

C# client-side API for Windows 10 Universal Windows
Platform and Windows 8 Universal apps

You can use C# API to develop apps for the Windows 10 Universal Windows
Platform (UWP) and Windows 8 Universal environment.

Use this C# client-side API to access MobileFirst services from Windows 10 UWP
and Windows 8 Universal applications.

You can find the description of this API in the following file: C# client-side API for
Windows 10 Universal and Windows 8 Universal apps.

C# client-side push API for Windows 10 Universal Windows
Platform and Windows 8 Universal apps

You can use C# push APIs to develop apps which can send push notifications, for
the Windows 10 Universal Windows Platform (UWP) and Windows 8 Universal
environment.

Use this C# client-side push API to access MobileFirst push services from Windows
10 UWP and Windows 8 Universal applications.

You can find the description of this API in the following file: C# client-side push
API for Windows 10 Universal and Windows 8 Universal apps.

MobileFirst server-side API
Use the server-side API that IBM MobileFirst Platform Foundation defines to
modify the behavior of the servers that your mobile applications rely on.

MobileFirst Server provides a set of mobile capabilities with the use of
client/server integration and communication between mobile applications and
back-end systems.

Adapter library

You can use the adapter library to connect to various back-end systems, such as
web services, databases, and messaging applications. For example, IBM MobileFirst
Platform Foundation provides adapters for SOAP or XML over HTTP, JDBC, and
JMS. For more information about developing adapters, see “Developing the server
side of a MobileFirst application” on page 7-187.

8-6 IBM MobileFirst Platform Foundation V8.0.0

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_java_android_native_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_java_android_native_client_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_java_android_native_client_push_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_java_android_native_client_push_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_csharp_win8_native_client_api.pdf
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_csharp_win8_native_client_api.pdf
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_csharp_win8_native_client_push_api.pdf
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_csharp_win8_native_client_push_api.pdf

Security libraries

You can use the security libraries to develop security checks and adapters that use
the security context. The libraries provide the required interfaces for adapters and
security checks to gain access to the security context. For more information about
the MobileFirst security framework, see “MobileFirst security framework” on page
7-265.

JavaScript server-side API
The MobileFirst server-side JavaScript API comprises a series of packages.

You can find the description of the API in the following file: JavaScript server-side
API.

Java server-side API
The MobileFirst server-side Java API comprises a series of packages.

You can find the description of the API in the following file: Java server-side API.

MobileFirst Java Token Validator API
Use the Java Token Validator API of the MobileFirst Java Token Validator library
(mfp-java-token-validator-8.0.0.jar) to protect external Java resources by
validating the access tokens for these resources.

Package com.ibm.mfp.java.token.validator

This package includes classes for using the introspection endpoint of the security
framework's authorization server to validate authorization headers. You can use
this library to validate tokens that are used to access resources on an external Java
server. See “MobileFirst Java Token Validator” on page 7-274.

You can find the description of the API in the following file: Java Token Validator
API.

REST API for the MobileFirst Server administration service
The REST API provides several services to administer runtime adapters,
applications, devices, audit, transactions, security, and push notifications.

The REST service API for adapters and applications for each runtime is in
/management-apis/2.0/runtimes/runtime-name/, where runtime-name is the name of
the runtime that is administered through the REST service. Then, the type of object
addressed by the service is identified, together with the appropriate method. For
example, /management-apis/2.0/runtimes/runtime-name/Adapters (POST) refers to
the service for deploying an adapter.

Adapter (GET)
Retrieves metadata of a specific adapter.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

API reference 8-7

http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_javascript_server_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_javascript_server_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_java_server_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_java_server_token_api.zip
http://public.dhe.ibm.com/software/products/en/MobileFirstPlatform/docs/v800/mfpf_java_server_token_api.zip

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/adapters/adapter-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/adapters/myadapter?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the specified adapter.

JSON Example
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"displayName" : "MyApplication",
"link" : "https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}",
"name" : "SampleAdapter",
"productVersion" : "8.0",
"project" : {
"name" : "myproject",

},
"resourceName" : "abc",
"resourceType" : "APP_DESCRIPTOR",
"runtimeInfo" : {
"descriptorXML" : "",
"resources" : {

"basePath" : "/mfp/api/adapters/demoAdapter",
"info" : {
"description" : "The adapter for bank-end service",
"title" : "demoAdapter",

},
"paths" : {

8-8 IBM MobileFirst Platform Foundation V8.0.0

},
"swagger" : "2.0",

},
},

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<adapter

deployTime="2014-04-13T00:18:36.979Z"
displayName="MyApplication"
link="https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}"
name="SampleAdapter"
productVersion="8.0"
resourceName="abc"
resourceType="APP_DESCRIPTOR">
<project name="myproject"/>
<runtimeInfo descriptorXML="">
<resources

basePath="/mfp/api/adapters/demoAdapter"
swagger="2.0">
<info
description="The adapter for bank-end service"
title="demoAdapter"/>

<paths/>
</resources>

</runtimeInfo>
</adapter>

Response Properties

The response has the following properties:

deployTime
The date in ISO 8601 format when the artifact was deployed.

displayName
The optional display name of the artifact.

link
The URL to access detailed information about the deployed artifacts such as
application, adapter etc.

name
The name of the adatper

productVersion
The exact product version.

project
The project the artifact belong to.

resourceName
The name of the artifact.

resourceType
The type of the artifact.

runtimeInfo
The runtime information of the adapter

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

API reference 8-9

The runtime-info has the following properties:

descriptorXML
The adapter description in XML

resources
Adapter resource information

The resource-info has the following properties:

basePath
The base api path to the adatper

info
The information about the adapter

paths
The adapter methods

swagger
The Swagger version

The adapter-info has the following properties:

description
The description of the adapter

title
The title of the adapter

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

500
An internal error occurred.

Adapter (DELETE)
Deletes a specific adapter.

Description

This transaction can run synchronously or asynchronously. If the transaction is
processed asynchronously, the REST service returns before the transaction is
completed. In this case, you can query the transaction result later with the
transaction REST service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

8-10 IBM MobileFirst Platform Foundation V8.0.0

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/adapters/adapter-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/adapters/myadapter?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. The default mode is synchronous
processing.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deleted adapter.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",

API reference 8-11

"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_ADAPTER",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<delete-adapter-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_ADAPTER"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-adapter-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the adapter.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

8-12 IBM MobileFirst Platform Foundation V8.0.0

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always DELETE_ADAPTER.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

500
An internal error occurred.

Adapter (POST)
Deploys an adapter.

Description

Deploys an adapter.

The transaction first checks whether the input deployable is valid. Then, it
transfers the deployable to the database and to the runtime.

API reference 8-13

This transaction can run synchronously or asynchronously. If the transaction is
processed asynchronously, the REST service returns before the transaction is
completed. In this case, you can query the transaction result later with the
transaction REST service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/adapters

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/adapters?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. The default mode is synchronous
processing.

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml

Response

The metadata of the deployed Adatper.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {

8-14 IBM MobileFirst Platform Foundation V8.0.0

"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_ARTIFACT",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deploy-adapter-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_ARTIFACT"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</deploy-adapter-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

API reference 8-15

description
The details of the Adatper that is deployed.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_ARTIFACT.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
No deployable data is provided.

403
The user is not authorized to call this service.

404

8-16 IBM MobileFirst Platform Foundation V8.0.0

The corresponding runtime is not found or not running.

500
An internal error occurred.

Adapters (GET)
Retrieves metadata for the list of deployed adapters.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/adapters

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/adapters?bookmark=ABC&include=runtimeInfo&locale=de_DE&offset=0&orderBy=displayName&pageSize=100

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

bookmark
The bookmark for the page if only a part of the list (a page) should be
returned. If a bookmark is specified, the offset parameter is ignored.

include
To show runtimeInfo as part of each adapter.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: displayName, deployTime. The default sort
mode is: displayName.

API reference 8-17

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deployed adapters.

JSON Example
{

"items" : [
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"displayName" : "MyApplication",
"link" : "https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}",
"project" : {
"name" : "myproject",

},
"resourceName" : "abc",
"resourceType" : "APP_DESCRIPTOR",

},
...

],
"nextPageBookmark" : "DEF",
"pageNumber" : 2,
"pageSize" : 100,
"prevPageBookmark" : "ABC",
"productVersion" : "8.0",
"startIndex" : 0,
"totalListSize" : 33,

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<adapters

nextPageBookmark="DEF"
pageNumber="2"
pageSize="100"
prevPageBookmark="ABC"
productVersion="8.0"
startIndex="0"
totalListSize="33">
<items>
<item

deployTime="2014-04-13T00:18:36.979Z"
displayName="MyApplication"
link="https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}"
resourceName="abc"
resourceType="APP_DESCRIPTOR">
<project name="myproject"/>

</item>
...

</items>
</adapters>

Response Properties

The response has the following properties:

8-18 IBM MobileFirst Platform Foundation V8.0.0

items
The array of adapter metadata

nextPageBookmark
The bookmark of the next page if only one page of adapters is returned.

pageNumber
The page index if only one page of adapters is returned.

pageSize
The page size if only one page of adapters is returned.

prevPageBookmark
The bookmark of the previous page if only one page of adapters is returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only one page of adapters is returned.

totalListSize
The total number of adapters.

The configlink has the following properties:

deployTime
The date in ISO 8601 format when the artifact was deployed.

displayName
The optional display name of the artifact.

link
The URL to access detailed information about the deployed artifacts such as
application, adapter etc.

project
The project the artifact belong to.

resourceName
The name of the artifact.

resourceType
The type of the artifact.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

API reference 8-19

Adapter Configuration (GET)
Retrieves the user configuration of a specific adapter.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/adapters/adapter-name/config

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/adapters/myadapter/config?flattened=false&locale=de_DE&mode=defaults

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

Query Parameters

Query parameters are optional.

flattened
If the parameter is set to true (default value), the configuration is a flat list of
properties. If the parameter is set to false, the configuration is a hierarchy of
objects.

locale
The locale used for error messages.

mode
If no mode is specified, the transaction returns the current user configuration.
If the mode defaults is specified, the transaction returns the default
configuration.

Produces

application/json, application/xml, text/xml

Response

The user configuration of the specified adapter.

8-20 IBM MobileFirst Platform Foundation V8.0.0

JSON Example
{

"adapter" : "myAdapter",
"connectivity" : {
"http" : {

"connectionTimeoutInMilliseconds" : 30000,
"cookiePolicy" : "BEST_MATCH",
"dtdvalidationEnabled" : false,
"maxConcurrentConnectionsPerNode" : 49,
"maxRedirects" : 11,
"port" : 444,
"protocol" : "http",
"socketTimeoutInMilliseconds" : 30002,

},
},
"properties" : {
"database" : "test-db",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<adapterconfig adapter="myAdapter">

<connectivity>
<http

connectionTimeoutInMilliseconds="30000"
cookiePolicy="BEST_MATCH"
dtdvalidationEnabled="false"
maxConcurrentConnectionsPerNode="49"
maxRedirects="11"
port="444"
protocol="http"
socketTimeoutInMilliseconds="30002"/>

</connectivity>
<properties database="test-db"/>

</adapterconfig>

Response Properties

The response has the following properties:

adapter
The name of the adapter.

connectivity
The connectivity details

properties
The properties of the adapter, mainly for Java adapters

The connectivity has the following properties:

http
The HTTP connection details

The httpdetails has the following properties:

connectionTimeoutInMilliseconds
The connection timeout value in milliseconds

cookiePolicy
The cookie policy to be used

API reference 8-21

dtdvalidationEnabled
Whether DTD validation is enabled for syntax and structure of the XML DTD

maxConcurrentConnectionsPerNode
The maximum number of concurrent connections allowed per node

maxRedirects
The maximum number of redirections allowed

port
The port used for the connection

protocol
The HTTP protocol used for connection

socketTimeoutInMilliseconds
The timeout value for socket

The properties has the following properties:

database
The name of the datbase to connect to.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

500
An internal error occurred.

Adapter configuration (PUT)
Sets the user configuration of a specific adapter.

Description

This transaction can run synchronously or asynchronously. If the transaction is
processed asynchronously, the REST service returns before the transaction is
completed. In this case, you can query the transaction result later by using the
transaction REST service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

PUT

8-22 IBM MobileFirst Platform Foundation V8.0.0

Path

/management-apis/2.0/runtimes/runtime-name/adapters/adapter-name/config

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/adapters/myadapter/config?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. The default mode is synchronous
processing.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"adapter" : "myAdapter",
"connectivity" : {
"http" : {

"connectionTimeoutInMilliseconds" : 30000,
"cookiePolicy" : "BEST_MATCH",
"dtdvalidationEnabled" : false,
"maxConcurrentConnectionsPerNode" : 49,
"maxRedirects" : 11,
"port" : 444,
"protocol" : "http",
"socketTimeoutInMilliseconds" : 30002,

},
},
"properties" : {
"database" : "test-db",

},
}

API reference 8-23

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<adapterconfig adapter="myAdapter">

<connectivity>
<http

connectionTimeoutInMilliseconds="30000"
cookiePolicy="BEST_MATCH"
dtdvalidationEnabled="false"
maxConcurrentConnectionsPerNode="49"
maxRedirects="11"
port="444"
protocol="http"
socketTimeoutInMilliseconds="30002"/>

</connectivity>
<properties database="test-db"/>

</adapterconfig>

Payload Properties

The payload has the following properties:

adapter
The name of the adapter.

connectivity
The connectivity details

properties
The properties of the adapter, mainly for Java adaers

The connectivity has the following properties:

http
The HTTP connection details

The httpdetails has the following properties:

connectionTimeoutInMilliseconds
The connection timeout value in milliseconds

cookiePolicy
The cookie policy to be used

dtdvalidationEnabled
Whether DTD validation is enabled for syntax and structure of the XML DTD

maxConcurrentConnectionsPerNode
The maximum number of concurrent connections allowed per node

maxRedirects
The maximum number of redirections allowed

port
The port used for the connection

protocol
The HTTP protocol used for connection

socketTimeoutInMilliseconds
The timeout value for socket

The properties has the following properties:

database
The name of the datbase to connect to.

8-24 IBM MobileFirst Platform Foundation V8.0.0

Response

The user configuration of the specified adapter.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "SET_APPLICATION_ENV_VERSION_ACCESS_RULE",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-adapterconfig-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="SET_APPLICATION_ENV_VERSION_ACCESS_RULE"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-adapterconfig-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

API reference 8-25

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always
SET_APPLICATION_ENV_VERSION_ACCESS_RULE.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

8-26 IBM MobileFirst Platform Foundation V8.0.0

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

500
An internal error occurred.

Application Authenticity (DELETE)
Deletes specific application authenticity data.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/authenticity

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication/android/1.0/authenticity?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

API reference 8-27

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. By default, transactions are processed
synchronously.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

Deletes application authenticity.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_APPAUTH",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<delete-appversion-authenticitydata-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_APPAUTH"
userName="demouser">
<description

name="myname"

8-28 IBM MobileFirst Platform Foundation V8.0.0

type="mytype"/>
<errors>

<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-appversion-authenticitydata-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
Deletes the app authenticity data of an application

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always DELETE_APPAUTH.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

API reference 8-29

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the application version is not found.

500
An internal error occurred.

Application Configuration (GET)
Retrieves the configuration of a specific application version.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/config

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication/android/1.0/config?flattened=false&locale=de_DE&mode=defaults

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

8-30 IBM MobileFirst Platform Foundation V8.0.0

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

flattened
If this parameter is set to true (which is the default value), the configuration is
returned as a flat list of properties. Otherwise, it is returned as a hierarchy of
objects.

locale
The locale used for error messages.

mode
If no mode is specified, the method returns the current user configuration. If
the defaults mode is specified, the method returns the default configuration.

Produces

application/json, application/xml, text/xml

Response

The configuration of the specified application version.

JSON Example
{

"applicationAccessConfig" : {
"action" : "BLOCKED",
"downloadLink" : "www.ynet.co.il",
"message" : "The application is blocked.",
"multiLanguageMessages" : [

{
"locale" : "de",
"message" : "Bitte updaten!",

},
...

],
},
"clientLogProfiles" : {
"level" : "INFO",
"name" : "com.acme.sub1",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<appconfig>

<applicationAccessConfig
action="BLOCKED"
downloadLink="www.ynet.co.il"
message="The application is blocked.">
<multiLanguageMessages>

<multiLanguageMessage
locale="de"
message="Bitte updaten!"/>

...

API reference 8-31

</multiLanguageMessages>
</applicationAccessConfig>
<clientLogProfiles
level="INFO"
name="com.acme.sub1"/>

</appconfig>

Response Properties

The response has the following properties:

applicationAccessConfig
The access configuration of an application version.

clientLogProfiles
The log filters to collect application logs from devices according to a profile.

The accessConfig has the following properties:

action
Application access status

downloadLink
The URL for the new version of the application to download.

message
The message that the user receives when opening the application.

multiLanguageMessages
The notification text in different languages.

The languages has the following properties:

locale
The locale for the language

message
The message in the locale

The logfilters has the following properties:

level
The severity level. Errors are returned from this level upwards.

name
The logical package name that is used to identify the logger in the mobile
application

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the application version is not found.

500
An internal error occurred.

Application Configuration (PUT)
Sets the configuration of a specific application version.

8-32 IBM MobileFirst Platform Foundation V8.0.0

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later by using the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

PUT

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/config

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication/android/1.0/config?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

API reference 8-33

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"applicationAccessConfig" : {
"action" : "BLOCKED",
"downloadLink" : "www.ynet.co.il",
"message" : "The application is blocked.",
"multiLanguageMessages" : [

{
"locale" : "de",
"message" : "Bitte updaten!",

},
...

],
},
"clientLogProfiles" : {
"level" : "INFO",
"name" : "com.acme.sub1",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<appconfig>

<applicationAccessConfig
action="BLOCKED"
downloadLink="www.ynet.co.il"
message="The application is blocked.">
<multiLanguageMessages>

<multiLanguageMessage
locale="de"
message="Bitte updaten!"/>

...
</multiLanguageMessages>

</applicationAccessConfig>
<clientLogProfiles
level="INFO"
name="com.acme.sub1"/>

</appconfig>

Payload Properties

The payload has the following properties:

applicationAccessConfig
The access configuration of an application version.

clientLogProfiles
The log filters to collect application logs from devices according to a profile.

The accessConfig has the following properties:

action
Application access status

downloadLink
The URL for the new version of the application to download.

8-34 IBM MobileFirst Platform Foundation V8.0.0

message
The message that the user receives when opening the application.

multiLanguageMessages
The notification text in differenet languages.

The languages has the following properties:

locale
The locale for the language

message
The message in the locale

The logfilters has the following properties:

level
The severity level. Errors are returned from this level upwards.

name
The logical package name that is used to identify the logger in the mobile
application

Response

The configuration of the specified application version.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "SET_APPLICATION_ENV_VERSION_ACCESS_RULE",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-appconfig-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"

API reference 8-35

status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="SET_APPLICATION_ENV_VERSION_ACCESS_RULE"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-appconfig-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always
SET_APPLICATION_ENV_VERSION_ACCESS_RULE.

userName
The user that initiated the transaction.

The description has the following properties:

8-36 IBM MobileFirst Platform Foundation V8.0.0

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the app version is not found.

500
An internal error occurred.

Application Descriptor (GET)
Retrieves the application descriptor of a specific application version.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/descriptor

API reference 8-37

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication/android/1.0/descriptor?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The application descriptor of the specified application version.

JSON Example
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"displayName" : "MyApplication",
"link" : "https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}",
"productVersion" : "8.0",
"project" : {
"name" : "myproject",

},
"resourceName" : "abc",
"resourceType" : "APP_DESCRIPTOR",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<appdescriptor

deployTime="2014-04-13T00:18:36.979Z"
displayName="MyApplication"
link="https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}"
productVersion="8.0"
resourceName="abc"
resourceType="APP_DESCRIPTOR">
<project name="myproject"/>

</appdescriptor>

Response Properties

The response has the following properties:

8-38 IBM MobileFirst Platform Foundation V8.0.0

deployTime
The date in ISO 8601 format when the artifact was deployed.

displayName
The optional display name of the artifact.

link
The URL to access detailed information about the deployed artifacts such as
application, adapter etc.

productVersion
The exact product version.

project
The project the artifact belong to.

resourceName
The name of the artifact.

resourceType
The type of the artifact.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the application is not found.

500
An internal error occurred.

Application Environment (GET)
Retrieves the metadata of a specific application environment.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name/
application-env

API reference 8-39

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication/android?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the specified application environment.

JSON Example
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"displayName" : "MyApplication",
"link" : "https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}",
"productVersion" : "8.0",
"project" : {
"name" : "myproject",

},
"resourceName" : "abc",
"resourceType" : "APP_DESCRIPTOR",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<appenv

deployTime="2014-04-13T00:18:36.979Z"
displayName="MyApplication"
link="https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}"
productVersion="8.0"
resourceName="abc"
resourceType="APP_DESCRIPTOR">
<project name="myproject"/>

</appenv>

Response Properties

The response has the following properties:

deployTime
The date in ISO 8601 format when the artifact was deployed.

8-40 IBM MobileFirst Platform Foundation V8.0.0

displayName
The optional display name of the artifact.

link
The URL to access detailed information about the deployed artifacts such as
application, adapter etc.

productVersion
The exact product version.

project
The project the artifact belong to.

resourceName
The name of the artifact.

resourceType
The type of the artifact.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the application environment is not found.

500
An internal error occurred.

Application (GET)
Retrieves the metadata of a specific application.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication?locale=de_DE

API reference 8-41

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the specified application.

JSON Example
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"displayName" : "MyApplication",
"link" : "https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}",
"productVersion" : "8.0",
"project" : {
"name" : "myproject",

},
"resourceName" : "abc",
"resourceType" : "APP_DESCRIPTOR",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<application

deployTime="2014-04-13T00:18:36.979Z"
displayName="MyApplication"
link="https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}"
productVersion="8.0"
resourceName="abc"
resourceType="APP_DESCRIPTOR">
<project name="myproject"/>

</application>

Response Properties

The response has the following properties:

deployTime
The date in ISO 8601 format when the artifact was deployed.

displayName
The optional display name of the artifact.

link
The URL to access detailed information about the deployed artifacts such as
application, adapter etc.

8-42 IBM MobileFirst Platform Foundation V8.0.0

productVersion
The exact product version.

project
The project the artifact belong to.

resourceName
The name of the artifact.

resourceType
The type of the artifact.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the application is not found.

500
An internal error occurred.

Application (POST)
Deploys an application.

Description

A deployable application

It first checks whether the input deployable is valid. Then, it transfers the
deployable to the database and to the runtime.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later by using the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/applications

API reference 8-43

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"applicationKey" : {
"bundleId" : "com.example",
"clientPlatform" : "B2C",
"version" : "com.package.id",

},
"displayName" : "Display Name",
"mandatoryScope" : "appAuthenticity",
"scopeTokenMapping" : {
"get-enroll-state" : "",
"set-enroll-state" : "usernamePassword",

},
"securityCheckConfigurations" : {
"appAuthenticity" : {

"expirationSec" : "1200",
},

},
"usernamePassword" : {
"inactivityTimeoutSec" : 30,
"maxAttempts" : 3,

},
}

Payload Properties

The payload has the following properties:

applicationKey
application key

8-44 IBM MobileFirst Platform Foundation V8.0.0

displayName
Display Name

mandatoryScope
scope

scopeTokenMapping
scope token mapping

securityCheckConfigurations
security check configuration

usernamePassword
username password

The applicationKey has the following properties:

bundleId
this is for iOS. Note: For Android, use packageName. For Windows, use
assemblyName.

clientPlatform
License category

version
version

The scopeTokenMapping has the following properties:

get-enroll-state
get enroll state

set-enroll-state
set-enroll-state

The securityCheckConfigurations has the following properties:

appAuthenticity
app auth configurations

The expirationSec has the following properties:

expirationSec
expiration in sec

The usernamePassword has the following properties:

inactivityTimeoutSec
inactive time out

maxAttempts
maximum attemts

Response

The metadata of the deployable.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",

API reference 8-45

"description" : {
"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_ARTIFACT",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deploy-application-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_ARTIFACT"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</deploy-application-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the deployable.

8-46 IBM MobileFirst Platform Foundation V8.0.0

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_ARTIFACT.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
No deployable data is provided.

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500

API reference 8-47

An internal error occurred.

Applications (GET)
Retrieves metadata for the list of deployed applications.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/applications

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications?bookmark=ABC&expand=true&locale=de_DE&offset=0&orderBy=displayName&pageSize=100

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

bookmark
The bookmark for the page if only a part of the list (a page) should be
returned. If a bookmark is specified, the offset parameter is ignored.

expand
Whether an expanded version of the result should be shown. If this parameter
is set to false, only a flat list of applications are returned. If the parameter is set
to true, the entire hierarchy of environment and versions is returned, too.

locale
The locale used for error messages.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: displayName, deployTime. The default sort
mode is: displayName.

8-48 IBM MobileFirst Platform Foundation V8.0.0

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deployed applications.

JSON Example
{

"items" : [
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"displayName" : "MyApplication",
"link" : "https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}",
"project" : {
"name" : "myproject",

},
"resourceName" : "abc",
"resourceType" : "APP_DESCRIPTOR",

},
...

],
"nextPageBookmark" : "DEF",
"pageNumber" : 2,
"pageSize" : 100,
"prevPageBookmark" : "ABC",
"productVersion" : "8.0",
"startIndex" : 0,
"totalListSize" : 33,

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<applications

nextPageBookmark="DEF"
pageNumber="2"
pageSize="100"
prevPageBookmark="ABC"
productVersion="8.0"
startIndex="0"
totalListSize="33">
<items>
<item

deployTime="2014-04-13T00:18:36.979Z"
displayName="MyApplication"
link="https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}"
resourceName="abc"
resourceType="APP_DESCRIPTOR">
<project name="myproject"/>

</item>
...

</items>
</applications>

Response Properties

The response has the following properties:

API reference 8-49

items
The array of application metadata

nextPageBookmark
The bookmark of the next page if only one page of applications is returned.

pageNumber
The page index if only one page of applications is returned.

pageSize
The page size if only one page of applications is returned.

prevPageBookmark
The bookmark of the previous page if only one page of applications is
returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only one page of applications is returned.

totalListSize
The total number of applications.

The configlink has the following properties:

deployTime
The date in ISO 8601 format when the artifact was deployed.

displayName
The optional display name of the artifact.

link
The URL to access detailed information about the deployed artifacts such as
application, adapter etc.

project
The project the artifact belong to.

resourceName
The name of the artifact.

resourceType
The type of the artifact.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

8-50 IBM MobileFirst Platform Foundation V8.0.0

Application License Configuration (POST)
Deploys a license configuration for an application.

Description

A license configuration for an application

The method first checks whether the input deployable is valid. Then, it transfers
the deployable to the database and to the runtime.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later by using the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/license

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/license?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values: true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Consumes

application/json

API reference 8-51

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"appID" : "com.package.id",
"category" : "B2C",
"licenseType" : "APPLICATION",

}

Payload Properties

The payload has the following properties:

appID
The package name (Android) bundleId (iOS), or package identity (Windows)
name of the application

category
License category

licenseType
The type of license

Response

The metadata of the deployable.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_ARTIFACT",
"userName" : "demouser",

},
}

8-52 IBM MobileFirst Platform Foundation V8.0.0

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-app-licenseconfig-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_ARTIFACT"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-app-licenseconfig-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the deployable.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_ARTIFACT.

API reference 8-53

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
No deployable data is provided.

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Application license configuration (GET)
Retrieves the metadata of a specific license configuration for the application.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

8-54 IBM MobileFirst Platform Foundation V8.0.0

Path

/management-apis/2.0/runtimes/runtime-name/license/application-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/license/myapplication?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The license configuration as JSON code.

JSON Example
{

"appID" : "com.package.id",
"category" : "B2C",
"licenseType" : "APPLICATION",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<runtime

appID="com.package.id"
category="B2C"
licenseType="APPLICATION"/>

Response Properties

The response has the following properties:

appID
The package name (Android) bundleId (iOS), or package identity (Windows)
name of the application

category
License category

licenseType
The type of license

API reference 8-55

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

500
An internal error occurred.

Application Version (GET)
Retrieves the metadata of a specific application version.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name/
application-env/application-version

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication/android/1.0?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

8-56 IBM MobileFirst Platform Foundation V8.0.0

Produces

application/json, application/xml, text/xml

Response

The metadata of the specified application version.

JSON Example
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"displayName" : "MyApplication",
"link" : "https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}",
"productVersion" : "8.0",
"project" : {
"name" : "myproject",

},
"resourceName" : "abc",
"resourceType" : "APP_DESCRIPTOR",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<appversion

deployTime="2014-04-13T00:18:36.979Z"
displayName="MyApplication"
link="https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}"
productVersion="8.0"
resourceName="abc"
resourceType="APP_DESCRIPTOR">
<project name="myproject"/>

</appversion>

Response Properties

The response has the following properties:

deployTime
The date in ISO 8601 format when the artifact was deployed.

displayName
The optional display name of the artifact.

link
The URL to access detailed information about the deployed artifacts such as
application, adapter etc.

productVersion
The exact product version.

project
The project the artifact belong to.

resourceName
The name of the artifact.

resourceType
The type of the artifact.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

API reference 8-57

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the application version is not found.

500
An internal error occurred.

Application Version (DELETE)
Deletes a specific application version.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later by using the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name/
application-env/application-version

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication/android/1.0?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

8-58 IBM MobileFirst Platform Foundation V8.0.0

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deleted application version.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_APPLICATION_ENV_VERSION",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<delete-appversion-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_APPLICATION_ENV_VERSION"
userName="demouser">
<description

name="myname"

API reference 8-59

type="mytype"/>
<errors>

<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-appversion-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always DELETE_APPLICATION_ENV_VERSION.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

8-60 IBM MobileFirst Platform Foundation V8.0.0

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the application version is not found.

500
An internal error occurred.

Audit (GET)
Returns Audit Information.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/audit

Example
https://www.example.com/mfpadmin/management-apis/2.0/audit?fromDate=2016-03-01&toDate=2016-03-10

Query Parameters

Query parameters are optional.

fromDate
Specify from which date audit log is required

toDate
Specify till which date audit log is required

API reference 8-61

Produces

application/zip

Errors

400
Invalid payload.

500
An internal error occurred.

Confidential Clients (GET)
Retrieves the confidential clients list of a specific runtime.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/confidentialclients

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/confidentialclients?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The confidential clients list of the specified runtime.

8-62 IBM MobileFirst Platform Foundation V8.0.0

JSON Example
{

"clients" : [
{

"allowedScope" : "clients:read-public clients:read-protected update",
"displayName" : "My Client",
"id" : "ABC",
"secret" : "12345",

},
...

],
"productVersion" : "8.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<confidential-clients productVersion="8.0">

<clients>
<client

allowedScope="clients:read-public clients:read-protected update"
displayName="My Client"
id="ABC"
secret="12345"/>

...
</clients>

</confidential-clients>

Response Properties

The response has the following properties:

clients
The confidential clients of the runtime.

productVersion
The exact product version.

The confidential client has the following properties:

allowedScope
The allowed scope of the client.

displayName
The display name of the client.

id The identifier of the client.

secret
The secret of the confidential client.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

API reference 8-63

Confidential Clients (PUT)
Sets the confidential clients list of a specific runtime.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

PUT

Path

/management-apis/2.0/runtimes/runtime-name/confidentialclients

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/confidentialclients?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

8-64 IBM MobileFirst Platform Foundation V8.0.0

Payload

JSON Example
{

"clients" : [
{

"allowedScope" : "clients:read-public clients:read-protected update",
"displayName" : "My Client",
"id" : "ABC",
"secret" : "12345",

},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<confidential-clients>

<clients>
<client

allowedScope="clients:read-public clients:read-protected update"
displayName="My Client"
id="ABC"
secret="12345"/>

...
</clients>

</confidential-clients>

Payload Properties

The payload has the following properties:

clients
The confidential clients of the runtime.

The confidential client has the following properties:

allowedScope
The allowed scope of the client.

displayName
The display name of the client.

id The identifier of the client.

secret
The secret of the confidential client.

Response

The confidential clients of the specified runtime.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

API reference 8-65

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_ARTIFACT",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-confidential-clients-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_ARTIFACT"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-confidential-clients-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of confidential clients.

errors
The errors occurred during the transaction.

id The id of the transaction.

8-66 IBM MobileFirst Platform Foundation V8.0.0

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_ARTIFACT.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

API reference 8-67

Create Subscription (POST)
Creates a new subscription for a tag.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/subscriptions

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/subscriptions?action={/"delete/"}&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

action
When set to delete, this parameter unsubscribes a device from the list of tags
that is specified in the tagNames field of the JSON body.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"deviceId" : "12345-6789",
"tagName" : "SampleTag",

}

8-68 IBM MobileFirst Platform Foundation V8.0.0

Payload Properties

The payload has the following properties:

deviceId
The unique identifier of the device

tagName
The tag name to subscribe.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Create Tag (POST)
Creates a tag with a unique name in the application that is referenced by the
applicationId parameter.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/tags

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/tags

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

API reference 8-69

application-name
The name of the application.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"description" : "This is a sample tag.",
"name" : "SampleTag",

}

Payload Properties

The payload has the following properties:

description
The description of the tag.

name
The name of the tag.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Delete APNs settings (DELETE)
Deletes the APNs settings to the application referenced by the application name.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

8-70 IBM MobileFirst Platform Foundation V8.0.0

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/apnsConf

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/apnsConf?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Delete GCM settings (DELETE)
Deletes the GCM settings to the application referenced by the application name.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

API reference 8-71

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/gcmConf

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/gcmConf?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Delete WNS settings (DELETE)
Deletes the WNS settings from the application referenced by the application name.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

8-72 IBM MobileFirst Platform Foundation V8.0.0

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/wnsConf

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/wnsConf?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Delete Message (DELETE)
Deletes a message identified by the messageId parameter.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

API reference 8-73

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/messages/message-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/messages/1111?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

message-id
The message id of push message in push server

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Delete Subscription (DELETE)
Unsubscribes the device from the tag by using the subscription identifier. This
method deletes neither the device registration nor the tag.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

8-74 IBM MobileFirst Platform Foundation V8.0.0

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/subscriptions/subscription-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/subscriptions/1

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

subscription-id
The subscription id of the application register with Push

Produces

application/json, application/xml, text/xml

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Delete Tag (DELETE)
Deletes the tag in the application.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

API reference 8-75

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/tags/tag-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/tags/mytag

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

tag-name
The name of the tag.

Produces

application/json, application/xml, text/xml

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Deploy (POST)
Deploys a multipart compressed file.

Description

A deployable can contains an adapter, application, license configuration, keystore,
web resource, etc.

The method first checks whether the input deployable is valid. Then, the method
transfers the deployable to the database and to the runtime.

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later by using the transaction REST
service.

8-76 IBM MobileFirst Platform Foundation V8.0.0

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/deploy/multi

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/deploy/multi?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml

Response

The metadata of the deployable.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

API reference 8-77

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_ARTIFACT",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deploy-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_ARTIFACT"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</deploy-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the deployable.

errors
The errors occurred during the transaction.

id The id of the transaction.

8-78 IBM MobileFirst Platform Foundation V8.0.0

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_ARTIFACT.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
No deployable data is provided.

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

API reference 8-79

Deploy Application Authenticity Data (POST)
Deploys application authenticity data for a specific application version.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/authenticity

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication/android/1.0/authenticity?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml

8-80 IBM MobileFirst Platform Foundation V8.0.0

Response

The metadata of the deployable.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_ARTIFACT",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-appversion-authenticitydata-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_ARTIFACT"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-appversion-authenticitydata-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

API reference 8-81

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the deployable.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_ARTIFACT.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

8-82 IBM MobileFirst Platform Foundation V8.0.0

Errors

400
No deployable data is provided.

403
The user is not authorized to call this service.

404
The corresponding runtime version is not found or not running.

500
An internal error occurred.

Deploy a web resource (POST)
deploy a web resource zip for a specific application version.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/web

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication/android/1.0/web?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

API reference 8-83

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml

Response

The metadata of the web resource .

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "UPLOAD_ARTIFACT",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-appversion-webresources-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_ARTIFACT"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

8-84 IBM MobileFirst Platform Foundation V8.0.0

</errors>
<project name="myproject"/>

</transaction>
</set-appversion-webresources-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the web resource.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_ARTIFACT.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

API reference 8-85

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
No deployable data is provided.

403
The user is not authorized to call this service.

404
The corresponding runtime version is not found or not running.

500
An internal error occurred.

Device Application Status (PUT)
Changes the status of a specific application on a specific device.

Description

An application can be marked as enabled or disabled for a specific device.
Disabled applications cannot access the server.

This transaction can run synchronously or asynchronously. If the transaction is
processed asynchronously, the REST service returns before the transaction is
completed. In this case, you can query the transaction result later by using the
transaction REST service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

PUT

Path

/management-apis/2.0/runtimes/runtime-name/devices/device-id/applications/
application-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/devices/12345-6789/applications/myapplication?async=false&locale=de_DE

8-86 IBM MobileFirst Platform Foundation V8.0.0

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

device-id
The device id.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"status" : "ENABLED",
}

Payload Properties

The payload has the following properties:

status
The status of the application: ENABLED or DISABLED.

Response

The metadata of the transaction.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"appName" : "myapplication",
"deviceId" : "12345-6789",
"status" : "ENABLED",

API reference 8-87

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "CHANGE_DEVICE_APPLICATION_STATUS",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-applicationdevice-status-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="CHANGE_DEVICE_APPLICATION_STATUS"
userName="demouser">
<description

appName="myapplication"
deviceId="12345-6789"
status="ENABLED"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-applicationdevice-status-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the status change.

8-88 IBM MobileFirst Platform Foundation V8.0.0

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always CHANGE_DEVICE_APPLICATION_STATUS.

userName
The user that initiated the transaction.

The description has the following properties:

appName
The application name.

deviceId
The device id.

status
The status of the application: ENABLED or DISABLED.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the device is not found.

500
An internal error occurred.

API reference 8-89

Device Status (PUT)
Changes the status of a specific device.

Description

A device can be marked as active, lost, stolen, disabled, or expired. Lost, stolen, or
disabled devices cannot access the server. A device is marked expired if it has not
connected to the MobileFirst server for 90 days.

This transaction can run synchronously or asynchronously. If the transaction is
processed asynchronously, the REST service returns before the transaction is
completed. In this case, you can query the transaction result later by using the
transaction REST service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

PUT

Path

/management-apis/2.0/runtimes/runtime-name/devices/device-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/devices/12345-6789?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

device-id
The device id.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Consumes

application/json

8-90 IBM MobileFirst Platform Foundation V8.0.0

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"status" : "LOST",
}

Payload Properties

The payload has the following properties:

status
The new status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

Response

The metadata of the transaction.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"deviceId" : "12345-6789",
"status" : "LOST",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "CHANGE_DEVICE_STATUS",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-device-status-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="CHANGE_DEVICE_STATUS"

API reference 8-91

userName="demouser">
<description

deviceId="12345-6789"
status="LOST"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-device-status-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the status change.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always CHANGE_DEVICE_STATUS.

userName
The user that initiated the transaction.

The description has the following properties:

deviceId
The device id.

status
The status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

8-92 IBM MobileFirst Platform Foundation V8.0.0

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime or the device is not found.

500
An internal error occurred.

Device (DELETE)
Deletes all metadata of a specific device.

Description

This transaction can run synchronously or asynchronously. If the transaction is
processed asynchronously, the REST service returns before the transaction is
completed. In this case, you can query the transaction result later by using the
transaction REST service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/devices/device-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/devices/12345-6789?async=false&locale=de_DE

API reference 8-93

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

device-id
The device id.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously. The
allowed values are true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deleted device.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"deviceId" : "12345-6789",
"status" : "LOST",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "REMOVE_DEVICE",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<remove-device-result

ok="false"
productVersion="8.0">

8-94 IBM MobileFirst Platform Foundation V8.0.0

<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="REMOVE_DEVICE"
userName="demouser">
<description

deviceId="12345-6789"
status="LOST"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</remove-device-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the device.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always REMOVE_DEVICE.

userName
The user that initiated the transaction.

The description has the following properties:

API reference 8-95

deviceId
The device id.

status
The status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the device is not found.

500
An internal error occurred.

Devices (GET)
Retrieves metadata for the list of devices that accessed this project.

Note

Since 7.1, the offset parameter is no longer supported. Use the bookmark
parameter instead for paging.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/devices

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/devices?bookmark=ABC&locale=de_DE&orderBy=uid&pageSize=100&query=Jeremy

8-96 IBM MobileFirst Platform Foundation V8.0.0

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

bookmark
The bookmark for the page if only a part of the list (a page) should be
returned.

locale
The locale used for error messages.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: uid, friendlyName, deviceModel,
deviceEnvironment, status, lastAccessed. The default sort mode is: uid.

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

query
A device-friendly name or a user to search for.

Produces

application/json, application/xml, text/xml

Response

The metadata of the devices that accessed this project.

JSON Example
{

"items" : [
{

"applicationDeviceAssociations" : [
{

"appId" : "com.ibm.appios1.0.0",
"appName" : "myapplication",
"certSerialNumber" : "",
"deviceId" : "12345-6789",
"deviceStatus" : "LOST",
"status" : "ENABLED",

},
...

],
"deviceDisplayName" : "Jeremy’s Personal Phone",
"deviceModel" : "Nexus 7",
"deviceOs" : "4.4",
"id" : "12345-6789",
"lastAccessed" : "2014-05-13T00:18:36.979Z",
"status" : "LOST",
"userIds" : [
{

"str" : "Jeremy",
},

API reference 8-97

...
],

},
...

],
"nextPageBookmark" : "DEF",
"pageNumber" : 2,
"pageSize" : 100,
"prevPageBookmark" : "ABC",
"productVersion" : "8.0",
"startIndex" : 0,
"totalListSize" : 33,

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<devices

nextPageBookmark="DEF"
pageNumber="2"
pageSize="100"
prevPageBookmark="ABC"
productVersion="8.0"
startIndex="0"
totalListSize="33">
<items>
<item

deviceDisplayName="Jeremy’s Personal Phone"
deviceModel="Nexus 7"
deviceOs="4.4"
id="12345-6789"
lastAccessed="2014-05-13T00:18:36.979Z"
status="LOST">
<applicationDeviceAssociations>
<applicationDeviceAssociation

appId="com.ibm.appios1.0.0"
appName="myapplication"
certSerialNumber=""
deviceId="12345-6789"
deviceStatus="LOST"
status="ENABLED"/>

...
</applicationDeviceAssociations>
<userIds>
<userId str="Jeremy"/>
...

</userIds>
</item>
...

</items>
</devices>

Response Properties

The response has the following properties:

items
The array of device metadata

nextPageBookmark
The bookmark of the next page if only one page of devices is returned.

pageNumber
The page index if only one page of devices is returned.

pageSize
The page size if only one page of devices is returned.

8-98 IBM MobileFirst Platform Foundation V8.0.0

prevPageBookmark
The bookmark of the previous or first page if only one page of devices is
returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only one page of devices is returned.

totalListSize
The total number of devices.

The device has the following properties:

applicationDeviceAssociations
The applications on the device.

deviceDisplayName
The friendly name of the device.

deviceModel
The device model.

deviceOs
The device operating system.

id The device id.

lastAccessed
The date in ISO 8601 format when the device was last accessed.

status
The status of the device: ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

userIds
The applications on the device.

The device application has the following properties:

appId
The application id.

appName
The name of the application.

certSerialNumber
The serial number of the certificate

deviceId
The device id.

deviceStatus
The status of the device:ACTIVE, LOST, STOLEN, EXPIRED, DISABLED.

status
The status of the application: ENABLED or DISABLED.

The user-ids has the following properties:

str
The name of the user

API reference 8-99

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Diagnostic Service (GET)
Retrieves diagnostic information for administration, runtime, configuration (live
update), and push services.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/diagnostic

Example
https://www.example.com/mfpadmin/management-apis/2.0/diagnostic

Produces

application/json, application/xml, text/xml

Response

Information about the diagnostic.

JSON Example
{

"adminDB" : {
"status" : "available",

},
"analyticsService" : [
{

"runtime" : "mfp",
"status" : "available",

},
...

],
"configService" : {
"status" : "available",

8-100 IBM MobileFirst Platform Foundation V8.0.0

},
"productVersion" : "8.0",
"pushDiagnostic" : {
"status" : "available",

},
"runningProjectStatuses" : {
"hasAppsOrAdapter" : true,
"name" : "mfp",
"running" : true,
"synchronized" : "ok",

},
"runtimeDiagnostic" : [
{

"instances" : [
{

"Providers" : [
{
"DatabaseDiagnosticBean" : {

"message" : "Database is OK",
"ok" : "Ok",

},
},
...

],
"overallStatus" : "Ok",

},
...

],
"name" : "mfp",

},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<diagnostic-info productVersion="8.0">

<adminDB status="available"/>
<analyticsServiceArray>
<analyticsService

runtime="mfp"
status="available"/>

...
</analyticsServiceArray>
<configService status="available"/>
<pushDiagnostic status="available"/>
<runningProjectStatuses
hasAppsOrAdapter="true"
name="mfp"
running="true"
synchronized="ok"/>

<runtimeDiagnosticArray>
<runtimeDiagnostic name="mfp">

<instances>
<instance overallStatus="Ok">

<Providers>
<Provider>
<DatabaseDiagnosticBean

message="Database is OK"
ok="Ok"/>

</Provider>
...

</Providers>
</instance>
...

</instances>

API reference 8-101

</runtimeDiagnostic>
...

</runtimeDiagnosticArray>
</diagnostic-info>

Response Properties

The response has the following properties:

adminDB
Status of the administration database.

analyticsService
Status of the Analytics service.

configService
Status of the configuration service/live update service.

productVersion
The exact product version.

pushDiagnostic
Status of the push service.

runningProjectStatuses
Status of all the running projects.

runtimeDiagnostic
Runtime diagnostics of each runtime.

The admin-db has the following properties:

status
Status of the administration database.

The analytics-service has the following properties:

runtime
The name of the runtime.

status
Status of the Analytics service.

The config-service has the following properties:

status
Status of the configuration service/live update service.

The push-service has the following properties:

status
Status of the push service.

The running-project has the following properties:

hasAppsOrAdapter
Whether the project includes any applications or adapters

name
The name of the project

running
Whether the project is running

8-102 IBM MobileFirst Platform Foundation V8.0.0

synchronized
Synchronization status of the project

The runtime-diagnostic has the following properties:

instances
Status of each runtime instance

name
The name of the runtime

The runtime-status has the following properties:

Providers
Status of each runtime instance

overallStatus
The overall status of the runtime

The providers-status has the following properties:

DatabaseDiagnosticBean
Database Diagnostics Bean status

The db-status has the following properties:

message
Database status message

ok Database status

Errors

403
The user is not authorized to call this service.

500
An internal error occurred.

Export adapter resources (GET)
Retrieves a compressed file that contains all or selected resources for specific
adapters for this runtime.

Description

The method supports range requests to deliver only a range of the bytes of the
binary file. Clients can use this feature to resume a download after an interruption.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

API reference 8-103

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/export/adapters/adapter-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/export/adapters/myadapter?include=ADAPTER_CONTENT&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

adapter-name
The name of the adapter.

Query Parameters

Query parameters are optional.

include
Optional query parameter to get selected resources.

locale
The locale used for error messages.

Produces

application/octet-stream

Response

The compressed file containing all or selected resources for a specific adapter for
this runtime.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
One or more of the corresponding binary files were not found.

416
The requested range of bytes is not valid.

500
An internal error occurred.

8-104 IBM MobileFirst Platform Foundation V8.0.0

Export adapters (GET)
Retrieves a compressed file that contains all or selected adapter resources for this
runtime.

Description

The method supports range requests to deliver only a range of the bytes of the
binary file. Clients can use this feature to resume a download after an interruption.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/export/adapters

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/export/adapters?include=ADAPTER_CONTENT&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

include
Optional query parameters to get selected resources.

locale
The locale used for error messages.

Produces

application/octet-stream

Response

The compressed file containing all or selected adapter resources for this runtime.

Errors

400
The request is invalid.

API reference 8-105

403
The user is not authorized to call this service.

404
One or more of the corresponding binary files were not found.

416
The requested range of bytes is not valid.

500
An internal error occurred.

Export application environment (GET)
Retrieves a compressed binary file that contains all or selected application
environment-specific resources for this runtime.

Description

The method supports range requests to deliver only a range of the bytes of the
binary file. Clients can use this feature to resume a download after an interruption.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/export/applications/application-
name/application-env

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/export/applications/myapplication/android?include=APP_DESCRIPTOR&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

8-106 IBM MobileFirst Platform Foundation V8.0.0

Query Parameters

Query parameters are optional.

include
Optional query parameter to get selected resources.

locale
The locale used for error messages.

Produces

application/octet-stream

Response

The compressed file containing all or selected application environment-specific
resources for this runtime.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
One or more of the corresponding binary files were not found.

416
The requested range of bytes is not valid.

500
An internal error occurred.

Export application environment resources (GET)
Retrieves a compressed binary resource for a specific version of an application
environment for this runtime.

Description

The method supports range requests to deliver only a range of the bytes of the
binary file. Clients can use this feature to resume a download after an interruption.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

API reference 8-107

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/export/applications/application-
name/application-env/application-version

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/export/applications/myapplication/android/1.0?include=APP_DESCRIPTOR&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

include
Optional query parameter to get selected resources.

locale
The locale used for error messages.

Produces

application/octet-stream

Response

The compressed binary data, containing all or selected resources for a specific
version of an application environment for this runtime.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
One or more of the corresponding binary files were not found.

416

8-108 IBM MobileFirst Platform Foundation V8.0.0

The requested range of bytes is not valid.

500
An internal error occurred.

Export application resources (GET)
Retrieves a compressed file that contains all or selected application-specific
resources for this runtime.

Description

The method supports range requests to deliver only a range of the bytes of the
binary file. Clients can use this feature to resume a download after an interruption.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/export/applications/application-
name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/export/applications/myapplication?include=APP_DESCRIPTOR&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

include
Optional query parameter to get selected resources.

locale
The locale used for error messages.

Produces

application/octet-stream

API reference 8-109

Response

The compressed file containing all or selected application-specific resources for this
runtime.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
One or more of the corresponding binary files were not found.

416
The requested range of bytes is not valid.

500
An internal error occurred.

Export applications (GET)
Retrieves a compressed file that contains all or selected application resources for
this runtime.

Description

The method supports range requests to deliver only a range of the bytes of the
binary file. Clients can use this feature to resume a download after an interruption.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/export/applications

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/export/applications?include=APP_DESCRIPTOR&locale=de_DE

8-110 IBM MobileFirst Platform Foundation V8.0.0

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

include
Optional query parameter to get selected resources.

locale
The locale used for error messages.

Produces

application/octet-stream

Response

The compressed file containing all or selected application resources for this
runtime.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
One or more of the corresponding binary files were not found.

416
The requested range of bytes is not valid.

500
An internal error occurred.

Export resources (GET)
Retrieves a compressed file (.zip) that contains all the specified resources.

Description

It supports range requests to deliver only a range of the bytes of the binary file.
Clients can use this feature to resume a download after interruption.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

API reference 8-111

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/export

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/export?locale=de_DE&resourceInfos=newAdapter||ADAPTER_CONTENT

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

resourceInfos
The information to uniquely identify a resource. Format
resourceName||resourceType. For Adapter:
{adapterName}||ADAPTER_CONTENT For Application Descriptor:
{appName${platform}${version}||APP_DESCRIPTOR For Licence
Configuration: {appName}||APP_LICENSE_CONFIG For Application
Configuration:
{appName${platform}${version}||APP_USER_CONFIGURATION For
Keystore: keystore||KEYSTORE For Web Resource:
{appName${platform}${version}||APP_WEB_CONTENT

Produces

application/octet-stream

Response

The compressed file of the specified deployables.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
One or more of the corresponding binary files were not found.

8-112 IBM MobileFirst Platform Foundation V8.0.0

416
The requested range of bytes is not satisfiable.

500
An internal error occurred.

Export runtime resources (GET)
Retrieves a compressed file that contains all or selected runtime-specific resources.

Description

This method supports range requests to deliver only a range of the bytes of the
binary file. Clients can use this feature to resume a download after an interruption.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/export/all

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/export/all?include=RUNTIME_KEYSTORE&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

include
Optional query parameter to get selected resources.

locale
The locale used for error messages.

Produces

application/octet-stream

API reference 8-113

Response

The compressed file containing all or selected runtime-specific resources.

Errors

400
The request is invalid.

403
The user is not authorized to call this service.

404
One or more of the corresponding binary files were not found.

416
The requested range of bytes is not valid.

500
An internal error occurred.

Farm topology members (GET)
Retrieves the list of members of the farm.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/farm

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/farm?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

8-114 IBM MobileFirst Platform Foundation V8.0.0

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The list of nodes registered in the current farm topology

JSON Example
{

"nodes" : [
{

"adminUser" : "johndoe",
"appServerType" : "LIBERTY",
"heartbeatTime" : "2014-12-08T23:32:04.700Z",
"host" : "192.168.0.4",
"pk" : {
"projectName" : "mytestproject",
"serverId" : "Farm_Node_3",

},
"port" : "8686",
"status" : "ALIVE",
"tomcatPort" : "8989",

},
...

],
"numberOfNodes" : 3,
"productVersion" : "7.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<farm-members

numberOfNodes="3"
productVersion="7.0">
<nodes>
<node

adminUser="johndoe"
appServerType="LIBERTY"
heartbeatTime="2014-12-08T23:32:04.700Z"
host="192.168.0.4"
port="8686"
status="ALIVE"
tomcatPort="8989">
<pk
projectName="mytestproject"
serverId="Farm_Node_3"/>

</node>
...

</nodes>
</farm-members>

Response Properties

The response has the following properties:

nodes
The array of farm nodes

API reference 8-115

numberOfNodes
The total number of nodes.

productVersion
The exact product version.

The farm node has the following properties:

adminUser
The user id to use for REST

appServerType
The server type of this node

heartbeatTime
The last heartbeat time

host
The hostname of this node

pk The farm node primary key, that is, the attributes that uniquely identify this
node.

port
The port to use for REST or RMI

status
The status of this node

tomcatPort
The port to use for RMI if behind a firewall

The farm node primary key has the following properties:

projectName
The MobileFirst runtime related to this farm member

serverId
The server identifier of this farm member

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Farm topology members (DELETE)
Unregisters a farm node.

Description

This service removes a farm node. By default, the service removes a farm node
only if it is marked as Down. If you want to force the deletion, even if the farm
member is marked as Alive, set the force argument to true.

8-116 IBM MobileFirst Platform Foundation V8.0.0

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/farm/server-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/farm/farm_member_1?force=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

server-id
The server id of the farm member to remove

Query Parameters

Query parameters are optional.

force
Whether the service should unregister a farm member even if it is marked as
being Alive. The default value is false.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The status of the unregistration of the farm member

JSON Example
{

"ok" : true,
"productVersion" : "7.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<remove-farm-member-result

ok="true"
productVersion="7.0"/>

API reference 8-117

Response Properties

The response has the following properties:

ok Whether the operation was successful.

productVersion
The exact product version.

Errors

403
The user is not authorized to call this service.

404
The corresponding farm member is not found.

500
An internal error occurred.

Get Message (GET)
Retrieves information about a message identified by its messageId parameter.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/messages/message-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/messages/1111?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

message-id
The message id of push message in push server

8-118 IBM MobileFirst Platform Foundation V8.0.0

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

Retrieves the meta data of the message identified by the messageId parameter.

JSON Example
{

"alert" : "New update available",
"messageId" : "New update available",
"productVersion" : "8.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<push-messages

alert="New update available"
messageId="New update available"
productVersion="8.0"/>

Response Properties

The response has the following properties:

alert
A string to be displayed in the alert.

messageId
The identifier of the notification message sent.

productVersion
The exact product version.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Get Tags (GET)
Retrieves all or a subset of tags in the application.

API reference 8-119

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/tags

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/tags?expand=true&filter=tagName=@tag&locale=de_DE&offset=0&size=10&subscriptionCount=true

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

expand
Retrieves additional metadata for every subscription that is returned in the
response.

filter
The filter specifies the search criteria. Refer to the filter section for the detailed
syntax.

locale
The locale used for error messages.

offset
The pagination offset that is normally used in association with the size.

size
The pagination size that is normally used in association with the offset to
retrieve a subset.

subscriptionCount
If this parameter is set to true, the method retrieves the number of
subscriptions for each platform.

Produces

application/json, application/xml, text/xml

8-120 IBM MobileFirst Platform Foundation V8.0.0

Response

Retrieves tags of the application.

JSON Example
{

"productVersion" : "8.0",
"tags" : {
"createdMode" : "API",
"createdTime" : "2016-03-19T06:34:42Z",
"description" : "This is a sample tag",
"href" : "http://localhost:9080/imfpush/v1/apps/com.test.one/tags/SampleTag",
"lastUpdatedTime" : "2016-03-22T06:34:42Z",
"name" : "SampleTag",
"uri" : "http://localhost:9080/imfpush/v1/apps/com.test.one/tags/SampleTag",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<push-tags productVersion="8.0">

<tags
createdMode="API"
createdTime="2016-03-19T06:34:42Z"
description="This is a sample tag"
href="http://localhost:9080/imfpush/v1/apps/com.test.one/tags/SampleTag"
lastUpdatedTime="2016-03-22T06:34:42Z"
name="SampleTag"
uri="http://localhost:9080/imfpush/v1/apps/com.test.one/tags/SampleTag"/>

</push-tags>

Response Properties

The response has the following properties:

productVersion
The exact product version.

tags
The list of tags of the application.

The push tags has the following properties:

createdMode
How the tag was created. The possible values are UI or API.

createdTime
The time at which the tag was created.

description
The description of the tag.

href
The link to the tag.

lastUpdatedTime
The time at which the tag was last updated.

name
The name of the tag.

uri
The link to the tag.

API reference 8-121

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Get APNs Settings (GET)
Retrieves APNs credentials for the application.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/apnsConf

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/apnsConf?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

8-122 IBM MobileFirst Platform Foundation V8.0.0

Produces

application/json, application/xml, text/xml

Response

The metadata of the APNS certificate.

JSON Example
{

"certificate" : "apns-certificate-sandbox.p12",
"isSandBox" : true,
"productVersion" : "8.0",
"validUntil" : "2016-09-10T09:32:30.000Z",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<pushAPNS

certificate="apns-certificate-sandbox.p12"
isSandBox="true"
productVersion="8.0"
validUntil="2016-09-10T09:32:30.000Z"/>

Response Properties

The response has the following properties:

certificate
The name of the APNS certificate

isSandBox
Is this certificate for SandBox or Production?

productVersion
The exact product version.

validUntil
The expiration date for the certificate

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Get GCM Settings (GET)
Retrieves GCM credentials for the application.

API reference 8-123

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/gcmConf

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/gcmConf?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the GCM credentials.

JSON Example
{

"apiKey" : "AIzaSyBnWWReKAFrOPiw75QQAcRM",
"productVersion" : "8.0",
"senderId" : "11639055112",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<pushGCM

apiKey="AIzaSyBnWWReKAFrOPiw75QQAcRM"
productVersion="8.0"
senderId="11639055112"/>

8-124 IBM MobileFirst Platform Foundation V8.0.0

Response Properties

The response has the following properties:

apiKey
GCM Api Key

productVersion
The exact product version.

senderId
The project ID that is signed up at the Google API console.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Get WNS Settings (GET)
Retrieves WNS credentials for the application.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/wnsConf

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/wnsConf?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

API reference 8-125

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the WNS certificate.

JSON Example
{

"clientSecret" : "712345dummyvalues12345",
"packageSID" : "ms-app://s-1-15-2-dummyvalues12345",
"productVersion" : "8.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<pushWNS

clientSecret="712345dummyvalues12345"
packageSID="ms-app://s-1-15-2-dummyvalues12345"
productVersion="8.0"/>

Response Properties

The response has the following properties:

clientSecret
The Secret Key

packageSID
Package Security Identifier (SID)

productVersion
The exact product version.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

8-126 IBM MobileFirst Platform Foundation V8.0.0

Global Configuration (GET)
Retrieves information about the global configuration.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/config

Example
https://www.example.com/mfpadmin/management-apis/2.0/config?locale=de_DE

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The global configuration.

JSON Example
{

"analyticsConsoleUrl" : [
{

"runtime" : "myruntime",
"url" : "https://www.example.com/analytics/console",

},
...

],
"auditEnabled" : true,
"cloudantDashboardUrl" : "https://example.cloudant.com/dashboard.html",
"iosEdition" : false,
"productVersion" : "8.0",
"pushConfidentialClientsStatus" : "ok",
"pushEnabled" : true,
"swaggerUrl" : "https://www.example.com/doc/?url=https://www.example.com/api/adapterdoc/sampleAdapter",
"topology" : "STANDALONE",

}

API reference 8-127

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<global-config

auditEnabled="true"
cloudantDashboardUrl="https://example.cloudant.com/dashboard.html"
iosEdition="false"
productVersion="8.0"
pushConfidentialClientsStatus="ok"
pushEnabled="true"
swaggerUrl="https://www.example.com/doc/?url=https://www.example.com/api/adapterdoc/sampleAdapter"
topology="STANDALONE">
<analyticsConsoleUrls>
<analyticsConsoleUrl

runtime="myruntime"
url="https://www.example.com/analytics/console"/>

...
</analyticsConsoleUrls>

</global-config>

Response Properties

The response has the following properties:

analyticsConsoleUrl
The array of Analytics console URLs for available runtimes

auditEnabled
Whether audit is enabled.

cloudantDashboardUrl
The link to the Cloudant dashboard, if any.

iosEdition
Whether the server is an iOS Edition.

productVersion
The exact product version.

pushConfidentialClientsStatus
Status of the internal push and administrative confidential client

pushEnabled
Whether the push service is enabled.

swaggerUrl
The link to the Swagger UI URL.

topology
Server topology. Possible values: "STANDALONE", "CLUSTER" or "FARM"

The analytics-urls has the following properties:

runtime
The name of the runtime.

url
The URL of the Analytics console.

Errors

403
The user is not authorized to call this service.

500

8-128 IBM MobileFirst Platform Foundation V8.0.0

An internal error occurred.

Keystore (GET)
Retrieves keystore properties for a deployed keystore of a runtime.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/keystore

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/keystore

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Produces

application/json, application/xml, text/xml

Response

The keystore properties as JSON code.

JSON Example
{

"keystore.password" : "password",
"keystore.type" : jks,
"productVersion" : "8.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<runtime

keystore.password="password"
keystore.type="jks"
productVersion="8.0"/>

Response Properties

The response has the following properties:

API reference 8-129

key.alias
The alias of the entry where the private key and certificate are stored, in the
keystore.

key.alias.password
The password to the alias in the keystore.

keystore.password
The password to the keystore.

keystore.type
The type of the keystore. Valid values are jks or pkcs12..

productVersion
The exact product version.

Errors

403
The user is not authorized to call this service.

404
The resource is not found.

500
An internal error occurred.

Keystore (POST)
Deploy a keystore for a runtime.

Description

A deployable is a keystore.

The method first checks whether the input deployable is valid. Then, the method
transfers the deployable to the database and to the runtime.

This transaction can run synchronously or asynchronously. If the transaction is
processed asynchronously, the REST service returns before the transaction is
completed. In this case, you can query the transaction result later by using the
transaction REST service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/keystore

8-130 IBM MobileFirst Platform Foundation V8.0.0

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/keystore?async=false&locale=de_DE&type=RUNTIME_KEYSTORE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values: true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

type
The type of the deployable is RUNTIME_KEYSTORE.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml

Response

The metadata of the deployable.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",

API reference 8-131

"type" : "UPLOAD_ARTIFACT",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<deploy-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="UPLOAD_ARTIFACT"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</deploy-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the deployable.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

8-132 IBM MobileFirst Platform Foundation V8.0.0

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always UPLOAD_ARTIFACT.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
Invalid payload.

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Keystore (DELETE)
Deletes a keystore from the runtime.

Description

This transaction can run synchronously or asynchronously. If the transaction is
processed asynchronously, the REST service returns before the transaction is
completed. In this case, you can query the transaction result by using the
transaction REST service.

API reference 8-133

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/keystore

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/keystore?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values: true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deleted keystore.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],

8-134 IBM MobileFirst Platform Foundation V8.0.0

"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_KEYSTORE",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<delete-keystore-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_KEYSTORE"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-keystore-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the keystore.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,

API reference 8-135

SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always DELETE_KEYSTORE.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The keystore for the runtime mfp does not exist in the MobileFirst administration database. The database might be corrupted.

500
An internal error occurred.

License configuration (DELETE)
Deletes a license configuration for the application name.

Description

This transaction can run synchronously or asynchronously. If the transaction is
processed asynchronously, the REST service returns before the transaction is
completed. In this case, you can query the transaction result later by using the
transaction REST service.

8-136 IBM MobileFirst Platform Foundation V8.0.0

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/license/application-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/license/myapplication?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values: true and false. By default, transactions are processed in
synchronous mode.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the deleted license configuration.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

API reference 8-137

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_LICENSE_CONFIG",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<delete-app-licenseconfig-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_LICENSE_CONFIG"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</delete-app-licenseconfig-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the license configuration.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

8-138 IBM MobileFirst Platform Foundation V8.0.0

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always DELETE_LICENSE_CONFIG.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the application version is not found.

500
An internal error occurred.

Push Device Registration (GET)
Retrieves all or a subset of existing device registrations to the push service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

API reference 8-139

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/devices

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/devices?expand=true&filter=platform==A&locale=de_DE&offset=0&size=10&userId=admin

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

expand
Whether to retrieve detailed information about the device.

filter
The search criteria.

locale
The locale used for error messages.

offset
From where to start listing entries, depending on the value of the size
parameter.

size
The maximum number of entries to be listed per page. For example: 10.

userId
The user identifier of the device.

Produces

application/json, application/xml, text/xml

Response

Retrieves all or a subset of existing device registration to the push service.

8-140 IBM MobileFirst Platform Foundation V8.0.0

JSON Example
{

"devices" : [
{

"deviceId" : "JeremyiOSPhone",
"href" : "http://localhost:9080/imfpush/v1/apps/com.test.one/devices/JeremyiOSPhone",
"userId" : "Jeremy",

},
...

],
"productVersion" : "8.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<push-devices productVersion="8.0">

<devices>
<device

deviceId="JeremyiOSPhone"
href="http://localhost:9080/imfpush/v1/apps/com.test.one/devices/JeremyiOSPhone"
userId="Jeremy"/>

...
</devices>

</push-devices>

Response Properties

The response has the following properties:

devices
The list of devices registered with the application

productVersion
The exact product version.

The device-list has the following properties:

deviceId
The unique identifier of the device.

href
The link to the device identifier

userId
The user identifier of the device.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500

API reference 8-141

An internal error occurred.

Push Device Registration (DELETE)
Deletes(unregisters) an existing device registration from the push service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/devices/device-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/devices/12345-6789?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

device-id
The device id.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

8-142 IBM MobileFirst Platform Foundation V8.0.0

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Device Subscription (GET)
Retrieves all or a subset of existing subscriptions.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/subscriptions

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/subscriptions?deviceId=12345-6789&expand=true&filter=tagName=@tag&locale=de_DE&offset=0&size=10&tagName=sports&userId=user1

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

deviceId
Retrieves subscriptions only for the specified device.

expand
Retrieves additional metadata for every subscription that is returned in the
response.

filter
The filter specifies the search criteria. Refer to the filter section for the detailed
syntax.

locale
The locale used for error messages.

API reference 8-143

offset
The pagination offset that is normally used in association with the page size.

size
The pagination size that is normally used in association with the offset to
retrieve a subset.

tagName
Retrieves subscriptions only for the specified tag.

userId
Retrives subscriptions only for the specified user.

Produces

application/json, application/xml, text/xml

Response

Retrieves all push subscriptions for the application.

JSON Example
{

"productVersion" : "8.0",
"subscriptions" : {
"deviceId" : "12345-6789",
"href" : "http://localhost:9080/imfpush/v1/apps/com.test.one/subscriptions/2",
"subscriptionId" : "12",
"tagName" : "SampleTag",
"userId" : "Jeremy",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<push-subsciptions productVersion="8.0">

<subscriptions
deviceId="12345-6789"
href="http://localhost:9080/imfpush/v1/apps/com.test.one/subscriptions/2"
subscriptionId="12"
tagName="SampleTag"
userId="Jeremy"/>

</push-subsciptions>

Response Properties

The response has the following properties:

productVersion
The exact product version.

subscriptions
The list of push subscriptions.

The push subcriptions has the following properties:

deviceId
The unique identifier of the device.

href
The link to the subscription.

8-144 IBM MobileFirst Platform Foundation V8.0.0

subscriptionId
The unique identifier of the subscription.

tagName
The tag name for which to retrieve subscriptions.

userId
The user identifier for which to retrieve subscriptions.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Register Application with Push Service (POST)
Registers an application with the push server.

Description

Creates a new server application for a push service. The applicationId is a unique
identifier for this application. The application is a parent resource for devices,
subscriptions, tags, and messages. The application must be created before it can
access any of the child resources. If the application is deleted, all the children are
deleted. The application holds the configurations, such as the Apple Push
Notification Service (APNS) or Google Cloud Message (GCM) configuration, which
is required by the push service to send messages. The API first creates the
application and then sets the APNS and GCM credentials.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications?locale=de_DE

API reference 8-145

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"Enabled" : true,
"applicationId" : "com.sample.bankApp",

}

Payload Properties

The payload has the following properties:

Enabled
Whether the application is enabled or disabled.

applicationId
The bundleId/PackageName/ProjectIdentityName of the application

Errors

400
The request was not understood by the push server. An invalid JSON object could result in this error code.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

409
An application with the specified identifier already exists.

415
Unsupported Media Type - The content type specified in Content-Type header is not application/json.

500

8-146 IBM MobileFirst Platform Foundation V8.0.0

An internal error occurred.

Remove Subscription (DELETE)
Unsubscribes the specified device from a tag.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/subscriptions

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/subscriptions?deviceId=12345-6789&locale=de_DE&tagName=testTag

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

deviceId
The unique ID for the device

locale
The locale used for error messages.

tagName
The name of the tag to unsubscribe from

Produces

application/json, application/xml, text/xml

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

API reference 8-147

404
The corresponding runtime or application is not found or not running.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Retrieve Device Registration (GET)
Retrieves an existing device registration to the push service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/devices/device-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/devices/12345-6789?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

device-id
The device id.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

8-148 IBM MobileFirst Platform Foundation V8.0.0

Response

Retrieves an existing device registration of push.

JSON Example
{

"createdMode" : "API",
"createdTime" : "2016-03-15T16:30:19Z",
"deviceId" : "JeremyiOSPhone",
"href" : "http://localhost:9080/imfpush/v1/apps/com.test.one/devices/JeremyiOSPhone",
"lastUpdatedTime" : "2016-03-18T16:30:19Z",
"platform" : "A",
"productVersion" : "8.0",
"token" : "c6a41224 23333917 9fde1532",
"userId" : "Jeremy",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<push-device

createdMode="API"
createdTime="2016-03-15T16:30:19Z"
deviceId="JeremyiOSPhone"
href="http://localhost:9080/imfpush/v1/apps/com.test.one/devices/JeremyiOSPhone"
lastUpdatedTime="2016-03-18T16:30:19Z"
platform="A"
productVersion="8.0"
token="c6a41224 23333917 9fde1532"
userId="Jeremy"/>

Response Properties

The response has the following properties:

createdMode
The mode of device creation

createdTime
The time at which the device registration occurred

deviceId
The unique identifier of the device

href
The link to the device identifier

lastUpdatedTime
Last update time

platform
The device platform

productVersion
The exact product version.

token
The unique push token of the device

userId
The user identifier of the device.

API reference 8-149

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Retrieve Tag (GET)
Retrieves the specified tag in the application.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/tags/tag-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/tags/mytag

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

tag-name
The name of the tag.

Produces

application/json, application/xml, text/xml

8-150 IBM MobileFirst Platform Foundation V8.0.0

Response

Retrieves details of a specific tag of the application.

JSON Example
{

"createdMode" : "API",
"createdTime" : "2016-03-19T06:34:42Z",
"description" : "This is a Sample tag",
"lastUpdatedTime" : "2016-03-22T06:34:42Z",
"name" : "SampleTag",
"productVersion" : "8.0",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<push-tag

createdMode="API"
createdTime="2016-03-19T06:34:42Z"
description="This is a Sample tag"
lastUpdatedTime="2016-03-22T06:34:42Z"
name="SampleTag"
productVersion="8.0"/>

Response Properties

The response has the following properties:

createdMode
How the tag was created. The possible values are UI or API.

createdTime
The time at which the tag was created.

description
The description of the tag.

lastUpdatedTime
The time at which the tag was last updated.

name
The name of the tag.

productVersion
The exact product version.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

API reference 8-151

Retrieve Web Resource (GET)
Retrieves the metadata of a web resource for a specific application version.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/applications/application-name/
application-env/application-version/web

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/applications/myapplication/android/1.0/web?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

application-env
The application environment.

application-version
The application version number.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata of the web resource for the specified application version.

JSON Example
{

"deployTime" : "2014-04-13T00:18:36.979Z",
"displayName" : "MyApplication",

8-152 IBM MobileFirst Platform Foundation V8.0.0

"link" : "https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}",
"productVersion" : "8.0",
"project" : {
"name" : "myproject",

},
"resourceName" : "abc",
"resourceType" : "APP_DESCRIPTOR",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<webresource

deployTime="2014-04-13T00:18:36.979Z"
displayName="MyApplication"
link="https://www.example.com/mfpadmin/management-apis/2.0/runtimes/{runtime-name}/applications/{app-name}/{app-env}/{app-version}"
productVersion="8.0"
resourceName="abc"
resourceType="APP_DESCRIPTOR">
<project name="myproject"/>

</webresource>

Response Properties

The response has the following properties:

deployTime
The date in ISO 8601 format when the artifact was deployed.

displayName
The optional display name of the artifact.

link
The URL to access detailed information about the deployed artifacts such as
application, adapter etc.

productVersion
The exact product version.

project
The project the artifact belong to.

resourceName
The name of the artifact.

resourceType
The type of the artifact.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the adapter is not found.

500
An internal error occurred.

API reference 8-153

Retrieve Subscription to Push Service. (GET)
The subscription referenced by the subscription identifier is retrieved.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/subscriptions/subscription-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/subscriptions/1

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

subscription-id
The subscription id of the application register with Push

Produces

application/json, application/xml, text/xml

Response

Retrieves all push subscriptions for the application.

JSON Example
{

"deviceId" : "12345-6789",
"href" : "http://localhost:9080/imfpush/v1/apps/com.test.one/subscriptions/2",
"productVersion" : "8.0",
"subscriptionId" : "12",
"tagName" : "SampleTag",
"userId" : "Jeremy",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<push-subsciption

deviceId="12345-6789"

8-154 IBM MobileFirst Platform Foundation V8.0.0

href="http://localhost:9080/imfpush/v1/apps/com.test.one/subscriptions/2"
productVersion="8.0"
subscriptionId="12"
tagName="SampleTag"
userId="Jeremy"/>

Response Properties

The response has the following properties:

deviceId
The unique identifier of the device.

href
The link to the subscription.

productVersion
The exact product version.

subscriptionId
The unique identifier of the subscription.

tagName
The tag name for which to retrieve subscriptions.

userId
The user identifier for which to retrieve subscriptions.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Runtime Configuration (GET)
Retrieves the user configuration of a specific runtime.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

API reference 8-155

Path

/management-apis/2.0/runtimes/runtime-name/config

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/config?flattened=false&locale=de_DE&mode=defaults

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

flattened
If true (default), the configuration is a flat list of properties, otherwise a
hierarchy of objects.

locale
The locale used for error messages.

mode
If no mode is specified, it returns the current user configuration. If the mode
defaults is specified, it returns the default configuration.

Produces

application/json, application/xml, text/xml

Response

The user configuration of the specified runtime.

JSON Example
{

"adapters" : {
"compressResponseThreshold" : {

"value" : 20480,
},

},
"analytics" : {
"additionalPackages" : {

"value" : "com.admin.util",
},

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<runtimeconfig>

<adapters>
<compressResponseThreshold value="20480"/>

</adapters>
<analytics>
<additionalPackages value="com.admin.util"/>

</analytics>
</runtimeconfig>

8-156 IBM MobileFirst Platform Foundation V8.0.0

Response Properties

The response has the following properties:

adapters
The runtime properties for adapter.

analytics
The runtime properties for analtyics

The adapter-property has the following properties:

compressResponseThreshold
Compression threshold, in bytes, from which the server tries to compress the
MobileFirst adapter response if the client accepts gzip.

The compressthreshold has the following properties:

value
The value of the compression threshold

The analytics-property has the following properties:

additionalPackages
A comma-separated list of packages that the logger uses to generate the output
sent to the MobileFirst Analytics server.

The additional package has the following properties:

value
The list of packages that the logger uses

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Runtime configuration (PUT)
Sets the user configuration of a specific runtime.

Description

This transaction can run synchronously or asynchronously. If processed
asynchronously, the REST service returns before the transaction is completed. In
this case, you can query the transaction result later with the transaction REST
service.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

API reference 8-157

v mfpdeployer

Method

PUT

Path

/management-apis/2.0/runtimes/runtime-name/config

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/config?async=false&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

async
Whether the transaction is processed synchronously or asynchronously.
Allowed values are true and false. The default is synchronous processing.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"adapters" : {
"compressResponseThreshold" : {

"value" : 20480,
},

},
"analytics" : {
"additionalPackages" : {

"value" : "com.admin.util",
},

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<runtimeconfig>

<adapters>
<compressResponseThreshold value="20480"/>

8-158 IBM MobileFirst Platform Foundation V8.0.0

</adapters>
<analytics>
<additionalPackages value="com.admin.util"/>

</analytics>
</runtimeconfig>

Payload Properties

The payload has the following properties:

adapters
The runtime properties for adapter.

analytics
The runtime properties for analtyics

The adapter-property has the following properties:

compressResponseThreshold
Compression threshold, in bytes, from which the server tries to compress the
MobileFirst adapter response if the client accepts gzip.

The compressthreshold has the following properties:

value
The value of the compression threshold

The analytics-property has the following properties:

additionalPackages
A comma-separated list of packages that the logger uses to generate the output
sent to the MobileFirst Analytics server.

The additional package has the following properties:

value
The list of packages that the logger uses

Response

The configuration of the specified runtime.

JSON Example
{

"ok" : false,
"productVersion" : "8.0",
"transaction" : {
"appServerId" : "Tomcat",
"description" : {

"name" : "myname",
"type" : "mytype",

},
"errors" : [

{
"details" : "An internal error occured.",

},
...

],
"id" : 1,
"project" : {

"name" : "myproject",
},
"status" : "FAILURE",

API reference 8-159

"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "SET_APPLICATION_ENV_VERSION_ACCESS_RULE",
"userName" : "demouser",

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<set-runtimeconfig-result

ok="false"
productVersion="8.0">
<transaction
appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="SET_APPLICATION_ENV_VERSION_ACCESS_RULE"
userName="demouser">
<description

name="myname"
type="mytype"/>

<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>
</set-runtimeconfig-result>

Response Properties

The response has the following properties:

ok Whether the transaction was successful.

productVersion
The exact product version.

transaction
The details of the transaction.

The transaction has the following properties:

appServerId
The id of the web application server.

description
The details of the application.

errors
The errors occurred during the transaction.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

8-160 IBM MobileFirst Platform Foundation V8.0.0

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction, here always
SET_APPLICATION_ENV_VERSION_ACCESS_RULE.

userName
The user that initiated the transaction.

The description has the following properties:

contentNames
The optional names of the contained artifacts if multiple artifacts were
deployed at once.

filename
The optional file name of the artifact.

name
The name of the artifact.

type
The type of the artifact.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

400
The payload is invalid.

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Runtime (GET)
Retrieves metadata for a specific runtime.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

API reference 8-161

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime?expand=true&locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

expand
Set to true to show details of the applications and adapters. The default is
false

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The metadata for the runtime.

JSON Example
{

"confidentialClients" : [
{

"allowedScope" : "**",
"displayName" : "Test Client",
"id" : "test",
"secret" : "test",

},
...

],
"config" : {
},
"name" : "myruntime",
"numberOfActiveDevices" : 100,
"numberOfDecommisionedDevices" : 5,
"productVersion" : "8.0",
"running" : true,
"runtimeInfo" : {
"adaptersSecurityChecks" : {

8-162 IBM MobileFirst Platform Foundation V8.0.0

},
"analytics" : {

"analyticsEnabled" : {
"defaultValue" : "true",
"type" : boolean,

},
},
"appAuthenticityEnabled" : true,
"security" : {

"activityUpdateThresholdSec" : {
"defaultValue" : "3600",
"type" : "integer",

},
"expirationMarginSec" : {
"defaultValue" : "2",
"type" : "integer",

},
"externalAZIntrospectionURL" : {
"defaultValue" : "",
"type" : "string",

},
"externalAZSharedSecret" : {
"defaultValue" : "secret",
"type" : "string",

},
},
"securityChecks" : {
},

},
"synchronizationStatus" : "ok",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<runtime

name="myruntime"
numberOfActiveDevices="100"
numberOfDecommisionedDevices="5"
productVersion="8.0"
running="true"
synchronizationStatus="ok">
<confidentialClients>
<confidentialClient

allowedScope="**"
displayName="Test Client"
id="test"
secret="test"/>

...
</confidentialClients>
<config/>
<runtimeInfo appAuthenticityEnabled="true">
<adaptersSecurityChecks/>
<analytics>

<analyticsEnabled
defaultValue="true"
type="boolean"/>

</analytics>
<security>

<activityUpdateThresholdSec
defaultValue="3600"
type="integer"/>

<expirationMarginSec
defaultValue="2"
type="integer"/>

<externalAZIntrospectionURL
defaultValue=""

API reference 8-163

type="string"/>
<externalAZSharedSecret
defaultValue="secret"
type="string"/>

</security>
<securityChecks/>

</runtimeInfo>
</runtime>

Response Properties

The response has the following properties:

confidentialClients
The array of confidential clients registered with the runtime.

config
The runtime configurations

name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

numberOfActiveDevices
The number of active devices using this runtime.

numberOfAdapters
The number of adapters deployed in this runtime (shown only with
expand=false).

numberOfApplications
The number of applications deployed in this runtime (shown only with
expand=false).

numberOfDecommisionedDevices
The number of devices decommissioned for this runtime.

productVersion
The exact product version.

running
Whether the runtime is currently active or has stopped.

runtimeInfo
The runtime Information

synchronizationStatus
The status of the nodes of the runtime. Can contain the values "ok" if all nodes
of the runtime are running without error, "synchronizing" if some node is in
progress of synchronizing, or an error message if some nodes failed to
synchronize.

The conf-clients has the following properties:

allowedScope
The allowed scopes

displayName
The display Name of the confidential client.

id The confidential client id.

secret
The secret of the confidential client.

8-164 IBM MobileFirst Platform Foundation V8.0.0

The runtime-info has the following properties:

adaptersSecurityChecks
The adapter security check information

analytics
The analytics information

appAuthenticityEnabled
Whether application authenticity is enabled.

security
The security check information

securityChecks
The security check information

The analytics-check has the following properties:

analyticsEnabled
Analytics enabled

The analytics-enabled has the following properties:

defaultValue
Analytics enabled

type
The type

The security-check has the following properties:

activityUpdateThresholdSec
Activity update threshold value

expirationMarginSec
The expiration values in seconds

externalAZIntrospectionURL
External AZ introspection URL

externalAZSharedSecret
AZ shared secret

The az-value1 has the following properties:

defaultValue
The default value.

type
The type

The az-value2 has the following properties:

defaultValue
The default value for shared secret

type
The type

The az-value3 has the following properties:

defaultValue
The default value for activity update threshold

API reference 8-165

type
The type

The az-value4 has the following properties:

defaultValue
The default value for external AZ introspection url

type
The type

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Runtime (DELETE)
Deletes a specific runtime.

Description

The purpose of this API is to allow to cleanup the database. You can delete a
runtime only when it is stopped. A runtime that is currently active cannot be
deleted.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime?locale=de_DE&mode=empty

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

8-166 IBM MobileFirst Platform Foundation V8.0.0

locale
The locale used for error messages.

mode
Whether to delete the runtime only if it has no applications or adapters.
Possible values are empty (delete only when empty) and always (delete even
when not empty, the default).

Produces

application/json, application/xml, text/xml

Errors

403
The user is not authorized to call this service.

409
The corresponding runtime cannot be deleted. Possible reasons: It is still running, hence you must stop the runtime first.
It is not empty but you passed the mode empty to delete only an empty runtime.

500
An internal error occurred.

Runtime Lock (GET)
Retrieves information about the transaction lock of a runtime.

Description

Transactions are performed sequentually. Hence each transaction such as deploying
an application or adapter takes the runtime lock. The next transaction waits until
the lock is released. This API allowed to retrieve whether a runtime is currently
busy with a transaction.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/lock

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/lock?locale=de_DE

API reference 8-167

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

JSON Example
{

"busy" : true,
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<lock busy="true"/>

Response Properties

The response has the following properties:

busy
Whether the runtime is currently busy with a transaction.

Errors

403
The user is not authorized to call this service.

500
An internal error occurred.

Runtime Lock (DELETE)
Forces the release of the transaction lock of a runtime.

Description

This API should not be used in normal operations.

Transactions are performed sequentually. Hence each transaction such as deploying
an application or adapter takes the runtime lock. The next transaction waits until
the lock is released. After a serious crash, it may happen that the lock is still taken
even though the corresponding transaction crashed. The lock will get automatically
released after 30 minutes. However, with this API, you can force the release of the
lock earlier.

8-168 IBM MobileFirst Platform Foundation V8.0.0

Forcing the release of the lock when a transaction is currently active may corrupt
the system. You should use this API only when you are sure that no transaction is
currently active.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/lock

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/lock?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

JSON Example
{

"busy" : false,
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<lock busy="false"/>

Response Properties

The response has the following properties:

busy
Whether the runtime is still busy with a transaction after forcing the release of
the lock.

API reference 8-169

Errors

403
The user is not authorized to call this service.

500
An internal error occurred.

Runtimes (GET)
Retrieves metadata for the list of runtimes.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes?locale=de_DE&mode=db

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

mode
The default mode running retrieves only the running runtimes, while the mode
db retrieves also the runtimes stored in the database that might not be running.

Produces

application/json, application/xml, text/xml

Response

The metadata for the list of runtimes.

JSON Example
{

"productVersion" : "8.0",
"projects" : [
{

"apiVersion" : "2.0",
"link" : "https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime",

8-170 IBM MobileFirst Platform Foundation V8.0.0

"name" : "myruntime",
"running" : true,
"synchronizationStatus" : "ok",

},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<projectconfiguration productVersion="8.0">

<projects>
<project

apiVersion="2.0"
link="https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime"
name="myruntime"
running="true"
synchronizationStatus="ok"/>

...
</projects>

</projectconfiguration>

Response Properties

The response has the following properties:

productVersion
The exact product version.

projects
The array of runtimes.

The runtime has the following properties:

apiVersion
The API version

link
The URL to access detail information about the runtime.

name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

running
Whether the runtime is currently active or has stopped.

synchronizationStatus
The status of the nodes of the runtime. Can contain the values "ok" if all nodes
of the runtime are running without error, "synchronizing" if some node is in
progress of synchronizing, or an error message if some nodes failed to
synchronize.

Errors

403
The user is not authorized to call this service.

500
An internal error occurred.

API reference 8-171

Send Bulk Messages (POST)
Send bulk messages by specifying various options.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/messages/bulk

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/messages/bulk?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"ArrayOfMessageBody" : [
{

"message" : {
"alert" : "New update available",

},
"settings" : {
"apns" : {

8-172 IBM MobileFirst Platform Foundation V8.0.0

"delayWhileIdle" : true,
"payload" : "",
"sound" : "song.mp3",
"timeToLive" : 100,

},
"gcm" : {

"badge" : 1,
"iosActionKey" : "Ok",
"payload" : "",
"sound" : "song.mp3",
"type" : "SILENT",

},
"wns" : {

"badge" : ,
"cachePolicy" : false,
"expirationTime" : 20,
"raw" : ,
"tile" : ,
"toast" : ,

},
},
"target" : {
"deviceIds" : "[TestDeviceId,..]",
"platforms" : "[A,G,W]",
"tagNames" : "[TestTag...]",
"userIds" : ["MyUserId", ...],

},
},
...

],
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<send-message>

<ArrayOfMessageBodyArray>
<ArrayOfMessageBody>

<message alert="New update available"/>
<settings>
<apns

delayWhileIdle="true"
payload=""
sound="song.mp3"
timeToLive="100"/>

<gcm
badge="1"
iosActionKey="Ok"
payload=""
sound="song.mp3"
type="SILENT"/>

<wns
badge=""
cachePolicy="false"
expirationTime="20"
raw=""
tile=""
toast=""/>

</settings>
<target
deviceIds="[TestDeviceId,..]"
platforms="[A,G,W]"
tagNames="[TestTag...]">
<userIds>

<userId>MyUserId</userId>
...

</userIds>

API reference 8-173

</target>
</ArrayOfMessageBody>
...

</ArrayOfMessageBodyArray>
</send-message>

Payload Properties

The payload has the following properties:

ArrayOfMessageBody
The array of message

The array of messages has the following properties:

message
The notification message to be sent

settings
The settings for GCM, APNS and WNS.

target
The targets for sending notification

The alert messages has the following properties:

alert
A string to be displayed in the alert.

The message settings has the following properties:

apns
Attributes for sending message to an iOS device

gcm
Attributes for sending message to an Android device

wns
Attributes for sending message to an Windows device

The apns settings has the following properties:

badge
An integer value to be displayed in a badge on the application icon.

iosActionKey
The label of the dialog box button that allows the user to open the app upon
receiving the notification.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

type
Specify the type of APNS notification. It should be either DEFAULT, MIXED or
SILENT

The gcm settings has the following properties:

8-174 IBM MobileFirst Platform Foundation V8.0.0

delayWhileIdle
A Boolean value to indicate that the message must not be sent if the device is
idle. The server waits for the device to become active before the message is
sent.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

timeToLive
The duration (in seconds) that the message is kept on GCM storage if the
device is offline. The default value is 4 weeks, and must be set as a JSON
number.

The wns settings has the following properties:

badge
Optional. A numeric or string value that indicates a prdefined glyph to be
displayed.

cachePolicy
Optional. A boolean value that indicates if the notification should be cached or
not.

expirationTime
Optional. Expriry time of the notification.

raw
Optional. A JSON block that is transferred to the application only if the
application is already open.

tile
Optional. Updates to tile to communicate new information to the user

toast
Optional. Updates to the toast to communicate new information to the user

The badge has the following properties:

value
Optional. A numeric or string value that indicates a prdefined glyph to be
displayed.

version
Optional. Version of the payload.

The raw has the following properties:

payload
Optional. A JSON block that is transferred to the application only if the
application is already open.

The tile has the following properties:

tag
Optional. A string value that is set as label for the notification. Used in
notification cycling.

API reference 8-175

visual
Optional. Visual settings for the notification

The visual has the following properties:

addImageQuery
Optional. A boolean value that indicates if the query string need to be
appended to image URI.

baseUri
Optional. Base URI to be combined with the relative URIs.

binding
Optional. For tile notifications, its a JSON array containing JSON blocks of
binding attributes. For toast notification, its a JSON block of binding attributes.

branding
Optional. Indicates whether logo or app's name to be shown. Default is None.

contentId
Optional. A string value that identifies the notification content. Only applies to
tile notifications.

lang
Optional. Locale of the payload.

version
Optional. Version of the payload.

The toast has the following properties:

audio
Optional. Audio settings for the notification

duration
Optional. Notification will be displayed for the specified duration. Should be
'short' or 'long'.

launch
Optional. A string value that is passed to the application when it is launched
by tapping or clicking the toast notification.

visual
Optional. Visual settings for the notification

The audio has the following properties:

loop
Optional. A boolean value to indicate if the sound should be repeated or not.

silent
Optional. A boolean value to indicate if the sound should be played or not.

src
Optional. A string value that specifies the notification sound type or path to
local audio file.

The target settings has the following properties:

deviceIds
A JSON array of the device identifiers. Devices with these ids receive
notification.

8-176 IBM MobileFirst Platform Foundation V8.0.0

platforms
A JSON array of platforms. The devices that run on these platforms receive
notification. Supported values are A (Apple/iOS), G (Google/Android) and W
(Microsoft/Windows).

tagNames
A JSON array of tags. The devices that are subscribed to these tags receive
notification.

userIds
An array of users represented by their userIds to send the notification. This is
a unicast notification.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Send Message (POST)
Sends message with different options.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

POST

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/messages

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/messages?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

API reference 8-177

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"message" : {
"alert" : "New update available",

},
"settings" : {
"apns" : {

"delayWhileIdle" : true,
"payload" : "",
"sound" : "song.mp3",
"timeToLive" : 100,

},
"gcm" : {

"badge" : 1,
"iosActionKey" : "Ok",
"payload" : "",
"sound" : "song.mp3",
"type" : "SILENT",

},
"wns" : {

"badge" : ,
"cachePolicy" : false,
"expirationTime" : 20,
"raw" : ,
"tile" : ,
"toast" : ,

},
},
"target" : {
"deviceIds" : "[TestDeviceId,..]",
"platforms" : "[A,G,W]",
"tagNames" : "[TestTag...]",
"userIds" : ["MyUserId", ...],

},
}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<send-message>

<message alert="New update available"/>
<settings>
<apns

8-178 IBM MobileFirst Platform Foundation V8.0.0

delayWhileIdle="true"
payload=""
sound="song.mp3"
timeToLive="100"/>

<gcm
badge="1"
iosActionKey="Ok"
payload=""
sound="song.mp3"
type="SILENT"/>

<wns
badge=""
cachePolicy="false"
expirationTime="20"
raw=""
tile=""
toast=""/>

</settings>
<target
deviceIds="[TestDeviceId,..]"
platforms="[A,G,W]"
tagNames="[TestTag...]">
<userIds>

<userId>MyUserId</userId>
...

</userIds>
</target>

</send-message>

Payload Properties

The payload has the following properties:

message
The notification message to be sent

settings
The settings for GCM, APNS and WNS

target
The targets for sendig the notification

The alert messages has the following properties:

alert
A string to be displayed in the alert.

The message settings has the following properties:

apns
Attributes for sending message to an iOS device

gcm
Attributes for sending message to an Android device

wns
Attributes for sending message to an Windows device

The apns settings has the following properties:

badge
An integer value to be displayed in a badge on the application icon.

API reference 8-179

iosActionKey
The label of the dialog box button that allows the user to open the app upon
receiving the notification.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

type
Specify the type of APNS notification. It should be either DEFAULT, MIXED or
SILENT

The gcm settings has the following properties:

delayWhileIdle
A Boolean value to indicate that the message must not be sent if the device is
idle. The server waits for the device to become active before the message is
sent.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

timeToLive
The duration (in seconds) that the message is kept on GCM storage if the
device is offline. The default value is 4 weeks, and must be set as a JSON
number.

The wns settings has the following properties:

badge
Optional. A numeric or string value that indicates a prdefined glyph to be
displayed.

cachePolicy
Optional. A boolean value that indicates if the notification should be cached or
not.

expirationTime
Optional. Expriry time of the notification.

raw
Optional. A JSON block that is transferred to the application only if the
application is already open.

tile
Optional. Updates to tile to communicate new information to the user

toast
Optional. Updates to the toast to communicate new information to the user

The badge has the following properties:

8-180 IBM MobileFirst Platform Foundation V8.0.0

value
Optional. A numeric or string value that indicates a prdefined glyph to be
displayed.

version
Optional. Version of the payload.

The raw has the following properties:

payload
Optional. A JSON block that is transferred to the application only if the
application is already open.

The tile has the following properties:

tag
Optional. A string value that is set as label for the notification. Used in
notification cycling.

visual
Optional. Visual settings for the notification

The visual has the following properties:

addImageQuery
Optional. A boolean value that indicates if the query string need to be
appended to image URI.

baseUri
Optional. Base URI to be combined with the relative URIs.

binding
Optional. For tile notifications, its a JSON array containing JSON blocks of
binding attributes. For toast notification, its a JSON block of binding attributes.

branding
Optional. Indicates whether logo or app's name to be shown. Default is None.

contentId
Optional. A string value that identifies the notification content. Only applies to
tile notifications.

lang
Optional. Locale of the payload.

version
Optional. Version of the payload.

The toast has the following properties:

audio
Optional. Audio settings for the notification

duration
Optional. Notification will be displayed for the specified duration. Should be
'short' or 'long'.

launch
Optional. A string value that is passed to the application when it is launched
by tapping or clicking the toast notification.

visual
Optional. Visual settings for the notification

API reference 8-181

The audio has the following properties:

loop
Optional. A boolean value to indicate if the sound should be repeated or not.

silent
Optional. A boolean value to indicate if the sound should be played or not.

src
Optional. A string value that specifies the notification sound type or path to
local audio file.

The target settings has the following properties:

deviceIds
A JSON array of the device identifiers. Devices with these ids receive
notification.

platforms
A JSON array of platforms. The devices that run on these platforms receive
notification. Supported values are A (Apple/iOS), G (Google/Android) and W
(Microsoft/Windows).

tagNames
A JSON array of tags. The devices that are subscribed to these tags receive
notification.

userIds
An array of users represented by their userIds to send the notification. This is
a unicast notification.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

Transaction (GET)
Retrieves information about a specific transaction.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

8-182 IBM MobileFirst Platform Foundation V8.0.0

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/transactions/transaction-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/transactions/1?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

transaction-id
The transaction id.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Produces

application/json, application/xml, text/xml

Response

The information of the specified transaction.

JSON Example
{

"appServerId" : "Tomcat",
"description" : {
},
"errors" : [
{

"details" : "An internal error occured.",
},
...

],
"id" : 1,
"productVersion" : "8.0",
"project" : {
"name" : "myproject",

},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_ADAPTER",
"userName" : "demouser",

}

API reference 8-183

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<transaction

appServerId="Tomcat"
id="1"
productVersion="8.0"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_ADAPTER"
userName="demouser">
<description/>
<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</transaction>

Response Properties

The response has the following properties:

appServerId
The id of the web application server.

description
The details of the transaction, depending on the transaction type.

errors
The errors occured during the transacton.

id The id of the transaction.

productVersion
The exact product version.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction.

userName
The user that initiated the transaction.

The error has the following properties:

details
The main error message.

The project has the following properties:

8-184 IBM MobileFirst Platform Foundation V8.0.0

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime or the transaction is not found.

500
An internal error occurred.

Transactions (GET)
Retrieves information of all transactions.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpmonitor

v mfpoperator

Method

GET

Path

/management-apis/2.0/runtimes/runtime-name/transactions

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/transactions?bookmark=ABC&file=false&locale=de_DE&mode=errors&offset=0&orderBy=created&pageSize=100

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

Query Parameters

Query parameters are optional.

bookmark
The bookmark for the page if only a part of the list (a page) should be
returned. If a bookmark is specified, the offset parameter is ignored.

file
If this parameter is set to true, the transactions are delivered as a compressed
file (.zip). In this case, paging and mode parameters are ignored.

locale
The locale used for error messages.

API reference 8-185

mode
If this parameter is set to errors, only erroneous transactions are listed.
Ootherwise, all transactions are listed.

offset
The offset from the beginning of the list if only a part of the list (a page)
should be returned.

orderBy
The sort mode. By default, the elements are sorted in increasing order. If the
sort mode starts with - (minus sign), the elements are sorted in decreasing
order. Possible sort modes are: created, updated, type, status, user, server. The
default sort mode is: created.

pageSize
The number of elements if only a part of the list (a page) should be returned.
The default value is 100.

Produces

application/json, application/xml, text/xml, application/zip

Response

Details about the transactions.

JSON Example
{

"items" : [
{

"appServerId" : "Tomcat",
"description" : {
},
"errors" : [
{

"details" : "An internal error occured.",
},
...

],
"id" : 1,
"project" : {
"name" : "myproject",

},
"status" : "FAILURE",
"timeCreated" : "2014-04-13T00:18:36.979Z",
"timeUpdated" : "2014-04-14T00:18:36.979Z",
"type" : "DELETE_ADAPTER",
"userName" : "demouser",

},
...

],
"nextPageBookmark" : "DEF",
"pageNumber" : 2,
"pageSize" : 100,
"prevPageBookmark" : "ABC",
"productVersion" : "8.0",
"startIndex" : 0,
"totalListSize" : 33,

}

8-186 IBM MobileFirst Platform Foundation V8.0.0

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<transactions

nextPageBookmark="DEF"
pageNumber="2"
pageSize="100"
prevPageBookmark="ABC"
productVersion="8.0"
startIndex="0"
totalListSize="33">
<items>
<item

appServerId="Tomcat"
id="1"
status="FAILURE"
timeCreated="2014-04-13T00:18:36.979Z"
timeUpdated="2014-04-14T00:18:36.979Z"
type="DELETE_ADAPTER"
userName="demouser">
<description/>
<errors>
<error details="An internal error occured."/>
...

</errors>
<project name="myproject"/>

</item>
...

</items>
</transactions>

Response Properties

The response has the following properties:

items
The array of transactions

nextPageBookmark
The bookmark of the next page if only one page of transactions is returned.

pageNumber
The page index if only one page of transactions is returned.

pageSize
The page size if only one page of transactions is returned.

prevPageBookmark
The bookmark of the previous page if only one page of transactions is
returned.

productVersion
The exact product version.

startIndex
The start index in the total list if only one page of transactions is returned.

totalListSize
The total number of transactions.

The transaction has the following properties:

appServerId
The id of the web application server.

API reference 8-187

description
The details of the transaction, depending on the transaction type.

errors
The errors occured during the transacton.

id The id of the transaction.

project
The current project.

status
The state of the transaction: PENDING, PREPARING, COMMITTING, REJECTING,
SUCCESS, FAILURE, CANCELED. Synchronous transactions can have the state
SUCCESS and FAILURE. Asynchronous transactions can also have the other states.

timeCreated
The date in ISO 8601 format when the adapter was created.

timeUpdated
The date in ISO 8601 format when the adapter was updated.

type
The type of the transaction.

userName
The user that initiated the transaction.

The error has the following properties:

details
The main error message.

The project has the following properties:

name
The name of the project, which is the context root of the runtime.

Errors

403
The user is not authorized to call this service.

404
The corresponding runtime is not found.

500
An internal error occurred.

Remove Subscription (DELETE)
Unsubscribes the specified device from a tag.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

8-188 IBM MobileFirst Platform Foundation V8.0.0

Method

DELETE

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/subscriptions

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/subscriptions?deviceId=12345-6789&locale=de_DE&tagName=testTag

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

deviceId
The unique ID for the device

locale
The locale used for error messages.

tagName
The name of the tag to unsubscribe from

Produces

application/json, application/xml, text/xml

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

API reference 8-189

Update Device Registration (PUT)
Updates push device registration with the new user ID or the specified token. In
most use cases, only the user ID is updated.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

PUT

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/devices/device-id

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/devices/12345-6789?locale=de_DE&mfpPushEnableBroadcast=true

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

device-id
The device id.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

mfpPushEnableBroadcast
Participate in the broadcast messaging.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

8-190 IBM MobileFirst Platform Foundation V8.0.0

Payload

JSON Example
{

"deviceId" : "JeremyiOSPhone",
"platform" : "A",
"token" : "c6a41224 23333917 9fde1532",
"userId" : "Jeremy",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<device-update

deviceId="JeremyiOSPhone"
platform="A"
token="c6a41224 23333917 9fde1532"
userId="Jeremy"/>

Payload Properties

The payload has the following properties:

deviceId
The unique identifier of the device

platform
The device platform

token
The unique push token of the device

userId
The identifier of the user of the device.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Update APNs settings (PUT)
Uploads an APNs certificate to the application referenced by the application name.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

API reference 8-191

v mfpdeployer

v mfpoperator

Method

PUT

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/apnsConf

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/apnsConf?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

multipart/form-data

Produces

application/json, application/xml, text/xml

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

415
Unsupported Media Type - The content type specified in Content-Type header is not application/json.

500
An internal error occurred.

8-192 IBM MobileFirst Platform Foundation V8.0.0

Update GCM settings (PUT)
Uploads a GCM certificate to the application referenced by the application name.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

PUT

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/gcmConf

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/gcmConf?locale=de_DE

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"apiKey" : "AIzaSyBnWWReKAFrOPiw75QQAcRM",
"senderId" : "11639055112",

}

API reference 8-193

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<pushGCM

apiKey="AIzaSyBnWWReKAFrOPiw75QQAcRM"
senderId="11639055112"/>

Payload Properties

The payload has the following properties:

apiKey
GCM Api Key

senderId
The project ID that is signed up at Google API console

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

415
Unsupported Media Type - The content type specified in Content-Type header is not application/json.

500
An internal error occurred.

Update WNS Settings (PUT)
Uploads an WNS certificate to the application referenced by the application name.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

PUT

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/wnsConf

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/wnsConf?locale=de_DE

8-194 IBM MobileFirst Platform Foundation V8.0.0

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

Query Parameters

Query parameters are optional.

locale
The locale used for error messages.

Consumes

application/json, application/xml, text/xml

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"clientSecret" : "712345dummyvalues12345",
"packageSID" : "ms-app://s-1-15-2-dummyvalues12345",

}

XML Example
<?xml version="1.0" encoding="UTF-8"?>
<pushWNS

clientSecret="712345dummyvalues12345"
packageSID="ms-app://s-1-15-2-dummyvalues12345"/>

Payload Properties

The payload has the following properties:

clientSecret
The Secret Key

packageSID
Package Security Identifier (SID)

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

API reference 8-195

415
Unsupported Media Type - The content type specified in Content-Type header is not application/json.

500
An internal error occurred.

Update Tag Information (PUT)
Updates the tag that is idenfitied by the tagName parameter for the application
referenced by the application name.

Roles

Users in the following roles are authorized to perform this operation:
v mfpadmin

v mfpdeployer

v mfpoperator

Method

PUT

Path

/management-apis/2.0/runtimes/runtime-name/notifications/applications/
application-name/tags/tag-name

Example
https://www.example.com/mfpadmin/management-apis/2.0/runtimes/myruntime/notifications/applications/myapplication/tags/mytag

Path Parameters

runtime-name
The name of the runtime. This is the context root of the runtime web
application, without the leading slash.

application-name
The name of the application.

tag-name
The name of the tag.

Consumes

application/json

Produces

application/json, application/xml, text/xml

Payload

JSON Example
{

"description" : "This is a sample of a modified tag.",
"name" : "SampleTag",

}

8-196 IBM MobileFirst Platform Foundation V8.0.0

Payload Properties

The payload has the following properties:

description
The description of the tag to be modified.

name
The name of the tag to be modified.

Errors

400
The request was not understood by the push server.

403
The user is not authorized to call this service.

404
The corresponding runtime or application is not found or not running.

500
An internal error occurred.

REST API for the MobileFirst Server push service
The REST API for Push in the MobileFirst runtime environment enables back-end
server applications that were deployed outside of the MobileFirst Server to access
Push functions from a REST API endpoint.

The Push service on the MobileFirst Server is exposed over a REST API endpoint
that can be directly accessed by non-mobile clients. You can use the REST API
runtime services for Push for registrations, subscriptions, messages, and retrieving
tags. Paging and filtering is supported for database persistence in both Cloudant
and SQL.

This REST API endpoint is protected by OAuth which requires the clients to be
confidential clients and also possess the required access scopes in their OAuth
access tokens that is passed by a designated HTTP header.

Push Device Registration (DELETE)
Deletes(unregisters) an existing device registration from the push service

Description

The device registrations of push service is deleted for the given deviceId. The call
returns HTTP response code 204 with no content on successful deletion of the
device registration.

Method

DELETE

Path

/apps/applicationId/devices/deviceId

API reference 8-197

Example
https://example.com:443/imfpush/v1/apps/myapp/devices/12345-6789

Path Parameters

deviceId
The device identifier

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages.. Default:en-US

Authorization
The token with the scope "devices.write" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
A device registration with the specified deviceId is not found.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Device Registration (GET)
Retrieves an existing device registration of push

Description

Device registrations for a push service that are retrieved for a specific deviceId.

Method

GET

Path

/apps/applicationId/devices/deviceId

8-198 IBM MobileFirst Platform Foundation V8.0.0

Example
https://example.com:443/imfpush/v1/apps/myapp/devices/12345-6789

Path Parameters

deviceId
The device identifier

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "devices.read" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Response

The details of the device registration that is retrieved.

JSON Example
{

"createdMode" : "API",
"createdTime" : "2015-05-20T11:42:11Z",
"deviceId" : "12345-6789",
"lastUpdatedTime" : "2015-05-20T11:42:11Z",
"phoneNumber" : "123456789",
"platform" : "A",
"token" : "12345-6789",
"userId" : "admin",

}

Response Properties

The response has the following properties:

createdMode
The mode of creation.

createdTime
The date and time when the push device registration was created on the server
in ISO 8601 format.

deviceId
The unique id of the device.

lastUpdatedTime
The date and time when the push device registration was last updated on the
server in ISO 8601 format.

API reference 8-199

phoneNumber
Phone number to be used for SMS based notification.

platform
The device platform.

token
The unique push token of the device.

userId
The userId of the device.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
A device registration with the specified deviceId is not found.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Device Registration (POST)
Creates a device registration with the push service.

Description

The device registrations happens from the device. The deviceId is the unique ID
for the device for the application.

Method

POST

Path

/apps/applicationId/devices

Example
https://example.com:443/imfpush/v1/apps/myapp/devices

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

8-200 IBM MobileFirst Platform Foundation V8.0.0

Authorization
The token with the scope "devices.write" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Content-Type
Specify the JSON content type. For example: application/json. This parameter
has to be mandatorily set.

Consumes

application/json

Produces

application/json

Payload

The details of the device registration.

JSON Example
{

"deviceId" : "12345-6789",
"phoneNumber" : "123456789",
"platform" : "A",
"token" : "xyz",

}

Payload Properties

The payload has the following properties:

deviceId
Unique id of the device.

phoneNumber
Phone number to be used for SMS based notification.

platform
The device platform. 'A' refers to Apple(iOS) devices, 'G' refers to
Google(Android) and 'W' refers to Microsoft(Windows) devices

token
Device token obtained via the service provider

Response

The details of the application.

JSON Example
{

"createdMode" : "API",
"createdTime" : "2015-05-20T11:42:11Z",
"deviceId" : "12345-6789",
"lastUpdatedTime" : "2015-05-20T11:42:11Z",
"phoneNumber" : "123456789",
"platform" : "A",

API reference 8-201

"token" : "xyz",
"userAgent" : "TestUserAgent",
"userId" : "admin",

}

Response Properties

The response has the following properties:

createdMode
The mode of creation.

createdTime
The date and time when the push device registration was created on the server
in ISO 8601 format.

deviceId
Unique id of the device.

lastUpdatedTime
The date and time when the push device registration was last updated on the
server in ISO 8601 format.

phoneNumber
Phone number to be used for SMS based notification.

platform
The device platform. 'A' refers to Apple(iOS) devices, 'G' refers to
Google(Android) and 'W' refers to Microsoft(Windows) devices

token
Device token obtained via the service provider

userAgent
The user agent for the the device registration

userId
The user identifier for the the device registration

Errors

400
Bad Request - The request was not understood by the push server. An invalid JSON could result in this error code.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

405
Unsupported Content type - The content type specified in Content-Type header is not application/json.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Device Registrations (GET)
Retrieves all or a subset of existing device registration(s) of push.

8-202 IBM MobileFirst Platform Foundation V8.0.0

Description

Device registrations for the push service are retrieved for the specified criteria

Method

GET

Path

/apps/applicationId/devices

Example
https://example.com:443/imfpush/v1/apps/myapp/devices?expand=true&filter=platform==A&offset=0&size=10&userId=admin

Path Parameters

applicationId
The name or identifier of the application

Query Parameters

Query parameters are optional.

expand
Retrieves additional metadata for every device registration that is returned in
the response.

filter
Search criteria filter. Refer to the filter section for detailed syntax.

offset
Pagination offset that is normally used along with the size.

size
Pagination size that is normally used along with the offset to retrieve a subset.

userId
Retrieves device registrations only for the specified user.

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages.. Default:en-US

Authorization
The token with the scope "devices.read" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Response

The details of the device registration that is retrieved.

API reference 8-203

JSON Example
{

"devices" : [
{

"deviceId" : "12345-6789",
"phoneNumber" : "123456789",
"platform" : "A",
"token" : "xyz",
"userId" : "admin",

},
...

],
"pageInfo" : {
"count" : "2",
"next" : "",
"previous" : "",
"totalCount" : "10",

},
}

Response Properties

The response has the following properties:

devices
The array of device registrations with Push.

pageInfo
The pagination information

The devices has the following properties:

deviceId
The unique id of the device.

phoneNumber
Phone number to be used for SMS based notification.

platform
The device platform.

token
The unique push token of the device.

userId
The userId of the device.

The pageInfo has the following properties:

count
The number of device registration that are retrieved

next
A hyperlink to the next page

previous
A hyperlink to the previous page

totalCount
The total number of device registration present for the given search criteria

8-204 IBM MobileFirst Platform Foundation V8.0.0

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Device Registration (PUT)
Updates an existing device registration for the push service.

Description

The push device registration is updated with the new user ID or the token
specified. In most use cases this call is used to update the userId only.

Method

PUT

Path

/apps/applicationId/devices/deviceId

Example
https://example.com:443/imfpush/v1/apps/myapp/devices/12345-6789

Path Parameters

deviceId
The device identifier

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "devices.write" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Content-Type
Specify the JSON content type. For example: application/json. This parameter
has to be mandatorily set.

Consumes

application/json

API reference 8-205

Produces

application/json

Payload

The details of the device registration will be updated.

JSON Example
{

"deviceId" : "12345-6789",
"phoneNumber" : "123456789",
"token" : "xyz",
"userId" : "admin",

}

Payload Properties

The payload has the following properties:

deviceId
The unique id of the device.

phoneNumber
Phone number to be used for SMS based notification.

token
The token of the device. Its optional to set this.

userId
The userId of the device. Its optional to set this.

Response

The details of the device registration that is updated.

JSON Example
{

"createdMode" : "API",
"createdTime" : "2015-05-20T11:42:11Z",
"deviceId" : "12345-6789",
"lastUpdatedTime" : "2015-05-20T11:42:11Z",
"phoneNumber" : "123456789",
"platform" : "A",
"token" : "xyz",
"userId" : "admin",

}

Response Properties

The response has the following properties:

createdMode
The mode of creation.

createdTime
The date and time when the push device registration was created on the server
in ISO 8601 format.

deviceId
The unique id of the device.

8-206 IBM MobileFirst Platform Foundation V8.0.0

lastUpdatedTime
The date and time when the push device registration was last updated on the
server in ISO 8601 format.

phoneNumber
Phone number to be used for SMS based notification.

platform
The device platform.

token
The unique push token of the device.

userId
The userId of the device.

Errors

400
A device registration has userId longer than 254 characters.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
A device registration with the specified deviceId is not found.

405
Unsupported Content type - The content type specified in Content-Type header is not application/json.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Device Subscription (DELETE)
Delete subscription by subscriptionId.

Description

Using the subscriptionId it unsubscribes the tag from the device. The call would
not delete the device registration or the tag.

Method

DELETE

Path

/apps/applicationId/subscriptions/subscriptionId

Example
https://example.com:443/imfpush/v1/apps/myapp/subscriptions/mysubscription

API reference 8-207

Path Parameters

applicationId
The name or identifier of the application.

subscriptionId
The identifier of the subscription.

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default: en-US

Authorization
The token with the scope "subscriptions.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token. This parameter is mandatory.

Produces

application/json

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The subscription with the specified subscriptionId is not found.

500
An internal error occurred.

Push Device Subscription (GET)
Retrieves an existing subscription of push.

Description

The subscription referenced by the subscriptionId is retrieved.

Method

GET

Path

/apps/applicationId/subscriptions/subscriptionId

Example
https://example.com:443/imfpush/v1/apps/myapp/subscriptions/mysubscription

Path Parameters

applicationId
The name or identifier of the application.

8-208 IBM MobileFirst Platform Foundation V8.0.0

subscriptionId
The identifier of the subscription.

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default: en-US

Authorization
The token with the scope "subscriptions.read" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.This parameter is mandatory.

Produces

application/json

Response

The details of the device subscription that is retrieved.

JSON Example
{

"devices" : [
{

"deviceId" : "12345-6789",
"platform" : "A",
"token" : "12345-6789",
"userId" : "admin",

},
...

],
"pageInfo" : {
"count" : "2",
"next" : "",
"previous" : "",
"totalCount" : "10",

},
}

Response Properties

The response has the following properties:

devices
The array of device registrations with Push.

pageInfo
The pagination information

The devices has the following properties:

deviceId
The unique id of the device.

platform
The device platform.

token
The unique push token of the device.

API reference 8-209

userId
The userId of the device.

The pageInfo has the following properties:

count
The number of device registration that are retrieved

next
A hyperlink to the next page

previous
A hyperlink to the previous page

totalCount
The total number of device registration present for the given search criteria

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The subscription with the specified subscriptionId is not found.

500
An internal error occurred.

Push Device Subscription (POST)
Creates a new subscription for a tag.

Description

Given the deviceId and the tag name, the request creates a new subscription which
subscribes the device to the tag specified

Method

POST

Path

/apps/applicationId/subscriptions

Example
https://example.com:443/imfpush/v1/apps/myapp/subscriptions

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

8-210 IBM MobileFirst Platform Foundation V8.0.0

Authorization
The token with the scope "subscriptions.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Content-Type
Specify the JSON content type. This parameter has to be mandatorily set.

Consumes

application/json

Produces

application/json

Payload

The details of the device and the tag name to which it has to subscribe.

JSON Example
{

"deviceId" : "12345-6789",
"tagName" : "testTag",

}

Payload Properties

The payload has the following properties:

deviceId
The unique id of the device.

tagName
The tag name to subscribe.

Response

The details of the device subscription that is updated.

JSON Example
{

"deviceId" : "12345-6789",
"tagName" : "testTag",

}

Response Properties

The response has the following properties:

deviceId
The unique id of the device.

tagName
The tag name to subscribe.

API reference 8-211

Errors

400
A device registraion has userId longer than 254 characters.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
A device registraion with the specified deviceId is not found.

405
Unsupported Content type - The content type specified in Content-Type header is not application/json.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Device Subscriptions (GET)
Retrieves all or a subset of existing subscriptions

Description

Retrieves subscriptions for the push service for the specified criteria.

Method

GET

Path

/apps/applicationId/subscriptions

Example
https://example.com:443/imfpush/v1/apps/myapp/subscriptions?deviceId=12345-6789&expand=true&filter=tagName=@tag&offset=0&size=10&tagName=sports&userId=user1

Path Parameters

applicationId
The name or identifier of the application

Query Parameters

Query parameters are optional.

deviceId
Retrieves subscriptions only for the specified deviceId

expand
Retrieves additional metadata for every subscription that is returned in the
response

8-212 IBM MobileFirst Platform Foundation V8.0.0

filter
The filter specifies the search criteria. Refer to the filter section for detailed
syntax

offset
Pagination offset that is normally used along with the size

size
Pagination size that is normally used along with the offset to retrieve a subset

tagName
Retrieves subscriptions only for the specified tagName

userId
Retrives subscriptions only for the specified userId

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "subscriptions.read" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Produces

application/json

Response

The details of the device subscription that is retrieved.

JSON Example
{

"devices" : [
{

"deviceId" : "12345-6789",
"platform" : "A",
"token" : "12345-6789",
"userId" : "admin",

},
...

],
"pageInfo" : {
"count" : "2",
"next" : "",
"previous" : "",
"totalCount" : "10",

},
}

Response Properties

The response has the following properties:

devices
The array of device subscriptions.

API reference 8-213

pageInfo
The pagination information

The devices has the following properties:

deviceId
The unique id of the device.

platform
The device platform.

token
The unique push token of the device.

userId
The userId of the device.

The pageInfo has the following properties:

count
The number of device registration that are retrieved

next
A hyperlink to the next page

previous
A hyperlink to the previous page

totalCount
The total number of device registration present for the given search criteria

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Tags (GET)
Retrieves all tags of Push

Method

GET

Path

/apps/applicationId/tags

Example
https://example.com:443/imfpush/v1/apps/myapp/tags?expand=true&filter=platform==A&offset=0&size=10&subscriptionCount=10

8-214 IBM MobileFirst Platform Foundation V8.0.0

Path Parameters

applicationId
The name or identifier of the application

Query Parameters

Query parameters are optional.

expand
Retrieves detailed information about applications.

filter
Search criteria filter. Refer to the filter section for detailed syntax.

offset
Pagination offset that is normally used along with the size.

size
Pagination size that is normally used along with the offset to retrieve a subset.

subscriptionCount
Retrieves the number of tag subscriptions

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "tags.read" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Response

The details of the tag that is retrieved.

JSON Example
{

"pageInfo" : {
"count" : "2",
"next" : "",
"previous" : "",
"totalCount" : "10",

},
"tags" : [
{

"createdMode" : "API",
"createdTime" : "2015-08-22T18:19:58Z",
"description" : "Description about SampleTag",
"href" : "https://example.com:443/imfpush/v1/apps/testApp/tags/SampleTag",
"lastUpdatedTime" : "2015-08-22T18:19:58Z",
"name" : "SampleTag",

API reference 8-215

},
...

],
}

Response Properties

The response has the following properties:

pageInfo
The pagination information

tags
The array of applications.

The pageInfo has the following properties:

count
The number of tags that are retrieved

next
A hyperlink to the next page

previous
A hyperlink to the previous page

totalCount
The total number of application tags present for the given search criteria

The tagnames has the following properties:

createdMode
Defaults to API

createdTime
The time at which the tag was created

description
The description of the tag

href
The URL to the tag

lastUpdatedTime
The time at which the tag was last updated

name
An unique name of the tag in the application

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
A tag with the specified name is not found.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

8-216 IBM MobileFirst Platform Foundation V8.0.0

Push Applications (GET)
Retrieves all the applications.

Method

GET

Path

/apps/

Example
https://example.com:443/imfpush/v1/apps/?expand=true&filter=platform==A&offset=0&size=10

Query Parameters

Query parameters are optional.

expand
Retrieves detailed information about applications.

filter
Search criteria filter. Refer to the filter section for detailed syntax.

offset
Pagination offset that is normally used along with the size.

size
Pagination size that is normally used along with the offset to retrieve a subset.

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "apps.read" and "push.application.*" obtained using
the confidential client in the format Bearer token.. This parameter has to be
mandatorily set.

Content-Type
Specify the JSON content type. For example: application/json. This parameter
has to be mandatorily set.

Produces

application/json

Response

The details of all the applications.

JSON Example
{

"applications" : [
{

"applicationId" : "testApp",

API reference 8-217

},
...

],
"pageInfo" : {
"count" : "2",
"next" : "",
"previous" : "",
"totalCount" : "10",

},
}

Response Properties

The response has the following properties:

applications
The array of applications.

pageInfo
The pagination information

The applications has the following properties:

applicationId
The applicationId.

The pageInfo has the following properties:

count
The number of applications that are retrieved

next
A hyperlink to the next page

previous
A hyperlink to the previous page

totalCount
The total number of applications present for the given search criteria

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Application (POST)
Creates a new server application for the push service.

Description

The applicationId is an unique application ID for this application. Application is a
parent resource for devices, subscriptions, tags and messages. The application must
be created before accessing any of the child resources. If the application is deleted,
all the children are deleted. The application holds the configurations, such as the

8-218 IBM MobileFirst Platform Foundation V8.0.0

Apple Push Notification Service (APNS) and Google Cloud Message (GCM)
configuration, which is required by the push service to send messages. The API
first creates the application and then sets the APNS and GCM settings.

Method

POST

Path

/apps/

Example
https://example.com:443/imfpush/v1/apps/

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "apps.write" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Content-Type
Specify the JSON content type. For example: application/json. This parameter
has to be mandatorily set.

Produces

application/json

Payload

The details of the application.

JSON Example
{

"applicationId" : "testApp",
"enabled" : "true",

}

Payload Properties

The payload has the following properties:

applicationId
The application Id.

enabled
Optinal. The status of the applicaton. Default is true

Response

The details of the application.

API reference 8-219

JSON Example
{

"applicationId" : "testApp",
"enabled" : "true",

}

Response Properties

The response has the following properties:

applicationId
The application Id.

enabled
The status of the application.

Errors

400
Bad Request - The request was not understood by the push server. An invalid JSON could result in this error code.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

405
Unsupported Content type - The content type specified in Content-Type header is not application/json.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Application (GET)
Retrieves the application, which is referenced by the applicationId parameter.

Method

GET

Path

/apps/applicationId/status

Example
https://example.com:443/imfpush/v1/apps/myapp/status

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

8-220 IBM MobileFirst Platform Foundation V8.0.0

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "apps.read" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Response

The status of the application.

JSON Example
{

"enabled" : "true",
}

Response Properties

The response has the following properties:

enabled
The status of the application.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

500
An internal error occurred.

Push Application (DELETE)
Deletes an application, which is referenced by the applicationId parameter.

Description

After the application is deleted the tags, devices, subscriptions and message
resources associated with the application are also deleted.

Method

DELETE

Path

/apps/applicationId

API reference 8-221

Example
https://example.com:443/imfpush/v1/apps/myapp

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "apps.write" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

500
An internal error occurred.

Push Application Settings (GET)
Retrieves appplication settings

Description

This can be used to find the mode of the application.

Method

GET

Path

/apps/applicationId/settings

Example
https://example.com:443/imfpush/v1/apps/myapp/settings

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

8-222 IBM MobileFirst Platform Foundation V8.0.0

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "settings.read" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Response

Retrieve application settings.

JSON Example
{

"apnsConf" : "https://example.com:443/imfpush/v1/apps/testApp/settings/apnsConf",
"applicationId" : "testApp",
"gcmConf" : "https://example.com:443/imfpush/v1/apps/testApp/settings/gcmConf",
"mode" : "PRODUCTION",

}

Response Properties

The response has the following properties:

apnsConf
Reference link to APNS settings.

applicationId
The application Id.

gcmConf
Reference link to GCM settings.

mode
The operation mode

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push APNS Settings (GET)
Retrieves APNS settings for the application

API reference 8-223

Method

GET

Path

/apps/applicationId/settings/apnsConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/apnsConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "apnsConf.read" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Produces

application/json

Response

Retrieves APNS settings for the application.

JSON Example
{

"certificate" : "apns-certificate.p12",
"isSandBox" : "true",
"validUntil" : "2016-09-06T05:51:11.000Z",

}

Response Properties

The response has the following properties:

certificate
The name of the certificate.

isSandBox
The certificate type.

validUntil
The certificate validity date.

8-224 IBM MobileFirst Platform Foundation V8.0.0

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push APNS settings (PUT)
Uploads an APNS certificate to the application referenced by the applicationId

Method

PUT

Path

/apps/applicationId/settings/apnsConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/apnsConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "apnsConf.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Content-Type
Specify the content type. For example: multipart/form-data. This parameter
has to be mandatorily set.

Consumes

multipart/form-data

Produces

application/json

API reference 8-225

Form-data Parameters

certificate
(file) The APNS certificate.

password
(String) Password for the APNS certificate

isSandBox
(boolean) The APNS certificate type.

Response

Successfully updated the APNS settings.

JSON Example
{

"certificate" : "apns-certificate.p12",
"isSandBox" : "true",
"validUntil" : "2016-09-06T05:51:11.000Z",

}

Response Properties

The response has the following properties:

certificate
The name of the APNS certificate.

isSandBox
The APNS certificate type.

validUntil
The APNS certificate validity date.

Errors

400
Bad Request - The request was not understood by the push server. An invalid data in the input.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push APNS settings (DELETE)
Deletes APNS settings for the application

Method

DELETE

8-226 IBM MobileFirst Platform Foundation V8.0.0

Path

/apps/applicationId/settings/apnsConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/apnsConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "apnsConf.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

500
An internal error occurred.

Push GCM Settings (GET)
Retrieves GCM settings for the application

Method

GET

Path

/apps/applicationId/settings/gcmConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/gcmConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

API reference 8-227

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "gcmConf.read" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Produces

application/json

Response

Retrieves GCM settings for the application.

JSON Example
{

"apiKey" : "AxBNGYUwehjokn",
"senderId" : "123456789",

}

Response Properties

The response has the following properties:

apiKey
The GCM API Key.

senderId
The GCM SenderId.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push GCM Settings (PUT)
Updates GCM settings referenced by the applicationId

Method

PUT

Path

/apps/applicationId/settings/gcmConf

8-228 IBM MobileFirst Platform Foundation V8.0.0

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/gcmConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "apnsConf.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Content-Type
Specify the content type. For example: application/json. This parameter has to
be mandatorily set.

Consumes

application/json

Produces

application/json

Payload

The details of the gcm settings.

JSON Example
{

"apiKey" : "AxBNGYUwehjokn",
"senderId" : "123456789",

}

Payload Properties

The payload has the following properties:

apiKey
The GCM API Key.

senderId
The GCM SenderId.

Response

Retrieves GCM settings for the application.

API reference 8-229

JSON Example
{

"apiKey" : "AxBNGYUwehjokn",
"senderId" : "123456789",

}

Response Properties

The response has the following properties:

apiKey
The GCM API Key.

senderId
The GCM SenderId.

Errors

400
Bad Request - The request was not understood by the push server. An invalid data in the input.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push GCM Settings (DELETE)
Deletes GCM settings for the application

Method

DELETE

Path

/apps/applicationId/settings/gcmConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/gcmConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

8-230 IBM MobileFirst Platform Foundation V8.0.0

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "gcmConf.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

500
An internal error occurred.

Push WNS Settings (GET)
Retrieves WNS settings for the application

Method

GET

Path

/apps/applicationId/settings/wnsConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/wnsConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "wnsConf.read" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Response

Retrieves WNS settings for the application.

API reference 8-231

JSON Example
{

"clientSecret" : "Vex8L9WOFZuj95euaLrvSH7XyoDhLJc7",
"packageSID" : "ms-app://S-1-15-2-2972962901-2322836549-3722629029-1345238579-3987825745-2155616079-650196962",

}

Response Properties

The response has the following properties:

clientSecret
The Client secret.

packageSID
Package SID

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push WNS Settings (PUT)
Updates WNS settings referenced by the applicationId

Method

PUT

Path

/apps/applicationId/settings/wnsConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/wnsConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

8-232 IBM MobileFirst Platform Foundation V8.0.0

Authorization
The token with the scope "wnsConf.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Content-Type
Specify the content type. For example: application/json. This parameter has to
be mandatorily set.

Consumes

application/json

Produces

application/json

Payload

The details of the wns settings.

JSON Example
{

"clientSecret" : "Vex8L9WOFZuj95euaLrvSH7XyoDhLJc7",
"packageSID" : "ms-app://S-1-15-2-2972962901-2322836549-3722629029-1345238579-3987825745-2155616079-650196962",

}

Payload Properties

The payload has the following properties:

clientSecret
The Client secret.

packageSID
Package SID

Response

Successfully updated the WNS settings.

JSON Example
{

"clientSecret" : "Vex8L9WOFZuj95euaLrvSH7XyoDhLJc7",
"packageSID" : "ms-app://S-1-15-2-2972962901-2322836549-3722629029-1345238579-3987825745-2155616079-650196962",

}

Response Properties

The response has the following properties:

clientSecret
The Client secret.

packageSID
Package SID

API reference 8-233

Errors

400
Bad Request - The request was not understood by the push server. An invalid data in the input.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push WNS settings (DELETE)
Deletes WNS settings for the application

Method

DELETE

Path

/apps/applicationId/settings/wnsConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/wnsConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "wnsConf.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

8-234 IBM MobileFirst Platform Foundation V8.0.0

500
An internal error occurred.

Push Application (PUT)
Updates an existing application status. The API can be used to enable or disable an
application.

Method

PUT

Path

/apps/applicationId/status

Example
https://example.com:443/imfpush/v1/apps/myapp/status

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "apps.write" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Content-Type
Specify the JSON content type. For example: application/json. This parameter
has to be mandatorily set.

Consumes

application/json

Produces

application/json

Payload

The details of the application.

JSON Example
{

"enabled" : "true",
}

API reference 8-235

Payload Properties

The payload has the following properties:

enabled
The status of the application

Response

The details of the application.

JSON Example
{

"applicationId" : "testApp",
"enabled" : "true",

}

Response Properties

The response has the following properties:

applicationId
The application Id.

enabled
The status of the application.

Errors

400
Bad Request - The request was not understood by the push server. An invalid JSON could result in this error code.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The applicationId does not exist.

405
Unsupported Content type - The content type specified in Content-Type header is not application/json.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Message (POST)
Send message with different options.

Description

Sends a push notifications to the specified targets and returns HTTP return code
202 when the request to send the message is accepted.

8-236 IBM MobileFirst Platform Foundation V8.0.0

Method

POST

Path

/apps/applicationId/messages

Example
https://example.com:443/imfpush/v1/apps/myapp/messages

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "messages.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Consumes

application/json

Produces

application/json

Payload

The payload in JSON format has values for message, target, and settings.

JSON Example
{

"message" : {
"alert" : "Test message",

},
"notificationType" : 1,
"settings" : {
"apns" : {

"badge" : 1,
"category" : 1,
"iosActionKey" : "Ok",
"payload" : {"custom":"data"},
"sound" : "song.mp3",
"type" : "SILENT",

},
"gcm" : {

"bridge" : false,
"category" : "email",
"collapseKey" : "testkey",
"delayWhileIdle" : false,

API reference 8-237

"payload" : {"custom":"data"},
"priority" : "low",
"redact" : "Test Redact Message",
"sound" : "song.mp3",
"sync" : false,
"timeToLive" : 10,
"visibility" : "public",

},
"wns" : {

"badge" : {"value":"10"},
"cachePolicy" : false,
"expirationTime" : 20,
"raw" : {"payload":{"custom":"data"}},
"tile" : {"visual":{"binding":[{"template":"TileSquareText04", "text": [{"content":"Text1"}]}, {"template":"TileWideText04","text": [{"content":"Text1"}]}]}},
"toast" : {"launch":{"custom":"data"}, "visual":{"binding":{"template":"ToastText04","text":[{"content":"Text1"},{"content":"Text2"},{"content":"Text3"}]}},

},
},
"target" : {
"deviceIds" : ["MyDeviceId1", ...],
"platforms" : ["A,G", ...],
"tagNames" : ["Gold", ...],
"userIds" : ["MyUserId", ...],

},
}

Payload Properties

The payload has the following properties:

message
The alert message to be sent

notificationType
Integer value to indicate the channel (Push/SMS) used to send message.
Allowed values are 1 (only Push), 2 (only SMS) and 3 (Push and SMS)

settings
The settings are the different attributes of the notification.

target
Set of targets can be user Ids, devices, platforms, or tags. Only one of the
targets can be set.

The message has the following properties:

alert
A string to be displayed in the alert.

The settings has the following properties:

apns
Attributes for sending message to an iOS device.

gcm
Attributes for sending message to an Android device.

wns
Attributes for sending message to a windows device.

The apns has the following properties:

badge
An integer value to be displayed in a badge on the application icon.

8-238 IBM MobileFirst Platform Foundation V8.0.0

category
Name of the category for iOS8 interactive push notifications.

iosActionKey
The label of the dialog box button that allows the user to open the app upon
receiving the notification.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

type
Specify the type of APNS notification. It should be either DEFAULT, MIXED or
SILENT

The gcm has the following properties:

bridge
A Boolean value that indicates whether the notification should be bridged or
not to other devices connected to this handheld device. Only applies to
Android 5.0 or higher.

category
A string value that indicates the category to which this notification belongs.
Allowed values are 'call', 'alarm', 'email', 'err', 'event', 'msg', 'progress', 'promo',
'recommendation', 'service', 'social', 'status', and 'transport'. Only applies to
Android 5.0 or higher.

collapseKey
A string value that indicates that the message can be replaced. When multiple
messages are queued up in GCM Servers with the same key, only the last one
is delivered.

delayWhileIdle
A Boolean value that indicates that the message must not be sent if the device
is idle. The server waits for the device to become active before the message is
sent. Default value is false

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

priority
A string value that indicates the priority of this notification. Allowed values
are 'max', 'high', 'default', 'low' and 'min'. High/Max priority notifications
along with 'sound' field may be used for Heads up notification in Android 5.0
or higher.

redact
A string to be displayed in the alert as a redacted version of the original
content when the visibility level is 'private'. Only applies to Android 5.0 or
higher.

sound
The name of a sound file on the device to play when the notification arrives to
the device.

API reference 8-239

sync
A Boolean value that indicates whether the notification should be sync'd
between devices of the same user, that is, if a notification is handled on a
device it gets dismissed on the other devices of the same user

timeToLive
The duration (in seconds) that the message is kept on GCM storage if the
device is offline. Default value is 4 weeks, and must be set as a JSON number.

visibility
A string value that indicates the visibility level of notification content on the
secured lock screen in Android L devices. Allowed values are 'public, 'private'
and 'secret'. Only applies to Android 5.0 or higher.

The wns has the following properties:

badge

cachePolicy
A boolean value that indicates if the notification should be cached or not.

expirationTime
Optional. Expriry time of the notification.

raw

tile

toast

The badge has the following properties:

value
Optional. A numeric or string value that indicates a prdefined glyph to be
displayed.

version
Optional. Version of the payload.

The raw has the following properties:

payload
Optional. A JSON block that is transferred to the application only if the
application is already open.

The tile has the following properties:

tag
Optional. A string value that is set as label for the notification. Used in
notification cycling.

visual

The visual has the following properties:

addImageQuery
Optional. A boolean value that indicates if the query string need to be
appended to image URI.

baseUri
Optional. Base URI to be combined with the relative URIs.

8-240 IBM MobileFirst Platform Foundation V8.0.0

binding
For tile notifications, its a JSON array containing JSON blocks of binding
attributes. For toast notification, its a JSON block of binding attributes.

branding
Optional. Indicates whether logo or app's name to be shown. Default is None.

contentId
Optional. A string value that identifies the notification content. Only applies to
tile notifications.

lang
Optional. Locale of the payload.

version
Optional. Version of the payload.

The binding has the following properties:

addImageQuery
Optional. A boolean value that indicates if the query string need to be
appended to image URI.

baseUri
Optional. Base URI to be combined with the relative URIs.

branding
Optional. Indicates whether logo or app's name to be shown. Default is None.

contentId
Optional. A string value that identifies the notification content. Only applies to
tile notifications.

fallback
Optional. Template to be used as a fallback.

image
Optional. A JSON array containing JSON blocks of following image attributes.

lang
Optional. Locale of the payload.

template
Mandatory. Template type of the notification.

text
Optional. A JSON array containing JSON blocks of following text attributes.

The image has the following properties:

addImageQuery
Optional. A boolean value that indicates if the query string need to be
appended to image URI.

alt
Optional. Image description.

src
Mandatory. Image URI.

The text has the following properties:

content
Mandatory. A string value that is displayed in the toast.

API reference 8-241

lang
Optional. Locale of the payload.

The toast has the following properties:

audio

duration
Optional. Notification will be displayed for the specified duration. Should be
'short' or 'long'.

launch
Optional. A string value that is passed to the application when it is launched
by tapping or clicking the toast notification.

visual

The audio has the following properties:

loop
Optional. A boolean value to indicate if the sound should be repeated or not.

silent
Optional. A boolean value to indicate if the sound should be played or not.

src
Optional. A string value that specifies the notification sound type or path to
local audio file.

The target has the following properties:

deviceIds
An array of the devices represented by the device identifiers. Devices with
these ids receive the notification. This is a unicast notification

platforms
An array of device platforms. Devices running on these platforms receive the
notification. Supported values are A (Apple/iOS), G (Google/Android) and W
(Microsoft/Windows).

tagNames
An array of tags specified as tagNames. Devices that are subscribed to these
tags receive the notification. Use this type of target for tag based notifications

userIds
An array of users represented by their userIds to send the notification. This is
a unicast notification.

Response

The details of the message that is retrieved.

JSON Example
{

"message" : {
"message" : {

"alert" : "TestMessage",
},

},
"messageId" : "1234",

}

8-242 IBM MobileFirst Platform Foundation V8.0.0

Response Properties

The response has the following properties:

message
The array of messages to be sent

messageId
The unique identifier of the message.

The messages has the following properties:

message
The message to be sent

The message has the following properties:

alert
The message text.

Errors

400
Invalid JSON.

403
The user is not authorized to call this service.

404
The corresponding runtime is not found or not running.

500
An internal error occurred.

Push Message (GET)
Retrieves the message details by messageId.

Description

Requires the following JNDI properties to be set for MobileFirst Push:
v imfpush/mfp.push.messages.persist.size (Queue size to store messages before

writing to database).
v imfpush/mfp.push.messages.persist.delay.mins (Delay in minutes to write sent

messages in database).

Method

GET

Path

/apps/applicationId/messages/messageId

Example
https://example.com:443/imfpush/v1/apps/myapp/messages/mymessage

API reference 8-243

Path Parameters

applicationId
The name or identifier of the application.

messageId
The identifier of the message.

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope `messages.read` and
`push.application.<applicationId>` obtained using the confidential client in the
format bearer token. This is a mandatory parameter.

Produces

application/json

Response

The details of the message that is retrieved.

JSON Example
{

"alert" : "TestMessage",
"messageId" : "1234",

}

Response Properties

The response has the following properties:

alert
The message text.

messageId
The unique identifier of the message.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The message with the specified messageId is not found.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

8-244 IBM MobileFirst Platform Foundation V8.0.0

Push Message (DELETE)
Deletes the message details by messageId

Method

DELETE

Path

/apps/applicationId/messages/messageId

Example
https://example.com:443/imfpush/v1/apps/myapp/messages/mymessage

Path Parameters

applicationId
The name or identifier of the application

messageId
The identifier of the message

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "messages.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The message with the specified messageId is not found.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push SMS Settings (GET)
Retrieves SMS settings for the application

Method

GET

API reference 8-245

Path

/apps/applicationId/settings/smsConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/smsConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "smsConf.read" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Response

Retrieves SMS settings for the application.

JSON Example
{

"host" : "xyz.com",
"name" : "TestGateway",
"parameters" : [
{

"encode" : "true",
"name" : "TestKey",
"value" : "TestValue",

},
...

],
"port" : "80",
"programName" : "/sendsms",

}

Response Properties

The response has the following properties:

host
The host name of the SMS Gateway

name
The name of the SMS Gateway

parameters
The array of parameters

8-246 IBM MobileFirst Platform Foundation V8.0.0

port
The port number of the SMS Gateway

programName
The path of the SMS Gateway

The parametersArray has the following properties:

encode
The parameter should be encoded or not

name
The name of the parameter

value
The value of the parameter

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push SMS Settings (PUT)
Updates SMS settings referenced by the applicationId

Method

PUT

Path

/apps/applicationId/settings/smsConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/smsConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

API reference 8-247

Authorization
The token with the scope "smsConf.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Content-Type
Specify the content type. For example: application/json. This parameter has to
be mandatorily set.

Consumes

application/json

Produces

application/json

Payload

The details of the sms settings.

JSON Example
{

"host" : "xyz.com",
"name" : "TestGateway",
"parameters" : [
{

"encode" : "true",
"name" : "TestKey",
"value" : "TestValue",

},
...

],
"port" : "80",
"programName" : "/sendsms",

}

Payload Properties

The payload has the following properties:

host
The host name of the SMS Gateway

name
The name of the SMS Gateway

parameters
The array of parameters

port
The port number of the SMS Gateway

programName
The path of the SMS Gateway

The parametersArray has the following properties:

encode
The parameter should be encoded or not

8-248 IBM MobileFirst Platform Foundation V8.0.0

name
The name of the parameter

value
The value of the parameter

Response

Successfully updated the SMS settings.

JSON Example
{

"host" : "xyz.com",
"name" : "TestGateway",
"parameters" : [
{

"encode" : "true",
"name" : "TestKey",
"value" : "TestValue",

},
...

],
"port" : "80",
"programName" : "/sendsms",

}

Response Properties

The response has the following properties:

host
The host name of the SMS Gateway

name
The name of the SMS Gateway

parameters
The array of parameters

port
The port number of the SMS Gateway

programName
The path of the SMS Gateway

The parametersArray has the following properties:

encode
The parameter should be encoded or not

name
The name of the parameter

value
The value of the parameter

Errors

400
Bad Request - The request was not understood by the push server. An invalid data in the input.

401

API reference 8-249

Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push SMS settings (DELETE)
Deletes SMS settings for the application

Method

DELETE

Path

/apps/applicationId/settings/smsConf

Example
https://example.com:443/imfpush/v1/apps/myapp/settings/smsConf

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "smsConf.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

500
An internal error occurred.

Push Tags (GET)
Retrieves all tags of Push

8-250 IBM MobileFirst Platform Foundation V8.0.0

Method

GET

Path

/apps/applicationId/tags

Example
https://example.com:443/imfpush/v1/apps/myapp/tags?expand=true&filter=platform==A&offset=0&size=10&subscriptionCount=10

Path Parameters

applicationId
The name or identifier of the application

Query Parameters

Query parameters are optional.

expand
Retrieves detailed information about applications.

filter
Search criteria filter. Refer to the filter section for detailed syntax.

offset
Pagination offset that is normally used along with the size.

size
Pagination size that is normally used along with the offset to retrieve a subset.

subscriptionCount
Retrieves the number of tag subscriptions

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "tags.read" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Response

The details of the tag that is retrieved.

JSON Example
{

"pageInfo" : {
"count" : "2",
"next" : "",

API reference 8-251

"previous" : "",
"totalCount" : "10",

},
"tags" : [
{

"createdMode" : "API",
"createdTime" : "2015-08-22T18:19:58Z",
"description" : "Description about SampleTag",
"href" : "https://example.com:443/imfpush/v1/apps/testApp/tags/SampleTag",
"lastUpdatedTime" : "2015-08-22T18:19:58Z",
"name" : "SampleTag",

},
...

],
}

Response Properties

The response has the following properties:

pageInfo
The pagination information

tags
The array of applications.

The pageInfo has the following properties:

count
The number of tags that are retrieved

next
A hyperlink to the next page

previous
A hyperlink to the previous page

totalCount
The total number of application tags present for the given search criteria

The tagnames has the following properties:

createdMode
Defaults to API

createdTime
The time at which the tag was created

description
The description of the tag

href
The URL to the tag

lastUpdatedTime
The time at which the tag was last updated

name
An unique name of the tag in the application

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

8-252 IBM MobileFirst Platform Foundation V8.0.0

404
A tag with the specified name is not found.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Tag (POST)
Creates a tag.

Description

Creates a tag with the unique name in the application, which is referenced by the
applicationId parameter. The tag has associated with a description about the tag.
The tag name cannot be updated after it is created

Method

POST

Path

/apps/applicationId/tags

Example
https://example.com:443/imfpush/v1/apps/myapp/tags

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "tags.write" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Content-Type
Specify the JSON content type. For example: application/json. This parameter
has to be mandatorily set.

Consumes

application/json

Produces

application/json

API reference 8-253

Payload

The details of the tag.

JSON Example
{

"description" : "Description about SampleTag",
"name" : "SampleTag",

}

Payload Properties

The payload has the following properties:

description
The description of the tag

name
An unique name of the tag in the application

Response

The details of the tag.

JSON Example
{

"createdMode" : "API",
"createdTime" : "2015-08-22T18:19:58Z",
"description" : "Description about SampleTag",
"href" : "https://example.com:443/imfpush/v1/apps/testApp/tags/SampleTag",
"lastUpdatedTime" : "2015-08-22T18:19:58Z",
"name" : "SampleTag",

}

Response Properties

The response has the following properties:

createdMode
Defaults to API

createdTime
The time at which the tag was created

description
The description of the tag

href
The URL to the tag

lastUpdatedTime
The time at which the tag was last updated

name
An unique name of the tag in the application

Errors

400
Bad Request - The request was not understood by the push server. An invalid JSON could result in this error code.

8-254 IBM MobileFirst Platform Foundation V8.0.0

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

405
Unsupported Content type - The content type specified in Content-Type header is not application/json.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Tag (GET)
Retrieves an existing tag of Push

Method

GET

Path

/apps/applicationId/tags/tagName

Example
https://example.com:443/imfpush/v1/apps/myapp/tags/sports

Path Parameters

applicationId
The name or identifier of the application

tagName
The name of the tag

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "tags.read" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Response

The details of the tag that is retrieved.

API reference 8-255

JSON Example
{

"createdMode" : "API",
"createdTime" : "2015-08-22T18:19:58Z",
"description" : "Description about SampleTag",
"lastUpdatedTime" : "2015-08-22T18:19:58Z",
"name" : "SampleTag",

}

Response Properties

The response has the following properties:

createdMode
Defaults to API

createdTime
The time at which the tag was created

description
The description of the tag

lastUpdatedTime
The time at which the tag was last updated

name
An unique name of the tag in the application

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The tag with the specified tagName is not found.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Tag (PUT)
Updates tag information

Description

Updates the tag referenced by the tagName of the application referenced by the
applicationId.

Method

PUT

Path

/apps/applicationId/tags/tagName

8-256 IBM MobileFirst Platform Foundation V8.0.0

Example
https://example.com:443/imfpush/v1/apps/myapp/tags/sports

Path Parameters

applicationId
The name or identifier of the application

tagName
The name of the tag

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "tags.write" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Content-Type
Specify the JSON content type. For example: application/json. This parameter
has to be mandatorily set.

Produces

application/json

Payload

The details of the tag.

JSON Example
{

"description" : "Description about SampleTag",
"name" : "SampleTag",

}

Payload Properties

The payload has the following properties:

description
The description of the tag

name
An unique name of the tag in the application

Response

The details of the tag.

JSON Example
{

"createdMode" : "API",
"createdTime" : "2015-08-22T18:19:58Z",
"description" : "Description about SampleTag",

API reference 8-257

"href" : "https://example.com:443/imfpush/v1/apps/testApp/tags/SampleTag",
"lastUpdatedTime" : "2015-08-22T18:19:58Z",
"name" : "SampleTag",

}

Response Properties

The response has the following properties:

createdMode
Defaults to API

createdTime
The time at which the tag was created

description
The description of the tag

href
The URL to the tag

lastUpdatedTime
The time at which the tag was last updated

name
An unique name of the tag in the application

Errors

400
Bad Request - The request was not understood by the push server. An invalid JSON could result in this error code.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The tag with the specified tagName is not found.

405
Unsupported Content type - The content type specified in Content-Type header is not application/json.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Tag (DELETE)
Delete the tag in the application.

Method

DELETE

Path

/apps/applicationId/tags/tagName

8-258 IBM MobileFirst Platform Foundation V8.0.0

Example
https://example.com:443/imfpush/v1/apps/myapp/tags/sports

Path Parameters

applicationId
The name or identifier of the application

tagName
The name of the tag

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "tags.write" and "push.application.<applicationId>"
obtained using the confidential client in the format Bearer token.. This
parameter has to be mandatorily set.

Produces

application/json

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The tag with the specified tagName is not found.

500
An internal error occurred.

Push Webhooks (POST)
Creates a webhook.

Description

Creates a webhook with the unique name in the application, which is referenced
by the applicationId parameter. The webhook has associated with a name, url and
event types. The webhook name cannot be updated after it is created

Method

POST

Path

/apps/applicationId/webhooks

Example
https://example.com:443/imfpush/v1/apps/myapp/webhooks

API reference 8-259

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "webhooks.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Content-Type
Specify the JSON content type. For example: application/json. This parameter
has to be mandatorily set.

Produces

application/json

Payload

The details of the webhook.

JSON Example
{

"eventTypes" : "onDeviceRegister,onDeviceUpdate,onDeviceUnregister,onSubscribe,onUnsubscribe",
"name" : "SampleWebhook",
"url" : "http://samplewebhook.com",

}

Payload Properties

The payload has the following properties:

eventTypes
The list of event types comma separated

name
An unique name of the webhook in the application

url
The url of the webhook

Response

The details of the webhook.

JSON Example
{

"eventTypes" : "onDeviceRegister,onDeviceUpdate,onDeviceUnregister,onSubscribe,onUnsubscribe",
"name" : "SampleWebhook",
"url" : "http://samplewebhook.com",

}

8-260 IBM MobileFirst Platform Foundation V8.0.0

Response Properties

The response has the following properties:

eventTypes
The list of event types comma separated

name
An unique name of the webhook in the application

url
The description of the webhook

Errors

400
Bad Request - The request was not understood by the push server. An invalid JSON could result in this error code.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

405
Unsupported Content type - The content type specified in Content-Type header is not application/json.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Webhooks (PUT)
Updates an existing webhook.

Method

PUT

Path

/apps/applicationId/webhooks/webhookName

Example
https://example.com:443/imfpush/v1/apps/myapp/webhooks/mywebhook

Path Parameters

applicationId
The name or identifier of the application

webhookName
The identifier of the webhook

Header Parameters

Some header parameters are optional.

API reference 8-261

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "webhooks.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Content-Type
Specify the JSON content type. For example: application/json. This parameter
has to be mandatorily set.

Produces

application/json

Payload

The details of the webhook.

JSON Example
{

"eventTypes" : "onDeviceRegister,onDeviceUpdate,onDeviceUnregister,onSubscribe,onUnsubscribe",
"name" : "SampleWebhook",
"url" : "http://samplewebhook.com",

}

Payload Properties

The payload has the following properties:

eventTypes
The list of event types comma separated

name
An unique name of the webhook in the application

url
The url of the webhook

Response

The details of the webhook.

JSON Example
{

"eventTypes" : "onDeviceRegister,onDeviceUpdate,onDeviceUnregister,onSubscribe,onUnsubscribe",
"name" : "SampleWebhook",
"url" : "http://samplewebhook.com",

}

Response Properties

The response has the following properties:

eventTypes
The list of event types comma separated

name
An unique name of the webhook in the application

8-262 IBM MobileFirst Platform Foundation V8.0.0

url
The description of the webhook

Errors

400
Bad Request - The request was not understood by the push server. An invalid JSON could result in this error code.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The webhook does not exist.

405
Unsupported Content type - The content type specified in Content-Type header is not application/json.

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Push Webhook (DELETE)
Delete the webhook in the application.

Method

DELETE

Path

/apps/applicationId/webhooks/webhookName

Example
https://example.com:443/imfpush/v1/apps/myapp/webhooks/mywebhook

Path Parameters

applicationId
The name or identifier of the application

webhookName
The identifier of the webhook

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Authorization
The token with the scope "webhooks.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

API reference 8-263

Produces

application/json

Errors

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The webhook with the specified name is not found.

500
An internal error occurred.

Push Health Checker (GET)
Checks the status of Push Service.

Method

GET

Path

/health/status

Example
https://example.com:443/imfpush/v1/health/status

Header Parameters

Some header parameters are optional.

Accept-Language
(Optional) The preferred language to use for error messages. Default:en-US

Produces

application/json

Errors

406
Unsupported Accept type - The content type specified in Accept header is not application/json.

500
An internal error occurred.

Bulk Push Messages (POST)
Send bulk messages with different options that you can specify.

Method

POST

8-264 IBM MobileFirst Platform Foundation V8.0.0

Path

/apps/applicationId/messages/bulk

Example
https://example.com:443/imfpush/v1/apps/myapp/messages/bulk

Path Parameters

applicationId
The name or identifier of the application

Header Parameters

Some header parameters are optional.

Authorization
The token with the scope "messages.write" and
"push.application.<applicationId>" obtained using the confidential client in the
format Bearer token.. This parameter has to be mandatorily set.

Consumes

application/json

Produces

application/json

Payload

The payload in JSON format has values for array of messages, target, and settings.

JSON Example
{

"//ArrayOfMessageBody" : [
{

"messages" : {
"alert" : "Test message",

},
"notificationType" : 1,
"settings" : {
"apns" : {

"badge" : 1,
"iosActionKey" : "Ok",
"payload" : {"custom":"data"},
"sound" : "song.mp3",
"type" : "SILENT",

},
"gcm" : {

"delayWhileIdle" : false,
"payload" : {"custom":"data"},
"sound" : "song.mp3",
"timeToLive" : 10,

},
"wns" : {

"badge" : {"value":"10"},
"cachePolicy" : false,
"expirationTime" : 20,
"raw" : {"payload":{"custom":"data"}},
"tile" : {"visual":{"binding":[{"template":"TileSquareText04", "text": [{"content":"Text1"}]}, {"template":"TileWideText04","text": [{"content":"Text1"}]}]}},

API reference 8-265

"toast" : {"launch":{"custom":"data"}, "visual":{"binding":{"template":"ToastText04","text":[{"content":"Text1"},{"content":"Text2"},{"content":"Text3"}]}},
},

},
"target" : {
"deviceIds" : ["MyDeviceId1", ...],
"platforms" : ["A,G", ...],
"tagNames" : ["Gold", ...],
"userIds" : ["MyUserId", ...],

},
},
...

],
}

Payload Properties

The payload has the following properties:

//ArrayOfMessageBody
The array of message

The bulk-messages has the following properties:

messages
The array of message

notificationType
Integer value to indicate the channel (Push/SMS) used to send message.
Allowed values are 1 (only Push), 2 (only SMS) and 3 (Push and SMS)

settings
The settings are the different attributes of the notification.

target
Set of targets can be userIds, devices, platforms, or tags.

The message has the following properties:

alert
A string to be displayed in the alert.

The settings has the following properties:

apns
Attributes for sending message to an iOS device.

gcm
Attributes for sending message to an Android device.

wns
Attributes for sending message to a windows device.

The apns has the following properties:

badge
An integer value to be displayed in a badge on the application icon.

iosActionKey
The label of the dialog box button that allows the user to open the app upon
receiving the notification.

8-266 IBM MobileFirst Platform Foundation V8.0.0

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a file to play when the notification arrives.

type
Specify the type of APNS notification. It should be either DEFAULT, MIXED or
SILENT

The gcm has the following properties:

delayWhileIdle
A Boolean value that indicates that the message must not be sent if the device
is idle. The server waits for the device to become active before the message is
sent.

payload
A JSON block that is transferred to the application if the application is opened
by the user when the notification is received, or if the application is already
open.

sound
The name of a sound file on the device to play when the notification arrives to
the device.

timeToLive
The duration (in seconds) that the message is kept on GCM storage if the
device is offline. Default value is 4 weeks, and must be set as a JSON number.

The wns has the following properties:

badge

cachePolicy
A boolean value that indicates if the notification should be cached or not.

expirationTime
Optional. Expriry time of the notification.

raw

tile

toast

The badge has the following properties:

value
Optional. A numeric or string value that indicates a prdefined glyph to be
displayed.

version
Optional. Version of the payload.

The raw has the following properties:

payload
Optional. A JSON block that is transferred to the application only if the
application is already open.

API reference 8-267

The tile has the following properties:

tag
Optional. A string value that is set as label for the notification. Used in
notification cycling.

visual

The visual has the following properties:

addImageQuery
Optional. A boolean value that indicates if the query string need to be
appended to image URI.

baseUri
Optional. Base URI to be combined with the relative URIs.

binding
For tile notifications, its a JSON array containing JSON blocks of binding
attributes. For toast notification, its a JSON block of binding attributes.

branding
Optional. Indicates whether logo or app's name to be shown. Default is None.

contentId
Optional. A string value that identifies the notification content. Only applies to
tile notifications.

lang
Optional. Locale of the payload.

version
Optional. Version of the payload.

The binding has the following properties:

addImageQuery
Optional. A boolean value that indicates if the query string need to be
appended to image URI.

baseUri
Optional. Base URI to be combined with the relative URIs.

branding
Optional. Indicates whether logo or app's name to be shown. Default is None.

contentId
Optional. A string value that identifies the notification content. Only applies to
tile notifications.

fallback
Optional. Template to be used as a fallback.

image
Optional. A JSON array containing JSON blocks of following image attributes.

lang
Optional. Locale of the payload.

template
Mandatory. Template type of the notification.

text
Optional. A JSON array containing JSON blocks of following text attributes.

8-268 IBM MobileFirst Platform Foundation V8.0.0

The image has the following properties:

addImageQuery
Optional. A boolean value that indicates if the query string need to be
appended to image URI.

alt
Optional. Image description.

src
Mandatory. Image URI.

The text has the following properties:

content
Mandatory. A string value that is displayed in the toast.

lang
Optional. Locale of the payload.

The toast has the following properties:

audio

duration
Optional. Notification will be displayed for the specified duration. Should be
'short' or 'long'.

launch
Optional. A string value that is passed to the application when it is launched
by tapping or clicking the toast notification.

visual

The audio has the following properties:

loop
Optional. A boolean value to indicate if the sound should be repeated or not.

silent
Optional. A boolean value to indicate if the sound should be played or not.

src
Optional. A string value that specifies the notification sound type or path to
local audio file.

The target has the following properties:

deviceIds
An array of the devices represented by the device identifiers. Devices with
these ids receive the notification. This is a unicast notification

platforms
An array of device platforms. Devices running on these platforms receive the
notification. Supported values are A (Apple/iOS), G (Google/Android) and W
(Microsoft/Windows).

tagNames
An array of tags specified as tagNames. Devices that are subscribed to these
tags receive the notification. Use this type of target for tag based notifications

userIds
An array of users represented by their userIds to send the notification. This is
a unicast notification.

API reference 8-269

Errors

400
Bad Request - The request was not understood by the push server. An invalid JSON could result in this error code.

401
Unauthorized - The caller is either not authenticated or not authorized to make this request.

404
The application does not exist.

500
An internal error occurred.

REST API for the MobileFirst runtime
The REST API for the MobileFirst runtime provides several services for mobile
clients and confidential clients to call adapters, obtain access tokens, get Direct
Update content, and more.

All the APIs in the following classes access the REST API of the runtime behind
the scenes:
v WL.Client (Objective-C)
v WL.Client (Java)
v WL.Client (JavaScript)

Most of the REST API endpoints are protected by OAuth.

Testing the REST API for the MobileFirst runtime with Swagger
UI

On a development server, you can test the runtime REST API with Swagger UI.
MobileFirst Development Server exposes the runtime REST API at the /doc
endpoint:
http(s)://<server_ip>:<server_port>/<context_root>/doc

REST API for MobileFirst Analytics and Logger
The MobileFirst Analytics public REST API is documented in Swagger.

To view and interact with Swagger, deploy the analytics-service.war file and go
to the context root in your browser.
http://<hostname>:<port>/analytics-service

For more information about how to deploy the analytics-service.war file, see
“MobileFirst Analytics Server installation guide” on page 11-2.

8-270 IBM MobileFirst Platform Foundation V8.0.0

Deploying MobileFirst Server to the cloud

You can deploy MobileFirst Server to the cloud. Review the various options to run
MobileFirst Server on the cloud.

You can use the IBM Mobile Foundation for Bluemix service to provision and
orchestrate IBM MobileFirst Platform Foundation on the cloud. You can quickly set
up a MobileFirst Server environment on Bluemix by using the Mobile Foundation
service, from where you can create and run enterprise mobile apps.

For more information about how to use the IBM Mobile Foundation for Bluemix
service, see Getting started with Mobile Foundation.

Deploying to the cloud
You can deploy MobileFirst applications to the cloud as Liberty for Java
application on Cloud Foundry or as applications on IBM Containers. This type of
deployment enables you to deploy what is developed in IBM MobileFirst Platform
Foundation to a cloud platform such as IBM Bluemix.

The IBM MobileFirst Platform Foundation offerings is provided by using Liberty
for Java on Cloud Foundry or by using IBM Containers, which is hosted on
Bluemix (IBM's cloud-hosting environment). A container is based on an image
format and provides an execution environment within itself.

IBM MobileFirst Platform Foundation on cloud
Using V8.0.0, you can run instances of MobileFirst Server and MobileFirst
Analytics in IBM Containers on IBM Bluemix. Alternatively, you can also run
instances of the MobileFirst Server on Cloud Foundry as Liberty for Java
application on IBM Bluemix and connect them to MobileFirst Analytics instances
deployed in IBM Containers on IBM Bluemix.

Supported operating systems include Linux and Mac OS X.

V8.0.0 package overview

The V8.0.0 package contains the artifacts to create a MobileFirst Server as a Cloud
Foundry Liberty for Java application or as an instance in IBM Containers, a
MobileFirst Analytics container, and the components necessary for configuring and
deploying them to IBM Bluemix.
v The MobileFirst Server offering contains the following product components:

– IBM MobileFirst Platform Server
– IBM MobileFirst Platform Operations Console
These product components are deployed either as Liberty for Java application or
are deployed in IBM Containers.

v The MobileFirst Analytics contains the following product components:
– IBM MobileFirst Analytics server
– IBM MobileFirst Analytics console
These product components can be deployed only in IBM Containers.

v More components:

© Copyright IBM Corp. 2006, 2016 9-1

https://console.ng.bluemix.net/catalog/services/mobile-foundation

– Liberty for Java runtime
– Configuration files
– Scripts to build and deploy

You customize your product components in the containers before they are built
and deployed to the IBM Containers service on Bluemix.

See also “Package structure and contents”

Note: The Reports database is deprecated and does not work with IBM
MobileFirst Platform Foundation on IBM Containers. Instead, use a MobileFirst
Analytics container. Ensure that the project WAR files in your containers do not
have any artifacts or configurations that are related to the deprecated Reports
database.

Using the IBM MobileFirst Platform Foundation on Liberty for
Java Cloud Foundry application

Go through the following main steps for using V8.0.0.
1. Customizing the product components included in the offering .zip.
2. Uploading and deploying the Cloud Foundry application with your

customization.
3. Running the Cloud Foundry application on IBM Bluemix.

Using the IBM MobileFirst Platform Foundation Containers

Go through the following main steps for using V8.0.0.
1. Customizing the product components included in the container.
2. Building the container image format with your customization.
3. Deploying and running the built images on the IBM Containers service.

Prerequisites

The following elements are required.
v A Java Runtime. See the system requirements for version information.
v Cloud Foundry CLI plug-in for IBM Containers (cf ic).

Note: The prerequisite for using this plug-in is to install Cloud Foundry CLI.
For details, see CLI and dev tools.

v A Docker installation

Note: This installation is optional and is required if you want to install the
MobileFirst Server in IBM Containers or if you want to install MobileFirst
Analytics.

v An IBM Bluemix account

Package structure and contents
The V8.0.0 ibm-mfpf-container-8.0.0.0.zip package unpacks to the scripts and
other necessary contents that deploy to IBM Bluemix.

The V8.0.0 package provides the means to build your custom MobileFirst
applications and deploy them to IBM Containers on Bluemix.

9-2 IBM MobileFirst Platform Foundation V8.0.0

http://www.ng.bluemix.net/docs/containers/container_cli_ov.html#container_cli_cfic
https://www.ng.bluemix.net/docs/cli/index.html
http://docs.docker.com
http://console.ng.bluemix.net/registration/

After you download the package, extract the contents to your development
environment to the ibm-mfpf-container-8.0.0.0.zip folder, also referred to as
package_root in this document. The following tables contain descriptions of the
top-level folders of the package offering.

Folders

Table 9-1. Top-level folders

Folder Description

dependencies Contains the IBM MobileFirst Platform Foundation runtime and
IBM Java JRE 8.

mfpf-analytics Contains the artifacts required to build and deploy the
MobileFirst Analytics container.

mfpf-libs Contains MobileFirst product component libraries and CLI.

mfpf-server Contains the artifacts required to build and deploy a MobileFirst
Server container.

mfpf-server-libertyapp Contains the artifacts required to build and deploy a MobileFirst
Server as Liberty for Java Cloud Foundry application.

Table 9-2. MobileFirst Analytics container and MobileFirst Server for Cloud Foundry and
container folders. The subfolder names within the MobileFirst Analytics container
mfpf-server and MobileFirst Server container mfpf-server folder

Folder Description

scripts Contains the properties files and scripts for building and deploying
MobileFirst Server as a Cloud Foundry application or deploying in
the IBM Containers and for deploying MobileFirst Analytics in IBM
Containers. Other than the customizable args/*.properties files, do
not modify any elements in this folder.

usr Contains user-configurable elements, such as keystores, properties,
registry, and projects. Elements in this folder can be modified but not
deleted.

Scripts

The scripts build and run:
v MobileFirst Server as Liberty for Java Cloud Foundry application
v MobileFirst Server in IBM Containers
v MobileFirst Analytics in IBM Containers

Scripts can only be run from within the scripts folder. Do not modify the given
folder structure.

The following methods are supported for passing parameters to the scripts:
v Command-line arguments (Usage: scriptname.sh [-command|--command]

ARGUMENT)
v Interactive method (By running the script with no command-line arguments.)
v Properties files (By customizing the related args/*.properties files.)

You can find information about the required and optional arguments in the
properties files, such as the default values, input descriptions, and so forth. The
script properties files are located in the following folders in the package_root/:

mfpf-server-libertyapp/scripts/args

Deploying MobileFirst Server to the cloud 9-3

mfpf-analytics/scripts/args

mfpf-server/scripts/args

Example command execution usage: prepareserver.sh args/
prepareserver.properties

For script usage help, use the -h or --help command-line arguments (for example,
scriptname.sh --help).

Setting up V8.0.0
To set up MobileFirst Server V8.0.0, you can follow the procedure described in this
topic..

Before you begin

Install the required programs and verify that you have met the requirements listed
in the Prerequisites section.

Procedure
1. Download the V8.0.0 package and extract the contents to a folder in your

development environment.
This folder is referred to as your installation directory or package_root.

2. Optional: Set the namespace for the container image registry:
v To get the existing namespace, run the cf ic namespace get command.
v To set the namespace, run the cf ic namespace set"your_namespace"

command.

For more information, see Managing images.

Note: This step is required only if you are deploying MobileFirst Server on
IBM Containers or MobileFirst Analytics on IBM Containers.

3. Customize the product components in the container as needed.
For more information, see “Customizing MobileFirst Server containers” on page
9-12.

4. Configure security aspects as explained in Configure security.
5. Build the images.

a. Optional: If you are using MobileFirst Analytics, build this image first and
then deploy it to the IBM Containers service on IBM Bluemix.

b. Build the MobileFirst Server container image and then deploy it to the IBM
Containers service on IBM Bluemix.

c. Build the MobileFirst Server Cloud Foundry application on Liberty and then
deploy it to IBM Bluemix.

6. Deploy your customized container images or Cloud Foundry applications to
Bluemix.

7. Run the Cloud Foundry application or the container.

MobileFirst Server as Liberty for Java Cloud Foundry application
on IBM Bluemix
You can setup and configure the MobileFirst Server V8.0.0 as a Liberty for Java
Cloud Foundry application on IBM Bluemix using the procedure described here.

The IBM MobileFirst Platform Foundation offerings is provided by using Liberty
for Java on Cloud Foundry on IBM Bluemix.

9-4 IBM MobileFirst Platform Foundation V8.0.0

http://www.ng.bluemix.net/docs/containers/container_images_adding_ov.html#container_namespace

You can setup and configure the MobileFirst Server V8.0.0 as a Liberty for Java
Cloud Foundry application on IBM Bluemix using the procedure described here.

Customizing MobileFirst Server Liberty for Java Cloud Foundry application:

You can customize the MobileFirst Server settings before building MobileFirst
Server Liberty for Java Cloud Foundry application.

The MobileFirst Server gets created from the artifacts that are provided in the
V8.0.0 package. For an overview of the package contents and folder structure, see
“Package structure and contents” on page 9-2.

The customizable elements for the MobileFirst Server for Liberty for Java Cloud
Foundry applications are located in package_root/mfpf-server-libertyapp/usr.
The following tables describe the subfolders and files to use for customization.

Table 9-3. Descriptions of the mfpf-server-libertyapp/ sub folders

Folder Description

./usr Contains the customization template for the MobileFirst Server.

./usr/config Contains the server configuration elements (keystore, server
properties, user registry) used by MobileFirst Server.

File name Description

keystore.xml The configuration of the repository of security certificates used for
SSL encryption. The files listed must be referenced from the
./usr/security folder.

mfpfproperties.xml Configuration properties for the MobileFirst Server. See the
supported properties listed in these topics:

v “List of JNDI properties for MobileFirst Server administration
service” on page 6-174

v “List of JNDI properties for MobileFirst runtime” on page 6-183

registry.xml User registry configuration. The basicRegistry (a basic XML-based
user-registry configuration is provided as the default. User names
and passwords can be configured for basicRegistry or you can
configure ldapRegistry.

tracespec.xml Trace specification for Liberty.

ltpa.xml Specifies the location of LTPA keys meant for single sign-on.

./usr/env
Contains the environment properties used for server initialization (server.env) and custom JVM options jvm.options.
See Table 9-4 for a list of supported server environment properties.
./usr/jre-security
Add JRE security-related files (such as the JRE truststore, policy .jar files, and so forth) to be updated on the
container. The files in this folder get copied to the JAVA_HOME/jre/lib/security/ folder in the container.
./usr/security
Contains your keystore, truststore, and LTPA keys (ltpa.keys) files.
./usr/ssh
Contains the ssh public key file (id_rsa.pub) to enable ssh on the container.

Table 9-4. Supported server environment properties (server.env)

Property Default Value Description

MFPF_SERVER_HTTPPORT 9080* The port used for client
HTTP requests. Use -1 to
disable this port.

Deploying MobileFirst Server to the cloud 9-5

Table 9-4. Supported server environment properties (server.env) (continued)

Property Default Value Description

MFPF_SERVER_HTTPSPORT 9443* The port used for client
HTTP requests secured with
SSL (HTTPS). Use -1 to
disable this port.

MFPF_ADMIN_ROOT mfpadmin The context root at which the
MobileFirst Server
Administration Services are
made available.

MFPF_CONSOLE_ROOT mfpconsole The context root at which the
MobileFirst Operations
Console is made available.

MFPF_ADMIN_GROUP mfpadmingroup The name of the user group
assigned the predefined role
mfpadmin.

MFPF_DEPLOYER_GROUP mfpdeployergroup The name of the user group
assigned the predefined role
mfpdeployer.

MFPF_MONITOR_GROUP mfpmonitorgroup The name of the user group
assigned the predefined role
mfpmonitor.

MFPF_OPERATOR_GROUP mfpoperatorgroup The name of the user group
assigned the predefined role
mfpoperator.

MFPF_SERVER_ADMIN_USERWorklightRESTUser The Liberty server
administrator user for
MobileFirst Server
Administration Services.

MFPF_SERVER_ADMIN_PASSWORDmfpadmin

Ensure that you change the
default value to a private
password before deploying
to a production environment.

The password of the Liberty
server administrator user for
MobileFirst Server
Administration Services.

MFPF_ADMIN_USER admin The user name for the
administrator role for
MobileFirst Server
operations.

MFPF_ADMIN_PASSWORD admin The password for the
administrator role for
MobileFirst Server
operations.

*Do not modify the default port number. Read more in the following section.

After you finish customizing an image, it is ready to be built and run on IBM Containers for Bluemix.

Important: If you are going to use MobileFirst Analytics, you must build and run the MobileFirst
Analytics container before deploying and running the MobileFirst Server.

9-6 IBM MobileFirst Platform Foundation V8.0.0

Port number limitation

You will not have the choice of changing the port number, since Cloud Foundry applications on IBM
Bluemix are always routed through the Bluemix router. The default ports cannot be changed. The port 80
(HTTP) or 443 (HTTPS) are to be used.

Building and running the MobileFirst Server:

Use the scripts that are provided to build and run your customized server. You can
find the scripts in the V8.0.0 package installation directory under
mfpf-server-libertyapp/scripts.

Before you begin

v You finished customizing the server.

About this task

Scripts can only be run from within the scripts folder. Do not modify the given
folder structure.

The following methods are supported for passing parameters to the scripts:
v Command-line arguments (Usage: scriptname.sh [-command|--command]

ARGUMENT)
v Interactive method (By running the script with no command-line arguments.)
v Properties files (By customizing the related args/*.properties files.)

You can find information about the required and optional arguments in the
properties files, such as the default values, input descriptions, and so forth. The
script properties files are located in the following folders in the package_root/:

mfpf-server-libertyapp/scripts/args

Example command execution usage: prepareserver.sh args/
prepareserver.properties

Procedure

Based on the database type used you can follow one of the options below.
1. Create a Bluemix database service instance.

You can create a database service instance on Bluemix in two ways:
v Using the Bluemix dashboard.
v Using the Cloud Foundry command line utility.
To create a service instance of dashDB database on Bluemix, follow the next
steps.
a. Log in to Bluemix.
b. Select the space name where you want to create the service instance

(example: dev).
c. Click USE SERVICES OR APIS.
d. Search for dashDB, from the services catalog.
e. Select a value of Leave unbound for the App field. Enter a name for the

service instance in the Service name field. Select an Enterprise
Transactional Plan for the service and click CREATE.

Note:

Deploying MobileFirst Server to the cloud 9-7

dashDB Enterprise Transactional Bluemix plans are the only dashDB plans
supported. dashDB Transactional plans currently available are:
v Enterprise Transactional 2.8.500
v Enterprise Transactional 12.128.1400

The dashDB database service instance is created on Bluemix.
Using the Cloud Foundry command line utility:
a. Log in to Bluemix by using the following command:

cf login [-a API_URL] [-u USERNAME] [-p PASSWORD] [-o ORG] [-s SPACE]

Where:

-u user_name
Your user name.

-p password
Your password.

Security consideration: If you provide the password using the -p
parameter, the password might be recorded in your command line
history. If you do not want the password to be recorded, instead of
using the -p parameter, consider entering the password when the
command line interface prompts you, during the execution of the cf
login command.

-o organization_name
The name of the organization that you want to log in to.

-s space_name
The name of the space that you want to log in to.

-a https://api.DomainName
The URL of the API endpoint of Bluemix. This parameter is optional.

b. To create the service instance, run the following command:
cf create-service service_name plan_name service_instance

You can use one of the following examples:
cf create-service dashDB EnterpriseTransactional2.8.500
mfpfdashdbservice

cf create-service dashDB EnterpriseTransactional12.128.1400
mfpfdashdbservice

Note: The deployment of the dashDB Enterprise Transactional plans may not
be immediate. You might be contacted by the Sales team before the deployment
of the service.

2. Bring your own IBM DB2 database.
You can choose to use your own instance of DB2 database, perform the
following steps to configure DB2 database :
a. Set up your DB2 server.
b. Create a database on the DB2 server. You can refer to “DB2 database and

user requirements” on page 6-65, for more information.
c. Make a note of the following regarding your DB2 installation.

9-8 IBM MobileFirst Platform Foundation V8.0.0

https://api.DomainName

Parameters Description

Host Hostname where the DB2 is setup. This host
should be accessible from the machine
where the scripts are run, as well as from
Bluemix where the MobileFirst Server server
will be started.

Database The database name.

Port Port number for the database.

Username Username for the database user. You will
need to ensure that the user has correct
permissions to create tables under the
Schema name provided.

Password Password for the database user.

Schema name Name of the schema where you would like
the scripts to create the database tables. If
the schema does not already exist, the
scripts will attempt to create it.

3. Run the scripts in the order listed:

initenv.sh
This script logs in to the container service. You must run this script
before you can run any subsequent scripts.

Your Bluemix log-in credentials as well as the organization name and
space name are required arguments.

prepareserverdbs.sh

This script prepares the dashDB database service instance by creating
the required tables and also configures the MobileFirst Server to use the
database.

Supported options include dashDB service (Transactional Plans) or DB2
(bring your own DB2 database).

If your choose dashDB, then Bluemix database service instance name
Service name, created in Step 1, is supplied as an argument to this
script.

If you select to use IBM DB2, then make a note of the database details
with you, to supply as input parameters to the script.
You can optionally specify a database schema name. The default
schema name is MFPDATA.

prepareserver.sh
This script builds the server application with the mfp-server-
libertyapp customizations and pushes the application to IBM Bluemix.

Provide a value for the mandatory argument, -n|--name [APP_NAME]

startserver.sh
The script starts the Cloud Foundry application built and deployed in
the previous step.

Script overview and usage:

Use the scripts for configuring, building, and deploying a MobileFirst Server as a
Liberty for Java Cloud Foundry application.

Deploying MobileFirst Server to the cloud 9-9

The scripts are located in the package_root/mfpf-server-libertyapp/scripts
folder.

Environment initialization script to build and run MobileFirst Server | initenv.sh:

This script file creates the environment for building and running a MobileFirst
Server and performs the tasks necessary for logging into IBM Bluemix. Run this
script before running any other scripts for building and deploying IBM MobileFirst
Platform Foundation.

Table 9-5. Mandatory command-line arguments

Command-line argument Description

[-u|--user] BLUEMIX_USER Bluemix user ID or email address

[-p|--password] BLUEMIX_PASSWORD Bluemix password

[-o|--org] BLUEMIX_ORG Bluemix organization name

[-s|--space] BLUEMIX_SPACE Bluemix space name

Usage example:
initenv.sh

--user Bluemix_user_ID
--password Bluemix_password
--org Bluemix_organization_name
--space Bluemix_space_name

Table 9-6. Optional command-line arguments

Command-line argument Description

[-a|--api] BLUEMIX_API_URL Bluemix API endpoint

(Defaults to https://api.ng.bluemix.net)

Script to configure databases | prepareserverdbs.sh script:

This script configures MobileFirst Server databases (administration, configuration,
runtime and push). You must run this script before creating the Liberty for Java
Cloud Foundry application.

Table 9-7. Mandatory command-line arguments

Command-line argument Description

[-t |--type] DB_TYPE Database type used (DB2 | dashDB).
Bluemix dashDB service (with Bluemix
service plan of Enterprise Transactional)

Usage example:
prepareserverdbs.sh
--type dashDB --admindb MFPDashDBService

Table 9-8. Optional command-line arguments

Command-line argument Description

[-h |--host] DB2_HOST Hostname or IP address where the
database is set up. Required if DB_TYPE is
DB2.

9-10 IBM MobileFirst Platform Foundation V8.0.0

Table 9-8. Optional command-line arguments (continued)

Command-line argument Description

[-d |--database] DB2_DATABASE Name of the database. Required if
DB_TYPE is DB2.

[-r |--port] DB2_PORT Port number for DB2. Required if
DB_TYPE is DB2.

[-u |--username] DB2_USERNAME Username for the DB2 user. Required if
DB_TYPE is DB2.

[-pw |--password] DB2_PASSWORD Password for the DB2 user. Required if
DB_TYPE is DB2.

[-adl |--admindb] ADMIN_DB_SRV_NAME Bluemix dashDB service (with Bluemix
service plan of Enterprise Transactional)

[-as |--adminschema]
ADMIN_SCHEMA_NAME

Database schema name for administration
service.
Note: Defaults to MFPDATA

[-rd |--runtimedb]
RUNTIME_DB_SRV_NAME

Bluemix database service instance name for
storing runtime data.
Note: Defaults to the same service as given
for admin data.

[-p |--push] ENABLE_PUSH Enable configuring database for push
service.
Note: Accepted values are Y (default) or
N.

[-pd |--pushdb] PUSH_DB_SRV_NAME Bluemix database service instance name for
storing push data.
Note: Defaults to the same service as given
for runtime data.

[-ps |--pushschema]
PUSH_SCHEMA_NAME

Database schema name for push service.
Note: Defaults to the runtime schema
name.

Script to create MobileFirst Server as a Cloud Foundry app | prepareserver.sh:

This script creates the MobileFirst Server as a Liberty for Java Cloud Foundry
application and pushes it to IBM Bluemix. Ensure that you run the
prepareserverdbs.sh before running this script.

Table 9-9. Mandatory command line arguments

Command line argument Description

[-n|--name] APP_NAME Name to be used for the customized
MobileFirst Server Cloud Foundry
application.

Usage example:
prepareserver.sh --name mobilefirst80app

Script to run MobileFirst Server as a Cloud Foundry app | startserver.sh:

This script runs the MobileFirst Server as a Liberty for Java Cloud Foundry
application on IBM Bluemix. Ensure that you have run the prepareserver.sh script
to upload the application to IBM Bluemix before running this script.

Deploying MobileFirst Server to the cloud 9-11

Table 9-10. Mandatory command line arguments

Command line argument Description

[-n|--name] APP_NAME Name of the MobileFirst Server application

Usage example:
startserver.sh
--name mobilefirst80app

Table 9-11. Optional command line arguments

Command line argument Description

[-h|--host] APP_HOST The hostname for the application route to
be created. The application name
(APP_NAME) is taken as the default value
for the hostname.

[-d|--domain] DOMAIN_NAME Domain name used in the application
route. mybluemix.net is taken as the default
value.

[-m|--memory] SERVER_MEM Assign a memory size limit to the
container in megabytes (MB). Accepted
values are 1024 MB (default) and 2048 MB.

[-i|--instances] INSTANCES The desired number of nodes (instances) of
the application that you want to create. The
default is a 2 node application.

MobileFirst Server container
This section contains the information you need to configure and run a MobileFirst
Server container.

Customizing MobileFirst Server containers:

You can customize the MobileFirst Server settings before building MobileFirst
Server container images.

The container gets created from the artifacts that are provided in the V8.0.0
package. For an overview of the package contents and folder structure, see
“Package structure and contents” on page 9-2.

The customizable elements for the MobileFirst Server container are located in
package_root/mfpf-server/usr. The following tables describe the subfolders and
files to use for customization.

Table 9-12. Descriptions of the mfpf-server/ sub folders

Folder Description

./usr Contains the customization template for the MobileFirst Server
container.

./usr/bin Contains the script file (mfp-init) that gets executed when the
container starts. You can add custom code to the script, however, do
not modify the existing code.

9-12 IBM MobileFirst Platform Foundation V8.0.0

Table 9-12. Descriptions of the mfpf-server/ sub folders (continued)

Folder Description

./usr/config Contains the server configuration fragments (keystore, server
properties, user registry) used by MobileFirst Server.

v keystore.xml - the configuration of the repository of security
certificates used for SSL encryption. The files listed must be
referenced in the ./usr/security folder.

v mfpfproperties.xml - configuration properties for the MobileFirst
Server. See the supported properties listed in these topics:

“List of JNDI properties for MobileFirst Server administration
service” on page 6-174

“List of JNDI properties for MobileFirst runtime” on page
6-183

v registry.xml - user registry configuration. The basicRegistry (a
basic XML-based user-registry configuration is provided as the
default. User names and passwords can be configured for
basicRegistry or you can configure ldapRegistry.

./usr/env Contains the environment properties used for server initialization
(server.env) and custom JVM options jvm.options. See Table 9-13
for a list of supported server environment properties.

./usr/jre-security Add JRE security-related files (such as the JRE truststore, policy .jar
files, and so forth) to be updated on the container. The files in this
folder get copied to the JAVA_HOME/jre/lib/security/ folder in the
container.

./usr/security Contains your keystore, truststore, and LTPA keys (ltpa.keys) files.

./usr/ssh Contains the ssh public key file (id_rsa.pub) to enable ssh on the
container.

Table 9-13. Supported server environment properties (server.env)

Property Default Value Description

MFPF_SERVER_HTTPPORT 9080* The port used for client
HTTP requests. Use -1 to
disable this port.

MFPF_SERVER_HTTPSPORT 9443* The port used for client
HTTP requests secured with
SSL (HTTPS). Use -1 to
disable this port.

MFPF_CLUSTER_MODE Standalone Configuration not required.
Valid values are Standalone
orFarm. The Farm value is
automatically set when the
container is run as a
container group.

MFPF_ADMIN_ROOT mfpadmin The context root at which the
MobileFirst Server
Administration Services are
made available.

MFPF_CONSOLE_ROOT mfpconsole The context root at which the
MobileFirst Operations
Console is made available.

MFPF_ADMIN_GROUP mfpadmingroup The name of the user group
assigned the predefined role
mfpadmin.

Deploying MobileFirst Server to the cloud 9-13

Table 9-13. Supported server environment properties (server.env) (continued)

Property Default Value Description

MFPF_DEPLOYER_GROUP mfpdeployergroup The name of the user group
assigned the predefined role
mfpdeployer.

MFPF_MONITOR_GROUP mfpmonitorgroup The name of the user group
assigned the predefined role
mfpmonitor.

MFPF_OPERATOR_GROUP mfpoperatorgroup The name of the user group
assigned the predefined role
mfpoperator.

MFPF_SERVER_ADMIN_USERWorklightRESTUser The Liberty server
administrator user for
MobileFirst Server
Administration Services.

MFPF_SERVER_ADMIN_PASSWORDmfpadmin

Ensure that you change the
default value to a private
password before deploying
to a production environment.

The password of the Liberty
server administrator user for
MobileFirst Server
Administration Services.

MFPF_ADMIN_USER admin The user name for the
administrator role for
MobileFirst Server
operations.

MFPF_ADMIN_PASSWORD admin The password for the
administrator role for
MobileFirst Server
operations.

*Do not modify the default port number. Read more in the following section.

After you finish customizing an image, it is ready to be built and run on IBM
Containers for Bluemix.

Important: If you are going to use MobileFirst Analytics, you must build and run
the MobileFirst Analytics container before deploying and running the MobileFirst
Server container.

Containers must be restarted after any configuration changes have been made (cf
ic restart containerId). For container groups, you must restart each container
instance within the group. For example, if a root certificate changes, each container
instance must be restarted after the new certificate has been added.

Port number limitation

There is currently an IBM Containers limitation with the port numbers that are
available for public domain. Therefore, the default port numbers given for the
MobileFirst Analytics container and the MobileFirst Server container (9080 for
HTTP and 9443 for HTTPS) cannot be altered. Containers in a container group
must use HTTP port 9080. Container groups do not support the use of multiple
port numbers or HTTPS requests.

9-14 IBM MobileFirst Platform Foundation V8.0.0

Building and running the MobileFirst Server container:

Use the scripts that are provided to build and run your customized image. You can
find the scripts in the V8.0.0 package installation directory under
mfpf-server/scripts.

Before you begin

v You finished customizing the image.

About this task

Scripts can only be run from within the scripts folder. Do not modify the given
folder structure.

The following methods are supported for passing parameters to the scripts:
v Command-line arguments (Usage: scriptname.sh [-command|--command]

ARGUMENT)
v Interactive method (By running the script with no command-line arguments.)
v Properties files (By customizing the related args/*.properties files.)

You can find information about the required and optional arguments in the
properties files, such as the default values, input descriptions, and so forth. The
script properties files are located in the following folders in the package_root/:

mfpf-server-libertyapp/scripts/args

mfpf-analytics/scripts/args

mfpf-server/scripts/args

Example command execution usage: prepareserver.sh args/
prepareserver.properties

Procedure

The first step describes how to retrieve the public IP address to be bound with the
container, which is a required argument when you run the startserver.sh script
(as described in step 2).
1. Retrieve and take note of a public IP address to bind to the container.

To get IP information, use Cloud Foundry CLI plug-in for IBM Containers (cf
ic) commands.
v To retrieve the list of IP addresses that are potentially available to you (based

on user ID), run cf ic ip list.
The IP addresses that are listed with no corresponding container ID are
available for use.
An IP address with a corresponding container ID indicates that the IP
address is already in use. If all IP addresses are already in use, you can
request a new IP address.

v To request a new IP address, run cf ic ip request.
2. Create a Bluemix database service instance.

You can create a database service instance on Bluemix in two ways:
v Using the Bluemix dashboard.
v Using the Cloud Foundry command line utility.
Use one of the following methods to create the database service instance.
Using the Bluemix dashboard:

Deploying MobileFirst Server to the cloud 9-15

http://www.ng.bluemix.net/docs/containers/container_cli_ov.html#container_cli_cfic

To create a service instance of dashDB database on Bluemix, follow the next
steps.
a. Log in to Bluemix.
b. Select the space name where you want to create the service instance

(example: dev).
c. Click USE SERVICES OR APIS.
d. Search for dashDB, from the services catalog.
e. Select a value of Leave unbound for the App field. Enter a name for the

service instance in the Service name field. Select an Enterprise
Transactional Plan for the service and click CREATE.

Note:

dashDB Enterprise Transactional Bluemix plans are the only dashDB plans
supported. dashDB Transactional plans currently available are:
v Enterprise Transactional 2.8.500
v Enterprise Transactional 12.128.1400

The dashDB database service instance is created on Bluemix.
Using the Cloud Foundry command line utility:
a. Log in to Bluemix by using the following command:

cf login [-a API_URL] [-u USERNAME] [-p PASSWORD] [-o ORG] [-s SPACE]

Where:

-u user_name
Your user name.

-p password
Your password.

Security consideration: If you provide the password using the -p
parameter, the password might be recorded in your command line
history. If you do not want the password to be recorded, instead of
using the -p parameter, consider entering the password when the
command line interface prompts you, during the execution of the cf
login command.

-o organization_name
The name of the organization that you want to log in to.

-s space_name
The name of the space that you want to log in to.

-a https://api.DomainName
The URL of the API endpoint of Bluemix. This parameter is optional.

b. To create the service instance, run the following command:
cf create-service service_name plan_name service_instance

You can use one of the following examples:
cf create-service dashDB EnterpriseTransactional2.8.500
mfpfdashdbservice

cf create-service dashDB EnterpriseTransactional12.128.1400
mfpfdashdbservice

9-16 IBM MobileFirst Platform Foundation V8.0.0

https://api.DomainName

Note: The deployment of the dashDB Enterprise Transactional plans may not
be immediate. You might be contacted by the Sales team before the deployment
of the service.

3. Run the scripts in the order listed:

initenv.sh
This script logs in to the container service. You must run this script
before you can run any subsequent scripts.

Your Bluemix log-in credentials as well as the organization name and
space name are required arguments.

prepareserverdbs.sh

This script prepares the dashDB database service instance by creating
the required tables and also configures the MobileFirst Server to use the
database.

Your Bluemix database service instance name Service name, created in
Step 2, is supplied as an argument to this script.

You can optionally specify a database schema name. The default
schema name is MFPDATA.

prepareserver.sh
This script builds the server image with the mfp-server customizations
and sends the image to IBM Containers.

The MobileFirst Server image name is a required argument. Use the
following format: BluemixRegistry/PrivateNamespace/
ImageName:TagName. Example: registry.ng.bluemix.net/PrivateNamespace/
mfpserver

startserver.sh
The script runs the MobileFirst Server image as a stand-alone container.

The MobileFirst Server image name, the container name, and the public
IP address from which the container is started (from step 1) are
required arguments for running the image as a container.

Tip: If you are running a startserver.sh or startservergroup.sh
script interactively and configuring an analytics image (by using
MFPF_PROPERTIES), you must provide the configuration information
every time the script is run, and for each runtime, to avoid losing the
configuration. For example, if you provided an analytics configuration
(such as MFPF_PROPERTIES=mfp.analytics.url:http://127.0.0.1/
analytics-service/rest,mfp.analytics.console.url:http://
127.0.0.1/analytics/console for the first runtime but did not provide
it the next time that you ran the script for a different runtime, the
configuration for the MobileFirst Server would be lost.

startservergroup.sh
The script runs the MobileFirst Server image as a container group.

Required arguments include: the MobileFirst Server image name, the
container group name, the minimum and maximum number of
container instances within the group, and the host name to which the
group must be mapped.

Deploying MobileFirst Server to the cloud 9-17

Script overview and usage:

Use the scripts for configuring, building, and deploying a MobileFirst Server
container image.

The scripts are located in the package_root/mfpf-server/scripts folder.

Environment initialization script to build and run MobileFirst Server | initenv.sh:

This script file creates the environment for building and running a MobileFirst
Server and performs the tasks necessary for logging into IBM Bluemix. Run this
script before running any other scripts for building and deploying IBM MobileFirst
Platform Foundation.

Table 9-14. Mandatory command-line arguments

Command-line argument Description

[-u|--user] BLUEMIX_USER Bluemix user ID or email address

[-p|--password] BLUEMIX_PASSWORD Bluemix password

[-o|--org] BLUEMIX_ORG Bluemix organization name

[-s|--space] BLUEMIX_SPACE Bluemix space name

Usage example:
initenv.sh

--user Bluemix_user_ID
--password Bluemix_password
--org Bluemix_organization_name
--space Bluemix_space_name

Table 9-15. Optional command-line arguments

Command-line argument Description

[-a|--api] BLUEMIX_API_URL Bluemix API endpoint

(Defaults to https://api.ng.bluemix.net)

Script to configure databases | prepareserverdbs.sh script:

This script configures MobileFirst Server databases (administration, configuration,
runtime and push). You must run this script before creating the container image.

Table 9-16. Mandatory command-line arguments

Command-line argument Description

[-adl |--admindb] ADMIN_DB_SRV_NAME Bluemix dashDB service (with Bluemix
service plan of Enterprise Transactional)

Usage example:
prepareserverdbs.sh
--admindb MFPDashDBService

9-18 IBM MobileFirst Platform Foundation V8.0.0

Table 9-17. Optional command-line arguments

Command-line argument Description

[-as |--adminschema]
ADMIN_SCHEMA_NAME

Database schema name for administration
service.
Note: Defaults to MFPDATA

[-rd |--runtimedb]
RUNTIME_DB_SRV_NAME

Bluemix database service instance name for
storing runtime data.
Note: Defaults to the same service as given
for admin data.

[-p |--push] ENABLE_PUSH Enable configuring database for push
service.
Note: Accepted values are Y (default) or
N.

[-pd |--pushdb] PUSH_DB_SRV_NAME Bluemix database service instance name for
storing push data.
Note: Defaults to the same service as given
for runtime data.

[-ps |--pushschema]
PUSH_SCHEMA_NAME

Database schema name for push service.
Note: Defaults to the runtime schema
name.

Script to create MobileFirst Server image | prepareserver.sh:

This script creates the MobileFirst Server image and pushes it to IBM Containers
on Bluemix. Ensure that you run the prepareserverdbs.sh before running this
script.

Table 9-18. Mandatory command line arguments

Command line argument Description

[-t|--tag] SERVER_IMAGE_NAME Name to be used for the customized
MobileFirst Server image. Format:
registryUrl/namespace/imagename

Usage example:
prepareserver.sh --tag SERVER_IMAGE_NAME registryUrl/namespace/imagename

Script to run MobileFirst Server in container | startserver.sh:

This script runs the MobileFirst Server image as a container on IBM Containers on
Bluemix. Ensure that you have run the prepareserver.sh script to upload the
image to the IBM Containers registry before running this script.

Table 9-19. Mandatory command line arguments

Command line argument Description

[-t|--tag] SERVER_IMAGE_TAG Name of the MobileFirst Server image.

[-n|--name] SERVER_CONTAINER_NAME Name of the MobileFirst Server container

[-i|--ip] SERVER_IP IP address that the MobileFirst Server
container should be bound to. (You can
provide an available public IP or request
one using the cf ic ip request
command.)

Deploying MobileFirst Server to the cloud 9-19

Usage example:
startserver.sh
--tag image_tag_name
--name container_name
--ip container_ip_address

Table 9-20. Optional command line arguments

Command line argument Description

[-si|--services] SERVICE_INSTANCES Comma-separated Bluemix service
instances that you want to bind to the
container.

[-h|--http] EXPOSE_HTTP Expose HTTP Port. Accepted values are Y
(default) or N.

[-s|--https] EXPOSE_HTTPS Expose HTTPS Port. Accepted values are Y
(default) or N.

[-m|--memory] SERVER_MEM Assign a memory size limit to the
container in megabytes (MB). Accepted
values are 1024 MB (default) and 2048 MB.

[-se|--ssh] SSH_ENABLE Enable SSH for the container. Accepted
values are Y (default) or N.

[-sk|--sshkey] SSH_KEY The SSH Key to be injected into the
container. (Provide the contents of your
id_rsa.pub file.)

[-tr|--trace] TRACE_SPEC The trace specification to be applied.

Default: *=info

[-ml|--maxlog] MAX_LOG_FILES The maximum number of log files to
maintain before they are overwritten. The
default is 5 files.

[-ms|--maxlogsize] MAX_LOG_FILE_SIZE The maximum size of a log file. The
default size is 20 MB.

[-v|--volume] ENABLE_VOLUME Enable mounting volume for container
logs. Accepted values are Y or N (default).

[-e|--env] MFPF_PROPERTIES Specify MobileFirst properties as
comma-separated key:value pairs. Example:
mfp.analytics.url:http://127.0.0.1/analytics-
service/rest,mfp.analytics.console.url:http://
127.0.0.1/analytics/console
Note: If you specify properties using this script, ensure that these same properties have not been set in the configuration files in the usr/config folder.

Script to run MobileFirst Server in container group | startservergroup.sh:

This script runs a MobileFirst Server image as a container group on IBM
Containers on Bluemix. Before running startservergroup.sh, ensure that you have
run the prepareserver.sh script to upload the container image to the IBM
Containers registry.

Table 9-21. Mandatory command-line arguments

Command-line argument Description

[-t|--tag] SERVER_IMAGE_TAG The name of the MobileFirst Server
container image in the Bluemix registry.

[-gn|--name] SERVER_CONTAINER_NAME The name of the MobileFirst Server
container group.

9-20 IBM MobileFirst Platform Foundation V8.0.0

Table 9-21. Mandatory command-line arguments (continued)

Command-line argument Description

[-gh|--host]
SERVER_CONTAINER_GROUP_HOST

The host name of the route.

[-gs|--domain]
SERVER_CONTAINER_GROUP_DOMAIN

The domain name of the route.

Usage example:
startservergroup.sh
--tag image_name
--name container_group_name
--host container_group_host_name
--domain container_group_domain_name

Table 9-22. Optional command-line arguments

Command-line
argument Description

[-gm|--min]
SERVERS_CONTAINER_GROUP_MIN

The minimum number of container instances. The default value is
1.

[-gx|--max]
SERVER_CONTAINER_GROUP_MAX

The maximum number of container instances. The default value is
1.

[-gd|--desired]
SERVER_CONTAINER_GROUP_DESIRED

The desired number of container instances. The default value is 2.

[-a|--auto]
ENABLE_AUTORECOVERY

Enable the automatic recovery option for the container instances.
Accepted values are Y or N (default).

[-si|--services]
SERVICES

Comma-separated Bluemix service instance names that you want
to bind to the container.

[-tr|--trace]
TRACE_SPEC

The trace specification to be applied.

Default: *=info

[-ml|--maxlog]
MAX_LOG_FILES

The maximum number of log files to maintain before they are
overwritten. The default is 5 files.

[-ms|--maxlogsize]
MAX_LOG_FILE_SIZE

The maximum size of a log file. The default size is 20 MB.

[-e|--env]
MFPF_PROPERTIES

Specify MobileFirst properties as comma-separated key:value pairs.
Example: mfp.analytics.url:http://127.0.0.1/analytics-service/rest
mfp.analytics.console.url:http://127.0.0.1/analytics/console
Note: If you specify properties using this script, ensure that the
same properties have not been set in the configuration files in the
usr/config folder.

[-m|--memory]
SERVER_MEM

Assign a memory size limit to the container in megabytes (MB).
Accepted values are 1024 MB (default) and 2048 MB.

[-v|--volume]
ENABLE_VOLUME

Enable mounting volume for container logs. Accepted values are Y
or N (default).

Learn more about creating scalable container groups.

MobileFirst Analytics containers
This section contains the information you need to configure and run MobileFirst
Analytics containers.

Deploying MobileFirst Server to the cloud 9-21

https://www.bluemix.net/docs/containers/container_creating_ov.html#container_group_ov

Customizing MobileFirst Analytics containers:

Use the scripts provided in the V8.0.0 package to customize container images.

The folder where you extracted the contents of the V8.0.0 package is referred to in
this document as the installation directory. The customizable elements for the
MobileFirst Analytics container are located in package_root/mfpf-analytics/usr.
See the following tables for details.

Table 9-23. Descriptions of the mfpf-analytics/ sub directories

Folders and Files Description

./usr The root folder that contains the customization template for the
MobileFirst Analytics container.

./usr/bin Contains the script file (mfp-init) that gets executed when the
container starts. You can add custom code to the script,
however, do not modify the existing code.

./usr/config Contains the server configuration fragments (keystore, server
properties, user registry) used by MobileFirst Server. MobileFirst
Analytics container.

./usr/jre-security Add JRE security-related files (such as the JRE truststore, policy
.jar files, and so forth) to be updated on the container. The files
in this folder get copied to the JAVA_HOME/jre/lib/security/
folder in the container.

./usr/config/
keystore.xml

The configuration of the repository of security certificates used
for SSL encryption. The keystore files referenced here should be
provided as part of the ./usr/security folder

./usr/config/
mfpfproperties.xml

The configuration of the MobileFirst Analytics can be provided
here. See the list of supported properties at “Configuration
properties” on page 11-15.

./usr/config/
registry.xml

User registry configuration. By default provides the
basicRegistry - a simple XML based user-registry configuration.
The usernames / password for basicRegistry can be configured
here. The registry can also be configured for ldapRegistry.

./usr/env/server.env The environment properties used by the server to initialize.
Supported properties

./usr/security The keystore, truststore, and the LTPA keys (ltpa.keys) files
should be placed in this folder.

./usr/ssh The id_rsa.pub file - the ssh public key file to enable ssh on the
container.

Table 9-24. Server.env supported properties

Property Name Default Value Description

ANALYTICS_SERVER_HTTPPORT9080* The port used for client
HTTP requests. Use -1 to
disable this port.

ANALYTICS_SERVER_HTTPSPORT9443* The port used for client
HTTP requests secured with
SSL (HTTPS). Use -1 to
disable this port.

ANALYTICS_ADMIN_GROUPanalyticsadmingroup The name of the user group
possessing the predefined
role worklightadmin.

9-22 IBM MobileFirst Platform Foundation V8.0.0

*Do not modify the default port number. Read more in the following section.

Port number limitation

There is currently an IBM Containers limitation with the port numbers that are
available for public domain. Therefore, the default port numbers given for the
MobileFirst Analytics container and the MobileFirst Server container (9080 for
HTTP and 9443 for HTTPS) cannot be altered. Containers in a container group
must use HTTP port 9080. Container groups do not support the use of multiple
port numbers or HTTPS requests.

Building and running the MobileFirst Analytics container:

Use the scripts provided in the package installation directory under
mfpf-analytics/scripts to build and run your customized image.

Before you begin

v Customization of the image has been completed.

About this task

Scripts can only be run from within the scripts folder. Do not modify the given
folder structure.

The following methods are supported for passing parameters to the scripts:
v Command-line arguments (Usage: scriptname.sh [-command|--command]

ARGUMENT)
v Interactive method (By running the script with no command-line arguments.)
v Properties files (By customizing the related args/*.properties files.)

You can find information about the required and optional arguments in the
properties files, such as the default values, input descriptions, and so forth. The
script properties files are located in the following folders in the package_root/:

mfpf-analytics/scripts/args

mfpf-server/scripts/args

Example command execution usage: prepareserver.sh args/
prepareanalytics.properties

Procedure

In the following procedure, the first step describes how to retrieve a public IP
address to bind to the container, which is a required argument when you run the
startanalytics.sh script (as described in step 2).
1. Retrieve and take note of a public IP address to bind to the container.

To get IP information, use Cloud Foundry CLI plug-in for IBM Containers (cf
ic) commands.
v To retrieve the list of IP addresses that are potentially available to you (based

on user ID), run cf ic ip list.
The IP addresses that are listed with no corresponding container ID are
available for use.
An IP address with a corresponding container ID indicates that the IP
address is already in use. If all IP addresses are already in use, you can
request a new IP address.

v To request a new IP address, run cf ic ip request.

Deploying MobileFirst Server to the cloud 9-23

http://www.ng.bluemix.net/docs/containers/container_cli_ov.html#container_cli_cfic

2. Run the following scripts in order:

initenv.sh
This script logs in to the container service. You must run this script
before you can run any subsequent scripts.

prepareanalytics.sh
This script builds the analytics image with your customizations and
deploys it to IBM Containers.

startanalytics.sh
The script runs the analytics image as a standalone container.

startanalyticsgroup.sh
The script runs the analytics image as a container group.

Script overview and usage:

Use the scripts for configuring, building, and deploying a MobileFirst Analytics
container image.

The scripts are located in the package_root/mfpf-analytics/scripts folder.

Environment initialization script to build and run MobileFirst Analytics in a container |
initenv.sh:

This script file creates the environment for building and running a MobileFirst
Analytics container and performs the tasks necessary for logging into Bluemix and
the IBM Containers environment. You must run this script before running any
other scripts for building and deploying MobileFirst Analytics container images.

Table 9-25. Mandatory command-line arguments

Command-line argument Description

[-u|--user] BLUEMIX_USER Bluemix user ID or email address

[-p|--password] BLUEMIX_PASSWORD Bluemix password

[-o|--org] BLUEMIX_ORG Bluemix organization name

[-s|--space] BLUEMIX_SPACE Bluemix space name

Usage example:
initenv.sh

--user Bluemix_user_ID
--password Bluemix_password
--org Bluemix_organization_name
--space Bluemix_space_name

Table 9-26. Optional command-line arguments

Command-line argument Description

[-a|--api] BLUEMIX_API_URL Bluemix API endpoint

(Defaults to https://api.ng.bluemix.net)

Script to create MobileFirst Analytics image | prepareanalytics.sh:

This script creates the MobileFirst Analytics image and pushes it to IBM Containers
on Bluemix. Ensure that you have run the initenv.sh before running this script.

9-24 IBM MobileFirst Platform Foundation V8.0.0

Table 9-27. Mandatory command-line arguments

Command-line argument Description

[-t|--tag] ANALYTICS_IMAGE_TAG Name to be used for the customized
analytics image. Format: Bluemix registry
URL/private namespace/image name

Usage example:
prepareanalytics.sh --tag registry.ng.bluemix.net/your_private_repository_namespace/mfpfanalytics71

Script to run MobileFirst Analytics in a container | startanalytics.sh:

This script runs the MobileFirst Analytics image as a container on IBM Containers
on Bluemix. Before running this script, ensure that you have run the
prepareanalytics.sh script to upload the image to the IBM Containers registry.

Table 9-28. Mandatory command-line arguments

Command-line argument Description

[-t|--tag] ANALYTICS_IMAGE_TAG Name of the analytics container image that
has been loaded into the IBM Containers
registry.

Format: BluemixRegistry/PrivateNamespace/ImageName:Tag

[-n|--name]
ANALYTICS_CONTAINER_NAME

Name of the analytics container

[-i|--ip] ANALYTICS_IP IP address that the container should be
bound to. (You can provide an available
public IP or request one using the ice ip
request command.)

Usage example:
startanalytics.sh
--tag image_tag_name
--name container_name
--ip container_ip_address

Table 9-29. Optional command-line arguments

Command-line argument Description

[-h|--http] EXPOSE_HTTP Expose HTTP port. Accepted values are Y
(default) or N.

[-s|--https] EXPOSE_HTTPS Expose HTTPS port. Accepted values are Y
(default) or N.

[-m|--memory] SERVER_MEM Assign a memory size limit to the
container in megabytes (MB). Accepted
values are 1024 MB (default) and 2048 MB.

[-se|--ssh] SSH_ENABLE Enable SSH for the container. Accepted
values are Y (default) or N.

[-sk|--sshkey] SSH_KEY The SSH Key to be injected into the
container. (Provide the contents of your
id_rsa.pub file.)

[-tr|--trace] TRACE_SPEC The trace specification to be applied.

Default: *=info

Deploying MobileFirst Server to the cloud 9-25

Table 9-29. Optional command-line arguments (continued)

Command-line argument Description

[-ml|--maxlog] MAX_LOG_FILES The maximum number of log files to
maintain before they are overwritten. The
default is 5 files.

[-ms|--maxlogsize] MAX_LOG_FILE_SIZE The maximum size of a log file. The
default size is 20 MB.

[-v|--volume] ENABLE_VOLUME Enable mounting volume for container
logs. Accepted values are Y or N (default).

[-ev|--enabledatavolume]
ENABLE_ANALYTICS_DATA_VOLUME

Enable mounting volume for analytics data.
Accepted values are Y or N (default).

[-av|--datavolumename]
ANALYTICS_DATA_VOLUME_NAME

Specify the name of the volume to be
created and mounted for the analytic data.
The default name is
mfpf_analytics_container_name.

[-ad|--analyticsdatadirectory]
ANALYTICS_DATA_DIRECTORY

Specify the location to store the data. The
default folder name is /analyticsData.

[-e|--env] MFPF_PROPERTIES Provide MobileFirst Analytics properties as
comma-separated key:value pairs.

Note: If you specify properties using this script, ensure that these same properties have not been set in the configuration files in the usr/config folder.

Script to run MobileFirst Analytics in a container group | startanalyticsgroup.sh:

This script runs a MobileFirst Analytics image as a container group on IBM
Containers on Bluemix. Before running startanalyticsgroup.sh, ensure that you
have run the prepareanalytics.sh script to upload the container image to the IBM
Containers registry.

Table 9-30. Mandatory command-line arguments

Command-line argument Description

[-t|--tag] ANALYTICS_IMAGE_TAG The name of the analytics container image
in the Bluemix registry.

[-gn|--name]
ANALYTICS_CONTAINER_GROUP_NAME

The name of the analytics container group.

[-gh|--host]
ANALYTICS_CONTAINER_GROUP_HOST

The host name of the route.

[-gs|--domain]
ANALYTICS_CONTAINER_GROUP_DOMAIN

The domain name of the route.

Usage example:
startanalyticsgroup.sh
--tag image_name
--name container_group_name
--host container_group_host_name
--domain container_group_domain_name

Table 9-31. Optional command-line arguments

Command-line
argument Description

[-gm|--min]
ANALYTICS_CONTAINER_GROUP_MIN

The minimum number of container instances. The default value is
1.

9-26 IBM MobileFirst Platform Foundation V8.0.0

Table 9-31. Optional command-line arguments (continued)

Command-line
argument Description

[-gx|--max]
ANALYTICS_CONTAINER_GROUP_MAX

The maximum number of container instances. The default value is
1.

[-gd|--desired]
ANALYTICS_CONTAINER_GROUP_DESIRED

The desired number of container instances. The default value is 2.

[-a|--auto]
ENABLE_AUTORECOVERY

Enable the automatic recovery option for the container instances.
Accepted values are Y or N (default).

[-tr|--trace]
TRACE_SPEC

The trace specification to be applied.

Default: *=info

[-ml|--maxlog]
MAX_LOG_FILES

The maximum number of log files to maintain before they are
overwritten. The default is 5 files.

[-ms|--maxlogsize]
MAX_LOG_FILE_SIZE

The maximum size of a log file. The default size is 20 MB.

[-e|--env]
MFPF_PROPERTIES

Specify MobileFirst properties as comma-separated key:value pairs.
Example: mfp.analytics.url:http://127.0.0.1/analytics-service/rest/v2

[-m|--memory]
SERVER_MEM

Assign a memory size limit to the container in megabytes (MB).
Accepted values are 1024 MB (default) and 2048 MB.

[-v|--volume]
ENABLE_VOLUME

Enable mounting volume for container logs. Accepted values are Y
or N (default).

[-av|--
datavolumename]
ANALYTICS_DATA_VOLUME_NAME

Specify name of the volume to be created and mounted for
analytics data. Default value is
mfpf_analytics_<ANALYTICS_CONTAINER_GROUP_NAME>

[-ad|--
analyticsdatadirectory]
ANALYTICS_DATA_DIRECTORY

Specify the directory to be used for storing analytics data. Default
value is /analyticsData"

Note: Container Group for MobileFirst Analytics requires the analytics data to be
shared across instances. The startanalyticsgroup.sh command automatically
creates volumes with the names provided in the command.

Learn more about creating scalable container groups.

Securing containers

Security configuration for IBM MobileFirst Platform Foundation on IBM
Containers:

Your IBM MobileFirst Platform Foundation on IBM Containers security
configuration should include encrypting passwords, enabling application
authenticity checking, and securing access to the consoles.

Encrypting passwords

Store the passwords for MobileFirst Server users in an encrypted format. You can
use the securityUtility command available in the Liberty profile to encode
passwords with either XOR or AES encryption. Encrypted passwords can then be
copied into the /usr/env/server.env file. See “Encrypting passwords for user roles
configured in MobileFirst Server” on page 9-28 for instructions.

Deploying MobileFirst Server to the cloud 9-27

http://www.ng.bluemix.net/docs/containers/container_group_ov.html

Application-authenticity validation

To keep unauthorized mobile applications from accessing the MobileFirst Server,
enable the application-authenticity security check. Learn more...

Configure SSL for Operations Console and Analytics Console

You can secure access to the MobileFirst Operations Console and the MobileFirst
Analytics Console by enabling HTTP over SSL (HTTPS) on the MobileFirst Server.

To enable HTTPS on the MobileFirst Server, create the keystore containing the
certificate and place it in the usr/security folder. Then, update the
usr/config/keystore.xml file to use the keystore configured.

Securing a connection to the back end

If you need a secure connection between your container and an on-premise
back-end system, you can use the Bluemix Secure Gateway service. Configuration
details are provided in this article: Connecting Securely to On-Premise Backends
from MobileFirst on IBM Bluemix containers.

Encrypting passwords for user roles configured in MobileFirst Server:

The passwords for user roles that are configured for the MobileFirst Server can be
encrypted.

Procedure

Passwords are configured in the server.env files in the package_root/mfpf-server/
usr/env and package_root/mfpf-analytics/usr/env folders. Passwords should be
stored in an encrypted format.
1. You can use the securityUtility command in the Liberty profile to encode the

password. Choose either XOR or AES encryption to encode the password.
2. Copy the encrypted password to the server.env file. Example:

MFPF_ADMIN_PASSWORD={xor}PjsyNjE=

3. If you are using AES encryption and used your own encryption key instead of
the default key, you must create a configuration file that contains your
encryption key and add it to the usr/config directory. The Liberty server
accesses the file to decrypt the password during runtime. The configuration file
must have the .xml file extension and resemble the following format:
<?xml version="1.0" encoding="UTF-8"?>
<server>

<variable name="wlp.password.encryption.key" value="yourKey" />
</server>

Securing container communication using a private IP address:

To have secure communication between the MobileFirst Server container and the
MobileFirst Analytics container, you must include the private IP address of the
MobileFirst Analytics container in the mfpfProperties.xml file.

Before you begin

To complete this task, you need the private IP of the MobileFirst Analytics
container, which you can obtain using the following command: cf ic inspect
analytics_container_id. Look for the IP Address field in the command output.

9-28 IBM MobileFirst Platform Foundation V8.0.0

https://mobilefirstplatform.ibmcloud.com/blog/2016/03/27/connecting-securely-from-ibm-mobilefirst-platform-foundation-on-bluemix-to-on-premises-systems/
https://mobilefirstplatform.ibmcloud.com/blog/2016/03/27/connecting-securely-from-ibm-mobilefirst-platform-foundation-on-bluemix-to-on-premises-systems/
http://www.ibm.com/support/knowledgecenter/#!/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_command_securityutil.html?cp=SSEQTP_8.5.5%2F1-3-11-0-4-1-2-0

Remember: If you are going to use MobileFirst Analytics, you must configure,
build, and run the MobileFirst Analytics image before configuring, deploying, and
running the MobileFirst Server image.

Procedure

Complete the following steps by editing the mfpf-server/usr/config/
mfpfproperties.xml file:
1. Set the mfp.analytics.url property to the private IP address of the MobileFirst

Analytics container. Example:
<jndiEntry jndiName="mfp.analytics.url" value="http://AnalyticsContainerPrivateIP:9080/analytics-service/rest"/>

Tip: When a private IP address changes, provide the new IP address in the
mfpfproperties.xml file and rebuild and deploy the container by running the
prepareserver.sh and starterserver.sh scripts respectively.

2. To ensure that the MobileFirst Analytics console can be accessed on the
network, set the mfp.analytics.console.url property to the public IP address
of the MobileFirst Analytics container. Example:
<jndiEntry jndiName="mfp.analytics.console.url" value="http://AnalyticsContainerPublicIP:9080/analytics/console"/>

Restricting access to the consoles running on containers:

You can restrict access to the MobileFirst Operations Console and the MobileFirst
Analytics Console in production environments by creating and deploying a Trust
Association Interceptor (TAI) to intercept requests to the consoles running on IBM
Containers.

About this task

The TAI can implement user-specific filtering logic that decides if a request is
forwarded to the console or if an approval is required. This method of filtering
provides the flexibility for you to add your own authentication mechanism if
needed.

See also: Developing a custom TAI for the Liberty profile

Procedure

1. Create a custom TAI that implements your security mechanism to control
access to the MobileFirst Operations Console. The following example of a
custom TAI uses the IP Address of the incoming request to validate whether to
provide access to the MobileFirst Operations Console or not.
package com.ibm.mfpconsole.interceptor;
import java.util.Properties;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.ibm.websphere.security.WebTrustAssociationException;
import com.ibm.websphere.security.WebTrustAssociationFailedException;
import com.ibm.wsspi.security.tai.TAIResult;
import com.ibm.wsspi.security.tai.TrustAssociationInterceptor;

public class MFPConsoleTAI implements TrustAssociationInterceptor {

String allowedIP =null;

public MFPConsoleTAI() {

Deploying MobileFirst Server to the cloud 9-29

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_dev_custom_tai.html

super();
}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#isTargetInterceptor
* (javax.servlet.http.HttpServletRequest)
*/

public boolean isTargetInterceptor(HttpServletRequest req)
throws WebTrustAssociationException {

//Add logic to determine whether to intercept this request

boolean interceptMFPConsoleRequest = false;
String requestURI = req.getRequestURI();

if(requestURI.contains("worklightConsole")) {
interceptMFPConsoleRequest = true;
}

return interceptMFPConsoleRequest;
}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#negotiateValidateandEstablishTrust
* (javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
*/

public TAIResult negotiateValidateandEstablishTrust(HttpServletRequest request,
HttpServletResponse resp) throws WebTrustAssociationFailedException {

// Add logic to authenticate a request and return a TAI result.
String tai_user = "MFPConsoleCheck";

if(allowedIP != null) {

String ipAddress = request.getHeader("X-FORWARDED-FOR");
if (ipAddress == null) {
ipAddress = request.getRemoteAddr();

}

if(checkIPMatch(ipAddress, allowedIP)) {
TAIResult.create(HttpServletResponse.SC_OK, tai_user);
}
else {
TAIResult.create(HttpServletResponse.SC_FORBIDDEN, tai_user);
}

}
return TAIResult.create(HttpServletResponse.SC_OK, tai_user);

}

private static boolean checkIPMatch(String ipAddress, String pattern) {

if (pattern.equals("*.*.*.*") || pattern.equals("*"))
return true;

String[] mask = pattern.split("\\.");
String[] ip_address = ipAddress.split("\\.");

for (int i = 0; i < mask.length; i++)
{
if (mask[i].equals("*") || mask[i].equals(ip_address[i]))

continue;
else

return false;
}
return true;
}

/*

9-30 IBM MobileFirst Platform Foundation V8.0.0

* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#initialize(java.util.Properties)
*/

public int initialize(Properties properties)
throws WebTrustAssociationFailedException {

if(properties != null) {
if(properties.containsKey("allowedIPs")) {
allowedIP = properties.getProperty("allowedIPs");
}
}

return 0;
}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#getVersion()
*/

public String getVersion() {
return "1.0";

}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#getType()
*/

public String getType() {
return this.getClass().getName();

}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#cleanup()
*/

public void cleanup()

{}
}

2. Export the custom TAI Implementation into a .jar file and place it in the
applicable env folder (mfpf-server/usr/env or mfpf-analytics/usr/env).

3. Create an XML configuration file that contains the details of the TAI interceptor
(see the TAI configuration example code provided in step 1) and then add your
.xml file to the applicable folder (mfpf-server/usr/config or
mfpf-analytics/usr/config). Your .xml file should resemble the following
example.

Tip: Be sure to update the class name and properties to reflect your
implementation.
<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">
<featureManager>

<feature>appSecurity-2.0</feature>
</featureManager>

<trustAssociation id="MFPConsoleTAI" invokeForUnprotectedURI="true"
failOverToAppAuthType="false">

<interceptors id="MFPConsoleTAI" enabled="true"
className="com.ibm.mfpconsole.interceptor.MFPConsoleTAI"
invokeBeforeSSO="true" invokeAfterSSO="false" libraryRef="MFPConsoleTAI">

<properties allowedIPs="9.182.149.*"/>
</interceptors>

</trustAssociation>

<library id="MFPConsoleTAI">
<fileset dir="${server.config.dir}" includes="MFPConsoleTAI.jar"/>

</library>

</server>

Deploying MobileFirst Server to the cloud 9-31

4. Build the image and run the container as described in “Building and running
the MobileFirst Server container” on page 9-15 or “Building and running the
MobileFirst Analytics container” on page 9-23. The MobileFirst Operations
Console and the Analytics Console are now accessible only when the
configured TAI security mechanism is satisfied.

Configuring App Transport Security (ATS):

This topic outlines how to configure App Transport Security (ATS) for MobileFirst
Server and MobileFirst Analytics containers.

Before you begin

Before you begin, review Requirements for Connecting Using ATS.

About this task

ATS configuration does not impact applications connecting from other, non-iOS,
mobile operating systems. Other mobile operating systems do not mandate that
servers communicate on the ATS level of security but can still communicate with
ATS-configured servers.

Before configuring your container image, have the generated certificates ready. The
following steps assume that the keystore file ssl_cert.p12 has the personal
certificate and ca.crt is the signing certificate.

Procedure

1. Copy the ssl_cert.p12 file to the mfpf-server/usr/security/ folder.
2. Modify the mfpf-server/usr/config/keystore.xml file similar to the following

example configuration:
<server>

<featureManager>
<feature>ssl-1.0</feature>

</featureManager>
<ssl id="defaultSSLConfig" sslProtocol="TLSv1.2" keyStoreRef="defaultKeyStore" enabledCiphers="TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384" />
<keyStore id="defaultKeyStore" location="ssl_cert.p12" password="*****" type="PKCS12"/>

</server>

v ssl-1.0 is added as a feature in the feature manager to enable the server to
work with SSL communication.

v sslProtocol="TLSv1.2" is added in the ssl tag to mandate that the server
communicates only on Transport Layer Security (TLS) version 1.2 protocol.
More than one protocol can be added. For example, adding
sslProtocol="TLSv1+TLSv1.1+TLSv1.2" would ensure that the server could
communicate on TLS V1, V1.1, and V1.2. (TLS V1.2 is required for iOS 9
apps.)

v enabledCiphers="TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384" is
added in the ssl tag so that the server enforces communication using only
that cipher.
More ciphers can be added to the list. The server will communicate with the
accepted iOS 9 ciphers that have been added to this list.

v The keyStore tag tells the server to use the new certificates that are created
as per the above requirements.

9-32 IBM MobileFirst Platform Foundation V8.0.0

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW35

What to do next

The following specific ciphers require Java Cryptography Extension (JCE) policy
settings and an additional JVM option:

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

If you use these ciphers and use an IBM Java SDK, you can download the policy
files. There are two files: US_export_policy.jar and local_policy.jar. Add both
the files to the mfpf-server/usr/security folder and then add the following JVM
option to the mfpf-server/usr/env/jvm.options file:
Dcom.ibm.security.jurisdictionPolicyDir=/opt/ibm/wlp/usr/servers/worklight/
resources/security/.

For development-stage purposes only, you can disable ATS by adding following
property to the info.plist file:
<key>NSAppTransportSecurity</key>

<dict>
<key>NSAllowsArbitraryLoads</key>
<true/>
</dict>

See also ATS and Bitcode in iOS 9.

LDAP configuration for containers:

You can configure an IBM MobileFirst Platform Foundation container to securely
connect out to an external LDAP repository.

The external LDAP registry can be used in a container for the following purposes:
v To configure the MobileFirst administration security with an external LDAP

registry.
v To configure the MobileFirst mobile applications to work with an external LDAP

registry.

Configuring administration security with LDAP:

Configure the MobileFirst administration security with an external LDAP registry

About this task

The configuration process includes the following steps:
v Setup and configuration of an LDAP repository
v Changes to the registry file (registry.xml)
v Configuration of a secure gateway to connect to a local LDAP repository and the

container. (You need an existing app on Bluemix for this step.)

Procedure

LDAP repository

Deploying MobileFirst Server to the cloud 9-33

https://www.ibm.com/marketing/iwm/iwm/web/preLogin.do?source=jcesdk
https://mobilefirstplatform.ibmcloud.com/blog/2015/09/09/ats-and-bitcode-in-ios9

1. Create users and groups in the LDAP repository. For groups, authorization is
enforced based on user membership.

Registry file
2. Open registry.xml and find the basicRegistry element. Replace the

basicRegistry element with code that is similar to the following snippet:
<ldapRegistry id="ldap"
host="1.234.567.8910" port="1234" ignoreCase="true"
baseDN="dc=worklight,dc=com"
ldapType="Custom"
sslEnabled="false"
bindDN="uid=admin,ou=system"
bindPassword="secret">
<customFilters userFilter="(&(uid=%v)(objectclass=inetOrgPerson))"
groupFilter="(&(member=uid=%v)(objectclass=groupOfNames))"
userIdMap="*:uid"
groupIdMap="*:cn"
groupMemberIdMap="groupOfNames:member"/>
</ldapRegistry>

Table 9-32. Descriptions of the ldapRegistry entries

Entry Description

host and port Host name (IP address) and port
number of your local LDAP
server.

baseDN The domain name (DN) in LDAP
that captures all details about a
specific organization.

bindDN="uid=admin,ou=system" Binding details of the LDAP
server. For example, the default
values for an Apache Directory
Service would be
uid=admin,ou=system.

bindPassword="secret" Binding password for the LDAP
server. For example, the default
value for an Apache Directory
Service is secret.

<customFilters userFilter="(&(uid=
%v)(objectclass=inetOrgPerson))"
groupFilter="(&(member=uid=
%v)(objectclass=groupOfNames))" userIdMap="*:uid"
groupIdMap="*:cn"
groupMemberIdMap="groupOfNames:member"/>

The custom filters that are used
for querying the directory service
(such as Apache) during
authentication and authorization.

3. Ensure that the following features are enabled for appSecurity-2.0 and
ldapRegistry-3.0:
<featureManager>
<feature>appSecurity-2.0</feature>
<feature>ldapRegistry-3.0</feature>
</featureManager>

For details about configuring various LDAP server repositories, see the
WebSphere Application Server Liberty Knowledge Center.
After you complete the registry.xml changes, configure a secure gateway to
connect to the local LDAP server.

Secure gateway

9-34 IBM MobileFirst Platform Foundation V8.0.0

http://www-01.ibm.com/support/knowledgecenter/was_beta_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ldap.html

To configure a secure gateway connection to your LDAP server, you must create an
instance of the Secure Gateway service on Bluemix and then obtain the IP
information for the LDAP registry. You need your local LDAP host name and port
number for this task.
4. Log on to Bluemix and navigate to Catalog, Category > Integration, and then

click Secure Gateway.
5. Under Add Service, select an app and then click CREATE. Now the service is

bound to your app.
6. Go to the Bluemix dashboard for the app, click on the Secure Gateway service

instance, and then click ADD GATEWAY.
7. Name the gateway and click ADD DESTINATIONS and enter the name, IP

address, and port for your local LDAP server.
8. Follow the prompts to complete the connection. To see the destination

initialized, navigate to the Destination screen of the LDAP gateway service.
9. To obtain the host and port information that you need, click the Information

icon on the LDAP gateway service instance (located on the Secure Gateway
dashboard). The details displayed are an alias to your local LDAP server.

10. Capture the Destination ID and Cloud Host : Port values. Go to the
registry.xml file and add these values, replacing any existing values. See the
following example of an updated code snippet in the registry.xml file:
<ldapRegistry id="ldap"
host="cap-sg-prd-5.integration.ibmcloud.com" port="15163" ignoreCase="true"
baseDN="dc=worklight,dc=com"
ldapType="Custom"
sslEnabled="false"
bindDN="uid=admin,ou=system"
bindPassword="secret">
<customFilters userFilter="(&(uid=%v)(objectclass=inetOrgPerson))"
groupFilter="(&(member=uid=%v)(objectclass=groupOfNames))"
userIdMap="*:uid"
groupIdMap="*:cn"
groupMemberIdMap="groupOfNames:member"/>
</ldapRegistry>

Configuring apps to work with LDAP:

Configure MobileFirst mobile apps to work with an external LDAP registry

About this task

The configuration process includes the following steps:
v Configuring a secure gateway to connect to a local LDAP repository and the

container. (You need an existing app on Bluemix for this step.)

Procedure

To configure a secure gateway connection to your LDAP server, you must create an
instance of the Secure Gateway service on Bluemix and then obtain the IP
information for the LDAP registry. You need your local LDAP host name and port
number for this step.
1. Log on to Bluemix and navigate to Catalog, Category > Integration, and then

click Secure Gateway.
2. Under Add Service, select an app and then click CREATE. Now the service is

bound to your app.

Deploying MobileFirst Server to the cloud 9-35

http://www.bluemix.net
http://www.bluemix.net

3. Go to the Bluemix dashboard for the app, click on the Secure Gateway service
instance, and then click ADD GATEWAY.

4. Name the gateway and click ADD DESTINATIONS and enter the name, IP
address, and port for your local LDAP server.

5. Follow the prompts to complete the connection. To see the destination
initialized, navigate to the Destination screen of the LDAP gateway service.

6. To obtain the host and port information that you need, click the Information
icon on the LDAP gateway service instance (located on the Secure Gateway
dashboard). The details displayed are an alias to your local LDAP server.

7. Capture the Destination ID and Cloud Host : Port values. Provide these values
for the LDAP login module.

Results

The communication between the MobileFirst app in the container on Bluemix with
your local LDAP server is established. The authentication and authorization from
the Bluemix app is validated against your local LDAP server.

Removing a container from Bluemix
When you remove a container from Bluemix, you must also remove the image
name from the registry.

Procedure
1. Run the following Cloud Foundry CLI plug-in for IBM Containers (cf ic)

commands to remove a container from Bluemix:
a. cf ic ps (Lists the containers currently running)
b. cf ic stop container_id (Stops the container)
c. cf ic rm container_id (Removes the container)

2. Run the following cf ic commands to remove an image name from the
Bluemix registry:
a. cf ic images (Lists the images in the registry)
b. cf ic rmi image_id (Removes the image from the registry)

Removing the database service configuration from Bluemix
If you ran the prepareserverdbs.sh script during the configuration of your V8.0.0
image, the configurations and database tables required for MobileFirst Server are
created. This script also creates the database schema.

About this task

To remove the database service configuration from Bluemix, perform the following
procedure using Bluemix dashboard.

Procedure
1. From the Bluemix dashboard, select the dashDB service you have used while

configuring the IBM MobileFirst Platform Foundation on IBM Containers.

Tip: Choose the dashDB service name that you had provided as parameter
while running the prepareserverdbs.sh script.

2. Launch the dashDB console to work with the schemas and database objects of
the selected dashDB service instance.

3. Select the schemas related to IBM MobileFirst Platform Foundation
configuration on IBM Containers.

9-36 IBM MobileFirst Platform Foundation V8.0.0

http://www.ng.bluemix.net/docs/containers/container_cli_ov.html#container_cli_cfic
http://console.ng.bluemix.net

Tip: The schema names are ones that you have provided as parameters while
running the prepareserverdbs.sh script.

4. Delete each of the schema after carefully inspecting the schema names and the
objects under them. The database configurations are removed from Bluemix.

Log and trace collection
IBM Containers for Bluemix provides some built-in logging and monitoring
capabilites around container CPU, memory, and networking. You can optionally
change the log levels for your MobileFirst containers.

The option to create log files for the MobileFirst Server and MobileFirst Analytics
containers is enabled by default (using level *=info). You can change the log levels
by either adding a code override manually or by injecting code using a given
script file.

Both container logs and server or runtime logs can be viewed from a Bluemix
logmet console by means of the Kibana visualization tool. Monitoring can be done
from a Bluemix logmet console by means of Grafana, an open source metrics
dashboard and graph editor.

When your IBM MobileFirst Platform Foundation container is created with a
Secure Shell (SSH) key and bound to a public IP address, a suitable private key can
be used to securely view the logs for the container instance.

Logging overrides:

You can change the log levels by either adding a code override manually or by
injecting code using a given script file.

Adding a code override manually to change the log level must be done when you
are first preparing the image. You must add the new logging configuration to the
package_root/mfpf-[analytics|server]/usr/config folder as a separate
configuration snippet, which gets copied to the configDropins/overrides folder on
the Liberty server.

Injecting code using a given script file to change the log level can be accomplished
by using certain command-line arguments when running any of the start*.sh
script files provided in the V8.0.0 package (startserver.sh, startanalytics.sh,
startservergroup.sh, startanalyticsgroup.sh). The following optional
command-line arguments are applicable:

[-tr|--trace] trace_specification
[-ml|--maxlog] maximum_number_of_log_files
[-ms|--maxlogsize] maximum_size_of_log_files

Accessing log files:

Logs are created for each container instance. You can access log files using the IBM
Container Cloud Service REST API, by using cf ic commands, or by using the
Bluemix logmet console.

IBM Container Cloud Service REST API

For any container instance, the docker.log and /var/log/rsyslog/syslog can be
viewed using the Bluemix logmet service (https://logmet.ng.bluemix.net/kibana/).
The log activities can be seen using the Kibana dashboard of the same.

Deploying MobileFirst Server to the cloud 9-37

IBM Containers CLI commands (cf ic exec) can be used to gain access to running
container instances. Alternatively, you can obtain container log files through Secure
Shell (SSH).

Enabling SSH

To enable SSH, copy the SSH public key to the package_root/[mfpf-server or
mfpf-analytics]/usr/ssh folder before you run the prepareserver.sh or the
prepareanalytics.sh scripts. This builds the image with SSH enabled. Any
container created from that particular image will have the SSH enabled.

If SSH is not enabled as part of the image customization, you can enable it for the
container using the SSH_ENABLE and SSH_KEY arguments when executing the
startserver.sh or startanalytics.sh scripts. You can optionally customize the
related script .properties files to include the key content.

The container logs endpoint gets stdout logs with the given ID of the container
instance.

Example: GET /containers/{container_id}/logs
X-Auth-Token - Bluemix JWT token (not prepended with ’bearer’)

X-Auth-Project-Id - Space GUID.

Accessing containers from the command line:

You can access running MobileFirst Server and MobileFirst Analytics container
instances from the command line to obtain logs and traces.

Before you begin

v The container instance must be in a running state.

Procedure

1. Create an interactive terminal within the container instance by running the
following command: cf ic exec -it container_instance_id "bash".

2. To locate the log files or traces, use the following command example:
container_instance@root# cd /opt/ibm/wlp/usr/servers/mfp
container_instance@root# vi messages.log

3. To copy the logs to your local workstation, use the following command
example:
my_local_workstation# cf ic exec -it container_instance_id
"cat" " /opt/ibm/wlp/usr/servers/mfp/messages.log" > /tmp/local_messages.log

Accessing containers using SSH:

You can get the syslogs and Liberty logs by using Secure Shell (SSH) to access your
MobileFirst Server and MobileFirst Analytics containers.

Before you begin

v SSH must be enabled for the container.

Tip: The SSH public key must be copied to the mfp-server\server\ssh folder
before you run the startserver.sh script.

v Volume has been enabled so that the log files are persisted.
v You need the public IP address of the container.

9-38 IBM MobileFirst Platform Foundation V8.0.0

If you are running a container group, you can bind a public IP address to each
instance and view the logs securely using SSH. To enable SSH, make sure to copy
the SSH public key to the mfp-server\server\ssh folder before you run the
startservergroup.sh script.

Procedure

v Make an SSH request to the container. Example: mylocal-workstation# ssh -i
~/ssh_key_directory/id_rsa root@public_ip

v Archive the log file location. Example:
container_instance@root# cd /opt/ibm/wlp/usr/servers/mfp

container_instance@root# tar czf logs_archived.tar.gz logs/

v Download the log archive to your local workstation. Example:
mylocal-workstation# scp -i ~/ssh_key_directory/id_rsa
root@public_ip:/opt/ibm/wlp/usr/servers/mfp/logs_archived.tar.gz
/local_workstation_dir/target_location/

Container log files:

This topic contains information about V8.0.0 log file locations and persistence.

Log files are generated for MobileFirst Server and Liberty Profile runtime activities
for each container instance and can be found in the following locations:
v /opt/ibm/wlp/usr/servers/mfp/logs/messages.log

v /opt/ibm/wlp/usr/servers/mfp/logs/console.log

v /opt/ibm/wlp/usr/servers/mfp/logs/trace.log

v /opt/ibm/wlp/usr/servers/mfp/logs/ffdc/*

You can log in to the container by following the steps in Accessing log files and
access the log files.

To persist log files, even after a container no longer exists, enable volume. (Volume
is not enabled by default.) Having volume enabled can also allow you to view the
logs from Bluemix using the logmet interface (such as https://
logmet.ng.bluemix.net/kibana).

Enabling volume

Volume allows for containers to persist log files. The volume for MobileFirst Server
and MobileFirst Analytics container logs is not enabled by default.

You can enable volume when running the start*.sh scripts by setting
ENABLE_VOLUME [-v | --volume] to Y. This is also configurable in the
args/startserver.properties and args/startanalytics.properties files for
interactive execution of the scripts.

The persisted log files are saved in the /var/log/rsyslog and /opt/ibm/wlp/usr/
servers/mfp/logs folders in the container.

The logs can be accessed by issuing an SSH request to the container.

See related information for more details on usage of startserver.sh,
startservergroup.sh, startanalytics.sh and startanalyticsgroup.sh.
Related concepts:

Deploying MobileFirst Server to the cloud 9-39

“MobileFirst Analytics containers” on page 9-21
This section contains the information you need to configure and run MobileFirst
Analytics containers.
Related reference:
“Script overview and usage” on page 9-18
Use the scripts for configuring, building, and deploying a MobileFirst Server
container image.

Troubleshooting tips
Here are tips for resolving common problems that might occur.

Docker-related error while running script:

If you encounter Docker-related errors after executing the initenv.sh or
prepareserver.sh scripts, try restarting the Docker service.

Example message:
* Pulling repository docker.io/library/ubuntu
* Error while pulling image: Get https://index.docker.io/v1/repositories/library/ubuntu/images: dial tcp: lookup index.docker.io on 192.168.0.0:00: DNS message ID mismatch

Explanation

The error could occur when the internet connection has changed (such as
connecting to or disconnecting from a VPN or network configuration changes) and
the Docker runtime environment has not yet restarted. In this scenario, errors
would occur when any Docker command is issued.

How to resolve

Restart the Docker service. If the error persists, reboot the computer and then
restart the Docker service.

Bluemix registry error:

If you encounter a registry-related error after executing the prepareserver.sh or
prepareanalytics.sh scripts, try running the initenv.sh script first.

Explanation

In general, any network problems that occur while the prepareserver.sh or
prepareanalytics.sh scripts are running could cause processing to hang and then
fail.

How to resolve

First, run the initenv.sh script again to log in to the container registry on Bluemix.
Then, rerun the script that previously failed.

Unable to create the mfpfsqldb.xml file:

An error occurs at the end of running the prepareserverdbs.sh script: Error :
unable to create mfpfsqldb.xml

9-40 IBM MobileFirst Platform Foundation V8.0.0

How to resolve

The problem might be an intermittent database connectivity issue. Try to run the
script again.

Taking a long time to push image:

When running the prepareserver.sh script, it takes more than 20 minutes to push
an image to the IBM Containers registry.

Explanation

The prepareserver.sh script pushes the entire IBM MobileFirst Platform Foundation
stack, which can take from 20 to 60 minutes.

How to resolve

If the script has not completed after a 60-minute time period has elapsed, the
process might be hung because of a connectivity issue. After a stable connection is
reestablished, restart the script.

Binding is incomplete error:

When running a script to start a container (such as startserver.sh or
startanalytics.sh) you are prompted to manually bind an IP address because of an
error that the binding is incomplete.

Explanation

The script is designed to exit after a certain time duration has passed.

How to resolve

Manually bind the IP address by running the related cf ic command. For
example, cf ic ip bind.

If binding the IP address manually is not successful, ensure that the status of the
container is running and then try binding again.

Note: Containers must be in a running state to be bound successfully.

Script fails and returns message about tokens:

Running a script is not successful and returns a message similar to Refreshing cf
tokens or Failed to refresh token.

Explanation

The Bluemix session might have timed-out. The user must be logged in to Bluemix
before running the container scripts.

How to resolve

Run the initenv.sh script again to log in to Bluemix and then run the failed script
again.

Deploying MobileFirst Server to the cloud 9-41

Administration DB, Live Update and Push Service show up as inactive:

Administration DB, Live Update and Push Service show up as inactive or no
runtimes are listed in the IBM MobileFirst Platform Operations Console even
though the prepareserver.sh script completed successfully.

Explanation

It is possible that a either a connection to the database service did not get
established or that a formatting problem occurred in the server.env file when
additional values were appended during deployment.

If additional values were added to the server.env file without new line characters,
the properties would not resolve. You can validate this potential problem by
checking the log files for errors caused by unresolved properties that look similar
to this error:
FWLSE0320E: Failed to check whether the admin services are ready. Caused by: [project Sample] java.net.MalformedURLException: Bad host: "${env.IP_ADDRESS}"

How to resolve

Manually restart the containers. If the problem still exists, check to see if the
number of connections to the database service exceeds the number of connections
provisioned by your database plan. If so, make any needed adjustments before
proceeding.

If the problem was caused by unresolved properties, ensure that your editor adds
the linefeed (LF) character to demarcate the end of a line when editing any of the
provided files. For example, the TextEdit app on OS X might use the CR character
to mark the end of line instead of LF, which would cause the issue.

prepareserver.sh script fails:

The prepareserver.sh script fails and returns the error 405 Method Not Allowed.

Explanation

The following error occurs when running the prepareserver.sh script to push the
image to the IBM Containers registry.
Pushing the MobileFirst Server image to the IBM Containers registry..

Error response from daemon: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>405 Method Not Allowed</title>
<h1>Method Not Allowed</h1>
<p>The method is not allowed for the requested URL.</p>

This error typically occurs if the Docker variables have been modified on the host
environment. After executing the initenv.sh script, the tooling provides an option
to override the local docker environment to connect to IBM Containers using
native docker commands.

How to resolve

Do not modify the Docker variables (such as DOCKER_HOST and
DOCKER_CERT_PATH) to point to the IBM Containers registry environment. For
the prepareserver.sh script to work correctly, the Docker variables must point to
the local Docker environment.

9-42 IBM MobileFirst Platform Foundation V8.0.0

Applying IBM MobileFirst Platform Foundation interim fixes
Interim fixes for IBM MobileFirst Platform Foundation V8.0.0 on IBM Containers
can be obtained from IBM Fix Central (http://www.ibm.com/support/fixcentral).

Before you begin

Before you apply an interim fix, back up your existing configuration files. The
configuration files are located in the package_root/mfpf-analytics/usr and
package_root/mfpf-server/usr folders.

Procedure
1. After you back up the existing configuration files, download the interim fix

archive and extract the contents to your existing installation folder, overwriting
the existing files.

2. Restore your backed-up configuration files into the /mfpf-analytics/usr and
/mfpf-server/usr folders, overwriting the newly installed configuration files.

Results

The interim fix has been applied successfully. You can now build and deploy new
production-level containers.

Related links:
v IBM MobileFirst Platform Foundation V8.0.0 products
v IBM Passport Advantage
v IBM Fix Central

Resolving problems with IBM MobileFirst Platform Foundation
deployed in IBM Containers or as Liberty for Java Cloud Foundry
application on IBM Bluemix
When you are unable to resolve a problem encountered while working with IBM
MobileFirst Platform Foundation on IBM Containers, be sure to gather this key
information before contacting IBM Support.

To help expedite the troubleshooting process, gather the following information:
v The version of IBM MobileFirst Platform Foundation that you are using (must be

V8.0.0 or later) and any interim fixes that were applied.
v The container size selected. For example, Medium 2GB.
v The Bluemix dashDB database plan type. For example,

EnterpriseTransactional2.8.50.
v The container ID
v The public IP address (if assigned)
v Versions of docker and cloud foundry

cf -v

docker version

v The information returned from running the following Cloud Foundry CLI
plug-in for IBM Containers (cf ic) commands from the organization and space
where your IBM MobileFirst Platform Foundation container is deployed:

cf ic info

cf ic ps -a (If more than one container instance is listed, make sure to
indicate the one with the problem.)

Deploying MobileFirst Server to the cloud 9-43

https://www-947.ibm.com/support/entry/portal/product/other_software/ibm_mobilefirst_platform_foundation?productContext=-45999973
http://www.ibm.com/software/passportadvantage
https://ibm.biz/BdHs3t
http://www.ng.bluemix.net/docs/containers/container_cli_ov.html#container_cli_cfic
http://www.ng.bluemix.net/docs/containers/container_cli_ov.html#container_cli_cfic

v If Secure Shell (SSH) and volumes were enabled during container creation (while
running the startServer.sh script), collect all files in the following folders:

/opt/ibm/wlp/usr/servers/mfp/logs

/var/log/rsyslog/syslog

v If only volume was enabled and SSH was not, collect the available log
information using the Bluemix dashboard. After you click on the container
instance in the Bluemix dashboard, click the Monitoring and Logs link in the
sidebar. Go to the Logging tab and then click ADVANCED VIEW. The Kibana
dashboard opens separately. Using the search toolbar, search for the exception
stack trace and then collect the complete details of the exception, @time-stamp,
_id.

Deploying MobileFirst Server on IBM PureApplication System
IBM MobileFirst Platform Foundation provides the capability to deploy and
manage IBM MobileFirst Platform Server and MobileFirst applications on IBM
PureApplication System and IBM PureApplication Service on SoftLayer.

IBM MobileFirst Platform Foundation in combination with IBM PureApplication
System and IBM PureApplication Service on SoftLayer provides a simple and
intuitive environment for developers and administrators, to develop mobile
applications, test them, and deploy them to the cloud. This version of IBM
MobileFirst Platform Foundation System Pattern provides MobileFirst runtime and
artifacts support for the PureApplication Virtual System Pattern technologies that
are included in the most recent versions of IBM PureApplication System and IBM
PureApplication Service on SoftLayer. Classic Virtual System Pattern was
supported in earlier versions of IBM PureApplication System.

Key benefits

IBM MobileFirst Platform Foundation System Pattern provides the following
benefits:
v Predefined templates enable you to build patterns in a simple way for the most

typical MobileFirst Server deployment topologies.
Examples of the topologies are:
– IBM WebSphere Application Server Liberty profile single node
– IBM WebSphere Application Server Liberty profile multiple nodes
– IBM WebSphere Application Server full profile single node
– IBM WebSphere Application Server full profile multiple nodes
– Clusters of WebSphere Application Server Network Deployment servers
In V8.0.0 MobileFirst Application Center, deployment topologies such as:
– IBM WebSphere Application Server Liberty profile single node
– IBM WebSphere Application Server full profile single node

v Script packages act as building blocks to compose extended deployment
topologies such as automating the inclusion of an analytics server in a pattern
and flexible DB VM deployment options. WebSphere Application Server and
DB2 script packages are available through the inclusion of WebSphere
Application Server and DB2 pattern types.

v Optional JNDI properties in the runtime deployment script package allow
fine-grained tuning for the deployment topology. In addition, deployment
topologies that are built with IBM WebSphere Application Server full profile

9-44 IBM MobileFirst Platform Foundation V8.0.0

now support accessing the WebSphere Application Server Administration
Console, which gives you full control over the configuration of the application
server.

Important restrictions

Depending on the pattern template you use, do not change some of the component
attributes. If you change any of these component attributes, the deployment of
patterns that are based on these templates fails.

MobileFirst Platform (Application Center Liberty single node)
Do not change the values for the following attributes in the Liberty profile
server:
v WebSphere product Installation directory

v Configuration data location

v Liberty profile server name

v Under Install an IBM Java SDK, select only Java SDK V7.0 or Java
SDK V7.1

v Select the Install additional features and clear the selection of IBM
WebSphere eXtreme Scale.

MobileFirst Platform (Application Center WebSphere Application Server single
node) Do not change the values for the following attributes in the Liberty profile

server:
v WebSphere product Installation directory

v Configuration data location

v Cell name

v Node name

v Profile name

v Under Install an IBM Java SDK, select only Java SDK V7.0 or Java
SDK V7.1

v Select the Install additional features and clear the selection of IBM
WebSphere eXtreme Scale.

MobileFirst Platform (Liberty single node)
Do not change the values for the following attributes in the Liberty profile
server:
v WebSphere product Installation directory

v Configuration data location

v Liberty profile server name

v Under Install an IBM Java SDK, select only Java SDK V7.0 or Java
SDK V7.1

v Select the Install additional features and clear the selection of IBM
WebSphere eXtreme Scale.

MobileFirst Platform (Liberty server farm)
Do not change the values for the following attributes in the Liberty profile
server:
v WebSphere product Installation directory

v Configuration data location

v Liberty profile server name

v Under Install an IBM Java SDK, select only Java SDK V7.0 or Java
SDK V7.1

Deploying MobileFirst Server to the cloud 9-45

v Select the Install additional features and clear the selection of IBM
WebSphere eXtreme Scale.

MobileFirst Platform (WebSphere Application Server single node) template
In the Standalone server component of the MobileFirst Platform Server
node, do not unlock or change the values for any of the following
attributes:
v Cell name

v Node name

v Profile name

If you change any of these attributes, your pattern deployment fails.

MobileFirst Platform (WebSphere Application Server server farm) template
In the Standalone server component of the MobileFirst Platform Server
node, do not unlock or change the values for any of the following
attributes:
v Cell name

v Node name

v Profile name

If you change any of these attributes, your pattern deployment fails.

MobileFirst Platform (WebSphere Application Server Network Deployment)
template

In the Deployment manager component of the DmgrNode node or the
Custom nodes component of the CustomNode node, do not unlock or
change the values for any of the following attributes:
v Cell name

v Node name

v Profile name

If you change any of these attributes, your pattern deployment fails.

Limitations

The following limitations apply:
v Dynamic scaling for WebSphere Application Server Liberty profile server farms

and WebSphere Application Server full profile server farms is not supported.
The number of server farm nodes can be specified in the pattern by setting the
scaling policy but cannot be changed during run time.

v The IBM MobileFirst Platform Foundation System Pattern Extension for
MobileFirst Studio and Ant command-line interface that is supported in versions
earlier than V7.0 are not available in this version of IBM MobileFirst Platform
Foundation System Pattern.

v IBM MobileFirst Platform Foundation System Pattern depends on WebSphere
Application Server Patterns, which has its own restrictions. For more
information, see Restrictions for WebSphere Application Server Patterns.

v Due to restrictions in the uninstallation of Virtual System Patterns, you must
delete the script packages manually after you delete the pattern type. In IBM
PureApplication System, go to Catalog > Script Packages to delete the script
packages that are listed in the “Components” on page 9-47 section.

9-46 IBM MobileFirst Platform Foundation V8.0.0

http://ibm.biz/knowctr#SSAJ7T_1.0.0/com.ibm.websphere.waspatt20base.doc/ae/rins_patternsB_restrictions.html

v The MobileFirst Platform (WebSphere Application Server Network
Deployment) pattern template does not support token licensing. If you want to
use this pattern, you must use perpetual licensing. All other patterns support
token licensing.

Composition

IBM MobileFirst Platform Foundation System Pattern is composed of the following
patterns:
v IBM WebSphere Application Server Network Deployment Patterns 2.2.0.0.
v [PureApplication Service] WebSphere 8558 for Mobile IM repository to allow the

WebSphere Application Server Network Deployment Patterns to work. Contact
the administrator for IBM PureApplication System to confirm that the
WebSphere 8558 IM repository is installed.

v IBM DB2 with BLU Acceleration® Pattern 1.2.4.0.
v IBM MobileFirst Platform Foundation System Pattern.

Components

In addition to all components provided by IBM WebSphere Application Server
Pattern and IBM DB2 with BLU Acceleration Pattern, IBM MobileFirst Platform
Foundation System Pattern provides the following Script Packages:
v MFP Administration DB
v MFP Runtime DB
v MFP Server Prerequisite
v MFP Server Administration
v MFP Server Runtime Deployment
v MFP Server Application Adapter Deployment
v MFP IHS Configuration
v MFP Analytics
v “MFP Open Firewall Ports for WAS” on page 9-113
v “MFP WAS SDK Level” on page 9-114
v “MFP Server Application Center” on page 9-120

Compatibility between pattern types and artifacts created with
different product versions

If you use MobileFirst Studio V6.3.0 or earlier to develop your applications, you
can upload the associated runtime, application, and adapter artifacts into patterns
associated with IBM MobileFirst Platform Foundation V7.0.0 and later.

Pattern types that are associated with IBM MobileFirst Platform Foundation V6.3.0
or earlier are not compatible with runtime, application, and adapter artifacts
created by using MobileFirst Studio V7.0.0 and later.

For versions V6.0.0 and earlier, only the same versions of server, .war file,
application (.wlapp file), and adapters are compatible.

Installing IBM MobileFirst Platform Foundation System Pattern
You use the PureApplication System Workload Console to install IBM MobileFirst
Platform Foundation System Pattern.

Deploying MobileFirst Server to the cloud 9-47

Before you begin

You can find the vsys.mobilefirst-8.0.0.0.tgz file in the
mobilefirst_patterns_8.0.0.zip file. Make sure you extract it before you start this
procedure.

Procedure
1. Log in to IBM PureApplication System with an account that has permission to

create new pattern types.
2. Go to Catalog > Pattern Types.
3. Upload the IBM MobileFirst Platform Foundation System Pattern .tgz file:

a. On the toolbar, click +. The “Install a pattern type” window opens.
b. On the Local tab, click Browse, select the IBM MobileFirst Platform

Foundation System Pattern .tgz file, and then wait for the upload process
to complete. The pattern type is displayed in the list and is marked as not
enabled.

4. In the list of pattern types, click the uploaded pattern type. Details of the
pattern type are displayed.

5. In the License Agreement row, click License. The License window is displayed
stating the terms of the license agreement.

6. To accept the license, click Accept. Details of the pattern type now show that
the license is accepted.

7. In the Status row, click Enable. The pattern type is now listed as being enabled.
8. Mandatory for PureApplication Service: After the pattern type is enabled

successfully, go to Catalog > Script Packages and select script packages with
names similar to “MFP ***”. On the details page to the right, accept the license
in the License agreement field. Repeat for all eleven script packages listed in
the “Components” on page 9-47 section.

Token licensing requirements for IBM MobileFirst Platform
Foundation System Pattern

If you use token licensing to license IBM MobileFirst Platform Foundation, you
must install IBM Rational License Key Server and configure with your licenses
before you deploy the MobileFirst Platform Pattern.

Important: The MobileFirst Platform (WAS ND) pattern template does not
support token licensing. You must be using perpetual licensing when you deploy
patterns based on the MobileFirst Platform (WAS ND) pattern template. All other
pattern templates support token licensing.

Your IBM Rational License Key Server must be external to your PureApplication
System. MobileFirst Platform Pattern do not support the PureApplication System
shared service for IBM Rational License Key Server.

In addition, you must know the following information about your Rational License
Key Server to add the license key server information to your pattern attributes:
v Fully qualified host name or IP address of your Rational License Key Server
v License manager daemon (lmgrd) port
v Vendor daemon (ibmratl) port

If you have a firewall between your Rational License Key Server and your
PureApplication System, ensure that both daemon ports are open in your firewall.

9-48 IBM MobileFirst Platform Foundation V8.0.0

The deployment of MobileFirst Platform Pattern fails if the license key server
cannot be contacted or if insufficient license tokens are available.

For details about installing and configuring Rational License Key Server, see IBM
Support - Rational licensing start page.

Deploying MobileFirst Server on a single-node WebSphere
Application Server Liberty profile server

You use a predefined template to deploy MobileFirst Server on a single-node
WebSphere Application Server Liberty profile server.

Before you begin

This procedure involves uploading certain artifacts to IBM PureApplication System
such as the required application and adapter. Before you begin, ensure that the
artifacts are available for upload.

Token licensing requirements: If you use token licensing to license IBM
MobileFirst Platform Foundation, review the requirements outlined in “Token
licensing requirements for IBM MobileFirst Platform Foundation System Pattern”
on page 9-48 before you continue. The deployment of this pattern fails if the
license key server cannot be contacted or if insufficient license tokens are available.

About this task

Note:

Some parameters of script packages in the template have been configured with the
recommended values and are not mentioned in this section. For fine-tuning
purposes, see more information about all the parameters of script packages in
“Script packages for MobileFirst Server” on page 9-108.

For more information about the composition and configuration options of the
predefined template that is used in this procedure, see “MobileFirst Platform
(Liberty single node) template” on page 9-98.

Procedure
1. Create a pattern from the predefined template:

a. In the IBM PureApplication System dashboard, click Patterns > Virtual
System Patterns. The Virtual System Patterns page opens.

b. On the Virtual System Patterns page, click Create New, and then in the
pop-up window, select MobileFirst Platform (Liberty single node) from the
list of predefined templates. If the name is only partially visible due to its
length, you can confirm that the correct template is selected by viewing its
description on the More information tab.

c. In the Name field, provide a name for the pattern.
d. In the Version field, specify the version number of the pattern.
e. Click Start Building.

2. Mandatory for AIX: In IBM PureApplication System running on Power®, the
MobileFirst Platform DB node needs to use the AIX-specific add-on component
“Default AIX add disk” to replace the “Default add disk” component in the
template to support the jfs2 file system:
a. In the Pattern Builder, select the MobileFirst Platform DB node.

Deploying MobileFirst Server to the cloud 9-49

http://www.ibm.com/software/rational/support/licensing/
http://www.ibm.com/software/rational/support/licensing/

b. Click the Add a Component Add-on button (the button is visible above the
component box when you hover the cursor over the MobileFirst Platform
DB node).

c. From the Add Add-ons list, select Default AIX add disk. The component is
added as the lowest component of the MobileFirst Platform DB node.

d. Select the Default AIX add disk component and specify the following
attributes:

DISK_SIZE_GB
Storage size (measured in GB) to be extended to the DB server. Example
value: 10.

FILESYSTEM_TYPE
Supported file system in AIX. Default value: jfs2.

MOUNT_POINT
Align with the attribute Mount point for instance owner in the
Database Server component in the MobileFirst Platform DB node.
Example value: /dbinst.

VOLUME_GROUP
Example value: group1. Contact your IBM PureApplication System
administrator for the correct value.

e. In the MobileFirst Platform DB node, select the Default add disk
component, and then click the bin icon to delete it.

f. Save the pattern.
3. Optional: Configure MobileFirst Server administration. You can skip this step if

you want to specify the user credential with MobileFirst Server administration
privilege later during the pattern deployment configuration phase in step 9. To
specify it now, complete these steps:

Note: If you want to configure administration security with an LDAP server,
you need to supply additional LDAP information. For more information, see
“Configuring MobileFirst administration security with an external LDAP
repository” on page 9-86.
a. In the MobileFirst Platform Server node, click the MFP Server

Administration component. The properties of the selected component are
displayed next to the canvas.

b. Next to the admin_user and admin_password fields, click the Delete
button to clear their pattern level parameter settings.

c. In the admin_user and admin_password fields, specify the administration
user name and password.

d. If you use token licensing to license IBM MobileFirst Platform Foundation,
complete the following fields. If you do not use token licensing, leave these
fields blank.

ACTIVATE_TOKEN_LICENSE
Select this field to license your pattern with token licensing.

LICENSE_SERVER_HOSTNAME
Enter the fully qualified host name or IP address of your Rational
License Key Server.

LMGRD_PORT
Enter the port number that the license manager daemon (lmrgd) listens
for connections on. The default license manager daemon port is 27000.

9-50 IBM MobileFirst Platform Foundation V8.0.0

IBMRATL_PORT
Enter the port number that the vendor daemon (ibmratl) listens for
connections on. The default vendor daemon port is typically 27001.

A default administration account for MobileFirst Server is created during
pattern deployment.

4. Optional: Configure MobileFirst Server runtime deployment. You can skip this
step if you want to specify the context root name for the runtime later during
the pattern deployment configuration phase in step 9. To specify the context
root name now, complete these steps:
a. In the MobileFirst Platform Server node, click the MFP Server Runtime

Deployment component. The properties of the selected component are
displayed next to the canvas.

b. Next to the runtime_contextRoot field, click the Delete button to clear the
pattern level parameter setting.

c. In the runtime_contextRoot field, specify the runtime context root name.
Note that the context root name must start with a forward slash, /; for
example, /HelloWorld.

5. Upload application and adapter artifacts:

Important: When specifying the Target path for applications and adapters,
make sure all the applications and adapters are placed in the same directory.
For example, if one target path is /opt/tmp/deploy/HelloWorld-common.json, all
the other target paths should be /opt/tmp/deploy/*.
a. In the MobileFirst Platform Server node, click the MFP Server Application

or MFP Server Adapter component. The properties of the selected
component are displayed next to the canvas.

b. In the Additional file field, click the Browse button to locate and upload
the application or adapter artifact.

c. In the Target path field, specify the full path for storing the artifact
including its file name; for example, /opt/tmp/deploy/HelloWorld-
common.json.

d. If no application or adapter is to be deployed in the pattern, remove the
relevant component by clicking the X button inside it. To get an empty
MobileFirst Operations Console deployed without any app or adapter
installed, remove the MFP Server Application Adapter Deployment
component by clicking the X button inside it.

6. Optional: Add more application or adapter artifacts for deployment:
a. From the Assets toolbar, expand Software Components, and then drag and

drop an Additional file component onto the MobileFirst Paltform Server
node in the canvas. Rename it MobileFirst App_X or MobileFirst Adatper_X
(where X stands for a unique number for differentiation).

b. Hover the cursor over the newly added App or Adapter component, and
then click the Move Up and Move Down buttons to adjust its sequence in
the node. Make sure it is placed after the MFP Runtime Deployment
component but before the MFP Server Application Adapter Deployment
component.

c. Click the newly added application or adapter component. The properties of
the selected component are displayed next to the canvas. Upload the
application or adapter artifact and specify its target path by referring to
steps 6b-c

d. Repeat steps 7a-c to add more applications and adapters for deployment.

Deploying MobileFirst Server to the cloud 9-51

7. Optional: Configure application and adapter deployment to MobileFirst Server.
You can skip this step if you want to specify the user credential with
deployment privilege later during the pattern deployment configuration phase
in step 9. If you have specified the default admin user credential in step 3, you
can now specify the deployer user, which must align with the admin user
credential:
a. In the MobileFirst Platform Server node, select the MFP Server Application

Adapter Deployment component. The properties of the selected component
are displayed next to the canvas.

b. Find the parameters named deployer_user and deployer_password, and
then click the adjacent Delete buttons to clear the pattern level parameter
settings.

c. In the deployer_user and deployer_password fields, specify the user name
and password.

8. Configure and launch the pattern deployment:
a. In the IBM PureApplication System dashboard, click Patterns > Virtual

System Patterns.
b. On the Virtual System Patterns page, use the Search field to find the pattern

you created, and then select the pattern.
c. In the toolbar above the panel displaying detailed information about the

pattern, click the Deploy button.
d. In the Deploy Pattern window, in the Configure panel, select the correct

environment profile from the Environment Profile list, and provide other
IBM PureApplication System environment parameters. To obtain the correct
information, consult your IBM PureApplication System administrator.

e. In the middle column, click Pattern attributes to display attributes such as
user names and passwords.
Supply the following information in the fields provided:

Note: Make appropriate changes to the default values of the pattern-level
parameters even if an external LDAP server is configured. If you configure
administration security by using an LDAP server, you need to supply
additional LDAP information. For more information, see “Configuring
MobileFirst administration security with an external LDAP repository” on
page 9-86.

admin_user
Not visible if configured in step 3. Create a default MobileFirst Server
administrator account. Default value: demo.

admin_password
Not visible if configured in step 3. Default admin account password.
Default value: demo.

ACTIVATE_TOKEN_LICENSE
Not visible if configured in step 3. Select this field to license your
pattern with token licensing. Leave this field clear if you use perpetual
licenses.

LICENSE_SERVER_HOSTNAME
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the fully-qualified
hostname or IP address of your Rational License Key Server IP address.
Otherwise, leave this field blank.

9-52 IBM MobileFirst Platform Foundation V8.0.0

LMGRD_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
license manager daemon (lmrgd) listens for connections on. Otherwise,
leave this field blank.

The default license manager daemon port is 27000.

IBMRATL_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
vendor daemon (ibmratl) listens for connections on. Otherwise, leave
this field blank.

The default vendor daemon port is typically 27001.

runtime_contextRoot
Not visible if configured in step 5. Context root name for the
MobileFirst Server runtime. The name must start with “/”.

deployer_user
Not visible if configured in step 8. User name for the account with
deployment privilege. If an external LDAP server is not configured, you
must enter the same value as was specified when creating the default
admin user for the administration service, because in this case, the only
authorized user for app and adapter deployment is the default admin
user.

deployer_password
Not visible if configured in step 8. User password for the user with
deployment privilege.

MFP Vms Password(root)
Root password for the MobileFirst Platform Server and MobileFirst
Platform DB nodes. Default value: passw0rd.

MFP DB Password(Instance owner)

Instance owner password for the MobileFirst Platform DB node. Default
value: passw0rd.

f. Click Quick Deploy to launch your pattern deployment. After a few
seconds, a message is displayed to indicate that the pattern has started to
launch. You can click the URL provided in the message to track your pattern
deployment status or go to Patterns > Virtual System Instances to open the
Virtual System Instances page and search for your pattern there.

If you use token licensing to licenseIBM MobileFirst Platform Foundation, your
pattern will fail to deploy if insufficient license tokens are available or if the
license key server IP address and port were entered incorrectly.

9. Access the MobileFirst Operations Console:
a. Click Patterns > Virtual System Instances to open the Virtual System

Instances page and search for your pattern there. Make sure it is in Running
state.

b. Select the pattern name and expand the Virtual machine perspective option
in the panel displaying details of the selected instance.

c. Find the MobileFirst Server VM that has a name similar to
MobileFirst_Platform_Server.* and make a note of its Public IP address:
you need this information in the following step.

Deploying MobileFirst Server to the cloud 9-53

d. In the browser, open the MobileFirst Operations Console by composing its
URL with one of the following formats:
v http://{MFP Server VM Public IP}:9080/mfpconsole

v https://{MFP Server VM Public IP}:9443/mfpconsole

e. Log in to the Console with admin user and password specified in step 3 or
step 9.

Deploying MobileFirst Server on a multiple-node WebSphere
Application Server Liberty profile server

You use a predefined template to deploy MobileFirst Server on a multiple-node
WebSphere Application Server Liberty profile server.

Before you begin

This procedure involves uploading certain artifacts to IBM PureApplication System
such as the required application and adapter. Before you begin, ensure that the
artifacts are available for upload.

Token licensing requirements: If you use token licensing to license IBM
MobileFirst Platform Foundation, review the requirements outlined in “Token
licensing requirements for IBM MobileFirst Platform Foundation System Pattern”
on page 9-48 before you continue. The deployment of this pattern fails if the
license key server cannot be contacted or if insufficient license tokens are available.

About this task

Note:

Some parameters of script packages in the template have been configured with the
recommended values and are not mentioned in this section. For fine-tuning
purposes, see more information about all the parameters of script packages in
“Script packages for MobileFirst Server” on page 9-108.

For more information about the composition and configuration options of the
predefined template that is used in this procedure, see “MobileFirst Platform
(Liberty server farm) template” on page 9-99.

Procedure
1. Create a pattern from the predefined template:

a. In the IBM PureApplication System dashboard, click Patterns > Virtual
System Patterns. The Virtual System Patterns page opens.

b. On the Virtual System Patterns page, click Create New, and then in the
pop-up window, select MobileFirst Platform (Liberty server farm) from
the list of predefined templates. If the name is only partially visible due to
its length, you can confirm that the correct template is selected by viewing
its description on the More information tab.

c. In the Name field, provide a name for the pattern.
d. In the Version field, specify the version number of the pattern.
e. Click Start Building.

2. Mandatory for AIX: In IBM PureApplication System running on Power, the
MobileFirst Platform DB node needs to use the AIX-specific add-on
component “Default AIX add disk” to replace the “Default add disk”
component in the template to support the jfs2 file system:

9-54 IBM MobileFirst Platform Foundation V8.0.0

a. In the Pattern Builder, select the MobileFirst Platform DB node.
b. Click the Add a Component Add-on button (the button is visible above

the component box when you hover the cursor over the MobileFirst
Platform DB node).

c. From the Add Add-ons list, select Default AIX add disk. The component
is added as the lowest component of the MobileFirst Platform DB node.

d. Select the Default AIX add disk component and specify the following
attributes:

DISK_SIZE_GB
Storage size (measured in GB) to be extended to the DB server.
Example value: 10.

FILESYSTEM_TYPE
Supported file system in AIX. Default value: jfs2.

MOUNT_POINT
Align with the attribute Mount point for instance owner in the
Database Server component in the MobileFirst Platform DB node.
Example value: /dbinst.

VOLUME_GROUP
Example value: group1. Contact your IBM PureApplication System
administrator for the correct value.

e. In the MobileFirst Platform DB node, select the Default add disk
component, and then click the bin icon to delete it.

f. Save the pattern.
3. Optional: Configure MobileFirst Server administration. You can skip this step

if you want to specify the user credential with MobileFirst Server
administration privilege later during the pattern deployment configuration
phase in step 9. To specify it now, complete these steps:

Note: If you want to configure administration security with an LDAP server,
you need to supply additional LDAP information. For more information, see
“Configuring MobileFirst administration security with an external LDAP
repository” on page 9-86.
a. In the MobileFirst Platform Server node, click the MFP Server

Administration component. The properties of the selected component are
displayed next to the canvas.

b. Next to the admin_user and admin_password fields, click the Delete
button to clear their pattern level parameter settings.

c. In the admin_user and admin_password fields, specify the administration
user name and password.

d. If you use token licensing to license IBM MobileFirst Platform Foundation,
complete the following fields. If you do not use token licensing, leave
these fields blank.

ACTIVATE_TOKEN_LICENSE
Select this field to license your pattern with token licensing.

LICENSE_SERVER_HOSTNAME
Enter the fully qualified host name or IP address of your Rational
License Key Server.

LMGRD_PORT
Enter the port number that the license manager daemon (lmrgd) listens
for connections on. The default license manager daemon port is 27000.

Deploying MobileFirst Server to the cloud 9-55

IBMRATL_PORT
Enter the port number that the vendor daemon (ibmratl) listens for
connections on. The default vendor daemon port is typically 27001.

A default administration account for MobileFirst Server is created during
pattern deployment.

4. Optional: Configure MobileFirst Server runtime deployment. You can skip this
step if you want to specify the context root name for the runtime later during
the pattern deployment configuration phase in step 10. To specify the context
root name now, complete these steps:
a. In the MobileFirst Platform Server node, click the MFP Server Runtime

Deployment component. The properties of the selected component are
displayed next to the canvas.

b. Next to the runtime_contextRoot field, click the Delete button to clear the
pattern level parameter setting.

c. In the runtime_contextRoot field, specify the runtime context root name.
Note that the context root name must start with a forward slash, /; for
example, /HelloWorld.

5. Upload application and adapter artifacts:

Important: When specifying the Target path for applications and adapters,
make sure all the applications and adapters are placed in the same directory.
For example, if one target path is /opt/tmp/deploy/HelloWorld-common.json,
all the other target paths should be /opt/tmp/deploy/*.
a. In the MobileFirst Platform Server node, click the MFP Server Application

or MFP Server Adapter component. The properties of the selected
component are displayed next to the canvas.

b. In the Additional file field, click the Browse button to locate and upload
the application or adapter artifact.

c. In the Target path field, specify the full path for storing the artifact
including its file name; for example, /opt/tmp/deploy/HelloWorld-
common.json.

d. If no application or adapter is to be deployed in the pattern, remove the
relevant component by clicking the X button inside it. To get an empty
MobileFirst Operations Console deployed without any app or adapter
installed, remove the MFP Server Application Adapter Deployment
component by clicking the X button inside it.

6. Optional: Add more application or adapter artifacts for deployment:
a. From the Assets toolbar, expand Software Components, and then drag

and drop an Additional file component onto the MobileFirst Paltform
Server node in the canvas. Rename it MobileFirst App_X or MobileFirst
Adatper_X (where X is any unique number for differentiation).

b. Hover the cursor over the newly added App or Adapter component, and
then click the Move Up and Move Down buttons to adjust its sequence in
the node. Make sure it is placed after the MFP Runtime Deployment
component but before the MFP Server Application Adapter Deployment
component.

c. Click the newly added App or Adapter component. The properties of the
selected component are displayed next to the canvas. Upload the
application or adapter artifact and specify its target path by referring to
steps 6b-c

d. Repeat steps 7a-c to add more applications and adapters for deployment.

9-56 IBM MobileFirst Platform Foundation V8.0.0

7. Optional: Configure application and adapter deployment to MobileFirst
Server. You can skip this step if you want to specify the user credential with
deployment privilege later during the pattern deployment configuration phase
in step 10. If you have specified the default admin user credential in step 3,
you can now specify the deployer user, which must align with the admin user
credential:
a. In the MobileFirst Platform Server node, click the MFP Server

Application Adapter Deployment component. The properties of the
selected component are displayed next to the canvas.

b. Find the parameters named deployer_user and deployer_password, and
then click the adjacent Delete buttons to clear the pattern level parameter
settings.

c. In the deployer_user and deployer_password fields, specify the user name
and password.

8. Configure base scaling policy:
a. In the MobileFirst Platform Server node, select the Base Scaling Policy

component. The properties of the selected component are displayed next to
the canvas.

b. In the Number of Instances field, specify the number of server nodes to
be instantiated during pattern deployment. The default value is 2 in the
predefined template. Because dynamic scaling is not supported in this
release, do not specify values in the remaining attribute fields.

9. Configure and launch the pattern deployment. Before pattern deployment,
save your pattern after each modification by clicking the Save button in the
Pattern Builder page:
a. In the IBM PureApplication System dashboard, click Patterns > Virtual

System Patterns.
b. On the Virtual System Patterns page, use the Search field to find the

pattern you created, and then select the pattern.
c. In the toolbar above the panel displaying detailed information about the

pattern, click the Deploy button.
d. In the Deploy Pattern window, in the Configure panel, select the correct

environment profile from the Environment Profile list, and provide other
IBM PureApplication System environment parameters. To obtain the
correct information, consult your IBM PureApplication System
administrator.

e. In the middle column, click Pattern attributes to display attributes such as
user names and passwords.
Supply the following information in the fields provided:

Note: Make appropriate changes to the default values of the pattern-level
parameters even if an external LDAP server is configured. If you configure
administration security by using an LDAP server, you need to supply
additional LDAP information. For more information, see “Configuring
MobileFirst administration security with an external LDAP repository” on
page 9-86.

runtime_contextRoot_list

Context root names of the MobileFirst Server runtimes in case multiple
runtimes exist. Use a semicolon (;) to separate each runtime context
roots; for example, HelloMobileFirst;HelloWorld

Deploying MobileFirst Server to the cloud 9-57

Important: runtime_contextRoot_list must align with the context root
specified in the MFP Server Runtime Deployment node; otherwise, IHS
will not be able to correctly route requests that contain the runtime
context root.

admin_user
Not visible if configured in step 3. Create a default administrator user
account. Default value: demo.

admin_password
Not visible if configured in step 3. Default administrator account
password. Default value: demo.

ACTIVATE_TOKEN_LICENSE
Not visible if configured in step 3. Select this field to license your
pattern with token licensing. Leave this field clear if you use perpetual
licenses.

LICENSE_SERVER_HOSTNAME
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the fully-qualified
hostname or IP address of your Rational License Key Server IP
address. Otherwise, leave this field blank.

LMGRD_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
license manager daemon (lmrgd) listens for connections on. Otherwise,
leave this field blank.

The default license manager daemon port is 27000.

IBMRATL_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
vendor daemon (ibmratl) listens for connections on. Otherwise, leave
this field blank.

The default vendor daemon port is typically 27001.

runtime_contextRoot
Not visible if configured in step 5. Context root name for the runtime.
The name must start with /.

deployer_user
Not visible if configured in step 8. User name for the account with
deployment privilege. If an external LDAP server is not configured,
you must enter the same value as was specified when creating the
default admin user for the administration service, because in this case,
the only authorized user for app and adapter deployment is the
default admin user.

deployer_password
Not visible if configured in step 8. User password for the user with
deployment privilege.

MFP Vms Password(root)
Root password for the MobileFirst Platform Server and MobileFirst
Platform DB nodes. Default value: passw0rd.

9-58 IBM MobileFirst Platform Foundation V8.0.0

MFP DB Password(Instance owner)
Instance owner password for the MobileFirst Platform DB node.
Default value: passw0rd.

f. Click Quick Deploy to launch your pattern deployment. After few seconds,
a message is displayed to indicate that the pattern has started to launch.
You can click the URL provided in the message to track your pattern
deployment status or go to Patterns > Virtual System Instances to open
the Virtual System Instances page and search for your pattern there.

If you use token licensing to license IBM MobileFirst Platform Foundation,
your pattern will fail to deploy if insufficient license tokens are available or if
the license key server IP address and port were entered incorrectly.

10. Access the MobileFirst Operations Console:
a. Click Patterns > Virtual System Instances to open the Virtual System

Instances page and search for your pattern there. Make sure it is in
Running state.

b. Select the pattern name and expand the Virtual machine perspective
option in the panel displaying details of the selected instance.

c. Find the IHS Server VM that has a name similar to IHS_Server.* and
make a note of its Public IP address: you need this information in the
following step.

d. In the browser, open the MobileFirst Operations Console by composing its
URL with one of the following formats:
v http://{IHS Server VM Public IP}/mfpconsole

v https://{IHS Server VM Public IP}/mfpconsole

e. Log in to the Console with the admin user ID and password specified in
step 3 or step 10.

Deploying MobileFirst Server on a single-node WebSphere
Application Server full profile server

You use a predefined template to deploy a single-node MobileFirst Server to a
WebSphere Application Server full profile server.

Before you begin

This procedure involves uploading certain artifacts to IBM PureApplication System
such as the required application and adapter. Before you begin, ensure that the
artifacts are available for upload.

Token licensing requirements: If you use token licensing to license IBM
MobileFirst Platform Foundation, review the requirements outlined in “Token
licensing requirements for IBM MobileFirst Platform Foundation System Pattern”
on page 9-48 before you continue. The deployment of this pattern fails if the
license key server cannot be contacted or if insufficient license tokens are available.

About this task

Note:

Some parameters of script packages in the template have been configured with the
recommended values and are not mentioned in this section. For fine-tuning
purposes, see more information about all the parameters of script packages in
“Script packages for MobileFirst Server” on page 9-108.

Deploying MobileFirst Server to the cloud 9-59

For more information about the composition and configuration options of the
predefined template that is used in this procedure, see “MobileFirst Platform (WAS
single node) template” on page 9-100.

Procedure
1. Create a pattern from the predefined template:

a. In the IBM PureApplication System dashboard, click Patterns > Virtual
System Patterns. The Virtual System Patterns page opens.

b. On the Virtual System Patterns page, click Create New, and then in the
pop-up window, select MobileFirst Platform (WAS single node) from the
list of predefined templates. If the name is only partially visible due to its
length, you can confirm that the correct template is selected by viewing its
description on the More information tab.

c. In the Name field, provide a name for the pattern.
d. In the Version field, specify the version number of the pattern.
e. Click Start Building.

2. Mandatory for AIX: In IBM PureApplication System running on Power, the
MobileFirst Platform DB node needs to use the AIX-specific add-on component
“Default AIX add disk” to replace the “Default add disk” component in the
template to support the jfs2 file system:
a. In the Pattern Builder, select the MobileFirst Platform DB node.
b. Click the Add a Component Add-on button (the button is visible above the

component box when you hover the cursor over the MobileFirst Platform
DB node).

c. From the Add Add-ons list, select Default AIX add disk. The component is
added as the lowest component of the MobileFirst Platform DB node.

d. Select the Default AIX add disk component and specify the following
attributes:

DISK_SIZE_GB
Storage size (measured in GB) to be extended to the DB server. Example
value: 10.

FILESYSTEM_TYPE
Supported file system in AIX. Default value: jfs2.

MOUNT_POINT
Align with the attribute Mount point for instance owner in the
Database Server component in the MobileFirst Platform DB node.
Example value: /dbinst.

VOLUME_GROUP
Example value: group1. Contact your IBM PureApplication System
administrator for the correct value.

e. In the MobileFirst Platform DB node, select the Default add disk
component, and then click the bin icon to delete it.

f. Save the pattern.
3. Optional: Configure MobileFirst Server administration. You can skip this step if

you want to specify the user credential with MobileFirst Server administration
privilege later during the pattern deployment configuration phase in step 9. To
specify it now, complete these steps:

9-60 IBM MobileFirst Platform Foundation V8.0.0

Note: If you want to configure administration security with an LDAP server,
you need to supply additional LDAP information. For more information, see
“Configuring MobileFirst administration security with an external LDAP
repository” on page 9-86.
a. In the MobileFirst Platform Server node, click the MFP Server

Administration component. The properties of the selected component are
displayed next to the canvas.

b. Next to the admin_user and admin_password fields, click the Delete
button to clear their pattern level parameter settings.

c. In the admin_user and admin_password fields, specify the administration
user name and password.

d. If you use token licensing to license IBM MobileFirst Platform Foundation,
complete the following fields. If you do not use token licensing, leave these
fields blank.

ACTIVATE_TOKEN_LICENSE
Select this field to license your pattern with token licensing.

LICENSE_SERVER_HOSTNAME
Enter the fully qualified host name or IP address of your Rational
License Key Server.

LMGRD_PORT
Enter the port number that the license manager daemon (lmrgd) listens
for connections on. The default license manager daemon port is 27000.

IBMRATL_PORT
Enter the port number that the vendor daemon (ibmratl) listens for
connections on. The default vendor daemon port is typically 27001.

A default administration account for MobileFirst Server is created during
pattern deployment.

4. Optional: Configure MobileFirst Server runtime deployment. You can skip this
step if you want to specify the context root name for the runtime later during
the pattern deployment configuration phase in step 9. To specify the context
root name now, complete these steps:
a. In the MobileFirst Platform Server node, click the MFP Server Runtime

Deployment component. The properties of the selected component are
displayed next to the canvas.

b. Next to the runtime_contextRoot field, click the Delete button to clear the
pattern level parameter setting.

c. In the runtime_contextRoot field, specify the runtime context root name.
Note that the context root name must start with a forward slash, /; for
example, /HelloWorld.

5. Upload application and adapter artifacts:

Important: When specifying the Target path for applications and adapters,
make sure all the applications and adapters are placed in the same directory.
For example, if one target path is /opt/tmp/deploy/HelloWorld-common.json, all
the other target paths should be /opt/tmp/deploy/*.
a. In the MobileFirst Platform Server node, click the MFP Server Application

or MFP Server Adapter component. The properties of the selected
component are displayed next to the canvas.

b. In the Additional file field, click the Browse button to locate and upload
the application or adapter artifact.

Deploying MobileFirst Server to the cloud 9-61

c. In the Target path field, specify the full path for storing the artifact
including its file name; for example, /opt/tmp/deploy/HelloWorld-
common.json.

d. If no application or adapter is to be deployed in the pattern, remove the
relevant component by clicking the X button inside it. To get an empty
MobileFirst Operations Console deployed without any app or adapter
installed, remove the MFP Server Application Adapter Deployment
component by clicking the X button inside it.

6. Optional: Add more application or adapter artifacts for deployment:
a. From the Assets toolbar, expand Software Components, and then drag and

drop an Additional file component onto the MobileFirst Paltform Server
node in the canvas. Rename it MobileFirst App_X or MobileFirst Adatper_X
(where X stands for a unique number for differentiation).

b. Hover the cursor over the newly added App or Adapter component, and
then click the Move Up and Move Down buttons to adjust its sequence in
the node. Make sure it is placed after the MFP Runtime Deployment
component but before the MFP Server Application Adapter Deployment
component.

c. Click the newly added application or adapter component. The properties of
the selected component are displayed next to the canvas. Upload the
application or adapter artifact and specify its target path by referring to
steps 6b-c

d. Repeat steps 7a-c to add more applications and adapters for deployment.
7. Optional: Configure MobileFirst Server application and adapter deployment.

You can skip this step if you want to specify the user credential with
deployment privilege later during the pattern deployment configuration phase
in step 9. If you have specified the default admin user credential in step 3, you
can now specify the deployer user, which should align with the admin user
credential:
a. In the MobileFirst Platform Server node, select MFP Server Application

Adapter Deployment. The properties of the selected component are
displayed next to the canvas.

b. Find the parameters named deployer_user and deployer_password, and
then click the adjacent Delete buttons to delete their Pattern Level
Parameter settings.

c. In the deployer_user and deployer_password fields, specify the user name
and password.

8. Configure and launch the pattern deployment:
a. In the IBM PureApplication System dashboard, click Patterns > Virtual

System Patterns.
b. On the Virtual System Patterns page, use the Search field to find the pattern

you created, and then select the pattern.
c. In the toolbar above the panel displaying detailed information about the

pattern, click the Deploy button.
d. In the Deploy Pattern window, in the Configure panel, select the correct

Environment Profile and other IBM PureApplication System environment
parameters by consulting your IBM PureApplication System administrator.

e. In the middle column, click Pattern attributes to set attributes such as user
name and passwords.
Supply the following information in the fields provided:

9-62 IBM MobileFirst Platform Foundation V8.0.0

Note: Make appropriate changes to the default values of the pattern-level
parameters even if an external LDAP server is configured. If you configure
administration security by using an LDAP server, you need to supply
additional LDAP information. For more information, see “Configuring
MobileFirst administration security with an external LDAP repository” on
page 9-86.

WebSphere administrative user name
Admin user ID for WebSphere administration console login. Default
value: virtuser.

WebSphere administrative password
Admin user password for WebSphere administration console login.
Default value: passw0rd.

admin_user
Not visible if configured in step 3. Create a default user as MobileFirst
Server administrator. Default value: demo.

admin_password
Not visible if configured in step 3. Default admin user password.
Default value: demo.

ACTIVATE_TOKEN_LICENSE
Not visible if configured in step 3. Select this field to license your
pattern with token licensing. Leave this field clear if you use perpetual
licenses.

LICENSE_SERVER_HOSTNAME
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the fully-qualified
hostname or IP address of your Rational License Key Server IP address.
Otherwise, leave this field blank.

LMGRD_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
license manager daemon (lmrgd) listens for connections on. Otherwise,
leave this field blank.

The default license manager daemon port is 27000.

IBMRATL_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
vendor daemon (ibmratl) listens for connections on. Otherwise, leave
this field blank.

The default vendor daemon port is typically 27001.

runtime_contextRoot
Not visible if configured in step 5. Context root name for the
MobileFirst Server runtime. The name must start with /.

deployer_user
Not visible if configured in step 8. User name for the account with
deployment privilege. If an external LDAP server is not configured, you
must enter the same value as was specified when creating the default
admin user for the administration service, because in this case, the only
authorized user for app and adapter deployment is the default admin
user.

Deploying MobileFirst Server to the cloud 9-63

deployer_password
Not visible if configured in step 8. User password for the user with
deployment privilege.

MFP Vms Password(root)
Root password for the MobileFirst Platform Server and MobileFirst
Platform DB virtual machines. Default value: passw0rd.

MFP DB Password(Instance owner)
Instance owner password for MobileFirst Platform DB. Default value:
passw0rd.

Important restriction:

When you set these attrbutes, do not change the following attributes in the
MobileFirst Platform Server section:
v Cell name
v Node name
v Profile name

If you change any of these attributes, your pattern deployment will fail.
f. Click Quick Deploy to launch your pattern deployment. After a few

seconds, a message is displayed to indicate that the pattern has started to
launch. You can click the URL provided in the message to track your pattern
deployment status or go to Patterns > Virtual System Instances to open the
Virtual System Instances page and search for your pattern there.

If you use token licensing to licenseIBM MobileFirst Platform Foundation, your
pattern will fail to deploy if insufficient license tokens are available or if the
license key server IP address and port were entered incorrectly.

9. Access the MobileFirst Operations Console:
a. Click Patterns > Virtual System Instances to open the Virtual System

Instances page and search for your pattern there. Make sure it is in Running
state.

b. Select the pattern name and expand the Virtual machine perspective option
in the panel displaying details of the selected instance.

c. Find the MobileFirst Server VM that has a name similar to
MobileFirst_Platform_Server.* and make a note of its Public IP address:
you need this information in the following step.

d. In the browser, open the MobileFirst Operations Console by composing its
URL with one of the following formats:
v http://{MFP Server VM Public IP}:9080/mfpconsole

v https://{MFP Server VM Public IP}:9443/mfpconsole

e. Log in to the Console with admin user and password specified in step 3 or
step 9.

Deploying MobileFirst Server on a multiple-node WebSphere
Application Server full profile server

You use a predefined template to deploy MobileFirst Server on a multiple-node
WebSphere Application Server full profile server.

9-64 IBM MobileFirst Platform Foundation V8.0.0

Before you begin

This procedure involves uploading certain artifacts to IBM PureApplication System
such as the required application and adapter. Before you begin, ensure that the
artifacts are available for upload.

Token licensing requirements: If you use token licensing to license IBM
MobileFirst Platform Foundation, review the requirements outlined in “Token
licensing requirements for IBM MobileFirst Platform Foundation System Pattern”
on page 9-48 before you continue. The deployment of this pattern fails if the
license key server cannot be contacted or if insufficient license tokens are available.

About this task

Note:

Some parameters of script packages in the template have been configured with the
recommended values and are not mentioned in this section. For fine-tuning
purposes, see more information about all the parameters of script packages in
“Script packages for MobileFirst Server” on page 9-108.

For more information about the composition and configuration options of the
predefined template that is used in this procedure, see “MobileFirst Platform (WAS
server farm) template” on page 9-102.

Procedure
1. Create a pattern from the predefined template:

a. In the IBM PureApplication System dashboard, click Patterns > Virtual
System Patterns. The Virtual System Patterns page opens.

b. On the Virtual System Patterns page, click Create New, and then in the
pop-up window, select MobileFirst Platform (WAS server farm) from the
list of predefined templates. If the name is only partially visible due to its
length, you can confirm that the correct template is selected by viewing its
description on the More information tab.

c. In the Name field, provide a name for the pattern.
d. In the Version field, specify the version number of the pattern.
e. Click Start Building.

2. Mandatory for AIX: In IBM PureApplication System running on Power, the
MobileFirst Platform DB node needs to use the AIX-specific add-on
component “Default AIX add disk” to replace the “Default add disk”
component in the template to support the jfs2 file system:
a. In the Pattern Builder, select the MobileFirst Platform DB node.
b. Click the Add a Component Add-on button (the button is visible above

the component box when you hover the cursor over the MobileFirst
Platform DB node).

c. From the Add Add-ons list, select Default AIX add disk. The component
is added as the lowest component of the MobileFirst Platform DB node.

d. Select the Default AIX add disk component and specify the following
attributes:

DISK_SIZE_GB
Storage size (measured in GB) to be extended to the DB server.
Example value: 10.

Deploying MobileFirst Server to the cloud 9-65

FILESYSTEM_TYPE
Supported file system in AIX. Default value: jfs2.

MOUNT_POINT
Align with the attribute Mount point for instance owner in the
Database Server component in the MobileFirst Platform DB node.
Example value: /dbinst.

VOLUME_GROUP
Example value: group1. Contact your IBM PureApplication System
administrator for the correct value.

e. In the MobileFirst Platform DB node, select the Default add disk
component, and then click the bin icon to delete it.

f. Save the pattern.
3. Optional: Configure MobileFirst Server administration. You can skip this step

if you want to specify the user credential with MobileFirst Server
administration privilege later during the pattern deployment configuration
phase in step 9. To specify it now, complete these steps:

Note: If you want to configure administration security with an LDAP server,
you need to supply additional LDAP information. For more information, see
“Configuring MobileFirst administration security with an external LDAP
repository” on page 9-86.
a. In the MobileFirst Platform Server node, click the MFP Server

Administration component. The properties of the selected component are
displayed next to the canvas.

b. Next to the admin_user and admin_password fields, click the Delete
button to clear their pattern level parameter settings.

c. In the admin_user and admin_password fields, specify the administration
user name and password.

d. If you use token licensing to license IBM MobileFirst Platform Foundation,
complete the following fields. If you do not use token licensing, leave
these fields blank.

ACTIVATE_TOKEN_LICENSE
Select this field to license your pattern with token licensing.

LICENSE_SERVER_HOSTNAME
Enter the fully qualified host name or IP address of your Rational
License Key Server.

LMGRD_PORT
Enter the port number that the license manager daemon (lmrgd) listens
for connections on. The default license manager daemon port is 27000.

IBMRATL_PORT
Enter the port number that the vendor daemon (ibmratl) listens for
connections on. The default vendor daemon port is typically 27001.

A default administration account for MobileFirst Server is created during
pattern deployment.

4. Optional: Configure MobileFirst Server runtime deployment. You can skip this
step if you want to specify the context root name for the runtime later during
the pattern deployment configuration phase in step 10. To specify the context
root name now, complete these steps:

9-66 IBM MobileFirst Platform Foundation V8.0.0

a. In the MobileFirst Platform Server node, click the MFP Server Runtime
Deployment component. The properties of the selected component are
displayed next to the canvas.

b. Next to the runtime_contextRoot field, click the Delete button to clear the
pattern level parameter setting.

c. In the runtime_contextRoot field, specify the runtime context root name.
Note that the context root name must start with a forward slash, /; for
example, /HelloWorld.

5. Upload application and adapter artifacts:

Important: When specifying the Target path for applications and adapters,
make sure all the applications and adapters are placed in the same directory.
For example, if one target path is /opt/tmp/deploy/HelloWorld-common.json,
all the other target paths should be /opt/tmp/deploy/*.
a. In the MobileFirst Platform Server node, click the MFP Server Application

or MFP Server Adapter component. The properties of the selected
component are displayed next to the canvas.

b. In the Additional file field, click the Browse button to locate and upload
the application or adapter artifact.

c. In the Target path field, specify the full path for storing the artifact
including its file name; for example, /opt/tmp/deploy/HelloWorld-
common.json.

d. If no application or adapter is to be deployed in the pattern, remove the
relevant component by clicking the X button inside it. To get an empty
MobileFirst Operations Console deployed without any app or adapter
installed, remove the MFP Server Application Adapter Deployment
component by clicking the X button inside it.

6. Optional: Add more application or adapter artifacts for deployment:
a. From the Assets toolbar, expand Software Components, and then drag

and drop an Additional file component onto the MobileFirst Paltform
Server node in the canvas. Rename it MobileFirst App_X or MobileFirst
Adatper_X (where X stands for a unique number for differentiation).

b. Hover the cursor over the newly added App or Adapter component, and
then click the Move Up and Move Down buttons to adjust its sequence in
the node. Make sure it is placed after the MFP Runtime Deployment
component but before the MFP Server Application Adapter Deployment
component.

c. Click the newly added App or Adapter component. The properties of the
selected component are displayed next to the canvas. Upload the
application or adapter artifact and specify its target path by referring to
steps 6b-c.

d. Repeat steps 7a-c to add more applications and adapters for deployment.
7. Optional: Configure MobileFirst Server application and adapter deployment.

You can skip this step if you want to specify the user credential with
deployment privilege later during the pattern deployment configuration phase
in step 10. If you have specified the default admin user credential in step 3,
you can now specify the deployer user, which should align with the admin
user credential:
a. In the MobileFirst Platform Server node, select the MFP Server

Application Adapter Deployment component. The properties of the
selected component are displayed next to the canvas.

Deploying MobileFirst Server to the cloud 9-67

b. Find the parameters named deployer_user and deployer_password, and
then click the Delete buttons to clear the Pattern Level Parameter settings.

c. In the deployer_user and deployer_password fields, specify the user name
and password.

8. Configure base scaling policy:
a. In the MobileFirst Platform Server node, select the Base Scaling Policy

component. The properties of the selected component are displayed next to
the canvas.

b. In the Number of Instances field, specify the number of server nodes to
be instantiated during pattern deployment. The default value is 2 in the
predefined template. Because dynamic scaling is not supported in this
release, do not specify values in the remaining attribute fields.

9. Configure and launch the pattern deployment:
a. In the IBM PureApplication System dashboard, click Patterns > Virtual

System Patterns.
b. On the Virtual System Patterns page, use the Search field to find the

pattern you created, and then select the pattern.
c. In the toolbar above the panel displaying detailed information about the

pattern, click the Deploy button.
d. In the Deploy Pattern window, in the Configure panel, select the correct

environment profile from the Environment Profile list, and provide other
IBM PureApplication System environment parameters. To obtain the
correct information, consult your IBM PureApplication System
administrator.

e. In the middle column, click Pattern attributes to display attributes such as
user names and passwords.
Supply the following information in the fields provided:

Note: Make appropriate changes to the default values of the pattern-level
parameters even if an external LDAP server is configured. If you configure
administration security by using an LDAP server, you need to supply
additional LDAP information. For more information, see “Configuring
MobileFirst administration security with an external LDAP repository” on
page 9-86.

runtime_contextRoot_list

Context root names of the MobileFirst Server runtimes in case multiple
runtimes exist. Use a semicolon, “;” to separate each runtime context
root; for example, HelloMobileFirst;HelloWorld

Important: runtime_contextRoot_list must align with the context root
specified in the MFP Server Runtime Deployment node; otherwise, IHS
will not be able to correctly route requests that contain the runtime
context root.

WebSphere administrative user name
Admin user ID for WebSphere administration console login. Default
value: virtuser.

WebSphere administrative password
Admin user password for WebSphere administration console login.
Default value: passw0rd.

9-68 IBM MobileFirst Platform Foundation V8.0.0

admin_user
Not visible if configured in step 3. Create a default user as MobileFirst
Server administrator. Default value: demo.

admin_password
Not visible if configured in step 3. Default admin user password.
Default value: demo.

ACTIVATE_TOKEN_LICENSE
Not visible if configured in step 3. Select this field to license your
pattern with token licensing. Leave this field clear if you use perpetual
licenses.

LICENSE_SERVER_HOSTNAME
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the fully-qualified
hostname or IP address of your Rational License Key Server IP
address. Otherwise, leave this field blank.

LMGRD_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
license manager daemon (lmrgd) listens for connections on. Otherwise,
leave this field blank.

The default license manager daemon port is 27000.

IBMRATL_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
vendor daemon (ibmratl) listens for connections on. Otherwise, leave
this field blank.

The default vendor daemon port is typically 27001.

runtime_contextRoot
Not visible if configured in step 5. Context root name for the
MobileFirst Server runtime. The name must start with a forward slash,
/.

deployer_user
Not visible if configured in step 8. User name for the account with
deployment privilege. If an external LDAP server is not configured,
you must enter the same value as was specified when creating the
default admin user for the administration service, because in this case,
the only authorized user for app and adapter deployment is the
default admin user.

deployer_password
Not visible if configured in step 8. User password for the user with
deployment privilege.

MFP Vms Password(root)
Root password for the MobileFirst Platform Server and MobileFirst
Platform DB nodes. Default value: passw0rd.

MFP DB Password(Instance owner)
Instance owner password for the MobileFirst Platform DB node.
Default value: passw0rd.

Important restriction:

Deploying MobileFirst Server to the cloud 9-69

When you set these attrbutes, do not change the following attributes in the
MobileFirst Platform Server section:
v Cell name
v Node name
v Profile name

If you change any of these attributes, your pattern deployment will fail.
f. Click Quick Deploy to launch your pattern deployment. After a few

seconds, a message is displayed to indicate that the pattern has started to
launch. You can click the URL provided in the message to track your
pattern deployment status or go to Patterns > Virtual System Instances to
open the Virtual System Instances page and search for your pattern there.

If you use token licensing to licenseIBM MobileFirst Platform Foundation,
your pattern will fail to deploy if insufficient license tokens are available or if
the license key server IP address and port were entered incorrectly.

10. Access the MobileFirst Operations Console:
a. Click Patterns > Virtual System Instances to open the Virtual System

Instances page and search for your pattern there. Make sure it is in
Running state.

b. Select the pattern name and expand the Virtual machine perspective
option in the panel displaying details of the selected instance.

c. Find the IHS Server VM that has a name similar to IHS_Server.* and
make a note of its Public IP address: you need this information in the
following step.

d. In the browser, open the MobileFirst Operations Console by composing its
URL with one of the following formats:
v http://{IHS Server VM Public IP}/mfpconsole

v https://{IHS Server VM Public IP}/mfpconsole

e. Log in to the Console with admin user and password specified in step 3 or
step 10.

Deploying MobileFirst Server on clusters of WebSphere
Application Server Network Deployment servers

You can use a predefined template to deploy MobileFirst Server on clusters of
WebSphere Application Server Network Deployment servers. This application
pattern template does not support token licensing.

Before you begin

This procedure involves uploading certain artifacts to IBM PureApplication System
such as the required application and adapter. Before you begin, ensure that the
artifacts are available for upload.

If you are running the System Monitoring for WebSphere Application Server
shared service, the MobileFirst runtime environment might fail to start correctly
when you deploy the pattern. If possible, stop the shared service before you
continue with this procedure. If you cannot stop the shared service, you might
need to restart the IBM MobileFirst Platform runtime from the WebSphere
Application Server administrative console to fix the problem. For more
information, see “MobileFirst runtime synchronization limitation with WebSphere
Application Server Network Deployment” on page 9-76.

9-70 IBM MobileFirst Platform Foundation V8.0.0

Important token licensing restriction: This pattern template does not support
token licensing. You must be using perpetual licensing when you deploy patterns
based on the MobileFirst Platform (WAS ND) pattern template.

About this task

Note:

Some parameters of script packages in the template are configured with
recommended values and are not covered in this topic. For fine-tuning purposes,
see more information about all the parameters of script packages in “Script
packages for MobileFirst Server” on page 9-108.

For more information about the composition and configuration options of the
predefined template that is used in this procedure, see “MobileFirst Platform (WAS
ND) template” on page 9-104.

Procedure
1. Create a pattern from the predefined template:

a. In the IBM PureApplication System dashboard, click Patterns > Virtual
System Patterns. The Virtual System Patterns page opens.

b. On the Virtual System Patterns page, click Create New, and then in the
pop-up window, select MobileFirst Platform (WAS ND) from the list of
predefined templates. If the name is only partially visible due to its length,
you can confirm that the correct template is selected by viewing its
description on the More information tab.

c. In the Name field, provide a name for the pattern.
d. In the Version field, specify the version number of the pattern.
e. Click Start Building.

2. Mandatory for AIX: In IBM PureApplication System running on Power, the
MobileFirst Platform DB node needs to use the AIX-specific add-on
component “Default AIX add disk” to replace the “Default add disk”
component in the template to support the jfs2 file system:
a. In the Pattern Builder, select the MobileFirst Platform DB node.
b. Click the Add a Component Add-on button (the button is visible above

the component box when you hover the cursor over the MobileFirst
Platform DB node).

c. From the Add Add-ons list, select Default AIX add disk. The component
is added as the lowest component of the MobileFirst Platform DB node.

d. Select the Default AIX add disk component and specify the following
attributes:

DISK_SIZE_GB
Storage size (measured in GB) to be extended to the DB server.
Example value: 10.

FILESYSTEM_TYPE
Supported file system in AIX. Default value: jfs2.

MOUNT_POINT
Align with the attribute Mount point for instance owner in the
Database Server component in the MobileFirst Platform DB node.
Example value: /dbinst.

Deploying MobileFirst Server to the cloud 9-71

VOLUME_GROUP
Example value: group1. Contact your IBM PureApplication System
administrator for the correct value.

e. In the MobileFirst Platform DB node, select the Default add disk
component, and then click the X button to delete it.

f. Save the pattern.
3. Optional: Configure MobileFirst Server administration. You can skip this step

if you want to specify the user credential with MobileFirst Server
administration privilege later during the pattern deployment configuration
phase in step 9 on page 9-74. To specify it now, complete these steps:

Note: If you want to configure administration security with an LDAP server,
you need to supply extra LDAP information. For more information, see
“Configuring MobileFirst administration security with an external LDAP
repository” on page 9-86.
a. In the DmgrNode node, click the MFP Server Administration component.

The properties of the selected component are displayed next to the canvas.
b. Next to the admin_user and admin_password fields, click the Delete

button to clear their pattern level parameter settings.
c. In the admin_user and admin_password fields, specify the administration

user name and password.

A default administration account for MobileFirst Server is created during
pattern deployment.

4. Optional: Configure MobileFirst Server runtime deployment. You can skip this
step if you want to specify the context root name for the runtime later during
the pattern deployment configuration phase in step 9 on page 9-74. To specify
the context root name now, complete these steps:
a. In the DmgrNode node, click the MFP Server Runtime Deployment

component. The properties of the selected component are displayed next to
the canvas.

b. Next to the runtime_contextRoot field, click the Delete button to clear the
pattern level parameter setting.

c. In the runtime_contextRoot field, specify the runtime context root name.
The context root name must start with a forward slash (/). For example,
/HelloWorld.

5. Optional: Adjust the number of application server nodes in your WebSphere
Application Server Network Deployment clusters for the MobileFirst
Administration component and the MobileFirst runtime environment.
By default, the Administration component and runtime environment each
have two application server nodes in their respective clusters.
a. In the DmgrNode node, click the MFP Server Administration component.

The properties of the component are displayed next to the canvas.
b. In the NUMBER_OF_CLUSTERMEMBERS field, specify the number of

application server nodes that you want in your WebSphere Application
Server Network Deployment cluster for the MobileFirst Administration
component.

c. In the DmgrNode node, click the MFP Server Runtime Deployment
component. The properties of the component are displayed next to the
canvas.

9-72 IBM MobileFirst Platform Foundation V8.0.0

d. In the NUMBER_OF_CLUSTERMEMBERS field, specify the number of
application server nodes that you want in your WebSphere Application
Server Network Deployment cluster for the MobileFirst runtime
environment.

e. In the CustomNode node, click the Base Scaling Policy component.
f. Adjust the Number of Instances value to account for the total number of

application server nodes that you entered in the
NUMBER_OF_CLUSTERMEMBERS field for each component.
The minimum value for Number of Instances is the total number of server
nodes for the MobileFirst Administration component and the MobileFirst
runtime environments.
For example, the default value for Number of Instances is 4 for the default
topology with two nodes for the administration component and two nodes
for the runtime environment. If you change
NUMBER_OF_CLUSTERMEMBERS values for the administration
component to 3 and for the runtime environment to 5, the minimum value
for Number of Instances is 8.

6. Upload application and adapter:

Important: When you specify the target path for applications and adapters,
make sure all the applications and adapters are placed in the same directory.
For example, if one target path is /opt/tmp/deploy/HelloWorld-common.wlapp,
all the other target paths should be /opt/tmp/deploy/*.
a. In the DmgrNode node, click the MFP Application or MFP Adapter

component. The properties of the selected component are displayed next to
the canvas.

b. In the Additional file field, click the Browse button to locate and upload
the application or adapter artifact.

c. In the Target path field, specify the full path for storing the artifact,
including its file name. For example, /opt/tmp/deploy/HelloWorld-
common.wlapp.

d. If no application or adapter is to be deployed in the pattern, remove the
relevant component by clicking the X button inside it. To get an empty
MobileFirst Operations Console deployed without any app or adapter
installed, remove the MFP Server Application Adapter Deployment
component by clicking the X button inside it.

7. Optional: Add more application or adapter artifacts for deployment:
a. From the COMPONENTS toolbar, expand Software Components, and

then drag and drop an Additional file component onto the DmgrNode
node in the canvas. Rename it MobileFirst App_X or MobileFirst
Adatper_X (where X stands for a unique number for differentiation).

b. Hover the cursor over the newly added App or Adapter component, and
then click the Move Up and Move Down buttons to adjust its sequence in
the node. Make sure that it is placed after the MFP Runtime Deployment
component but before the MFP Server Application Adapter Deployment
component.

c. Click the newly added application or adapter component. The properties
of the selected component are displayed next to the canvas.

d. In the Additional file field, click the Browse button to locate and upload
the application or adapter artifact.

Deploying MobileFirst Server to the cloud 9-73

e. In the Target path field, specify the full path for storing the artifact,
including its file name. For example, /opt/tmp/deploy/HelloWorld-
common.wlapp.

Repeat this step if you want to add more applications and adapters for
deployment.

8. Optional: Configure application and adapter deployment to MobileFirst
Server. You can skip this step if you want to specify the user credential with
deployment privilege later during the pattern deployment configuration phase
in step 9. If you specified the default administrative user credential in step 3
on page 9-72, you can now specify the deployer user, which must align with
the administration user credential:
a. In the DmgrNode node, select the MFP Server Application Adapter

Deployment component. The properties of the selected component are
displayed next to the canvas.

b. Find the parameters that are named deployer_user and
deployer_password, and then click the adjacent Delete buttons to clear the
pattern level parameter settings.

c. In the deployer_user and deployer_password fields, specify the user name
and password.

9. Configure and launch the pattern deployment:
a. In the IBM PureApplication System dashboard, click Patterns > Virtual

System Patterns.
b. On the Virtual System Patterns page, use the Search field to find the

pattern you created, and then select the pattern.
c. In the toolbar above the panel that displays detailed information about the

pattern, click the Deploy button.
d. In the Deploy Pattern window, in the Configure panel, select the correct

environment profile from the Environment Profile list, and provide other
IBM PureApplication System environment parameters. To obtain the
correct information, consult your IBM PureApplication system
administrator.

e. In the middle column, click Pattern attributes to display attributes such as
user names and passwords.
Supply the following information in the fields provided:

Note: Make appropriate changes to the default values of the pattern-level
parameters even if an external LDAP server is configured. If you configure
administration security by using an LDAP server, you need to supply extra
LDAP information. For more information, see “Configuring MobileFirst
administration security with an external LDAP repository” on page 9-86.

WebSphere administrative user name
Administrative user ID for the WebSphere administrative console
login. Default value: virtuser.

WebSphere administrative password
Administrative user password for the WebSphere administrative
console login. Default value: passw0rd.

runtime_contextRoot_list
Context root names of the MobileFirst Server runtimes in case multiple
runtimes exist. Use a semicolon (;) to separate each runtime context
root; for example, HelloMobileFirst;HelloWorld

9-74 IBM MobileFirst Platform Foundation V8.0.0

Important: This value must align with the context root specified in the
MobileFirst Platform Server Runtime Deployment node that you set in
the runtime_contextRoot field (either earlier in step 4 on page 9-72 or
later in this step); otherwise, IBM HTTP Server cannot correctly route
requests that contain the runtime context root.

admin_user
Not visible if configured in step 3 on page 9-72. Create a default
MobileFirst Server administrator account. Default value: demo.

admin_password
Not visible if configured in step 3 on page 9-72. Default admin account
password. Default value: demo.

runtime_contextRoot
Not visible if configured in step 4 on page 9-72. Context root name for
the MobileFirst Server runtime. The name must start with “/”.

deployer_user
Not visible if configured in step 8 on page 9-74. User name for the
account with deployment privilege. If an external LDAP server is not
configured, you must enter the same value as was specified when you
create the default administrative user for the administration service,
because in this case, the only authorized user for app and adapter
deployment is the default administrative user.

deployer_password
Not visible if configured in step 8 on page 9-74. User password for the
user with deployment privilege.

MFP VMs Password(root)
Root password for the DmgrNode, CustomNode, IHSNode, and
MobileFirst Platform DB nodes. Default value: passw0rd.

MFP VMs Password(virtuser)

Password for the virtuser user of the DmgrNode, CustomNode,
IHSNode and MobileFirst Platform DB nodes. Default value: passw0rd.

Open firewall ports for WAS
The WebSphere Application Server nodes that are deployed in the
CustomNode VM nodes require open firewall ports to connect to the
database server and the LDAP server (if configured for LDAP). If you
need to specify multiple port numbers, separate the port numbers with
a semicolon (;). For example, 50000;636The default value is 50000 (the
default port for DB2 server).

Important restriction:

When you set these attrbutes, do not change the following attributes in the
DmgrNode or CustomNode sections:
v Cell name
v Node name
v Profile name

If you change any of these attributes, your pattern deployment will fail.
f. Click Quick Deploy to launch your pattern deployment. After a few

seconds, a message is displayed to indicate that the pattern started to
launch. You can click the URL provided in the message to track your

Deploying MobileFirst Server to the cloud 9-75

pattern deployment status or go to Patterns > Virtual System Instances
open the Virtual System Instances page and search for your pattern there.

10. Access the MobileFirst Operations Console:
a. Click Patterns > Virtual System Instances to open the Virtual System

Instances page and search for your pattern there. Make sure that it is in
“Running” state.

b. Select the pattern name and expand the Virtual machine perspective
option in the panel that displays details of the selected instance.

c. Find the IHS Server VM that has a name similar to IHS_Server.* and
make a note of its Public IP address: you need this information in the
following step.

d. In the browser, open the MobileFirst Operations Console with one of the
following URLs:
v http://{IHS Server VM Public IP}:80/mfpconsole

v https://{IHS Server VM Public IP}:443/mfpconsole

e. Log in to the Console with admin user and password that you specified in
step 3 on page 9-72 or step 9 on page 9-74.
If the console does not display the MobileFirst runtimes, restart the IBM
MobileFirst Platform runtime node from the WebSphere Application Server
administrative console. For instructions about restarting the runtime node
from the administrative console, see “Restarting the IBM MobileFirst
Platform runtime from the WebSphere Application Server administrative
console” on page 9-77.

Related concepts:
“MobileFirst runtime synchronization limitation with WebSphere Application
Server Network Deployment”
If you deploy a PureApplication pattern based on the MobileFirst Platform (WAS
ND) template and run the System Monitoring for WebSphere Application Server
shared service, the MobileFirst runtime environment might fail to start correctly,
when you deploy the pattern.
Related tasks:
“Restarting the IBM MobileFirst Platform runtime from the WebSphere Application
Server administrative console” on page 9-77
If your MobileFirst Operations Console is empty after you deploy a
PureApplication System pattern based on the MobileFirst Platform (WAS ND)
template, you might need to restart the IBM MobileFirst Platform runtime from the
WebSphere Application Server administrative console.

MobileFirst runtime synchronization limitation with WebSphere
Application Server Network Deployment
If you deploy a PureApplication pattern based on the MobileFirst Platform (WAS
ND) template and run the System Monitoring for WebSphere Application Server
shared service, the MobileFirst runtime environment might fail to start correctly,
when you deploy the pattern.

A PureApplication virtual system pattern based on the MobileFirst Platform (WAS
ND) template deploys the MobileFirst administration service and the IBM
MobileFirst Platform runtime into different WebSphere Application Server Network
Deployment clusters. For the IBM MobileFirst Platform runtime to work correctly,
it must be started after the MobileFirst administration service. If the IBM
MobileFirst Platform runtime starts first, the runtime service fails to detect the
MobileFirst administration service, which causes errors in the runtime service.

9-76 IBM MobileFirst Platform Foundation V8.0.0

When the deployment of a PureApplication pattern is almost complete, the System
Monitoring for WebSphere Application Server shared service restarts all of the
WebSphere Application Server nodes that are deployed from the pattern. The
nodes restart in a random order, so the nodes that contain the IBM MobileFirst
Platform runtime might be restarted before the nodes that contain the MobileFirst
administration service.

You must stop the System Monitoring for WebSphere Application Server shared
service before you deploy the pattern. If you cannot stop the shared service, you
might need to restart the IBM MobileFirst Platform runtime from the WebSphere
Application Server administrative console to fix the problem.
Related tasks:
“Restarting the IBM MobileFirst Platform runtime from the WebSphere Application
Server administrative console”
If your MobileFirst Operations Console is empty after you deploy a
PureApplication System pattern based on the MobileFirst Platform (WAS ND)
template, you might need to restart the IBM MobileFirst Platform runtime from the
WebSphere Application Server administrative console.
“Deploying MobileFirst Server on clusters of WebSphere Application Server
Network Deployment servers” on page 9-70
You can use a predefined template to deploy MobileFirst Server on clusters of
WebSphere Application Server Network Deployment servers. This application
pattern template does not support token licensing.

Restarting the IBM MobileFirst Platform runtime from the
WebSphere Application Server administrative console
If your MobileFirst Operations Console is empty after you deploy a
PureApplication System pattern based on the MobileFirst Platform (WAS ND)
template, you might need to restart the IBM MobileFirst Platform runtime from the
WebSphere Application Server administrative console.

Before you begin

This procedure applies only when you are deploying PureApplication virtual
system patterns based on the MobileFirst Platform (WAS ND) template when you
are running the System Monitoring for WebSphere Application Server shared
service. If you do not use this shared service or are deploying a pattern based on a
different template, this procedure does not apply to you.

You must deploy your pattern before you do this procedure.

About this task

To work correctly, the MobileFirst administration service nodes must be started
before the IBM MobileFirst Platform runtime nodes. If the System Monitoring for
WebSphere Application Server shared service is running when you deploy a
pattern, the shared service restarts all of the WebSphere Application Server nodes
that are deployed from the pattern. The nodes restart in a random order, which
means that the IBM MobileFirst Platform runtime nodes might be started before
the MobileFirst administration service nodes.

Procedure
1. Confirm that the System Monitoring for WebSphere Application Server shared

service is deployed and running:

Deploying MobileFirst Server to the cloud 9-77

a. In the PureApplication System dashboard, click Patterns and then under
Pattern Instances, click Shared Services.

Important: Shared Services appears twice in the Patterns menu, ensure
that you click Shared Services under Pattern Instances and not under
Patterns..

b. On the Shared Service Instances page, look for a name that starts with
System Monitoring for WebSphere Application Server. Click that name to
expand its entry
If you do not see an entry for System Monitoring for WebSphere
Application Server, the System Monitoring for WebSphere Application
Server shared service is not deployed and you do not need to continue with
this procedure.

c. Check the Status column for the service.
If Status says Stopped, the System Monitoring for WebSphere Application
Server shared service is stopped and you do not need to continue with this
procedure. If Status says Started, the System Monitoring for WebSphere
Application Server shared service is running. Continue with the rest of this
procedure.

2. Confirm that your pattern is running, and access the MobileFirst Operations
Console from the PureApplication System dashboard.
For instructions about how access the MobileFirst Operations Console from the
PureApplication System dashboard, see step 10 on page 9-76 in “Deploying
MobileFirst Server on clusters of WebSphere Application Server Network
Deployment servers” on page 9-70.

3. If the console appears empty or is otherwise not displaying MobileFirst
runtimes, restart the IBM MobileFirst Platform runtime node from the
WebSphere Application Server administrative console:
a. In the PureApplication System dashboard, click Patterns > Virtual System

Instances.
b. On the Virtual System Instances page, find your pattern instance and

confirm that it is running. If it is not running, start the pattern instance.
c. Click the name of your pattern instance and in the details panel, find the

Virtual machine perspective section.
d. In the Virtual machine perspective section, find the virtual machine whose

name starts with DmgrNode and note its public IP address.
e. Open the WebSphere Application Server administrative console at the

following URL:
https://{DmgrNode VM public IP address}:9043/ibm/console

Use the user ID and password that you specified for the WebSphere
Application Server administrative console when you deployed the pattern.

f. In the WebSphere Application Server administrative console, expand
Applications and click All applications.

g. Restart the IBM MobileFirst Platform runtime:
1) In the list of applications, select the application with name that begins

with IBM_Worklight_project_runtime_MFP.
2) In the Action column, select Stop.
3) Click Submit Action.
4) Wait until the application status in the Status column shows the stopped

icon.
5) In the Action column, select Start.

9-78 IBM MobileFirst Platform Foundation V8.0.0

6) Click Submit Action.
Repeat this step for each IBM MobileFirst Platform runtime application in
the list.

4. Access the MobileFirst Operations Console again and confirm that your IBM
MobileFirst Platform runtimes are now visible.

Related concepts:
“MobileFirst runtime synchronization limitation with WebSphere Application
Server Network Deployment” on page 9-76
If you deploy a PureApplication pattern based on the MobileFirst Platform (WAS
ND) template and run the System Monitoring for WebSphere Application Server
shared service, the MobileFirst runtime environment might fail to start correctly,
when you deploy the pattern.
Related tasks:
“Deploying MobileFirst Server on clusters of WebSphere Application Server
Network Deployment servers” on page 9-70
You can use a predefined template to deploy MobileFirst Server on clusters of
WebSphere Application Server Network Deployment servers. This application
pattern template does not support token licensing.

Deploying MobileFirst Application Center on a single-node
WebSphere Application Server Liberty profile server

You use a predefined template to deploy MobileFirst Application Center on a
single-node WebSphere Application Server Liberty profile server.

Before you begin

This procedure involves uploading certain artifacts to IBM PureApplication System
such as the required application and adapter. Before you begin, ensure that the
artifacts are available for upload.

Token licensing requirements: If you use token licensing to license IBM
MobileFirst Platform Foundation, review the requirements that are outlined in
“Token licensing requirements for IBM MobileFirst Platform Foundation System
Pattern” on page 9-48 before you continue. If the license key server cannot be
contacted or if insufficient license tokens are available then the deployment of this
pattern fails .

About this task

Note:

Some parameters of script packages in the template is configured with the
recommended values and are not mentioned here. For fine-tuning purposes, see
more information about all the parameters of script packages in “Script packages
for MobileFirst Server” on page 9-108.

For more information about the composition and configuration options of the
predefined template that is used in this procedure, see “MobileFirst Platform
Application Center (Liberty single node) template” on page 9-106.

Procedure
1. Create a pattern from the predefined template:

Deploying MobileFirst Server to the cloud 9-79

a. In the IBM PureApplication System dashboard, click Patterns > Virtual
System Patterns. The Virtual System Patterns page opens.

b. On the Virtual System Patterns page, click Create New, and then in the
pop-up window, select MobileFirst Platform (AppCenter Liberty single
node) from the list of predefined templates. If the name is only partially
visible due to its length, you can confirm that the correct template is
selected by viewing its description on the More information tab.

c. In the Name field, provide a name for the pattern.
d. In the Version field, specify the version number of the pattern.
e. Click Start Building.

2. Mandatory for AIX: In IBM PureApplication System running on Power, the
MobileFirst Platform DB node needs to use the AIX-specific add-on component
“Default AIX add disk” to replace the “Default add disk” component in the
template to support the jfs2 file system:
a. In the Pattern Builder, select the MFP AppCenter DB node.
b. Click the Add a Component Add-on button (the button is visible above the

component box when you hover the cursor over the MFP AppCenter DB
node).

c. From the Add Add-ons list, select Default AIX add disk. The component is
added as the lowest component of the MobileFirst Platform DB node.

d. Select the Default AIX add disk component and specify the following
attributes:

DISK_SIZE_GB
Storage size (measured in GB) to be extended to the DB server.
Following is the example value: 10.

FILESYSTEM_TYPE
Supported file system in AIX. Following is the default value: jfs2.

MOUNT_POINT
Align with the attribute Mount point for instance owner in the
Database Server component in the MobileFirst Platform DB node.
Following is the example value: /dbinst.

VOLUME_GROUP
Following is the example value: group1. Contact your IBM
PureApplication System administrator for the correct value.

e. In the MFP AppCenter DB node, select the Default add disk component,
and then click the bin icon to delete it.

f. Save the pattern.
3. Optional: Configure MFP Server Application Center in the MFP AppCenter

Server node.

Note: If you want to configure administration security with an LDAP server,
you need to supply more LDAP information. For more information, see
“Configuring MobileFirst administration security with an external LDAP
repository” on page 9-86.
a. In the MFP AppCenter Server node, click the MFP Server Application

Center component. The properties of the selected component are displayed
next to the canvas.

b. Next to the admin_user and admin_password fields, click the Delete
button to clear their pattern level parameter settings.

9-80 IBM MobileFirst Platform Foundation V8.0.0

c. In the admin_user and admin_password fields, specify the administration
user name and password.

d. Next to the db_user and db_password fields, click the Delete button to
clear their pattern level parameter settings.

e. In the db_user and db_password fields, specify the database user name and
password.

f. In the db_name, db_instance, db_ip, and db_port fields, specify the
database user name, password, instance name, IP, and port number.

A default administration account for MobileFirst Server is created during
pattern deployment.

4. Configure and launch the pattern deployment:
a. In the IBM PureApplication System dashboard, click Patterns > Virtual

System Patterns.
b. On the Virtual System Patterns page, use the Search field to find the pattern

you created, and then select the pattern.
c. In the toolbar above the panel that displays the detailed information about

the pattern, click the Deploy button.
d. In the Deploy Pattern window, in the Configure panel, select the correct

environment profile from the Environment Profile list, and provide other
IBM PureApplication System environment parameters. To obtain the correct
information, consult your IBM PureApplication System administrator.

e. In the middle column, click Pattern attributes to display attributes such as
user names and passwords.
Supply the following information in the fields provided:

Note: Make appropriate changes to the default values of the pattern-level
parameters even if an external LDAP server is configured. If you configure
administration security by using an LDAP server, you need to supply more
LDAP information. For more information, see “Configuring MobileFirst
administration security with an external LDAP repository” on page 9-86.

admin_user
Not visible if configured in step 3. Create a default MobileFirst Server
administrator account. Following is the default value: demo.

admin_password
Not visible if configured in step 3. Default admin account password.
Following is the default value: demo.

ACTIVATE_TOKEN_LICENSE
Not visible if configured in step 3. Select this field to license your
pattern with token licensing. If you use perpetual licenses then leave
this field clear.

LICENSE_SERVER_HOSTNAME
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the fully qualified
hostname or IP address of your Rational License Key Server IP address.
Otherwise, leave this field blank.

LMGRD_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
license manager daemon (lmrgd) listens for connections on. Otherwise,
leave this field blank.

Deploying MobileFirst Server to the cloud 9-81

The default license manager daemon port is 27000.

IBMRATL_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
vendor daemon (ibmratl) listens for connections on. Otherwise, leave
this field blank.

The default vendor daemon port is typically 27001.

runtime_contextRoot
Not visible if configured in step 5. Context root name for the
MobileFirst Server runtime. The name must start with “/”.

deployer_user
Not visible if configured in step 8. User name for the account with
deployment privilege. If an external LDAP server is not configured, you
must enter the same value as was specified when creating the default
admin user for the administration service because in this case, the only
authorized user for app and adapter deployment is the default admin
user.

deployer_password
Not visible if configured in step 8. User password for the user with
deployment privilege.

MFP Vms Password(root)
Root password for the MobileFirst Platform Server and MobileFirst
Platform DB nodes. Following is the default value: passw0rd.

MFP DB Password(Instance owner)

Instance owner password for the MobileFirst Platform DB node.
Following is the default value: passw0rd.

f. Click Quick Deploy to launch your pattern deployment. After a few
seconds, a message is displayed to indicate that the pattern is starting to
launch. You can click the URL provided in the message to track your pattern
deployment status or go to Patterns > Virtual System Instances to open the
Virtual System Instances page and search for your pattern there.

5. To access the MobileFirst Operations Console perform the following steps:
a. Click Patterns > Virtual System Instances to open the Virtual System

Instances page and search for your pattern there.
b. Select your pattern name and expand the Virtual machine perspective in

the panel that displays the details of the selected instance.
c. Find the MobileFirst Server VM that has a name similar to

MFP_AppCenter_Server.*, make a note of its public IP address.
d. In the browser, open the MobileFirst Operations Console by composing its

URL with one of the following formats:
v http://{MFP Server VM Public IP}:9080/appcenterconsole

v https://{MFP Server VM Public IP}:9443/appcenterconsole

e. Log in to the Console with admin user and password specified in step 3.

Deploying MobileFirst Application Center on a single-node
WebSphere Application Server full profile server

You use a predefined template to deploy a single-node MobileFirst Application
Center to a WebSphere Application Server full profile server.

9-82 IBM MobileFirst Platform Foundation V8.0.0

Before you begin

This procedure involves uploading certain artifacts to IBM PureApplication System
such as the required application and adapter. Before you begin, ensure that the
artifacts are available for upload.

Token licensing requirements: If you use token licensing to license IBM
MobileFirst Platform Foundation, review the requirements outlined in “Token
licensing requirements for IBM MobileFirst Platform Foundation System Pattern”
on page 9-48 before you continue. The deployment of this pattern fails if the
license key server cannot be contacted or if insufficient license tokens are available.

About this task

Note:

Some parameters of script packages in the template have been configured with the
recommended values and are not mentioned in this section. For fine-tuning
purposes, see more information about all the parameters of script packages in
“Script packages for MobileFirst Server” on page 9-108.

For more information about the composition and configuration options of the
predefined template that is used in this procedure, see “MobileFirst Platform
Application Center (WAS single node) template” on page 9-107.

Procedure
1. Create a pattern from the predefined template:

a. In the IBM PureApplication System dashboard, click Patterns > Virtual
System Patterns. The Virtual System Patterns page opens.

b. On the Virtual System Patterns page, click Create New, and then in the
pop-up window, select MobileFirst Platform (AppCenter Liberty single
node) from the list of predefined templates. If the name is only partially
visible due to its length, you can confirm that the correct template is
selected by viewing its description on the More information tab.

c. In the Name field, provide a name for the pattern.
d. In the Version field, specify the version number of the pattern.
e. Click Start Building.

2. Mandatory for AIX: In IBM PureApplication System running on Power, the
MobileFirst Platform DB node needs to use the AIX-specific add-on component
“Default AIX add disk” to replace the “Default add disk” component in the
template to support the jfs2 file system:
a. In the Pattern Builder, select the MFP AppCenter DB node.
b. Click the Add a Component Add-on button (the button is visible above the

component box when you hover the cursor over the MFP AppCenter DB
node).

c. From the Add Add-ons list, select Default AIX add disk. The component is
added as the lowest component of the MobileFirst Platform DB node.

d. Select the Default AIX add disk component and specify the following
attributes:

DISK_SIZE_GB
Storage size (measured in GB) to be extended to the DB server. Example
value: 10.

Deploying MobileFirst Server to the cloud 9-83

FILESYSTEM_TYPE
Supported file system in AIX. Default value: jfs2.

MOUNT_POINT
Align with the attribute Mount point for instance owner in the
Database Server component in the MobileFirst Platform DB node.
Example value: /dbinst.

VOLUME_GROUP
Example value: group1. Contact your IBM PureApplication System
administrator for the correct value.

e. In the MFP AppCenter DB node, select the Default add disk component,
and then click the bin icon to delete it.

f. Save the pattern.
3. Optional: Configure MFP Server Application Center in the MFP AppCenter

Server node.

Note: If you want to configure administration security with an LDAP server,
you need to supply additional LDAP information. For more information, see
“Configuring MobileFirst administration security with an external LDAP
repository” on page 9-86.
a. In the MFP AppCenter Server node, click the MFP Server Application

Center component. The properties of the selected component are displayed
next to the canvas.

b. Next to the admin_user and admin_password fields, click the Delete
button to clear their pattern level parameter settings.

c. In the admin_user and admin_password fields, specify the administration
user name and password.

d. Next to the db_user and db_password fields, click the Delete button to
clear their pattern level parameter settings.

e. In the db_user and db_password fields, specify the database user name and
password.

f. In the db_name, db_instance, db_ip, and db_port fields, specify the
database user name, password, instance name, IP, and port number.

A default administration account for MobileFirst Server is created during
pattern deployment.

4. Configure and launch the pattern deployment:
a. In the IBM PureApplication System dashboard, click Patterns > Virtual

System Patterns.
b. On the Virtual System Patterns page, use the Search field to find the pattern

you created, and then select the pattern.
c. In the toolbar above the panel displaying detailed information about the

pattern, click the Deploy button.
d. In the Deploy Pattern window, in the Configure panel, select the correct

environment profile from the Environment Profile list, and provide other
IBM PureApplication System environment parameters. To obtain the correct
information, consult your IBM PureApplication System administrator.

e. In the middle column, click Pattern attributes to display attributes such as
user names and passwords.
Supply the following information in the fields provided:

9-84 IBM MobileFirst Platform Foundation V8.0.0

Note: Make appropriate changes to the default values of the pattern-level
parameters even if an external LDAP server is configured. If you configure
administration security by using an LDAP server, you need to supply
additional LDAP information. For more information, see “Configuring
MobileFirst administration security with an external LDAP repository” on
page 9-86.

admin_user
Not visible if configured in step 3. Create a default MobileFirst Server
administrator account. Default value: demo.

admin_password
Not visible if configured in step 3. Default admin account password.
Default value: demo.

ACTIVATE_TOKEN_LICENSE
Not visible if configured in step 3. Select this field to license your
pattern with token licensing. Leave this field clear if you use perpetual
licenses.

LICENSE_SERVER_HOSTNAME
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the fully-qualified
hostname or IP address of your Rational License Key Server IP address.
Otherwise, leave this field blank.

LMGRD_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
license manager daemon (lmrgd) listens for connections on. Otherwise,
leave this field blank.

The default license manager daemon port is 27000.

IBMRATL_PORT
Not visible if configured in step 3. If you use token licensing to license
IBM MobileFirst Platform Foundation, enter the port number that the
vendor daemon (ibmratl) listens for connections on. Otherwise, leave
this field blank.

The default vendor daemon port is typically 27001.

runtime_contextRoot
Not visible if configured in step 5. Context root name for the
MobileFirst Server runtime. The name must start with “/”.

deployer_user
Not visible if configured in step 8. User name for the account with
deployment privilege. If an external LDAP server is not configured, you
must enter the same value as was specified when creating the default
admin user for the administration service, because in this case, the only
authorized user for app and adapter deployment is the default admin
user.

deployer_password
Not visible if configured in step 8. User password for the user with
deployment privilege.

MFP Vms Password(root)
Root password for the MobileFirst Platform Server and MobileFirst
Platform DB nodes. Default value: passw0rd.

Deploying MobileFirst Server to the cloud 9-85

MFP DB Password(Instance owner)

Instance owner password for the MobileFirst Platform DB node. Default
value: passw0rd.

f. Click Quick Deploy to launch your pattern deployment. After a few
seconds, a message is displayed to indicate that the pattern has started to
launch. You can click the URL provided in the message to track your pattern
deployment status or go to Patterns > Virtual System Instances to open the
Virtual System Instances page and search for your pattern there.

5. To access the MobileFirst Operations Console perform the following steps:
a. Click Patterns > Virtual System Instances to open the Virtual System

Instances page and search for your pattern there.
b. Select your pattern name and expand the Virtual machine perspective in

the panel that displays the details of the selected instance.
c. Find the MobileFirst Server VM that has a name similar to

MFP_AppCenter_Server.*, make a note of its public IP address.
d. In the browser, open the MobileFirst Operations Console by composing its

URL with one of the following formats:
v http://{MFP Server VM Public IP}:9080/appcenterconsole

v https://{MFP Server VM Public IP}:9443/appcenterconsole

e. Log in to the Console with admin user and password specified in step 3.

Configuring MobileFirst administration security with an
external LDAP repository

You can configure MobileFirst administration security to enable connecting out to
an external LDAP repository. The configuration is common for both WebSphere
Application Server Liberty profile and full profile.

Before you begin

This procedure involves configuring the LDAP parameters for connecting to the
external user registry server. Before you begin, ensure the LDAP server is working
and consult your LDAP administrator to obtain the required configuration
information.

About this task

Important:

When the LDAP repository configuration is enabled, a default user for MobileFirst
administration is not automatically created. Instead, you must specify the
administration user name and password that are stored in the LDAP repository.
This information is required by WebSphere Application Server Liberty profile and a
server farm of WebSphere Application Server full profile.

If the runtime to be deployed in the pattern is configured to use LDAP for
application authentication, make sure that the LDAP server configured in the
runtime is the same as the LDAP server that is configured for the MobileFirst
Administration; different LDAP servers are not supported. Also, the protocol and
port for LDAP connection must be identical. For example, if connections from the
runtime to the LDAP server are configured to use the SSL protocol and port is 636,
connections from the MobileFirst Administration to the LDAP server must use the
SSL protocol and port 636 as well.

9-86 IBM MobileFirst Platform Foundation V8.0.0

Procedure
1. Build a pattern with any topology you need. For more information, see the

following topics:
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server Liberty profile server” on page 9-49
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server Liberty profile server” on page 9-54
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server full profile server” on page 9-64
v “Deploying MobileFirst Server on clusters of WebSphere Application Server

Network Deployment servers” on page 9-70
2. Mandatory for AIX: In IBM PureApplication System running on Power, the

MobileFirst Platform DB node needs to use the AIX-specific add-on component
“Default AIX add disk” to replace the “Default add disk” component in the
template to support the jfs2 file system:
a. In the Pattern Builder, select the MobileFirst Platform DB node.
b. Click the Add a Component Add-on button (the button is visible above the

component box when you hover the cursor over the MobileFirst Platform
DB node).

c. From the Add Add-ons list, select Default AIX add disk. The component is
added as the lowest component of the MobileFirst Platform DB node.

d. Select the Default AIX add disk component and specify the following
attributes:

DISK_SIZE_GB
Storage size (measured in GB) to be extended to the DB server. Example
value: 10.

FILESYSTEM_TYPE
Supported file system in AIX. Default value: jfs2.

MOUNT_POINT
Align with the attribute Mount point for instance owner in the
Database Server component in the MobileFirst Platform DB node.
Example value: /dbinst.

VOLUME_GROUP
Example value: group1. Contact your IBM PureApplication System
administrator for the correct value.

e. In the MobileFirst Platform DB node, select the Default add disk
component, and then click the bin icon to delete it.

f. Save the pattern.
3. Configure MobileFirst Server administration:

a. In IBM PureApplication System, in the dashboard, click Patterns > Virtual
System Patterns. The Virtual System Patterns page opens.

b. On the Virtual System Patterns page, use the Search field to find and select
the pattern you created, and then click Open to open the Pattern Builder
page.

c. In the MobileFirst Platform Server node (or the DmgrNode node when
using the MobileFirst Platform (WAS ND) template), select the MFP Server
Administration component. The properties of the selected component are
displayed next to the canvas.

Deploying MobileFirst Server to the cloud 9-87

d. Supply the following LDAP information in the fields provided:

admin_user
User ID of the account that has MobileFirst Server administration
privilege. This value is stored in the LDAP repository. Not required if
the MobileFirst Server is to be deployed on a single node of WebSphere
Application Server full profile.

admin_password
Admin user password. This value is stored in the LDAP repository. Not
required if the MobileFirst Server is to be deployed on a single node of
WebSphere Application Server full profile.

LDAP_TYPE
LDAP server type of your user registry. One of the following values:

None LDAP connection is disabled. When this is set, all the other
LDAP parameters are treated as placeholders only.

TivoliDirectoryServer
Select this if the LDAP repository is an IBM Tivoli® Directory
Server.

ActiveDirectory
Select this if the LDAP repository is a Microsoft Active
Directory.

Default value: None.

LDAP_IP
LDAP server IP address.

LDAP_SSL_PORT
LDAP port for secure connection.

LDAP_PORT
LDAP port for non-secure connection.

BASE_DN
Base DN.

BIND_DN
Bind DN.

BIND_PASSWORD
Bind DN password.

REQUIRE_SSL
Select true for secure connection to the LDAP server. Default value:
false.

USER_FILTER
LDAP user filter that applies when searching the existing user registry
for users.

GROUP_FILTER
LDAP group filter that applies when searching the existing user registry
for groups.

LDAP_REPOSITORY_NAME
LDAP server name.

CERT_FILE_PATH
Target path of the uploaded LDAP server certification.

9-88 IBM MobileFirst Platform Foundation V8.0.0

mfpadmin
Admin role for MobileFirst Server. One of the following values:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None. For more information about security roles, see
“Configuring user authentication for MobileFirst Server administration”
on page 6-166.

mfpdeployer
Deployer role for MobileFirst Server. One of the following values:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None. For more information about security roles, see
“Configuring user authentication for MobileFirst Server administration”
on page 6-166.

mfpmonitor
Monitor role for MobileFirst Server. One of the following values:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None. For more information about security roles, see
“Configuring user authentication for MobileFirst Server administration”
on page 6-166.

mfpoperator
Operator role for MobileFirst Server. One of the following values:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None. For more information about security roles, see
“Configuring user authentication for MobileFirst Server administration”
on page 6-166.

4. Optional: Configure the LDAP SSL connection. This step is required only if you
set REQUIRE_SSL to true in the previous step to use secure connections to the
LDAP server:

Deploying MobileFirst Server to the cloud 9-89

a. From the Assets toolbar, expand Software Components, and then drag and
drop an Additional file component onto the MobileFirst Platform Server
node in the canvas. Rename the component “MobileFirst LDAP Cert”, for
example.

b. Hover the cursor over the newly added component, and then click the
Move up and Move down buttons to adjust the position of the component
in the node. Make sure that it is placed between the MFP Server
Prerequisite component and the MFP Server Administration component.

c. Click the MobileFirst LDAP Cert component. The properties of the selected
component are displayed next to the canvas. Upload the LDAP certification
artifact in the Additional file field by clicking the Browse button to locate it

d. In the Target path field, specify the full path for storing the artifact
including its file name; for example, /opt/tmp/tdscert.der.

e. In the MobileFirst Platform Server node (or the DmgrNode node when
using the MobileFirst Platform (WebSphere Application Server Network
Deployment), select the MFP Server Administration component, and then
click the Add reference button next to the CERT_FILE_PATH field. In the
pop-up window, click the component-level parameter tab. From the
Component list, select MobileFirst LDAP Cert. In the Output attribute list,
select target_path. Click the ADD button to refresh the Output value field,
and then click OK.

5. Configure and launch the pattern deployment. On the Deploy Pattern page, in
the Nodes list, you can adjust your LDAP configurations by clicking
MobileFirst Platform Server (or DmgrNode when using the MobileFirst
Platform (WAS ND) template) and then expanding MFP Server
Administration. For more information about pattern deployment, see the
“Configure and launch the pattern deployment” step in one of the following
topics depending on the topology you selected when creating the pattern;
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server Liberty profile server” on page 9-49, step 8 on page 9-52
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server Liberty profile server” on page 9-54, step 9 on page 9-57
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59, step 8 on page 9-62
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59, step 9 on page 9-68
v “Deploying MobileFirst Server on clusters of WebSphere Application Server

Network Deployment servers” on page 9-70, step 9 on page 9-74 onwards.
6. Access the MobileFirst Operations Console. Use the administrator user name

and password to log in to the MobileFirst Operations Console through your
LDAP configuration. For more information, see the “Access the MobileFirst
Operations Console:” step in one of the following topics depending on the
topology you selected when creating the pattern;
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server Liberty profile server” on page 9-49, step 9 on page 9-53
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server Liberty profile server” on page 9-54, step 10 on page 9-59
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59, step 9 on page 9-64
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server full profile server” on page 9-64, step 10 on page 9-70

9-90 IBM MobileFirst Platform Foundation V8.0.0

v “Deploying MobileFirst Server on clusters of WebSphere Application Server
Network Deployment servers” on page 9-70, step 10 on page 9-76 onwards.

Configuring an external database with a IBM MobileFirst
Platform Foundation System Pattern

You can configure IBM MobileFirst Platform Foundation System Patterns to enable
connecting out to an external database. IBM DB2 is the only supported external
database. The configuration is common for all the supported patterns.

Before you begin

This procedure involves configuring the external database parameters for
connecting to the external database. Before you begin, ensure the following:
v Configure the external database instance on your installed IBM DB2.
v Make a note of the database instance name, database user name, database

password, database host name or IP and database instance port.

About this task

Procedure
1. Build a pattern with any topology you need. For more information, see the

following topics:
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server Liberty profile server” on page 9-49
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server Liberty profile server” on page 9-54
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server full profile server” on page 9-64
v “Deploying MobileFirst Server on clusters of WebSphere Application Server

Network Deployment servers” on page 9-70
2. Select the MobileFirst Platform DB and click Remove component.
3. Configure MobileFirst Server administration:

a. In IBM PureApplication System, in the dashboard, click Patterns > Virtual
System Patterns. The Virtual System Patterns page opens.

b. On the Virtual System Patterns page, use the Search field to find and select
the pattern you created, and then click Open to open the Pattern Builder
page.

c. In the MobileFirst Platform Server node (or the DmgrNode node when
using the MobileFirst Platform (WAS ND) template), select the MFP Server
Administration component. The properties of the selected component are
displayed next to the canvas.

d. Check the option USE_EXTERNAL_DATABASE and configure the
following parameters:

db_instance
External database instance name.

db_user
External database user name.

Deploying MobileFirst Server to the cloud 9-91

db_name
External database name.

db_password
External database password.

db_ip
External database IP.

db_port
External database port number.

Note: If you are using the MobileFirstPlatform (WAS ND) pattern template,
you will need to additionally configure the attribute Open firewall ports
for WAS to the external database port number.

e. In the MobileFirst Platform Server node (or the DmgrNode node when
using the MobileFirst Platform (WAS ND) template), select the MFP Server
Runtime Deployment component. The properties of the selected component
are displayed next to the canvas.

f. Under the USE_EXTERNAL_DATABASE configure the following
parameters:

rtdb_instance
External database instance name.

rtdb_user
External runtime database user name.

rtdb_name
External runtime database name, which will be created.

rtdb_password
External runtime database password.

4. Configure and launch the pattern deployment. For more information about
pattern deployment, see the “Configure and launch the pattern deployment”
step in one of the following topics depending on the topology you selected
when creating the pattern;
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server Liberty profile server” on page 9-49, step 8 on page 9-52
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server Liberty profile server” on page 9-54, step 9 on page 9-57
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59, step 8 on page 9-62
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59, step 9 on page 9-68
v “Deploying MobileFirst Server on clusters of WebSphere Application Server

Network Deployment servers” on page 9-70, step 9 on page 9-74 onwards.

Deploying and configuring MobileFirst Analytics
You can deploy and configure the MobileFirst Analytics on both WebSphere
Application Server Liberty profile and full profile to enable the Analytics features
in the pattern.

9-92 IBM MobileFirst Platform Foundation V8.0.0

Before you begin

If you intend to use an LDAP repository to protect the Analytics Console, ensure
that the LDAP server is working and consult your LDAP administrator to obtain
the required configuration information.

About this task

Important:

When the LDAP repository configuration is enabled in the Analytics component, a
default administration user is not created for MobileFirst Analytics. Instead, you
must specify the administration user name and password values that are stored in
the LDAP repository. These values are required to protect the Analytics Console.

Procedure
1. Build a pattern with the topology you need. For more information, see the

following topics:
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server Liberty profile server” on page 9-49
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server Liberty profile server” on page 9-54
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server full profile server” on page 9-64
v “Deploying MobileFirst Server on clusters of WebSphere Application Server

Network Deployment servers” on page 9-70
2. Add and configure MobileFirst Analytics:

a. In the IBM PureApplication System dashboard, click Patterns > Virtual
System Patterns. The Virtual System Patterns page opens.

b. On the Virtual System Patterns page, use the Search field to find and select
the pattern you created, and then click Open to open the Pattern Builder
page.

c. From the Assets list, expand Software Components, and then drag and
drop one of the following components onto the canvas:

Liberty profile server
Select this component if you want to deploy MobileFirst Analytics
on WebSphere Application Server Liberty profile.

Standalone server
Select this component if you want to deploy MobileFirst Analytics
on WebSphere Application Server full profile.

A new node is created with the name “OS Node”. Rename it “MobileFirst
Platform Analytics”.

d. Make the following configuration changes depending on the type of
application server you want to deploy Analytics to:
v If you are deploying MobileFirst Analytics to WebSphere Application

Server Liberty profile, click Liberty profile server in the MobileFirst
Platform Analytics node. The properties of the selected component are
displayed next to the canvas. In the Configuration data location field,

Deploying MobileFirst Server to the cloud 9-93

enter the path /opt/IBM/WebSphere/Liberty and specify the
administrative user name and password. Use the default values for the
other parameters.

v If you are deploying MobileFirst Analytics to WebSphere Application
Server full profile, click Standalone server in the MobileFirst Platform
Analytics node. The properties of the selected component are displayed
next to the canvas. In the Configuration data location field, enter the
path /opt/IBM/WebSphere/AppServer/Profiles, change Profile name to
AppSrv01, and specify the administrative user name and password. Use
the default values for the other parameters.

Important: The WebSphere Application Server administrative user will be
created in the WebSphere Application Server user repository. If LDAP will
be configured for the Analytics server, avoid user name conflicts with the
WebSphere Application Server administrative user. For example, if
“user1” will be introduced by the LDAP server through its configuration,
do not set “user1” as the WebSphere Application Server administrative
user name.

e. From the Components list, expand Scripts, and then drag and drop an MFP
Server Prerequisite component and a MFP WAS SDK Level component
onto the MobileFirst Platform Analytics node on the canvas.

f. From the Components list, expand Scripts, and then drag and drop an MFP
Analytics component onto the MobileFirst Platform Analytics node on the
canvas. Make sure the MFP Analytics component is positioned after the
Liberty profile server component (or the Standalone server component).

g. Supply the following MobileFirst Analytics information in the fields
provided:
The LDAP parameters are exactly the same as the MFP Server
Administration parameters. For more information, see the “Configure MFP
Server Administration” step in 3 on page 9-87:

Important: For LDAP SSL connection configuration in MobileFirst
Analytics, make sure that in step 4b in “Configuring MobileFirst
administration security with an external LDAP repository” on page 9-86, the
dragged-in MobileFirst LDAP Cert component in the MobileFirst Platform
Analytics node must be moved to between the Liberty profile server (or
Stanalone server) and the MFP Analytics script package.

WAS_ROOT

v If MobileFirst Analytics is being installed on WebSphere Application
Server Liberty profile, specify the installation directory of the Liberty
profile for Analytics:
1) Click the Add reference button next to the WAS_ROOT field and

in the pop-up window, click the component-level parameter tab.
2) In the Component field, select Liberty profile server.(it might be

called Liberty profile server_1 if the MobileFirst Server is also
deployed on WebSphere Application Server Liberty profile).

3) In the Output attribute field, select install_directory. Click the
ADD button to refresh the Output value field, and then click OK.

v If MobileFirst Analytics is being installed on WebSphere Application
Server full profile, specify the installation directory of the WebSphere
Application Server full profile for Analytics:
1) Click the Add reference button next to the WAS_ROOT field and

in the pop-up window, click the component-level parameter tab.

9-94 IBM MobileFirst Platform Foundation V8.0.0

2) In the Component field, select Standalone server.(it might be
called Standalone server_1 if the MobileFirst Server is also
deployed on WebSphere Application Server full profile)

3) In the Output attribute field, select install_directory. Click the
ADD button to refresh the Output value field, and then click OK.

HEAP_MIN_SIZE

Applicable to WebSphere Application Server full profile only.

The amount of Analytics data that is generated is directly proportional
to the amount of memory required to handle it. Set this value to allow a
larger minimum heap size for WebSphere Application Server full
profile. Make sure that the Memory size value specified in the Core OS
component of the MobileFirst Platform Analytics node is larger than
HEAP_MIN_SIZE. Consider setting a value equal to HEAP_MAX_SIZE

Default value: 4096 MB.

HEAP_MAX_SIZE

Applicable to WebSphere Application Server full profile only.

The amount of Analytics data that is generated is directly proportional
to the amount of memory required to handle it. Set this value to allow a
larger maximum heap size for WebSphere Application Server full
profile. Make sure that the Memory size value specified in the Core OS
component of the MobileFirst Platform Analytics node is larger than
HEAP_MAX_SIZE. Consider setting a value equal to HEAP_MIN_SIZE

Default value: 4096 MB.

WAS_admin_user

Applicable to WebSphere Application Server full profile only.

WebSphere Application Server full profile admin user ID for the
Analytics server.
1) Click the Add reference button next to the WAS_admin_user field

and in the pop-up window, click the component-level parameter
tab.

2) In the Component field, select Standalone server.(it may be called
Standalone server_1 if the MobileFirst Server is also deployed on
WebSphere Application Server full profile)

3) In the Output attribute field, select was_admin. Click the ADD
button to refresh the Output value field, and then click OK.

For Liberty profile, the default value can be used.

WAS_admin_password

Applicable to WebSphere Application Server full profile only.

WebSphere Application Server full profile admin user ID for the
Analytics server.
1) Click the Add reference button next to the WAS_admin_password

field and in the pop-up window, click the component-level
parameter tab.

2) In the Component field, select Standalone server.(it may be called
Standalone server_1 if the MobileFirst Server is also deployed on
WebSphere Application Server full profile)

Deploying MobileFirst Server to the cloud 9-95

3) In the Output attribute field, select was_admin_password. Click the
ADD button to refresh the Output value field, and then click OK.

For Liberty profile, the default value can be used.

admin_user

v If an LDAP repository is not enabled, create a default administration
user for MobileFirst Analytics console protection.

v If an LDAP repository is enabled, specify the user name that has
MobileFirst Analytics administration privilege. The value is stored in
the LDAP repository.

admin_password

v If an LDAP repository is not enabled, specify the password for the
default administration user for MobileFirst Analytics console
protection.

v If an LDAP repository is enabled, specify the administration user
password. The value is stored in the LDAP repository.

h. Optional: Enable the LDAP repository for MobileFirst Analytics console
protection. The LDAP parameters in MobileFirst Analytics are exactly the
same as those for MobileFirst Server Administration. For more information,
see “Configure MFP Server Administration” (step 3 on page 9-87) in
“Configuring MobileFirst administration security with an external LDAP
repository” on page 9-86.

3. Configure MobileFirst Server runtime deployment for MobileFirst Analytics
connection:
a. In the MobileFirst Platform Server node (or the DmgrNode node when

using the MobileFirst Platform (WAS ND) template), select the MFP Server
Runtime Deployment component.

b. Drag a link from the MFP Server Runtime Deployment component to the
Liberty profile server component or to the Standalone server component in
the MobileFirst Platform Analytics node, depending on the type of
application server being used. The Configure Data Dependencies pop-up
window opens.

c. Configure the data dependencies:
1) In the Configure Data Dependencies window, clear any existing

recommended data dependency entries by clicking the X button next to
each entry.

2) Below MFP Server Runtime Deployment component, select analytics_ip
and below Liberty profile server or Standalone server, select IP.

3) Click the Add button to add the new data dependency.
4) Click OK to save your changes.

The link from the MFP Server Runtime Deployment component to the
Liberty profile server component (or the Standalone server component) is
built.

d. Drag another link from the MFP Server Runtime Deployment component to
the MFP Analytics component in the MobileFirst Platform Analytics node.
The Configure Data Dependencies pop-up window opens.

e. Configure the data dependencies:
1) In the Configure Data Dependencies window, clear all the recommended

data dependencies entries by clicking the X button next to each entry.

9-96 IBM MobileFirst Platform Foundation V8.0.0

2) Below MFP Server Runtime Deployment component, select
analytics_admin_user and below MFP Analytics, select admin_user.

3) Click the Add button to add the new data dependency.
4) Repeat the process to configure a data dependency from

analytics_admin_password to admin_password.
5) Click OK to save your changes.

The link from the MFP Server Runtime Deployment component to the MFP
Analytics component is built.

The following figure shows an example of a MobileFirst Platform Analytics
node added to a MobileFirst Platform WAS ND pattern:

4. Configure and launch the pattern deployment.
On the Deploy Pattern page, you can adjust your MobileFirst Analytics
configuration settings by clicking the MobileFirst Platform Analytics
component under the Nodes list in the middle column and then expanding
MFP Analytics.
For more information about pattern deployment, see the “Configure and launch
the pattern deployment” step in the following topics depending on the
topology you selected when creating the pattern:
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server Liberty profile server” on page 9-49, step 8 on page 9-52
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server Liberty profile server” on page 9-54, step 9 on page 9-57
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59, step 8 on page 9-62
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59, step 9 on page 9-68
v “Deploying MobileFirst Server on clusters of WebSphere Application Server

Network Deployment servers” on page 9-70, step 9 on page 9-74
5. Access MobileFirst Analytics through the MobileFirst Operations Console.

For more information, see the “Access the MobileFirst Operations Console” step
in one of the following topics depending on the topology you selected when
creating the pattern:
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server Liberty profile server” on page 9-49, step 9 on page 9-53
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server Liberty profile server” on page 9-54, step 10 on page 9-59
v “Deploying MobileFirst Server on a single-node WebSphere Application

Server full profile server” on page 9-59, step 9 on page 9-64
v “Deploying MobileFirst Server on a multiple-node WebSphere Application

Server full profile server” on page 9-64, step 10 on page 9-70
v “Deploying MobileFirst Server on clusters of WebSphere Application Server

Network Deployment servers” on page 9-70, step 10 on page 9-76

Figure 9-1. MobileFirst Platform Analytics node added to a MobileFirst Platform WAS ND pattern

Deploying MobileFirst Server to the cloud 9-97

Predefined templates for MobileFirst Platform Pattern
IBM MobileFirst Platform Foundation System Pattern includes predefined
templates that you can use to build patterns for the most typical deployment
topologies.

The following templates are available:
v “MobileFirst Platform (Liberty single node) template”
v “MobileFirst Platform (Liberty server farm) template” on page 9-99
v “MobileFirst Platform (WAS single node) template” on page 9-100
v “MobileFirst Platform (WAS server farm) template” on page 9-102
v “MobileFirst Platform (WAS ND) template” on page 9-104
v “MobileFirst Platform Application Center (Liberty single node) template” on

page 9-106
v “MobileFirst Platform Application Center (WAS single node) template” on page

9-107

MobileFirst Platform (Liberty single node) template

Figure 9-2 shows the composition of the “MobileFirst Platform (Liberty single
node)” template.

The “MobileFirst Platform (Liberty single node)” template is composed of the
following nodes and components:

Figure 9-2. MobileFirst Platform (Liberty single node) template

9-98 IBM MobileFirst Platform Foundation V8.0.0

Table 9-33. MobileFirst Platform (Liberty single node) template nodes and components.

Node Components

MobileFirst Platform Server
Liberty profile server

WebSphere Application Server
Liberty profile server installation.

MFP Server Prerequisite
Prerequisites for MobileFirst Server
installation including SSL and Ant.

MFP Server Administration
MobileFirst Server Administration
web application including
MobileFirst Operations Console.

MFP Server Runtime Deployment
Runtime context root configuration.

MFP Server Application
MobileFirst application to be added
to the deployment.

MFP Server Adapter
MobileFirst adapter to be added to
the deployment.

MFP Server Application Adapter
Deployment

Application and adapter
deployment to the MobileFirst
Server.

MobileFirst Platform DB
Database Server

DB2 database server installation.

MFP Administration DB
MobileFirst administration database
schema installation.

MFP Runtime DB
MobileFirst runtime database
schema installation.

Default add disk
Disk size configuration.

MobileFirst Platform (Liberty server farm) template

Figure 9-3 shows the composition of the “MobileFirst Platform (Liberty server
farm)” template.

The “MobileFirst Platform (Liberty server farm)” template is composed of the
following nodes and components:

Figure 9-3. MobileFirst Platform (Liberty server farm) template

Deploying MobileFirst Server to the cloud 9-99

Table 9-34. MobileFirst Platform (Liberty server farm) template nodes and components.

Node Components

IHS Server
IBM HTTP servers

IBM HTTP Server installation.

MFP IHS Configuration
Automatic configuration of IBM
HTTP Server.

MobileFirst Platform Server
Liberty profile server

WebSphere Application Server
Liberty profile server installation.

MFP Server Prerequisite
Prerequisites for MobileFirst Server
installation including SSL and Ant.

MFP Server Administration
MobileFirst Server Administration
web application including
MobileFirst Operations Console.

MFP Server Runtime Deployment
Runtime context root configuration.

MFP Server Application
MobileFirst application to be added
to the deployment.

MFP Server Adapter
MobileFirst adapter to be added to
the deployment.

MFP Server Application Adapter
Deployment

Application and adapter
deployment to the MobileFirst
Server.

Base Scaling Policy
VM scaling policy: number of VMs.

MobileFirst Platform DB
Database Server

DB2 database server installation.

MFP Administration DB
MobileFirst administration database
schema installation.

MFP Runtime DB
MobileFirst runtime database
schema installation.

Default add disk
Disk size configuration.

MobileFirst Platform (WAS single node) template

Figure 9-4 on page 9-101 shows the composition of the “MobileFirst Platform (WAS
single node)” template.

9-100 IBM MobileFirst Platform Foundation V8.0.0

The “MobileFirst Platform (WAS single node)” template is composed of the
following nodes and components:

Table 9-35. MobileFirst Platform (WAS single node) template nodes and components.

Node Components

MobileFirst Platform Server
Standalone server

WebSphere Application Server full
profile server installation.
Restriction:

Do not change the values for the
following component attributes:

v Cell name

v Node name

v Profile name

If you change any of these
attributes, the deployment of
patterns that are based on this
template fails.

MFP Server Prerequisite
Prerequisites for MobileFirst Server
installation including SSL and Ant.

MFP Server Administration
MobileFirst Server Administration
web application including
MobileFirst Operations Console.

MFP Server Runtime Deployment
Runtime context root configuration.

MobileFirst App
MobileFirst application to be added
to the deployment.

MobileFirst Adapter
MobileFirst adapter to be added to
the deployment.

MFP Server Application Adapter
Deployment

Application and adapter
deployment to the MobileFirst
Server.

Figure 9-4. MobileFirst Platform (WAS single node) template

Deploying MobileFirst Server to the cloud 9-101

Table 9-35. MobileFirst Platform (WAS single node) template nodes and
components (continued).

Node Components

MobileFirst Platform DB
Database Server

DB2 database server installation.

MFP Administration DB
MobileFirst administration database
schema installation.

MFP Runtime DB
MobileFirst runtime database
schema installation.

Default add disk
Disk size configuration.

MobileFirst Platform (WAS server farm) template

Figure 9-5 shows the composition of the “MobileFirst Platform (WAS server farm)”
template.

The “MobileFirst Platform (WAS server farm)” template is composed of the
following nodes and components:

Table 9-36. MobileFirst Platform (WAS server farm) template nodes and components.

Node Components

IHS Server
IBM HTTP servers

IBM HTTP Server installation.

MFP IHS Configuration
Automatic configuration of IBM
HTTP Server.

Figure 9-5. MobileFirst Platform (WAS server farm) template

9-102 IBM MobileFirst Platform Foundation V8.0.0

Table 9-36. MobileFirst Platform (WAS server farm) template nodes and
components (continued).

Node Components

MobileFirst Platform Server
Standalone server

WebSphere Application Server full
profile server installation.
Restriction:

Do not change the values for the
following component attributes:

v Cell name

v Node name

v Profile name

If you change any of these
attributes, the deployment of
patterns that are based on this
template fails.

MFP Server Prerequisite
Prerequisites for MobileFirst Server
installation including SSL and Ant.

MFP Server Administration
MobileFirst Server Administration
web application including
MobileFirst Operations Console.

MFP Server Runtime Deployment
Runtime context root configuration.

MobileFirst App
MobileFirst application to be added
to the deployment.

MobileFirst Adapter
MobileFirst adapter to be added to
the deployment.

MFP Server Application Adapter
Deployment

Application and adapter
deployment to the MobileFirst
Server.

Base Scaling Policy
VM scaling policy: number of VMs.

MobileFirst Platform DB
Database Server

DB2 database server installation.

MFP Administration DB
MobileFirst administration database
schema installation.

MFP Runtime DB
MobileFirst runtime database
schema installation.

Default add disk
Disk size configuration.

Deploying MobileFirst Server to the cloud 9-103

MobileFirst Platform (WAS ND) template

Figure 9-6 shows the composition of the “MobileFirst Platform (WAS ND)”
template.

The “MobileFirst Platform (WAS ND)” template is composed of the following
nodes and components:

Table 9-37. MobileFirst Platform (WAS ND) template nodes and components.

Node Components

IHS Server
IBM HTTP servers

IBM HTTP Server installation.

MFP IHS Configuration
Automatic configuration of IBM
HTTP Server.

Figure 9-6. MobileFirst Platform (WAS ND) template

9-104 IBM MobileFirst Platform Foundation V8.0.0

Table 9-37. MobileFirst Platform (WAS ND) template nodes and components (continued).

Node Components

DmgrNode
Deployment manager

WebSphere Application Server
deployment manager installation.
Restriction:

Do not change the values for the
following component attributes:

v Cell name

v Node name

v Profile name

If you change any of these
attributes, the deployment of
patterns that are based on this
template fails.

MFP Server Prerequisite
Prerequisites for MobileFirst Server
installation including SSL and Ant.

MFP Server Administration
MobileFirst Server Administration
web application including
MobileFirst Operations Console.

MFP Runtime
Runtime WAR file.

MFP Server Runtime Deployment
Runtime context root configuration.

MFP Application
MobileFirst application to be added
to the deployment.

MFP Adapter
MobileFirst adapter to be added to
the deployment.

MFP Server Application Adapter
Deployment

Application and adapter
deployment to the MobileFirst
Server.

MobileFirst Platform DB
Database Server

DB2 database server installation.

MFP Administration DB
MobileFirst administration database
schema installation.

MFP Runtime DB
MobileFirst runtime database
schema installation.

Default add disk
Disk size configuration.

Deploying MobileFirst Server to the cloud 9-105

Table 9-37. MobileFirst Platform (WAS ND) template nodes and components (continued).

Node Components

CustomNode
Custom nodes

Details of the cells and nodes in the
clusters of WebSphere Application
Server Network Deployment
servers.
Restriction:

Do not change the values for the
following component attributes:

v Cell name

v Node name

v Profile name

If you change any of these
attributes, the deployment of
patterns that are based on this
template fails.

MFP Open Firewall Ports for WAS
Ports that must be open to enable
connection to the database server
and the LDAP server.

Base scaling policy
Number of virtual machine
instances required for the chosen
topology.

MobileFirst Platform Application Center (Liberty single node)
template

Figure 9-7 shows the composition of the “MobileFirst Platform Application Center
(Liberty single node)” template.

The “MobileFirst Platform Application Center (Liberty single node)” template is
composed of the following nodes and components:

Table 9-38. MobileFirst Platform Application Center (Liberty single node) template nodes
and components.

Node Components

MFP AppCenter DB
Database Server

DB2 database server installation.

Default add disk
Disk size configuration.

Figure 9-7. MobileFirst Platform Application Center (Liberty single node) template

9-106 IBM MobileFirst Platform Foundation V8.0.0

Table 9-38. MobileFirst Platform Application Center (Liberty single node) template nodes
and components (continued).

Node Components

MFP AppCenter Server
Liberty profile server

WebSphere Application Server
Liberty profile server installation.

MFP Server Prerequisite
Prerequisites for MobileFirst Server
installation including SSL and Ant.

MFP Server Application Center
This script package sets up the
MobileFirst Application Center
server in a WebSphere Application
Server full profile or WebSphere
Application Server Liberty profile
server.

MobileFirst Platform Application Center (WAS single node)
template

Figure 9-8 shows the composition of the “MobileFirst Platform Application Center
(WAS single node)” template.

The “MobileFirst Platform Application Center (WAS single node)” template is
composed of the following nodes and components:

Table 9-39. MobileFirst Platform Application Center (WAS single node) template nodes and
components.

Node Components

MFP AppCenter DB
Database Server

DB2 database server installation.

Default add disk
Disk size configuration.

Figure 9-8. MobileFirst Platform Application Center (WAS single node) template

Deploying MobileFirst Server to the cloud 9-107

Table 9-39. MobileFirst Platform Application Center (WAS single node) template nodes and
components (continued).

Node Components

MFP AppCenter Server
Standalone server

WebSphere Application Server full
profile server installation.
Restriction:

Do not change the values for the
following component attributes:

v Cell name

v Node name

v Profile name

If you change any of these
attributes, the deployment of
patterns that are based on this
template fails.

MFP WAS SDK Level
Purpose of this script is to set the
required SDK level as the default
SDK for the WAS Profile

MFP Server Prerequisite
Prerequisites for MobileFirst Server
installation including SSL and Ant.

MFP Server Application Center
This script package sets up the
MobileFirst Application Center
server in a WebSphere Application
Server full profile or WebSphere
Application Server Liberty profile
server.

Script packages for MobileFirst Server
IBM MobileFirst Platform Foundation System Pattern provides script packages that
are the building blocks to compose various pattern topologies.

The following sections list and describe the parameters for each script package.
v “MFP Administration DB” on page 9-109
v “MFP Analytics” on page 9-109
v “MFP IHS Configuration” on page 9-112
v “MFP Open Firewall Ports for WAS” on page 9-113
v “MFP WAS SDK Level” on page 9-114
v “MFP Runtime DB” on page 9-115
v “MFP Server Administration” on page 9-115
v “MFP Server Application Adapter Deployment” on page 9-119
v “MFP Server Application Center” on page 9-120
v MFP Server Prerequisite
v MFP Server Runtime Deployment

9-108 IBM MobileFirst Platform Foundation V8.0.0

MFP Administration DB

This script package sets up the administration database schema in a DB2 database.
It must be used with the Database Server (DB2) software component.

Table 9-40. MFP Administration DB.

Parameter Description

db_user Mandatory. User name to create the
Administration database. It can be mapped
to the Instance name of the Database Server
component. Default value: db2inst1.

db_name Mandatory. Database name to create the
Administration database. Default value:
WLADM.

db_password Mandatory. User password to create the
Administration database. It can be mapped
to the Instance owner password of the
Database Server component. Default value:
passw0rd (as pattern level parameter).

other_db_args Mandatory. Four parameters to create the
Administration database:SQL type,
Codeset,Territory and Collate. Default
value: DB2 UTF-8 US SYSTEM.

MFP Analytics

This script package sets up the MobileFirst Analytics server in a WebSphere
Application Server full profile or WebSphere Application Server Liberty profile
server, and sets up the connection and mapping of Analytics administration
security roles to an external TDS or AD server. It must be used with the
WebSphere Application Server Liberty profile server or WebSphere Application
Server full profile (display name: Standalone server) software component . It must
be installed after the Liberty profile or Standalone server software component.

Table 9-41. MFP Analytics.

Parameter Description

WAS_ROOT Mandatory.

v If Analytics is installed on WebSphere
Application Server Liberty profile, specify
the installation directory of the WebSphere
Application Server Liberty profile for
Analytics.

v If Analytics is installed on WebSphere
Application Server full profile, specify the
installation directory of the WebSphere
Application Server full profile for
Analytics.

Deploying MobileFirst Server to the cloud 9-109

Table 9-41. MFP Analytics (continued).

Parameter Description

HEAP_MIN_SIZE WebSphere Application Server full profile
only.

Depending on the amount of Analytics data
that is generated, more memory is required
for more data handling. Set this to allow
larger minimum heap size for WebSphere
Application Server full profile. Make sure
the memory size specified in the Core OS
component of MobileFirst Analytics is larger
than this. It is recommended to set the same
value as HEAP_MAX_SIZE.

Default value: 4096 (MB).

HEAP_MAX_SIZE
WebSphere Application Server full profile
only.

Depending on the amount of Analytics data
that is generated, more memory is required
for more data handling. Set this to allow
larger maximum heap size for WebSphere
Application Server full profile. Make sure
the memory size specified in the Core OS
component of MobileFirst Analytics is larger
than this. It is recommended to set the same
value asHEAP_MIN_SIZE.

Default value: 4096 (MB).

WAS_admin_user
WebSphere Application Server full profile
only.

WebSphere Application Server full profile
admin user for the Analytics server. For
WebSphere Application Server Liberty
profile, leave the default value unchanged.

WAS_admin_password
WebSphere Application Server full profile
only.

WebSphere Application Server full profile
admin user password for the Analytics
server. For WebSphere Application Server
Liberty profile, leave the default value
unchanged.

admin_user Mandatory.

v If LDAP repository not enabled, create a
default administration user for MobileFirst
Analytics console protection.

v If LDAP repository is enabled, specify the
user name that has MobileFirst Analytics
administration privilege. The value is
stored in the LDAP repository.

9-110 IBM MobileFirst Platform Foundation V8.0.0

Table 9-41. MFP Analytics (continued).

Parameter Description

admin_password Mandatory.

v If an LDAP repository is not enabled,
specify the password for the default
administration user for MobileFirst
Analytics console protection.

v If an LDAP repository is enabled, specify
the admin user password. The value is
stored in the LDAP repository.

LDAP_TYPE (LDAP parameter) Mandatory. LDAP server
type of your user registry:

None LDAP connection is disabled. When
this is set, all the other LDAP
parameters are treated as
placeholders only.

TivoliDirectoryServer
Select this if the LDAP repository is
an IBM Tivoli Directory Server.

ActiveDirectory
Select this if the LDAP repository is
a Microsoft Active Directory.

Default value: None.

LDAP_IP (LDAP parameter). LDAP server IP address.

LDAP_SSL_PORT (LDAP parameter) LDAP port for secure
connection.

LDAP_PORT (LDAP parameter) LDAP port for non-secure
connection.

BASE_DN (LDAP parameter) Base DN.

BIND_DN (LDAP parameter) Bind DN.

BIND_PASSWORD (LDAP parameter) Bind DN password.

REQUIRE_SSL
(LDAP parameter) Set it to true for secure
connection to LDAP server.

v When it is true, LDAP_SSL_PORT is used
and CERT_FILE_PATH is required to locate
the certification file of the LDAP server.

v When it is false, LDAP_PORT is used.

Default value: false.

USER_FILTER (LDAP parameter) LDAP user filter that
searches the existing user registry for users.

GROUP_FILTER (LDAP parameter) LDAP group filter that
searches the existing user registry for
groups.

LDAP_REPOSITORY_NAME (LDAP parameter) LDAP server name.

CERT_FILE_PATH (LDAP parameter) Target path of the
uploaded LDAP server certification. It is
mandatory when REQUIRE_SSL is set to true.

Deploying MobileFirst Server to the cloud 9-111

Table 9-41. MFP Analytics (continued).

Parameter Description

mfpadmin (LDAP parameter) Admin role for
MobileFirst Server:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None.

mfpdeployer (LDAP parameter) Deployer role for
MobileFirst Server:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None.

mfpmonitor (LDAP parameter) Monitor role for
MobileFirst Server:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None.

mfpoperator (LDAP parameter) Operator role for
MobileFirst Server:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None.

MFP IHS Configuration

This script package configures the IBM HTTP Server to work as a load balancer for
multiple instances of MobileFirst Server. It must be used with the IBM HTTP
servers software component . It must be installed after the IBM HTTP servers
software component.

9-112 IBM MobileFirst Platform Foundation V8.0.0

Table 9-42. MFP IHS Configuration.

Parameter Description

WAS_ROOT Mandatory. Installation directory of
WebSphere Application Server Liberty
profile or WebSphere Application Server full
profile in the MobileFirst Platform Server
node, or installation directory of
Deployment manager in the DmgrNode
node. In the pattern templates, it is mapped
to output attributeinstall_directory of
Liberty profile server, Standalone server, or
Deployment manager.

profile_name
Optional. The profile name that contains the
files for the WebSphere Application Server
runtime environment.

In the pattern templates, it is mapped to
output attribute dmgr_profile_name of
Deployment manager or sa_profile_name of
Standalone server.

runtime_contextRoot_list Mandatory. Runtime context root list that
allows IHS to route requests that have
matching context roots. Use semicolons (;) to
separate the runtime context roots. For
example, HelloMobileFirst;HelloWorld
Important: It must align with the context
root specified in the MFP Server Runtime
Deployment. Otherwise, IHS cannot
correctly route requests that contain the
Runtime context root.

http_port Mandatory. Open the firewall port in the
IHS Server node to allow the HTTP
transport from IHS Server to MobileFirst
Server. Must be 9080.

https_port Mandatory. Open the firewall port in the
IHS Server node to allow the HTTPS
transport from IHS Server to MobileFirst
Server. Must be 9443.

server_hostname Mandatory. Host name of IBM HTTP
servers. It is mapped to the host output
attribute of IBM HTTP servers in the pattern
template.

MFP Open Firewall Ports for WAS

This script package is only applicable for Custom nodes in the MobileFirst (WAS
ND) pattern template (WebSphere Application Server Network Deployment). Its
purpose is to open the necessary firewall ports of the Custom nodes that host the
MobileFirst Administration Services and runtime. As well as defining some
WebSphere Application Server predefined ports, you need to specify the other
ports for connecting to the DB2 server and the LDAP server.

Deploying MobileFirst Server to the cloud 9-113

Table 9-43. MFP Open Firewalls for WAS.

Parameter Description

WAS_ROOT Mandatory. Installation directory of
WebSphere Application Server Network
Deployment Custom nodes in the
CustomNode node. In the pattern templates,
it is mapped to output attribute
install_directory of Custom nodes server.

profile_name Mandatory. The profile name that contains
the files for the WebSphere Application
Server runtime environment. In the pattern
templates, it is mapped to output attribute
cn_profile_name of Custom nodes.

WAS_admin_user Mandatory. It is mapped to the was_admin
output attribute of Custom nodes in the
pattern template.

Ports
Mandatory. Other ports that need to be
opened for connecting to DB2 server and
LDAP server (optional). Port values can be
separated by semicolons; for example,
'50000;636'

Default value: 50000.

MFP WAS SDK Level

This script package is only applicable where ever the WAS Profiles are available in
the pattern template (WebSphere Application Server Network Deployment).

Table 9-44. MFP WAS SDK Level. The purpose of this script is to set the required SDK
level as the default SDK for the WAS Profile.

Parameter Description

WAS_ROOT Installation directory of WebSphere
Application Server Liberty profile or
WebSphere Application Server full profile in
the MobileFirst Platform Server node or the
installation directory of the Deployment
manager in the DmgrNode node. In the
pattern templates, it is mapped to output
attributeinstall_directory of Liberty profile
server, Standalone server, or Deployment
manager.

profile_name The profile name that contains the files for
the WebSphere Application Server runtime
environment. In the pattern templates, it is
mapped to output attribute
dmgr_profile_name of Deployment manager
or sa_profile_name of Standalone server.

SDK_name Name of the SDK that needs to be enabled
for this WebSphere installation

9-114 IBM MobileFirst Platform Foundation V8.0.0

MFP Runtime DB

This script package sets up the runtime database schema in a DB2 database.

Table 9-45. MFP Runtime DB. This script package sets up the runtime database schema in
a DB2 database. It must be used with the Database Server (DB2) software component.

Parameter Description

db_user Mandatory. User name to create the Runtime
database. It can be mapped to the Instance
name of the Database Server component.
Default value: db2inst1.

db_name Mandatory. Database name to create the
Runtime database. Default value: WLRTIME.

db_password Mandatory. User password to create the
Runtime database. It can be mapped to the
Instance owner password of the Database
Server component. Default value: passw0rd
(as pattern level parameter).

other_db_args Mandatory. Four parameters to create the
Runtime database:SQL type,
Codeset,Territory and Collate. Default
value: DB2 UTF-8 US SYSTEM.

MFP Server Administration

This script package sets up the MobileFirst Administration component (including
the MobileFirst Operations Console) in a WebSphere Application Server full profile
or WebSphere Application Server Liberty profile server, and setting up the
connection and mapping administration security roles to an external TDS or AD
server.

The script package must be used with the WebSphere Application Server Liberty
profile server software component or the WebSphere Application Server full profile
software component (display name: Standalone server), and must be installed after
the MFP Server Prerequisite but prior to any other MFP * Script Packages in the
MobileFirst Platform Server VM node.

Table 9-46. MFP Server Administration.

Parameter Description

WAS_ROOT Mandatory. Installation directory of
WebSphere Application Server Liberty
profile or WebSphere Application Server full
profile in the MobileFirst Platform Server
node or the installation directory of the
Deployment manager in the DmgrNode
node. In the pattern templates, it is mapped
to output attributeinstall_directory of
Liberty profile server, Standalone server, or
Deployment manager.

profile_name Optional. The profile name that contains the
files for the WebSphere Application Server
runtime environment. In the pattern
templates, it is mapped to output attribute
dmgr_profile_name of Deployment manager
or sa_profile_name of Standalone server.

Deploying MobileFirst Server to the cloud 9-115

Table 9-46. MFP Server Administration (continued).

Parameter Description

NUMBER_OF_CLUSTERMEMBERS Optional. Only applicable for the MobileFirst
Platform (WAS ND) pattern template. It
specifies the number of cluster members for
the cluster to deploy the MFP administration
service. Default value: 2.

db_user Mandatory. User name that created the
Administration database. It is mapped to the
db_user output attribute of the MFP
Administration DB script package in the
pattern template.

db_name Mandatory. Name of the Administration
database. It is mapped to thedb_name output
attribute of the MFP Administration DB
script package in the pattern template.

db_password Mandatory. password for user who created
the Administration database. It is mapped to
the db_password output attribute of the MFP
Administration DB script package in the
pattern template.

db_ip IP address of the DB server where the
Administration database is installed. It is
mapped to the IP output attribute of the
Database Server software component in the
pattern template.

db_port Port number of the DB server where the
Administration database is installed. It is
mapped to the instancePort output
attribute of the Database Server software
component in the pattern template.

admin_user User name that has MobileFirst Server
administration privilege.

v When LDAP_TYPE is None, create the default
admin user.

v When LDAP_TYPE is set to
TivoliDirectoryServer or
ActiveDirectory and other LDAP
parameters are specified according to your
LDAP server configuration, the
admin_user value should be taken from
the configured LDAP user repository. Not
required when the MobileFirst Server is to
be deployed on a single node of
WebSphere Application Server full profile.

admin_password Password of the admin user.

v When LDAP_TYPE is None, create the default
admin user password.

v When an external LDAP server is
configured, the user password is taken
from the LDAP repository. Not required
when the MobileFirst Server is to be
deployed on a single node of WebSphere
Application Server full profile.

9-116 IBM MobileFirst Platform Foundation V8.0.0

Table 9-46. MFP Server Administration (continued).

Parameter Description

install_console
Whether the MobileFirst Operations Console
is to be deployed in the MobileFirst Platform
Server node.

Default value: Selected. (Check box)

WAS_admin_user
Optional. When the MobileFirst Server is
deployed on WebSphere Application Server
full profile, it is mapped to the
was_adminoutput attribute of Standalone
server in the pattern template.

When the MobileFirst Server is deployed on
WebSphere Application Server Network
Deployment, it is mapped to the was_admin
output attribute of Deployment manager in
the pattern template.

WAS_admin_password
Optional. When the MobileFirst Server is
deployed on WebSphere Application Server
full profile, it is mapped to
thewas_admin_password output attribute of
Standalone server in the pattern template.

When the MobileFirst Server is deployed on
WebSphere Application Server Network
Deployment, it is mapped to the
was_admin_password output attribute of
Deployment manager in the pattern
template.

server_hostname
Mandatory. Host name of the MobileFirst
Server or Deployment manager. Mapped to
the host output attribute of Liberty profile
server, Standalone Server, or Deployment
manager.

server_farm_mode
Mandatory. Whether the MobileFirst Server
is to be deployed in server farm mode. Must
be selected for a server farm topology and
must be cleared for a standalone topology.

Default value: set according to the topology
defined in the pattern template.

webserver_ip
Optional. When IBM HTTP servers is
deployed in the pattern template, this
parameter is mapped to the IP output
attribute of IBM HTTP servers.

Deploying MobileFirst Server to the cloud 9-117

Table 9-46. MFP Server Administration (continued).

Parameter Description

LDAP_TYPE (LDAP parameter) Mandatory. LDAP server
type of your user registry. One of the
following values:

v None – LDAP connection is disabled.
When this value is selected, all the other
LDAP parameters are treated as
placeholders only.

v TivoliDirectoryServer: Select this value if
the LDAP repository is IBM Tivoli
Directory Server

v ActiveDirectory: Select this value if the
LDAP repository is Microsoft Active
Directory

Default value: None.

LDAP_IP (LDAP parameter) LDAP server IP address.

LDAP_SSL_PORT (LDAP parameter) LDAP port for secure
connection.

LDAP_PORT (LDAP parameter) LDAP port for non-secure
connection.

BASE_DN (LDAP parameter) Base DN.

BIND_DN (LDAP parameter) Bind DN.

BIND_PASSWORD (LDAP parameter) Bind DN password.

REQUIRE_SSL (LDAP parameter) Set to true for secure
connection to LDAP server.

v When true, theLDAP_SSL_PORT is used and
CERT_FILE_PATH is required to locate the
certification file of the LDAP server.

v When false, LDAP_PORT is used.

Default value: false.

USER_FILTER (LDAP parameter) User filter that searches
the existing user registry for users.

GROUP_FILTER (LDAP parameter) LDAP group filter that
searches the existing user registry for
groups.

LDAP_REPOSITORY_NAME (LDAP parameter) LDAP server name.

CERT_FILE_PATH (LDAP parameter) Target path of the
uploaded LDAP server certification. It is
mandatory when REQUIRE_SSL is set to true.

mfpadmin Admin role for MobileFirst Server. One of
the following values:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None.

9-118 IBM MobileFirst Platform Foundation V8.0.0

Table 9-46. MFP Server Administration (continued).

Parameter Description

mfpdeployer Deployer role for MobileFirst Server. One of
the following values:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None.

mfpmonitor Monitor role for MobileFirst Server. One of
the following values:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None.

mfpoperator Operator role for MobileFirst Server. One of
the following values:

None No user.

AllAuthenticatedUsers
Authenticated users

Everyone
All users.

Default value: None.

MFP Server Application Adapter Deployment

This script package deploys applications and adapters to the MobileFirst Server. It
must be installed after the corresponding MFP Server Runtime Deployment script
package that installed the runtime where the application and adapter are to be
deployed.

Table 9-47. MFP Server Application Adapter Deployment.

Parameter Description

artifact_dir Mandatory. Installation path of application
and adapter for deployment. It is mapped to
the target_pathoutput attribute of the
MobileFirst App component in the pattern
template.

admin_context Mandatory. Must be mfpadmin.

Deploying MobileFirst Server to the cloud 9-119

Table 9-47. MFP Server Application Adapter Deployment (continued).

Parameter Description

runtime_context
Mandatory. Align with the runtime context
root specified in the MFP Server Runtime
Deployment component.

It is mapped to runtime_contextRoot output
attribute of the MFP Server Runtime
Deployment component.

deployer_user Mandatory. User account with application
and adapter deployment privilege. Set as
pattern level parameter in the pattern
template.

deployer_password Mandatory. User password with application
and adapter deployment privilege. Set as
pattern level parameter in the pattern
template.

webserver_ip
Optional. When IBM HTTP servers is
deployed in the pattern template, it is
mapped to the same output attribute of MFP
Server Administration.

MFP Server Application Center

This script package sets up the MobileFirst Application Center server in a
WebSphere Application Server full profile or WebSphere Application Server Liberty
profile server. It must be used with the WebSphere Application Server Liberty
profile server and MFP Server Prerequisite or WebSphere Application Server full
profile (Standalone server), MFP WAS SDK Level and MFP Server Prerequisite. It
must be installed after the Liberty profile or Standalone server software
component.

Table 9-48. MFP Server Application Center.

Parameter Description

WAS_ROOT Mandatory. Installation directory of
WebSphere Application Server Liberty
profile or WebSphere Application Server full
profile in the MobileFirst Platform Server
node. In the pattern templates, it is mapped
to output attributeinstall_directory of
Liberty profile server or Standalone server.

profile_name
The profile name that contains the files for
the WebSphere Application Server runtime
environment.

In the pattern templates, it is mapped to
output attribute sa_profile_name of
Standalone server.

db_instance Name of the database instance. It is mapped
to the instancePort output attribute of the
Database Server software component in the
pattern template.

9-120 IBM MobileFirst Platform Foundation V8.0.0

Table 9-48. MFP Server Application Center (continued).

Parameter Description

db_user User name that created the Administration
database. It is mapped to the db_user output
attribute of the MFP Administration DB
script package in the pattern template.

db_name Name of the Administration database. It is
mapped to thedb_name output attribute of
the MFP Administration DB script package
in the pattern template.

db_password Password for user who created the
Administration database. It is mapped to the
db_password output attribute of the MFP
Administration DB script package in the
pattern template.

db_ip IP address of the DB server where the
Administration database is installed. It is
mapped to the IP output attribute of the
Database Server software component in the
pattern template.

db_port Port number of the DB server where the
Administration database is installed. It is
mapped to the instancePort output
attribute of the Database Server software
component in the pattern template.

admin_user
User name that has MobileFirst Server
administration privilege.

In the pattern template, it is associated with
the parameter of the same name in the MFP
Server Administration script package as a
pattern level parameter to ensure they are
set to the same value

admin_password
admin user password.

In the pattern template, it is associated with
the parameter of the same name in the MFP
Server Administration script package as a
pattern level parameter to ensure they are
set to the same value

WAS_admin_user
Mandatory for WebSphere Application
Server. Optional for WebSphere Application
Server Liberty. When the MobileFirst Server
is deployed on WebSphere Application
Server full profile, it is mapped to the
was_adminoutput attribute of Standalone
server in the pattern template.

When the MobileFirst Server is deployed on
WebSphere Application Server Network
Deployment, it is mapped to the was_admin
output attribute of Deployment manager in
the pattern template.

Deploying MobileFirst Server to the cloud 9-121

Table 9-48. MFP Server Application Center (continued).

Parameter Description

WAS_admin_password
Mandatory for WebSphere Application
Server. Optional for WebSphere Application
Server Liberty. When the MobileFirst Server
is deployed on WebSphere Application
Server full profile, it is mapped to
thewas_admin_password output attribute of
Standalone server in the pattern template.

When the MobileFirst Server is deployed on
WebSphere Application Server Network
Deployment, it is mapped to the
was_admin_password output attribute of
Deployment manager in the pattern
template.

server_hostname Host name of the MobileFirst Server. It is
mapped to the host output attribute of
Liberty profile server or Standalone Server.

LDAP_TYPE LDAP server type of your user registry:

None LDAP connection is disabled. When
this is set, all the other LDAP
parameters are treated as
placeholders only.

TivoliDirectoryServer
Select this if the LDAP repository is
an IBM Tivoli Directory Server.

ActiveDirectory
Select this if the LDAP repository is
a Microsoft Active Directory.

Default value: None.

LDAP_IP (LDAP parameter). LDAP server IP address.

LDAP_SSL_PORT (LDAP parameter) LDAP port for secure
connection.

LDAP_PORT (LDAP parameter) LDAP port for non-secure
connection.

BASE_DN (LDAP parameter) Base DN.

BIND_DN (LDAP parameter) Bind DN.

BIND_PASSWORD (LDAP parameter) Bind DN password.

REQUIRE_SSL
(LDAP parameter) Set it to true for secure
connection to LDAP server.

v When it is true, LDAP_SSL_PORT is used
and CERT_FILE_PATH is required to locate
the certification file of the LDAP server.

v When it is false, LDAP_PORT is used.

Default value: false.

USER_FILTER (LDAP parameter) LDAP user filter that
searches the existing user registry for users.

9-122 IBM MobileFirst Platform Foundation V8.0.0

Table 9-48. MFP Server Application Center (continued).

Parameter Description

GROUP_FILTER (LDAP parameter) LDAP group filter that
searches the existing user registry for
groups.

LDAP_REPOSITORY_NAME (LDAP parameter) LDAP server name.

CERT_FILE_PATH (LDAP parameter) Target path of the
uploaded LDAP server certification. It is
mandatory when REQUIRE_SSL is set to true.

appcenteradmin Admin role for MobileFirst Application
Center. Use one of the following values:

v None

v No user

v AllAuthenticatedUsers

v Authenticated users

v Everyone

v All users

v Default value: None

MFP Server prerequisite

This script package includes all prerequisites that are required to install the
MobileFirst Server, including the DB2 JDBC driver and Apache Ant. The script
package must be used with the WebSphere Application Server Liberty profile
server software component or the WebSphere Application Server full profile
software component (display name: Standalone server), and must be installed after
the server software component but prior to any other MFP* script packages in the
MobileFirst Platform Server node.

Table 9-49. MFP Server Prerequisite.

Parameter Description

None No parameters for this script package.

MFP Server Runtime Deployment

This script package installs the MobileFirst runtime in a WebSphere Application
Server full profile or WebSphere Application Server Liberty profile server with the
MobileFirst Operations Console installed. The script package also sets up the
connection to the MobileFirst Analytics server. It must be installed after the MFP
Server Administration script package.

Deploying MobileFirst Server to the cloud 9-123

Table 9-50. MFP Server Runtime Deployment.

Parameter Description

WAS_ROOT Mandatory. Installation directory of
WebSphere Application Server Liberty
profile or WebSphere Application Server full
profile in the MobileFirst Platform Server
node, or installation directory of
Deployment manager in the DmgrNode
node. In the pattern templates, it is mapped
to output attribute install_directory of
Liberty profile server or Standalone server.

profile_name
Optional. The profile name that contains the
files for the WebSphere Application Server
runtime environment.

In the pattern templates, it is mapped to
output attribute dmgr_profile_name of
Deployment manager or sa_profile_name of
Standalone server.

NUMBER_OF_CLUSTERMEMBERS Optional. Only applicable for the MobileFirst
Platform (WAS ND) pattern template. It
specifies the number of cluster members for
the cluster to deploy MFP runtime. Default
value: 2.

db_ip IP address of the DB server where the
Runtime (and optional Reports) database is
installed. It is mapped to the IP output
attribute of the Database Server software
component in the pattern template.

db_port Port number of the DB server where the
Runtime (and optional Reports) database is
installed. It is mapped to theinstancePort
output attribute of the Database Server
software component in the pattern template.

admin_user
Mandatory. User name that has MobileFirst
Server administration privilege.

In the pattern template, it is associated with
the parameter of the same name in the MFP
Server Administration script package as a
pattern level parameter to ensure they are
set to the same value

admin_password
Mandatory. admin user password.

In the pattern template, it is associated with
the parameter of the same name in the MFP
Server Administration script package as a
pattern level parameter to ensure they are
set to the same value

runtime_path Mandatory. Runtime WAR file installed
path. For example: it can be mapped to the
target_path output attribute of MFP Server
Runtime in the pattern template.

9-124 IBM MobileFirst Platform Foundation V8.0.0

Table 9-50. MFP Server Runtime Deployment (continued).

Parameter Description

runtime_contextRoot Mandatory. Runtime context root. Must start
with a forward slash, /; for example,
“/HelloWorld”. It is set as a pattern level
parameter in the pattern template.

rtdb_name Mandatory. Name of the Runtime database.
It is mapped to thedb_name output attribute
of the MFP Runtime DB script package in
the pattern template.

rtdb_user Mandatory. User that created the Runtime
database. It is mapped to the db_user output
attribute of the MFP Runtime DB script
package in the pattern template.

rtdb_password Mandatory. Password of the user that
created the Runtime database. It is mapped
to the db_password output attribute of the
MFP Runtime DB script package in the
pattern template.

rptdb_name
Optional. Name of the Reports database. It
is mapped to thedb_name output attribute of
the MFP Reports DB script package in the
pattern template.

Leave blank if you do not want to connect
to a Reports database.

rptdb_user Optional. User that created the Reports
database. It is mapped to thedb_user output
attribute of the MFP Reports DB script
package in the pattern template.

rptdb_password Optional. Password of the user that created
the Reports database. It is mapped to the
db_password output attribute of MFP Reports
DB script package in the pattern template.

was_admin_user
Optional. When the MobileFirst Server is
deployed on WebSphere Application Server
full profile, it is mapped to the
was_adminoutput attribute of Standalone
server in the pattern template.

When the MobileFirst Server is deployed on
WebSphere Application Server Network
Deployment, it is mapped to the was_admin
output attribute of Deployment manager in
the pattern template.

Deploying MobileFirst Server to the cloud 9-125

Table 9-50. MFP Server Runtime Deployment (continued).

Parameter Description

was_admin_password
Optional. When the MobileFirst Server is
deployed on WebSphere Application Server
full profile, it is mapped to
thewas_admin_password output attribute of
Standalone server in the pattern template.

When the MobileFirst Server is deployed on
WebSphere Application Server Network
Deployment, it is mapped to the
was_admin_password output attribute of
Deployment manager in the pattern
template.

server_farm_mode Mandatory. Map it to the same attribute of
MFP Server Administration.

server_hostname Mandatory. Host name of the MobileFirst
Server. It is mapped to the host output
attribute of Liberty profile server, Standalone
Server, or Deployment manager.

analytics_ip Optional. MobileFirst Analytics Node IP
address to enable the Analytics capability in
the MFP Server Runtime.

analytics_admin_user Optional. Administrator name of the
MobileFirst Analytics server.

analytics_admin_password Optional. Password of administrator of the
MobileFirst Analytics server.

Upgrading IBM MobileFirst Platform Foundation System
Pattern

To upgrade IBM MobileFirst Platform Application Pattern, upload the .tgz file that
contains the latest updates.

Procedure
1. Log into IBM PureApplication System with an account that is allowed to

upload new system plugins.
2. From the IBM PureApplication System console, navigate to Catalog > System

Plug-ins.
3. Upload the IBM MobileFirst Platform Application Pattern .tgz file that contains

the updates.
4. Enable the plugins you have uploaded.
5. Redeploy the pattern.

9-126 IBM MobileFirst Platform Foundation V8.0.0

Administering MobileFirst applications

Run and maintain MobileFirst applications in production.

IBM MobileFirst Platform Foundation provides several ways to administer
MobileFirst applications in development or in production. MobileFirst Operations
Console is the main tool with which you can monitor all deployed MobileFirst
applications from a centralized web-based console.

The main operations that you can perform through MobileFirst Operations Console
are:
v Registering and configuring mobile applications to MobileFirst Server.
v Deploying and configuring adapters to MobileFirst Server.
v Manage application versions to deploy new versions or remotely disable old

versions.
v Manage mobile devices and users to manage access to a specific device or access

for a specific user to an application.
v Display notification messages on application startup.
v Monitor push notification services.
v Collect client-side logs for specific applications installed on a specific device.

Administration roles

Not every kind of administration user can perform every administration operation.
MobileFirst Operations Console, and all administration tools, have four different
roles defined for administration of MobileFirst applications. The following
MobileFirst administration roles are defined:

Monitor
In this role, a user can monitor deployed MobileFirst projects and
deployed artifacts. This role is read-only.

Operator
An Operator can perform all mobile application management operations,
but cannot add or remove application versions or adapters.

Deployer
In this role, a user can perform the same operations as the Operator, but
can also deploy applications and adapters.

Administrator
In this role, a user can perform all application administration operations.

For more information about MobileFirst administration roles, see “Configuring
user authentication for MobileFirst Server administration” on page 6-166.

Administration tools

MobileFirst Operations Console is not the only way to administer MobileFirst
applications. IBM MobileFirst Platform Foundation also provides other tools to
incorporate administration operations into your build and deployment process.

© Copyright IBM Corp. 2006, 2016 10-1

A set of REST services is available to perform administration operations. For API
reference documentation of these services, see “REST API for the MobileFirst
Server administration service” on page 8-7.

With this set of REST services, you can perform the same operations that you can
do in MobileFirst Operations Console. You can manage applications, adapters, and,
for example, upload a new version of an application or disable an old version.

MobileFirst applications can also be administered by using Ant tasks or with the
mfpadm command line tool. See “Administering MobileFirst applications through
Ant” on page 10-23 or “Administering MobileFirst applications through the
command line” on page 10-47.

Similar to the web-based console, the REST services, Ant tasks, and command line
tools are secured and require you to provide your administrator credentials.

Deploying MobileFirst applications to test and production
environments

When you have developed an application, deploy it to a separate test and
production environment.

About this task

When you finish a development cycle of your application, deploy it to a testing
environment, and then to a production environment.

Deploying or updating an adapter to a production
environment

Review this check-list before you deploy or update an adapter to a production
environment.

About this task

Adapters contain the server-side code of applications that are deployed on and
serviced by IBM MobileFirst Platform Foundation. Read this checklist before you
deploy or update an adapter to a production environment. For more information
about creating and building adapters, see “Developing the server side of a
MobileFirst application” on page 7-187.

Adapters can be uploaded, updated, or configured while a production server is
running. After all the nodes of a server farm receive the new adapter or
configuration, all incoming requests to the adapter use the new settings.

Procedure
1. If you update an existing adapter in a production environment, make sure that

this adapter contains no incompatibilities or regressions with existing
applications that are registered to a server.
The same adapter can be used by multiple applications, or by multiple versions
of the same application, that are already published to the store and used.
Before you update the adapter in a production environment, run non-regression
tests in a test server against the new adapter and copies of the apps that are
built for the test server.

10-2 IBM MobileFirst Platform Foundation V8.0.0

2. For Java adapters, if the adapter uses Java URLConnection with HTTPS, make
sure that the back-end certificates are in the MobileFirst Server keystore.
For more information, see “Using SSL in HTTP adapters” on page 7-222. For
more information about using self-signed certificates, see “Configuring SSL
between MobileFirst adapters and back-end servers by using self-signed
certificates.”

Note: If the application server is WebSphere Application Server Liberty, then
the certificates must also be in the Liberty truststore.

3. Verify the server-side configuration of the adapter.
For more information about adapter configuration, see “Configuring adapters”
on page 7-227.

4. Use the mfpadm deploy adapter and mfpadm adapter set user-config
commands to upload the adapter and its configuration.
For more information about mfpadm for adapters, see “Commands for adapters”
on page 10-57.

Configuring SSL between MobileFirst adapters and back-end
servers by using self-signed certificates

You can configure SSL between MobileFirst adapters and back-end servers by
importing the server self-signed SSL certificate to the MobileFirst keystore.

Procedure
1. Export the server public certificate from the back-end server keystore.

Note: Export back-end public certificates from the back-end keystore by using
keytool or openssl lib. Do not use the export feature in a web browser.

2. Import the back-end server certificate into the MobileFirst keystore.
3. Deploy the new the MobileFirst keystore. For more information, see

“Configuring the MobileFirst Server keystore” on page 7-316.

Example

The CN name of the back-end certificate must match what is configured in the
adapter-descriptor adapter.xml file. For example, consider an adapter.xml file that
is configured as follows:
<protocol>https</protocol>
<domain>mybackend.com</domain>

The back-end certificate must be generated with CN=mybackend.com.

As another example, consider the following adapter configuration:
<protocol>https</protocol>
<domain>123.124.125.126</domain>

The back-end certificate must be generated with CN=123.124.125.126.

The following example demonstrates how you complete the configuration by using
the Keytool program.
1. Create a back-end server keystore with a private certificate for 365 days.

keytool -genkey -alias backend -keyalg RSA -validity 365 -keystore backend.keystore -storetype JKS

Administering MobileFirst applications 10-3

Note: The First and Last Name field contains your server URL, which you use
in theadapter.xml configuration file, for example mydomain.com or localhost.

2. Configure your back-end server to work with the keystore. For example, in
Apache Tomcat, you change the server.xml file:
<Connector port="443" SSLEnabled="true" maxHttpHeaderSize="8192"

maxThreads="150" minSpareThreads="25" maxSpareThreads="200"
enableLookups="false" disableUploadTimeout="true"
acceptCount="100" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="backend.keystore" keystorePass="password" keystoreType="JKS"
keyAlias="backend"/>

3. Check the connectivity configuration in the adapter.xml file:
<connectivity>

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>https</protocol>
<domain>mydomain.com</domain>
<port>443</port>
<!-- The following properties are used by adapter’s key manager for choosing a specific certificate from the key store
<sslCertificateAlias></sslCertificateAlias>
<sslCertificatePassword></sslCertificatePassword>
-->

</connectionPolicy>
<loadConstraints maxConcurrentConnectionsPerNode="2"/>

</connectivity>

4. Export the public certificate from the created back-end server keystore:
keytool -export -alias backend -keystore backend.keystore -rfc -file backend.crt

5. Import the exported certificate into your MobileFirst Server keystore:
keytool -import -alias backend -file backend.crt -storetype JKS -keystore mfp.keystore

6. Check that the certificate is correctly imported in the keystore:
keytool -list -keystore mfp.keystore

7. Deploy the new the MobileFirst Server keystore.

Building an application for a test or production environment
To build an application for a test or production environment, you must configure it
for its target server. To build an application for a production environment,
additional steps apply.

About this task

Procedure
1. Make sure that the target server keystore is configured.

For more information, see “Configuring the MobileFirst Server keystore” on
page 7-316.

2. If you plan to distribute the app installable artifact, increment the app version.
3. Before you build your app, configure it for the target server.

You define the URL and runtime name of the target server in the client
properties file. You can also change the target server by using the IBM
MobileFirst Platform Command Line Interface (CLI). To configure the app for a
target server without registering the app to a running server, you can use the
mfpdev app config server <server URL> and mfpdev app config runtime
<runtime_name> commands. Alternatively, you can register the app to a running
server by running the mfpdev app register command. Use the public URL of
the server. This URL is used by the mobile app to connect to MobileFirst Server.
For example, to configure the app for a target server mfp.mycompany.com with a
runtime that has the default name mfp, run

10-4 IBM MobileFirst Platform Foundation V8.0.0

mfpdev app config server https://mfp.mycompany.com
and
mfpdev app config runtime mfp.

4. Configure the secret keys and authorized servers for your application.
a. If your app implements certificate pinning, use the certificate of your target

server.
For more information about certificate pinning, see “Certificate pinning” on
page 7-185.

b. If your iOS app uses App Transport Security (ATS), configure ATS for your
target server.

c. To configure secure Direct Update for an Apache Cordova application, see
“Implementing secure Direct Update on the client side” on page 7-239.

d. If you develop your app with Apache Cordova, configure the Cordova
Content Security Policy (CSP).

5. If you plan to use Direct Update for an application that is developed with
Apache Cordova, archive the versions of the Cordova plug-ins you used to
build the app.
Direct Update cannot be used to update native code. If you changed a native
library or one of the build tools in a Cordova project and uploaded such a file
to MobileFirst Server, the server detects the difference and does not send any
updates for the client application. The changes in the native library might
include a different Cordova version, a newer Cordova iOS plug-in, or even an
mfpdev plug-in fix pack that is newer than the one that was used to build the
original application.

6. Configure the app for production use.
a. Consider disabling printing to the device log.
b. If you plan to use IBM MobileFirst Analytics, verify that your app sends

collected data to the MobileFirst Server. For more information, see “Sending
analytics” on page 11-37.

c. Consider disabling features of your app that call the setServerURL API,
unless you plan to make a single build for multiple test servers.

7. If you build for a production server and plan to distribute the installable
artifact, archive the app source code to be able to run non regression-tests for
this app on a test server.
For example, if you later update an adapter, you might run non-regression tests
on already distributed apps that use this adapter. For more information, see
“Deploying or updating an adapter to a production environment” on page 10-2.

8. Optional: Create the application-authenticity file for your application.
You use the application-authenticity file after you register the application to the
server to enable the application-authenticity security check.
v For more information, see “Enabling the application-authenticity security

check” on page 7-282.
v For more information about configuring application authenticity, see

“Configuring the application-authenticity security check” on page 7-284.
v For more information about registering an application to a production server,

see “Registering an application to a production environment” on page 10-6.

Administering MobileFirst applications 10-5

What to do next

Register and configure the application in the production server. For more
information, see “Registering an application to a production environment.”

Registering an application to a production environment
When you register an application to a production server, you upload its
application descriptor, define its license type, and optionally activate application
authenticity.

Before you begin
v Verify that MobileFirst Server keystore is configured and is not the default

keystore. Do not use a server in production with a default keystore. The
MobileFirst Server keystore defines the identity of MobileFirst Server instances,
and is used to digitally sign OAuth tokens and Direct Update packages. You
must configure the server's keystore with a secret key before you use it in
production. For more information, see “Configuring the MobileFirst Server
keystore” on page 7-316.

v Deploy the adapters used by the app. For more information, see “Deploying or
updating an adapter to a production environment” on page 10-2.

v Build the application for your target server. For more information, see “Building
an application for a test or production environment” on page 10-4.

About this task

When you register an application with a production server, you upload its
application descriptor, define its license type, and optionally activate application
authenticity. You might also define your update strategy if an older version of your
app is already deployed. Read the following procedure to learn about important
steps, and about ways to automate them with the mfpadm program.

Procedure
1. If your MobileFirst Server is configured for token licensing, make sure that you

have enough available tokens on the License Key Server. For more information,
see “Token license validation” on page 10-83 and “Planning for the use of token
licensing” on page 6-150.

Tip: You can set the token license type of your app before you register the first
version of your app. For more information, see “Setting the application license
information” on page 10-80.

2. Transfer the application descriptor from a test server to the production server.
This operation registers your application to the production server and upload
its configuration. For more information about transferring an application
descriptor, see “Transferring server-side artifacts to a test or production server”
on page 10-7.

3. Set the application license information For more information, see “Setting the
application license information” on page 10-80.

4. Configure the application-authenticity security check. For more information
about configuring the application-authenticity security check, see “Configuring
the application-authenticity security check” on page 7-284.

10-6 IBM MobileFirst Platform Foundation V8.0.0

Note: You need the application binary file to create the application-authenticity
file. For more information, see “Enabling the application-authenticity security
check” on page 7-282.

5. If your application uses push notification, upload the push notification
certificates to the server. You can upload the push certificates for your
application with MobileFirst Operations Console. The certificates are common
to all versions of an application.

Note: You might not be able to test the push notification for your app with
production certificates before your app is published to the store.

6. Verify the following items before you publish the application to the store.
a. Test any mobile application management feature that you plan to use, such

as disabling remote applications or displaying of an administrator message.
For more information, see “Mobile-application management” on page 10-15.

b. In the case of an update, define the update strategy. For more information,
see “Updating MobileFirst apps in production” on page 10-14.

Transferring server-side artifacts to a test or production
server

You can transfer an application configuration from a one server to another by
using command-line tools or a REST API.

About this task

The application descriptor file is a JSON file that contains the description and
configuration of your application. When you run an app that connects to a
MobileFirst Server instance, the app must be registered with that server and
configured. After you define a configuration for your app, you can transfer the
application descriptor to another server, for example to a test server or to a
production server. After you transfer the application descriptor to the new server,
the app is registered with the new server. Different procedures are available,
depending on whether you develop mobile applications and have access to the
code, or whether you administer servers and do not have access to the code of the
mobile app.

Important: If you import an application that includes authenticity data, and if the
application itself has been recompiled since the authenticity data was generated,
you must refresh the authenticity data. For more information, see “Configuring the
application-authenticity security check” on page 7-284.

Procedure
v If you have access to the code of the mobile app, use the mfpdev app pull and

mfpdev app push commands.
v If you do not have access to the code of the mobile app, use the administration

service.

Transferring an application configuration by using mfpdev
After you have developed an application, you can transfer it from your
development environment to a test or production environment.

Before you begin
v You must have an existing MobileFirst app on your local computer. The app

must be registered to a MobileFirst Server. For information about creating a

Administering MobileFirst applications 10-7

server profile, run mfpdev app register, or the topic about registering your type
of app in the Developing applications section of this documentation.

v You must have connectivity from your local computer to the server that your
app is currently registered to and to the server that you want to transfer your
app to.

v You must have a server profile on the local computer for both the original
MobileFirst Server and the server that you want to transfer your app to. For
information about creating a server profile, run mfpdev server add.

v You must have the IBM MobileFirst Platform Command Line Interface (CLI)
installed. For more information, see “Installing the MobileFirst Platform CLI” on
page 7-15.

About this task

You use the mfpdev app pull command to send a copy of the server-side
configuration files for your app to your local computer. Then you use the mfpdev
app push command to send it to another MobileFirst Server. The mfpdev app push
command also registers the app on the specified server.

You can also use these commands to transfer a runtime configuration from one
server to another.

The configuration information includes the contents of the application descriptor,
which uniquely identifies the app to the server and other information that is
specific to the app. The configuration files are provided as compressed files (.zip
format). The .zip files are placed in the directory appName/mobilefirst and named
as follows:
appID-platform-version-artifacts.zip

where appID is the application name, platform is one of android, ios, or windows,
and version is the version level of your app. For Cordova apps, a separate .zip file
is created for each target platform.

When you use the mfpdev app push command, the application's client properties
file is modified to reflect the profile name and URL of the new MobileFirst Server.

Procedure
1. On your development computer, navigate to a directory that is the root

directory of your app or one of its subdirectories.
2. Run the mfpdev app pull command. If you specify the command with no

parameters, the app is pulled from the default MobileFirst Server. You can also
specify a particular server and its administrator password. For example, for an
Android application named myapp1:
$ cd myapp1
$ mfpdev app pull Server10 -password secretPassword!

This command finds the configuration files for the current application on the
MobileFirst Server whose server profile is named Server10. Then, it sends the
compressed file myapp1-android-1.0.0-artifacts.zip, which contains these
configuration files, to the local computer and places it in the directory
myapp1/mobilefirst.

3. Run the mfpdev app push command. If you specify the command with no
parameters, the app is pushed to the default MobileFirst Server. You can also

10-8 IBM MobileFirst Platform Foundation V8.0.0

specify a particular server and its administrator password. For example, for the
same application that was pushed in the previous step:
$ mfpdev app push Server12 -password secretPass234!

This command sends the file myapp1-android-1.0.0-artifacts.zip to the
MobileFirst Server whose server profile is named Server12, that has the
administrator password secretPass234! The client properties file
myapp1/app/src/main/assets/mfpclient.properties is modified to reflect that
the server that the app is registered to is Server12, with the server's URL.

Results

The app's server-side configuration files are present on the MobileFirst Server that
you specified in the mfpdev app push command. The app is registered to this new
server.

What to do next

Test the app or deploy it on the MobileFirst Server that you have transferred it to.

Transferring an application configuration with the administration
service
As an administrator, you can transfer an application configuration from one server
to another by using the administration service of MobileFirst Server. No access to
the application code is required, but the client app must be built for the target
server.

Before you begin
v Build the client app for your target server. For more information, see “Building

an application for a test or production environment” on page 10-4.

About this task

You download the application descriptor from the server where the application is
configured and you deploy it to the new server. You can see the application
descriptor with MobileFirst Operations Console.

Procedure
1. Optional: Review the application descriptor in the server where the application

server is configured.
Open the MobileFirst Operations Console for that server, select your application
version, and go to the tab Configuration Files.

2. Download the application descriptor from the server where the application is
configured. You can download it by using the REST API or mfpadm.

Note: You can also export an application or application version from the
MobileFirst Operations Console. See “Exporting and importing applications and
adapters from the MobileFirst Operations Console” on page 10-12.
v To download the application descriptor with the REST API, use the

“Application Descriptor (GET)” on page 8-37 REST API.
The following URL returns the application descriptor for the application of
app ID my.test.application, for the ios platform, and version 0.0.1. The
call is made to MobileFirst Development Server.

Administering MobileFirst applications 10-9

http://localhost:9080/mfpadmin/management-apis/2.0/runtimes/mfp/
applications/my.test.application/ios/0.0.1/descriptor

For example, you can use such URL with a tool like curl.
curl -user admin:admin http://[...]/ios/0.0.1/descriptor > desc.json

Change the following elements of the URL according to your server
configuration:
– 9080 is the HTTP port of MobileFirst Development Server.
– mfpadmin is the context root of the administration service. This context root

is mfpadmin in MobileFirst Development Server.

For information about the REST API, see “REST API for the MobileFirst
Server administration service” on page 8-7.

v Download the application descriptor by using mfpadm.
The mfpadm program is installed when you run the MobileFirst Server
installer. You start it from the product_install_dir/shortcuts/ directory,
where product_install_dir indicates the installation directory of MobileFirst
Server.
The following example creates a password file, which is required by the
mfpadm command, then downloads the application descriptor for the
application of app ID my.test.application, for the ios platform, and version
0.0.1. The provided URL is the HTTPS URL of MobileFirst Development
Server.

prompt> echo password=admin > password.txt
prompt> mfpadm --url https://localhost:9443/mfpadmin --secure false --user admin \

--passwordfile password.txt \
app version mfp my.test.application ios 0.0.1 get descriptor > desc.json

prompt> rm password.txt

Change the following elements of the command line according to your server
configuration:
– 9443 is the HTTPS port of MobileFirst Development Server.
– mfpadmin is the context root of the administration service. This context root

is mfpadmin in MobileFirst Development Server.
– --secure false indicates that the server's SSL certificate is accepted even

if self-signed or if created for a different host name from the server's host
name used in the URL.

For more information about the mfpadm program, see “Administering
MobileFirst applications through the command line” on page 10-47.

3. Upload the application descriptor to the new server to register the app or
update its configuration.
You can upload it by using the REST API or mfpadm.
v To upload the application descriptor with the REST API, use the

“Application (POST)” on page 8-43 REST API.
The following URL uploads the application descriptor to the mfp runtime.
You send a POST request, and the payload is the JSON application
descriptor. The call in this example is made to server that runs on the local
computer and that is configured with an HTTP port set to 9081.
http://localhost:9081/mfpadmin/management-apis/2.0/runtimes/mfp/
applications/

For example, you can use such URL with a tool like curl.
curl -H "Content-Type: application/json" -X POST -d @desc.json -u admin:admin \

http://localhost:9081/mfpadmin/management-apis/2.0/runtimes/mfp/applications/

10-10 IBM MobileFirst Platform Foundation V8.0.0

v Upload the application descriptor by using mfpadm.
The following example creates a password file, which is required by the
mfpadm command, then uploads the application descriptor for the application
of app ID my.test.application, for the ios platform, and version 0.0.1. The
provided URL is the HTTPS URL of a server that runs on the local computer
but is configured with an HTTPS port set to 9444, and for a runtime named
mfp.

prompt> echo password=admin > password.txt
prompt> mfpadm --url https://localhost:9444/mfpadmin --secure false --user admin \

--passwordfile password.txt \
deploy app mfp desc.json

prompt> rm password.txt

Transferring server-side artifacts by using the REST API
Whatever your role, you can export applications, adapters, and resources for
back-up or reuse purposes by using the MobileFirst Server administration service.
As an administrator or deployer, you can also deploy an export archive to a
different server. No access to the application code is required, but the client app
must be built for the target server.

Before you begin
v Build the client app for your target server. For more information, see “Building

an application for a test or production environment” on page 10-4.

About this task

The export API retrieves the selected artifacts for a runtime as a .zip archive. Use
the deployment API to reuse archived content.

Important: Carefully consider your use case:
v The export file includes the application authenticity data. That data is specific to

the build of a mobile app. The mobile app includes the URL of the server and
its runtime name. Therefore, if you want to use another server or another
runtime, you must rebuild the app. Transferring only the exported app files
would not work.

v Some artifacts might vary from one server to another. Push credentials are
different depending on whether you work in a development or production
environment.

v The application runtime configuration (that contains the active/disabled state
and the log profiles) can be transferred in some cases but not all.

v Transferring web resources might not make sense in some cases, for example if
you rebuild the app to use a new server.

Procedure
v To export all resources, or a selected subset of resources, for one adapter or for

all adapters, use the “Export adapter resources (GET)” on page 8-103 or “Export
adapters (GET)” on page 8-105 API.

v To export all the resources under a specific application environment (such as
Android or iOS), that is all the versions and all the resources for the version for
that environment, use the “Export application environment (GET)” on page
8-106 API.

Administering MobileFirst applications 10-11

v To export all the resources for a specific version of an application (for example,
version 1.0 or 2.0 of an Android application), use the “Export application
environment resources (GET)” on page 8-107 API.

v To export a specific application or all applications for a runtime, use the “Export
applications (GET)” on page 8-110 or “Export application resources (GET)” on
page 8-109 API.

Note: Credentials for push notification are not exported among the application
resources.

v To export the adapter content, descriptor, license configuration, content, user
configuration, keystore, and web resources of an application, use the “Export
resources (GET)” on page 8-111 API.

v To export all or selected resources for a runtime, use the “Export runtime
resources (GET)” on page 8-113 API. For example, you can use this general curl
command to retrieve all resources as a .zip file.
curl -X GET -u admin:admin -o exported.zip

"http://localhost:9080/worklightadmin/management-apis/2.0/runtimes/mfp/export/all"

v To deploy an archive that contains such web application resources as adapter,
application, license configuration, keystore, web resource, use the “Deploy
(POST)” on page 8-76 API. For example, you can use this curl command to
deploy an existing .zip file that contains artifacts.
curl -X POST -u admin:admin -F

file=@/Users/john_doe/Downloads/export_applications_adf_ios_2.zip
"http://localhost:9080/mfpadmin/management-apis/2.0/runtimes/mfp/deploy/multi"

v To deploy application authenticity data, use the “Deploy Application
Authenticity Data (POST)” on page 8-80 API.

v To deploy the web resources of an application, use the “Deploy a web resource
(POST)” on page 8-83 API.

Results

If you deploy an export archive to the same runtime, the application or version is
not necessarily restored as it was exported. That is, the redeployment does not
remove subsequent modifications. Rather, if some application resources are
modified between export time and redeployment, only the resources that are
included in the exported archive are redeployed in their original state. For
example, if you export an application with no authenticity data, then you upload
authenticity data, and then you import the initial archive, the authenticity data is
not erased.

Exporting and importing applications and adapters from the
MobileFirst Operations Console
From the console, under certain conditions, you can export an application or one of
its versions, and later import it to a different runtime on the same server or a
different server. You can also export and reimport adapters. Use this capability for
reuse or back-up purposes.

Before you begin

Open the MobileFirst Operations Console. For more information, see “Opening the
MobileFirst Operations Console” on page 7-12.

10-12 IBM MobileFirst Platform Foundation V8.0.0

About this task

If you are granted the mfpadmin administrator role and the mfpdeployer deployer
role, you can export one version or all versions of an application. The application
or version is exported as a .zip compressed file, which saves the application ID,
descriptors, authenticity data, and web resources. You can later import the archive
to redeploy the application or version to another runtime on the same or on a
different server.

Important: Carefully consider your use case:
v The export file includes the application authenticity data. That data is specific to

the build of a mobile app. The mobile app includes the URL of the server and
its runtime name. Therefore, if you want to use another server or another
runtime, you must rebuild the app. Transferring only the exported app files
would not work.

v Some artifacts might vary from one server to another. Push credentials are
different depending on whether you work in a development or production
environment.

v The application runtime configuration (that contains the active/disabled state
and the log profiles) can be transferred in some cases but not all.

v Transferring web resources might not make sense in some cases, for example if
you rebuild the app to use a new server.

You can also transfer application descriptors by using the REST API or the mfpadm
tool. For more information, see “Transferring an application configuration with the
administration service” on page 10-9.

Procedure
1. From the navigation sidebar, select an application or application version, or an

adapter.
2. Select Actions > Export Application or Export Version or Export Adapter.

You are prompted to save the .zip archive file that encapsulates the exported
resources. The aspect of the dialog box depends on your browser and the target
folder depends on your browser settings.

3. Save the archive file.
The archive file name includes the name and version of the application or
adapter, for example export_applications_com.sample.zip.

4. To reuse an existing export archive, select Actions > Import Application or
Import Version or Import version, browse to the archive, and click Deploy.
The main console frame displays the details of the imported application or
adapter.

Results

If you import to the same runtime, the application or version is not necessarily
restored as it was exported. That is, the redeployment at import time does not
remove subsequent modifications. Rather, if some application resources are
modified between export time and redeployment at import time, only the resources
that are included in the exported archive are redeployed in their original state. For
example, if you export an application with no authenticity data, then you upload
authenticity data, and then you import the initial archive, the authenticity data is
not erased.

Administering MobileFirst applications 10-13

Updating MobileFirst apps in production
There are general guidelines for upgrading your MobileFirst apps when they are
already in production, on the Application Center or in app stores.

When you upgrade an app, you can deploy a new app version and leave the old
version working, or deploy a new app version and block the old version. In the
case of an app developed with Apache Cordova, you can also consider only
updating the Web resources.

Deploying a new app version and leaving the old version
working

The most common upgrade path, used when you introduce new features or
modify native code, is to release a new version of your app. Consider following
these steps:
1. Increment the app version number.
2. Build and test your application. For more information, see “Building an

application for a test or production environment” on page 10-4
3. Register the app to MobileFirst Server and configure it.
4. Submit the new .apk, .ipa, .appx, or .xap files to their respective app stores.
5. Wait for review and approval, and for the apps to become available.
6. Optional - send notification message to users of the old version, announcing

the new version. See “Displaying an administrator message” on page 10-18 and
“Defining administrator messages in multiple languages” on page 10-19.

Deploying a new app version and blocking the old version

This upgrade path is used when you want to force users to upgrade to the new
version, and block their access to the old version. Consider following these steps:
1. Optional - send notification message to users of the old version, announcing a

mandatory update in a few days. See “Displaying an administrator message”
on page 10-18 and “Defining administrator messages in multiple languages” on
page 10-19.

2. Increment the app version number.
3. Build and test your application. For more information, see “Building an

application for a test or production environment” on page 10-4
4. Register the app to MobileFirst Server and configure it.
5. Submit the new .apk, .ipa, .appx, or .xap files to their respective app stores.
6. Wait for review and approval, and for the apps to become available.
7. Copy links to the new app version.
8. Block the old version of the app in MobileFirst Operations Console, supplying

a message and link to the new version. See “Remotely disabling application
access to protected resources” on page 10-17.

Note: If you disable the old app, it is no longer able to communicate with
MobileFirst Server. Users can still start the app and work with it offline unless you
force a server connection on app startup.

Direct Update (no native code changes)

Direct Update is a mandatory upgrade mechanism that is used to deploy fast fixes
to a production app. When you redeploy an app to MobileFirst Server without

10-14 IBM MobileFirst Platform Foundation V8.0.0

changing its version, MobileFirst Server directly pushes the updated web resources
to the device when the user connects to the server. It does not push updated native
code. Things to keep in mind when you consider a Direct Update include:
v Direct Update does not update the app version. The app remains at the same

version, but with a different set of web resources. The unchanged version
number can introduce confusion if used for the wrong purpose

v Direct Update also does not go through the app store review process because it
is technically not a new release. This should not be abused because vendors can
become displeased if you deploy a whole new version of your app that bypasses
their review. It is your responsibility to read each store's usage agreements and
abide by them. Direct Update is best used to fix urgent issues that cannot wait
for several days.

v Direct Update is considered a security mechanism, and therefore it is mandatory,
not optional. When you initiate the Direct Update, all users must update their
app to be able to use it.

v Direct Update does not work if an application is compiled (built) with a
different version of IBM MobileFirst Platform Foundation than the one that was
used for the initial deployment.

Administering MobileFirst applications through the MobileFirst
Operations Console

You can administer MobileFirst applications through the MobileFirst Operations
Console by locking apps or denying access, or by displaying notification messages.

You can start the console by entering one of the following URLs:
v Secure mode for production or test: https://hostname:secure_port/mfpconsole
v Development: http://server_name:port/mfpconsole

You must have a login and password that grant you authorization to access the
MobileFirst Operations Console. For more information, see “Configuring user
authentication for MobileFirst Server administration” on page 6-166.

You can use the MobileFirst Operations Console to manage your applications.

From the MobileFirst Operations Console, you can also access the Analytics
console and control the collection of mobile data for analysis by the Analytics
server. For more information, see “Enabling or disabling data collection from the
MobileFirst Operations Console” on page 11-23.

Note: Deleting an application from MobileFirst Operations Console will remove all
push subscriptions on that application as well.

Mobile-application management
The MobileFirst mobile-application-management capabilities provide MobileFirst
Server operators and administrators with granular control over user and device
access to their applications.

MobileFirst Server tracks all attempts to access your mobile infrastructure, and
stores information about the application, the user, and the device on which the
application is installed. The mapping between the application, the user, and the
device, forms the basis for the server's mobile-application management capabilities.

Administering MobileFirst applications 10-15

Use IBM MobileFirst Platform Operations Console to monitor and manage access
to your resources:
v Search for a user by name, and view information about the devices and

applications that they are using to access your resources.
v Search for a device by its display name, and view the users that are associated

with the device, and the registered MobileFirst applications that are used on this
device.

v Block access to your resources from all instances of your applications on a
specific device. This is useful when a device is lost or stolen.

v Block access to your resources only for a specific application on a specific device.
For example, if an employee changes departments, you can block the employee's
access for an application of the previous department, but allow the employee
access from other applications on the same device.

v Unregister a device, and delete all the registration and monitoring data that was
gathered for the device.

Access-blocking has the following characteristics:
v The blocking operation is reversible. You can remove the block by changing the

device or application status in MobileFirst Operations Console.
v The block applies only to protected resources. A blocked client can still use the

application to access an unprotected resource. See Unprotected resources.
v Access to adapter resources on MobileFirst Server is blocked immediately when

you select this operation. However, this might not be the case for resources on
an external server because the application might still have a valid access token
that has not expired.

Device status

MobileFirst Server maintains status information for every device that accesses the
server. The possible status values are Active, Lost, Stolen, Expired, and Disabled.
The default device status is Active, which indicates that access from this device is
not blocked. You can change the status to Lost, Stolen, or Disabled to block access
to your application resources from the device. You can always restore the Active
status to allow access again. See “Managing device access in MobileFirst
Operations Console” on page 10-17.

The Expired status is a special status that is set by MobileFirst Server after a
preconfigured inactivity duration elapses since the last time that the device
connected to this server instance. This status is used for license tracking, and it
does not affect the access rights of the device. When a device with an Expired
status reconnects to the server, its status is restored to Active, and the device is
granted access the server.

Device display name

MobileFirst Server identifies devices by a unique device ID, which is assigned by
the MobileFirst client SDK. Setting a display name for a device allows you to
search for the device by its display name. Application developers can use the
setDeviceDisplayName method of the WLClient class to set the device display
name. Java adapter developers (including security-check developers) can also set
the device display name by using the setDeviceDisplayName method of the
com.ibm.mfp.server.registration.external.model MobileDeviceData class.

10-16 IBM MobileFirst Platform Foundation V8.0.0

Managing device access in MobileFirst Operations Console

To monitor and manage device access to your resources, select the Devices tab in
the MobileFirst Operations Console dashboard.

Use the search field to search for a device by the user ID that is associated with the
device, or by the display name of the device (if set). See “Device display name” on
page 10-16. You can also search for part of the user ID or the device display name
(at least three characters).
The search results display all the devices that match the specified user ID or device
display name. For each device, you can see the device ID and display name, the
device model, the operating system, and the list of users IDs that are associated
with the device.

The Device Status column shows the status of the device. You can change the
status of the device to Lost, Stolen, or Disabled, to block access from the device to
protected resources. Changing the status back to Active restores the original access
rights.

You can unregister a device by selecting Unregister in the Actions column.
Unregistering a device deletes the registration data of all the MobileFirst
applications that are installed on the device. In addition, the device display name,
the lists of users that are associated with the device, and the public attributes that
the application registered for this device are deleted.

Note: The Unregister action is not reversible. The next time that one of the
MobileFirst applications on the device attempts to access the server, it will be
registered again with a new device ID. When you select to register the device
again, the device status is set to Active, and the device has access to protected
resources, regardless of any previous blocks. Therefore, if you want to block a
device, do not unregister it. Instead, change the device status to Lost, Stolen, or
Disabled.

To view of all the applications that were accessed on a specific device, select the
expand arrow icon next to the device ID in the devices table. Each row in the
displayed applications table contains the name of the application, and the
application's access status (whether access to protected resources is enabled for this
application on this device). You can change the application's status to Disabled to
block access from the application specifically on this device.

Remotely disabling application access to protected resources
Learn how to remotely disable an application and deny it access to protected
resources due to phase-out policy or identified security issues.

About this task

Use MobileFirst Operations Console (the console) to disable user access to a
specific version of an application on a specific mobile operating system, and
provide a custom message to the user.

Procedure
1. Select your application version from the Applications section of the console's

navigation sidebar, and then select the application Management tab.
2. Change the status to Access Disabled.

Administering MobileFirst applications 10-17

3. In the URL of latest version field, optionally provide a URL for a newer
version of the application (usually in the appropriate public or private app
store). For some environments, the Application Center provides a URL to access
the Details view of an application version directly. See “Application properties”
on page 13-27.

4. In the Default notification message field, add the custom notification message
to display when the user attempts to access the application. The following
sample message directs users to upgrade to the latest version:
This version is no longer supported. Please upgrade to the latest version.

5. In the Supported locales section, you can optionally provide the notification
message in other languages. See the detailed instructions in “Defining
administrator messages in multiple languages” on page 10-19.

6. Select Save to apply your changes.

Results

When a user runs an application that was remotely disabled, a dialog window
with your custom message is displayed. The message is displayed on any
application interaction that requires access to a protected resource, or when the
application tries to obtain an access token. If you provided a version-upgrade URL,
the dialog has a Get new version button for upgrading to a newer version, in
addition to the default Close button. If the user closes the dialog window without
upgrading the version, they can continue to work with the parts of the application
that do not require access to protected resources. However, any application
interaction that requires access to a protected resource causes the dialog window to
be displayed again, and the application is not granted access to the resource.

Note: For cross-platform applications, you can customize the default
remote-disable behavior: provide an upgrade URL for your application, as outlined
in Step 3, and set the showCloseOnRemoteDisableDenial attribute in your
application's initOptions.js file to false. If the attribute is not defined, define it.
When an application-upgrade URL is provided and the value of
showCloseOnRemoteDisableDenial is false, the Close button is omitted from the
remote-disable dialog window, leaving only the Get new version button. This
forces the user to upgrade the application. When no upgrade URL is provided, the
showCloseOnRemoteDisableDenial configuration has no effect, and a single Close
button is displayed.

Displaying an administrator message
Define a notification message that is displayed when the application first accesses
MobileFirst Server.

About this task

Follow the outlined procedure to configure the notification message. You can use
this message to notify application users of temporary situations, such as a planned
service downtime.

Procedure
1. Select your application version from the Applications section of the MobileFirst

Operations Console navigation sidebar, and then select the application
Management tab.

2. Change the status to Active and Notifying.

10-18 IBM MobileFirst Platform Foundation V8.0.0

3. Add a custom startup message. The following sample message informs the user
of planned maintenance work for the application:
The server will be unavailable on Saturday between 4 AM to 6 PM due to planned maintenance.

4. In the Supported locales section, you can optionally provide the notification
message in other languages. See the detailed instructions in “Defining
administrator messages in multiple languages.”

5. SelectSave to apply your changes.

Results

The message is displayed when the application first uses MobileFirst Server to
access a protected resource (see “OAuth resource protection” on page 7-271), or
obtain an access token (see “Overview of the MobileFirst security framework” on
page 7-265). If the application acquires an access token when it starts, the message
is displayed at this stage. Otherwise, the message is displayed on the first request
from the application to access a protected resource or obtain an access token. The
message is displayed only once, for the first interaction.

Defining administrator messages in multiple languages
You can display the administrator messages that you define in IBM MobileFirst
Platform Operations Console in multiple languages.

About this task

Follow the outlined procedure to configure multiple languages for displaying the
application administration messages that you defined through the console (see
“Remotely disabling application access to protected resources” on page 10-17 and
“Displaying an administrator message” on page 10-18). The messages are sent
based on the locale of the device, and must comply with the standards that the
mobile operating system uses to specify locales.

Procedure
1. Select your application version from the Applications section of the MobileFirst

Operations Console navigation sidebar, and then select the application
Management tab.

2. Select the status Active and Notifying or Access Disabled.
3. Select Update Locales. In the Upload File section of the displayed dialog

window, select Upload, and browse to the location of a CSV file that defines
the locales.
Each line in the CSV file contains a pair of comma-separated strings. The first
string is the locale code (such as fr-FR for French (France) or en for English),
and the second string is the message text in the corresponding language. The
specified locale codes must comply with the standards that the mobile
operating system uses to specify locales, such as ISO 639-1, ISO 3166-2, and ISO
15924.

Note: To create the CSV file, you must use an editor that supports UTF-8
encoding, such as Notepad.
Following is a sample CSV file that defines the same message for multiple
locales:

Administering MobileFirst applications 10-19

4. In the Verify notification message section, you can see a table of the locale
codes and messages from your CSV file. Verify the messages, and select OK.
You can select Edit, at any time, to replace the locales CSV file. You can also
use this option to upload an empty CSV file to remove all locales.

5. Select Save to apply your changes.

Results

The localized notification message is displayed on the user's mobile device,
according to the locale of the device. If no message was configured for the device
locale, the default message that you provided is displayed.

Application status and token licensing
You must manually restore the correct application status in MobileFirst Operations
Console after Blocked status because of insufficient tokens.

If you use token licensing and you no longer have enough license tokens for an
application, the application status of all versions of the application changes to
Blocked. You are no longer able to change the status of any version of the
application. The following message is displayed in MobileFirst Operations Console:
The application got blocked because its license expired

If later enough tokens to run the application become free or your organization
purchases more tokens, the following message is displayed in MobileFirst
Operations Console:
The application got blocked because its license expired but a license is available now

The display status is still Blocked. You must restore the correct current status
manually from memory or your own records by editing the Status field. IBM
MobileFirst Platform Foundation does not manage the display of Blocked status in
MobileFirst Operations Console of an application that was blocked because of
insufficient license tokens. You are responsible for restoring such a blocked
application to a real status that can be displayed through MobileFirst Operations
Console.

Error log of operations on runtime environments
Use the error log to access failed management operations initiated from MobileFirst
Operations Console or the command line on the selected runtime environment,
and to see the effect of the failure on the servers.

When a transaction fails, the status bar displays a notification of the error and
shows a link to the error log. Use the error log to have more detail about the error,

Figure 10-1. Sample CSV file

10-20 IBM MobileFirst Platform Foundation V8.0.0

for example, the status of each server with a specific error message, or to have a
history of errors. The error log shows the most recent operation first.

You access the error log by clicking Error log of a runtime environment in
MobileFirst Operations Console.

Expand the row that refers to the failed operation to access more information
about the current state of each server. To access the complete log, download the log
by clicking Download log.

Audit log of administration operations
In the MobileFirst Operations Console, you can refer to an audit log of
administration operations.

MobileFirst Operations Console provides access to an audit log for login, logout,
and all administration operations, such as deploying apps or adapters or locking
apps. The audit log can be disabled by setting the mfp.admin.audit Java Naming
and Directory Interface (JNDI) property on the web application of the MobileFirst
administration service (worklightadmin.war) to false.

To access the audit log, click the user name in the header bar and select About,
click Additional support information, and then Download audit log.

Each record in the audit log has the following fields, which are separated by a
vertical bar (|); see Figure 10-3 on page 10-23.

Table 10-1. Fields in audit log records

Field name Description

Timestamp Date and time when the record was created.

Type The type of operation. See list of operation
types for the possible values.

User The username of the user who is signed in.

Outcome The outcome of the operation; possible
values are SUCCESS, ERROR, PENDING.

ErrorCode If the outcome is ERROR, ErrorCode indicates
what the error is.

Figure 10-2. Sample error log

Administering MobileFirst applications 10-21

Table 10-1. Fields in audit log records (continued)

Field name Description

Runtime Name of the MobileFirst project that is
associated with the operation.

The following list shows the possible values of Type of operation.
v Login

v Logout

v AdapterDeployment

v AdapterDeletion

v ApplicationDeployment

v ApplicationDeletion

v ApplicationLockChange

v ApplicationAuthenticityCheckRuleChange

v ApplicationAccessRuleChange

v ApplicationVersionDeletion

v add config profile

v DeviceStatusChange

v DeviceApplicationStatusChange

v DeviceDeletion

v unsubscribeSMS

v DeleteDevice

v DeleteSubscriptions

v SetPushEnabled

v SetGCMCredentials

v DeleteGCMCredentials

v sendMessage

v sendMessages

v setAPNSCredentials

v DeleteAPNSCredentials

v setMPNSCredentials

v deleteMPNSCredentials

v createTag

v updateTag

v deleteTag

v add runtime

v delete runtime

10-22 IBM MobileFirst Platform Foundation V8.0.0

Administering MobileFirst applications through Ant
You can administer MobileFirst applications through the mfpadm Ant task.

Comparison with other facilities

You can execute administration operations with IBM MobileFirst Platform
Foundation in the following ways:
v The MobileFirst Operations Console, which is interactive.
v The mfpadm Ant task.
v The mfpadm program.
v The MobileFirst administration REST services.

The mfpadm Ant task, mfpadm program, and REST services are useful for automated
or unattended execution of operations, such as:
v Eliminating operator errors in repetitive operations, or
v Operating outside the operator's normal working hours, or
v Configuring a production server with the same settings as a test or

preproduction server.

The mfpadm Ant task and the mfpadm program are simpler to use and have better
error reporting than the REST services. The advantage of the mfpadm Ant task over
the mfpadm program is that it is platform independent and easier to integrate when
integration with Ant is already available.

Figure 10-3. Sample audit log of MobileFirst administration operations

Administering MobileFirst applications 10-23

Prerequisites

The mfpadm tool is installed with the MobileFirst Server installer. In the rest of this
page, product_install_dir indicates the installation directory of the MobileFirst Server
installer.

Apache Ant is required to run the mfpadm task. For information about the
minimum supported version of Ant, see “System requirements” on page 2-7.

For convenience, Apache Ant 1.9.4 is included in MobileFirst Server. In the
product_install_dir/shortcuts/ directory, the following scripts are provided.
v ant for UNIX / Linux
v ant.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

You can use the mfpadm Ant task on a different computer than the one on which
you installed MobileFirst Server.
v Copy the file product_install_dir/MobileFirstServer/mfp-ant-deployer.jar to

the computer.
v Make sure that a supported version of Apache Ant and a Java runtime

environment are installed on the computer.

To use the mfpadm Ant task, add this initialization command to the Ant script:
<taskdef resource="com/ibm/mfp/ant/deployers/antlib.xml">

<classpath>
<pathelement location="product_install_dir/MobileFirstServer/mfp-ant-deployer.jar"/>

</classpath>
</taskdef>

Other initialization commands that refer to the same mfp-ant-deployer.jar file are
redundant because the initialization by defaults.properties is also implicitly done
by antlib.xml. Here is one example of a redundant initialization command:
<taskdef resource="com/ibm/mfp/ant/defaults.properties">

<classpath>
<pathelement location="product_install_dir/MobileFirstServer/mfp-ant-deployer.jar"/>

</classpath>
</taskdef>

For more information about running the MobileFirst Server installer, see “Running
IBM Installation Manager” on page 6-40.

Calling the mfpadm Ant task
You can use the mfpadm Ant task and its associated commands to administer
MobileFirst applications.

Syntax

Call the mfpadm Ant task as follows:
<mfpadm url=... user=... password=...|passwordfile=... [secure=...]>

some commands
</mfpadm>

10-24 IBM MobileFirst Platform Foundation V8.0.0

Attributes

The mfpadm Ant task has the following attributes:

Table 10-2. List of <mfpadm> attributes.

Attribute Description Required Default

url The base URL of the MobileFirst web application for
administration services

Yes

secure Whether to avoid operations with security risks No true

user The user name for accessing the MobileFirst administration
services

Yes

password The password for the user Either
one is
required

passwordfile The file that contains the password for the user

timeout Timeout for the entire REST service access, in seconds No

connectTimeout Timeout for establishing a network connection, in seconds No

socketTimeout Timeout for detecting the loss of a network connection, in seconds No

connectionRequestTimeout Timeout for obtaining an entry from a connection request pool, in
seconds

No

lockTimeout Timeout for acquiring a lock No

url

The base URL preferably uses the HTTPS protocol. For example, if you use
default ports and context roots, use the following URL.
v For WebSphere Application Server: https://server:9443/worklightadmin
v For Tomcat: https://server:8443/worklightadmin

secure The default value is true. Setting secure="false" might have the following
effects:
v The user and password might be transmitted in an unsecured way,

possibly even through unencrypted HTTP.
v The server's SSL certificates are accepted even if self-signed or if they

were created for a different host name than the specified server's host
name.

password

Specify the password either in the Ant script, through the password
attribute, or in a separate file that you pass through the passwordfile
attribute. The password is sensitive information and therefore needs to be
protected. You must prevent other users on the same computer from
knowing this password. To secure the password, before you enter the
password into a file, remove the read permissions of the file for users other
than yourself. For example, you can use one of the following commands:
v On UNIX: chmod 600 adminpassword.txt
v On Windows: cacls adminpassword.txt /P Administrators:F

%USERDOMAIN%\%USERNAME%:F

Additionally, you might want to obfuscate the password to hide it from an
occasional glimpse. To do so, use the mfpadm config password command to
store the obfuscated password in a configuration file. Then, you can copy
and paste the obfuscated password to the Ant script or to the password
file.

Administering MobileFirst applications 10-25

The mfpadm call contains commands that are encoded in inner elements. These
commands are executed in the order in which they are listed. If one of the
commands fails, the remaining commands are not executed, and the mfpadm call
fails.

Elements

You can use the following elements in mfpadm calls:

Table 10-3. Elements that can be used in <mfpadm>.

Element Description Count

show-info Shows user and
configuration information

0..∞

show-global-config Shows global configuration
information

0..∞

show-diagnostics Shows diagnostics
information

0..∞

show-versions Shows versions information 0..∞

unlock Releases the general-purpose
lock

0..∞

list-runtimes Lists the runtimes 0..∞

show-runtime Shows information about a
runtime

0..∞

delete-runtime Deletes a runtime 0..∞

show-user-config Shows the user configuration
of a runtime

0..∞

set-user-config Specifies the user
configuration of a runtime

0..∞

show-confidential-clients Shows the configurations of
confidential clients of a
runtime

0..∞

set-confidential-clients Specifies the configurations
of confidential clients of a
runtime

0..∞

set-confidential-clients-
rule

Specifies a rule for the
confidential clients
configuration of a runtime

0..∞

list-adapters Lists the adapters 0..∞

deploy-adapter Deploys an adapter 0..∞

show-adapter Shows information about an
adapter

0..∞

delete-adapter Deletes an adapter 0..∞

adapter Other operations on an
adapter

0..∞

list-apps Lists the apps 0..∞

deploy-app Deploys an app 0..∞

show-app Shows information about an
app

0..∞

delete-app Deletes an app 0..∞

10-26 IBM MobileFirst Platform Foundation V8.0.0

Table 10-3. Elements that can be used in <mfpadm> (continued).

Element Description Count

show-app-version Shows information about an
app version

0..∞

delete-app-version Delete a version of an app 0..∞

app Other operations on an app 0..∞

app-version Other operations on an app
version

0..∞

list-devices Lists the devices 0..∞

remove-device Removes a device 0..∞

device Other operations for a device 0..∞

list-farm-members Lists the members of the
server farm

0..∞

remove-farm-member Removes a server farm
member

0..∞

XML Format

The output of most commands is in XML, and the input to specific commands,
such as <set-accessrule>, is in XML too. You can find the XML schemas of these
XML formats in the product_install_dir/MobileFirstServer/mfpadm-schemas/
directory. The commands that receive an XML response from the server verify that
this response conforms to the specific schema. You can disable this check by
specifying the attribute xmlvalidation="none".

Output character set

Normal output from the mfpadm Ant task is encoded in the encoding format of the
current locale. On Windows, this encoding format is the so-called “ANSI code
page”. The effects are as follows:
v Characters outside of this character set are converted to question marks when

they are output.
v When the output goes to a Windows command prompt window (cmd.exe),

non-ASCII characters are incorrectly displayed because such windows assume
characters to be encoded in the so-called “OEM code page”.

To work around this limitation:
v On operating systems other than Windows, use a locale whose encoding is

UTF-8. This locale is the default locale on Red Hat Linux and OS X. Many other
operating systems have the en_US.UTF-8 locale.

v Or use the attribute output="some file name" to redirect the output of a mfpadm
command to a file.

Commands for general configuration
When you call the mfpadm Ant task, you can include various commands that access
the global configuration of the IBM MobileFirst Platform Server or of a runtime.

Administering MobileFirst applications 10-27

The show-global-config command

The show-global-config command shows the global configuration. It has the
following attributes:

Table 10-4. show-global-config command attributes

Attribute Description Required Default

output Name of the output file. No Not applicable

outputproperty Name of the Ant property for
the output.

No Not applicable

Example
<show-global-config/>

This command is based on the “Global Configuration (GET)” on page 8-127 REST
service.

The show-user-config command

The show-user-config command, outside of <adapter> and <app-version>
elements, shows the user configuration of a runtime. It has the following attributes:

Table 10-5. show-user-config command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

format Specifies the output format.
Either json or xml.

Yes Not available

output Name of the file in which to
store the output.

No Not applicable

outputproperty Name of an Ant property in
which to store the output.

No Not applicable

Example
<show-user-config runtime="mfp" format="xml"/>

This command is based on the “Runtime Configuration (GET)” on page 8-155
REST service.

The set-user-config command

The set-user-config command, outside of <adapter> and <app-version> elements,
specifies the user configuration of a runtime. It has the following attributes for
setting the entire configuration.

Table 10-6. set-user-config command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

file Name of the JSON or XML file
that contains the new
configuration.

Yes Not available

10-28 IBM MobileFirst Platform Foundation V8.0.0

The set-user-config command has the following attributes for setting a single
property in the configuration.

Table 10-7. set-user-config command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

property Name of the JSON property.
For a nested property, use the
syntax prop1.prop2.....propN.
For a JSON array element, use
the index instead of a property
name.

Yes Not available

value The value of the property. Yes Not available

Examples
<set-user-config runtime="mfp" file="myconfig.json"/>

<set-user-config runtime="mfp" property="timeout" value="240"/>

This command is based on the “Runtime configuration (PUT)” on page 8-157 REST
service.

The show-confidential-clients command

The show-confidential-clients command shows the configuration of the
confidential clients that can access a runtime. For more information about
confidential clients, see “Confidential clients” on page 7-279. This command has
the following attributes:

Table 10-8. show-confidential-clients command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

format Specifies the output format.
Either json or xml.

Yes Not available

output Name of the file in which to
store the output.

No Not applicable

outputproperty Name of an Ant property in
which to store the output.

No Not applicable

Example
<show-confidential-clients runtime="mfp" format="xml" output="clients.xml"/>

This command is based on the “Confidential Clients (GET)” on page 8-62 REST
service.

The set-confidential-clients command

The set-confidential-clients command specifies the configuration of the
confidential clients that can access a runtime. For more information about
confidential clients, see “Confidential clients” on page 7-279. This command has
the following attributes:

Administering MobileFirst applications 10-29

Table 10-9. set-confidential-clients command group attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

file Name of the JSON or XML file
that contains the new
configuration.

Yes Not available

Example
<set-confidential-clients runtime="mfp" file="clients.xml"/>

This command is based on the “Confidential Clients (PUT)” on page 8-64 REST
service.

The set-confidential-clients-rule command

The set-confidential-clients-rule command specifies a rule in the configuration
of the confidential clients that can access a runtime. For more information about
confidential clients, see “Confidential clients” on page 7-279. This command has
the following attributes:

Table 10-10. set-confidential-clients-rule command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

id The identifier of the rule. Yes Not available

displayName The display name of the rule. Yes Not available

secret The secret of the rule. Yes Not available

allowedScope The scope of the rule. A
space-separated list of tokens.

Yes Not available

Example
<set-confidential-clients-rule runtime="mfp"

id="push" displayName="Push" secret="lOa74Wxs" allowedScope="**"/>

This command is based on the “Confidential Clients (PUT)” on page 8-64 REST
service.

Commands for adapters
When you call the mfpadm Ant task, you can include various commands for
adapters.

The list-adapters command

The list-adapters command returns a list of the adapters deployed for a given
runtime. It has the following attributes.

Table 10-11. list-adapters command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

output Name of output file. No Not applicable

10-30 IBM MobileFirst Platform Foundation V8.0.0

Table 10-11. list-adapters command attributes (continued)

Attribute Description Required Default

outputproperty Name of Ant property for the
output.

No Not applicable

Example
<list-adapters runtime="mfp"/>

This command is based on the “Adapters (GET)” on page 8-17 REST service.

The deploy-adapter command

The deploy-adapter command deploys an adapter in a runtime. It has the
following attributes.

Table 10-12. deploy-adapter command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

file Binary adapter file (.adapter). Yes Not available

Example
<deploy-adapter runtime="mfp" file="MyAdapter.adapter"/>

This command is based on the “Adapter (POST)” on page 8-13 REST service.

The show-adapter command

The show-adapter command shows details about an adapter. It has the following
attributes.

Table 10-13. show-adapter command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

name Name of an adapter. Yes Not available

output Name of output file. No Not applicable

outputproperty Name of Ant property for the
output.

No Not applicable

Example
<show-adapter runtime="mfp" name="MyAdapter"/>

This command is based on the “Adapter (GET)” on page 8-7 REST service.

The delete-adapter command

The delete-adapter command removes (undeploys) an adapter from a runtime. It
has the following attributes.

Administering MobileFirst applications 10-31

Table 10-14. delete-adapter command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

name Name of an adapter. Yes Not available

Example
<delete-adapter runtime="mfp" name="MyAdapter"/>

This command is based on the “Adapter (DELETE)” on page 8-10 REST service.

The adapter command group

The adapter command group has the following attributes.

Table 10-15. adapter command group attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

name Name of an adapter. Yes Not available

The adapter command supports the following elements.

Table 10-16. adapter command group elements

Element Description Count

get-binary Gets the binary data. 0..∞

show-user-config Shows the user
configuration.

0..∞

set-user-config Specifies the user
configuration.

0..∞

The get-binary command

The get-binary command inside an <adapter> element returns the binary adapter
file. It has the following attributes.

Table 10-17. get-binary command attributes

Attribute Description Required Default

tofile Name of the output file. Yes Not available

Example
<adapter runtime="mfp" name="MyAdapter">

<get-binary tofile="/tmp/MyAdapter.adapter"/>
</adapter>

This command is based on the “Adapter (GET)” on page 8-7 REST service.

The show-user-config command

The show-user-config command, inside an <adapter> element, shows the user
configuration of the adapter. It has the following attributes.

10-32 IBM MobileFirst Platform Foundation V8.0.0

Table 10-18. show-user-config command attributes

Attribute Description Required Default

format Specifies the output format.
Either json or xml.

Yes Not available

output Name of a file in which to
store the output.

No Not applicable

outputproperty Name of an Ant property in
which to store the output.

No Not applicable

Example
<adapter runtime="mfp" name="MyAdapter">

<show-user-config format="xml"/>
</adapter>

This command is based on the “Adapter Configuration (GET)” on page 8-20 REST
service.

The set-user-config command

The set-user-config command, inside an <adapter> element, specifies the user
configuration of the adapter. It has the following attributes for setting the entire
configuration.

Table 10-19. set-user-config command attributes

Attribute Description Required Default

file Name of the JSON or XML file
that contains the new
configuration.

Yes Not available

The command has the following attributes for setting a single property in the
configuration.

Table 10-20. set-user-config command attributes

Attribute Description Required Default

property Name of the JSON property.
For a nested property, use the
syntax prop1.prop2.....propN.
For a JSON array element, use
the index instead of a property
name.

Yes Not available

value The value of the property. Yes Not available

Examples
<adapter runtime="mfp" name="MyAdapter">

<set-user-config file="myconfig.json"/>
</adapter>

<adapter runtime="mfp" name="MyAdapter">
<set-user-config property="timeout" value="240"/>

</adapter>

This command is based on the “Application Configuration (PUT)” on page 8-32
REST service.

Administering MobileFirst applications 10-33

Commands for apps
When you call the mfpadm Ant task, you can include various commands for apps.

The list-apps command

The list-apps command returns a list of the apps that are deployed in a runtime.
It has the following attributes.

Table 10-21. list-apps command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

output Name of the output file. No Not applicable

outputproperty Name of the Ant property
for the output.

No Not applicable

Example
<list-apps runtime="mfp"/>

This command is based on the “Applications (GET)” on page 8-48 REST service.

The deploy-app command

The deploy-app command deploys an app version in a runtime. It has the
following attributes.

Table 10-22. deploy-app command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

file The application descriptor,
a JSON file.

Yes Not available

Example
<deploy-app runtime="mfp" file="MyApp/application-descriptor.json"/>

This command is based on the “Application (POST)” on page 8-43 REST service.

The show-app command

The show-app command returns a list of the app versions that are deployed in a
runtime. It has the following attributes.

Table 10-23. show-app command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

name Name of an app. Yes Not available

output Name of output file. No Not applicable

outputproperty Name of Ant property for
the output.

No Not applicable

10-34 IBM MobileFirst Platform Foundation V8.0.0

Example
<show-app runtime="mfp" name="MyApp"/>

This command is based on the “Application (GET)” on page 8-41 REST service.

The delete-app command

The delete-app command removes (undeploys) an app, with all its app versions,
for all environments for which it was deployed, from a runtime. It has the
following attributes.

Table 10-24. delete-app command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

name Name of an app. Yes Not available

Example
<delete-app runtime="mfp" name="MyApp"/>

This command is based on the “Application Version (DELETE)” on page 8-58 REST
service.

The show-app-version command

The show-app-version command shows details about an app version in a runtime.
It has the following attributes.

Table 10-25. show-app-version command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

name Name of the app. Yes Not available

environment Mobile platform. Yes Not available

version Version number of the
app.

Yes Not available

Example
<show-app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1"/>

This command is based on the “Application Version (GET)” on page 8-56 REST
service.

The delete-app-version command

The delete-app-version command removes (undeploys) an app version from a
runtime. It has the following attributes.

Table 10-26. delete-app-version command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

name Name of an app. Yes Not available

environment Mobile platform. Yes Not available

Administering MobileFirst applications 10-35

Table 10-26. delete-app-version command attributes (continued)

Attribute Description Required Default

version Version of the app. Yes Not available

Note: Deleting an application from MobileFirst Operations Console will remove all
push subscriptions on that application as well.

Example
<delete-app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1"/>

This command is based on the “Application Version (DELETE)” on page 8-58 REST
service.

The app command group

The app command group has the following attributes.

Table 10-27. app command group attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

name Name of an app. Yes Not available

The app command group supports the following elements.

Table 10-28. app command group elements

Element Description Count

show-license-config Shows the token license
configuration.

0..∞

set-license-config Specifies the token license
configuration.

0..∞

delete-license-config Removes the token license
configuration.

0..∞

The show-license-config command

The show-license-config command shows the token license configuration of an
app. It has the following attributes.

Table 10-29. show-license-config command attributes

Attribute Description Required Default

output Name of a file in which to
store the output.

Yes Not available

outputproperty Name of an Ant property
in which to store the
output.

Yes Not available

Example
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<show-license-config output="/tmp/MyApp-license.xml"/>
</app-version>

10-36 IBM MobileFirst Platform Foundation V8.0.0

This command is based on the “Application license configuration (GET)” on page
8-54 REST service.

The set-license-config command

The set-license-config command specifies the token license configuration of an
app. It has the following attributes.

Table 10-30. set-license-config command attributes

Attribute Description Required Default

appType Type of app: B2C or B2E Yes Not available

licenseType Type of application:
APPLICATION or
ADDITIONAL_BRAND_DEPLOYMENT
or NON_PRODUCTION.

Yes Not available

Example
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<set-license-config appType="B2E" licenseType="APPLICATION"/>
</app-version>

This command is based on the “Application License Configuration (POST)” on
page 8-51 REST service.

The delete-license-config command

The delete-license-config command resets the token license configuration of an
app, that is, reverts it to the initial state.

Example
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<delete-license-config/>
</app-version>

This command is based on the “License configuration (DELETE)” on page 8-136
REST service.

The app-version command group

The app-version command group has the following attributes.

Table 10-31. app-version command group attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

name Name of an app. Yes Not available

environment Mobile platform. Yes Not available

version Version of the app. Yes Not available

The app-version command group supports the following elements:

Administering MobileFirst applications 10-37

Table 10-32. app-version command group elements

Element Description Count

get-descriptor Gets the descriptor. 0..∞

get-web-resources Gets the web resources. 0..∞

set-web-resources Specifies the web resources. 0..∞

get-authenticity-data Gets the authenticity data. 0..∞

set-authenticity-data Specifies the authenticity
data.

0..∞

delete-authenticity-data Deletes the authenticity data. 0..∞

show-user-config Shows the user
configuration.

0..∞

set-user-config Specifies the user
configuration.

0..∞

The get-descriptor command

The get-descriptor command, inside an <app-version> element, returns the
application descriptor of a version of an app. It has the following attributes.

Table 10-33. get-descriptor command attributes

Attribute Description Required Default

output Name of a file in which to
store the output.

No Not applicable

outputproperty Name of an Ant property
in which to store the
output.

No Not applicable

Example
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<get-descriptor output="/tmp/MyApp-application-descriptor.json"/>
</app-version>

This command is based on the “Application Descriptor (GET)” on page 8-37
service.

The get-web-resources command

The get-web-resources command, inside an <app-version> element, returns the
web resources of a version of an app, as a .zip file. It has the following attributes.

Table 10-34. get-web-resources command attributes

Attribute Description Required Default

tofile Name of the output file. Yes Not available

Example
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<get-web-resources tofile="/tmp/MyApp-web.zip"/>
</app-version>

10-38 IBM MobileFirst Platform Foundation V8.0.0

This command is based on the “Retrieve Web Resource (GET)” on page 8-152 REST
service.

The set-web-resources command

The set-web-resources command, inside an <app-version> element, specifies the
web resources for a version of an app. It has the following attributes.

Table 10-35. set-web-resources command attributes

Attribute Description Required Default

file Name of the input file
(must be a .zip file).

Yes Not available

Example
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<set-web-resources file="/tmp/MyApp-web.zip"/>
</app-version>

This command is based on the “Deploy a web resource (POST)” on page 8-83
REST service.

The get-authenticity-data command

The get-authenticity-data command, inside an <app-version> element, returns
the authenticity data of a version of an app. It has the following attributes.

Table 10-36. get-authenticity-data command attributes

Attribute Description Required Default

output Name of a file in which to
store the output.

No Not applicable

outputproperty Name of an Ant property
in which to store the
output.

No Not applicable

Example
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<get-authenticity-data output="/tmp/MyApp.authenticity_data"/>
</app-version>

This command is based on the “Export runtime resources (GET)” on page 8-113
REST service.

The set-authenticity-data command

The set-authenticity-data command, inside an <app-version> element, specifies
the authenticity data for a version of an app. It has the following attributes.

Administering MobileFirst applications 10-39

Table 10-37. set-authenticity-data command attributes

Attribute Description Required Default

file Name of the input file:

v Either a
authenticity_data file,

v or a device file (.ipa,
.apk, or .appx file),
from which the
authenticity data is
extracted.

Yes Not available

Examples
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<set-authenticity-data file="/tmp/MyApp.authenticity_data"/>
</app-version>

<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">
<set-authenticity-data file="MyApp.ipa"/>

</app-version>

<app-version runtime="mfp" name="MyApp" environment="android" version="1.1">
<set-authenticity-data file="MyApp.apk"/>

</app-version>

This command is based on the “Deploy Application Authenticity Data (POST)” on
page 8-80 REST service.

The delete-authenticity-data command

The delete-authenticity-data command, inside an <app-version> element,
deletes the authenticity data of a version of an app. It has no attributes.

Example
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<delete-authenticity-data/>
</app-version>

This command is based on the “Application Authenticity (DELETE)” on page 8-27
REST service.

The show-user-config command

The show-user-config command, inside an <app-version> element, shows the user
configuration of a version of an app. It has the following attributes.

Table 10-38. show-user-config command attributes

Attribute Description Required Default

format Specifies the output format.
Either json or xml.

Yes Not available

output Name of the output file. No Not applicable

outputproperty Name of the Ant property
for the output.

No Not applicable

10-40 IBM MobileFirst Platform Foundation V8.0.0

Examples
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<show-user-config format="json" output="/tmp/MyApp-config.json"/>
</app-version>

<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">
<show-user-config format="xml" output="/tmp/MyApp-config.xml"/>

</app-version>

This command is based on the “Application Configuration (GET)” on page 8-30
REST service.

The set-user-config command

The set-user-config command, inside an <app-version> element, specifies the
user configuration for a version of an app. It has the following attributes for
setting the entire configuration.

Table 10-39. set-user-config command attributes

Attribute Description Required Default

file Name of the JSON or XML file
that contains the new
configuration.

Yes Not available

The set-user-config command has the following attributes for setting a single
property in the configuration.

Table 10-40. set-user-config command attributes

Attribute Description Required Default

property Name of the JSON property.
For a nested property, use the
syntax prop1.prop2.....propN.
For a JSON array element, use
the index instead of a property
name.

Yes Not available

value The value of the property. Yes Not available

Examples
<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">

<set-user-config file="/tmp/MyApp-config.json"/>
</app-version>

<app-version runtime="mfp" name="MyApp" environment="iphone" version="1.1">
<set-user-config property="timeout" value="240"/>

</app-version>

This command is based on the “Application Configuration (PUT)” on page 8-32
REST service.

Commands for devices
When you call the mfpadm Ant task, you can include various commands for
devices.

Administering MobileFirst applications 10-41

The list-devices command

The list-devices command returns the list of devices that have contacted the
apps of a runtime. It has the following attributes:

Table 10-41. list-devices command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

query A friendly name or
user identifier to
search for. This
parameter specifies a
string to search for.
All devices that have
a friendly name or
user identifier that
contains this string
(with case-insensitive
matching) are
returned.

No Not applicable

output Name of output file. No Not applicable

outputproperty Name of Ant
property for the
output.

No Not applicable

Examples
<list-devices runtime="mfp"/>

<list-devices runtime="mfp" query="john"/>

This command is based on the “Devices (GET)” on page 8-96 REST service.

The remove-device command

The remove-device command clears the record about a device that has contacted
the apps of a runtime. It has the following attributes:

Table 10-42. remove-device command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

id Unique device
identifier.

Yes Not available

Example
<remove-device runtime="mfp" id="496E974CCEDE86791CF9A8EF2E5145B6"/>

This command is based on the “Device (DELETE)” on page 8-93 REST service.

10-42 IBM MobileFirst Platform Foundation V8.0.0

The device command group

The device command group has the following attributes.

Table 10-43. device command group attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

id Unique device
identifier.

Yes Not available

The device command supports the following elements.

Table 10-44. device command group elements

Element Description Count

set-status Changes the status. 0..∞

set-appstatus Changes the status for an
app.

0..∞

The set-status command

The set-status command changes the status of a device, in the scope of a runtime.
It has the following attributes:

Table 10-45. set-status command attributes

Attribute Description Required Default

status New status. Yes Not available

The status can have one of the following values:
v ACTIVE

v LOST

v STOLEN

v EXPIRED

v DISABLED

Example
<device runtime="mfp" id="496E974CCEDE86791CF9A8EF2E5145B6">

<set-status status="EXPIRED"/>
</device>

This command is based on the “Device Status (PUT)” on page 8-90 REST service.

The set-appstatus command

The set-appstatus command changes the status of a device, regarding an app in a
runtime. It has the following attributes:

Table 10-46. set-appstatus command attributes

Attribute Description Required Default

app Name of an app. Yes Not available

status New status. Yes Not available

The status can have one of the following values:

Administering MobileFirst applications 10-43

v ENABLED

v DISABLED

Example
<device runtime="mfp" id="496E974CCEDE86791CF9A8EF2E5145B6">

<set-appstatus app="MyApp" status="DISABLED"/>
</device>

This command is based on the “Device Application Status (PUT)” on page 8-86
REST service.

Commands for troubleshooting
You can use Ant task commands to investigate problems with MobileFirst Server
web applications.

The show-info command

The show-info command shows basic information about the MobileFirst
administration services that can be returned without accessing any runtime nor
database. Use this command to test whether the MobileFirst administration
services are running at all. It has the following attributes:

Table 10-47. show-info command attributes

Attribute Description Required Default

output Name of output file. No Not applicable

outputproperty Name of Ant
property for the
output.

No Not applicable

Example
<show-info/>

The show-versions command

The show-versions command displays the MobileFirst versions of various
components:
v mfpadmVersion: the exact MobileFirst Server version number from which the

mfp-ant-deployer.jar file is taken.
v productVersion: the exact MobileFirst Server version number from which the

mfp-admin-service.war file is taken.
v mfpAdminVersion: the exact build version number of mfp-admin-service.war

alone.

The command has the following attributes:

Table 10-48. show-versions command attributes

Attribute Description Required Default

output Name of output file. No Not applicable

outputproperty Name of Ant
property for the
output.

No Not applicable

10-44 IBM MobileFirst Platform Foundation V8.0.0

Example
<show-versions/>

The show-diagnostics command

The show-diagnostics command shows the status of various components that are
necessary for the correct operation of the MobileFirst administration service, such
as the availability of the database and of auxiliary services. This command has the
following attributes.

Table 10-49. show-diagnostics command attributes

Attribute Description Required Default

output Name of output file. No Not applicable

outputproperty Name of Ant
property for the
output.

No Not applicable

Example
<show-diagnostics/>

The unlock command

The unlock command releases the general-purpose lock. Some destructive
operations take this lock in order to prevent concurrent modification of the same
configuration data. In rare cases, if such an operation is interrupted, the lock might
remain in locked state, making further destructive operations impossible. Use the
unlock command to release the lock in such situations. The command has no
attributes.

Example
<unlock/>

The list-runtimes command

The list-runtimes command returns a list of the deployed runtimes. It has the
following attributes:

Table 10-50. list-runtimes command attributes

Attribute Description Required Default

inDatabase Whether to look in
the database instead
of via MBeans.

No false

output Name of output file. No Not applicable

outputproperty Name of Ant
property for the
output.

No Not applicable

Examples
<list-runtimes/>

<list-runtimes inDatabase="true"/>

This command is based on the “Runtimes (GET)” on page 8-170 REST service.

Administering MobileFirst applications 10-45

The show-runtime command

The show-runtime command shows information about a given deployed runtime. It
has the following attributes:

Table 10-51. show-runtime command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

output Name of output file. No Not applicable

outputproperty Name of Ant
property for the
output.

No Not applicable

Example
<show-runtime runtime="mfp"/>

This command is based on the “Runtime (GET)” on page 8-161 REST service.

The delete-runtime command

The delete-runtime command deletes the runtime, including its apps and
adapters, from the database. You can delete a runtime only when its web
application is stopped. The command has the following attributes.

Table 10-52. delete-runtime command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

condition Condition when to
delete it: empty or
always

Attention: The
always option is
dangerous.

No Not applicable

Example
<delete-runtime runtime="mfp" condition="empty"/>

This command is based on the “Runtime (DELETE)” on page 8-166 REST service.

The list-farm-members command

The list-farm-members command returns a list of the farm member servers on
which a given runtime is deployed. It has the following attributes:

Table 10-53. list-farm-members command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

output Name of output file. No Not applicable

outputproperty Name of Ant
property for the
output.

No Not applicable

10-46 IBM MobileFirst Platform Foundation V8.0.0

Example
<list-farm-members runtime="mfp"/>

This command is based on the “Farm topology members (GET)” on page 8-114
REST service.

The remove-farm-member command

The remove-farm-member command removes a server from the list of farm members
on which a given runtime is deployed. Use this command when the server has
become unavailable or disconnected. The command has the following attributes.

Table 10-54. remove-farm-member command attributes

Attribute Description Required Default

runtime Name of the runtime. Yes Not available

serverId Identifier of the
server.

Yes Not available

force Force removal of a
farm member, even if
it is available and
connected.

No false

Example
<remove-farm-member runtime="mfp" serverId="srvlx15"/>

This command is based on the “Farm topology members (DELETE)” on page 8-116
REST service.

Administering MobileFirst applications through the command line
You can administer MobileFirst applications through the mfpadm program.

Comparison with other facilities

You can run administration operations with IBM MobileFirst Platform Foundation
in the following ways:
v The MobileFirst Operations Console, which is interactive.
v The mfpadm Ant task.
v The mfpadm program.
v The MobileFirst administration REST services.

The mfpadm Ant task, mfpadm program, and REST services are useful for automated
or unattended execution of operations, such as the following use cases:
v Eliminating operator errors in repetitive operations, or
v Operating outside the operator's normal working hours, or
v Configuring a production server with the same settings as a test or

preproduction server.

The mfpadm program and the mfpadm Ant task are simpler to use and have better
error reporting than the REST services. The advantage of the mfpadm program over
the mfpadm Ant task is that it is easier to integrate when integration with operating

Administering MobileFirst applications 10-47

system commands is already available. Moreover, it is more suitable to interactive
use.

Prerequisites

The mfpadm tool is installed with the MobileFirst Server installer. In the rest of this
page, product_install_dir indicates the installation directory of the MobileFirst Server
installer.

The mfpadm command is provided in the product_install_dir/shortcuts/
directory as a set of scripts:
v mfpadm for UNIX / Linux
v mfpadm.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

To use the mfpadm program, either put the product_install_dir/shortcuts/
directory into your PATH environment variable, or reference its absolute file name
in each call.

For more information about running the MobileFirst Server installer, see “Running
IBM Installation Manager” on page 6-40.

Calling the mfpadm program
You can use the mfpadm program to administer MobileFirst applications.

Syntax

Call the mfpadm program as follows:
mfpadm --url= --user= ... [--passwordfile=...] [--secure=false] some command

The mfpadm program has the following options:

Table 10-55. mfpadm program options

Option Type Description Required Default

--url URL Base URL of the MobileFirst web
application for administration
services

Yes

--secure Boolean Whether to avoid operations with
security risks

No true

--user name User name for accessing the
MobileFirst admin services

Yes

--passwordfile file File containing the password for
the user

No

--timeout Number Timeout for the entire REST service
access, in seconds

No

--connect-
timeout

Number Timeout for establishing a network
connection, in seconds

No

--socket-
timeout

Number Timeout for detecting the loss of a
network connection, in seconds

No

10-48 IBM MobileFirst Platform Foundation V8.0.0

Table 10-55. mfpadm program options (continued)

Option Type Description Required Default

--connection-
request-
timeout

Number Timeout for obtaining an entry
from a connection request pool, in
seconds

No

--lock-timeout Number Timeout for acquiring a lock, in
seconds

No 2

--verbose Detailed output No

url

The URL preferably uses the HTTPS protocol. For example, if you use
default ports and context roots, use this URL:
v For WebSphere Application Server: https://server:9443/mfpadmin
v For Tomcat: https://server:8443/mfpadmin

secure

The --secure option is set to true by default. Setting it to --secure=false
might have the following effects:
v The user and password might be transmitted in an unsecured way

(possibly even through unencrypted HTTP).
v The server's SSL certificates are accepted even if self-signed or if they

were created for a different host name from the server's host name.

password

Specify the password in a separate file that you pass in the --passwordfile
option. In interactive mode (see “Interactive mode” on page 10-51), you
can alternatively specify the password interactively. The password is
sensitive information and therefore needs to be protected. You must
prevent other users on the same computer from knowing these passwords.
To secure the password, before you enter the password into a file, you
must remove the read permissions of the file for users other than yourself.
For example, you can use one of the following commands:
v On UNIX: chmod 600 adminpassword.txt
v On Windows: cacls adminpassword.txt /P Administrators:F

%USERDOMAIN%\%USERNAME%:F

For this reason, do not pass the password to a process through a
command-line argument. On many operating systems, other users can
inspect the command-line arguments of your processes.

The mfpadm calls contains a command. The following commands are supported.

Table 10-56. mfpadm invocation supported commands

Command Description

show info Shows user and configuration information.

show global-config Shows global configuration information.

show diagnostics Shows diagnostics information.

show versions Shows version information.

unlock Releases the general-purpose lock.

list runtimes [--in-database] Lists the runtimes.

Administering MobileFirst applications 10-49

Table 10-56. mfpadm invocation supported commands (continued)

Command Description

show runtime [runtime-name] Shows information about a runtime.

delete runtime [runtime-name] condition Deletes a runtime.

show user-config [runtime-name] Shows the user configuration of a runtime.

set user-config [runtime-name] file Specifies the user configuration of a runtime.

set user-config [runtime-name] property
= value

Specifies a property in the user
configuration of a runtime.

show confidential-clients [runtime-name] Shows the configuration of the confidential
clients of a runtime.

set confidential-clients [runtime-name]
file

Specifies the configuration of the
confidential clients of a runtime.

set confidential-clients-rule
[runtime-name] id display-name secret
allowed-scope

Specifies a rule for the configuration of the
confidential clients of a runtime.

list adapters [runtime-name] Lists the adapters.

deploy adapter [runtime-name] property =
value

Deploys an adapter.

show adapter [runtime-name] adapter-name Shows information about an adapter.

delete adapter [runtime-name]
adapter-name

Deletes an adapter.

adapter [runtime-name] adapter-name get
binary [> tofile]

Get the binary data of an adapter.

list apps [runtime-name] Lists the apps.

deploy app [runtime-name] file Deploys an app.

show app [runtime-name] app-name Shows information about an app.

delete app [runtime-name] app-name Deletes an app.

show app version [runtime-name] app-name
environment version

Shows information about an app version.

delete app version [runtime-name]
app-name environment version

Deletes a version of an app.

app [runtime-name] app-name show
license-config

Shows the token license configuration of an
app.

app [runtime-name] app-name set
license-config app-type license-type

Specifies the token license configuration for
an app.

app [runtime-name] app-name delete
license-config

Removes the token license configuration for
an app.

app version [runtime-name] app-name
environment version get descriptor [>
tofile]

Gets the descriptor of an app version.

app version [runtime-name] app-name
environment version get web-resources [>
tofile]

Gets the web resources of an app version.

app version [runtime-name] app-name
environment version set web-resources
file

Specifies the web resources of an app
version.

10-50 IBM MobileFirst Platform Foundation V8.0.0

Table 10-56. mfpadm invocation supported commands (continued)

Command Description

app version [runtime-name] app-name
environment version get
authenticity-data [> tofile]

Gets the authenticity data of an app version.

app version [runtime-name] app-name
environment version set
authenticity-data [file]

Specifies the authenticity data of an app
version.

app version [runtime-name] app-name
environment version delete
authenticity-data

Deletes the authenticity data of an app
version.

app version [runtime-name] app-name
environment version show user-config

Shows the user configuration of an app
version.

app version [runtime-name] app-name
environment version set user-config file

Specifies the user configuration of an app
version.

app version [runtime-name] app-name
environment version set user-config
property = value

Specifies a property in the user
configuration of an app version.

list devices [runtime-name] [--query
query]

Lists the devices.

remove device [runtime-name] id Removes a device.

device [runtime-name] id set status
new-status

Changes the status of a device.

device [runtime-name] id set appstatus
app-name new-status

Changes the status of a device for an app.

list farm-members [runtime-name] Lists the servers that are members of the
server farm.

remove farm-member [runtime-name]
server-id

Removes a server from the list of farm
members.

Interactive mode

Alternatively, you can also call mfpadm without any command in the command line.
You can then enter commands interactively, one per line.

The exit command, or end-of-file on standard input (Ctrl-D on UNIX terminals)
terminates mfpadm.

Help commands are also available in this mode. For example:
v help

v help show versions

v help device

v help device set status

Command history in interactive mode

On some operating systems, the interactive mfpadm command remembers the
command history. With the command history, you can select a previous command,
using the arrow-up and arrow-down keys, edit it, and execute it.

Administering MobileFirst applications 10-51

On Linux
The command history is enabled in terminal emulator windows if the
rlwrap package is installed and found in PATH. To install the rlwrap
package:
v On Red Hat Linux: sudo yum install rlwrap
v On SUSE Linux: sudo zypper install rlwrap
v On Ubuntu: sudo apt-get install rlwrap

On OS X
The command history is enabled in the Terminal program if the rlwrap
package is installed and found in PATH. To install the rlwrap package:
1. Install MacPorts by using the installer from www.macports.org.
2. Run the command:

sudo /opt/local/bin/port install rlwrap

3. Then, to make the rlwrap program available in PATH, use this command
in a Bourne-compatible shell:
PATH=/opt/local/bin:$PATH

On Windows
The command history is enabled in cmd.exe console windows.

In environments where rlwrap does not work or is not required, you can disable
its use through the option --no-readline.

The configuration file

You can also store the options in a configuration file, instead of passing them on
the command line at every call. When a configuration file is present and the option
–configfile=file is specified, you can omit the following options:
v --url=URL

v --secure=boolean

v --user=name

v --passwordfile=file

v --timeout=seconds

v --connect-timeout=seconds

v --socket-timeout=seconds

v --connection-request-timeout=seconds

v --lock-timeout=seconds

v runtime-name

Use these commands to store these values in the configuration file.

Table 10-57. Commands to store values in the configuration file

Command Comment

mfpadm [--configfile=file] config url
URL

mfpadm [--configfile=file] config secure
boolean

mfpadm [--configfile=file] config user
name

10-52 IBM MobileFirst Platform Foundation V8.0.0

Table 10-57. Commands to store values in the configuration file (continued)

Command Comment

mfpadm [--configfile=file] config
password

Prompts for the password.

mfpadm [--configfile=file] config
timeout seconds

mfpadm [--configfile=file] config
connect-timeout seconds

mfpadm [--configfile=file] config
socket-timeout seconds

mfpadm [--configfile=file] config
connection-request-timeout seconds

mfpadm [--configfile=file] config
lock-timeout seconds

mfpadm [--configfile=file] config
runtime runtime-name

Use this command to list the values that are stored in the configuration file: mfpadm
[--configfile=file] config

The configuration file is a text file, in the encoding of the current locale, in Java
.properties syntax. Default configuration file:
v UNIX: $HOME/.mfpadm.config
v Windows: My Documents\IBM MobileFirst Platform Server Data\mfpadm.config

Note: When you do not specify a --configfile option, the default configuration
file is used only in interactive mode and in config commands. For noninteractive
use of the other commands, you must explicitly designate the configuration file if
you want to use one.

Important: The password is stored in an obfuscated format that hides the
password from an occasional glimpse. However, this obfuscation provides no
security.

Generic options

There are also the usual generic options:

Table 10-58. Generic options

Option Description

--help Shows some usage help

--version Shows the version

XML format

The commands that receive an XML response from the server verify that this
response complies with the specific schema. You can disable this check by
specifying --xmlvalidation=none.

Administering MobileFirst applications 10-53

Output character set

Normal output that is produced by the mfpadm program is encoded in the encoding
format of the current locale. On Windows, this encoding format is "ANSI code
page". The effects are as follows:
v Characters outside of this character set are converted to question marks when

they are output.
v When the output goes to a Windows command prompt window (cmd.exe),

non-ASCII characters are incorrectly displayed because such windows assume
characters to be encoded in "OEM code page".

To work around this limitation:
v On operating systems other than Windows, use a locale whose encoding is

UTF-8. This format is the default locale on Red Hat Linux and OS X. Many other
operating systems have a en_US.UTF-8 locale.

v Or use the mfpadm Ant task, with attribute output="some file name" to redirect
the output of a command to a file.

Commands for general configuration
When you call the mfpadm program, you can include various commands that access
the global configuration of the IBM MobileFirst Platform Server or of a runtime.

The show global-config command

The show global-config command shows the global configuration.

Syntax: show global-config

It takes the following options:

Table 10-59. show global-config options

Argument Description

--xml Produces XML output instead of tabular
output.

Example
show global-config

This command is based on the “Global Configuration (GET)” on page 8-127 REST
service.

The show user-config command

The show user-config command shows the user configuration of a runtime.

Syntax: show user-config [--xml] [runtime-name]

It takes the following arguments:

Table 10-60. show user-config arguments

Argument Description

runtime-name Name of the runtime.

10-54 IBM MobileFirst Platform Foundation V8.0.0

The show user-config command takes the following options after the verb.

Table 10-61. show user-config options

Argument Description Required Default

--xml Produces output in
XML format instead
of JSON format.

No Standard output

Example
show user-config mfp

This command is based on the “Runtime Configuration (GET)” on page 8-155
REST service.

The set user-config command

The set user-config command specifies the user configuration of a runtime or a
single property among this configuration.

Syntax for the entire configuration: set user-config [runtime-name] file

It takes the following arguments:

Table 10-62. set user-config arguments

Attribute Description

runtime-name Name of the runtime.

file Name of the JSON or XML file that contains the new
configuration.

Syntax for a single property: set user-config [runtime-name] property = value

The set user-config command takes the following arguments:

Table 10-63. set user-config arguments

Argument Description

runtime-name Name of the runtime.

property Name of the JSON property. For a nested
property, use the syntax
prop1.prop2.....propN. For a JSON array
element, use the index instead of a property
name.

value The value of the property.

Examples
set user-config mfp myconfig.json

set user-config mfp timeout = 240

This command is based on the “Runtime configuration (PUT)” on page 8-157 REST
service.

Administering MobileFirst applications 10-55

The show confidential-clients command

The show confidential-clients command shows the configuration of the
confidential clients that can access a runtime. For more information about
confidential clients, see “Confidential clients” on page 7-279.

Syntax: show confidential-clients [--xml] [runtime-name]

It takes the following arguments:s

Table 10-64. show confidential-clients arguments

Attribute Description

runtime-name Name of the runtime.

The show confidential-clients command takes the following options after the
verb.

Table 10-65. show confidential-clients options

Argument Description Required Default

--xml Produces output in
XML format instead
of JSON format.

No Standard output

Example
show confidential-clients --xml mfp

This command is based on the “Confidential Clients (GET)” on page 8-62 REST
service.

The set confidential-clients command

The set confidential-clients command specifies the configuration of the
confidential clients that can access a runtime. For more information about
confidential clients, see “Confidential clients” on page 7-279.

Syntax: set confidential-clients [runtime-name] file

Its takes the following arguments:

Table 10-66. set confidential-clients arguments

Attribute Description

runtime-name Name of the runtime.

file Name of the JSON or XML file that contains the new
configuration.

Example
set confidential-clients mfp clients.xml

This command is based on the “Confidential Clients (PUT)” on page 8-64 REST
service.

10-56 IBM MobileFirst Platform Foundation V8.0.0

The set confidential-clients-rule command

The set confidential-clients-rule command specifies a rule in the configuration
of the confidential clients that can access a runtime. For more information about
confidential clients, see “Confidential clients” on page 7-279.

Syntax: set confidential-clients-rule [runtime-name] id displayName secret
allowedScope

It takes the following arguments:

Table 10-67. set confidential-clients-rule arguments

Attribute Description

runtime Name of the runtime.

id The identifier of the rule.

displayName The display name of the rule.

secret The secret of the rule.

allowedScope The scope of the rule. A space-separated list of
tokens. Use double-quotes to pass a list of two or
more tokens.

Example
set confidential-clients-rule mfp push Push lOa74Wxs "**"

This command is based on the “Confidential Clients (PUT)” on page 8-64 REST
service.

Commands for adapters
When you invoke the mfpadm program, you can include various commands for
adapters.

The list adapters command

The list adapters command returns a list of the adapters that are deployed for a
runtime.

Syntax: list adapters [runtime-name]

It takes the following arguments:

Table 10-68. list adapters command arguments

Argument Description

runtime-name Name of the runtime.

The list adapters command takes the following options after the object.

Table 10-69. list adapters options

Option Description

--xml Produce XML output instead of tabular
output.

Administering MobileFirst applications 10-57

Example
list adapters mfp

This command is based on the “Adapters (GET)” on page 8-17 REST service.

The deploy adapter command

The deploy adapter command deploys an adapter in a runtime.

Syntax: deploy adapter [runtime-name] file

It takes the following arguments:

Table 10-70. deploy adapter command arguments

Argument Description

runtime-name Name of the runtime.

file Binary adapter file (.adapter)

Example
deploy adapter mfp MyAdapter.adapter

This command is based on the “Adapter (POST)” on page 8-13 REST service.

The show adapter command

The show adapter command shows details about an adapter.

Syntax: show adapter [runtime-name] adapter-name

It takes the following arguments.

Table 10-71. show adapter command arguments

Argument Description

runtime-name Name of the runtime.

adapter-name Name of an adapter

The show adapter command takes the following options after the object.

Table 10-72. show adapter options

Option Description

--xml Produce XML output instead of tabular
output.

Example
show adapter mfp MyAdapter

This command is based on the “Adapter (GET)” on page 8-7 REST service.

10-58 IBM MobileFirst Platform Foundation V8.0.0

The delete adapter command

The delete adapter command removes (undeploys) an adapter from a runtime.

Syntax: delete adapter [runtime-name] adapter-name

It takes the following arguments:

Table 10-73. delete adapter command arguments

Argument Description

runtime-name Name of the runtime.

adapter-name Name of an adapter.

Example
delete adapter mfp MyAdapter

This command is based on the “Adapter (DELETE)” on page 8-10 REST service.

The adapter command prefix

The adapter command prefix takes the following arguments before the verb.

Table 10-74. adapter command prefix arguments

Argument Description

runtime-name Name of the runtime.

adapter-name Name of an adapter.

The adapter get binary command

The adapter get binary command returns the binary adapter file.

Syntax: adapter [runtime-name] adapter-name get binary [> tofile]

It takes the following options after the verb.

Table 10-75. adapter get binary options

Option Description Required Default

> tofile Name of the output
file.

No Standard output

Example
adapter mfp MyAdapter get binary > /tmp/MyAdapter.adapter

This command is based on the “Export runtime resources (GET)” on page 8-113
REST service.

The adapter show user-config command

The adapter show user-config command shows the user configuration of the
adapter.

Syntax: adapter [runtime-name] adapter-name show user-config [--xml]

Administering MobileFirst applications 10-59

The adapter show user-config command takes the following options after the
verb.

Table 10-76. adapter show user-config options

Option Description

--xml Produces output in XML format instead of
JSON format.

Example
adapter mfp MyAdapter show user-config

This command is based on the “Adapter Configuration (GET)” on page 8-20 REST
service.

The adapter set user-config command

The adapter set user-config command specifies the user configuration of the
adapter or a single property within this configuration.

Syntax for the entire configuration: adapter [runtime-name] adapter-name set
user-config file

The adapter set user-config command takes the following arguments after the
verb.

Table 10-77. adapter set user-config arguments

Option Description

file Name of the JSON or XML file that contains
the new configuration.

Syntax for a single property: adapter [runtime-name] adapter-name set
user-config property = value

It takes the following arguments after the verb.

Table 10-78. adapter set user-config arguments

Option Description

property Name of the JSON property. For a nested
property, use the syntax
prop1.prop2.....propN. For a JSON array
element, use the index instead of a property
name.

value The value of the property.

Examples
adapter mfp MyAdapter set user-config myconfig.json

adapter mfp MyAdapter set user-config timeout = 240

This command is based on the “Adapter configuration (PUT)” on page 8-22 REST
service.

10-60 IBM MobileFirst Platform Foundation V8.0.0

Commands for apps
When you invoke the mfpadm program, you can include various commands for
apps.

The list apps command

The list apps command returns a list of the apps that are deployed in a runtime.

Syntax: list apps [runtime-name]

It takes the following arguments:

Table 10-79. list apps command arguments

Argument Description

runtime-name Name of the runtime.

The list apps command takes the following options after the object.

Table 10-80. list apps command options

Option Description

--xml Produce XML output instead of tabular
output.

Example
list apps mfp

This command is based on the “Applications (GET)” on page 8-48 REST service.

The deploy app command

The deploy app command deploys an app version in a runtime.

Syntax: deploy app [runtime-name] file

It takes the following arguments:

Table 10-81. deploy app command arguments

Argument Description

runtime-name Name of the runtime.

file The application descriptor, a JSON file.

Example
deploy app mfp MyApp/application-descriptor.json

This command is based on the “Application (POST)” on page 8-43 REST service.

The show app command

The show app command shows details about an app in a runtime, in particular its
environments and versions.

Administering MobileFirst applications 10-61

Syntax: show app [runtime-name] app-name

It takes the following arguments:

Table 10-82. show app command arguments

Argument Description

runtime-name Name of the runtime.

app-name Name of an app.

The show app command takes the following options after the object.

Table 10-83. show app command options

Option Description

--xml Produce XML output instead of tabular
output.

Example
show app mfp MyApp

This command is based on the “Application (GET)” on page 8-41 REST service.

The delete app command

The delete app command removes (undeploys) an app, from all environments and
all versions, from a runtime. Deleting an application from MobileFirst Operations
Console will remove all push subscriptions on that application as well.

Syntax: delete app [runtime-name] app-name

It takes the following arguments:

Table 10-84. delete app command arguments

Argument Description

runtime-name Name of the runtime.

app-name Name of an app

Example
delete app mfp MyApp

This command is based on the “Application Version (DELETE)” on page 8-58 REST
service.

The show app version command

The show app version command show details about an app version in a runtime.

Syntax: show app version [runtime-name] app-name environment version

It takes the following arguments:

10-62 IBM MobileFirst Platform Foundation V8.0.0

Table 10-85. show app command arguments

Argument Description

runtime-name Name of the runtime.

app-name Name of an app.

environment Mobile platform.

version Version of the app.

The show app version command takes the following options after the object.

Table 10-86. show app command options

Argument Description

--xml Produces XML output instead of tabular
output.

Example
show app version mfp MyApp iPhone 1.1

This command is based on the “Application Version (GET)” on page 8-56 REST
service.

The delete app version command

The delete app version command removes (undeploys) an app version from a
runtime.

Syntax: delete app version [runtime-name] app-name environment version

It takes the following arguments:

Table 10-87. delete app version command arguments

Argument Description

runtime-name Name of the runtime.

app-name Name of an app.

environment Mobile platform.

version Version of the app.

Example
delete app version mfp MyApp iPhone 1.1

This command is based on the “Application Version (DELETE)” on page 8-58 REST
service.

The app command prefix

The app command prefix takes the following arguments before the verb.

Table 10-88. app command prefix arguments

Argument Description

runtime-name Name of the runtime.

Administering MobileFirst applications 10-63

Table 10-88. app command prefix arguments (continued)

Argument Description

app-name Name of an app.

The app show license-config command

The app show license-config command shows the token license configuration of
an app.

Syntax: app [runtime-name] app-name show license-config

It takes the following options after the object:

Table 10-89. app show license-config option

Argument Description

--xml Produces XML output instead of tabular
output.

Example
app mfp MyApp show license-config

This command is based on the “Application license configuration (GET)” on page
8-54 REST service.

The app set license-config command

The app set license-config command specifies the token license configuration of
an app.

Syntax: app [runtime-name] app-name set license-config app-type license-type

It takes the following arguments after the verb.

Table 10-90. app set license-config command arguments

Argument Description

appType Type of app: B2C or B2E.

licenseType Type of application: APPLICATION or
ADDITIONAL_BRAND_DEPLOYMENT or
NON_PRODUCTION.

Example
app mfp MyApp iPhone 1.1 set license-config B2E APPLICATION

This command is based on the “Application License Configuration (POST)” on
page 8-51 REST service.

The app delete license-config command

The app delete license-config command resets the token license configuration of
an app, that is, reverts it to the initial state.

Syntax: app [runtime-name] app-name delete license-config

10-64 IBM MobileFirst Platform Foundation V8.0.0

Example
app mfp MyApp iPhone 1.1 delete license-config

This command is based on the “License configuration (DELETE)” on page 8-136
REST service.

The app version command prefix

The app version command prefix takes the following arguments before the verb.

Table 10-91. app version command prefix arguments

Argument Description

runtime-name Name of the runtime.

app-name Name of an app.

environment Mobile platform

version Version of the app

The app version get descriptor command

The app version get descriptor command returns the application descriptor of a
version of an app.

Syntax: app version [runtime-name] app-name environment version get
descriptor [> tofile]

It takes the following arguments after the verb.

Table 10-92. app version get descriptor command options

Argument Description Required Default

> tofile Name of the output
file.

No Standard output

Example
app version mfp MyApp iPhone 1.1 get descriptor > /tmp/MyApp-application-descriptor.json

This command is based on the “Application Descriptor (GET)” on page 8-37 REST
service.

The app version get web-resources command

The app version get web-resources command returns the web resources of a
version of an app, as a .zip file.

Syntax: app version [runtime-name] app-name environment version get
web-resources [> tofile]

It takes the following arguments after the verb.

Table 10-93. app version get web-resources command options

Argument Description Required Default

> tofile Name of the output
file.

No Standard output

Administering MobileFirst applications 10-65

Example
app version mfp MyApp iPhone 1.1 get web-resources > /tmp/MyApp-web.zip

This command is based on the “Retrieve Web Resource (GET)” on page 8-152 REST
service.

The app version set web-resources command

The app version set web-resources command specifies the web resources for a
version of an app.

Syntax: app version [runtime-name] app-name environment version set
web-resources file

It takes the following arguments after the verb.

Table 10-94. app version set web-resources command arguments

Argument Description

file Name of the input file (must be a .zip file).

Example
app version mfp MyApp iPhone 1.1 set web-resources /tmp/MyApp-web.zip

This command is based on the “Deploy a web resource (POST)” on page 8-83
REST service.

The app version get authenticity-data command

The app version get authenticity-data command returns the authenticity data of
a version of an app.

Syntax: app version [runtime-name] app-name environment version get
authenticity-data [> tofile]

It takes the following arguments after the verb.

Table 10-95. app version get authenticity-data command options

Argument Description Required Default

> tofile Name of the
output file.

No Standard output

Example
app version mfp MyApp iPhone 1.1 get authenticity-data > /tmp/MyApp.authenticity_data

This command is based on the Export runtime resources (GET) REST service.

The app version set authenticity-data command

The app version set authenticity-data command specifies the authenticity data
for a version of an app.

10-66 IBM MobileFirst Platform Foundation V8.0.0

Syntax: app version [runtime-name] app-name environment version set
authenticity-data file

It takes the following arguments after the verb.

Table 10-96. app version set authenticity-data command arguments

Argument Description

file Name of the input file:

v Either a .authenticity_data file,

v Or a device file (.ipa or .apk or .appx),
from which the authenticity data is
extracted.

Examples
app version mfp MyApp iPhone 1.1 set authenticity-data /tmp/MyApp.authenticity_data

app version mfp MyApp iPhone 1.1 set authenticity-data MyApp.ipa

app version mfp MyApp android 1.1 set authenticity-data MyApp.apk

This command is based on the “Deploy Application Authenticity Data (POST)” on
page 8-80 REST service.

The app version delete authenticity-data command

The app version delete authenticity-data command deletes the authenticity
data for a version of an app.

Syntax: app version [runtime-name] app-name environment version delete
authenticity-data

Example
app version mfp MyApp iPhone 1.1 delete authenticity-data

This command is based on the “Application Authenticity (DELETE)” on page 8-27
REST service.

The app version show user-config command

The app version show user-config command shows the user configuration of a
version of an app.

Syntax: app version [runtime-name] app-name environment version show
user-config [--xml]

It takes the following options after the verb.

Table 10-97. app version show user-config command options

Argument Description Required Default

[--xml] Produce output in
XML format instead
of JSON format.

No Standard output

Example
app version mfp MyApp iPhone 1.1 show user-config

Administering MobileFirst applications 10-67

This command is based on the “Application Configuration (GET)” on page 8-30
REST service.

The app version set user-config command

The app version set user-config command specifies the user configuration for a
version of an app or a single property among this configuration.

Syntax for the entire configuration: app version [runtime-name] app-name
environment version set user-config file

It takes the following arguments after the verb.

Table 10-98. app version set user-config command arguments

Argument Description

file Name of the JSON or XML file that contains
the new configuration.

Syntax for a single property: app version [runtime-name] app-name environment
version set user-config property = value

The app version set user-config command takes the following arguments after
the verb.

Table 10-99. app version set user-config command arguments

Argument Description

property Name of the JSON property. For a nested
property, use the syntax
prop1.prop2.....propN. For a JSON array
element, use the index instead of a property
name.

value The value of the property.

Examples
app version mfp MyApp iPhone 1.1 set user-config /tmp/MyApp-config.json

app version mfp MyApp iPhone 1.1 set user-config timeout = 240

This command is based on the “Application Configuration (PUT)” on page 8-32
REST service.

Commands for devices
When you invoke the mfpadm program, you can include various commands for
devices.

The list devices command

The list devices command returns the list of devices that have contacted the
apps of a runtime.

Syntax: list devices [runtime-name] [--query query]

It takes the following arguments:

10-68 IBM MobileFirst Platform Foundation V8.0.0

Table 10-100. list devices command arguments

Argument Description

runtime-name Name of the runtime.

query A friendly name or user identifier, to search
for. This parameter specifies a string to
search for. All devices that have a friendly
name or user identifier that contains this
string (with case-insensitive matching) are
returned.

The list devices command takes the following options after the object.

Table 10-101. list devices command options

Option Description

--xml Produces XML output instead of tabular
output.

Examples
list-devices mfp

list-devices mfp --query=john

This command is based on the “Devices (GET)” on page 8-96 REST service.

The remove device command

The remove device command clears the record about a device that has contacted
the apps of a runtime.

Syntax: remove device [runtime-name] id

It takes the following arguments:

Table 10-102. remove device command arguments

Argument Description

runtime-name Name of the runtime.

id Unique device identifier.

Example
remove device mfp 496E974CCEDE86791CF9A8EF2E5145B6

This command is based on the “Device (DELETE)” on page 8-93 REST service.

The device command prefix

The device command prefix takes the following arguments before the verb.

Table 10-103. device command prefix arguments

Argument Description

runtime-name Name of the runtime.

id Unique device identifier.

Administering MobileFirst applications 10-69

The device set status command

The device set status command changes the status of a device, in the scope of a
runtime.

Syntax: device [runtime-name] id set status new-status

It takes the following arguments:

Table 10-104. device set status command arguments

Argument Description

new-status New status.

The status can have one of the following values:
v ACTIVE

v LOST

v STOLEN

v EXPIRED

v DISABLED

Example
device mfp 496E974CCEDE86791CF9A8EF2E5145B6 set status EXPIRED

This command is based on the “Device Status (PUT)” on page 8-90 REST service.

The device set appstatus command

The device set appstatus command changes the status of a device, regarding an
app in a runtime.

Syntax: device [runtime-name] id set appstatus app-name new-status

It takes the following arguments:

Table 10-105. device set appstatus command arguments

Argument Description

app-name Name of an app.

new-status New status.

The status can have one of the following values:
v ENABLED

v DISABLED

Example
device mfp 496E974CCEDE86791CF9A8EF2E5145B6 set appstatus MyApp DISABLED

This command is based on the “Device Application Status (PUT)” on page 8-86
REST service.

Commands for troubleshooting
When you invoke the mfpadm program, you can include various commands for
troubleshooting.

10-70 IBM MobileFirst Platform Foundation V8.0.0

The show info command

The show info command shows basic information about the MobileFirst
administration services that can be returned without accessing any runtime nor
database. This command can be used to test whether the MobileFirst
administration services are running at all.

Syntax: show info

The show info command takes the following options after the object.

Table 10-106. show infos options

Option Description

--xml Produces XML output instead of tabular
output.

Example
show info

The show versions command

The show versions command displays the MobileFirst versions of various
components:
v mfpadmVersion: the exact MobileFirst Server version number from which

mfp-ant-deployer.jar is taken.
v productVersion: the exact MobileFirst Server version number from which

mfp-admin-service.war is taken
v mfpAdminVersion: the exact build version number of mfp-admin-service.war

alone.

Syntax: show versions

The show versions command takes the following options after the object.

Table 10-107. show versions options

Option Description

--xml Produces XML output instead of tabular
output.

Example
show versions

The show diagnostics command

The show diagnostics command shows the status of various components that are
necessary for the correct operation of the MobileFirst administration service, such
as the availability of the database and of auxiliary services.

Syntax: show diagnostics

The show diagnostics command takes the following options after the object.

Administering MobileFirst applications 10-71

Table 10-108. show diagnostics options

Option Description

--xml Produces XML output instead of tabular
output.

Example
show diagnostics

The unlock command

The unlock command releases the general-purpose lock. Some destructive
operations take this lock in order to prevent concurrent modification of the same
configuration data. In rare cases, if such an operation is interrupted, the lock might
remain in locked state, making further destructive operations impossible. Use the
unlock command to release the lock in such situations.

Example
unlock

The list runtimes command

The list runtimes command returns a list of the deployed runtimes.

Syntax: list runtimes [--in-database]

The list runtimes command takes the following options:

Table 10-109. list runtimes options

Option Description

--in-database Whether to look in the database instead of
via MBeans

--xml Produces XML output instead of tabular
output.

Examples
list runtimes

list runtimes --in-database

This command is based on the “Runtimes (GET)” on page 8-170 REST service.

The show runtime command

The show runtime command shows information about a given deployed runtime.

Syntax: show runtime [runtime-name]

The show runtime command takes the following arguments:

Table 10-110. The show runtime command arguments

Argument Description

runtime-name Name of the runtime.

10-72 IBM MobileFirst Platform Foundation V8.0.0

The show runtime command takes the following options after the object.

Table 10-111. The show runtime command options

Option Description

--xml Produces XML output instead of tabular
output.

This command is based on the “Runtime (GET)” on page 8-161 REST service.

Example
show runtime mfp

The delete runtime command

The delete runtime command deletes a runtime, including its apps and adapters,
from the database. You can delete a runtime only when its web application is
stopped.

Syntax: delete runtime [runtime-name] condition

The delete runtime command takes the following arguments:

Table 10-112. delete runtime arguments

Argument Description

runtime-name Name of the runtime.

condition Condition when to delete it: empty or always

Attention: The always option is dangerous.

Example
delete runtime mfp empty

This command is based on the “Runtime (DELETE)” on page 8-166 REST service.

The list farm-members command

The list farm-members command returns a list of the farm member servers on
which a given runtime is deployed.

Syntax: list farm-members [runtime-name]

The list farm-members command takes the following arguments:

Table 10-113. list farm-members arguments

Argument Description

runtime-name Name of the runtime.

The list farm-members command takes the following options after the object.

Administering MobileFirst applications 10-73

Table 10-114. list farm-members options

Option Description

--xml Produces XML output instead of tabular
output.

Example
list farm-members mfp

This command is based on the “Farm topology members (GET)” on page 8-114
REST service.

The remove farm-member command

The remove farm-member command removes a server from the list of farm members
on which the specified runtime is deployed. Use this command when the server
has become unavailable or disconnected.

Syntax: remove farm-member [runtime-name] server-id

The remove farm-member command takes the following arguments.

Table 10-115. remove farm-member arguments

Argument Description

runtime-name Name of the runtime.

server-id Identifier of the server.

The remove farm-member command takes the following options after the object.

Table 10-116. remove farm-member option

Option Description

--force Force removal of a farm member, even if it
is available and connected.

Example
remove farm-member mfp srvlx15

This command is based on the “Farm topology members (DELETE)” on page 8-116
REST service.

Federal standards support in IBM MobileFirst Platform Foundation
IBM MobileFirst Platform Foundation supports Federal Desktop Core
Configuration (FDCC), and United States Government Configuration Baseline
(USGCB) specifications. IBM MobileFirst Platform Foundation also supports the
Federal Information Processing Standards (FIPS) 140-2, which is a security
standard that is used to accredit cryptographic modules.

For more information about the Federal Desktop Core Configuration and United
States Government Configuration Baseline, see FDCC and USGCB.

10-74 IBM MobileFirst Platform Foundation V8.0.0

For more information about the Federal Information Processing Standards 140-2,
see FIPS 140-2 support.

FDCC and USGCB support
The United States federal government mandates that federal agency desktops that
run on Microsoft Windows platforms adopt Federal Desktop Core Configuration
(FDCC) or the newer United States Government Configuration Baseline (USGCB)
security settings.

IBM Worklight V5.0.6 was tested by using the USGCB and FDCC security settings
via a self-certification process. Testing includes a reasonable level of testing to
ensure that installation and core features function on this configuration.

References

For more information, see USGCB.

FIPS 140-2 support
Federal Information Processing Standards (FIPS) are standards and guidelines that
are issued by the United States National Institute of Standards and Technology
(NIST) for federal government computer systems. FIPS Publication 140-2 is a
security standard that is used to accredit cryptographic modules. IBM MobileFirst
Platform Foundation provides FIPS 140-2 support for Android, iOS, and Cordova
apps.

FIPS 140-2 on the MobileFirst Server, and SSL communications
with the MobileFirst Server

The IBM MobileFirst Platform Foundation server runs in an application server,
such as the WebSphere Application Server. The WebSphere Application Server can
be configured to enforce the use of FIPS 140-2 validated cryptographic modules for
inbound and outbound Secure Socket Layer (SSL) connections. The cryptographic
modules are also used for the cryptographic operations that are performed by the
applications by using the Java™ Cryptography Extension (JCE). Since the
MobileFirst Server is an application that runs on the application server, it uses the
FIPS 140-2 validated cryptographic modules for the inbound and outbound SSL
connections.

When an IBM MobileFirst Platform Foundation client transacts a Secure Socket
Layer (SSL) connection to a MobileFirst Server, which is running on an application
server that is using the FIPS 140-2 mode, the results are the successful use of the
FIPS 140-2 approved cipher suite. If the client platform does not support one of the
FIPS 140-2 approved cipher suites, the SSL transaction fails and the client is not
able to establish an SSL connection to the server. If successful, the client uses a
FIPS 140-2 approved cipher suite.

Note: The cryptographic module instances that are used on the client are not
necessarily FIPS 140-2 validated. For options to use FIPS 140-2 validated libraries
on client devices, see “FIPS 140-2 on the MobileFirst client device for protection of
data at rest in JSONStore and data in motion when using HTTPS communications”
on page 10-76.
Specifically, the client and server are using the same cipher suite
(SSL_RSA_WITH_AES_128_CBC_SHA for example), but the client side
cryptographic module perhaps did not go through the FIPS 140-2 validation
process, whereas the server side is using FIPS 140-2 certified modules.

Administering MobileFirst applications 10-75

http://usgcb.nist.gov/

See “References” on page 10-77 for links to documentation to enable FIPS 140-2
mode in WebSphere Application Server.

FIPS 140-2 on the MobileFirst client device for protection of data
at rest in JSONStore and data in motion when using HTTPS
communications

Protection of data at rest on the client device is provided by the JSONStore feature
of IBM MobileFirst Platform Foundation. Protection of data in motion is provided
by the use of HTTPS communication between the MobileFirst client and the
MobileFirst Server.

On iOS devices, the FIPS 140-2 support is enabled by default for both data at rest
and data in motion.

Android devices use non-FIPS 140-2 validated libraries by default. There is an
option to use FIPS 140-2 validated libraries for the protection (encryption and
decryption) of the local data that is stored by JSONStore and for the HTTPS
communication to the MobileFirst Server. This support is achieved by using an
OpenSSL library that achieved FIPS 140-2 validation (Certificate #1747). To enable
this option in a MobileFirst client project, add the optional Android FIPS 140-2
plug-in.

Note: There are some restrictions to be aware of:
v This FIPS 140-2 validated mode applies only to the protection (encryption) of

local data that is stored by the JSONStore feature and protection of HTTPS
communications between the MobileFirst client and the MobileFirst Server.

v This feature is only supported on the iOS and Android platforms.
– On Android, this feature is only supported on devices or simulators that use

the x86 or armeabi architectures. It is not supported on Android using armv5
or armv6 architectures. The reason is because the OpenSSL library used did
not obtain FIPS 140-2 validation for armv5 or armv6 on Android. FIPS 140-2 is
not supported on 64-bit architecture even though the MobileFirst library does
support 64-bit architecture. FIPS 140-2 can be run on 64-bit devices if the
project includes only 32-bit native NDK libraries.

– On iOS, it is supported on i386, x86_64, armv7, armv7s, and arm64
architectures.

v This feature works with hybrid applications only (not with native applications).
v For native iOS, FIPS is enabled through the iOS FIPS libraries and is enabled by

default. No action is required to enable FIPS 140-2.
v For HTTPS communications:

– For Android devices, only the communications between the MobileFirst client
and the MobileFirst Server use the FIPS 140-2 libraries on the client. Direct
connections to other servers or services do not use the FIPS 140-2 libraries.

– The MobileFirst client can only communicate with a MobileFirst Server that
runs in supported environments, which are listed in the System
Requirements. If the MobileFirst Server runs in a non-supported environment,
the HTTPS connection might fail with a key size too small error. This error
does not occur with HTTP communications.

v IBM MobileFirst Platform Application Center client does not support the FIPS
140-2 feature.

10-76 IBM MobileFirst Platform Foundation V8.0.0

http://www-01.ibm.com/support/docview.wss?uid=swg27024838
http://www-01.ibm.com/support/docview.wss?uid=swg27024838

If you previously made the changes that are described in the tutorial, you must
first save any other environment-specific changes that you made, and then delete
and re-create your Android or iOS environments.

For more information about JSONStore, see “JSONStore overview” on page 7-134.

References

For information about how to enable FIPS 140-2 mode in WebSphere Application
Server, see Federal Information Processing Standard support.

For the WebSphere Application Server Liberty profile, no option is available in the
administrative console to enable FIPS 140-2 mode. But you can enable FIPS 140-2
by configuring the Java runtime environment to use the FIPS 140-2 validated
modules. For more information, see Java Secure Socket Extension (JSSE) IBMJSSE2
Provider Reference Guide.

Enabling FIPS 140-2
To use the Federal Information Processing Standard (FIPS) 140-2 feature, you must
first enable the FIPS 140-2 optional feature.

About this task

After the optional feature is enabled, it must then be configured as described in the
What to do next section. After the FIPS 140-2 optional feature is enabled and
configured, this feature applies both to HTTPS and JSONStore data encryption.

Note: FIPS 140-2 is only supported on Android and iOS. The iOS architectures that
support FIPS 140-2 are i386, armv7, armv7s, x86_64, and arm64. The Android
architectures that support FIPS 140-2 are x86 and armeambi.

Note: On Android, FIPS 140-2 is not supported on 64-bit architecture even though
the MobileFirst library does support 64-bit architecture. When you use FIPS 140-2
on a 64-bit device, you might see the following error:

Figure 10-4. Example

Administering MobileFirst applications 10-77

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rovr_fips.html
http://ibm.biz/knowctr#SSYKE2_5.0.0/com.ibm.java.security.component.doc.50/secguides/jsse2Docs/JSSE2RefGuide.html
http://ibm.biz/knowctr#SSYKE2_5.0.0/com.ibm.java.security.component.doc.50/secguides/jsse2Docs/JSSE2RefGuide.html

java.lang.UnsatisfiedLinkError: dlopen failed: "..." is 32-bit instead of 64-bit

This error means that you have 64-bit native libraries in your Android project, and
FIPS 140-2 does not currently work when you use these libraries. To confirm, go to
src/main/libs or src/main/jniLibs under your Android project, and check
whether you have the x86_64 or arm64-v8a folders. If you do, delete these folders,
and FIPS 140-2 can work again.

Note: The following considerations apply to enabling FIPS 140-2 on Cordova apps:

To use the FIPS 140-2 feature on the Android or iOS operating systems, complete
the following steps:

Procedure

iOS only
1. For iOS, FIPS is enabled through the iOS FIPS libraries and is enabled by

default. No action is required to enable FIPS 140-2.
Android only
2. Issue the following CLI command in your MobileFirst Android project:

cordova plugin add cordova-plugin-mfp-fips

Results

FIPS 140-2 is enabled on your app. For the iOS operating system, the FIPS 140-2
compliance automatically applies to the JSONStore plugin when you install it.

What to do next

“Configure FIPS 140-2 mode for HTTPS and JSONStore encryption”

Configure FIPS 140-2 mode for HTTPS and JSONStore
encryption
Learn about settings to configure FIPS 140-2 for encrypting data for HTTPS and
JSONStore.

For iOS apps, FIPS 140-2 is enabled through the iOS FIPS libraries. It is enabled by
default, so no action is required to enable or configure it.

The following code snippet is populated into a new IBM MobileFirst Platform
Foundation application for the Android operating system in the initOptions.js
file for configuring FIPS 140-2:
var wlInitOptions = {

...
// # Enable FIPS 140-2 for data-in-motion (network) and data-at-rest (JSONStore) on Android.
// Requires the FIPS 140-2 optional feature to be enabled also.
// enableFIPS : false
...

};

The default value of enableFIPS is false for the Android operating system. To
enable FIPS 140-2 for both HTTPS and JSONStore data encryption, uncomment and
set the option to true. After you set the value of enableFIPS to true, you should
listen for the FIPS ready JavaScript event by creating a listening event similar to
the following sample:

10-78 IBM MobileFirst Platform Foundation V8.0.0

document.addEventListener(’WL/FIPS/READY’,
this.onFipsReady, false);

onFipsReady: function() {
// FIPS SDK is loaded and ready

}

After you set the value of the enableFIPS property, create an Android environment,
and build the environment.

Note: You must install the FIPS Cordova plugin before you set the enableFIPS
property value to true. Otherwise, a warning message is logged that states the
initOption value is set, but the optional feature was not found. The FIPS 140-2 and
JSONStore features are both optional on the Android operating system. FIPS 140-2
affects JSONStore data encryption only if the JSONStore optional feature is also
enabled. If JSONStore is not enabled, then FIPS 140-2 does not affect JSONStore. In
iOS, the FIPS 140-2 optional feature is not required for JSONStore FIPS 140-2 (data
at rest) or HTTPS encryption (data in motion) because they are both handled by
iOS. In Android, you must enable the FIPS 140-2 optional feature if you want to
use JSONStore FIPS 140-2 or HTTPS encryption.
[WARN] FIPSHttp feature not found, but initOptions enables it on startup

After completing the procedure in “Enabling FIPS 140-2” on page 10-77 and this
procedure in your Android environment, it automatically applies the FIPS 140-2
compliance to the JSONStore plug-in when you install it.

Configuring FIPS 140-2 for existing applications
You must modify applications that were created in earlier versions of IBM
MobileFirst Platform Foundation to enable the FIPS 140-2 feature.

Before you begin

The FIPS 140-2 optional feature is not enabled by default on apps created for any
versions of the Android operating system and on iOS apps in versions of IBM
MobileFirst Platform Foundation before version 8.0. To enable the FIPS 140-2
optional feature for the Android operating system, see “Enabling FIPS 140-2” on
page 10-77. After the optional feature is enabled, you can configure FIPS 140-2.

About this task

After you completed the steps that are described in “Enabling FIPS 140-2” on page
10-77, you must configure FIPS 140-2 by modifying the initOptions.js file to add
the FIPS configuration property.

Note: For JSONStore FIPS 140-2 users The FIPS 140-2 feature, combined with the
JSONStore feature, enables FIPS 140-2 support for JSONStore. This combination
supersedes what was indicated in tutorial JSONStore - Encrypting sensitive data with
FIPS 140-2 that was available for IBM Worklight V6.0 or earlier. If you previously
modified an application by following the instructions in this tutorial, delete and
re-create its iPhone, iPad, and Android environments. Because any
environment-specific changes that you previously made are lost when you delete
an environment, make sure to back up any such changes before you delete any
environment. After the environment is re-created, you can reapply those changes to
the new environment.

Administering MobileFirst applications 10-79

Procedure
1. Add the following property to the initOptions object found in the index.js

file.
enableFIPS : true

2. Rebuild and deploy your app.

License tracking
License tracking is enabled by default in IBM MobileFirst Platform Foundation,
which tracks metrics relevant to the licensing policy such as active client device,
addressable devices, and installed apps. This information helps determine if the
current usage of IBM MobileFirst Platform Foundation is within the license
entitlement levels and can prevent potential license violations.

Also, by tracking the usage of client devices, and determining whether the devices
are active, MobileFirst administrators can decommission devices that are no longer
accessing the IBM MobileFirst Platform. This situation might arise if an employee
leaves the company, for example.

Setting the application license information
Learn how to set the application license information for the apps you register to
MobileFirst Server.

About this task

License terms distinguish IBM MobileFirst Platform Foundation, IBM MobileFirst
Platform Foundation Consumer, IBM MobileFirst Platform Foundation Enterprise,
and IBM MobileFirst Platform Additional Brand Deployment. Set the license
information of an application when you register it to a server so that license
tracking reports generate the right license information. If your server is configured
for token licensing, the license information is used to check out the right feature
from the license server.

You set the Application Type and the Token License Type.

The possible values for Application Type are

B2C
Use this application type if your application is licensed as IBM MobileFirst
Platform Foundation Consumer.

B2E
Use this application type if your application is licensed as IBM MobileFirst
Platform Foundation Enterprise.

UNDEFINED
Use this application type if you don't need to track compliance against the
Addressable Device metric.

The possible values for Token License Type are

APPLICATION
Use APPLICATION for most applications. This is the default.

ADDITIONAL_BRAND_DEPLOYMENT
Use this ADDITIONAL_BRAND_DEPLOYMENT if your application is
licensed as IBM MobileFirst Platform Additional Brand Deployment.

10-80 IBM MobileFirst Platform Foundation V8.0.0

NON_PRODUCTION
Use NON_PRODUCTION while you are developing and testing the
application on the production server. No token is checked out for
applications that have a NON_PRODUCTION token license type.

Important: Using NON_PRODUCTION for a production app is a breach
of the license terms.

Note: If your server is configured for token licensing and if you plan to register an
application with Token License Type ADDITIONAL_BRAND_DEPLOYMENT or
NON_PRODUCTION, set the application license information before you register
the first version of the application. With mfpadm program, you can set the license
information for an application before any version is registered. After the license
information is set, the right number of tokens is checked out when you register the
first version of the app. For more information about token validation, see “Token
license validation” on page 10-83.

Procedure

Set the license type of your app
v To set the license type with IBM MobileFirst Platform Operations Console

1. Select your application
2. Select Settings

3. Set the Application Type and the Token License Type
4. Click Save

v To set the license type with the mfpadm program,
1. Use mfpadm app <appname> set license-config <application-type> <token

license type>

The following example sets the license information B2E / APPLICATION to
the application named my.test.application
prompt> echo password:admin > password.txt
prompt> mfpadm --url https://localhost:9443/mfpadmin --secure false --user admin \

--passwordfile password.txt \
app mfp my.test.application ios 0.0.1 set license-config B2E APPLICATION

prompt> rm password.txt

For more information about mfpadm, see “Administering MobileFirst applications
through the command line” on page 10-47.

License Tracking report
IBM MobileFirst Platform Foundation provides a license tracking report for the
Client Device metric, the Addressable Device metric, and the Application metric.
The report also provides historical data.

The License Tracking report shows the following data:
v The number of applications deployed in the IBM MobileFirst Platform Server.
v The number of addressable devices in the current calendar month.
v The number of client devices, both active and decommissioned.
v The highest number of client devices reported over the last n days, where n is

the number of days of inactivity after which a client device is decommissioned.

You might want to analyze data further. For this purpose, you can download a
CSV file that includes the license reports as well as a historical listing of license
metrics.

Administering MobileFirst applications 10-81

To access the License Tracking report,
1. Open IBM MobileFirst Platform Operations Console.
2. Click the Hello, <your Name> menu.
3. Select Licenses.
4. To obtain a CSV file from the License Tracking report, click Actions/Download

report.

,

For more information about configuring licenses tracking, see “Configuring license
tracking for client device and addressable device” on page 6-196.

Figure 10-5. License tracking information for applications, devices, and decommissioning

10-82 IBM MobileFirst Platform Foundation V8.0.0

Token license validation
If you install and configure IBM MobileFirst Platform Server for token licensing,
the server validates licenses in various scenarios. If your configuration is not
correct, the license is not validated at application registration or deletion.

Validation scenarios

Licenses are validated in various scenarios:

On application registration
Application registration fails if not enough tokens are available for the
token license type of your application.

Tip: You can set the token license type before you register the first version
of your app. For more information, see “Setting the application license
information” on page 10-80.

Licenses are checked only once per application. If you register a new
platform for the same application, or if you register a new version for an
existing application and platform, no new token is claimed.

On Token License Type change
When you change the Token License Type for an application, the tokens for
the application are released and then taken back for the new license type.

On application deletion
Licenses are checked in when the last version of an application is deleted.

At server start
The license is checked out for every registered application. The server
deactivates applications if not enough tokens are available for all
applications.

Important: The server does not reactivate the applications automatically.
After you increase the number of available tokens, you must reactivate the
applications manually. For more information about disabling and enabling
applications, see “Remotely disabling application access to protected
resources” on page 10-17.

On license expiration
After a certain amount of time, the licenses expire and must be checked
out again. The server deactivates applications if not enough tokens are
available for all applications.

Important: The server does not reactivate the applications automatically.
After you augment the number of available tokens, you must reactivate the
applications manually. For more information about disabling and enabling
applications, see “Remotely disabling application access to protected
resources” on page 10-17.

At server shutdown
The license is checked in for every deployed application, during a server
shutdown. The tokens are released only when the last server of a cluster of
farm is shut down.

Causes of license validation failure

License validation might fail when the application is registered or deleted, in the
following cases:

Administering MobileFirst applications 10-83

v The Rational Common Licensing native library is not installed and configured.
v The administration service is not configured for token licensing. For more

information, see “Installing and configuring for token licensing” on page 6-150.
v Rational License Key Server is not accessible.
v Sufficient tokens are not available.
v The license expired.

IBM Rational License Key Server feature name used by IBM
MobileFirst Platform Foundation

Depending on the token license type of an application, the following features are
used.

Token License Type Feature name

APPLICATION ibmmfpfa

ADDITIONAL_BRAND_DEPLOYMENT ibmmfpabd

NON_PRODUCTION (no feature)

For more information about setting the token license type, see “Setting the
application license information” on page 10-80.

Integration with IBM License Metric Tool
The IBM License Metric Tool allows you to evaluate your compliance with your
IBM license.

If you have not installed a version of IBM License Metric Tool that supports IBM
Software License Metric Tag or SWID (software identification) files, you can review
the license usage with the License Tracking reports in MobileFirst Operations
Console. For more information, see “License Tracking report” on page 10-81.

About PVU-based licensing using SWID files

If you have purchased IBM MobileFirst Platform Foundation Extension V8.0.0
offering, it is licensed under the Processor Value Unit (PVU) metric.

The PVU calculation is based on IBM License Metric Tool's support for ISO/IEC
19970-2 and SWID files. The SWID files are written to the server when the IBM
Installation Manager installls MobileFirst or MobileFirst Analytics Server. When the
IBM License Metric Tool discovers an invalid SWID file for a product according to
the current catalog, a warning sign is displayed on the Software Catalog widget.
For more information on how the IBM License Metric Tool works with SWID files,
see https://www.ibm.com/support/knowledgecenter/SS8JFY_9.2.0/
com.ibm.lmt.doc/Inventory/overview/c_iso_tags.html.

The number of Application Center installations is not limited by PVU-based
licensing.

The PVU license for Foundation Extension can only be purchased together with
these product licenses: IBM WebSphere Application Server Network Deployment,
IBM API Connect Professional, or IBM API Connect Enterprise. IBM Installation
Manager adds or updates the SWID file to be used by the License Metric Tool. For
more information on IBM MobileFirst Foundation Extension, see
https://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA
&htmlfid=897/ENUS216-367&appname=USN.

10-84 IBM MobileFirst Platform Foundation V8.0.0

https://www.ibm.com/support/knowledgecenter/SS8JFY_9.2.0/com.ibm.lmt.doc/Inventory/overview/c_iso_tags.html
https://www.ibm.com/support/knowledgecenter/SS8JFY_9.2.0/com.ibm.lmt.doc/Inventory/overview/c_iso_tags.html
https://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS216-367&appname=USN
https://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS216-367&appname=USN

For more information on PVU licensing see https://www.ibm.com/support/
knowledgecenter/SS8JFY_9.2.0/com.ibm.lmt.doc/Inventory/overview/
c_processor_value_unit_licenses.html.

SLMT tags

IBM MobileFirst Platform Foundation generates IBM Software License Metric Tag
(SLMT) files. Versions of IBM License Metric Tool that support IBM Software
License Metric Tag can generate License Consumption Reports. Read this section to
interpret these reports for MobileFirst Server, and to configure the generation of
the IBM Software License Metric Tag files.

Each instance of a running MobileFirst runtime environment generates an IBM
Software License Metric Tag file. The metrics monitored are CLIENT_DEVICE,
ADDRESSABLE_DEVICE, and APPLICATION. Their values are refreshed every 24 hours.

About the CLIENT_DEVICE metric

The CLIENT_DEVICE metric can have the following subtypes:
v Active Devices

The number of client devices that used the MobileFirst runtime environment, or
another MobileFirst runtime instance belonging to the same cluster or server
farm, and that were not decommissioned. For more information about
decommissioned devices, see “Configuring license tracking for client device and
addressable device” on page 6-196.

v Inactive Devices
The number of client devices that used the MobileFirst runtime environment, or
another MobileFirst runtime instance belonging to the same cluster or server
farm, and that were decommissioned. For more information about
decommissioned devices, see “Configuring license tracking for client device and
addressable device” on page 6-196.

The following cases are specific:
v If the decommissioning period of the device is set to a small period, the subtype

"Inactive Devices" is replaced by the subtype "Active or Inactive Devices".
v If device tracking was disabled, only one entry is generated for CLIENT_DEVICE,

with the value 0, and the metric subtype “Device Tracking Disabled”.

About the APPLICATION metric

The APPLICATION metric has no subtype unless the MobileFirst runtime
environment is running in a development server.

The value reported for this metric is the number of applications that are deployed
in the MobileFirst runtime environment. Each application is counted as one unit,
whether it is a new application, an additional brand deployment, or an additional
type of an existing application (for example native, hybrid, or web).

About the ADDRESSABLE_DEVICE metric

The ADDRESSABLE_DEVICE metric has the following subtype:
v Application: <applicationName>, Category: <application type>

Administering MobileFirst applications 10-85

https://www.ibm.com/support/knowledgecenter/SS8JFY_9.2.0/com.ibm.lmt.doc/Inventory/overview/c_processor_value_unit_licenses.html
https://www.ibm.com/support/knowledgecenter/SS8JFY_9.2.0/com.ibm.lmt.doc/Inventory/overview/c_processor_value_unit_licenses.html
https://www.ibm.com/support/knowledgecenter/SS8JFY_9.2.0/com.ibm.lmt.doc/Inventory/overview/c_processor_value_unit_licenses.html

The application type is B2C, B2E, or UNDEFINED. To define the application type of an
application, see “Setting the application license information” on page 10-80.

The following cases are specific:
v If the decommissioning period of the device is set to less than 30 days, the

warning “Short decommissioning period” is appended to the subtype.
v If license tracking was disabled, no addressable report is generated.

For more information about configuring license tracking using metrics, see
v “Configuring license tracking for client device and addressable device” on page

6-196
v “Configuring IBM License Metric Tool log files” on page 6-197

10-86 IBM MobileFirst Platform Foundation V8.0.0

Analytics and Logger

IBM MobileFirst Analytics gives a rich view into both your mobile landscape and
server infrastructure. Included are default reports of user retention, crash reports,
device type and operating system breakdowns, custom data and custom charts,
network usage, push notification results, in-app behavior, debug log collection, and
beyond.

IBM MobileFirst Platform Server comes pre-instrumented with network
infrastructure reporting. When both the client and server are reporting their
network usage, the data is aggregated so you can attribute poor performance to
the network, the server, or the back-end systems.

Two client classes work together to send raw data to the server: the web logger
class and the web analytics class. The logger functions as a standard logger. In
addition, you can control which logger data is accessed and used by analytics by
defining filters both on the client side and on the MobileFirst Analytics Server.

You choose the verbosity and data retention policy of the reported events. Set
conditional alerts. Build custom charts. Engage with new data.

Supported platforms

Analytics is available in iOS and Android. For Cordova, it is available for Android
and iOS platforms. It is not available for the Windows API.

New: From V8.0.0, analytics is available also in the new web API. For more
information on this new API, see “Developing web applications” on page 7-73. To
access analytics for your web apps, use the classes and methods documented here
and in JavaScript web analytics client-side API, and not WL.Analytics and
WL.Logger.

Major features
Learn about the major features that are provided with MobileFirst Analytics and
Logger.

Built-in Analytics

When you use the MobileFirst client SDK together with the MobileFirst Server,
analytics data automatically gets collected for any request that your app makes to
the MobileFirst Server. Basic device metadata gets collected and reported to the
MobileFirst Analytics Server.

App Analytics

You can view App Session charts and App Usage charts to find out which app is
being used most by your users.

Custom Analytics

You can have your app send custom data and create custom reports on your
custom data.

© Copyright IBM Corp. 2006, 2016 11-1

Custom Charts

You can create custom charts for the custom data that you collect or many of the
pre-defined analytics data types.

Crash Capture

MobileFirst client SDKs can capture crashes on Android and iOS, and uncaught
exceptions in cross-platform and web applications.

Alerts

You can create threshold and trend alerts in the MobileFirst Analytics Console.

Debug Log Capture

Log capture gives developers the ability to easily capture raw debug logs from
applications that run on user devices that are inaccessible to your development
team.

REST API

You can view the “REST API for MobileFirst Analytics and Logger” on page 8-270.

MobileFirst Analytics Server installation guide
MobileFirst Analytics Server is implemented and shipped as a set of two Java EE
standard web application archive (WAR) files, or one enterprise application archive
(EAR) file. Therefore, it can be installed in one of the following supported
application servers: WebSphere Application Server, WebSphere Application Server
Liberty, or Apache Tomcat (WAR files only).

System requirements
MobileFirst Analytics Server uses an embedded Elasticsearch library for the data
store and cluster management. Because it intends to be a highly performant
in-memory search and query engine, requiring fast disk I/O, you must follow
some production system requirements. In general, you are most likely to run out of
memory and disk (or discover that disk I/O is your performance bottleneck)
before CPU becomes a problem. In a clustered environment, you want a fast,
reliable, co-located cluster of nodes.

Operating system
v CentOS/RHEL 6.x/7.x
v Oracle Enterprise Linux 6/7 with RHEL Kernel only
v Ubuntu 12.04/14.04
v SLES 11/12
v OpenSuSE 13.2
v Windows Server 2012/R2
v Debian 7

JVM
v Oracle JVM 1.7u55+
v Oracle JVM 1.8u20+

11-2 IBM MobileFirst Platform Foundation V8.0.0

v IcedTea OpenJDK 1.7.0.55+

Hardware
v RAM: More RAM is better, but no more than 64 GB per node. 32 GB and 16 GB

are also acceptable. Less than 8 GB requires many small nodes in the cluster, and
64 GB is wasteful and problematic due to the way Java uses memory for
pointers.

v Disk: Use SSDs when possible, or fast spinning traditional disks in RAID 0
configuration if SSDs are not possible.

v CPU: CPU tends not to be the performance bottleneck. Use systems with 2 to 8
cores.

v Network: When you cross into the need to scale out horizontally, you need a
fast, reliable, data center with 1 GbE to 10 GbE supported speeds.

Hardware configuration
v Give your JVM half of the available RAM, but do not cross 32 GB

– Setting the ES_HEAP_SIZE environment variable to 32g.
– Setting the JVM flags by using -Xmx32g -Xms32g.

v Turn off disk swap. Allowing the operating system to swap heap on and off disk
significantly degrades performance.
– Temporarily: sudo swapoff -a
– Permanently: Edit /etc/fstab according to the operating system

documentation.
– If neither option is possible, set the Elasticsearch option bootstrap.mlockall:

true (this value is the default in the embedded Elasticsearch instance).
v Increase the allowed open file descriptors.

– Linux typically limits a per-process number of open file descriptors to a small
1024.

– Consult your operating system documentation for how to permanently
increase this value to something much larger, like 64,000.

v Elasticsearch also uses a mix of NioFS and MMapFS for the various files.
Increase the maximum map count so plenty of virtual memory is available for
mmapped files.
– Temporarily: sysctl -w vm.max_map_count=262144
– Permanently: Modify the vm.max_map_count setting in your /etc/sysctl.conf.

v If you use BSDs and Linux, ensure that your operating system I/O scheduler is
set to deadline or noop, not cfq.

Capacity considerations
Capacity is the single-most common question. How much RAM do you need?
How much disk space? How many nodes? The answer is always: it depends.

IBM MobileFirst Analytics gives you the opportunity to collect many
heterogeneous event types, including raw client SDK debug logs, server-reported
network events, custom data, and much more. It is a big data system with big data
system requirements.

The type and amount of data that you choose to collect, and how long you choose
to keep it, has a dramatic impact on your storage requirements and overall
performance. As an example, consider the following questions.
v Are raw debug client logs useful after a month?

Analytics and Logger 11-3

v Are you using the Alerts feature in MobileFirst Analytics? If so, are you
querying on events that occurred in the last few minutes or over a longer range?

v Are you using custom charts? If so, are you creating these charts for built-in
data or custom instrumented key/value pairs? How long do you keep the data?

The built-in charts on the MobileFirst Analytics Console are rendered by querying
data that the MobileFirst Analytics Server already summarized and optimized
specifically for the fastest possible console user experience. Because it is
pre-summarized and optimized for the built-in charts, it is not suitable for use in
alerts or custom charts where the console user defines the queries.

When you query raw documents, apply filters, perform aggregations, and ask the
underlying query engine to calculate averages and percentages, the query
performance necessarily suffers. It is this use case that requires careful capacity
considerations. After your query performance suffers, it is time to decide whether
you really must keep old data for real-time console visibility or purge it from the
MobileFirst Analytics Server. Is real-time console visibility truly useful for data
from four months ago?

Indicies, Shards, and Nodes

The underlying data store is Elasticsearch. You must know a bit about indices,
shards and nodes, and how the configuration affects performance. Roughly, you
can think of an index as a logical unit of data. An index is mapped one-to-many to
shards where the configuration key is shards. For more information, see
“Configuration guide” on page 11-14. The MobileFirst Analytics Server creates a
separate index per document type. If your configuration does not discard any
document types, you have a number of indices that are created that is equivalent
to the number of document types that are offered by the MobileFirst Analytics
Server.

If you configure the shards to 1, each index only ever has one primary shard to
which data is written. If you set shards to 10, each index can balance to 10 shards.
However, more shards have a performance cost when you have only one node.
That one node is now balancing each index to 10 shards on the same physical disk.
Only set shards to 10 if you plan to immediately (or nearly immediately) scale up
to 10 physical nodes in the cluster.

The same principle applies to replicas. Only set replicas to something greater
than 0 if you intend to immediately (or nearly immediately) scale up to the
number of nodes to match the math.

For example, if you set shards to 4 and replicas to 2, you can scale to 8 nodes,
which is 4 * 2.

Installing MobileFirst Analytics on WebSphere Application
Server Liberty

You can install MobileFirst Analytics on WebSphere Application Server Liberty.

Before you begin

Ensure that you already have the MobileFirst Analytics EAR file. For more
information on the installation artifacts, see “Installing MobileFirst Server to an
application server” on page 6-100. The analytics.ear file is found in the
<mf_server_install_dir>\analytics folder. For more information about how to

11-4 IBM MobileFirst Platform Foundation V8.0.0

download and install WebSphere Application Server Liberty, see the About
WebSphere Liberty article on IBM developerWorks.

Procedure
1. Create a server by running the following command in your ./wlp/bin folder.

./server create <serverName>

2. Install the following features by running the following command in your ./bin
folder.
./featureManager install jsp-2.2 ssl-1.0 appSecurity-1.0 localConnector-1.0

3. Add the analytics.ear file to the ./usr/servers/<serverName>/apps folder of
your Liberty Server.

4. Replace the contents of the <featureManager> tag of the ./usr/servers/
<serverName>/server.xml file with the following content.
<featureManager>

<feature>jsp-2.2</feature>
<feature>ssl-1.0</feature>
<feature>appSecurity-1.0</feature>
<feature>localConnector-1.0</feature>

</featureManager>

5. Configure analytics.ear as an application with role-based security in the
server.xml file. The following example creates a basic hardcoded user registry,
and assigns a user to each of the different analytics roles.
<application location="analytics.ear" name="analytics-ear" type="ear">

<application-bnd>
<security-role name="analytics_administrator">

<user name="admin"/>
</security-role>
<security-role name="analytics_infrastructure">

<user name="infrastructure"/>
</security-role>
<security-role name="analytics_support">

<user name="support"/>
</security-role>
<security-role name="analytics_developer">

<user name="developer"/>
</security-role>
<security-role name="analytics_business">

<user name="business"/>
</security-role>

</application-bnd>
</application>

<basicRegistry id="worklight" realm="worklightRealm">
<user name="business" password="demo"/>
<user name="developer" password="demo"/>
<user name="support" password="demo"/>
<user name="infrastructure" password="demo"/>
<user name="admin" password="admin"/>

</basicRegistry>

For more information about how to configure other user registry types, such as
LDAP, see the Configuring a user registry for Liberty topic in the WebSphere
Application Server product documentation.

6. Start the Liberty Server by running the following command inside your bin
folder.
./server start <serverName>

7. Go to the MobileFirst Analytics Console.
http://localhost:9080/analytics/console

Analytics and Logger 11-5

https://developer.ibm.com/wasdev/websphere-liberty/
https://developer.ibm.com/wasdev/websphere-liberty/
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.iseries.doc/ae/twlp_sec_registries.html

What to do next

For more information about administering WebSphere Application Server Liberty,
see the Administering Liberty from the command line topic in the WebSphere
Application Server product documentation.

Installing MobileFirst Analytics on Tomcat
You can install MobileFirst Analytics on Apache Tomcat.

Before you begin

Ensure that you already have the MobileFirst Analytics WAR files. For more
information on the installation artifacts, see “Installing MobileFirst Server to an
application server” on page 6-100. The analytics-ui.war and analytics-
service.war files are found in the <mf_server_install_dir>\analytics folder. For
more information about how to download and install Tomcat, see Apache Tomcat.
Ensure that you download the version that supports Java 7 or higher. For more
information about which version of Tomcat supports Java 7, see Apache Tomcat
Versions.

Procedure
1. Add analytics-service.war and the analytics-ui.war files to the Tomcat

webapps folder.
2. Uncomment the following section in the conf/server.xml file, which is present,

but commented out, in a freshly downloaded Tomcat archive.
<Valve className ="org.apache.catalina.authenticator.SingleSignOn"/>

3. Declare the two war files in the conf/server.xml file, and define a user registry.
<Context docBase ="analytics-service" path ="/analytics-service"></Context>
<Context docBase ="analytics" path ="/analytics"></Context>
<Realm className ="org.apache.catalina.realm.MemoryRealm"/>

The MemoryRealm recognizes the users that are defined in the
conf/tomcat-users.xml file. For more information about other choices, see
Apache Tomcat Realm Configuration HOW-TO.

4. Add the following sections to the conf/tomcat-users.xml file to configure a
MemoryRealm.
a. Add the security roles.

<role rolename="analytics_administrator"/>
<role rolename="analytics_infrastructure"/>
<role rolename="analytics_support"/>
<role rolename="analytics_developer"/>
<role rolename="analytics_business"/>

b. Add a few users with the roles you want.
<user name="admin" password="admin" roles="analytics_administrator"/>
<user name="support" password="demo" roles="analytics_support"/>
<user name="business" password="demo" roles="analytics_business"/>
<user name="developer" password="demo" roles="analytics_developer"/>
<user name="infrastructure" password="demo" roles="analytics_infrastructure"/>

5. Start your Tomcat Server and go to the MobileFirst Analytics Console.
http://localhost:8080/analytics/console

For more information about how to start the Tomcat Server, see the official
Tomcat site. For example, Apache Tomcat 7, for Tomcat 7.0.

11-6 IBM MobileFirst Platform Foundation V8.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_admin_script.html
http://tomcat.apache.org
http://tomcat.apache.org/whichversion.html
http://tomcat.apache.org/whichversion.html
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/introduction.html

Installing MobileFirst Analytics on WebSphere Application
Server

You can install MobileFirst Analytics on WebSphere Application Server.

Before you begin

For more information on initial installation steps for acquiring the installation
artificats (JAR and EAR files), see “Installing MobileFirst Server to an application
server” on page 6-100. The analytics.ear, analytics-ui.war, and
analytics-service.war files are found in the <mf_server_install_dir>\analytics
folder.

About this task

The following steps describe how to install and run the Analytics EAR file on
WebSphere Application Server. If you are installing the individual WAR files on
WebSphere Application Server, follow only steps 2 - 7 on the analytics-service
WAR file after you deploy both WAR files. The class loading order must not be
altered on the analytics-ui WAR file.

Procedure
1. Deploy the EAR file to the application server, but do not start it. . For more

information about how to install an EAR file on WebSphere Application Server,
see the Installing enterprise application files with the console topic in the
WebSphere Application Server product documentation.

2. Select the MobileFirst Platform Analytics application from the Enterprise
Applications list.

3. Click Class loading and update detection.

Analytics and Logger 11-7

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_instwiz.html

4. Set the class loading order to parent last.

5. Click Security role to user/group mapping to map the admin user.

11-8 IBM MobileFirst Platform Foundation V8.0.0

6. Click Manage Modules.

7. Select the analytics module and change the class loader order to parent last.

Analytics and Logger 11-9

8. Enable Administrative security and application security in the WebSphere
Application Server administration console:
a. Log in to the WebSphere Application Server administration console.
b. In the Security > Global Security menu, ensure that Enable administrative

security and Enable application security are both selected. Note:
Application security can be selected only after administrative security is
enabled.

a. Click OK and save changes.
9. Start the MobileFirst Platform Analytics application and go to the link in the

browser.
http://<hostname>:<port>/analytics/console

Results

The Analytics EAR file is now ready to accept incoming analytics data.

Installing MobileFirst Analytics with Ant tasks
Learn how to use Ant tasks to deploy MobileFirst Analytics to your application
server.

Before you begin

Ensure that you have the necessary WAR and configuration files: analytics-ui.war
and analytics-service.war. For more information on the installation artifacts, see
“Installing MobileFirst Server to an application server” on page 6-100. The
analytics-ui.war and analytics-service.war files are found in the
MobileFirst_Platform_Server\analytics.

You must run the Ant task on the computer where the application server is
installed, or the Network Deployment Manager for WebSphere Application Server
Network Deployment. If you want to start the Ant task from a computer on which
MobileFirst Server is not installed, you must copy the file
<mf_server_install_dir>/MobileFirstServer/mfp-ant-deployer.jar to that
computer.

Note: The mf_server_install_dir placeholder is the directory where you installed
MobileFirst Server.

11-10 IBM MobileFirst Platform Foundation V8.0.0

Procedure
1. Edit the Ant script that you use later to deploy MobileFirst Analytics WAR

files.
a. Review the sample configuration files in “Sample configuration files for

MobileFirst Analytics” on page 6-319.
b. Replace the placeholder values with the properties at the beginning of the

file.

Note: The following special characters must be escaped when they are used
in the values of the Ant XML scripts:
v The dollar sign ($) must be written as $$, unless you explicitly want to

reference an Ant variable through the syntax ${variable}, as described in
Properties section of the Apache Ant Manual.

v The ampersand character (&) must be written as &, unless you
explicitly want to reference an XML entity.

v Double quotation marks (") must be written as ", except when it is
inside a string that is enclosed in single quotation marks.

2. If you install a cluster of nodes on several servers:
a. You must uncomment the property wl.analytics.masters.list, and set its

value to the list of host name and transport port of the master nodes. For
example:
node1.mycompany.com:96000,node2.mycompany.com:96000

b. Add the attribute mastersList to the elasticsearch elements in the tasks
installanalytics, updateanalytics, and uninstallanalytics.

Note: If you install on a cluster on WebSphere Application Server Network
Deployment, and you do not set the property, the Ant task computes the
data end points for all the members of the cluster at the time of installation,
and sets the masternodes JNDI property to that value.

3. To deploy the WAR files, run the following command:
ant -f configure-appServer-analytics.xml install

You can find the Ant command in mf_server_install_dir/shortcuts. This
installs a node of MobileFirst Analytics, with the default type master and data,
on the server, or on each member of a cluster if you install on WebSphere
Application Server Network Deployment.

4. Save the Ant file. You might need it later to apply a fix pack or perform an
upgrade.
If you do not want to save the passwords, you can replace them by
“************” (12 stars) for interactive prompting.

Note: If you add a node to a cluster of MobileFirst Analytics, you must update
the analytics/masternodes JNDI property, so that it contains the ports of all the
master nodes of the cluster.

What to do next
v “Ant tasks for installation of MobileFirst Analytics” on page 6-309

Analytics and Logger 11-11

http://ant.apache.org/manual/properties.html

Installing MobileFirst Analytics Server V8.0.0 on servers
running previous versions

Although there is no option to upgrade previous versions of the MobileFirst
Analytics Server, when you install MobileFirst Analytics Server V8.0.0 on a server
that hosted a previous version, some properties and analytics data need to be
migrated.

For servers previously running earlier of versions of MobileFirst Analytics Server
update the analytics data and the JNDI properties.

Migration of server properties used by previous versions of
MobileFirst Analytics Server
If you install MobileFirst Analytics Server V8.0.0 on a server that was previously
running an earlier version of MobileFirst Analytics Server, you must update the
values of the JNDI properties on the hosting server.

Some event types were changed between earlier versions of MobileFirst Analytics
Server and V8.0.0. Because of this change, any JNDI properties that were
previously configured in your server configuration file must be converted to the
new event type.

The following table shows the mapping between old event types and new event
types. Some event types did not change.

Table 11-1. MobileFirst Server properties

Old event type New event type

AlertDefinition AlertDefinition

AlertNotification AlertNotification

AlertRunnerNode AlertRunnerNode

AnalyticsConfiguration AnalyticsConfiguration

CustomCharts CustomChart

CustomData CustomData

Devices Device

MfpAppLogs AppLog

MfpAppPushAction AppPushAction

MfpAppSession AppSession

ServerLogs ServerLog

ServerNetworkTransactions NetworkTransaction

ServerPushNotifications PushNotification

ServerPushSubscriptions PushSubscription

Users User

inboundRequestURL resourceURL

mfpAppName appName

mfpAppVersion appVersion

Analytics data migration
Learn about migrating data in the IBM MobileFirst Analytics.

11-12 IBM MobileFirst Platform Foundation V8.0.0

The internals of the MobileFirst Analytics Console were improved, which required
changing the format in which the data is stored. To continue to interact with the
analytics data that was already collected, the data must be migrated into the new
data format.

When you first view the MobileFirst Analytics Console after you upgrade to
V8.0.0, no statistics are rendered in the MobileFirst Analytics Console. Your data is
not lost, but it must be migrated to the new data format.

An alert is displayed on every page of the MobileFirst Analytics Console that
reminds you that documents must be migrated. The alert text includes a link to the
Migration page.

The following image shows a sample alert from the Overview page of the
Dashboard section:

Migration page

You can access the Migration page from the wrench icon in the MobileFirst
Analytics Console. From the Migration page, you can see how many documents
must be migrated, and which indices they are stored on. Only one action is
available: Perform Migration.

The following image shows the Migration page when you have documents that
must be migrated:

Note: This process might take a long time, depending on the amount of data you
have, and it cannot be stopped during migration.

The migration can take approximately 3 minutes to migrate 1 million documents
on a single node with 32G of RAM, with 16G allocated to the JVM, with a 4-core
processor. Documents that are not migrated are not queried, so they are not
rendered in the MobileFirst Analytics Console.

Analytics and Logger 11-13

If the migration fails while in progress, retry the migration. Retrying the migration
does not remigrate documents that were already migrated, and your data integrity
is maintained.

Configuration guide
Some configuration for the MobileFirst Analytics Server is required. Some of the
configuration parameters apply to a single node, and some apply to the whole
cluster, as indicated.

Properties

For a complete list of configuration properties and how to set them in your
application server, see “Configuration properties” on page 11-15.
v The discovery.zen.minimum_master_nodes property must be set to

ceil((<number of master-eligible nodes in the cluster> / 2) + 1) to avoid
split-brain syndrome.
– Elasticsearch nodes in a cluster that are master-eligible must establish a

quorum to decide which master-eligible node is the master.
– If you add a master eligible node to the cluster, the number of master-eligible

nodes changes, and thus the setting must change. You must modify the
setting if you introduce new master-eligible nodes to the cluster. For more
information about how to manage your cluster, see “Cluster management and
Elasticsearch” on page 11-19.

v Give your cluster a name by setting the clustername property in all of your
nodes.
– Name the cluster to prevent a developer's instance of Elasticsearch from

accidentally joining a cluster that is using a default name.
v Give each node a name by setting the nodename property in each node.

– By default, Elasticsearch names each node after a random Marvel character,
and the node name is different on every node restart.

v Explicitly declare the file system path to the data directory by setting the
datapath property in each node.

v Explicitly declare the dedicated master nodes by setting the masternodes
property in each node.

Cluster Recovery Settings

After you scaled out to a multi-node cluster, you might find that an occasional full
cluster restart is necessary. When a full cluster restart is required, you must
consider the recovery settings. If the cluster has 10 nodes, and as the cluster is
brought up, one node at a time, the master node assumes that it needs to start
balancing data immediately upon the arrival of each node into the cluster. If the
master is allowed to behave this way, much unnecessary rebalancing is required.
You must configure the cluster settings to wait for a minimum number of nodes to
join the cluster before the master is allowed to start instructing the nodes to
rebalance. It can reduce cluster restarts from hours down to minutes.
v The gateway.recover_after_nodes property must be set to your preference to

prevent Elasticsearch from starting a rebalance until the specified number of
nodes in the cluster are up and joined. If your cluster has 10 nodes, a value of 8
for the gateway.recover_after_nodes property might be a reasonable setting.

v The gateway.expected_nodes property must be set to the number of nodes that
you expect to be in the cluster. In this example, the value for the
gateway.expected_nodes property is 10.

11-14 IBM MobileFirst Platform Foundation V8.0.0

v The gateway.recover_after_time property must be set to instruct the master to
wait to send rebalanced instructions until after the set time elapsed from the
start of the master node.

The combination of the previous settings means that Elasticsearch waits for the
value of gateway.recover_after_nodes nodes to be present. Then, it begins
recovering after the value of gateway.recover_after_time minutes or after the
value of gateway.expected_nodes nodes joined the cluster, whichever comes first.

What not to do
v Do not ignore your production cluster.

– Clusters need monitoring and nurturing. Many good Elasticsearch monitoring
tools are available that are dedicated to the task.

v Do not use network-attached storage (NAS) for your datapath setting. NAS
introduces more latency, and a single point of failure. Always use the local hosts
disks.

v Avoid clusters that span data centers and definitely avoid clusters that span
large geographic distances. The latency between nodes is a severe performance
bottleneck.

v Roll your own cluster configuration management solution. Many good
configuration management solutions, such as Puppet, Chef, and Ansible, are
available.

Configuration properties
The MobileFirst Analytics Server can start successfully without any additional
configuration.

Configuration is done through JNDI properties on both the MobileFirst Server and
the MobileFirst Analytics Server. Additionally, the MobileFirst Analytics Server
supports the use of environment variables to control configuration. Environment
variables take precedence over JNDI properties.

The Analytics runtime web application must be restarted for any changes in these
properties to take effect. It is not necessary to restart the entire application server.

To set a JNDI property on WebSphere Application Server Liberty, add a tag to the
server.xml file as follows.

<jndiEntry jndiName="{{PROPERTY NAME}}" value="{{PROPERTY VALUE}}" />

To set a JNDI property on Tomcat, add a tag to the context.xml file as follows.
<Environment name="{{PROPERTY NAME}}" value="{{PROPERTY VALUE}}" type="java.lang.String" override="false" />

The JNDI properties on WebSphere Application Server are available as
environment variables.
1. In the WebSphere Application Server console, select Applications >

Application Types > WebSphere Enterprise applications.
2. Select the MobileFirst Administration Service application.
3. In Web Module Properties, click Environment entries for Web Modules to

display the JNDI properties.

Analytics and Logger 11-15

MobileFirst Server

The following table shows the properties that can be set in the MobileFirst Server.

Table 11-2. MobileFirst Server properties.

Property Description Default Value

mfp.analytics.console.url Set this property to the URL
of your MobileFirst Analytics
Console. For example,
http://<hostname>:<port>/
analytics/console. Setting
this property enables the
analytics icon on the
MobileFirst Operations
Console.

None

mfp.analytics.logs.forward If this property it set to true,
server logs that are recorded
on the MobileFirst Server are
captured in MobileFirst
Analytics.

true

mfp.analytics.url Required. The URL that is
exposed by the MobileFirst
Analytics Server that receives
incoming analytics data. For
example,
http://<hostname>:<port>/
analytics-service/rest/v2.

None

analyticsconsole/
mfp.analytics.url

Optional. Full URI of the
Analytics REST services. In a
scenario with a firewall or a
secured reverse proxy, this
URI must be the external
URI, not the internal URI
inside the local LAN. This
value can contain * in places
of the URI protocol, host
name, or port, to denote the
corresponding part from the
incoming URL.

://:*/analytics-service,
with the protocol, host name,
and port dynamically
determined

mfp.analytics.username The user name that is used if
the data entry point is
protected with basic
authentication.

None

mfp.analytics.password The password that is used if
the data entry point is
protected with basic
authentication.

None

MobileFirst Analytics Server

The following table shows the properties that can be set in the MobileFirst
Analytics Server.

11-16 IBM MobileFirst Platform Foundation V8.0.0

Table 11-3. MobileFirst Analytics Server properties.

Property Description Default Value

analytics/nodetype Defines the Elasticsearch node type. Valid
values are master and data. If this
property is not set, then the node acts as
both a master-eligible node and a data
node.

None

analytics/shards The number of shards per index. This
value can be set only by the first node
that is started in the cluster and cannot be
changed.

1

analytics/
replicas_per_shard

The number of replicas for each shard in
the cluster. This value can be changed
dynamically in a running cluster.

0

analytics/masternodes A comma-delimited string that contains
the host name and ports of the
master-eligible nodes.

None

analytics/clustername Name of the cluster. Set this value if you
plan to have multiple clusters that operate
in the same subset and need to uniquely
identify them.

worklight

analytics/nodename Name of a node in the cluster. A randomly
generated string

analytics/datapath The path that analytics data is saved to on
the file system.

./analyticsData

analytics/settingspath The path to an Elasticsearch settings file.
For more information, see “Elasticsearch”
on page 11-18.

None

analytics/transportport The port that is used for node-to-node
communication.

9600

analytics/httpport The port that is used for HTTP
communication to Elasticsearch.

9500

analytics/http.enabled Enables or disables HTTP communication
to Elasticsearch.

false

analytics/serviceProxyURL The analytics UI WAR file and analytics
service WAR file can be installed to
separate application servers. If you choose
to do so, you must understand that the
JavaScript run time in the UI WAR file
can be blocked by cross-site scripting
prevention in the browser. To bypass this
block, the UI WAR file includes Java
proxy code so that the JavaScript run time
retrieves REST API responses from the
origin server. But the proxy is configured
to forward REST API requests to the
analytics service WAR file. Configure this
property if you installed your WAR files
to separate application servers.

None

analytics/
bootstrap.mlockall

This property prevents any Elasticsearch
memory from being swapped to disk.

true

analytics/multicast Enables or disables multicast node
discovery.

false

Analytics and Logger 11-17

Table 11-3. MobileFirst Analytics Server properties (continued).

Property Description Default Value

analytics/
warmupFrequencyInSeconds

The frequency at which warmup queries
are run. Warmup queries run in the
background to force query results into
memory, which improves web console
performance. Negative values disable the
warmup queries.

600

analytics/tenant Name of the main Elasticsearch index. worklight

In all cases where the key does not contain a period (like httpport but not
http.enabled), the setting can be controlled by system environment variables
where the variable name is prefixed with ANALYTICS_. When both the JNDI
property and the system environment variable are set, the system environment
variable takes precedence. For example, if you have both the analytics/httpport
JNDI property and the ANALTYICS_httpport system environment variable set, the
value for ANALYTICS_httpport is used.

Document Time to Live (TTL)

TTL is effectively how you can establish and maintain a data retention policy. Your
decisions have dramatic consequences on your system resource needs. The long
you keep data, the more RAM, disk, and scaling is likely needed.

Each document type has its own TTL. Setting a document's TTL enables automatic
deletion of the document after it is stored for the specified amount of time.

Each TTL JNDI property is named analytics/TTL_<document type>. For example,
the TTL setting for NetworkTransaction is named analytics/
TTL_NetworkTransaction.

These values can be set by using basic time units as follows.
v 1Y = 1 year
v 1M = 1 month
v 1w = 1 week
v 1d = 1 day
v 1h = 1 hour
v 1m = 1 minute
v 1s = 1 second
v 1ms = 1 millisecond

Note: If you are migrating from previous versions of MobileFirst Analytics Server
and previously configured any TTL JNDI properties, see “Migration of server
properties used by previous versions of MobileFirst Analytics Server” on page
11-12.

Elasticsearch

The underlying storage and clustering technology that serves the MobileFirst
Analytics Console is Elasticsearch.

11-18 IBM MobileFirst Platform Foundation V8.0.0

Elasticsearch provides many tunable properties, mostly for performance tuning.
Many of the JNDI properties are abstractions of properties that are provided by
Elasticsearch.

All properties that are provided by Elasticsearch can also be set by using JNDI
properties with analytics/ prepended before the property name. For example,
threadpool.search.queue_size is a property that is provided by Elasticsearch. It
can be set with the following JNDI property.
<jndiEntry jndiName="analytics/threadpool.search.queue_size" value="100" />

These properties are normally set in a custom settings file. If you are familiar with
Elasticsearch and the format of its properties files, you can specify the path to the
settings file by using the settingspath JNDI property, as follows.
<jndiEntry jndiName="analytics/settingspath" value="/home/system/elasticsearch.yml" />

Unless you are an expert Elasticsearch IT manager, identified a specific need, or
were instructed by your services or support team, do not be tempted to fiddle with
these settings.

Backing up Analytics data
Learn about how to back up your MobileFirst Analytics data.

The data for MobileFirst Analytics is stored as a set of files on the MobileFirst
Analytics Server file system. The location of this folder is specified by the datapath
JNDI property in the MobileFirst Analytics Server configuration. For more
information about the JNDI properties, see “Configuration properties” on page
11-15.

The MobileFirst Analytics Server configuration is also stored on the file system,
and is called server.xml.

You can back up these files by using any existing server backup procedures that
you might already have in place. No special procedure is required when you back
up these files, other than ensuring that the MobileFirst Analytics Server is stopped.
Otherwise, the data might change while the backup is occurring, and the data that
is stored in memory might not yet be written to the file system. To avoid
inconsistent data, stop the MobileFirst Analytics Server before you start your
backup.

Cluster management and Elasticsearch
Manage clusters and add nodes to relieve memory and capacity strain.

Add a Node to the Cluster

You can add a new node to the cluster by installing the MobileFirst Analytics
Server or by running a standalone Elasticsearch instance.

If you choose the standalone Elasticsearch instance, you relieve some cluster strain
for memory and capacity requirements, but you do not relieve data ingestion
strain. Data reports must always go through the MobileFirst Analytics Server for
preservation of data integrity and data optimization prior to going to persistent
store.

You can mix and match.

Analytics and Logger 11-19

The underlying Elasticsearch data store expects nodes to be homogenous, so do not
mix a powerful 8-core 64 GB RAM rack system with a leftover surplus notebook in
your cluster. Use similar hardware among the nodes.

Adding a MobileFirst Analytics Server to the cluster:

Learn how to add a MobileFirst Analytics Server to the cluster.

About this task

Because Elasticsearch is embedded in the MobileFirst Analytics Server, and it is
responsible for participating in the cluster, do not use the application server's
features to define cluster behavior. You do not want to create a WebSphere
Application Server Liberty farm, for example. Trust the underlying Elasticsearch
run time to participate in the cluster. However, you must configure it properly.

In the following sample instructions, do not configure the node to be a master
node or a data node. Instead, configure the node as a "search load balancer" whose
purpose is to be up temporarily so that the Elasticsearch REST API is exposed for
monitoring and dynamic configuration.

Note: Remember to configure the hardware and operating system of this node
according to “System requirements” on page 11-2.

Note: Port 9600 is the transport port that is used by Elasticsearch. Therefore, port
9600 must be open through any firewalls between cluster nodes.

Procedure

1. Install the analytics service WAR file and the analytics UI WAR file (if you
want the UI) to the application server on the newly allocated system.
Install this instance of the MobileFirst Analytics Server to any of the supported
app servers.
v “Installing MobileFirst Analytics on WebSphere Application Server Liberty”

on page 11-4
v “Installing MobileFirst Analytics on Tomcat” on page 11-6
v “Installing MobileFirst Analytics on WebSphere Application Server” on page

11-7
2. Edit the application server's configuration file for JNDI properties (or use

system environment variables) to configure at least the following flags.

Table 11-4. Flags to configure

Flag Value (example) Default Note

cluster.name worklight worklight The cluster that you
intend this node to
join.

discovery.zen.ping.
multicast.enabled

false true Set to false to avoid
accidental cluster
join.

11-20 IBM MobileFirst Platform Foundation V8.0.0

Table 11-4. Flags to configure (continued)

Flag Value (example) Default Note

discovery.zen.ping.
unicast.hosts

["9.8.7.6:9600"] None List of master nodes
in the existing cluster.
Change the default
port of 9600 if you
specified a transport
port setting on the
master nodes.

node.master false true Do not allow this
node to be a master.

node.data false true Do not allow this
node to store data.

http.enabled true true Open unsecured
HTTP port 9200 for
Elasticsearch REST
API.

3. Consider all configuration flags in production scenarios. You might want
Elasticsearch to keep the plug-ins in a different file system directory than the
data, so you must set the path.plugins flag.

4. Run the application server and start the WAR applications if necessary.
5. Confirm that this new node joined the cluster by watching the console output

on this new node, or by observing the node count in the Cluster and Node
section of the Administration page in MobileFirst Analytics Console.

Adding a stand-alone Elasticsearch node to the cluster:

Learn how to add a stand-alone Elasticsearch node to the cluster.

About this task

You can add a stand-alone Elasticsearch node to your existing MobileFirst
Analytics cluster in just a few simple steps. However, you must decide the role of
this node. Is it going to be a master-eligible node? If so, remember to avoid the
split-brain issue from “Configuration guide” on page 11-14. Is it going to be a data
node? Is it going to be a client-only node? Perhaps you want a client-only node so
that you can start a node temporarily to expose Elasticsearch's REST API directly
to affect dynamic configuration changes to your running cluster.

In the following sample instructions, do not configure the node to be a master
node or a data node. Instead, configure the node as a "search load balancer" whose
purpose is to be up temporarily so that the Elasticsearch REST API is exposed for
monitoring and dynamic configuration.

Note: Remember to configure the hardware and operating system of this node
according to “System requirements” on page 11-2.

Note: Port 9600 is the transport port that is used by Elasticsearch. Therefore, port
9600 must be open through any firewalls between cluster nodes.

Procedure

1. Download Elasticsearch from https://download.elastic.co/elasticsearch/
elasticsearch/elasticsearch-1.7.5.tar.gz.

Analytics and Logger 11-21

https://download.elastic.co/elasticsearch/elasticsearch/elasticsearch-1.7.5.tar.gz
https://download.elastic.co/elasticsearch/elasticsearch/elasticsearch-1.7.5.tar.gz

2. Decompress the file.
3. Edit the config/elasticsearch.yml file and configure at least the following

flags.

Table 11-5. Flags to configure

Flag Value (example) Default Note

cluster.name worklight worklight The cluster that you
intend this node to
join.

discovery.zen.ping.
multicast.enabled

false true Set to false to avoid
accidental cluster
join.

discovery.zen.ping.
unicast.hosts

["9.8.7.6:9600"] None List of master nodes
in the existing cluster.
Change the default
port of 9600 if you
specified a transport
port setting on the
master nodes.

node.master false true Do not allow this
node to be a master.

node.data false true Do not allow this
node to store data.

http.enabled true true Open unsecured
HTTP port 9200 for
Elasticsearch REST
API.

4. Consider all configuration flags in production scenarios. You might want
Elasticsearch to keep the plug-ins in a different file system directory than the
data, so you must set the path.plugins flag.

5. Run ./bin/plugin -i elasticsearch/elasticsearch-analytics-icu/2.7.0 to
install the ICU plug-in.

6. Run ./bin/elasticsearch.
7. Confirm that this new node joined the cluster by watching the console output

on this new node, or by observing the node count in the Cluster and Node
section of the Administration page in MobileFirst Analytics Console.

Circuit breakers:

Learn about Elasticsearch circuit breakers.

Elasticsearch contains multiple circuit breakers that are used to prevent operations
from causing an OutOfMemoryError. For example, if a query that serves data to the
MobileFirst Operations Console results in using 40% of the JVM heap, the circuit
breaker triggers, an exception is raised, and the console receives empty data.

Elasticsearch also has protections for filling up the disk. If the disk on which the
Elasticsearch data store is configured to write fills to 90% capacity, the Elasticsearch
node informs the master node in the cluster. The master node then redirects new
document-writes away from the nearly full node. If you have only one node in
your cluster, no secondary node to which data can be written is available.
Therefore, no data is written and is lost.

11-22 IBM MobileFirst Platform Foundation V8.0.0

Configuring analytics from the MobileFirst Operations Console
Configure server-side analytics runtime behavior, define reporting, and view
reports from the MobileFirst Operations Console and the MobileFirst Analytics
Console.

The MobileFirst Operations Console and MobileFirst Analytics Console enable
server-side analytics configuration and provides report setup and viewing.

Enabling or disabling data collection from the MobileFirst
Operations Console

After MobileFirst Analytics is installed and configured for your application server,
you can enable or disable data collection from the MobileFirst Operations Console.

Before you begin
1. Install and configure MobileFirst Analytics for your application server. For

more information, see “MobileFirst Analytics Server installation guide” on page
11-2.

2. Open the MobileFirst Operations Console as explained in “Opening the
MobileFirst Operations Console” on page 7-12.

About this task

When you first open the console, the Dashboard view shows the current state of
the selected runtime. In the Runtime status table, Analytics is displayed as active.
By default, the collection of data for analysis by the Analytics server is enabled.
You can disable it, for example to save processing time.

Note: Only the mfpadmin administrator role and the mfpdeployer deployer role are
allowed to disable or re-enable data collection for Analytics. For more information
about users and roles, see “Configuring user authentication for MobileFirst Server
administration” on page 6-166.

Procedure
1. In the navigation sidebar, click Runtime settings.

To avoid inadvertent changes, runtime properties displayed in read-only mode.
2. To make the settings editable, click the Edit button.

If you logged in with a role other than administrator or deployer, the Edit
button is not visible because you are not allowed to modify runtime properties.

3. From the Data collection enabled drop-down menu, select false to disable data
collection.

4. Click Save.
5. Click the Read Only button to lock the properties again.

Role-based access control
Content in the MobileFirst Analytics Console is restricted by predefined security
roles.

The MobileFirst Analytics Console shows different content based on the security
role of the logged-in user. The following table shows the security role and the
access that is granted to it in the MobileFirst Analytics Console.

Analytics and Logger 11-23

Table 11-6. Role-based access for the MobileFirst Analytics Console.

Role Role name Viewing Access Editing Access

Administrator analytics_administrator Everything. Everything.

Infrastructure analytics_infrastructure Everything. Custom Charts and Alerts
pages.

Developer analytics_developer Everything except for the
Administration pages.

Custom Charts and Alerts
pages.

Support analytics_support Everything except for the
Administration pages.

Custom Charts and Alerts
pages.

Business analytics_business Everything except for the
Administration and
Infrastructure pages.

Custom Charts and Alerts
pages.

For information on setting up roles, see “Configuring user authentication for
MobileFirst Server administration” on page 6-166.

Setting Log Filters from the MobileFirst Operations Console
From the MobileFirst Operations Console, you create, edit, and delete client log
filters on a registered application. Log filters take effect if the application includes
specific method calls.

About this task

For any application that is registered on MobileFirst Operations Console, you can
configure the verbosity of the log level that the client device can capture and send
back to MobileFirst Server using log filters.

Procedure
1. Under Runtimes > Applications, select the application for which you want to

configure the log level.
2. Click the Log Filters tab.
3. In the Create Log Filter dialog, follow the contextual instructions and click Save

when you are finished.
You can edit an existing log filter by clicking the pencil-shaped icon to open the
Edit Log Filter dialog.
A success message is displayed.

11-24 IBM MobileFirst Platform Foundation V8.0.0

Results

Adding, modifying, or deleting a log filter from the MobileFirst Operations
Console does not take effect on the device in real time. These changes take effect
only if the developer has coded the client app to pull the client log in the
application, by using either of the following API calls, provided by the SDK (see
“Fetching server configuration profiles” on page 11-42).

Each time the filters are retrieved, the device is synchronized with the log profile.
A good practice is to put the appropriate API call in the application code path that
gets executed often, for example when the application starts or when application
foreground events occur.

What to do next

You can later retrieve or view client logs on the MobileFirst Analytics Console.

Custom charts
Learn about custom charts.

Custom chart creation
The MobileFirst Analytics Console offers the ability to create custom charts. You
can extend and supplement the existing default charts that are provided in the
MobileFirst Analytics Console.

Creating a custom chart

You can create custom charts for the following event types.
v App Session
v Network Transactions
v Push Notifications
v Client Logs
v Server Logs
v Custom Data

The custom charts creation builder takes you through four main stages. To begin
the custom charts creation process, click Create Chart on the Custom Charts page
of the Dashboard section in the MobileFirst Analytics Console.

General Settings

The General Settings tab contains three fields.
v Chart Title - the title for the chart (defaults to Untitled Chart).
v Event Type - the event type to be visualized.
v Chart Type - the chart type. For more information, see “Chart types” on page

11-26.

After you select the Event Type and Chart Type, the Chart Definition tab appears.

Analytics and Logger 11-25

Chart Definition

Use the Chart Definition tab to define the chart for the specified chart type that
you selected in the General Settings tab. After you define the chart, you can set
the chart filters and chart properties.

Chart Filters

Use Chart Filters to fine-tune your custom chart. For example, if you are interested
in seeing the average app session duration for a particular app, you can specify the
following options.
v On the Chart Filters tab, select Application Name for Property.
v Select Equals for Operator.
v Select the name of your app for Value.
v Click Add Filter.

The app name filter is added to the table of filters for your chart. Multiple filters
can be defined for any chart.

Chart Properties

Chart properties are available for the Table, Bar Graph, and Line Graph chart
types. The goal of chart properties is to enhance how the data is presented so that
the visualization is more effective.

If you created a Table chart, the chart properties can be set to define the table page
size, the field on which to sort, and the sort order of the field.

If you created a Bar Graph or Line Graph chart, the chart properties can be set to
label threshold lines to add a frame of reference for anyone who is monitoring the
chart.

Chart types
You can create a different types of custom chart to visualize data.

Bar Graph

The bar graph allows for visualization of numeric data over an x-axis. When you
define a bar graph, you must choose the value for X-Axis first. You can choose
from the following possible values.
v Timeline - choose Timeline for X-Axis if you want to see your data as a trend

(for example, average app session duration over time).
v Property - choose Property if you want to see a count breakdown for the

specific property. If you choose Property for X-Axis, then Total is implicitly
chosen for Y-Axis. For example, choose Property for X-Axis and Application
Name for Property to see a count for a specified event type, which is broken
down by app name.

After you define a value for X-Axis, you can define a value for Y-Axis. If you
choose Timeline for X-Axis, you can choose the following possible values for
Y-Axis.
v Average - averages a numeric property in the supplied event type.
v Total - a total count of a property in the supplied event type.
v Unique - a unique count of a property in the supplied event type.

11-26 IBM MobileFirst Platform Foundation V8.0.0

After you define the chart axes, you must choose a value for Property.

Line Graph

The line graph allows for the visualization of some metric over time. This type of
chart is valuable when you want to visualize data in terms of a trend over time.
The first value to define when you create a line graph is Measure, which has the
following possible values.
v Average - averages a numeric property in the supplied event type.
v Total - a total count of a property in the supplied event type.
v Unique - a unique count of a property in the supplied event type.

After you define the measurement, you must choose a value for Property.

Flow Chart

The flow chart allows for the visualization of flow breakdown of one property to
another. For a flow chart, the following properties must be set.
v Source - the value of a source node in the diagram.
v Destination - the value of the destination node in the diagram.
v Property - a property value from either the source node or the destination node.

With the flow chart, you can see the density breakdown of various sources that
flow to a destination, or vice versa. For example, if you want to see the breakdown
of log severities for an app, you can define the following values.
v Select Application Name for Source.
v Select Log Level for Destination.
v Select the name of your app for Property.

Metric Group

The metric group can be used to visualize a single metric that is measured as
either an average value, a total count, or a unique count. To define a metric group,
you must define one of the following possible values for Measure.
v Average - averages a numeric property in the supplied event type.
v Total - a total count of a property in the supplied event type.
v Unique - a unique count of a property in the supplied event type.

After you define the measurement, you must choose a value for Property. This
metric is displayed in the metric group.

Pie Chart

The pie chart can be used to visualize the count breakdown of values for a
particular property. For example, if you want to see a crash breakdown, define the
following values.
v Select App Session for Event Type.
v Select Pie Chart for Chart Type.
v Select Closed By for Property.

The resulting pie chart shows the breakdown of app sessions that were closed by
the user as opposed to app sessions that were closed by a crash.

Analytics and Logger 11-27

Table

The table is useful when you want to see the raw data. Building a table is as
simple as adding columns for the raw data that you want to see.

Because not all properties are required for specific event types, null values can
appear in your table. If you want to prevent these rows from appearing in your
table, add an Exists filter for a specific property in the Chart Filters tab.

Creating custom charts for client logs
You can create a custom chart for client logs that contain log information that is
sent with the platform's Logger API. The log information also includes contextual
information about the device, including environment, app name, and app version.

Before you begin

You must log custom events to populate custom charts. For information on
sending custom events from the client app, see “Capturing custom data” on page
11-36.

About this task

In this example, you use client log data to create a flow chart. The final graph
shows the distribution of log levels in a specific app. You also have the following
data available to show in a chart:
v Specific data

– Log level
v Message data

– Timestamp
v Device OS Contextual data

– Application name
– Application version
– Device OS

v Device Contextual data
– Device ID
– Device model
– Device OS version

Procedure
1. From the client app, populate the data by sending captured logs to the server.

See “Sending captured logs” on page 11-39.
2. In the MobileFirst Analytics Console, click the Custom Charts tab on the

Dashboard page. You can create a chart based on the analytics messages that
were sent to the server.

3. Click Create Chart to create a new custom chart.
4. Provide the following values:
v Chart Title: Application and Log Levels
v Event Type: Client Logs
v Chart Type: Flow Chart

5. Click the Chart Definition tab.
6. Provide the following values:

11-28 IBM MobileFirst Platform Foundation V8.0.0

v Source: Application Name
v Destination: Log Level
v Property: your app name

7. Click Save.

Results

Exporting custom chart data
You can download the data that is shown for any custom chart.

About this task

To download custom chart data, choose one of the following steps. At the
beginning of each custom chart, the following icons are displayed.
v Export with URL - looks like a chain link
v Download Chart - looks like a down arrow
v Edit Chart - looks like a pencil
v Delete Chart - looks like a trashcan

Figure 11-1. Application and Log Levels

Analytics and Logger 11-29

Procedure
1. Optional: Click the Dowload Chart icon to download a file in JSON format

from the MobileFirst Analytics Console.
2. Optional: Click the Export with URL icon to generate an export link from the

MobileFirst Analytics Console to call from an HTTP client. This option is useful
if you want to write a script to automate the export processes on a specified
time interval.

Exporting and importing custom chart definitions
You can export and import custom chart definitions in the MobileFirst Analytics
Console. If you are moving from a test environment to a production deployment,
you can save time by exporting your custom chart definitions instead of re-creating
your custom charts on your new cluster.

Before you begin

Ensure that you have at least one custom chart in the MobileFirst Analytics
Console.

About this task

To duplicate your custom charts, follow these steps.

Procedure
1. Click the Custom Charts tab in the Dashboard section in the MobileFirst

Analytics Console.
2. Click Export Charts to download a JSON file with your chart definition.
3. Choose a location to save the JSON file.
4. Click Import Charts to import your JSON file. If you import a custom chart

definition that exists, you end up with duplicate definitions, which also means
that the MobileFirst Analytics Console shows duplicate custom charts.

Alerts
You can set reactive thresholds in the MobileFirst Analytics Console to trigger
alerts when a specific criteria is met. This feature provides a proactive means to
truly monitor the health of your mobile apps without having to check the
MobileFirst Analytics Console regularly.

You can set thresholds at a broad level (a specific app) or at a granular level (a
specific app instance or device). Alert notifications can be configured to display in
the MobileFirst Analytics Console, and also be sent to a pre-configured REST
endpoint.

Creating an alert definition for app crashes
You can create an alert definition based on app crashes.

Before you begin

Ensure that the MobileFirst Analytics Server is started and ready to receive client
logs.

11-30 IBM MobileFirst Platform Foundation V8.0.0

About this task

In this example, you use app crash data to create an alert definition. The alert
monitors all app crashes in the last 2 minutes, and continues to check every 2
minutes, until the alert definition is disabled or deleted. An alert is triggered for
each app that crashed 5 or more times.

Procedure
1. In the MobileFirst Analytics Console, click the Alert Management tab.
2. Click Create Alert.
3. Provide the following values:
v Alert Name: Alert for App Crashes
v Message: App Crash Alert
v Query Frequency: 2 Minutes
v Event Type: Application Crashes

– Application Name: Any Application
– Application Version: Any Version
– Threshold

- Threshold Type: Crash Count
- Operator: is greater than or equals 5

The following image shows the alert definition tab:

Analytics and Logger 11-31

4. Click the Distribution Method tab, and provide the following value:
v Method: Analytics Console Only

Note: Choose the Analytics Console and Network Post option if you want
to additionally send a POST message with a JSON payload to your
customized URL. The following fields are available if you choose this option:
– Network Post Url (required)
– Headers (optional)
– Authentication Type (required)

5. Click Save.

Results

You created an alert definition to trigger an alert at the end of each 2-minute
interval if the number of app crashes reached your threshold of 5 or more crashes.

11-32 IBM MobileFirst Platform Foundation V8.0.0

Custom webhook
You can set up a distribution method for your alert. One option is to define a
custom web hook to which a payload is sent, when an alert threshold is triggered.
You can also specify a set of optional headers, and basic auth credentials if your
endpoint is protected by basic auth.

By default, the POST request has a Content-Type of application/json. The
following example shows a sample payload.
{

"timestamp": 1442848504431,
"condition": {"value":5.0,"operator":"GTE"},
"value": "CRASH",
"offenders": [
{ "XXX 1.0": 5.0 },
{ "XXX 2.0": 1.0 }

],
"property":"closedBy",
"eventType":"MfpAppSession",
"title":" Crash Count Alert for Application ABC",
"message": "The crash count for a application ABC exceeded XYZ.
View the Crash Summary table in the Crashes tab in the Apps
section of the MobileFirst Analytics Console
to see a detailed stacktrace of this crash instance."

}

The POST request includes the following attributes.
v timestamp - the time at which the alert notification was created.
v condition - the threshold that was set by the user (for example, greater than or

equals 5).
v eventType - the eventType that was queried.
v property - the property of the eventType that was queried.
v value - the value of the property that was queried.
v offenders - a list of apps or devices that triggered the alert.
v title - the user-defined title.
v message - the user-defined message.

Viewing alert details
You can view the details of your triggered alerts.

Before you begin

Ensure that the MobileFirst Analytics Server is started and ready to receive
analytics data.

About this task

In this example, you view the details of your triggered alerts from the Alerts Log
tab.

Procedure
1. In the MobileFirst Analytics Console, open the Alerts Log tab :

Analytics and Logger 11-33

2. Click the + icon for any of the alerts. This action displays the Alert Definition
and Alert Instances sections. The following image shows the Alert Definition
and Alert Instances sections:

Note: If the corresponding alert definition was not deleted or modified, you
can edit the alert definition by clicking Edit Alert. Otherwise, the Edit Alert
button is unavailable and the following message is displayed:
This alert definition has since been modified or deleted.

3. Optional: Select an alert and click the Trash icon to delete the alert.

Results

You viewed more details about your alerts.

11-34 IBM MobileFirst Platform Foundation V8.0.0

Developing the analytics client
Capture analytics data and send it to the MobileFirst Analytics Server by using
analytics client SDKs.

Analytics SDK
Use the Analytics SDK to capture and send analytics data.

Capturing analytics
You can initialize the MobileFirst Analytics SDK and enable the capture of lifecycle
and network analytic data.

About this task

The MobileFirst Analytics API allows for the capturing of the following metrics.
v App lifecycle events - app usage rates, usage duration, app crash rates
v Network usage - breakdown of API call frequencies, network performance

metrics
v Users - users of the app that are identified by a supplied user ID
v Custom analytics - custom key/value pairs that are defined by the app

developer

The initialization of the analytics API must be written in native code, even in
Cordova apps.
v To capture app usage, you must register app lifecycle event listeners before the

event to which you are listening occurs.
v To use the file system or native language and device features, the API must be

initialized. If the API is used in a way that requires native device features (like
the file system), but was not initialized, the API call fails. This behavior is
especially true on Android.

Note: No listeners are required for the web apps.

To initialize the MobileFirst Analytics SDK and enable the capture of lifecycle and
network analytic data:
v On iOS, add the following code in your Application Delegate

application:didFinishLaunchingWithOptions method.
WLAnalytics *analytics = [WLAnalytics sharedInstance];
[analytics addDeviceEventListener:NETWORK];
[analytics addDeviceEventListener:LIFECYCLE];

v Similarly, on Android, add the following code in your Application subclass
onCreate method.
WLAnalytics.init(this);
WLAnalytics.addDeviceEventListener(DeviceEvent.NETWORK);
WLAnalytics.addDeviceEventListener(DeviceEvent.LIFECYCLE);

v For Cordova apps, the listener must be created in the native code. See
“MobileFirst Cordova plug-in initialization for analytics” on page 7-124 and
“MobileFirst Cordova plug-in initialization of analytics” on page 7-125.

v For web apps, no listeners are required. Analytics can be enabled and disabled
through the ibmmfpfanalytics.logger class.
ibmmfpfanalytics.logger.config({analyticsCapture: true});

Analytics and Logger 11-35

Tracking users:

To track individual users, use the setUserContext and unsetUserContext methods.

About this task

To track users, follow these steps.
v iOS

– Add the following code when the user logs in.
[[WLAnalytics sharedInstance] setUserContext:@"John Doe"];

– Add the following code when the user logs out.
[[WLAnalytics sharedInstance] unsetUserContext];

v Android

– Add the following code when the user logs in.
WLAnalytics.setUserContext("John Doe");

– Add the following code when the user logs out.
WLAnalytics.unsetUserContext();

v Cordova

Not supported.
v Web

– Add the following code when the user logs in.
ibmmfpfanalytics.setUserContext(user);

There is no unsetUserContext in the web API. The user session ends after 30
minutes of inactivity, unless another call is made to
ibmmfpfanalytics.setUserContext(user).

Capturing custom data:

You can instrument your app code to capture custom analytics.

About this task

An example demonstrates how to track page transitions within your app.
v On iOS, add the following code in the ViewController's viewDidLoad method.

NSArray *viewControllers = self.navigationController.viewControllers;
NSUInteger numViewControllers = viewControllers.count;
if (numViewControllers >= 2) {

UIViewController *previous = [viewControllers objectAtIndex:(numViewControllers - 2)];
NSDictionary *metadata = @{@"fromPage": previous.title, @"toPage": self.title};
[[WLAnalytics sharedInstance] log:@"page transition" withMetadata:metadata];

}

v On Android, add the following code in an Activity subclass onResume()
method.
String fromActivity = getIntent().getStringExtra("fromActivity");
JSONObject metadata = new JSONObject();
metadata.put("fromPage", fromActivity);
metadata.put("toPage", "This Page");
WLAnalytics.log("page transition", metadata);

v In JavaScript (Cordova), add the following code.
// before showing the element identified by ’setting’
$(document).on(’pagebeforeshow’, ’#setting’, function(e, obj) {

WL.Analytics.log(’page transition’, {

11-36 IBM MobileFirst Platform Foundation V8.0.0

’fromPage’: obj.prevPage[0].id,
’toPage’: obj.toPage[0].id

});
});

v For the web API, custom data is sent with the addEvent method.
ibmmfpfanalytics.addEvent({’Purchases’:’radio’});
ibmmfpfanalytics.addEvent({’src’:’App landing page’,’target’:’About page’});

Sending analytics
To see client-side analytic data in the MobileFirst Analytics Console, send analytics
to the MobileFirst Analytics Server by calling the send method.

Before you begin

Ensure that you enabled the capturing of relevant events. For more information,
see “Capturing analytics” on page 11-35.

About this task

Once events are captured by the client, send them periodically to the server.
Sending captured analytics to the server can be done explicitly or periodically. The
following example shows how to send analytics at 1-minute intervals. Sending
data at regular intervals ensures that you are seeing up-to-date analytic data in the
MobileFirst Analytics Console.
v iOS

outputclass="prettyprint">[NSTimer scheduledTimerWithTimeInterval:60
target:[WLAnalytics sharedInstance]
selector:@selector(send)
userInfo:nil
repeats:YES];

v Android
Timer timer = new Timer();
timer.schedule(new TimerTask() {

@Override
public void run() {

WLAnalytics.send();
}

}, 0, 60000);

v JavaScript (Cordova)
setInterval(function() {

WL.Analytics.send();
}, 60000);

v web
setInterval(function() {

ibmmfpfanalytics.send();
}, 60000);

Logger SDK
Learn about the Logger SDK.

It is often difficult to reproduce problems that might occur in the field. Replicating
the exact environment and device can be troublesome in these situations. It is
helpful to be able to retrieve debug logs from client devices as the problems occur
in the environment in which they happen. The MobileFirst client-side Logger API
allows developers to instrument their code at varying verbosities. These logs then
can be captured, and sent to the MobileFirst Analytics Console for further
inspection.

Analytics and Logger 11-37

From the client you can send logger requests to the MobileFirst Analytics Server at
any logging level. However, the server configuration controls what level of logging
requests are allowed. Requests sent below this threshold are ignored.

Logging levels need to be controlled to balance two needs: the need to collect
information and the need to limit the quantity of data to fit limited storage ability.

Note: For the web API the browser's local storage significantly limits the amount
of logs that can be stored before sending to the server. Therefore the developer
must either limit the amount of data sent to the logger, or send smaller data to the
server more frequently.

Enabling log capture
By default, log capture is enabled. Log capture saves logs to the client and can be
enabled or disabled programmatically. Logs are sent to the server with an explicit
send call, or with auto log

About this task

Logging can be enabled or disabled from the client.

Note: Enabling log capture at verbose levels can impact the consumption of the
device CPU, file system space, and the size of the payload when the client sends
logs over the network.
v iOS

To enable:
[OCLogger setCapture:YES];

To disable:
[OCLogger setCapture:NO];

v Android

To enable:
Logger.setCapture(true);

To disable:
Logger.setCapture(false);

v Cordova JavaScript

To enable:
WL.Logger.config({ capture: true });

To disable:
WL.Logger.config({ capture: false });

v web

To enable:
ibmmfpfanalytics.logger.enable(true);

To disable:
ibmmfpfanalytics.logger.enable(false);

Adjusting log verbosity
Seven log levels are available within the Logger API.

About this task

The logging levels from the most verbose to the least are as follows:
v TRACE - used for method entry and exit points

11-38 IBM MobileFirst Platform Foundation V8.0.0

v DEBUG - used for method result output
v LOG - used for class instantiation
v INFO - used for reporting initialization
v WARN - used to log deprecated usage warnings
v ERROR - used for unexpected exceptions
v FATAL - used for unrecoverable crashes or hangs

The client SDKs are configured at the FATAL verbosity by default, which means
little or no raw debug logs are output or captured. Adjust the verbosity
programmatically. Log verbosity can also be adjusted by setting a configuration
profile on the MobileFirst Operations Console, which must be retrieved explicitly
by your app. Log levels set programatically are valid for the entire app. Levels set
by the server are set per package. For more information, see “Fetching server
configuration profiles” on page 11-42.

Once logging level is set, either by setting the client or retrieving the server profile,
the client filters the logging messages it sends. If a message below the threshold is
explicitly sent, the client ignores it.

To set the verbosity level to DEBUG:
v iOS

[OCLogger setLevel:OCLogger_DEBUG];

v Android
Logger.setLevel(Logger.LEVEL.DEBUG);

v JavaScript (Cordova)
WL.Logger.config({ level: ’DEBUG’ });

v web

For the web SDK the default trace level cannot be changed from the client.

Sending captured logs
Send logs to the server according to your application's logic. Auto log send can
also be enabled to automatically send logs. If logs are not sent before the
maximum size is reached, the log file is then purged in favor of newer logs.

Before you begin
v Ensure that you enabled log capture. For more information, see “Enabling log

capture” on page 11-38.
v Ensure that the verbosity of logs that you want to see in the MobileFirst

Analytics Console matches the verbosity that is set on the client. See “Setting
Log Filters from the MobileFirst Operations Console” on page 11-24.

About this task

As an example to send logs on a 1-minute interval timer, follow these steps.

Note: Adopt the following pattern when you collect log data. Sending data on an
interval ensures that you are seeing your log data in near real-time in the
MobileFirst Analytics Console.
v iOS

Analytics and Logger 11-39

[NSTimer scheduledTimerWithTimeInterval:60
target:[OCLogger class]
selector:@selector(send)
userInfo:nil
repeats:YES];

v Android
Timer timer = new Timer();
timer.schedule(new TimerTask() {

@Override
public void run() {

Logger.send();
}

}, 0, 60000);

v JavaScript (Cordova)
setInterval(function() {

WL.Logger.send();
}, 60000);

v Web
setInterval(function() {

ibmmfpfanalytics.logger.send();
}, 60000);

To ensure that all captured logs are sent, consider one of the following strategies:
v Call the send method at a time interval.
v Call the send method from within the app lifecycle event callbacks.
v Increase the max file size of the persistent log buffer (in bytes):

– iOS
[OCLogger setMaxFileSize:150000];

– Android
Logger.setMaxFileSize(150000);

– JavaScript
WL.Logger.config({ maxFileSize: 150000 });

– web

The maximum file size for the web API is 5 mb and cannot be changed.

Auto log send
By default, auto log send is enabled. Each time a successful resource request is sent
to the server, the captured logs are also sent, with a 60-second minimum interval
between sends.

About this task

Auto log send can be enabled or disabled from the client. By default auto log send
is enabled.
v iOS

To enable:
[OCLogger setAutoSendLogs:YES];

To disable:
[OCLogger setAutoSendLogs:NO];

v Android

To enable:
Logger.setAutoSendLogs(true);

To disable:

11-40 IBM MobileFirst Platform Foundation V8.0.0

Logger.setAutoSendLogs(false);

v Cordova JavaScript

To enable:
WL.Logger.config({autoSendLogs: true});

To disable:
WL.Logger.config({autoSendLogs: false});

v web

To enable:
ibmmfpfanalytics.enableAutoSend(true);

To disable:
ibmmfpfanalytics.enableAutoSend(false);

Fine-tuning with the Logger API
The MobileFirst client-side SDK makes internal use of the Logger API. By default,
you are capturing log entries made by the SDK. To fine-tune log collection, use
logger instances with package names. You can also control which logging level is
captured by the analytics using server-side filters.

About this task

As an example to capture logs only where the level is ERROR for the myApp
package name, follow these steps.
v iOS

1. Use a logger instance with the myApp package name.
OCLogger *logger = [OCLogger getInstanceWithPackage:@"MyApp"];

2. Specify a filter to restrict log capture and log output to only the specified
level and package programmatically.
[OCLogger setFilters:@{@"MyApp": @(OCLogger_ERROR)}];

3. Optional: Control the filters remotely by following the steps in “Fetching
server configuration profiles” on page 11-42.

v Android

1. Use a logger instance with the myApp package name.
Logger logger = Logger.getInstance("MyApp");

2. Specify a filter to restrict log capture and log output to only the specified
level and package programmatically.
HashMap<String, LEVEL> filters = new HashMap<>();
filters.put("MyApp", LEVEL.ERROR);
Logger.setFilters(filters);

3. Optional: Control the filters remotely by following the steps in “Fetching
server configuration profiles” on page 11-42.

v JavaScript (Cordova)

1. Use a logger instance with the myApp package name.
var logger = WL.Logger.create({ pkg: ’MyApp’ });

2. Optional: Specify a filter to restrict log capture and log output to only the
specified level and package programmatically.
WL.Logger.config({

filters: {
’MyApp’: ’ERROR’

}
});

Analytics and Logger 11-41

3. Optional: Control the filters remotely by following the steps in “Fetching
server configuration profiles.”

v web

For the web SDK the level cannot be set by the client. All logging is sent to the
server until the client retrieves the server profile.

Fetching server configuration profiles
Logging level can be set by retrieving server configuration files.

About this task

Logging levels can be set by the client (see “Adjusting log verbosity” on page
11-38) or by retrieving configuration profiles from the server. From the MobileFirst
Operations Console, a log level can be set globally (all logger instances) or for a
specific package or packages. For the client to fetch the configuration overrides
that are set on the server, the updateConfigFromServer method must be called from
a place in the code that is regularly run, such as in the app lifecycle callbacks.

To call the updateConfigFromServer method, follow these steps.
v iOS

[OCLogger updateConfigFromServer];

v Android
Logger.updateConfigFromServer();

v Cordova (JavaScript)
WL.Logger.updateConfigFromServer();

v web (JavaScript)
ibmmfpfanalytics.logger.updateConfigFromServer();

What to do next

You can configure the client log levels from the MobileFirst Operations Console.
For more information, see “Setting Log Filters from the MobileFirst Operations
Console” on page 11-24.

Analytics workflows
Leverage MobileFirst Analytics to best serve your business needs. Once your goals
are identified collect the appropriate data using the analytics client SDK and build
reports using the MobileFirst Analytics Console.

These typical scenarios demonstrate methods of collecting and reporting analytics
data.

App usage analytics
Collect data and build reports about app usage.

Initializing your app to capture app usage
App usage measures the number of times a specific app is brought to the
foreground, and then sent to the background. To capture app usage in your mobile
app, the MobileFirst Analytics client SDK must be configured to listen for the app
lifecycle events.

11-42 IBM MobileFirst Platform Foundation V8.0.0

About this task

You can use the MobileFirst Analytics API to capture app usage. Make sure you
have first created a relevant device listener.
v On iOS, add the following code in your Application Delegate

application:didFinishLaunchingWithOptions method.
WLAnalytics *analytics = [WLAnalytics sharedInstance];
[analytics addDeviceEventListener:LIFECYCLE];

v Similarly, on Android, add the following code in your Application subclass
onCreate method.
WLAnalytics.init(this)
WLAnalytics.addDeviceEventListener(DeviceEvent.LIFECYCLE);

v For Cordova apps, the listener must be created in the native code. See
Initilization for Android Cordova apps and Initialization for iOS Cordova apps.

v For Web apps, no listeners are required. Analytics can be enabled and disabled
through the WLlogger class.
logger.config({analyticsCapture: true});

Default Usage and Devices charts
Default charts are displayed in the IBM MobileFirst Analytics Console.

In the Usage and Devices page of the Apps section in the IBM MobileFirst
Analytics Console, a number of default charts are provided to help you manage
your app usage.

Total Devices

The Total Devices chart shows the number of total devices.

Total App Sessions

The Total App Sessions chart shows the number of total app sessions. An app
session is recorded when an app is brought to the foreground of a device.

Active Users

The Active Users chart shows an interactive multi-line graph of the following data:
v Active Users - unique users for the displayed time frame.
v New Users - new users for the displayed time frame.

The default displayed time frame is one day with a data point for each hour. If
you change the displayed time frame to greater than one day, the data points
reflect each day. You can click the corresponding key in the legend to toggle
whether to display the line. By default, all keys are displayed, and you cannot
toggle all keys to not display any lines.

To see the most accurate data in the line graph, you must instrument your app
code to provide the userID by calling the setUserContext(WLAnalytics) API. If you
want to provide anonymity for the userID values, you must hash the value first. If
the userID is not provided, the ID of the device is used by default. If one device is
used by multiple users and the userID is not provided, the line graph does not
reflect accurate data because the ID of the device counts as one user.

Analytics and Logger 11-43

App Sessions

The App Sessions chart shows a bar graph of app sessions over time.

The following image shows a sample App Sessions chart.

For more information about how to populate this chart, see “Initializing your app
to capture app usage” on page 11-42.

App Usage

The App Usage chart shows a pie chart of the percentage of app sessions for each
app.

New Devices

The New Devices chart shows a bar graph of new devices over time.

Model Usage

The Model Usage chart shows a pie chart of the percentage of app sessions for
each device model.

Operating System Usage

The Operating System Usage chart shows a pie chart of the percentage of app
sessions for each device operating system.

Creating a custom chart for average session duration
The duration of an app session is a valuable metric to visualize. With any app, you
want to know the amount of time that users are spending on a particular session.

About this task

You can create a custom chart to view this type of information. To view average
session duration in a custom chart, follow these steps.

Procedure
1. Ensure that you are collecting app sessions as described in “Initializing your

app to capture app usage” on page 11-42.

11-44 IBM MobileFirst Platform Foundation V8.0.0

2. In the MobileFirst Analytics Console, click Create Chart in the Custom Charts
page of the Dashboard section.

3. Give your chart a title.
4. Select App Session for Event Type.
5. Select Bar Graph for Chart Type.
6. Click Next.
7. Select Timeline for X-Axis.
8. Select Average for Y-Axis.
9. Select Duration for Property.

10. Click Save.

Results

A bar graph is created that displays average app session duration over time. You
can enhance this chart by adding a threshold or chart filters. For more information,
see “Custom charts” on page 11-25.

Crash capture
Capture data about application crashes and create relevant reports.

MobileFirst Analytics includes data and reports about application crashes. This
data is collected automatically along with other lifecycle event data. The crash data
is collected by the client and is sent to the server once the application is again up
and running.

Initializing your app to capture crash data
An app crash is recorded when an unhandled exception occurs and causes the
program to be in an unrecoverable state. Before the app closes, the MobileFirst
Analytics SDK logs a crash event. This data is sent to the server with the next
logger send call.

About this task

To ensure that crash data is collected and included in the MobileFirst Analytics
Console reports, make sure the crash data is sent to the server.

Procedure
1. Ensure that you are collecting app lifecycle events as described in “Initializing

your app to capture app usage” on page 11-42.
2. The client logs must be sent once the app is running again, in order to get the

stacktrace that is associated with the crash.
v iOS

- (void)sendMFPAnalyticData {
[OCLogger send];
[[WLAnalytics sharedInstance] send];

}

// then elsewhere in the same implementation file:

[NSTimer scheduledTimerWithTimeInterval:60
target:self
selector:@selector(sendMFPAnalyticData)
userInfo:nil
repeats:YES]

Analytics and Logger 11-45

v Android
Timer timer = new Timer();
timer.schedule(new TimerTask() {

@Override
public void run() {
Logger.send();
WLAnalytics.send();

}
}, 0, 60000);

v Cordova
setInterval(function() {

WL.Logger.send();
WL.Analytics.send();

}, 60000)

v web
setInterval(function() {

ibmmfpfanalytics.logger.send();
}, 60000);

App crash monitoring
You can quickly see information about your app crashes in the Dashboard section
of the MobileFirst Analytics Console.

In the Overview page of the Dashboard section, the Crashes bar graph shows a
histogram of crashes over time.

The data can be shown in two ways:
v Display crash rate: crash rate over time
v Display total crashes: total crashes over time

Note: The Crashes chart queries against the MfpAppSession documents. You must
instrument your app to collect app uses and crashes for data to appear in the
charts. If MfpAppSession data is not collected, then MfpAppLog documents are
queried. In this case, the chart can count the number of crashes, but cannot
compute a crash rate because the number of app uses is unknown, which results in
the following limitation:
v The Crashes bar graph displays no data when Display Crash Rate is selected.

To instrument crash data, see “Initializing your app to capture crash data” on page
11-45.

App crash troubleshooting
You can view the Crashes page in the Applications section of the MobileFirst
Analytics Console to better administer your apps.

The Crash Overview table shows the following data columns:
v App: app name
v Crashes: total number of crashes for that app
v Total Uses: total number of times a user opens and closes that app
v Crash Rate: percentage of crashes per use

The Crashes bar graph is the same chart that is displayed in the Overview page of
the Dashboard section.

11-46 IBM MobileFirst Platform Foundation V8.0.0

Note: Both charts query against the MfpAppSession documents. You must
instrument your app to collect app uses and crashes for data to appear in the
charts. If MfpAppSession data is not collected, then MfpAppLog documents are
queried. In this case, the charts can count the number of crashes, but cannot
compute a crash rate because the number of app uses is unknown, which results in
the following limitations:
v The Crash Overview table has empty columns for Total Uses and Crash Rate.
v The Crashes bar graph displays no data when Display Crash Rate is selected.

To instrument crash data, see “Initializing your app to capture crash data” on page
11-45.

The Crash Summary table is sortable and includes the following data columns:
v Crashes

v Devices

v Last Crash

v App

v OS

v Message

You can click on the + icon next to any entry to display the Crash Details table,
which includes the following columns:
v Time Crashed

v App Version

v OS Version

v Device Model

v Device ID

v Download: link to download the logs that led up to the crash

You can expand any entry in the Crash Details table to get more details, including
a stacktrace.

Note: The data for the Crash Summary table is populated by querying the fatal
level client logs. If your app does not collect fatal client logs, no data is available.

Default charts for crashes
Default charts for crashes are displayed in the IBM MobileFirst Analytics Console.

In the Crashes page of the Apps section in the IBM MobileFirst Analytics Console,
a number of default charts are provided to help you manage your app crashes.

Crash Overview

The Crash Overview chart shows a table of an overview of crashes.

For more information about the Crash Overview table, see “App crash
troubleshooting” on page 11-46.

Crashes

The Crashes shows a bar graph histogram of crashes over time. You can display
the data by crash rate or total crashes. The Crashes bar graph is also in the
Crashes page of the Applications section.

Analytics and Logger 11-47

For more information about the Crashes bar graph, see “App crash monitoring” on
page 11-46.

Crash Summary

The Crash Summary chart shows a sortable table of a summary of crashes. You
can expand the individual crashes by clicking the + icon to view a Crash Details
table that includes more details about the crashes. In the Crash Details table, you
can click the > icon to view more details about the specific crash instance.

Custom analytics
Capture and visualize custom data.

Instrumenting your app to capture custom analytics
Custom analytics can be captured by using the WLAnalytics API. The MobileFirst
Analytics API provides a log method with which arbitrary key/value pairs can be
recorded and sent to the MobileFirst Analytics Server.

About this task

Custom analytics can include any data you collect. For example:
v Page flow/transitions
v Recording gestures
v Recording button clicks

As an example to collect page transitions, follow these steps.
v On iOS, add the following code in the ViewController's viewDidLoad method.

NSArray *viewControllers = self.navigationController.viewControllers;
NSUInteger numViewControllers = viewControllers.count;
if (numViewControllers >= 2) {

UIViewController *previous = [viewControllers objectAtIndex:(numViewControllers - 2)];
NSDictionary *metadata = @{@"fromPage": previous.title, @"toPage": self.title};
[[WLAnalytics sharedInstance] log:@"page transition" withMetadata:metadata];

}

v On Android, add the following code in an Activity subclass' onResume()
method.
String fromActivity = getIntent().getStringExtra("fromActivity");
JSONObject metadata = new JSONObject();
metadata.put("fromPage", fromActivity);
metadata.put("toPage", "This Page");
WLAnalytics.log("page transition", metadata);

v In JavaScript (Cordova), add the following code.
// before showing the element identified by ’setting’
$(document).on(’pagebeforeshow’, ’#setting’, function(e, obj) {

WL.Analytics.log(’page transition’, {
’fromPage’: obj.prevPage[0].id,
’toPage’: obj.toPage[0].id

});
});

v For the web API, custom data is sent by the addEvent method.
webAnalytics.addEvent({’Purchases’:’radio’});
webAnalytics.addEvent({’src’:’App landing page’,’target’:’About page’});

11-48 IBM MobileFirst Platform Foundation V8.0.0

What to do next

As with all analytic data that is collected from the mobile app, the send() method
must be called for the data to appear in the MobileFirst Analytics Console.

Visualizing custom analytics
Custom analytics can be visualized by creating custom charts in the MobileFirst
Analytics Console.

About this task

To visualize the page transitions with a flow chart, follow these steps.

Procedure
1. Ensure that you instrumented your app to capture custom analytics as

described in “Instrumenting your app to capture custom analytics” on page
11-48.

2. In the MobileFirst Analytics Console, click Create Chart in the Custom Charts
page of the Dashboard section.

3. Give your chart a title.
4. Select Custom Data for Event Type.
5. Select Flow Chart for Chart Type.
6. Click Next.
7. Select fromPage for Source.
8. Select toPage for Destination.
9. Select the page for which you want to visualize the page flow for Property.

10. Click Save.

Troubleshooting Analytics and Logger
Find information to help resolve analytics and logger problems that you might
encounter.

Quick Links
v “Why is there no data?”
v “Why is there crash data in the Crash Overview table, but nothing in the Crash

Summary table?” on page 11-50
v “Why is there no data in the Server Usage Flow graph or the Network Request

graph?” on page 11-50
v “Why is there no data for app sessions?” on page 11-50

Why is there no data?

Check the following possibilities.
v Verify that your apps are set to point to the MobileFirst Server, which forwards

the logs to the MobileFirst Analytics Server. Ensure that the following values are
set in the mfpclient.plist (iOS), mfpclient.properties (Android), or
config.xml (Cordova) files.
– protocol = http
– host = the IP address of your MobileFirst Server
– port = the HTTP port that is set in the server.xml file for reporting analytics

Analytics and Logger 11-49

– wlServerContext = /mfp/
v Ensure that your MobileFirst Server is pointing to your MobileFirst Analytics

Server.
– /analytics-service

– /analytics

v Check that you are calling the send method.
– iOS: [[WLAnalytics sharedInstance] send];
– Android: WLAnalytics.send();
– Cordova: WL.Analytics.send();

Why is there crash data in the Crash Overview table, but nothing
in the Crash Summary table?

Verify that your apps are sending logs after a crash. To be safe, send logs on app
start-up to ensure that any previously unsent information is reported.

Why is there no data in the Server Usage Flow graph or the
Network Request graph?

Configure your apps to collect analytics on the Network device event.
v For cross-platform apps that use Cordova, follow the iOS or Android guides, as

the configurations are the same as for native apps.
v To enable the capture of network analytic data in iOS, add the following code in

your Application Delegate application:didFinishLaunchingWithOptions method.
WLAnalytics *analytics = [WLAnalytics sharedInstance];
[analytics addDeviceEventListener:NETWORK];

v To enable the capture of network analytic data in Android, add the following
code in your Application subclass onCreate method.
WLAnalytics.init(this);
WLAnalytics.addDeviceEventListener(DeviceEvent.NETWORK);

Why is there no data for app sessions?

Configure your apps to collect analytics on the Lifecycle device event.
v For cross-platform apps that use Cordova, follow the iOS or Android guides, as

the configurations are the same as for native apps.
v To enable the capture of network analytic data in iOS, add the following code in

your Application Delegate application:didFinishLaunchingWithOptions method.
WLAnalytics *analytics = [WLAnalytics sharedInstance];
[analytics addDeviceEventListener:LIFECYCLE];

v To enable the capture of network analytic data in Android, add the following
code in your Application subclass onCreate method.
WLAnalytics.init(this);
WLAnalytics.addDeviceEventListener(DeviceEvent.LIFECYCLE);;

11-50 IBM MobileFirst Platform Foundation V8.0.0

Integrating with other IBM products

IBM MobileFirst Platform Foundation integrates with other IBM products.

You can find samples and documentation about such integration for developers
and administrators on the Product Integration page of the Developer Center
website for IBM MobileFirst Platform.

© Copyright IBM Corp. 2006, 2016 12-1

https://mobilefirstplatform.ibmcloud.com/tutorials/en/product-integration/8.0/

12-2 IBM MobileFirst Platform Foundation V8.0.0

Application Center

Learn about the Application Center: what it is for, the different components and
features, and how to use the console and the client.

The sale of mobile devices now exceeds that of personal computers. Consequently,
mobile applications become critical for businesses.

The Application Center is a tool to make sharing mobile applications within an
organization easier.

You can use the Application Center as an enterprise application store. With the
Application Center, you can target some mobile applications to particular groups
of users within the company.

A development team can also use the Application Center during the development
phase of an application to share applications with testers, designers, or executives
in the company. In such a scenario, it makes collaboration easier between all the
people who are involved in the development process.

Concept of Application Center
Application Center can be used as an Enterprise application store and is a means
of sharing information among different team members within a company.

The concept of Application Center is similar to the concept of the Apple public
App Store or the Android Market, except that it targets only private usage within a
company.

By using Application Center, users from the same company or organization
download applications to mobile phones or tablets from a single place that serves
as a repository of mobile applications.

Application Center targets mobile applications that are installed on the device
itself. Those applications can be native applications that are built by using the
device SDK or hybrid applications that mix native and web content. Application
Center does not target mobile web applications; such applications are delivered to
the mobile device web browser through a URL like a website.

In the current version, Application Center supports applications that are built for
the Google Android platform, the Apple iOS platform, the Windows Phone 8
platform, and the Windows 8 platform.

For Windows Phone, only the Windows Phone application package (.xap) file
format is currently supported, not the app package (.appx) file format (universal
app format). For Windows Store (Desktop applications), the app package (.appx)
file format is supported.

Windows Phone 7 and Windows RT, and BlackBerry OS are not supported by the
current version of the Application Center.

© Copyright IBM Corp. 2006, 2016 13-1

Application Center manages mobile applications; it supports any kind of Android,
iOS, Windows Phone 8, or Windows 8 application, including applications that are
built on top of the MobileFirst platform.

You can use the Application Center as part of the development process of an
application. A typical scenario of Application Center is a team building a mobile
application; the development team creates a new version of an Android, iOS,
Windows Phone, or Windows 8 application. The development team wants this new
version to be reviewed and tested by the extended team. A developer goes to
Application Center console and uploads the new version of the application to
Application Center. As part of this process, the developer can enter a description of
the application version. For example, the description could mention the elements
that the development team added or fixed from the previous version. The new
version of the application is then available to the other members of the team.

Another person, for example, a beta tester, can launch Application Center installer
application, the mobile client, to locate this new version of a mobile application in
the list of available applications and install it on his mobile device. After testing
the new version, the beta tester can rate the application and submit feedback. The
feedback is visible to the developer from the Application Center console.

Application Center is a convenient way to share mobile applications within a
company or a group; it is a means of sharing information among team members.

Specific platform requirements
Different operating systems impose specific requirements for deploying, installing,
or using applications on the appropriate mobile devices.

Android
The mobile device must be configured for installation from unknown
sources. The corresponding toggle can be found in the Android Settings.
See User Opt-in for apps from unknown sources for details.

In Application Center, applications have an internal and a commercial
version number. The internal version number is used to distinguish which
version is newer while the commercial version is only used as an
informative display string. For Android applications, the internal version is
the android:versionCode from the application manifest, and it must be an
integer.

iOS All applications that are managed through Application Center must be
packaged for “Ad Hoc Distribution”. With an iOS developer account, you
can share your application with up to 100 iOS devices. With an iOS
enterprise account, you can share your in-house application with an
unlimited number of iOS devices. See iOS Developer Program and iOS
Enterprise Program for details.

In Application Center, applications have an internal and a commercial
version number. The internal version number is used to distinguish which
version is newer while the commercial version is used only as an
informative display string. For iOS applications, the internal version is the
CFBundleVersion from the application manifest Info.plist. The version
number must have the following format: a, or a.b, or a.b.c, where a, b, c
are non-negative integers, and a is not 0.

Windows Phone 8
Applications are not installed from the Windows Store, but from

13-2 IBM MobileFirst Platform Foundation V8.0.0

http://developer.android.com/distribute/open.html#unknown-sources
http://developer.android.com/guide/topics/manifest/manifest-element.html#vcode
https://developer.apple.com/programs/ios/distribute.html
https://developer.apple.com/programs/ios/enterprise/
https://developer.apple.com/programs/ios/enterprise/

Application Center, which acts as what Microsoft documentation calls a
Company Hub. See Company app distribution for Windows Phone for
details.

To use a company hub, Windows Phone requires you to register a
company account with Microsoft and to sign all applications, including the
Application Center client, with the company certificate. Only signed
applications can be managed through Application Center.

You must enroll all mobile devices through an application enrollment
token that is associated with your company account.Application Center
helps you to enroll devices through facilities to distribute the application
enrollment token. See “Application enrollment tokens in Windows 8
Universal” on page 13-44 for details.

Application Center supports the distribution of applications as Windows
Phone application package (.xap) files for Microsoft Windows Phone 8.0
and Microsoft Windows Phone 8.1. With Microsoft Windows Phone 8.1,
Microsoft introduced a new universal format as app package (.appx) files
for Windows Phone. Currently, Application Center does not support the
distribution of app package (.appx) files for Microsoft Windows Phone 8.1,
but is limited to Windows Phone application package (.xap) files only.

In Application Center, applications have only one version number. The
version number is used to distinguish which version is newer. For
Windows Phone 8 applications, the version number is in the Version field
in the WMAppManifest.xml file. This version number must have the
following format: a.b.c.d where a, b, c, d are non-negative integers.

Windows 8
The Application Center mobile client is provided as a normal desktop
executable file (.exe). Use it to install on the device Windows Store
applications, which are packaged as .appx files.

Installing a file of type appx on your device without using Windows Store
is called sideloading an app. To sideload an app, you must comply with the
prerequisites in Prepare to sideload apps. The Windows 8.1 update
simplifies the prerequisites for sideloading. For more information, see
Sideloading store apps to Windows 8.1 devices.

Files of type .exe cannot be executed on ARM-based tablets, so
Application Center does not support Windows RT; only Windows 8 and
Windows 8.1 are supported.

The device user needs administrator rights on the device to execute the
Application Center client.

Application Center does not provide any predefined way of distributing
the mobile client.

In Application Center, applications have only one version number. The
version number is used to distinguish which version is newer. For
Windows 8 applications, the version number is in the Version field in the
AppxManifest.xml file. This version number must have the following
format: a.b.c.d, where a, b, c, d are non-negative integers.

General architecture
The Application Center is composed of these main elements: a server-side
component, a repository, an administration console, and a mobile client
application.

MobileFirst Application Center 13-3

http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj206943%28v=vs.105%29.aspx
http://technet.microsoft.com/fr-fr/library/dn613842.aspx
http://blogs.msdn.com/b/micham/archive/2014/05/30/sideloading-store-apps-to-windows-8-1-devices.aspx

Server-side component

The server-side component is a Java Enterprise application that must be deployed
in a web application server such as IBM WebSphere or Apache Tomcat.

The server-side component consists of an administration console and a mobile
application. This mobile application installs the mobile applications available to the
client-side component.

The web console and the installer application communicate through REST services
with the server component.

Several services compose the Application Center server-side component; for
example, a service that lists available applications, a service that delivers the
application binary files to the mobile device, or a service that registers feedback
and ratings.

Repository

A database that stores information such as which application is installed on which
devices, the feedback about applications, and the mobile application binary files.
The Application Center application is associated with the database when you
configure the Application Center for a particular web application server and a
supported database.

Administration console

A web console through which administrators can manage applications, user access
rights to install applications, user feedback about mobile applications, and details
about applications installed on devices. See “The Application Center console” on
page 13-18.

Mobile client application

You use the mobile client to install applications on a mobile device and to send
feedback about an application to the server. See “The mobile client” on page 13-51.

The following figure shows an overview of the architecture.

13-4 IBM MobileFirst Platform Foundation V8.0.0

From the Application Center console, you can take the following actions:
v Upload different versions of mobile applications.
v Remove unwanted applications.
v Control access to applications: Each application is associated with the list of

people who can install the application.
v View feedback that mobile users have sent about an application.
v Obtain information about applications installed on a device.
v Make an application inactive so that it is not visible in the available applications

for download.

From the mobile client, you can take the following actions:
v List available mobile applications.
v Install a new application on a device.
v Send feedback about an application.

The Application Center supports applications for Android, iOS, Windows Phone 8,
and Windows 8 devices. Therefore, the mobile client comes in separate versions for
Android, iOS, Windows Phone 8, and Windows 8.

The Android, iOS, and Windows Phone 8 mobile clients are built on the
MobileFirst platform.To learn how to configure the Application Center server-side
component on various Java application servers after the product is installed and
build MobileFirst applications for the Application Center client, see “Configuring
Application Center after installation” on page 6-233.

Preliminary information
To use the Application Center, you must configure security settings, start the web
application server where IBM MobileFirst Platform Foundation is installed, start
the Application Center console, and log in.

Figure 13-1. Architecture of the Application Center

MobileFirst Application Center 13-5

When you install IBM MobileFirst Platform Foundation, the Application Center is
automatically installed in the specified application server.

If you install the Application Center in WebSphere Application Server Liberty
profile, the server is created in installation-directory/server.

After the installation is complete, you must configure the security settings for the
applications. See “Configuring user authentication for Application Center” on page
6-233 or, if you are using LDAP authentication, “Managing users with LDAP” on
page 6-237.

Example: starting the server and the Application Center console
on Liberty profile
1. Start the Liberty server by using the server command that is in the

installation-directory/server/wlp/bin directory.
server start worklightServer

2. When the server is running, start the Application Center console by entering
this address in your browser: http://localhost:9080/appcenterconsole/

3. Log in. By default, two users are defined for the installation of the Application
Center on Apache Tomcat or WebSphere Application Server Liberty profile:
v demo with password demo
v appcenteradmin with password admin

For more information

To use the Application Center console, refer to “The Application Center console”
on page 13-18.

To install and run the mobile client on the following operating systems, see:
v Android: See “Installing the client on an Android mobile device” on page 13-51
v iOS operating system: See “Installing the client on an iOS mobile device” on

page 13-54.
v Windows Phone 8: See “Installing the client on Windows 8 Universal” on page

13-58.
v Windows 8: The mobile client for Windows 8 is not intended to be deployed in

Application Center for later distribution. See “Microsoft Windows 8: Building
the project” on page 13-11.

Preparations for using the mobile client
To use the mobile client to install apps on mobile devices, you must either generate
the app by using the provided Eclipse and Visual Studio projects or use the
version of the client provided for Android, iOS, or Windows 8 Universal, directly.

Prerequisites for building the Application Center installer

The Application Center comes with an Android, an iOS, and Windows 8 Universal
version of the client application that runs on the mobile device. This mobile
application that supports installation of applications on your mobile device is
called the mobile client. The mobile client is a MobileFirst mobile application.

The MobileFirst project IBMAppCenter contains the Android, the iOS, and the
Windows 8 Universal versions of the client.

13-6 IBM MobileFirst Platform Foundation V8.0.0

The Windows 8 Universal project is provided as a Visual Studio project located at
IBMApplicationCenterWindowsStore\AppCenterClientWindowsStore.csproj.

Prerequisites specific to the Android operating system

The Android version of the mobile client is included in the software delivery in the
form of an Android application package (.apk) file. The IBMApplicationCenter.apk
file is in the directory ApplicationCenter/installer. Push notifications are
disabled. If you want to enable push notifications, you must rebuild the .apk file.
See “Push notifications of application updates” on page 13-12 for more information
about push notifications in the Application Center.

To build the Android version, you must have the latest version of the Android
development tools.

Prerequisites specific to Apple iOS operating system

The iOS version for iPad and iPhone is not delivered as a compiled application.
The application must be created from the MobileFirst project named IBMAppCenter.
This project is also delivered as part of the distribution in the ApplicationCenter/
installer directory.

To build the iOS version, you must have the appropriate MobileFirst and Apple
software. The version of MobileFirst Studio must be the same as the version of
IBM MobileFirst Platform Server on which this documentation is based. The Apple
Xcode version is V6.1.

Note: For V8.0.0, use MobileFirst Studio 7.1. You can download MobileFirst Studio
from the Downloads page of the Developer Center website. Click the Previous
MobileFirst Platform Foundation releases tab for the download link. For
installation instructions, see Installing MobileFirst Studio in the IBM Knowledge
Center for 7.1.

Prerequisites specific to Microsoft Windows Phone operating
system

The Windows Phone version of the mobile client is included as an unsigned
Windows Phone application package (.xap) file in the software delivery. The
IBMApplicationCenterUnsigned.xap file is in the ApplicationCenter/installer
directory.

Important: The unsigned .xap file cannot be used directly. You must sign it
with your company certificate obtained from Symantec/Microsoft before you can
install it on a device.

Optional: If necessary, you can also build the Windows Phone version from
sources. For this purpose, you must have the latest version of Microsoft Visual
Studio.

Prerequisites specific to Microsoft Windows 8 operating system

The Windows 8 version of the mobile client is included as a .zip archive file. The
IBMApplicationCenterWindowsStore.zip file contains an executable file (.exe) and
its dependent Dynamic-Link Library (.dll) files. To use the content of this archive,
you download the archive to a location on you local drive and run the executable
file.

MobileFirst Application Center 13-7

https://mobilefirstplatform.ibmcloud.com/downloads/
https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.installconfig.doc/devenv/t_installing_ibm_worklight_studi.html

Optional: If necessary, you can also build the Windows 8 version from sources. For
this purpose, you must have the latest version of Microsoft Visual Studio.

Importing and building the project (Android, iOS, Windows
Phone)

You must import the IBMAppCenter project into MobileFirst Studio and then build
the project.

About this task

Follow the normal procedure to import a project into MobileFirst Studio.

Application Center requires MobileFirst Studio for importing and building the
IBMAppCenter project. MobileFirst Studio is not part of IBM MobileFirst Platform
Foundation, but if you purchased this product, you are entitled to the full
cross-platform version of the product as well.

Note: For V8.0.0, use MobileFirst Studio 7.1. You can download MobileFirst Studio
from the Downloads page of the Developer Center website. Click the Previous
MobileFirst Platform Foundation releases tab for the download link. For
installation instructions, see Installing MobileFirst Studio in the IBM Knowledge
Center for 7.1.

Procedure
1. Select File > Import.
2. Select General > Existing Project into Workspace.
3. On the next page, select Select root directory and locate the root of the

IBMAppCenter project.
4. Select IBMAppCenter project.
5. Select Copy projects into workspace. This selection creates a copy of the

project in your workspace. On UNIX systems, the IBMAppCenter project is read
only at the original location. so copying projects into workspace avoids
problems with file permissions.

6. Click Finish to import the IBMAppCenter project into MobileFirst Studio.

What to do next

Build the IBMAppCenter project. The MobileFirst project contains a single
application named AppCenter. Right-click the application and select Run as > Build
All Environments.

Android
MobileFirst Studio generates a native Android project in
IBMAppCenter/apps/AppCenter/android/native. A native Android
development tools (ADT) project is in the android/native folder. You can
compile and sign this project by using the ADT tools. This project requires
Android SDK level 16 to be installed, so that the resulting APK is
compatible with all Android versions 2.3 and later. If you choose a higher
level of the Android SDK when you build the project, the resulting APK
will not be compatible with Android version 2.3.

See the Android site for developers for more specific Android information
that affects the mobile client application.

13-8 IBM MobileFirst Platform Foundation V8.0.0

https://mobilefirstplatform.ibmcloud.com/downloads/
https://www.ibm.com/support/knowledgecenter/SSHS8R_7.1.0/com.ibm.worklight.installconfig.doc/devenv/t_installing_ibm_worklight_studi.html
https://developer.android.com/index.html

If you want to enable push notifications for application updates, you must
first configure the Application Center client properties. See “Configuring
push notifications for application updates” on page 13-13 for more
information.

iOS MobileFirst Studio generates a native iOS project in IBMAppCenter/apps/
AppCenter/iphone/native. The IBMAppCenterAppCenterIphone.xcodeproj
file is in the iphone/native folder. This file is the Xcode project that you
must compile and sign by using Xcode.

See The Apple developer site to learn more about how to sign the iOS
mobile client application. To sign an iOS application, you must change the
Bundle Identifier of the application to a bundle identifier that can be used
with the provisioning profile that you use. The value is defined in the
Xcode project settings as com.your_internet_domain_name.appcenter,
where your_internet_domain_name is the name of your internet domain.

If you want to enable push notifications for application updates, you must
first configure the Application Center client properties. See “Configuring
push notifications for application updates” on page 13-13 for more
information.

Windows Phone 8
MobileFirst Studio generates a native Windows Phone 8 project in
IBMAppCenter/apps/AppCenter/windowsphone8/native. The
AppCenter.csproj file is in the windowsphone8/native folder. This file is the
Visual Studio project that you must compile by using Visual Studio and
the Windows Phone 8.0 SDK.

The application is built with the Windows Phone 8.0 SDK so that it can
run on Windows Phone 8.0 and 8.1 devices. It is not built with the
Windows Phone 8.1 SDK, because the result would not run on earlier
Windows Phone 8.0 devices.

The installation of Visual Studio 2013 enables you to select the installation
of the Windows Phone 8.0 SDK in addition to the 8.1 SDK. The Windows
Phone 8.0 SDK is also available from Windows Phone SDK Archives.

See Windows Phone Dev Center to learn more about how to build and
sign the Windows Phone mobile client application.

Customizing features (for experts): Android, iOS, Windows
Phone

You can customize features by editing a central property file and manipulating
some other resources.

Purpose

To customize features: several features are controlled by a central property file
called config.json in the directory IBMAppCenter/apps/AppCenter/common/js/
appcenter/. If you want to change the default application behavior, you can adapt
this property file before you build the project.

MobileFirst Application Center 13-9

https://developer.apple.com/
https://dev.windows.com/en-us/develop/download-phone-sdk
http://dev.windowsphone.com/en-us

Properties

This file contains the properties shown in the following table.

Table 13-1. Properties in the config.js file

Property Description

url The hardcoded address of the Application Center
server. If this property is set, the address fields of the
Login view are not displayed.

defaultPort If the url property is null, this property prefills the
port field of the Login view on a phone. This is a
default value; the field can be edited by the user.

defaultContext If the url property is null, this property prefills the
context field of the Login view on a phone. This is a
default value; the field can be edited by the user.

ssl The default value of the SSL switch of the Login view.

allowDowngrade This property indicates whether installation of older
versions is authorized or not; an older version can be
installed only if the operating system and version
permit downgrade,

showPreviousVersions This property indicates whether the device user can
show the details of all the versions of applications or
only details of the latest version.

showInternalVersion This property indicates whether the internal version is
shown or not. If the value is false, the internal version
is shown only if no commercial version is set.

listItemRenderer This property can have one of these values:

v full, the default value; the application lists show
application name, rating, and latest version.

v simple: the application lists show the application
name only.

listAverageRating This property can have one of these values:

v latestVersion: the application lists show the average
rating of the latest version of the application.

v allVersions: the application lists show the average
rating of all versions of the application.

requestTimeout This property indicates the timeout in milliseconds for
requests to the Application Center server.

gcmProjectId The Google API project ID (project name =
com.ibm.appcenter), which is required for Android
push notifications; for example, 123456789012.

allowAppLinkReview This property indicates whether local reviews of
applications from external application stores can be
registered and browsed in the Application Center.
These local reviews are not visible in the external
application store. These reviews are stored in the
Application Center server.

Other resources

Other resources that are available are application icons, application name, splash
screen images, icons, and translatable resources of the application.

13-10 IBM MobileFirst Platform Foundation V8.0.0

Application icons
Android: The file named icon.png in the IBMAppCenter/apps/AppCenter/
android/native/res/drawabledensity directories; one directory exists for
each density.

iOS: Files named iconsize.png in the IBMAppCenter/apps/AppCenter/
iphone/native/Resources directory.

Windows Phone: Files named ApplicationIcon.png,
IconicTileSmallIcon.png, and IconicTileMediumIcon.png in the
IBMAppCenter/apps/AppCenter/windowsphone8/native directory.

Application name
Android: Edit the app_name property in the IBMAppCenter/apps/AppCenter/
android/native/res/values/strings.xml file.

iOS: Edit the CFBundleDisplayName key in the IBMAppCenter/apps/
AppCenter/iphone/native/IBMAppCenterAppCenterIphone-Info.plist file.

Windows Phone: Edit the Title attribute of the App entry in the
IBMAppCenter/apps/AppCenter/windowsphone8/native/Properties/
WMAppManifest.xml file.

Splash screen images
Android: Edit the file named splashimage.9.png in the
IBMAppCenter/apps/AppCenter/android/native/res/drawable/density
directories; one directory exists for each density. This file is a patch 9
image.

iOS: Files named Default-size.png in the IBMAppCenter/apps/AppCenter/
iphone/native/Resources directory.

Hybrid splash screen during auto login: /IBMAppCenter/apps/AppCenter/
common/js/idx/mobile/themes/common/idx/Launch.css

Windows Phone: Edit the file named SplashScreenImage.png in the
IBMAppCenter/apps/AppCenter/windowsphone8/native directory.

Icons (buttons, stars, and similar objects) of the application
IBMAppCenter/apps/AppCenter/common/css/images.

Translatable resources of the application
IBMAppCenter/apps/AppCenter/common/js/appcenter/nls/common.js.

Microsoft Windows 8: Building the project
Build the Application Center client project for Windows 8 in Microsoft Visual
Studio 2013.

About this task

You must build the client project in Microsoft Visual Studio 2013 before you can
distribute it.

Building the project is a prerequisite to distributing it to your users, but the
Windows 8 mobile client is not intended to be deployed on Application Center for
later distribution.

Procedure

To build the Windows 8 project:

MobileFirst Application Center 13-11

1. Open the Visual Studio project file called IBMApplicationCenterWindowsStore\
AppCenterClientWindowsStore.csproj in Microsoft Visual Studio 2013.

2. Perform a full build of the application.

What to do next

To distribute the mobile client to your Application Center users, you can later
generate an installer that will install the generated executable (.exe) file and its
dependent Dynamic-Link Library (.dll) files. Alternatively, you can provide these
files without including them in an installer.

Deploying the mobile client in Application Center
Deploy the different versions of the client application to Application Center.

The Windows 8 mobile client is not intended to be deployed in Application Center
for later distribution. You can choose to distribute the Windows 8 mobile client
either by providing users with the client .exe executable file and dynamic link
library .dll files directly packaged in an archive, or by creating an executable
installer for the Windows 8 mobile client.

The Android, iOS, and Windows Phone versions of the mobile client must be
deployed to the Application Center. To do so, you must upload the Android
application package (.apk) files, iOS application (.ipa) files, and Windows Phone
application (.xap) files, Web directory archive (.zip) files to the Application Center.

Follow the steps described in “Adding a mobile application” on page 13-22 to add
the mobile client application for Android, iOS, and Windows Phone. Make sure
that you select the Installer application property to indicate that the application
is an installer. Selecting this property enables mobile device users to install the
mobile client application easily over the air. To install the mobile client, see the
related task that corresponds to the version of the mobile client app determined by
the operating system.
Related tasks:
“Installing the client on an Android mobile device” on page 13-51
You can install the mobile client, or any signed application marked with the
installer flag, on your Android mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.
“Installing the client on an iOS mobile device” on page 13-54
You can install the mobile client, or any signed application marked with the
installer flag, on your iOS mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.
“Installing the client on Windows 8 Universal” on page 13-58
You can install the mobile client, or any signed application marked with the
installer flag, on Windows 8 Universal by entering the access URL in your browser,
entering your credentials, and completing the required steps. The company account
must be preinstalled on your mobile device.

Push notifications of application updates
You can configure the Application Center client so that push notifications are sent
to users when an update is available for an application in the store.

The Application Center administrator uses push notifications to send notification
automatically, to any iOS or Android device. Notifications are sent for updates to

13-12 IBM MobileFirst Platform Foundation V8.0.0

favorite applications and of new applications that are deployed on the Application
Center server and that are marked as recommended.

Push notification process

Push notifications are sent to a device if the following conditions are met:
v The device has Application Center installed and started it at least one time.
v The user has not disabled push notification for this device for the Application

Center in the Settings > Notifications interface.
v The user is allowed to install the application. Such permissions are controlled

through the Application Center access rights.
v The application is marked as recommended, or is marked as preferred for the

user who is using Application Center on this device. Those flags are set
automatically when the user installs an application through Application Center.
You can see which applications are marked as preferred by looking at the
Application Center Favorites tab on the device.

v The application is not installed on the device or a more recent version is
available than the version that is installed on the device.
The first time that the Application Center client starts on a device, the user
might be asked whether to accept incoming push notifications. This is the case
for iOS mobile devices. The push notification feature does not work when the
service is disabled on the mobile device.
iOS and modern Android operating system versions offer a way to switch this
service on or off on a per application basis.
Refer to your device vendor to learn how to configure your mobile device for
push notifications.

Related concepts:
“Marking or unmarking a favorite app” on page 13-85
Mark your favorite apps or unmark an app to have it removed from the favorites
list.
Related reference:
“Application properties” on page 13-27
Applications have their own sets of properties, which depend on the operating
system on the mobile device and cannot be edited. Applications also have a
common property and editable properties.

Configuring push notifications for application updates
Configure the Application Center services to communicate with Google or Apple
push notification servers.

Purpose

You must configure the credentials or certificates of Application Center services to
be able to communicate with third-party push notification servers.

Configuring the server scheduler of the Application Center

The server scheduler is a background service that automatically starts and stops
with the server. This scheduler is used to empty at regular intervals a stack that is
automatically filled by administrator actions with push update messages to be sent.
The default interval between sending two batches of push update messages is
twelve hours. If this default value does not suit you, you can modify it by using

MobileFirst Application Center 13-13

the ibm.appcenter.push.schedule.period.amount and
ibm.appcenter.push.schedule.period.unit server environment variables.

The value of ibm.appcenter.push.schedule.period.amount is an integer. The value
of ibm.appcenter.push.schedule.period.unit can be seconds, minutes, or hours. If
the unit is not specified, the amount is an interval that is expressed in hours. These
variables are used to define the elapsed time between two batches of push
messages.

Use JNDI properties to define these variables.

Important: In production, avoid setting the unit to seconds. The shorter the
elapsed time, the higher the load on the server. The unit expressed in seconds is
implemented only for testing and evaluation purposes. For example, when the
elapsed time is set to 10 seconds, push messages are sent almost immediately.

See “JNDI properties for Application Center” on page 6-261 for a complete list of
properties that you can set.

Example for Apache Tomcat server

Define these variables with JNDI properties in the server.xml file:
<Environment name="ibm.appcenter.push.schedule.period.unit" override="false" type="java.lang.String" value="hours"/>
<Environment name="ibm.appcenter.push.schedule.period.amount" override="false" type="java.lang.String" value="2"/>

WebSphere Application Server v8.5

To configure JNDI variables for WebSphere Application Server v8.5,
proceed as follows:
1. Click Applications > Application Types > Websphere enterprise

applications.
2. Select the Application Center Services application.
3. Click Web Module Properties > Environment entries for Web

modules.
4. Edit the string in the Value column.

WebSphere Application Server Liberty profile

For information about how to configure JNDI variables for WebSphere
Application Server Liberty profile, see Using JNDI binding for constants
from the server configuration files.

The remaining actions for setting up the push notification service depend on the
vendor of the device where the target application is installed.

Configuring the Application Center server for connection to
Google Cloud Messaging

Enable Google Cloud Messaging (GCM) for your application.

About this task

To enable Google Cloud Messaging (GCM) for an application, you must attach the
GCM services to a developer Google account with the Google API enabled. See
Getting Started with GCM for details.

13-14 IBM MobileFirst Platform Foundation V8.0.0

http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_dep_jndi.html
http://ibm.biz/knowctr#SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/twlp_dep_jndi.html
http://developer.android.com/google/gcm/gs.html

Important: The Application Center client without Google Cloud Messaging: The
Application Center relies on the availability of the Google Cloud Messaging (GCM)
API. This API might not be available on devices in some territories such as China.
To support those territories, you can build a version of the Application Center
client that does not depend on the GCM API. The push notification feature does
not work on that version of the Application Center client. See “Building a version
of the mobile client that does not depend on the GCM API” on page 13-18 for
details.

Procedure
1. If you do not have the appropriate Google account, go to Create a Google

account and create one for the Application Center client.
2. Register this account by using the Google API in the Google API console.

Registration creates a new default project that you can rename. The name you
give to this GCM project is not related to your Android application package
name. When the project is created, a GCM project ID is appended to the end of
the project URL. You should record this trailing number as your project ID for
future reference.

3. Enable the GCM service for your project; in the Google API console, click the
Services tab on the left and enable the “Google Cloud Messaging for Android”
service in the list of services.

4. Make sure that a Simple API Access Server key is available for your application
communications.
a. Click the API Access vertical tab on the left of the console.
b. Create a Simple API Access Server key or, if a default key is already created,

note the details of the default key. Two other kinds of key exist that are not
of interest at this time.

c. Save the Simple API Access Server key for future use in your application
communications through GCM. The key is about 40 characters long and is
referred to as the Google API key that you will need later on the server
side.

5. Enter the GCM project ID as a string resource property in the JavaScript project
of the Application Center Android client; in the IBMAppCenter/apps/AppCenter/
common/js/appcenter/config.json template file, modify this line with your
own value:

gcmProjectId:""// Google API project (project name = com.ibm.appcenter) ID needed for Android push.
// example : 123456789012

6. Register the Google API key as a JNDI property for the Application Center
server. The key name is : ibm.appcenter.gcm.signature.googleapikey. For
example, you can configure this key for an Apache Tomcat server as a JNDI
property in the server.xml file:

<Context docBase="AppCenterServices" path="/applicationcenter" reloadable="true" source="org.eclipse.jst.jee.server:AppCenterServices">
<Environment name="ibm.appcenter.gcm.signature.googleapikey" override="false" type="java.lang.String"
value="AIxaScCHg0VSGdgfOZKtzDJ44-oi0muUasMZvAs"/>
</Context>

The JNDI property must be defined in accordance with your application server
requirements.
See “JNDI properties for Application Center” on page 6-261 for a complete list
of properties that you can set.

Important:

v If you use GCM with earlier versions of Android, you might need to pair
your device with an existing Google account for GCM to work effectively.
See GCM service: “It uses an existing connection for Google services. For

MobileFirst Application Center 13-15

https://mail.google.com/mail/signup
https://mail.google.com/mail/signup
https://code.google.com/apis/console/
http://developer.android.com/google/gcm/gcm.html

pre-3.0 devices, this requires users to set up their Google account on their
mobile devices. A Google account is not a requirement on devices running
Android 4.0.4 or higher.”

v You must also ensure that your firewall accepts outgoing connections to
android.googleapis.com on port 443 for push notifications to work.

Configuring the Application Center server for connection to
Apple Push Notification Services

Configure your iOS project for Apple Push Notification Services (APNs).

Before you begin

Ensure that the following servers are accessible from Application Center server.

Sandbox servers

v gateway.sandbox.push.apple.com:2195
v feedback.sandbox.push.apple.com:2196

Production servers

v gateway.push.apple.com:2195
v feedback.push.apple.com:2196

About this task

You must be a registered Apple developer to successfully configure your iOS
project with Apple Push Notification Services (APNs). In the company, the
administrative role responsible for Apple development requests APNs enablement.
The response to this request should provide you with an APNs-enabled
provisioning profile for your iOS application bundle; that is, a string value that is
defined in the configuration page of your Xcode project. This provisioning profile
is used to generate a signature certificate file.

Two kinds of provisioning profile exist: development and production profiles,
which address development and production environments respectively.
Development profiles address Apple development APNs servers exclusively.
Production profiles address Apple production APNs servers exclusively. These
kinds of servers do not offer the same quality of service.

Note: Devices that are connected to a company wifi behind a firewall are only able
to receive push notifications if connection to the following type of address is not
blocked by the firewall.

x-courier.sandbox.push.apple.com:5223

Where x is an integer.

Procedure
1. Obtain the APNs-enabled provisioning profile for the Application Center Xcode

project. The result of your administrator's APNs enablement request is shown
as a list accessible from https://developer.apple.com/ios/my/bundles/
index.action. Each item in the list shows whether or not the profile has APNs
capabilities. When you have the profile, you can download and install it in the
Application Center client Xcode project directory by double-clicking the profile.
The profile is then automatically installed in your keystore and Xcode project.

13-16 IBM MobileFirst Platform Foundation V8.0.0

https://developer.apple.com/ios/my/bundles/index.action
https://developer.apple.com/ios/my/bundles/index.action

2. If you want to test or debug the Application Center on a device by launching it
directly from XCode, in the "Xcode Organizer" window, go to the "Provisioning
Profiles" section and install the profile on your mobile device.

3. Create a signature certificate used by the Application Center services to secure
communication with the APNs server. This server will use the certificate for
purposes of signing each and every push request to the APNs server. This
signature certificate is produced from your provisioning profile.
a. Open the "Keychain Access" utility and click the My Certificates category in

the left pane.
b. Find the certificate you want to install and disclose its contents. You see

both a certificate and a private key; for the Application Center, the
certificate line contains the Application Center application bundle
com.ibm.imf.AppCenter.

c. Select File > Export Items to select both the certificate and the key and
export them as a Personal Information Exchange (.p12) file. This .p12 file
contains the private key required when the secure handshaking protocol is
involved to communicate with the APNs server.

d. Copy the .p12 certificate to the computer responsible for running the
Application Center services and install it in the appropriate place. Both the
certificate file and its password are needed to create the secure tunneling
with the APNs server. You also require some information that indicates
whether a development certificate or a production certificate is in play. A
development provisioning profile produces a development certificate and a
production profile gives a production certificate. The Application Center
services web application uses JNDI properties to reference this secure data.
The examples in the table show how the JNDI properties are defined in the
server.xml file of the Apache Tomcat server.

Table 13-2. JNDI properties

JNDI Property Type and description Example for Apache Tomcat server

ibm.appcenter.apns.p12.
certificate.location

A string value that
defines the full path to
the .p12 certificate.

<Environment name="ibm.appcenter.apns.p12.certificate.
location"
override="false" type="java.lang.String" value=
"/Users/someUser/someDirectory/apache-tomcat/conf/
AppCenter_apns_dev_cert.p12"/>

ibm.appcenter.apns.p12.
certificate.password

A string value that
defines the password
needed to access the
certificate.

<Environment name="ibm.appcenter.apns.p12.certificate.
password" override="false"
type="java.lang.String"
value="this_is_a_secure_password"/>

ibm.appcenter.apns.p12.
certificate
.isDevelopmentCertificate

A boolean value
(identified as true or
false) that defines
whether or not the
provisioning profile
used to generate the
authentication certificate
was a development
certificate.

<Environment name="ibm.appcenter.apns.p12.certificate.
isDevelopmentCertificate"
override="false" type="java.lang.String"
value="true"/>

See “JNDI properties for Application Center” on page 6-261 for a complete
list of JNDI properties that you can set.

MobileFirst Application Center 13-17

Building a version of the mobile client that does not depend
on the GCM API

You can remove the dependency on Google Cloud Messaging (GCM) API from the
Android version of the client to comply with constraints in some territories. Push
notifications do not work on this version of the client.

About this task

The Application Center relies on the availability of the Google Cloud Messaging
(GCM) API. This API might not be available on devices in some territories such as
China. To support those territories, you can build a version of the Application
Center client that does not depend on the GCM API. The push notification feature
does not work on that version of the Application Center client.

Procedure
1. Check that push notifications are disabled by checking that the

IBMAppCenter/apps/AppCenter/common/js/appcenter/config.json file contains
this line: "gcmProjectId": "" ,.

2. Remove from two places in the IBMAppCenter/apps/AppCenter/android/
native/AndroidManifest.xml file all the lines that are located between these
comments: <!-- AppCenter Push configuration --> and <!-- end of
AppCenter Push configuration -->.

3. Delete the IBMAppCenter/apps/AppCenter/android/native/src/com/ibm/
appcenter/GCMIntenteService.java class.

4. In Eclipse, run "Build Android Environment" in the IBMAppCenter/apps/
AppCenter/android folder.

5. Delete the IBMAppCenter/apps/AppCenter/android/native/libs/gcm.jar file that
was created by the MobileFirst plug-in when you ran the previous "Build
Android Environment" command.

6. Refresh the newly created IBMAppCenterAppCenterAndroid project, so that the
removal of the GCM library is taken into account.

7. Build the .apk file of the Application Center.

What to do next

The gcm.jar library is automatically added by the MobileFirst Eclipse plug-in each
time that the Android environment is built. Therefore, this java archive file must be
deleted from the IBMAppCenter/apps/AppCenter/android/native/libs/ directory
each time that the MobileFirst Android build process is run. Otherwise, the
gcm.jar library is present in the resulting appcenter.apk file.

The Application Center console
With the Application Center console, you can manage the repository of the
Application Center and your applications.

The Application Center console is a web application to manage the repository of
the Application Center. The Application Center repository is the central location
where you store the mobile applications that can be installed on mobile devices.

Use the Application Center console to:
v Upload applications that are written for these operating systems: Android, iOS,

Windows 8 (Windows Store packages only), or Windows Phone 8.

13-18 IBM MobileFirst Platform Foundation V8.0.0

v Manage several different versions of mobile applications.
v Review the feedback of testers of mobile applications.
v Define the users who have the rights to list and install an application on the

mobile devices.
v Track which applications are installed on which devices.

Note:

Only users with the administrator role can log in to the Application Center
console.

Multicultural support: the user interface of the Application Center console has not
been translated.

Starting the Application Center console
You can start the Application Center with your web browser and log in if you have
the administrator role.

Procedure
1. Start a web browser session on your desktop.
2. Contact your system administrator to obtain the address and port of the server

where the Application Center is installed.
3. Enter the following URL: http://server/appcenterconsole

Where server is the address and port of the server where the Application Center
is installed.
http://localhost:9080/appcenterconsole

4. Log in to the Application Center console
Contact your system administrator to get your credentials so that you can log
in to the Application Center console.

MobileFirst Application Center 13-19

Note:

Only users with the administrator role can log in to the Application Center
console.

Troubleshooting a corrupted login page (Apache Tomcat)
You can recover from a corrupted login page of the Application Center console
when the Application Center is running in Apache Tomcat.

Symptom

When the Application Center is running in Apache Tomcat, the use of a wrong
user name or password might corrupt the login page of the Application Center
console.

When you try to log in to the console with an incorrect user name or an incorrect
password, you receive an error message. When you correct the user name or
password, instead of a successful login, you have one of the following errors; the
message depends on your web browser.
v The same error message as before
v The message The connection was reset
v The message The time allowed for login exceeded

Figure 13-2. Login of the Application Center console

13-20 IBM MobileFirst Platform Foundation V8.0.0

Cause

The behavior is linked to the management by Apache Tomcat of the
j_security_check servlet. This behavior is specific to Apache Tomcat and does not
occur in any of the WebSphere Application Server profiles.

Solution

The workaround is to click the refresh button of the browser to refresh the web
page after a login failure. Then, enter the correct credentials.

Troubleshooting a corrupted login page in Safari browsers
You can recover from a corrupted login page of the Application Center console
when you use the Safari browser.

Symptom

When the Application Center console is open in a Safari browser, you might
navigate away from the console. When you come back to the console, you might
see the login page. Even though you enter the correct login details, you see the
following message instead of a successful login:
HTTP Status 404 - appcenterconsole/j_security_check.

Cause

The behavior is linked to a caching problem in the Safari browser.

Solution

The workaround is to trigger a forced reload when you see the login page without
entered or autocompleted credentials. Here is how to trigger a forced reload:
v On a Mac computer, press Shift + the Refresh button.
v On an iPad or iPhone device: Double-click the refresh button or clean the cache

by closing Safari: you double-click the home button and then swipe Safari away.

Application Management
You can use Application Management to add new applications and versions and to
manage those applications.

The Application Center enables you to add new applications and versions and to
manage those applications.

Click Applications to access Application Management.

Application Center installed on WebSphere Application Server
Liberty profile or on Apache Tomcat

Installations of the Application Center on these application servers, during
installation of IBM MobileFirst Platform Foundation with the IBM Installation
Manager package, have two different users defined that you can use to get started.
v User with login demo and password demo
v User with login appcenteradmin and password admin

MobileFirst Application Center 13-21

WebSphere Application Server full profile

If you installed the Application Center on WebSphere Application Server full
profile, one user named appcenteradmin is created by default with the password
indicated by the installer.

Adding a mobile application
You can add applications to the repository on the server by using the Application
Center console. These applications can then be installed on mobile devices by
using the mobile client.

About this task

In the Applications view, you can add applications to Application Center. Initially
the list of applications is empty and you must upload an application file.
Application files are described in this procedure.

Procedure

To add an application to make it available for installation on mobile devices:
1. Click Add Application.
2. Click Upload.
3. Select the application file to upload to the Application Center repository.

Android

The application file name extension is .apk.

iOS

The application file name extension is .ipa for normal iOS applications.

Figure 13-3. Available applications

13-22 IBM MobileFirst Platform Foundation V8.0.0

Windows Phone 8
The application file name extension is .xap. The application must be
signed with a company account. The application enrollment token for
this company account must be made available to Windows Phone 8
devices before the application can be installed on the devices. See
“Application enrollment tokens in Windows 8 Universal” on page 13-44
for details.

Windows 8
The application is provided as a Windows Store package; the file
extension is .appx.

Windows Store .appx packages can depend on one or more Windows
component library app packages, also known as “framework”
packages. MobileFirst hybrid applications for Windows 8 depend on
the Microsoft.WinJS framework package. When you use Microsoft
Visual Studio to generate the application package, the dependencies
packages are also generated and packaged as separate .appx files. To
successfully install such applications by using the mobile client, you
must upload the application .appx package and any other dependency
package onto the Application Center server. When you upload a
dependency package, it appears as inactive in the Application Center
console. This behavior is expected, so that the framework package does
not appear as an installable application in the client. Later, when a user
installs an application, the mobile client checks whether the
dependency is already installed on the device. If the dependency
package is not installed, the client automatically retrieves the
dependency package from the Application Center server and installs it
on the device. For more information about dependencies, see
Dependencies in the Windows developer documentation about
packages and deployment of applications.

4. Click Next to access the properties to complete the definition of the application.
5. Complete the properties to define the application. See Application properties

for information about how to complete property values.
6. Click Finish.

MobileFirst Application Center 13-23

http://msdn.microsoft.com/library/windows/apps/hh464929.aspx#dependencies

Results

Adding an application from a public app store
Application Center supports adding to the catalog applications that are stored in
third-party application stores, such as Google play or Apple iTunes.

About this task

Applications from third-party app stores appear in the Application Center catalog
like any other application, but users are directed to the corresponding public app
store to install the application. You add an application from a public app store in

Figure 13-4. Application properties, adding an application

13-24 IBM MobileFirst Platform Foundation V8.0.0

the console, in the same place where you add an application that was created
within your own enterprise. See “Adding a mobile application” on page 13-22.

Note: Currently, the Application Center supports only Google Play and Apple
iTunes. Windows Phone Store and Windows Store are not yet supported.

Instead of the application executable file, you must provide a URL to the
third-party application store where the application is stored. To find the correct
application link more easily, the console provides direct links in the Add an
application page to the supported third-party application store websites.

The Google play store address is https://play.google.com/store/apps.

The Apple iTunes store address is https://linkmaker.itunes.apple.com/; use the
linkmaker site rather than the iTunes site, because you can search this site for all
kinds of iTunes items, including songs, podcasts, and other items that are
supported by Apple. Only selecting iOS applications provides you with compatible
links to create application links.

Procedure
1. Click the URL of the public app store that you want to browse.
2. Copy the URL of the application in the third-party app store to the Application

URL text field in the Add an application page of the Application Center
console.
v Google Play:

a. Select an application in the store.
b. Click the detail page of the application.
c. Copy the address bar URL.

v Apple iTunes:
a. When the list of items is returned in the search result, select the item that

you want.
b. At the bottom of the selected application, click Direct Link to open the

application details page.

Note: Do not copy the Direct Link to the Application Center. Direct
Link is a URL with redirection, you will need to get the URL it redirects
to.

c. Copy the address bar URL.
3. When the application link is in the Application URL text field of the console,

click Next to validate the creation of the application link.
v If the validation is unsuccessful, an error message is displayed in the Add an

application page. You can either try another link or cancel the attempt to
create the current link.

v If the validation is successful, this action displays the application properties.
You can then modify the application description in the application properties
before you move to the next step.

MobileFirst Application Center 13-25

https://play.google.com/store/apps
https://linkmaker.itunes.apple.com/

4. Click Done to create the application link.
This action makes the application available to the corresponding version of the
Application Center mobile client. A small link icon appears on the application
icon to show that this application is stored in a public app store and is different
from a binary app.

Related concepts:
Configuring WebSphere Application Server to support applications in public app
stores
Configure WebSphere Application Server full profile and Liberty profile before
access to public app stores through application links, because of the use of SSL
connections.
Related tasks:
Configuring WebSphere Application Server to support applications in Google play
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Google play.
Configuring WebSphere Application Server to support applications in Apple iTunes
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Apple iTunes.
“Installing applications through public app stores” on page 13-77
You can link from the mobile client to applications that are stored in supported
public app stores and install these applications on your compatible device by
following the normal procedure of the public app store.

Figure 13-5. Modified application description in application properties

Figure 13-6. Link to an application stored in Google play

13-26 IBM MobileFirst Platform Foundation V8.0.0

Application properties
Applications have their own sets of properties, which depend on the operating
system on the mobile device and cannot be edited. Applications also have a
common property and editable properties.

The values of the following fields are taken from the application and you cannot
edit them.
v Package.
v Internal Version.
v Commercial Version.
v Label.
v External URL; this property is supported for applications that run on Android,

iOS, and Windows Phone 8.

Properties of Android applications

For more information about the following properties, see the Android SDK
documentation.
v Package is the package name of the application; package attribute of the

manifest element in the manifest file of the application.
v Internal Version is the internal version identification of the application;

android:versionCode attribute of the manifest element in the manifest file of the
application.

v Commercial Version is the published version of the application.
v Label is the label of the application; android:label attribute of the application

element in the manifest file of the application.
v External URL is a URL that you can use to have the mobile client of the

Application Center started automatically in the Details view of the latest version
of the current application.

Properties of iOS applications

For more information about the following properties, see the iOS SDK
documentation.
v Package is the company identifier and the product name; CFBundleIdentifier

key.
v Internal Version is the build number of the application; CFBundleVersion key

of the application.
v Commercial Version is the published version of the application.
v Label is the label of the application; CFBundleDisplayName key of the application.
v External URL is a URL that you can use to have the mobile client of the

Application Center started automatically in the Details view of the latest version
of the current application.

Properties of Windows Phone 8 applications

For more information about the following properties, see the Windows Phone
documentation.
v Package is the product identifier of the application; ProductID attribute of the

App element in the manifest file of the application.

MobileFirst Application Center 13-27

v Internal Version is the version identification of the application; Version
attribute of the App element in the manifest file of the application.

v Commercial Version, like Internal Version, is the version of the application.
v Label is the title of the application; Title attribute of the App element in the

manifest file of the application.
v Vendor is the vendor who created the application; Publisher attribute of the App

element in the manifest file of the application.
v External URL is a URL that you can use to have the mobile client of the

Application Center started automatically in the Details view of the latest version
of the current application.

v Commercial Version, like Internal Version, is the version of the application.

Properties of Windows Store applications

For more information about the following properties, see the Windows Store
documentation about application development.
v Package is the product identifier of the application; Package name attribute in the

manifest file of the application.
v Internal Version is the version identification of the application; Version

attribute in the manifest file of the application.
v Commercial Version, like Internal Version, is the version of the application.
v Label is the title of the application; Package display name attribute in the

manifest file of the application.
v Vendor is the vendor who created the application; Publisher attribute in the

manifest file of the application.

Common property: Author

The Author field is read-only. It displays the username attribute of the user who
uploads the application.

Editable properties

You can edit the following fields:

Description
Use this field to describe the application to the mobile user.

Recommended
Select Recommended to indicate that you encourage users to install this
application. Recommended applications appear as a special list in the
mobile client.

Installer
For the Administrator only: This property indicates that the application is
used to install other applications on the mobile device and send feedback
on an application from the mobile device to the Application Center.
Usually only one application is qualified as Installer and is called the
mobile client. This application is documented in “The mobile client” on
page 13-51.

Active Select Active to indicate that an application can be installed on a mobile
device.

13-28 IBM MobileFirst Platform Foundation V8.0.0

v If you do not select Active, the mobile user does not see the application
in the list of available applications that is displayed on the device and
the application is inactive.

v In the list of available applications in Application Management, if Show
inactive is selected, the application is disabled. If Show inactive is not
selected, the application does not appear in the list of available
applications.

Ready for production
Select Ready for production to indicate that an application is ready to be
deployed in a production environment and is therefore suitable to be
managed by Tivoli Endpoint Manager through its application store.
Applications for which this property is selected are the only ones that are
flagged to Tivoli Endpoint Manager.

Editing application properties
You can edit the properties of an application in the list of uploaded applications.

Procedure

To edit the properties of an uploaded application:
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Click the version of the application to edit the properties: Application Details.
3. Edit any of the editable properties that you want. See “Application properties”

on page 13-27 for details about these properties. The name of the current
application file is shown after the properties.
Important: If you want to update the file, it must belong to the same package
and be the same version number. If either of these properties is not the same
you must go back to the application list and add the new version first.

4. Click OK to save your changes and return to Available Applications or Apply
to save and keep Application Details open.

MobileFirst Application Center 13-29

Figure 13-7. Application properties for editing

13-30 IBM MobileFirst Platform Foundation V8.0.0

Upgrading a mobile application in MobileFirst Server and the
Application Center

You can easily upgrade deployed mobile applications by using a combination of
MobileFirst Operations Console and the Application Center.

Before you begin

The mobile client of the Application Center must be installed on the mobile device.
The HelloWorld application must be installed on the mobile device and must
connect to MobileFirst Server when the application is running.

About this task

You can use this procedure to update Android, iOS, and Windows Phone
applications that have been deployed on MobileFirst Server and also in the
Application Center. In this task, the application HelloWorld version 1.0 is already
deployed on MobileFirst Server and in the Application Center.

Procedure

HelloWorld version 2.0 is released and you would like users of version 1.0 to
upgrade to the later version. To deploy the new version of the application:
1. Deploy HelloWorld 2.0 in the Application Center. See “Adding a mobile

application” on page 13-22.
2. From the Application Details page, copy the setting of the external URL.

3. When the external URL is copied to the clipboard, open the MobileFirst
Operations Console.

4. Change the access rule of HelloWorld version 1.0 to “Access Disabled”.
5. Paste the external URL into the URL field.
Running the client: When a mobile device connects to MobileFirst Server to try to
run HelloWorld version 1.0, the device user is requested to upgrade the version of

Figure 13-8. Copying the external URL from Application Details

MobileFirst Application Center 13-31

the application.

Figure 13-9. Remotely disabling an old version of an application

13-32 IBM MobileFirst Platform Foundation V8.0.0

6. Click Upgrade to open the Application Center client. When the login details are
correctly completed, you access the Details page of HelloWorld version 2.0
directly.

MobileFirst Application Center 13-33

Figure 13-10. Details of HelloWorld 2.0 in the Application Center client

13-34 IBM MobileFirst Platform Foundation V8.0.0

Downloading an application file
You can download the file of an application registered in the Application Center.

Procedure
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Tap the version of the application under Application Details.
3. Tap the file name in the "Application File" section.

Viewing application reviews
In the Application Center console, you can see reviews about mobile application
versions sent by users.

About this task

Users of mobile applications can write a review, which includes a rating and a
comment, and submit the review through the Application Center client. Reviews
are available in the Application Center console and the client. Individual reviews
are always associated with a particular version of an application.

Procedure

To view reviews from mobile users or testers about an application version:
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Select the version of the application.
3. In the menu, select Reviews.

MobileFirst Application Center 13-35

The rating is an average of the ratings in all recorded reviews. It consists of one
to five stars, where one star represents the lowest level of appreciation and five
stars represent the highest level of appreciation. The client cannot send a zero
star rating.
The average rating gives an indication of how the application satisfies the
intended use of the application.

4. Click the two arrow heads

to expand the comment that is part of the
review and to view the details of the mobile device where the review is
generated.
For example, the comment can give the reason for submitting the review, such
as failure to install.
If you want to delete the review, click the trash can icon to the right of the
review that you want to delete.

User and group management
You can use users and groups to define who has access to some features of the
Application Center, such as installing applications on mobile devices.

Purpose

Use users and groups in the definition of access control lists (ACL).

Figure 13-11. Reviews of application versions

13-36 IBM MobileFirst Platform Foundation V8.0.0

Managing registered users

To manage registered users, click the Users/Groups tab and select Registered
users. You obtain a list of registered users of the Application Center that includes:
v Mobile client users
v Console users
v Local group members
v Members of an access control list

If the Application Center is connected to an LDAP repository, you cannot edit the
user display names. If the repository is not LDAP, you can change a user display
name by selecting it and editing it.

To register new users, click Register User, enter the login name and the display
name, and click OK.

To unregister a user, click the trash icon next to the user name.

Unregistering a user from the Application Center has the effect of:

XX
v Removing feedback given by the user
v Removing the user from the access control lists
v Removing the user from local groups

Note:

When you unregister a user, the user is not removed from the application server or
the LDAP repository.

Figure 13-12. List of registered users of the Application Center

MobileFirst Application Center 13-37

Managing local groups

To manage local groups, click the Users/Groups tab and select User group.

To create a local group, click Create group. Enter the name of the new group and
click OK.

If the Application Center is connected to an LDAP repository, the search includes
local groups as well as the groups defined in the LDAP repository. If the repository
is not LDAP, only local groups are available to the search.

To delete a group, click the trash icon next to the group name. The group is also
removed from the access control lists.

To add or remove members of a group, click the Edit members link of the group.

Figure 13-13. Local user groups

13-38 IBM MobileFirst Platform Foundation V8.0.0

To add a new member, search for the user by entering the user display name,
select the user, and click Add.

If the Application Center is connected to an LDAP repository, the search for the
user is performed in the LDAP repository. If the repository is not LDAP, the search
is performed in the list of registered users.

To remove a member from a group, click the cross icon to the right of the user
name.

Access control
You can decide whether installation of an application on mobile devices is open to
any users or whether you want to restrict the ability to install an application.

Installation of applications on a mobile device can be limited to specific users or
available to any users.

Access control is defined at the application level and not at the version level.

By default, after an application is uploaded, any user has the right to install the
application on a mobile device.

The current access control for an application is displayed in Available Applications
for each application. The unrestricted or restricted access status for installation is
shown as a link to the page for editing access control.

Installation rights are only about the installation of the application on the mobile
device. If access control is not enabled, everybody has access to the application.

Managing access control
You can add or remove access for users or groups to install an application on
mobile devices.

Figure 13-14. Managing group membership

MobileFirst Application Center 13-39

Procedure

You can edit access control:
1. In Application Management under Available Applications, click the unrestricted

or restricted state of Installation of an application.

2. Select Access control enabled to enable access control.
3. Add users or groups to the access list.

To add a single user or group, enter a name, select the entry in the matching
entries found, and click Add.
If the Application Center is connected to an LDAP repository, you can search
for users and groups in the repository as well as locally defined groups. If the
repository is not LDAP, you can search only local groups and registered users.
Local groups are exclusively defined in the Users/Groups tab. When you use
the Liberty profile federated registry, you can only search for users by using the
login name; the result is limited to a maximum of 15 users and 15 groups
(instead of 50 users and 50 groups).
To register a user at the same time as you add the user to the access list, enter
the name and click Add. Then you must specify the login name and the
display name of the user.
To add all the users of an application, click Add users from application and
select the appropriate application.

13-40 IBM MobileFirst Platform Foundation V8.0.0

To remove access from a user or group, click the cross icon on the right of the
name.

Device Management
You can see the devices that connected to the Application Center from the
Application Center mobile client and their properties.

Device Management shows under the Registered Devices the list of devices that
have connected to the Application Center at least once from the Application Center
mobile client.

Figure 13-15. Adding users to the access list

MobileFirst Application Center 13-41

Device properties

Click a device in the list of devices to view the properties of the device or the
applications installed on that device.

Figure 13-16. The device list

13-42 IBM MobileFirst Platform Foundation V8.0.0

Select Properties to view the device properties.

Name

The name of the device. You can edit this property.

Note: on iOS, the user can define this name in the settings of the device in
Settings > General > Information > Name. The same name is displayed on
iTunes.

User Name

The name of the first user who logged into the device.

Manufacturer

The manufacturer of the device.

Model

The model identifier.

Operating System

Figure 13-17. Device properties

MobileFirst Application Center 13-43

The operating system of the mobile device.

Unique identifier

The unique identifier of the mobile device.

If you edit the device name, click OK to save the name and return to Registered
Devices or Apply to save and keep Edit Device Properties open.

Applications installed on device

Select Applications installed on device to list all the applications installed on the
device.

Application enrollment tokens in Windows 8 Universal
The Windows 8 Universal operating system requires users to enroll each device
with the company before users can install company applications on their devices.
One way to enroll devices is by using an application enrollment token.

Purpose

Application enrollment tokens enable you to install company applications on a
Windows 8 Universal device. You must first install the enrollment token for a
specified company on the device to enroll the device with the company. Then, you
can install applications that are created and signed by the corresponding company.

The Application Center simplifies the delivery of the enrollment token. In your role
of administrator of the Application Center catalog, you can manage the enrollment

Figure 13-18. Applications installed on a device

13-44 IBM MobileFirst Platform Foundation V8.0.0

tokens from the Application Center console. Once the enrollment tokens are
declared in the Application Center console, they are available for Application
Center users to enroll their devices.

The enrollment tokens interface available from the Application Center console in
the Settings view enables you to manage application enrollment tokens for
Windows 8 Universal by registering, updating, or deleting them.

Managing application enrollment tokens

In your role of administrator of the Application Center, you can access the list of
registered tokens by clicking the gear icon in the screen header to display
Application Center Settings. Then, select Enrollment Tokens to display the list of
registered tokens.

To enroll a device, the device user must upload and install the token file before
installing the Application Center mobile client. The mobile client is also a company
application. Therefore, the device must be enrolled before the mobile client can be
installed.

The registered tokens are available through the bootstrap page at
http://hostname:portnumber/applicationcenter/installers.html, where hostname
is the host name of the server hosting the Application Center and portnumber is the
corresponding port number.

To register a token in the Application Center console, click Upload Token and
select a token file. The token file extension is aetx.

To update the certificate subject of a token, select the token name in the list, change
the value, and click OK.

To delete a token, click the trash can icon on the right side of the token in the list.

Signing out of the Application Center console
For security purposes, you must sign out of the console when you have finished
your administrative tasks.

Purpose

To log out of the secure sign-on to the Application Center console.

To sign out of the Application Center console, click Sign out next to the Welcome
message that is displayed in the banner of every page.

Command-line tool for uploading or deleting an application
To deploy applications to the Application Center through a build process, use the
command-line tool.

You can upload an application to the Application Center by using the web
interface of the Application Center console. You can also upload a new application
by using a command-line tool.

This is particularly useful when you want to incorporate the deployment of an
application to the Application Center into a build process. This tool is located at:

MobileFirst Application Center 13-45

installDir/ApplicationCenter/tools/applicationcenterdeploytool.jar

The tool can be used for application files with extension APK or IPA. It can be
used stand alone or as an ant task.

The tools directory contains all the files required to support the use of the tool.
v applicationcenterdeploytool.jar: the upload tool.
v json4j.jar: the library for the JSON format required by the upload tool.
v build.xml: a sample ant script that you can use to upload a single file or a

sequence of files to the Application Center.
v acdeploytool.sh and acdeploytool.bat: Simple scripts to call java with

applicationcenterdeploytool.jar.

Using the stand-alone tool to upload an application
To upload an application, call the stand-alone tool from the command line.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload [options] [files]

You can pass any of the available options in the command line.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

-d description The description of the
application to be uploaded.

-l label The fallback label. Normally
the label is taken from the
application descriptor stored
in the file to be uploaded. If
the application descriptor
does not contain a label, the
fallback label is used.

-isActive true or false The application is stored in
the Application Center as an
active or inactive application.

-isInstaller true or false The application is stored in
the Application Center with
the “installer” flag set
appropriately.

13-46 IBM MobileFirst Platform Foundation V8.0.0

Option Content indicated by Description

-isReadyForProduction true or false The application is stored in
the Application Center with
the “ready-for-production”
flag set appropriately.

-isRecommended true or false The application is stored in
the Application Center with
the “recommended” flag set
appropriately.

-e Shows the full exception
stack trace on failure.

-f Force uploading of
applications, even if they
exist already.

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

The files parameter can specify files of type Android application package
(.apk) files or iOS application (.ipa) files.
In this example user demo has the password demopassword. Use this command
line.

java com.ibm.appcenter.Upload -s http://localhost:9080 -c applicationcenter -u demo -p demopassword -f app1.ipa app2.ipa

Using the stand-alone tool to delete an application
To delete an application from the Application Center, call the stand-alone tool from
the command line.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload -delete [options] [files or applications]

You can pass any of the available options in the command line.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

MobileFirst Application Center 13-47

Option Content indicated by Description

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

You can specify files or the application package, operating system, and version.
If files are specified, the package, operating system and version are determined
from the file and the corresponding application is deleted from the Application
Center. If applications are specified, they must have one of the following
formats:
package@os@version: This exact version is deleted from the Application Center.
The version part must specify the “internal version”, not the “commercial
version” of the application.
package@os: All versions of this application are deleted from the Application
Center.
package: All versions of all operating systems of this application are deleted
from the Application Center.

Example

In this example, user demo has the password demopassword. Use this command line
to delete the iOS application demo.HelloWorld with internal version 3.0.

java com.ibm.appcenter.Upload -delete -s http://localhost:9080 -c applicationcenter -u demo -p demopassword demo.HelloWorld@iOS@3.0

Using the stand-alone tool to clear the LDAP cache
Use the stand-alone tool to clear the LDAP cache and make changes to LDAP users
and groups visible immediately in the Application Center.

About this task

When the Application Center is configured with LDAP, changes to users and
groups on the LDAP server become visible to the Application Center after a delay.
The Application Center maintains a cache of LDAP data and the changes only
become visible after the cache expires. By default, the delay is 24 hours. If you do
not want to wait for this delay to expire after changes to users or groups, you can
call the stand-alone tool from the command line to clear the cache of LDAP data.
By using the stand-alone tool to clear the cache, the changes become visible
immediately.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload -clearLdapCache [options]

You can pass any of the available options in the command line.

13-48 IBM MobileFirst Platform Foundation V8.0.0

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

Example

In this example, user demo has the password demopassword.
java com.ibm.appcenter.Upload -clearLdapCache -s http://localhost:9080 -c applicationcenter -u demo -p demopassword

Ant task for uploading or deleting an application
You can use the upload and delete tools as an Ant task and use the Ant task in
your own Ant script.

Apache Ant is required to run these tasks. The minimum supported version of
Apache Ant is listed in “System requirements” on page 2-7.

For convenience, Apache Ant 1.8.4 is included in IBM MobileFirst Platform Server.
In the product_install_dir/shortcuts/ directory, the following scripts are
provided:
v ant for UNIX / Linux
v ant.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

When you use the upload tool as an Ant task, the classname value of the upload
Ant task is com.ibm.appcenter.ant.UploadApps. The classname value of the delete
Ant task is com.ibm.appcenter.ant.DeleteApps.

Parameters of
Ant task Description

serverPath To connect to the Application Center. The default value is
http://localhost:9080.

context The context of the Application Center. The default value is
/applicationcenter.

loginUser The user name with permissions to upload an application.

MobileFirst Application Center 13-49

Parameters of
Ant task Description

loginPass The password of the user with permissions to upload an application.

forceOverwrite If this parameter is set to true, the Ant task attempts to overwrite
applications in the Application Center when it uploads an application
that is already present. This parameter is available only in the upload
Ant task.

file The .apk or .ipa file to be uploaded to the Application Center or to be
deleted from the Application Center. This parameter has no default
value.

fileset To upload or delete multiple files.

application The package name of the application; this parameter is available only in
the delete Ant task.

os The operating system of the application. (For example, Android or iOS.)
This parameter is available only in the delete Ant task.

version The internal version of the application; this parameter is available only
in the delete Ant task. Do not use the commercial version here, because
the commercial version is unsuitable to identify the version exactly.

Example

You can find an extended example in the ApplicationCenter/tools/build.xml
directory.

The following example shows how to use the Ant task in your own Ant script.
<?xml version="1.0" encoding="UTF-8"?>
<project name="PureMeapAntDeployTask" basedir="." default="upload.AllApps">

<property name="install.dir" value="../../" />
<property name="workspace.root" value="../../" />

<!-- Server Properties -->
<property name="server.path" value="http://localhost:9080/" />
<property name="context.path" value="applicationcenter" />
<property name="upload.file" value="" />
<property name="force" value="true" />

<!-- Authentication Properties -->
<property name="login.user" value="appcenteradmin" />
<property name="login.pass" value="admin" />
<path id="classpath.run">
<fileset dir="${install.dir}/ApplicationCenter/tools/">

<include name="applicationcenterdeploytool.jar" />
<include name="json4j.jar"/>

</fileset>
</path>
<target name="upload.init">
<taskdef name="uploadapps" classname="com.ibm.appcenter.ant.UploadApps">

<classpath refid="classpath.run" />
</taskdef>

</target>
<target name="upload.App" description="Uploads a single application" depends="upload.init">
<uploadapps serverPath="${server.path}"

context="${context.path}"
loginUser="${login.user}"
loginPass="${login.pass}"
forceOverwrite="${force}"
file="${upload.file}" />

</target>
<target name="upload.AllApps" description="Uploads all found APK and IPA files" depends="upload.init">
<uploadapps serverPath="${server.path}"

loginUser="${login.user}"
loginPass="${login.pass}"
forceOverwrite="${force}"
context="${context.path}" >
<fileset dir="${workspace.root}">
<include name="**/*.ipa" />

</fileset>
</uploadapps>

</target>
</project>

13-50 IBM MobileFirst Platform Foundation V8.0.0

This sample Ant script is in the tools directory. You can use it to upload a single
application to the Application Center.
ant upload.App -Dupload.file=sample.ipa

You can also use it to upload all applications that are found in a directory
hierarchy.
ant upload.AllApps -Dworkspace.root=myDirectory

Properties of the sample Ant script

Property Comment

install.dir Defaults to ../../

server.path The default value is http://localhost:9080.

context.path The default value is applicationcenter.

upload.file This property has no default value. It must include the exact file path.

workspace.root Defaults to ../../

login.user The default value is appcenteradmin.

login.pass The default value is admin.

force The default value is true.

To specify these parameters by command line when you call Ant, add -D before
the property name. For example:
-Dserver.path=http://localhost:8888/

The mobile client
You can install applications on your mobile device with the Application Center
mobile client.

The Application Center mobile client is the application that runs on your Android,
iOS, Windows Phone, or Windows device. Only Windows Phone 8 is supported by
the current version of the Application Center. You use the mobile client to list the
catalog of available applications in the Application Center. You can install these
applications on your device. The mobile client is sometimes referred to as the
Application Center installer. This application must be present on your device if
you want to install on your device applications from your private application
repository.

Prerequisites

Your system administrator must give you a user name and password before you
can download and install the mobile client. The user name and password are
required whenever you start the mobile client on your device. For Windows Store
applications, the user name and password are required for the mobile client only at
run time. For security reasons, do not disseminate these credentials. These
credentials are the same credentials used to log in to the Application Center
console.

Installing the client on an Android mobile device
You can install the mobile client, or any signed application marked with the
installer flag, on your Android mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

MobileFirst Application Center 13-51

Procedure
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/applicationcenter/installers.html

Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the
client on a mobile device: http://hostname:portnumber/applicationcenter/
inst.html. The page of this URL works better with some older or some
nonstandard mobile web browsers. If the page installers.html does not
work on your mobile device, you can use inst.html. This page is provided in
English only and is not translated into other languages.
If you try to open the page with HTTPS and use self-signed certificates, older
Android browsers cannot open the page. In this case, you must use a non
self-signed certificate or use another browser on the Android device, such as
Firefox, Chrome, or Opera. In Android 4 and later, the Android browser
displays a security warning about the SSL certificate, but lets you proceed to
the website after confirmation that you consent to an unsafe connection.

3. Enter your user name and password.
See Prerequisites in “The mobile client” on page 13-51.
When your user name and password are validated, the list of compatible
installer applications for your device is displayed in the browser. Normally,
only one application, the mobile client, appears in this list.

4. If the web server uses a self-signed CA certificate, install the certificate at least
once on the device.
The Application Center administrator should provide the certificate; see
“Managing and installing self-signed CA certificates in an Application Center
test environment” on page 6-260 for details.
a. Tap the SSL-Certificate tab and select the certificate.
b. Tap Install. You must only perform this action once for the device. You can

verify whether the certificate is installed by looking in Settings > Security
> Trusted Credentials > User on the device. This view shows the SSL
certificates that the user has installed on the device. If the self-signed CA
certificate is not installed on the device, the Android operating system
prevents you from downloading the mobile client in the following steps.

Before you can see the mobile client in the list of available applications, the
Application Center administrator must install the mobile client application. The
administrator uploads the mobile client to the Application Center and sets the
Installer property to true. See “Application properties” on page 13-27.

Figure 13-19. List of available mobile client applications to install

13-52 IBM MobileFirst Platform Foundation V8.0.0

5. Select an item in the list to display the application details.
Typically, these details include the application name and its version number.

6. Tap Install Now to download the mobile client.
On newer Android devices, a question might request permission for Chrome
to access media files on the device. Select YES. A warning about potential
harmful files might be displayed. Select the option to keep the APK file
anyway.

7. Launch the Android Download applications.
8. Select the Application Center client installer.

You can see the access granted to the application when you choose to install
it.

Figure 13-20. Application details

MobileFirst Application Center 13-53

9. Select Install to install the mobile client.
10. When the application is installed, select Open to open the mobile client or

Done to close the Downloads application.

Results

The APK file might fail for one of the following reasons:
v The device does not have enough free memory.
v The SSL certificate of the server is not known to the device.

The first time that you install an app through the Downloads application, you
might receive a request to confirm whether Google should regularly check the
device activity for security problems. You can accept or decline according to your
preference. The Application Center client is unaffected by your choice.

The installation might be blocked for one of the following reasons:
v The device does not permit installation from unknown sources. Go to Settings >

Security on the device and enable Unknown sources (Allow installation from
unknown sources).

v The device has the same app already installed, but it was signed by a different
certificate. In this case, you must remove the app before you install it on the
device with another signed certificate.

Installing the client on an iOS mobile device
You can install the mobile client, or any signed application marked with the
installer flag, on your iOS mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

Figure 13-21. Installation of the mobile client on Android

13-54 IBM MobileFirst Platform Foundation V8.0.0

Before you begin

Important: To install applications on iOS devices, you must first configure the
Application Center server with SSL. See “Configuring Secure Sockets Layer (SSL)”
on page 6-257.

▌For experts▐

The ibm.appcenter.ios.plist.onetimeurl JNDI property of the IBM Application
Center Services controls whether One-Time URLs are used when the mobile client
is installed on an iOS mobile device. Set this property to false for maximal
security. When you set this property to false, users must enter their credentials
several times when they install the mobile client: once when they select the client
and once when they install the client.

When you set the property to true, users enter their credentials only once. A
temporary download URL with a cryptographic hash is generated when the user
enters the credentials. This temporary download URL is valid for 1 hour and does
not require further authentication. This solution is a compromise between security
and ergonomy.

The steps to specify the ibm.appcenter.ios.plist.onetimeurl JNDI property are
similar to the steps for the ibm.appcenter.proxy.host property. See “Defining the
endpoint of the application resources” on page 6-252.

Procedure

Installing the mobile client on an iOS device is similar to installing it on Android,
but with some differences. The installer is automatically started directly after
download. Your user name and password credentials are requested for almost all
the installation steps.
1. Start the browser on your mobile device.
2. Enter the following access URL in the address field: http://

hostname:portnumber/applicationcenter/installers.html

Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the
client on a mobile device: http://hostname:portnumber/applicationcenter/
inst.html. The page of this URL works better with some older or some
nonstandard mobile web browsers. If the page installers.html does not
work on your mobile device, you can use inst.html. The page is provided in
English only and is not translated into other languages.
If you open the page with HTTPS and use self-signed certificates, the browser
displays a security warning about the SSL certificate, but you can proceed to
the website after confirmation that you consent to an unsafe connection.

3. Enter your user name and password.
See the prerequisites in “The mobile client” on page 13-51.
When your user name and password are validated, the list of compatible
installer applications for your device is displayed in the browser. Normally,
only one application, the mobile client, appears in this list.
If you open the page with https:

MobileFirst Application Center 13-55

v If the web server uses a real SSL certificate that is provided by a trusted
certificate authority, proceed to step 5.

v If the web server uses a self-signed CA certificate, proceed to step 4.
4. If the web server uses a self-signed CA certificate, install the certificate at least

once on the device.
The Application Center administrator provides the certificate. See “Managing
and installing self-signed CA certificates in an Application Center test
environment” on page 6-260 for details.
a. Tap the SSL-Certificate tab and select the certificate.
b. Tap Install. You do this only once for the device. You can verify whether

the certificate is installed by looking in Settings > General > Profiles on
the device. This view shows the SSL certificates that the user installed on
the device. If the self-signed CA certificate is not installed on the device,
the iOS operating system prevents you from downloading the mobile
client in the following steps.
Before you can see the mobile client in the list of available applications,
the Application Center administrator must install the mobile client
application. The administrator uploads the mobile client to the Application
Center and sets the Installer property to true. See “Application
properties” on page 13-27.

5. Tap the Installers tab and select an item in the list to display the application
details.

6. Tap Install to download the mobile client.
7. Enter your credentials to authorize the downloader transaction.
8. To authorize the download, tap Install.

13-56 IBM MobileFirst Platform Foundation V8.0.0

9. Enter your credentials to authorize the installation.
10. Close the browser.

The app icon appears on the home screen and you can watch the download
progress on the home screen.

Results

Note: Installing an application on a device requires a provisioning profile that
enables the application to be installed on the selected device. If you accidentally
try to install an application that is not valid for your device, some versions of iOS
might try to install the application in an endless loop without ever succeeding or
indicating any error. The application icon that shows the progress of the
installation appears on the home screen, but, because of the endless loop, it is
difficult to delete this application icon to stop the endless loop. A workaround is to
put the device into Airplane mode. In this mode, the endless loop is stopped and
you can delete the application icon by following the normal steps to delete apps on
iOS devices.

The installation might be blocked for one of the following reasons:
v The provisioning profile of the application is not valid for the device. The

application must be signed with a different provisioning profile.

Figure 13-22. Confirm app to be installed

MobileFirst Application Center 13-57

v The device has no access to Apple servers to confirm the validity of the
provisioning profile.

v The SSL certificate of the server is not known to the device.

What to do next

After the mobile client is installed on the device, you can open it.

In general, iOS applications can be installed on the device only if they are signed
with a provisioning profile. See “Importing and building the project (Android, iOS,
Windows Phone)” on page 13-8.

Since iOS 9, when a company application is opened, depending on the type of the
provisioning profile, an Untrusted Enterprise Developer message might display.
This message explains that the provisioning profile is not yet trusted on this
device. In this case, the application does not open, unless trust is established for
this provisioning profile. Establishing trust must be done only once per
provisioning profile.

To establish trust for a provisioning profile after the application is installed:

Until iOS 9.1

1. Go to Settings > General > Profiles.
Under the Enterprise apps heading, you see the provisioning profile of
the app.

2. Tap on the profile and confirm the trust.

Since iOS 9.2

1. Go to Settings > General > Profiles > Device Management or Profiles
& Device Management.
Under the Enterprise apps heading, you see the provisioning profile of
the app.

2. Tap on the profile and confirm the trust.

After the trust is confirmed, no application that uses that provisioning profile
shows the Untrusted Enterprise Developer message. For more information, see the
Apple web site at https://support.apple.com/en-us/HT204460.

Installing the client on Windows 8 Universal
You can install the mobile client, or any signed application marked with the
installer flag, on Windows 8 Universal by entering the access URL in your browser,
entering your credentials, and completing the required steps. The company account
must be preinstalled on your mobile device.

Before you begin

Before you can install apps published by your company, you must add the
company account to your mobile device. You must download an application
enrollment token (AET) to your Windows Phone device. This AET must already be
present on the IBM MobileFirst Platform Server. It is uploaded to the MobileFirst
Server by using the Application Center console. See “Application enrollment
tokens in Windows 8 Universal” on page 13-44 for details.

13-58 IBM MobileFirst Platform Foundation V8.0.0

https://support.apple.com/en-us/HT204460

Procedure
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/applicationcenter/installers.html.
Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the
client on a mobile device: http://hostname:portnumber/applicationcenter/
inst.html. The page of this URL works better with some older or some
nonstandard mobile web browsers. If the page installers.html does not
work on your mobile device, you can use inst.html. This page is provided in
English only and is not translated into other languages.

3. Enter your credentials to authorize access to the server.
On the lower part of the screen, a toolbar contains an Installers tab and a
Tokens tab.

4. Tap Tokens and select an application enrollment token in the list of available
tokens to display the token details.

Figure 13-23. Preparing to install tokens and applications on a Windows Phone device

MobileFirst Application Center 13-59

5. Tap Add to download the application enrollment token.
6. Tap Add to add the company account.

Windows Phone 8 does not provide any feedback about adding the company
account.

7. Tap the Back icon to return to the details of application enrollment tokens.

Figure 13-24. AET details on a Windows Phone device

Figure 13-25. Adding a company account in Windows 8 Universal device

13-60 IBM MobileFirst Platform Foundation V8.0.0

8. Tap Installers and select the mobile client application in the list of available
applications. The application details are displayed.

9. Tap Install to download the selected application.

10. Tap Install to install the application.

Windows 8 Universal does not provide any feedback about installing the
application.

Tip: When you install a company application on a device, the device must
connect to the Microsoft server to verify the application signature. Sometimes,
the Microsoft server does not respond. In this case, you can try the installation
again a few minutes later. See “Installing an application on a Windows Phone
device” on page 13-70 for the possible error messages.

Results

When the installation is finished, the mobile client application should be available
in your applications list in Windows Phone.

The Login view
In the Login view, you can access the fields that are required to connect to the
server to view the list of applications available for your device.

Use the Login view to enter your credentials to connect to the Application Center
server to view the list of applications that are available for your device.

The Login view presents all the mandatory fields for the information that is
required to connect to the server.

When the application is started, the Login page is displayed. The login credentials
are required to connect to the server.

Figure 13-26. The application selected to download on a Windows Phone device

Figure 13-27. Installing the downloaded application on a Windows Phone device

MobileFirst Application Center 13-61

On iOS devices, the credentials are saved in the keychain. After you successfully
log in to the Application Center server, when you later start the application, the
login page is not displayed and the previous credentials are used. If login fails, the
login view is displayed.

User name and password
Enter your credentials for access to the server. They are the same user
name and password as the ones that were granted by your system
administrator for downloading and installing the mobile client.

Application Center server address
The Application Center server address is composed of the following
elements:
v Host name or IP address.
v Port, which is optional if the default port is used.
v Context, which is optional if the Application Center is installed at the

root of the server.

On a phone, a field is available for each part of the address.

On a tablet, a single field that contains a preformatted example address is
displayed. Use it as a model for entering the correct server address to
avoid formatting errors. See “Preparations for using the mobile client” on
page 13-6 for information on filling parts of the address in advance, or
hardcode the address and hide the associated fields.

Secure Socket Layer (SSL)
SSL is mandatory on iOS devices. Therefore, this option is not displayed in
the login view.

On the other supported operating systems, select SSL to turn on the SSL
protocol for communications over the network. If you tap this field again
when SSL is selected, SSL switches off.

SSL selection is available for cases where the Application Center server is
configured to run over an SSL connection. Selecting SSL when the server is
not configured to handle an SSL layer prevents you from connecting to the
server. Your system administrator can inform you whether the Application
Center runs over an SSL connection.

Connecting to the server

To connect to the server:
1. Enter your user name and password.
2. Enter your Application Center server address.
3. If your configuration of the Application Center runs over the SSL protocol,

select SSL.
4. Tap Log in to connect to the server.

If this login is successful, the user name and server address are saved to fill the
fields when you start the client afterwards.

Views in the Application Center client
The client provides views that are adapted to the various tasks that you want to
perform.

13-62 IBM MobileFirst Platform Foundation V8.0.0

After a successful login, you can choose among these views.

Use these views to communicate with a server to send or retrieve information
about applications or to manage the applications that are located on your device.

The Windows 8 client home screen displays up to six applications in each category.
On the Windows 8 client, if you want the full list of applications in a category,
click the title of the category.

Here are descriptions of the different views.

Catalog

This view shows the applications that can be installed on a device.

Favorites

This view shows the list of applications that you marked as favorites.

Updates

This view shows all applications that you marked as favorite apps and that have a
later version available in Application Center than the version, if any, installed on
the device.

Figure 13-28. Views in the client application (Android, iOS, and Windows Phone operating systems)

Figure 13-29. Client home screen on Windows 8

MobileFirst Application Center 13-63

When you first start the mobile client, it opens the Login view for you to enter
your user name, password, and the address of the Application Center server. This
information is mandatory.

Displays on different device types

The layout of the views is specific to the Android, iOS, Windows Phone, or
Windows 8 environment, even though the common functions that you can perform
in the views are the same for all operating systems. Different device types might
have different page displays. On the phone, a list is displayed. On a tablet, a grid
of applications is used.

Figure 13-30. Catalog view on a phone

13-64 IBM MobileFirst Platform Foundation V8.0.0

Features of the views

On an Android or iOS tablet, you can sort the lists by tapping one of the sort
criteria.

On a Windows Phone, Android, or iOS phone, sort criteria are available through
the sort button.

On the Windows 8 client, you can sort the list of applications within a category. To
sort the applications, select from the list of sort criteria in the Sort By field.

Applications that are marked as favorites are indicated by a star that is superposed
on the application icon.

The average rating of the latest version of an application is shown by using a
number of stars and the number of ratings received. See “Preparations for using
the mobile client” on page 13-6 for how to show the rating of all versions of the
application instead of the latest version only.

Tapping an application in the list opens the Details view of the latest installed
version of this application.

To refresh the view, tap the refresh button:

or, on Windows 8,

.

To return to the login page:

v In Android, iOS, and Windows Phone applications, tap the logout button.
v In the Windows 8 version of the client, tap the logout button.

Figure 13-31. Catalog view on a tablet

MobileFirst Application Center 13-65

The Details view

Tapping an application in the Catalog, Favorites, or Updates view opens the
Details view where you can see details of the application properties. Details of the
application version are displayed in this view.

On Android, iOS, and Windows Phone clients, the following details of the
application version are displayed:
v The name of the application.
v Commercial version: the published version of the application.
v Internal version: on Android, the internal version identification of the

application; on iOS, the build number of the application. See “Application
properties” on page 13-27 for technical details about this property on all
operating systems.

v Update date.
v Approximate size of the application file.
v Rating of the version and number of ratings received.
v Description of the application.

On Windows 8 client the following details of the application version are displayed:
v Application name.
v Version.
v Vendor name.
v Update date.
v Rating of the version and the number of ratings received.
v Existing reviews of either the current version or of all the versions of the current

application.

You can take the following actions in this view.
v Install, upgrade, downgrade, or uninstall an application version.
v Cancel the current operation in progress (if available).
v Rate the application version if it is installed on the device.
v List the reviews of this version or of all versions of the application.
v Show details of a previous version.
v Mark or unmark the application as a favorite app.
v Refresh the view with the latest changes from the Application Center server.

Installing an application on an Android device
From the Details view, you can install an application on your Android device.

About this task

In the Details view, if a previous version of the application is not installed, you
can install this application version on your Android device.

13-66 IBM MobileFirst Platform Foundation V8.0.0

Procedure
1. In the Details view, tap Install.

The application is downloaded. You can tap Cancel in the Details view at any
time during the download to cancel the download. (The Cancel button appears
only during the installation steps.) If you let the download complete, you will
see the rights that are granted to the application.

2. Tap Install to confirm installation of the application or Cancel to cancel
installation..
Depending on the action taken, the application is installed or not. When the
application is successfully installed, it is also marked as a favorite app.

Figure 13-32. Details view of an app version shown on your Android device

Figure 13-33. Application rights on your Android device

MobileFirst Application Center 13-67

If you selected Cancel, in the application rights confirmation panel, you can tap
Cancel in the Details view at any time to notify the application that the
installation has been canceled. The Cancel button appears in the Details view
only during the installation steps.

Installing an application on an iOS device
From the Details view, you can install an application version on your iOS mobile
device.

About this task

Important: To install applications on iOS devices, you must first configure the
Application Center server with SSL. See “Configuring Secure Sockets Layer (SSL)”
on page 6-257.

Procedure
1. In the Details view, tap Install. You are requested to confirm the download and

installation of the application version.
2. Tap Install to confirm download and installation of the application version or

Cancel to cancel the installation.

Figure 13-34. Details view of an app version shown on your iOS device

13-68 IBM MobileFirst Platform Foundation V8.0.0

Depending on the action that is taken, the application is installed or not. When
the application is successfully installed, it is also marked as a favorite app.
Installing an application on a device requires a provisioning profile that enables
the application to be installed on the selected device. If you accidentally try to
install an application that is not valid for your device, iOS 6 (deprecated) or
earlier gives an error message.

Results

Unlike the Android client, after the installation is finished, the Install button in the
Details view does not change its label to Uninstall. In iOS, no Uninstall button is
available. It is only possible to uninstall applications through the home screen.

Some versions of iOS 7 might try to install the application in an endless loop
without ever succeeding or indicating any error. The application icon that shows
the progress of the installation appears on the home screen, but, because of the
endless loop, it is difficult to delete this application icon to stop the endless loop. A
workaround is to put the device into Airplane mode. In this mode, the endless
loop is stopped and you can delete the application icon by following the normal
steps to delete apps on iOS devices.

Figure 13-35. Canceling application installation on your iOS device

MobileFirst Application Center 13-69

What to do next

After the application is installed on the device, you can open it.

In general, iOS applications can be installed on the device only if they are signed
with a provisioning profile. See “Importing and building the project (Android, iOS,
Windows Phone)” on page 13-8.

Since iOS 9, when a company application is opened, depending on the type of the
provisioning profile, an Untrusted Enterprise Developer message might display.
This message explains that the provisioning profile is not yet trusted on this
device. In this case, the application does not open, unless trust is established for
this provisioning profile. Establishing trust must be done only once per
provisioning profile.

To establish trust for a provisioning profile after the application is installed:

Until iOS 9.1

1. Go to Settings > General > Profiles.
Under the Enterprise apps heading, you see the provisioning profile of
the app.

2. Tap on the profile and confirm the trust.

Since iOS 9.2

1. Go to Settings > General > Profiles > Device Management or Profiles
& Device Management.
Under the Enterprise apps heading, you see the provisioning profile of
the app.

2. Tap on the profile and confirm the trust.

After the trust is confirmed, no application that uses that provisioning profile
shows the Untrusted Enterprise Developer message. For more information, see the
Apple web site at https://support.apple.com/en-us/HT204460.

Installing an application on a Windows Phone device
From the Details view, you can install a company application on your Windows
phone device.

About this task

The Details view of the selected application displays information about the
application that you want to install.

Figure 13-36. Details view of a version of a company application for installation on a Windows Phone device

13-70 IBM MobileFirst Platform Foundation V8.0.0

https://support.apple.com/en-us/HT204460

Procedure
1. In the Details view, tap Install. The application is downloaded and installed.

You can tap Cancel at any time during the downloading of the application to
cancel the activity. Cancel appears only during the downloading step of the
installation process.
At the beginning of the installation process, you are requested to confirm
whether you want to add the company application to the applications installed
on your mobile device.

2. Tap Install to confirm installation of the application or Cancel to cancel the
installation.
The application is marked as a favorite app.

Tip: When you install a company application on a device, the device must
connect to the Microsoft server to verify the application signature. Sometimes,
the Microsoft server does not respond. In this case, you can try the installation
again a few minutes later.
The possible error messages are:
v There's a problem with this company app. Contact your company's

support person for help.

You are probably using an unsigned Windows Phone application package
(.xap) file. You must sign application package (.xap) files before using them
in the Application Center. This message might also occur if the Microsoft
server does not respond and the signature of the company application cannot
be validated. In this case, try the installation again a few minutes later.

v Before you install this app, you need to add ... company account.

The Windows Phone application package (.xap) file is signed, but the device
is not enrolled for company applications. You must first install on the device
the application enrollment token of the company.

v We haven't been able to contact the company account to make sure you
can install this app. ...

Either the company account is expired or blocked, or the Microsoft server is
temporarily not responding. Make sure that your device is connected to the
internet and connected to the Microsoft server, and try again.

Note: If a device is registered with several company accounts, the Windows
Phone operating system might display the wrong company account in the
message Would you like to install application from company name?. This
message is outside the control of the Application Center. This situation is a
display problem only and does not affect the functionality.

Figure 13-37. Confirming or canceling installation of a company application on a Windows Phone device

MobileFirst Application Center 13-71

Results

Depending on the action that you take, the application is installed or not.

Tip: The install process will not work if the PFX certificate used to code sign the
application package (.xap) file of the application that you want to install has
expired. Windows Phone operating system returns an error with HRESULT
0x81030110. When you renew your PFX certificate, you must code sign again with
this new certificate all the deployed applications that you have in your Application
Center catalog.

When you renew your PFX code-signing certificate, you must also renew the
enrollment token and deploy it on the Application Center console. Devices must
also be re-enrolled to the company account with this new token. Users of devices
enrolled with an expired token cannot install any applications.

In Windows Phone 8.1, if the Application Center client is not code signed (for
example, when you debug it in Visual Studio), you cannot install any application
by using this unsigned client. In this case, the Windows Phone operating system
returns an error with HRESULT 0x800703F0. Before installing applications in
Windows Phone 8.1, you must code sign the application package (.xap) file of the
client.

Installing a Windows Store application on a Windows device
Use sideloading to install Windows Store apps through Application Center.

Before you begin

You must check that your configuration satisfies the application sideloading
prerequisites that are described in Prepare to Sideload Apps.

The device user needs administrator rights on the device to execute the
Application Center client.

About this task

Installing APPX packages through Application Center is done by a process called
sideloading. As part of Windows 8.1 Update, sideloading is enabled for all
Windows 8.1 Pro devices that are part of an Active Directory domain, which
matches the current behavior of Windows 8.1 Enterprise. If you use either of those
product versions and the device is part of an Active Directory domain, you have
no concerns about sideloading keys or activating sideloading.

When you develop a Windows Store application, Microsoft Visual Studio
automatically generates a self-signed certificate and uses it to code sign the
application package. To be able to install the application later by using Application
Center, you must import this certificate into the “Trusted Root Certification
Authorities” store of the “Local Machine”. Importing the certificate is a manual
procedure.

Note: Manual installation of a certificate is only required for the development
phase, because APPX code signing relies on a self-signed certificate generated by
Microsoft Visual Studio. In production, your APPX file must be signed by a
genuine certificate purchased from a recognized root certificate authority.

13-72 IBM MobileFirst Platform Foundation V8.0.0

http://technet.microsoft.com/fr-fr/library/dn613842.aspx

Procedure

The first step of this procedure tells you how to install the certificate before you
can install the application through Application Center.
1. Import this certificate into the “Trusted Root Certification Authorities” store of

the “Local Machine”.
a. After you have generated an APPX file by using Visual Studio, place this

file in your file system. In the folder of the APPX file, you can see a
certificate (.cer) file that contains the self-signed certificate that you must
import.

b. To open the certificate, double-click the CER file.
c. Click Install Certificate.

Figure 13-38. Certificate file in the application package folder

MobileFirst Application Center 13-73

d. Select “Local Machine” and click Next.

Figure 13-39. General information about the certificate

13-74 IBM MobileFirst Platform Foundation V8.0.0

e. Select “Place all certificate in the following store” and then browse to select
“Trusted Root Certification Authorities”.

Figure 13-40. Specifying the local machine in the Certificate Import Wizard

MobileFirst Application Center 13-75

f. Click Next and then Finish. The successful import of the certificate should
be confirmed.

The following steps describe how to perform the installation of a Windows Store
application on a Windows device by using Application Center.
2. Log in to the Application Center mobile client for Windows Store applications.
3. Select the application that you want to install to access its details.

Figure 13-41. Placing the certificate in “Trusted Root Certification Authorities”

13-76 IBM MobileFirst Platform Foundation V8.0.0

4. To install the application, tap Install. If the application is already installed and
other versions are available, you can decide to update to a later version or to
revert to a previous version.

Installing applications through public app stores
You can link from the mobile client to applications that are stored in supported
public app stores and install these applications on your compatible device by
following the normal procedure of the public app store.

About this task

The Application Center administrator can create links to selected applications
stored in supported public app stores and make them available to users of the
Application Center mobile client on the operating systems that match these
applications. See “Adding an application from a public app store” on page 13-24.
You can install these applications through the mobile client on your compatible
device.

Links to Android applications stored in Google play and to iOS applications stored
in Apple iTunes are listed in the application list on the device along with the
binary files of private applications created within your enterprise.

Procedure
1. Select an application stored in a public app store from the application list to see

the application details. Instead of Install, you see Go to Store.
2. Tap Go to Store to open Google play or Apple iTunes.

Figure 13-42. Details view for installing a Windows Store app

MobileFirst Application Center 13-77

3. Follow the usual procedure of the public app store to install the application.

Removing an installed application
You can remove an application that is installed on your mobile device.

Procedure
1. Start the removal procedure that is valid for the operating system of your

device.
v Android: See the procedure in step 2.
v iOS: You can remove applications only from the iOS Home screen, and not

through the Application Center client. Use the normal iOS procedure for
removing an application.

v Windows Phone: You can remove applications only from the Windows
Phone Home screen, and not through the Application Center client. Use the
normal Windows Phone procedure for removing an application.

v Windows Store: You can remove applications either from the Application
Center mobile client or from the Windows home screen.

2. Android only: Remove an application from an Android device.
a. In the Details view of any version of the application, tap Uninstall. The

Uninstall button appears in the Details view only when a version of the
application is installed. You are requested to confirm that the application
version is to be uninstalled.

Figure 13-43. Accessing an application in Google play from the mobile client on the device

Figure 13-44. Accessing an application in Apple iTunes from the mobile client on the device

13-78 IBM MobileFirst Platform Foundation V8.0.0

b. Tap Uninstall to uninstall the application version or Cancel to notify the
application that the uninstallation command has been canceled.

Showing details of a specific application version
You can show the details of the selected application version on any supported
device.

About this task

You can show the details of the selected version of an application by following the
appropriate procedure for an Android or iOS phone or tablet, a Windows Phone
device, or a Windows device.

Procedure
1. Show details of a specific application version on a mobile device by selecting

the appropriate procedure for your device.
v A Windows Phone, Android, or iOS phoneA phone; see step 2.
v A Windows device; see step 3
v A tablet; see step 4.

2. Windows Phone, Android, iOS only: Show details of a specific application
version on a Windows Phone, Android, or iOS phone.
a. Tap Select a version to navigate to the version list view.

b. Tap the appropriate version of the application. The Details view is updated
and shows the details of the selected application version.

3. Windows only: Show details of a specific Windows Store application version
on a Windows device. If more than one version is available for the Windows
Store application, then you can select which version that you want to install.
a. Tap the appropriate version of the application. The Details view is updated

and shows the details of the selected application version.
4. Tablet devices only: Show details of a specific application version on a tablet.

a. Tap Select version.
b. In the menu, select the appropriate version of the application. The Details

view is updated and shows the details of the selected application version.

Figure 13-45. Specific version of an application selected in the list of versions on a Windows Phone, Android, or iOS
phone

MobileFirst Application Center 13-79

Updating an application
You can update an application that is installed on your device if a new version is
available in the Application Center.

About this task

Follow this procedure to make the latest versions of favorite and recommended
apps available on your device. Applications that are marked as favorites and that
have an updated version are listed in the Updates view. The applications that are
marked as recommended by the Application Center server administrator are also
listed in the Updates view, even if they are not favorites.

If a more up-to-date version of an installed application is available on the server, it
is listed under Update or Recommended.

Procedure
1. In the Updates view, navigate to the Details view.
2. In the Details view, select a newer version of the application or take the latest

available version.
3. Android and Windows 8 Universal: On Android and Windows 8 Universal

devices, tap Update.
4. iOS only: On iOS devices, tap Install latest..
5. Follow the appropriate application installation procedure.
v “Installing an application on an Android device” on page 13-66
v “Installing an application on an iOS device” on page 13-68
v “Installing an application on a Windows Phone device” on page 13-70
v “Installing a Windows Store application on a Windows device” on page 13-72

Upgrading the Application Center client automatically
You can enable automatic detection of new versions of the client application. Then,
you can choose whether to download and install the new version on your mobile
device. This feature is supported for iOS, Android, and Windows Phone.

Before you begin

Start the Application Center client.

About this task

New versions of the mobile client application that are available on the Application
Center server can be detected automatically. When this feature is enabled, a more
recent version of the application, if it exists, can be detected at start up or each
time that the Available applications view is refreshed.

If a later version of the application is detected, you are requested to download and
install the later version.

Automatic upgrade of the Application Center client application is enabled by
default with the appCenterAutoUpgrade property set to true. This property is
located in the MobileFirst project for the Application Center: IBMAppCenter/apps/
AppCenter/common/js/appcenter/config.json.

13-80 IBM MobileFirst Platform Foundation V8.0.0

If you want to disable automatic upgrade, you must set this property to false and
rebuild the project for the required platforms.

Procedure
1. When a later version of the client is detected, tap OK to start the download

and installation sequence.

2. Tap Install to install the later version of the application.

Figure 13-46. Detection of a later version of the client application available on the server

MobileFirst Application Center 13-81

3. Tap Open to start the updated application.

Figure 13-47. Confirm installation of the updated version of the application

13-82 IBM MobileFirst Platform Foundation V8.0.0

Results

You must log in to the updated version of the application to run it.

Figure 13-48. Starting the updated application

MobileFirst Application Center 13-83

Note: To upgrade the Application Center client, the following conditions apply:
v The new Application Center client must use the same package name or bundle

identifier as the old client.
v On iOS, the new Application Center client must be signed with the same

provisioning profile as the old client.
v On Android, the new Application Center client must have the same signature as

the old client.
v On Windows Phone, the new Application Center client must be signed with the

same company account as the old client.

Reverting an installed application
You can revert the version of an installed application if an earlier version exists on
the server.

Figure 13-49. Logging in to the new version of the client application

13-84 IBM MobileFirst Platform Foundation V8.0.0

Purpose

To replace the currently installed version of an application with an earlier version,
from the Catalog, Updates, or Favorites view, navigate to the Details view. In the
Details view, select an earlier version. See “Showing details of a specific
application version” on page 13-79 for information about how to display details of
a specific application version on a mobile device.

See “Preparations for using the mobile client” on page 13-6 for information about
how to disable reverting to earlier versions of an application.

On Android

If the installed version of the Android operating system is earlier than 4.2.2, tap
Revert.

If the installed version of the Android operating system is 4.2.2 or later, you must
uninstall the current version before you can install the earlier version.

Then, follow the procedure documented in “Installing an application on an
Android device” on page 13-66.

On iOS

Use the normal procedure of the operating system to remove the application.

Tap Install to install the earlier version of the application. Follow the procedure
documented in “Installing an application on an iOS device” on page 13-68.

On Windows Phone

Tap Revert. Follow the procedue documented in “Installing an application on a
Windows Phone device” on page 13-70.

Marking or unmarking a favorite app
Mark your favorite apps or unmark an app to have it removed from the favorites
list.

An application marked as a favorite on your device indicates that you are
interested in this application. This application is then listed in the list of favorite
apps to make locating it easier. This application is displayed on every device
belonging to you that is compatible with the application. If a later version of the
app is available in the Application Center, the application is listed in the Updates
view.

To mark or unmark an application as a favorite app, tap the Favorites icon

in
the header of the Details view.

An installed application is automatically marked as a favorite app.

Submitting a review for an installed application
You can review an application version that is installed on your mobile device; the
review must include a rating and a comment.

MobileFirst Application Center 13-85

About this task

You can submit a review of an application version only if that version is installed
on your mobile device.

Procedure
1. In the Details view, initiate your review.
v On iOS phones and tablets, tap Review version X.
v On Android phones and tablets, tap Review version X.

2. Enter a nonzero star rating.
On mobile devices with touchscreens, tap 1 to 5 stars to represent your
approval rating of the version of the application. One star represents the lowest
level of appreciation and five stars represent the highest level of appreciation.

3. Enter a comment about this version of the application.
4. Tap Submit to send your review to the Application Center.

Viewing reviews
You can view reviews of a specific version of an application or of all versions of an
application.

Purpose

To view reviews of application versions; reviews are displayed in descending order
from the most recent review. If the number of reviews fills more than one screen,
tap Load more to show more reviews. On Android, iOS, and Windows Phone
devices, the review details are visible in the list.

Viewing reviews of a specific version

The Details view always shows the details of a specific version. On a phone, the
reviews are for that version.

In the Details view of an application version:

On a Windows Phone, Android, or iOS phone
Tap View Reviews to navigate to the Reviews view.

On a tablet
Tap Reviews xx, where xx is the displayed version of the application.

Viewing reviews of all versions of an application

In the Details view of an application version:

On a Windows Phone, Android, or iOS phone
Tap View Reviews to navigate to the Reviews view. Then, tap the settings

icon. , tap All versions, and confirm the selection.

On a tablet
Tap All Reviews.

13-86 IBM MobileFirst Platform Foundation V8.0.0

Setting logging and tracing for Application Center on the application
server

You can set logging and trace parameters for particular application servers and use
JNDI properties to control output on all supported application servers.

You can set the logging levels and the output file for tracing operations for
Application Center in ways that are specific to particular application servers. In
addition, IBM MobileFirst Platform Foundation provides Java Naming and
Directory Interface (JNDI) properties to control the formatting and redirection of
trace output, and to print generated SQL statements.

Enabling logging and tracing in WebSphere Application Server
full profile

You can set the logging levels and the output file for tracing operations on the
application server.

About this task

When you try to diagnose problems in the Application Center (or other
components of IBM MobileFirst Platform Foundation), it is important to be able to
see the log messages. To print readable log messages in log files, you must specify
the applicable settings as Java virtual machine (JVM) properties.

Procedure
1. Open the WebSphere Application Server administrative console.
2. Select Troubleshooting > Logs and Trace.
3. In Logging and tracing, select the appropriate application server and then select

Change log detail levels.
4. Select the packages and their corresponding detail level. This example enables

logging for IBM MobileFirst Platform Foundation, including Application Center,
with level FINEST (equivalent to ALL)
com.ibm.puremeap.*=all
com.ibm.worklight.*=all
com.worklight.*=all

Where:
v com.ibm.puremeap.* is for Application Center.
v com.ibm.worklight.* and com.worklight.* are for other MobileFirst

components.
The traces are sent to a file called trace.log, not to SystemOut.log or to
SystemErr.log.

What to do next

For more information, see Configuring Java logging using the administrative
console.

Enabling logging and tracing in WebSphere Application Server
Liberty

You can set the logging levels and the output file for tracing operations for
Application Center on the Liberty application server.

MobileFirst Application Center 13-87

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_configjavalog.html
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/ttrb_configjavalog.html

When you try to diagnose problems in the Application Center, it is important to be
able to see the log messages. To print readable log messages in log files, you must
specify the applicable settings.

To enable logging for IBM MobileFirst Platform Foundation, including Application
Center, with level FINEST(equivalent to ALL), add a line to the server.xml file. For
example:
<logging traceSpecification="com.ibm.puremeap.*=all:com.ibm.worklight.*=all:com.worklight.*=all"/>

In this example, multiple entries of a package and its logging level are separated
by a colon (:).

The traces are sent to a file called trace.log, not to messages.log or to
console.log.

For more information, see Liberty profile: Logging and Trace.

Enabling logging and tracing in Apache Tomcat
You can set the logging levels and the output file for tracing operations undertaken
on the Apache Tomcat application server.

When you try to diagnose problems in the Application Center, it is important to be
able to see the log messages. To print readable log messages in log files, you must
specify the applicable settings.

To enable logging for IBM MobileFirst Platform Foundation, including Application
Center, with level FINEST (equivalent to ALL), edit the conf/logging.properties
file. For example, add lines similar to these lines:
com.ibm.puremeap.level = ALL
com.ibm.worklight.level = ALL
com.worklight.level = ALL

For more information, see Logging in Tomcat.

JNDI properties for controlling trace output
On all supported platforms, you can use Java Naming and Directory Interface
(JNDI) properties to format and redirect trace output for Application Center and to
print generated SQL statements.

The following JNDI properties are applicable to the web application for
Application Center services (applicationcenter.war).

Table 13-3. JNDI property settings for controlling trace output

Property settings Setting Description

ibm.appcenter.logging.formatjson true By default, this property is
set to false. Set it to true
to format JSON output with
blank spaces, for easier
reading in log files.

ibm.appcenter.logging.tosystemerror true By default, this property is
set to false. Set it to true
to print all log messages to
system error in log files.
Use the property to turn on
logging globally.

13-88 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/rwlp_logging.html?cp=SSEQTP_8.5.5%2F1-16-0-0
http://tomcat.apache.org/tomcat-7.0-doc/logging.html

Table 13-3. JNDI property settings for controlling trace output (continued)

Property settings Setting Description

ibm.appcenter.openjpa.Log DefaultLevel=WARN,
Runtime=INFO,
Tool=INFO,
SQL=TRACE

This setting prints all the
generated SQL statements
to the log files.

MobileFirst Application Center 13-89

13-90 IBM MobileFirst Platform Foundation V8.0.0

Troubleshooting

You can find advice on how to troubleshoot problems, and more information about
known limitations and technotes (Troubleshooting).

The following links point to troubleshooting topics in other parts of this user
documentation. To navigate from there back to this topic, click Back in your Web
browser.
v “Troubleshooting JSONStore” on page 7-144
v “Troubleshooting a corrupted login page (Apache Tomcat)” on page 13-20
v “Troubleshooting push notification problems” on page 7-265
v “Troubleshooting an error when an application or an adapter is pushed to a

MobileFirst Server” on page 7-233
v “Troubleshooting Analytics and Logger” on page 11-49
v “Stale data after creating or deleting apps from MobileFirst Operations Console”

on page 6-194

For more information about known limitations or issues in the product, and
removed or deprecated features, see “Release notes” on page 3-1.

Important: If you have to contact IBM Support for help, see the information in
Collect troubleshooting data. This document details how to gather the necessary
information about your environment so that IBM Support can help diagnose and
resolve your problem.

© Copyright IBM Corp. 2006, 2016 14-1

http://www.ibm.com/support/docview.wss?uid=swg21598161

14-2 IBM MobileFirst Platform Foundation V8.0.0

Glossary

This glossary provides terms and definitions for IBM MobileFirst Platform
Foundation software and products.

The following cross-references are used in this glossary:
v See refers you from a nonpreferred term to the preferred term or from an

abbreviation to the spelled-out form.
v See also refers you to a related or contrasting term.

For other terms and definitions, see the IBM Terminology website (opens in new
window).

“A” “B” on page 15-2 “C” on page 15-2 “D” on page 15-4 “E” on page 15-4 “F” on
page 15-4 “G” on page 15-5 “H” on page 15-5 “I” on page 15-5 “J” on page 15-5
“K” on page 15-6 “L” on page 15-6 “M” on page 15-7 “N” on page 15-7 “O” on
page 15-8 “P” on page 15-8 “R” on page 15-9 “S” on page 15-9 “T” on page 15-10
“U” on page 15-11 “V” on page 15-11 “W” on page 15-11 “X” on page 15-11

A
acquisition policy

A policy that controls how data is collected from a sensor of a mobile
device. The policy is defined by application code.

adapter
The server-side code of a MobileFirst application. Adapters connect to
enterprise applications, deliver data to and from mobile applications, and
perform any necessary server-side logic on sent data.

administration database
The database of the MobileFirst Operations Console and of the
Administration Services. The database tables define elements such as
applications, adapters, projects with their descriptions and orders of
magnitude.

Administration Services
An application that hosts the REST services and administration tasks. The
Administration Services application is packaged in its own WAR file.

alias An assumed or actual association between two data entities, or between a
data entity and a pointer.

Android
A mobile operating system created by Google, most of which is released
under the Apache 2.0 and GPLv2 open source licenses. See also mobile
device.

API See application programming interface.

app A web or mobile device application. See also web application.

Application Center
A MobileFirst component that can be used to share applications and
facilitate collaboration between team members in a single repository of
mobile applications. See also Company Hub.

© IBM 2016 © IBM 2006, 2016 15-1

http://www.ibm.com/software/globalization/terminology/

Application Center installer
An application that lists the catalog of available applications in the
Application Center. The Application Center Installer must be present on a
device so that one can install applications from your private application
repository.

application descriptor file
A metadata file that defines various aspects of an application.

application programming interface (API)
An interface that allows an application program that is written in a
high-level language to use specific data or functions of the operating
system or another program.

authentication
A security service that provides proof that a user of a computer system is
genuinely who that person claims to be. Common mechanisms for
implementing this service are passwords and digital signatures.

authentication realm
A combination of one authenticator and one login module. Each
authentication realm defines its authentication flow. An authentication
realm must have a corresponding challenge handler.

authenticator

1. A server-side component that issues a sequence of challenges on the
server side and responds on the client side. See also challenge handler.

2. In the Kerberos protocol, a string of data that is generated by the client
and sent with a ticket that is used by the server to certify the identity
of the client.

B
Base64

A plain-text format that is used to encode binary data. Base64 encoding is
commonly used in User Certificate Authentication to encode X.509
certificates, X.509 CSRs, and X.509 CRLs. See also DER encoded, PEM
encoded.

binary Pertaining to something that is compiled, or is executable.

block A collection of several properties (such as adapter, procedure, or
parameter).

broadcast notification
A notification that is targeted to all of the users of a specific MobileFirst
application. See also tag-based notification.

build definition
An object that defines a build, such as a weekly project-wide integration
build.

C
CA See certificate authority.

callback function
Executable code that allows a lower-level software layer to call a function
defined in a higher-level layer.

15-2 IBM MobileFirst Platform Foundation V8.0.0

catalog
A collection of apps.

certificate
In computer security, a digital document that binds a public key to the
identity of the certificate owner, thereby enabling the certificate owner to
be authenticated. A certificate is issued by a certificate authority and is
digitally signed by that authority. See also certificate authority.

certificate authority (CA)
A trusted third-party organization or company that issues the digital
certificates. The certificate authority typically verifies the identity of the
individuals who are granted the unique certificate. See also certificate.

certificate authority enterprise application
A company application that provides certificates and private keys for its
client applications.

certificate revocation list (CRL)
A list of certificates that have been revoked before their scheduled
expiration date. Certificate revocation lists are maintained by the certificate
authority and used, during a Secure Sockets Layer (SSL) handshake to
ensure that the certificates involved have not been revoked.

challenge
A request for certain information to a system. The information, which is
sent back to the server in response to this request, is necessary for client
authentication.

challenge handler
A client-side component that issues a sequence of challenges on the server
side and responds on the client side. See also authenticator.

client A software program or computer that requests services from a server.

client-side authentication component
A component that collects client information, then uses login modules to
verify this information.

clone An identical copy of the latest approved version of a component, with a
new unique component ID.

cluster
A collection of complete systems that work together to provide a single,
unified computing capability.

company application
An application that is designed for internal use inside a company.

Company Hub
An application that can distribute other specified applications to be
installed on a mobile device. For example, Application Center is a
Company Hub. See also Application Center.

component
A reusable object or program that performs a specific function and works
with other components and applications.

credential
A set of information that grants a user or process certain access rights.

CRL See certificate revocation list.

Glossary 15-3

D
data source

The means by which an application accesses data from a database.

deployment
The process of installing and configuring a software application and all its
components.

DER encoded
Pertaining to a binary form of an ASCII PEM formatted certificate. See also
Base64, PEM encoded.

device See mobile device.

device context
Data that is used to identify the location of a device. This data can include
geographical coordinates, WiFi access points, and timestamp details. See
also trigger.

device enrollment
The process of a device owner registering their device as trusted.

documentify
A JSONStore command used to create a document.

E
emulator

An application that can be used to run an application meant for a platform
other than the current platform.

encryption
In computer security, the process of transforming data into an
unintelligible form in such a way that the original data either cannot be
obtained or can be obtained only by using a decryption process.

enterprise application
See company application.

entity A user, group, or resource that is defined to a security service.

environment
A specific instance of a configuration of hardware and software.

event An occurrence of significance to a task or system. Events can include
completion or failure of an operation, a user action, or the change in state
of a process.

event source
An object that supports an asynchronous notification server within a single
Java virtual machine. Using an event source, the event listener object can
be registered and used to implement any interface.

F
facet An XML entity that restricts XML data types.

farm node
A networked server that is housed in a server farm.

fire In object-oriented programming, to cause a state transition.

15-4 IBM MobileFirst Platform Foundation V8.0.0

fragment
A file that contains HTML tags that can be appended to a parent element.

G
gateway

A device or program used to connect networks or systems with different
network architectures.

geocoding
The process of identifying geocodes from more traditional geographic
markers (addresses, postal codes, and so on). For example, a landmark can
be located at the intersection of two streets, but the geocode of that
landmark consists of a number sequence. See also geolocation.

geofence
A circle or a polygon that defines a geographical area.

geolocation
The process of pinpointing a location based on the assessment of various
types of signals. In mobile computing, often WLAN access points and cell
towers are used to approximate a location. See also geocoding, location
services.

H
homogeneous server farm

A server farm in which all application servers are of the same type, level,
and version.

hybrid application
An application that is primarily written in web-oriented languages
(HTML5, CSS, and JS), but is wrapped in a native shell so that the app
behaves like, and provides the user with all the capabilities of, a native
app.

I
in-house application

See company application.

inner application
An application that contains the HTML, CSS, and JavaScript parts that run
within a shell component. Inner applications must be packaged within a
shell component to create a full hybrid application.

J
Java Management Extensions (JMX)

A means of doing management of and through Java technology. JMX is a
universal, open extension of the Java programming language for
management that can be deployed across all industries, wherever
management is needed.

JMX See Java Management Extensions.

Glossary 15-5

K
key

1. A cryptographic mathematical value that is used to digitally sign,
verify, encrypt, or decrypt a message. See also private key, public key.

2. One or more characters within an item of data that are used to
uniquely identify a record and establish its order with respect to other
records.

keychain
A password management system for Apple software. A keychain acts as a
secure storage container for passwords that are used by multiple
applications and services.

key pair
In computer security, a public key and a private key. When the key pair is
used for encryption, the sender uses the receiver's public key to encrypt
the message, and the recipient uses their private key to decrypt the
message. When the key pair is used for signing, the signer uses their
private key to encrypt a representation of the message, and the recipient
uses the sender's public key to decrypt the representation of the message
for signature verification.

L
library

1. A system object that serves as a directory to other objects. A library
groups related objects, and allows users to find objects by name.

2. A collection of model elements, including business items, processes,
tasks, resources, and organizations.

load balancing
A computer networking method for distributing workloads across multiple
computers or a computer cluster, network links, central processing units,
disk drives, or other resources. Successful load balancing optimizes
resource use, maximizes throughput, minimizes response time, and avoids
overload.

local store
An area on a device where applications can locally store and retrieve data
without the need for a network connection.

location services
A feature that can be used to create differentiated services that are based
on a user location. Location services involve collecting geolocational and
WiFi data and transmitting this data to a server, where it can be used for
executing business logic and analytics. Changes in the location data result
in triggers being activated, which cause application logic to execute. See
also geolocation.

login module
A server-side entity that is responsible for verifying the user credentials
and for creating a user identity object that holds the user properties for the
remainder of the session.

15-6 IBM MobileFirst Platform Foundation V8.0.0

M
Managed Bean (MBean)

In the Java Management Extensions (JMX) specification, the Java objects
that implement resources and their instrumentation.

MBean
See Managed Bean.

mobile
See mobile device.

mobile client
See Application Center installer.

mobile device (mobile)
A telephone, tablet, or personal digital assistant that operates on a radio
network. See also Android.

MobileFirst adapter
See adapter.

MobileFirst Data Proxy
A server-side component to the IMFData SDK that can be used to secure
mobile application calls to Cloudant by using MobileFirst Platform OAuth
security capabilities. The MobileFirst Data Proxy requires an authentication
through the trust association interceptor.

MobileFirst Operations Console
A web-based interface that is used to control and manage MobileFirst
runtime environments that are deployed in MobileFirst Server, and to
collect and analyze user statistics.

MobileFirst runtime environment
A mobile-optimized server-side component that runs the server side of
your mobile applications (back-end integration, version management,
security, unified push notification). Each runtime environment is packaged
as a web application (WAR file).

MobileFirst Server
A MobileFirst component that handles security, back-end connections, push
notifications, mobile application management, and analytics. The
MobileFirst Server is a collection of apps that run on an application server
and acts as a runtime container for MobileFirst runtime environments.

N
native app

An app that is compiled into binary code for use on the mobile operating
system on the device.

node A logical group of managed servers.

notification
An occurrence within a process that can trigger an action. Notifications can
be used to model conditions of interest to be transmitted from a sender to
a (typically unknown) set of interested parties (the receivers).

Glossary 15-7

O
OAuth

An HTTP-based authorization protocol that gives applications scoped
access to a protected resource on behalf of the resource owner, by creating
an approval interaction between the resource owner, client, and resource
server.

P
page navigation

A browser feature that enables users to navigate backwards and forwards
in a browser.

PEM encoded
Pertaining to a Base64 encoded certificate. See also Base64, DER encoded.

PKI See public key infrastructure.

PKI bridge
A MobileFirst Server concept that enables the User Certificate
Authentication framework to communicate with a PKI.

poll To repeatedly request data from a server.

private key
In secure communication, an algorithmic pattern used to encrypt messages
that only the corresponding public key can decrypt. The private key is also
used to decrypt messages that were encrypted by the corresponding public
key. The private key is kept on the user system and is protected by a
password. See also key, public key.

project
The development environment for various components, such as
applications, adapters, configuration files, custom Java code, and libraries.

project WAR file
A web archive (WAR) file that contains the configurations for the
MobileFirst runtime environment and is deployed on an application server.

provision
To provide, deploy, and track a service, component, application, or
resource.

proxy An application gateway from one network to another for a specific
network application such as Telnet or FTP, for example, where a firewall
proxy Telnet server performs authentication of the user and then lets the
traffic flow through the proxy as if it were not there. Function is performed
in the firewall and not in the client workstation, causing more load in the
firewall.

public key
In secure communication, an algorithmic pattern used to decrypt messages
that were encrypted by the corresponding private key. A public key is also
used to encrypt messages that can be decrypted only by the corresponding
private key. Users broadcast their public keys to everyone with whom they
must exchange encrypted messages. See also key, private key.

public key infrastructure (PKI)
A system of digital certificates, certification authorities, and other

15-8 IBM MobileFirst Platform Foundation V8.0.0

registration authorities that verify and authenticate the validity of each
party involved in a network transaction.

push To send information from a server to a client. When a server pushes
content, it is the server that initiates the transaction, not a request from the
client.

push notification
An alert indicating a change or update that appears on a mobile app icon.

R
realm A collection of resource managers that honor a common set of user

credentials and authorizations.

reverse proxy
An IP-forwarding topology where the proxy is on behalf of the back-end
HTTP server. It is an application proxy for servers using HTTP.

root The directory that contains all other directories in a system.

S
salt Randomly generated data that is inserted into a password or passphrase

hash, making those passwords uncommon (and more difficult to hack).

SDK See software development kit.

security test
An ordered set of authentication realms that is used to protect a resource
such as an adapter procedure, an application, or a static URL.

server farm
A group of networked servers.

server-side authentication component
See authenticator.

service
A program that performs a primary function within a server or related
software.

session
A logical or virtual connection between two stations, software programs, or
devices on a network that allows the two elements to communicate and
exchange data for the duration of the session.

shell A component that provides custom native capabilities and security features
for applications.

sideloading
On Windows 8 environments, the process of loading a file of type appx on
a mobile device without using the Windows Store.

sign To attach a unique electronic signature, derived from the sender's user ID,
to a document or field when a document is mailed. Signing mail ensures
that if an unauthorized user creates a new copy of a user's ID, the
unauthorized user cannot forge signatures with it. In addition, the
signature verifies that no one has tampered with the data while the
message was in transit.

simulator
An environment for staging code that is written for a different platform.

Glossary 15-9

Simulators are used to develop and test code in the same IDE, but then
deploy that code to its specific platform. For example, one can develop
code for an Android device on a computer, then test it using a simulator
on that computer.

skin An element of a graphical user interface that can be changed to alter the
appearance of the interface without affecting its functionality.

slide To move a slider interface item horizontally on a touchscreen. Typically,
apps use slide gestures to lock and unlock phones, or toggle options.

software development kit (SDK)
A set of tools, APIs, and documentation to assist with the development of
software in a specific computer language or for a particular operating
environment.

subelement
In UN/EDIFACT EDI standards, an EDI data element that is part of an
EDI composite data element. For example, an EDI data element and its
qualifier are subelements of an EDI composite data element.

subscription
A record that contains the information that a subscriber passes to a local
broker or server to describe the publications that it wants to receive.

syntax The rules for the construction of a command or statement.

system message
An automated message on a mobile device that provides operational status
or alerts, for example if connections are successful or not.

T
tag-based notification

A notification that is targeted to devices that are subscribed for a specific
tag. Tags are used to represent topics that are of interest to a user. See also
broadcast notification.

TAI See trust association interceptor.

tap To briefly touch a touchscreen. Typically, apps use tap gestures to select
items (similar to a left mouse button click).

template
A group of elements that share common properties. These properties can
be defined only once, at the template level, and are inherited by all
elements that use the template.

trigger
A mechanism that detects an occurrence, and can cause additional
processing in response. Triggers can be activated when changes occur in
the device context. See also device context.

trust association interceptor (TAI)
The mechanism by which trust is validated in the product environment for
every request received by the proxy server. The method of validation is
agreed upon by the proxy server and the interceptor.

15-10 IBM MobileFirst Platform Foundation V8.0.0

U

V
view A pane that is outside of the editor area that can be used to look at or

work with the resources in the workbench.

W
web app

See web application.

web application (web app)
An application that is accessible by a web browser and that provides some
function beyond static display of information, for instance by allowing the
user to query a database. Common components of a web application
include HTML pages, JSP pages, and servlets. See also app.

web application server
The runtime environment for dynamic web applications. A Java EE web
application server implements the services of the Java EE standard.

web resource
Any one of the resources that are created during the development of a web
application for example web projects, HTML pages, JavaServer Pages (JSP)
files, servlets, custom tag libraries, and archive files.

widget
A portable, reusable application or piece of dynamic content that can be
placed into a web page, receive input, and communicate with an
application or with another widget.

wrapper
A section of code that contains code that could otherwise not be
interpreted by the compiler. The wrapper acts as an interface between the
compiler and the wrapped code.

X
X.509 certificate

A certificate that contains information that is defined by the X.509
standard.

Glossary 15-11

15-12 IBM MobileFirst Platform Foundation V8.0.0

Support and comments

For the entire IBM MobileFirst Platform documentation set, training material and
online forums where you can post questions, see the IBM website at:

http://www.ibm.com/mobile-docs

Support

Software Subscription and Support (also referred to as Software Maintenance) is
included with licenses purchased through Passport Advantage and Passport
Advantage Express. For additional information about the International Passport
Advantage Agreement and the IBM International Passport Advantage Express
Agreement, visit the Passport Advantage website at:

http://www.ibm.com/software/passportadvantage

If you have a Software Subscription and Support in effect, IBM provides you
assistance for your routine, short duration installation and usage (how-to)
questions, and code-related questions. For additional details, consult your IBM
Software Support Handbook at:

http://www.ibm.com/support/handbook

Note: Some topics of this documentation describe how IBM MobileFirst Platform
Foundation integrates with third-party products. IBM does not support these
third-party products. For information about how IBM supports the integration of
IBM MobileFirst Platform Foundation with these third-party products, see Support
statement for the IBM MobileFirst Platform Foundation family of products, under
"Other configurations".

Comments

We appreciate your comments about this publication. Please comment on specific
errors or omissions, accuracy, organization, subject matter, or completeness of this
document. The comments you send should pertain to only the information in this
manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact
your IBM branch office, your IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you. IBM or any other organizations will only use the personal
information that you supply to contact you about the issues that you state.

Thank you for your support.

If you would like a response from IBM, please provide the following information:
v Name
v Address
v Company or Organization

© Copyright IBM Corp. 2006, 2016 16-1

http://www.ibm.com/mobile-docs
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/support/handbook
http://www.ibm.com/support/docview.wss?uid=swg27040214
http://www.ibm.com/support/docview.wss?uid=swg27040214

v Phone No.
v Email address

16-2 IBM MobileFirst Platform Foundation V8.0.0

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2006, 2016 A-1

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

A-2 IBM MobileFirst Platform Foundation V8.0.0

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Node.js is a trademark of Joyent, Inc. and is used with its permission. This
documentation is not formally endorsed by or affiliated with Joyent.

Other company products or service names may be trademarks or service marks of
others.

This document may not be reproduced in whole or in part without the prior
written permission of IBM.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display

Notices A-3

http://www.ibm.com/legal/us/en/copytrade.shtml

or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies that collect session information (generated by the application
server). These cookies contain no personally identifiable information and are
required for session management. Additionally, persistent cookies may be
randomly generated to recognize and manage anonymous users. These cookies
also contain no personally identifiable information and are required.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent. For more information about the use of various technologies, including
cookies, for these purposes, see IBM’s Privacy Policy at http://www.ibm.com/
privacy and IBM’s Online Privacy Statement at http://www.ibm.com/privacy/

A-4 IBM MobileFirst Platform Foundation V8.0.0

http://www.ibm.com/privacy
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details

details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices A-5

http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

A-6 IBM MobileFirst Platform Foundation V8.0.0

Index

Special characters
--debug option 7-20
--no-color option 7-20
--version option 7-20
-ddebug option 7-20

A
Access Control List (ACL)

Application Center 6-238
Application Center for WebSphere

Application Server V8 6-240
configuring Tomcat for LDAP

authentication 6-246
configuring user authentication for

MobileFirst Server
administration 6-166

enabling with LDAP for WebSphere
Application Server Liberty 6-243

access for users and groups
Application Center 6-238, 6-242

access token
OAuth security model 7-279

access tokens
generation 7-303, 7-305
how to obtain tokens 7-252
OAuth 7-303, 7-305
security for push notification

clients 7-251
accessibility

Application Center 2-10
CLI 7-20
configuration 2-10
installation 2-10
MobileFirst Analytics 2-10
MobileFirst Server 2-10
of web application consoles 2-10

accessibility features for this
product 2-10

ACL
See Access Control List (ACL)

ACL management
JNDI properties for Application

Center 6-261
Ad Hoc Distribution 13-2
adapter

debugging 7-230
resources

protecting 7-271, 7-272
testing 7-230

adapter accessmobile clientsnon-mobile
clients 7-232

adapter structure
Java 7-189
JavaScript 7-189

adapter-descriptor file 7-219, 7-222
Java 7-194
JavaScript 7-206

adapter-maven-api 7-189
adapter-maven-plugin 7-189

adapter.xml file 7-206
adapter element 7-194
displayName attribute 7-194

adapters 7-192
See also HTTP adapters
anatomy 7-204
audit logs 6-194
benefits 7-204
building 7-196, 7-197, 7-214, 7-215
changes from V6.2 to V8.0.0 5-1
configuring 7-196

security checks 7-298
creating 7-196
deploying 7-196, 7-198, 7-214, 7-216
deploying between

environments 10-2
deploying or updating to a production

environment 10-2
descriptor

<securityCheckDefinition>
element 7-294, 7-295

developing 7-196, 7-214
exporting and importing by using the

REST API 10-11
exporting and importing from the

MobileFirst Operations
Console 10-12

getting started 7-9
HTTP 7-219
Java

protecting resources 7-272
Java, overview 7-192
JavaScript

protecting resources 7-272
Maven 7-189
mfpadm Ant task, commands 10-30
mfpadm program commands 10-57
overview 7-187
pulling 7-196, 7-199, 7-214, 7-217
pushing 7-196, 7-199, 7-214, 7-217
SecurityCheck interface 7-291
SecurityCheckConfigurtation

interface 7-291
SQL 7-222
what's new in 8.0 3-10

adapters API 7-203
adaptersa

Maven projects 5-51
migrating 5-51
upgrading 5-51

additional resources 4-1
administering applications

messages
defining in multiple

languages 10-19
administration service

REST API 8-7
administrator role

in the Application Center
console 13-18

administrator role (continued)
to execute the Application Center

mobile client 13-2
user authentication for MobileFirst

Server administration 6-166
alerts 11-30, 11-33
analytics 6-198, 8-270, 11-1, 11-2, 11-3,

11-12, 11-13, 11-14, 11-15, 11-19, 11-20,
11-21, 11-22, 11-23, 11-25, 11-26, 11-28,
11-29, 11-30, 11-33, 11-35, 11-36, 11-37,
11-38, 11-39, 11-40, 11-41, 11-42, 11-43,
11-44, 11-45, 11-46, 11-47, 11-48, 11-49

introduction 11-1
product main features 2-1
SDK 11-35

Analytics
enabling or disabling data collection

from the MobileFirst Operations
Console 11-23

analytics console 2-1
android 7-62
Android

adding mobile applications to
Application Center 13-22

applications
registering 7-59
registering using MobileFirst

Operations Console 7-61
registering using MobileFirst

Platform CLI 7-59
deploying the mobile client in

Application Center 13-12
developing native applications 7-1,

7-24, 7-52
installing and running the mobile

client in Application Center 13-6
installing the client 13-52
preparation for the mobile client 13-8
prerequisites for using the mobile

client 13-6
push notification from Application

Center 13-12
removing applications 13-78
specific platform requirements for

Application Center 13-2
submitting reviews of installed

applications 13-86
updating applications in Application

Center 13-80
Android application, new 7-53, 7-56,

7-57
Android applications

getting started 7-9
migrating with Gradle 5-26
migration scenarios for push

notification 5-62
native

preparing environment 7-53
setting up environment 7-53

properties 13-27
pulling client logs 11-24

© Copyright IBM Corp. 2006, 2016 X-1

Android applications (continued)
reverting 13-85

Android devices
pre-installed root certificates 6-257
reviews of application versions 13-86
showing details of a specific

application version 13-79
views in the Application Center

client 13-63
Android examples 7-183
Android projects

upgrading native 5-25
Ant files

Applying a fix pack 6-111
Ant program

required version 10-23
Ant tasks 6-204, 6-304

See also mfpadm Ant task
application servers 6-318
configuring application

servers 6-293, 6-318
configuring databases 6-268
creating database tables for

MobileFirst Server 6-73
creating DB2 database for MobileFirst

Server 6-75
creating MySQL database for

MobileFirst Server 6-78
creating Oracle database for

MobileFirst Server 6-76
for IBM MobileFirst Platform

Foundation installation 6-275,
6-287, 6-309

for uploading or deleting an
application 13-49

install server farm 6-141
installation of MobileFirst Server in

command line mode 6-22
installing MobileFirst Server

components 6-110
reference 6-318
sample configuration files 6-318
to administer MobileFirst

applications 10-23
to deploy Application Center console

and services 6-206
to install MobileFirst Analytics 11-10

Apache CXF JAR files
known limitation 3-25

Apache Tomcat
configuring to avoid MySQL, DB2,

and Oracle timeout issues 6-192
installing MobileFirst Analytics 11-6
prerequisites for installing MobileFirst

Server 6-100
topologies 6-85, 6-88

Apache Tomcat server
manual configuration 6-222

API
See also REST API
client

challenge handlers 7-306
ChallengeHandler 7-306
OAuth 7-306
security 7-306
WLAuthorizationManager 7-306
WLChallengeHandler 7-306

API (continued)
client (continued)

WLClient / WL.Client /
WorklightClient 7-306

WLResourceRequest 7-306
deprecated and discontinued

server-side APIs 5-14
MobileFirst client SDKs 7-8
server side

SecurityCheck interface 7-291
SecurityCheckConfiguration

interface 7-291
API reference 8-1
app config 7-20
app crashes 11-46
app stores

See application stores
App Transport Security (ATS)

building applications for a test or
production environment 10-4

enforcing TLS-secure connections in
iOS apps 7-46, 7-127

app usage 11-42
Apple

Ad Hoc Distribution 13-2
Apple iTunes

adding applications toApplication
Center catalog 13-24

Apple provisioning profiles 13-2
Apple Push Notification Service (APNs)

push notification for iOS
devices 7-255

Apple watchOS 2 7-48
application

configuration 7-20
application authenticity 7-282
Application Center 6-191, 6-204, 6-222

access for users and groups 6-240
adding applications from public app

stores 13-24
adding mobile applications to the

repository 13-22
administration console 13-18
after EAR file deployment 6-231
application version numbers 13-2
concept 13-1
configuring 6-198
configuring Derby manually on

Tomcat 6-214
configuring LDAP authentication for

Apache Tomcat 6-246
configuring LDAP authentication for

WebSphere Application Server
Liberty 6-242

configuring Liberty profile for Oracle
manually 6-219

configuring Secure Sockets Layer
(SSL) 6-257

configuring SSL 6-257
configuring the endpoint of

application resources for WebSphere
Application Server 6-253

configuring the endpoint of
application resources for WebSphere
Application Server Liberty 6-255

Application Center (continued)
configuring the Java EE security roles

on WebSphere Application
Server 6-234

configuring the Java EE security roles
on WebSphere Application Server
Liberty 6-236

configuring the server
scheduler 13-13

configuring Tomcat for DB2
manually 6-210

configuring Tomcat for LDAP
authentication 6-246

configuring WebSphere Application
Server for DB2 manually 6-209

configuring WebSphere Application
Server for Derby manually 6-212

configuring WebSphere Application
Server Liberty manually

after EAR file deployment 6-229
configuring WebSphere Application

Server manually 6-224, 6-231
deploying EAR file and configuring

the application server
manually 6-229

deploying MobileFirst Server to IBM
PureApplication 9-44

deploying the console and services
with Ant tasks 6-206

deploying the mobile client 13-12
deploying WAR files 6-222
general architecture 13-4
installer

prerequisites for building 13-6
installing 6-198
installing manually 6-207
installing with Ant tasks 6-304
introduction 13-1
JNDI properties 6-261
JNDI properties for controlling trace

output 13-88
known limitations 3-25
LDAP and WebSphere Application

Server V8 6-238
logging and tracing in Tomcat 13-88
logging and tracing in WebSphere

Application Server full
profile 13-87

logging and tracing in WebSphere
Application Server Liberty
profile 13-88

managing and installing self-signed
CA certificates in a test
environment 6-260

manual configuration of DB2 6-208
mobile client 13-51

importing and building the
project 13-8

launched automatically 13-27
prerequisites 13-6

preparing for installation 13-6
presentation 2-4
product main features 2-1
removing applications 13-78
repository 13-18
roles 13-18

X-2 IBM MobileFirst Platform Foundation V8.0.0

Application Center (continued)
sefl-signed certificates not

supported 6-257
setting log and trace

parameters 13-87
setting up your Derby database

manually 6-211
setting up your MySQL database

manually 6-215
settting up your DB2 database

manually 6-207
specific platform requirements 13-2
submitting reviews of installed

applications 13-86
updating applications 13-80
updating production apps 10-14

Application Center Access Control List
Virtual Member Manager 6-238

Application Center client
configuring for push

notification 13-12
Application Center console

configuring LDAP authentication for
WebSphere Application Server
V8 6-238

signing out 13-45
troubleshooting a corrupted login

page on Safari 13-21
troubleshooting a corrupted login

page on Tomcat 13-20
Application Center database

Ant tasks 6-204
configuring 6-204
creating 6-204

application configurations
See configurations

application descriptors
for Cordova applications 7-102

application resources
configuring the endpoint 6-253, 6-255

application server 5-1
Apache Tomcat 6-101
configuring

Ant task 6-318
Ant tasks 6-293
reference 6-318

JMX connection 6-101, 6-103
WebSphere Application Server Liberty

profile 6-103
application servers

prerequisites 6-100
setting logging and tracing for

Application Center 13-87
supported for server farm

configuration 6-139
application status

in MobileFirst Operations Console
with token licensing 10-20

application store 2-1
application stores

adding applications from 13-24
application versions

exporting and importing by using the
REST API 10-11

exporting and importing from the
MobileFirst Operations
Console 10-12

applications
See also native applications
See also recommended applications
adding toApplication Center catalog

from public app stores 13-24
administering 10-1
administering through Ant 10-23
administering through the command

line 10-47
authenticity

configure 7-284
enable 7-282
mfp-app-authenticity-tool 7-282
tool 7-282

authenticity validation and
tool 7-282

building for a test or production
environment 10-4

configuring
enableSSO 7-301
mandatoryScope 7-276
maxTokenExpiration 7-304
scopeElementMapping 7-277
security checks 7-300

configuring FIPS 140-2 10-79
configuring push notification for

updates 13-13
deploying and managing

what's new in 8.0 3-10
deprecated and discontinued

server-side APIs 5-14
developing and publishing

product main features 2-1
disabling remotely 10-17
exporting and importing by using the

REST API 10-11
exporting and importing from the

MobileFirst Operations
Console 10-12

getting started 7-9
installing on an iOS mobile

device 13-55, 13-68
license validation 10-83
mandatory scope 7-265, 7-276
maximum access-token expiration

period 7-304
messages

multiple languages 10-19
mfpadm Ant task commands 10-34
mfpadm program commands 10-61
mobile

administrator messages 10-18
blocking access to protected

resources 10-17
management 10-15

NuGet 7-65
overview 7-2
properties 13-27
rating 13-86
registering

Android applications 7-59
Android applications using

MobileFirst Operations
Console 7-61

Android applications using
MobileFirst Platform CLI 7-59

Cordova 7-107

applications (continued)
registering (continued)

Cordova applications using
MobileFirst Operations
Console 7-109

Cordova applications using
MobileFirst Platform CLI 7-107

iOs 7-37
iOS applications using MobileFirst

Operations Console 7-38
iOS applications using MobileFirst

Platform CLI 7-37
web applications 7-80
web applications using MobileFirst

Operations Console 7-81
web applications using MobileFirst

Platform CLI 7-80
Windows 7-68
Windows applications using

MobileFirst Operations
Console 7-70

Windows applications using
MobileFirst Platform CLI 7-68

registering to a production
environment 10-6

removing from Application
Center 13-78

reverting 13-85
reviews of application versions 13-86
samples 7-25
security configurations

LTPA-based single sign-on (SSO)
predefined security check 7-289

setting up your environment for
development 7-65

sharing through Application
Center 13-1

showing details of a specific
version 13-79

stale data after creation or deletion
from MobileFirst Operations
Console 6-194

submitting a review 13-86
subscribing to tags for push

notification 7-257
transferring configurations from one

server to another 10-9
updating in Application Center 13-80
upgrading from V6.2 to V8.0.0 5-1
uploading or deleting by using an Ant

task 13-49
web

See web applications
what's new 3-1
Windows 8, sideloading 13-2

applications, Cordova 7-87
apps

deploying between
environments 10-2

production apps
best practices 10-14

updating in production 10-14
architecture

of Application Center 13-4
push notification 7-250

ARM-based tablets
.exe files not executed 13-2

Index X-3

artifacts
See server-side artifacts

asymmetric deployment
Liberty collective 6-91
WebSphere Application Server

Network Deployment 6-94
audit logs

for adapters 6-194
for MobileFirst Operations

Console 6-194
of administration operations 10-21

authentication
changes in the security model 5-1
configuring Tomcat for LDAP

authentication 6-246
configuring user authentication for

MobileFirst Server
administration 6-166

LDAP
for Apache Tomcat 6-246

authenticity
See application authenticity

authenticity data
transferring server-side artifacts to

another server 10-7
authenticity validation 7-239

B
back end

method for push notification
architecture 7-250

polling method 7-250
back-end connections

product main features 2-1
backup 11-19
Bitcode

build options 7-48
blocked application status

token licensing 10-20
Bluemix

containers 9-1
Bouncy Castle cryptographic library

known limitation 3-25
broadcast notifications

sending to the device 7-258
unsubscription 7-256

browsers
Safari 13-21

building
adapters 7-197, 7-215

C
C#

developing native applications for
Windows 7-65

CA certificates
file name extensions 6-260

capacity 11-3
capturing data 10-78
certificate authority 7-185
certificate pinning 7-185

building applications for a test or
production environment 10-4

certificates
See also CA certificates
self-signed

to configure SSL 10-3
changes 3-1
changesinterim fixes 3-16
circuit breakers 11-22
class loaders

loading policy 6-224, 6-231
class loading policies

after EAR file deployment 6-231
configuring WebSphere Application

Server for Application Center
manually 6-224, 6-231

CLI 7-13, 7-14, 7-17, 7-19
accessibility 7-20
getting started 7-22
prerequisite software 7-14

CLI modes 7-19
CLI, installing 7-15
client API

acquiring the SDK from the IBM
MobileFirst Platform Operations
Console 7-26

JavaScript API for web and Cordova
applications 7-73, 7-76, 7-79

JavaScript web analytics API 7-73,
7-75, 7-76, 7-79

web SDK 7-73, 7-75
acquiring 7-75
adding to the application 7-76
initializing the SDK 7-79

client applications
development environments 7-8
MobileFirst SDKs 7-8

client log profiles
configuring from the MobileFirst

Operations Console 11-24
client property file 7-62, 7-72
client property files

for native iOS applications 7-41
client SDK 11-35, 11-37, 11-42
client-side

Android 8-5, 8-6
API 8-5, 8-6
C# 8-6
Java 8-5, 8-6
push API 8-6
Windows 10 Universal Windows

Platform (UWP) 8-6
Windows 8 Universal 8-6

client-side API
iOS 8-5
Objective-C and Apple Swift

language 8-5
client-side push API

iOS 8-5
cloud

deploying to the cloud as Liberty for
Java Cloud Foundry
application 9-4

deploying to the cloud in an IBM
Container 9-1

deployment of MobileFirst
Server 9-44

Cloudant
MFData CloudantToolkit no longer

supported 5-1
cluster 11-19, 11-20, 11-21
CocoaPods, developing native application

with 7-29, 7-34
command 7-13
command line 7-17

installing MobileFirst Server 6-22
command-line 7-13
command-line interface 7-14, 7-22

defining server 7-16
getting started 7-22
prerequisite software 7-14

command-line interface modes 7-19
command-line summary 7-17
command-line tools

mfpadm 10-47
Company Hub

Windows Phone 8 applications 13-2
components

IBM MobileFirst Platform
Foundation 2-4

confidential clients
configuring 7-264
JNDI properties for MobileFirst Server

administration service 6-174
configuration 11-12, 11-14, 11-15

Apache Tomcat 6-101
application 7-20
JMX connection 6-101, 6-103, 6-104
sample files for MobileFirst

Analytics 6-319
server farm 6-144
WebSphere Application Server 6-104
WebSphere Application Server Liberty

profile 6-103
WebSphere Application Server

Network Deployment 6-104
configuration API 7-203
configuration files

for Cordova applications 7-102
for server farms 6-139

configurations
transferring by using mfpdev to a

different environment 10-7
configuredatabase

Ant task 6-268
configuring

adapters 7-196
application servers 6-150
data sources 6-190
JNDI properties of

MobileFirst Server web
applications 6-171

keystore 7-316
server farms 6-139

Configuring
DB2 HADR seamless failover 6-191

configuring for MobileFirst Server
administration 6-170

configuring the web resources checksum
test 7-20

connection
Apache Tomcat 6-153
MobileFirst Server 6-153, 6-154, 6-156

X-4 IBM MobileFirst Platform Foundation V8.0.0

connection (continued)
Rational License Key Server 6-153,

6-154, 6-156
WebSphere Application Server 6-156
WebSphere Application Server Liberty

profile 6-154
WebSphere Application Server

Network Deployment 6-156
connectionPolicy

attributes 7-209, 7-213
elements 7-209, 7-213

connections
handling stale connections 6-192

console 11-13
constraints

of MobileFirst Analytics 6-84
of MobileFirst Server

components 6-84
of MobileFirst Server push

service 6-99
containers

deploying to the cloud in an IBM
Container 9-1

overview 9-1
package structure and contents 9-2

context root 6-293
Converting, Cordova application 5-43
Cordova 7-87

application resources 7-102
applications

registering 7-107
registering using MobileFirst

Operations Console 7-109
registering using MobileFirst

Platform CLI 7-107
creating 7-89
Eclipse 7-115
platforms and plug-ins 2-4
template 7-88

Cordova app, adding MobileFirst
Platform Foundation 7-91

Cordova application, converting 5-43
Cordova applications 7-87

building for a test or production
environment 10-4

changes from V6.2 to V8.0.0 5-1
converted from a hybrid

application 5-41
developing 7-83
getting started 7-9
known limitations 3-25
prerequisites 7-84
what's new 3-1
WKWebView plug-in 7-134

Cordova apps
start-up flow 7-129
viewing project 7-128
Windows 7-128, 7-129

Cordova, migrating to 5-38
crash 11-45, 11-48
creating

adapters 7-196
Cordova 7-89

creating Cordova applications 7-87
credentials

to Application Center mobile
client 13-51

credentials (continued)
to connect to Application Center from

the Login view 13-61
to upload an application 13-49

Cross Origin Resource Sharing (CORS)
JNDI properties for MobileFirst Server

administration service 6-174
cross-platform applications

pulling client logs 11-24
Crosswalk WebView interface

developing Cordova
applications 7-83

CSS files
as Cordova application

resources 7-102
custom

icons 7-104
images 7-104
splash screens 7-104

custom analytics 11-23, 11-35, 11-48
custom charts 11-25, 11-26, 11-28, 11-29,

11-30, 11-44, 11-49
custom data 11-36
custom nodes 9-108
customizing

Cordova application resources 7-102

D
data

enabling or disabling collection from
the MobileFirst Operations
Console 11-23

data source
configuring for MobileFirst Server

applications 6-64
data sources 6-191

configuring 6-190
database

configuring with an external
database 9-91

creating tables for MobileFirst Server
manually 6-67

requirement for MobileFirst
Server 6-65, 6-66

users and privileges 6-64
database creation

for MobileFirst Server manually 6-67
for MobileFirst Server with Ant

tasks 6-73
for MobileFirst Server with the Server

Configuration Tool 6-70
database user

privileges to access MobileFirst Server
database tables 6-65, 6-66

databases
configuring

Ant task 6-268, 6-318
handling MySQL stale

connections 6-192
internal runtime databases 6-315
MobileFirst Server components 6-63

datasource JDBC properties
sample Ant files for MobileFirst

Server 6-112

DB2
configuring manually for Application

Center on Tomcat 6-210
configuring WebSphere Application

Server manually for Application
Center 6-209

creating database for MobileFirst
Server manually 6-67

creating database for MobileFirst
Server with Ant tasks 6-75

creating database for MobileFirst
Server with Server Configuration
Tool 6-71

database requirement for MobileFirst
Server 6-65

in combination with Apache Tomcat,
WebSphere Application Server, or
WebSphere Application Server
Liberty profile 6-192

installation of MobileFirst Server in
command line mode 6-22

installation of MobileFirst Server in
graphical mode 6-5

setting up your database manually for
Application Center 6-207

stale connections 6-192
DB2 database creation

for MobileFirst Server manually 6-67
for MobileFirst Server with Ant

tasks 6-75
for MobileFirst Server with Server

Configuration Tool 6-71
DB2 SQL Error 6-190, 6-252
debug options 7-20
default charts 11-43, 11-47
delete, Ant task 13-49
dependencies 7-24
dependency manager

iOS 7-29, 7-34
deployer role

user authentication for MobileFirst
Server administration 6-166

deploying
adapters 7-198, 7-216, 10-2
apps 10-2
updated apps 10-14

deprecated API 3-17
application server side 5-14

deprecated features 3-17
Derby

configuring manually for Application
Center on Tomcat 6-214

configuring WebSphere Application
Server manually for Application
Center 6-212

setting up the database manually for
Application Center 6-211

Derby databases
not supported by server farms 6-139

developing
Cordova apps 7-122, 7-123, 7-124,

7-129, 7-130
Windows 7-128, 7-129

Crosswalk plugin 7-133
developing applications 7-65

product main features 2-1
development environment 2-1, 5-1

Index X-5

Development Kit 7-9
Development Kit, installing 7-10
development of applications

getting started 7-9
devices

configuring for push
notification 13-12

mfpadm Ant task commands 10-42
mfpadm program commands 10-68
search limitations 3-25
synchronization with application log

profile 11-24
DevOps

what's new 3-10
direct mode 7-19
direct update

client apps 7-239
implementing 7-239

Direct Update 7-237
app versions 7-240
CLI 7-236
customize 7-244
default UI 7-240
development and production

environments 7-235
full vs. incremental 7-235
keystore 7-235, 7-316
lifecycle 7-236
MobileFirst Operations

Console 7-236
overview 7-235
public key setting 7-20
secure and non-secure 7-235
user interface 7-244

discontinued features
API 3-19

distribution structure
of MobileFirst Server 6-61

Docker containers
See containers

downloading
IBM MobileFirst Platform

Foundation 2-10

E
EAR file

to deploy Application Center
manually 6-229

Eclipse 7-187, 7-189
Cordova 7-115
supported versions 2-7

editable properties
of mobile applications 13-27

endpoints
of application resources,

configuring 6-253, 6-255
environment variables

to configure the Application Center
server scheduler 13-13

environments
production 10-2
QA 10-2
test 10-2

error
deploying with Application Center

console 6-252

error (continued)
deploying with MobileFirst

Operations Console 6-190
transaction log full 6-190, 6-252

Event source based notification
upgrading from 5-55

event-source-based notification
not supported in V.8.0.0 5-1

examples 7-182
external

resources
MobileFirst Java Token

Validator 7-274
protecting 7-274

F
failure 7-148
farm

See server farms
favorite applications

push notification 13-12
feature table 2-10
feature-platform matrix 2-10
federal 10-74
Federal Desktop Core

Configuration 10-74, 10-75
Federal Information Processing Standards

(FIPS)
security standards 10-75, 10-79

Federal Information Processing Standards
(FIPS) 140-2

configuring for existing
applications 10-79

federated registries
configuring LDAP ACL management

for Liberty 6-243
file extensions

ignored during web resources
checksum test 7-20

files
of native API applications for iOS,

copying 7-27, 7-31, 7-32, 7-48, 7-51
FIPS 140-2 10-78

enabling 10-77
known limitations 3-25
not available in Cordova

applications 5-41
firewalls

JNDI properties for Application
Center 6-261

fix packs
by Ant files 6-111
by Server Configuration Tool 6-110

floating license 2-8
framework

JavaScript adapter 7-204

G
getting started 4-1, 7-22

with the MobileFirst Operations
Console 7-6

globalization
known limitations 3-25

glossary 15-1

Google Play
adding applications toApplication

Center catalog 13-24
Gradle

migrating Android projects 5-26
Gradle, developing native application

with 7-53, 7-56, 7-57

H
heartbeat rate

for server farm nodes 6-149
homogeneous server farms

supported 6-139
HTTP

Strict Transport Security
standards 6-174

HTTP adapter
connectionPolicy 7-209
elements 7-209

HTTP adapter XML file 7-209
HTTP adapter XML file structure 7-209
HTTP adapters

and WebSphere Application Server
SSL configuration 6-197

example 7-219
procedures 7-219
SSL 7-222

HTTPS
keystore 7-316

HTTPS protocol
JNDI properties for MobileFirst Server

administration service 6-174
hybrid applications

changes from V6.2 to V8.0.0 5-1
converting into a Cordova

application 5-41
migration scenarios for push

notification 5-56
Objective-C client-side API 8-5

hybrid apps, migrating to Cordova 5-38

I
IBM Installation Manager

administrator mode 6-42
installation of MobileFirst Server in

command line mode 6-22
installation of MobileFirst Server in

graphical mode 6-5
record response files

MobileFirst Server
installation 6-50

user mode 6-42
IBM Installation Manager command line

installing MobileFirst Server 6-45
IBM Installation Manager Install wizard

installing MobileFirst Server 6-43
IBM MobileFirst Platform Application

Center
accessibility 2-10

IBM MobileFirst Platform Command Line
Interface (CLI)

presentation 2-4
registering applications

Android 7-59

X-6 IBM MobileFirst Platform Foundation V8.0.0

IBM MobileFirst Platform Command Line
Interface (CLI) (continued)

registering applications (continued)
Cordova 7-107
iOS 7-37
web 7-80
Windows 7-68

IBM MobileFirst Platform
Foundation 7-13, 8-4

IBM MobileFirst Platform Operations
Console

accessibility 2-10
adapters

security 7-294, 7-298
application

authenticity 7-282, 7-284
predefined LTPA-based SSO

security check 7-289
applications

security 7-276, 7-277, 7-282, 7-284,
7-300, 7-301, 7-304

client SDKs download 7-26
MobileFirst Server keystore

configuration 7-316
registering applications

Android 7-61
Cordova 7-109
iOS 7-38
web 7-81
Windows 7-70

IBM WebSphere DataPowerusing as the
OAuth authorization server 7-314

icons
as Cordova application

resources 7-102
custom 7-104

images for Cordova apps 7-104
images

custom 7-104
images for Cordova apps

custom 7-104
in the Application Center client

views in the client 13-63
index.html 7-132
installanalytics

Ant task 6-309
installation 6-198, 11-2

Ant tasks 6-275, 6-287, 6-309
installing MobileFirst Analytics

on 11-4, 11-6, 11-7
of MobileFirst Analytics by using Ant

tasks 11-10
of MobileFirst Server 6-4, 6-5, 6-22
running IBM Installation

Manager 6-41
server farm with Ant tasks 6-141
server farm with the Server

Configuration Tool 6-140
using IBM Installation Manager

command line 6-45
using IBM Installation Manager Install

wizard 6-43
Installation

MobileFirst Server components with
Ant Tasks 6-110

installing
MobileFirst Platform Pattern 9-48

installing (continued)
MobileFirst Server to an application

server 6-100
token licensing

overview 6-150
Installing the IBM MobileFirst Platform

Foundation Developer Kit 7-10
installing, CLI 7-15
installing, Development Kit 7-10
installingMobileFirst Server 6-2
installmobilefirstadmin

Ant task 6-275
installmobilefirstpush

Ant task 6-287
installmobilefirstruntime

Ant task 6-293
IntelliJ 7-187, 7-189

developing Cordova
applications 7-83

interactive mode 7-19
invalid server farm configurations 6-139
Ionic

developing Cordova
applications 7-83

iOS
adding mobile applications to

Application Center 13-22
applications

registering 7-37
registering using MobileFirst

Operations Console 7-38
registering using MobileFirst

Platform CLI 7-37
client property file for native

applications 7-41
credentials stored in keychain 13-61
deploying the mobile client in

Application Center 13-12
developing native applications 7-1,

7-24, 7-27, 7-126
installing and running the mobile

client in Application Center 13-6
preparation for the mobile client 13-8
prerequisites for using the mobile

client 13-6
push notification from Application

Center 13-12
removing applications 13-78
specific platform requirements for

Application Center 13-2
SSL mandatory to connect to

Application Center 13-61
submitting reviews of installed

applications 13-86
troubleshooting push notification

problems 7-265
updating applications in Application

Center 13-80
iOS application, new 7-29, 7-34
iOS applications

configuring the Application Center
server with SSL 6-257

enforcing TLS-secure
connections 7-46, 7-127

getting started 7-9
migration scenarios for push

notification 5-69

iOS applications (continued)
native

preparing environment 7-27
setting up environment 7-27

Objective-C client-side API 8-5
Objective-C client-side push API 8-5
properties 13-27
pulling client logs 11-24
reverting 13-85
WKWebView plug-in 7-134

iOS devices
installing applications 13-68
installing the client 13-55
iOS 9, establishing trust on a

provisioning file 13-55, 13-68
pre-installed root certificates 6-257
reviews of application versions 13-86
showing details of a specific

application version 13-79
views in the Application Center

client 13-63
iOS examples 7-182
iOS hybrid applications

Objective-C client-side API 8-5
iOS projects

upgrading native 5-17, 5-23, 5-33,
5-44, 5-45

J
JAR files 7-24
Java

protecting external resources 7-271,
7-274

Java adapter
configuration 7-194

Java adapters
benefits 7-192

Java EE
configuring security roles for

Application Center on application
servers 6-234, 6-236

Java EE level
sample Ant files 6-112
WebSphere Application Server

Liberty 6-112
Java EE security roles

configuring user authentication for
MobileFirst Server
administration 6-166

configuring WebSphere Application
Server for MobileFirst Server
administration 6-169

configuring WebSphere Application
Server Liberty profile for MobileFirst
Server administration 6-169

Java Management Extensions (JMX)
JNDI properties for MobileFirst Server

administration service 6-174
Java Persistence API (JPA)

JNDI properties 6-174
Java Runtime Environment (JRE)

truststores 6-197
Java server-side API 7-203
JavaScript 8-4

modules
loading 7-76

Index X-7

JavaScript (continued)
RequireJS 7-76

JavaScript adapter
configuration 7-206

JavaScript adapter framework 7-204
JavaScript adapter XML file

attributes 7-194, 7-206
elements 7-194, 7-206
sub-elements 7-194, 7-206

JavaScript adapters
benefits 7-204
global variables 7-218
gzipped responses 7-218
overview 7-204
response threshold 7-218

JavaScript examples 7-184
JavaScript files

as Cordova application
resources 7-102

JavaScript server-side API
logger 7-225
server 7-225

JAX-RS service 7-200
JCE policy files

to troubleshoot iOS push notification
problems 7-265

JDBC driver class 7-222
JMX connection configuration

WebSphere Application Server 6-104
WebSphere Application Server

Network Deployment 6-104
JNDI properties

configuring LDAP ACL management
for Liberty 6-243

configuring the endpoint of
application resources for WebSphere
Application Server 6-253

configuring the endpoint of
application resources for WebSphere
Application Server Liberty 6-255

defining environment variables for
Application Center server
scheduler 13-13

entries for MobileFirst runtime in
production 6-183

for Application Center 6-261
for Application Center logs and

traces 13-87
for controlling trace output for

Application Center 13-88
for MobileFirst Server administration

service 6-174
for MobileFirst Server live update

service 6-182
for MobileFirst Server push

service 6-186
for WebSphere Application Server

Network Deployment
topology 6-94

IBM Cloudant database 6-174
MobileFirst projects,

configuring 6-171
of MobileFirst Server web

applications 6-171
runtime 6-183
sample Ant files for MobileFirst

Server 6-112

JNDI properties (continued)
to configure a server farm 6-144
to install a mobile client on an iOS

mobile device 13-55
to install applications on an iOS

mobile device 13-68
JSON objects

formatting, JNDI property 6-174
JSONStore 7-134, 7-181, 7-182, 7-183,

7-184
advanced 7-169
analytics 7-180
API 7-140
concurrency 7-173
enabling 7-139
error codes 7-148
errors 7-147
examples 7-151
Federal Information Processing

Standards (FIPS) 10-75
general terminology 7-137
Java 7-162
JavaScript 7-151
multiple user support 7-171
Objective-C 7-158
overview 7-134, 7-144
performance 7-171
security 7-169, 7-170, 7-171
SQLCipher 7-171
SQLite 7-171
supported architectures 3-25
sync 7-174
troubleshooting 7-144

K
keyboard shortcuts

for web application consoles 2-10
keychain

iOS credentials 13-61
Keytool

for self-signed certificates 10-3
Kit, Development 7-9

installing 7-10
known issues 3-25, 14-1
known limitations 3-25

L
language sensitivity

limitation on search 3-25
language settings 7-20
LDAP

See also Lightweight Directory Access
Protocol (LDAP)

authentication for WebSphere
Application Server Liberty 6-242

authentication for WebSphere
Application Server V8 6-238

configuring security with an external
repository 9-86

configuring Tomcat for
authentication 6-246

JNDI properties for Application
Center 6-261

LDAP ACL management
configuring for the Liberty

profile 6-243
LDAP authentication

for Apache Tomcat 6-246
Liberty

deploying to the cloud as Liberty for
Java Cloud Foundry
application 9-4

Liberty collective
topologies 6-91

Liberty profile
configuring for Oracle for Application

Center 6-219
configuring Java EE security roles for

Application Center 6-236
configuring LDAP

authentication 6-242
configuring manually for Application

Center 6-208, 6-222
after EAR file deployment 6-229

configuring the endpoint of
application resources 6-255

configuring WebSphere Application
Server Liberty profile 6-169

logging and tracing in Application
Center 13-88

Oracle
configuring Liberty profile

manually for Application
Center 6-219

libraries
of native API applications for iOS,

copying 7-27, 7-31, 7-32, 7-48, 7-51
Rational Common Licensing 10-83

License Key Server
registering applications to a

production environment 10-6
License terms 10-80
license tracking 10-80
licenses

validation 10-83
licensing

perpetual license 2-8
token licensing 2-8
traditional floating license 2-8

Lightweight Directory Access Protocol (
LDAP)

Application Center on WebSphere
Application Server V8 6-238

Lightweight Directory Access Protocol
(LDAP)

Application Center on WebSphere
Application Server V8 6-240

lightweight third-party authentication
See LTPA

limitations 3-25
to deploying MobileFirst Server to

IBM PureApplication 9-44
Linux OS

stopping the MobileFirst Development
Server 7-13

log profiles, client side
configuring from the MobileFirst

Operations Console 11-24
logger 11-1, 11-37, 11-49

introduction 11-1

X-8 IBM MobileFirst Platform Foundation V8.0.0

logging
See also audit logs
file location 6-194
JNDI properties 6-174
monitoring tools 6-194

logging and tracing
in Tomcat 13-88
in WebSphere Application Server full

profile 13-87
in WebSphere Application Server

Liberty profile 13-88
setting parameters for Application

Center 13-87
login page

of the Application Center console,
troubleshooting for Safari 13-21

of the Application Center console,
troubleshooting for Tomcat 13-20

Login view
Application Center

connecting from the Login
view 13-61

connecting to the Application
Center 13-61

LOGSECOND 6-190, 6-252
LPTA

known limitations on tokens 3-25
LTPA 7-285

configuring user authentication for
MobileFirst Server
administration 6-166

single sign-on (SSO) predefined
security check 7-285

configuring 7-289

M
Mac OS

stopping the MobileFirst Development
Server 7-13

management 11-19
management console 2-1
manual configuration

after EAR file deployment 6-231
configuring WebSphere Application

Server for Derby sfor Application
Center 6-212

DB2 for Application Center on
WebSphere Application Server
Liberty profile 6-208

DB2 for WebSphere Application
Server manually for Application
Center 6-209

Oracle database 6-218
setting up your DB2 database for

Application Center 6-207
setting up your Derby database

Application Center 6-211
setting up your MySQL database for

Application Center 6-215
Tomcat for DB2 for Application

Center 6-210
WebSphere Application Server for

Application Center 6-224
after EAR file deployment 6-231

WebSphere Application Server Liberty
profile for Application Center 6-222

manual configuration (continued)
after EAR file deployment 6-229

WebSphere Application Server profile
for Application Center 6-231

manual configuration of WebSphere
Application Server Liberty 6-222

manual installation
Application Center 6-207

Manual installation
configuring MobileFirst Operations

Console on Tomcat 6-130
configuring MobileFirst Operations

Console on WebSphere Application
Server 6-136

configuring MobileFirst Operations
Console on WebSphere Application
Server Liberty 6-119

configuring MobileFirst Operations
Console on WebSphere Application
Server Liberty collective 6-125

configuringMobileFirst runtime on
Tomcat 6-131

configuringMobileFirst runtime on
WebSphere Application
Server 6-137

configuringMobileFirst runtime on
WebSphere Application Server
Liberty 6-119

configuringMobileFirst runtime on
WebSphere Application Server
Liberty collective 6-126

configuringMobileFirst Server
administration service on
Tomcat 6-129

configuringMobileFirst Server
administration service on WebSphere
Application Server 6-134

configuringMobileFirst Server
administration service on WebSphere
Application Server Liberty 6-117

configuringMobileFirst Server
administration service on WebSphere
Application Server Liberty
collective 6-124

configuringMobileFirst Server artifacts
on Tomcat 6-132

configuringMobileFirst Server artifacts
on WebSphere Application
Server 6-139

configuringMobileFirst Server artifacts
on WebSphere Application Server
Liberty 6-121

configuringMobileFirst Server artifacts
on WebSphere Application Server
Liberty collective 6-128

configuringMobileFirst Server live
update service on Tomcat 6-130

configuringMobileFirst Server live
update service on WebSphere
Application Server 6-135

configuringMobileFirst Server live
update service on WebSphere
Application Server Liberty 6-118

configuringMobileFirst Server live
update service on WebSphere
Application Server Liberty
collective 6-125

Manual installation (continued)
configuringMobileFirst Server push

service on Tomcat 6-132
configuringMobileFirst Server push

service on WebSphere Application
Server 6-138

configuringMobileFirst Server push
service on WebSphere Application
Server Liberty 6-120

configuringMobileFirst Server push
service on WebSphere Application
Server Liberty collective 6-127

MobileFirst Server on Tomcat 6-128
MobileFirst Server on WebSphere

Application Server Liberty 6-115
MobileFirst Server on WebSphere

Application Server Liberty
collective 6-121

MobileFirst Server to an application
server 6-115

maven 7-187
Maven

artifacts 7-189
build goal 7-189
build tool for adapters 5-1
configpull goal 7-189
configpush goal 7-189
dependencies 7-189
deploy goal 7-189
goals 7-189
plugin goal 7-189
repositories 7-189

maven artifacts
offline 7-24

Maven Central 7-189
maven internal repository 7-24
messages

administrator
adding locales 10-19

mfp-security-checks-base 7-189
mfpadm Ant task

commands for adapters 10-30
commands for apps 10-34
commands for devices 10-42
commands for general

configuration 10-28
commands for troubleshooting 10-44
syntax, attribures, elements, XML

format, output character set 10-24
to administer MobileFirst

applications 10-23
mfpadm program

administering applications through
the command line 10-47

calling 10-48
commands for adapters 10-57
commands for applications 10-61
commands for devices 10-68
commands for general

configuration 10-54
commands for troubleshooting 10-71

mfpadm tool
transferring an application

configuration from one server to
another 10-9

mfpdev 7-13, 7-17
getting started 7-22

Index X-9

mfpdev app config 7-20
mfpdev command-line

prerequisite software 7-14
migrating 5-1
migrating to Cordova 5-38
migration 5-1, 5-17, 11-12, 11-13

deprecated and discontinued
server-side APIs 5-14

scenarios of migrating push
notification for hybrid
applications 5-56

scenarios of migrating push
notification for native Android
applications 5-62

scenarios of migrating push
notification for native iOS
applications 5-69

scenarios of migrating push
notification for Windows Universal
applications 5-75

V6.2 applications to V8.0.0 5-1
minification

not supported in V.8.0.0 5-1
mobile applications 2-1

See also applications
adding to Application Center 13-22

Mobile Browser Simulator 7-109
Cordova 7-109
Overview 7-109
previewing apps 7-109

mobile client
Application Center component 13-51
credentials 13-51
deploying in Application

Center 13-12
installing and running in Application

Center 13-6
installing on an iOS mobile

device 13-55
mobile client of Application Center

importing and building the
project 13-8

prerequisites 13-6
mobile devices

See also devices
blocking access to protected

resources 10-15
tracking and managing 10-15

mobile-application management 10-15
administrator messages 10-18
administrator messages in multiple

languages 10-19
disabling application access to

protected resources
remotely 10-17

MobileFirst administration services
heartbeat mechanism to detect

unresponsive servers 6-149
MobileFirst Analytics 6-309

constraints 6-84
installing by using Ant tasks 11-10
installing on Apache Tomcat 11-6
installing on WebSphere Application

Server 11-7
installing on WebSphere Application

Server Liberty 11-4
sample configuration files 6-319

MobileFirst Development Server
stopping 7-13

MobileFirst Java Token Validator 7-274
MobileFirst Node.js framework 7-275
MobileFirst Operations Console 7-282

administering applications 10-1
application authenticity 7-282
audit logs 6-194
checking the status of farm

servers 6-149
configuration details for

Tomcat 6-130
configuration details for WebSphere

Application Server 6-136
configuration details for WebSphere

Application Server Liberty 6-119
configuration details for WebSphere

Application Server Liberty
collective 6-125

configuring client log profiles 11-24
defining administrator messages in

multiple languages 10-19
defining scope mapping elements to

security checks 7-263
device management 10-15
displaying an administrator

message 10-18
enabling or disabling Analytics data

collection 11-23
exporting and importing applications

and adapters 10-12
getting started with developing

applications 7-9
list of push notification tags 7-257
mobile-application

management 10-15
occasional stale data,

troubleshooting 6-194
opening 7-13
overview 7-6
presentation 2-4
remotely disabling application

access 10-17
search limitations 3-25
what's new in 8.0 3-10

MobileFirst Platform Foundation
Development Kit 7-9

MobileFirst Platform Foundation plug-ins
for Cordova 7-91

MobileFirst Platform Foundation SDK
for Cordova 7-91

MobileFirst Platform Pattern
installing 9-48
predefined templates 9-98
script packages 9-108

MobileFirst projects
configuring with JNDI

properties 6-171
upgrading 5-17

MobileFirst runtime
configuration details for

Tomcat 6-131
configuration details for WebSphere

Application Server 6-137
configuration details for WebSphere

Application Server Liberty 6-119

MobileFirst runtime (continued)
configuration details for WebSphere

Application Server Liberty
collective 6-126

topology constraints 6-84
MobileFirst runtime synchronization 9-

76
MobileFirst Server 6-191, 7-265

configuring Tomcat 6-170
configuring user authentication 6-166
deploying on IBM PureApplication

System 9-44
distribution structure 6-61
handling MySQL stale

connections 6-192
IBM MobileFirst Platform Foundation

System Pattern scripts 9-108
installation 6-2
installation prerequisites 6-39
installing to an application

server 6-100
installing to an application server by

using the Server Configuration
Tool 6-105

JNDI properties for administration
service 6-174

JNDI properties for live update
service 6-182

JNDI properties for push
service 6-186

logging 6-194
mfpadm Ant task, commands for

global configuration 10-28
mfpadm program, commands for

global configuration 10-54
migration 5-1
network flows 6-78
overview 6-2
running IBM Installation

Manager 6-41
server topologies 6-78
Transport Layer Security v1.2 (TLS

v1.2) 6-165
upgrade 5-1

MobileFirst Server administration
configuring WebSphere Application

Server 6-169
configuring WebSphere Application

Server Liberty profile 6-169
MobileFirst Server administration service

configuration details for
Tomcat 6-129

configuration details for WebSphere
Application Server 6-134

configuration details for WebSphere
Application Server Liberty 6-117

configuration details for WebSphere
Application Server Liberty
collective 6-124

topology constraints 6-84
transferring an application

configuration from one server to
another 10-9

MobileFirst Server artifacts
configuration details for

Tomcat 6-132

X-10 IBM MobileFirst Platform Foundation V8.0.0

MobileFirst Server artifacts (continued)
configuration details for WebSphere

Application Server 6-139
configuration details for WebSphere

Application Server Liberty 6-121
configuration details for WebSphere

Application Server Liberty
collective 6-128

MobileFirst Server components
constraints 6-84
installing on Tomcat manually 6-128
installing on WebSphere Application

Server Liberty manually 6-115
installing to an application server

manually 6-115
network flows 6-78

MobileFirst Server live update service
configuration details for

Tomcat 6-130
configuration details for WebSphere

Application Server 6-135
configuration details for WebSphere

Application Server Liberty 6-118
configuration details for WebSphere

Application Server Liberty
collective 6-125

topology constraints 6-84
MobileFirst Server push service

configuration details for
Tomcat 6-132

configuration details for WebSphere
Application Server 6-138

configuration details for WebSphere
Application Server Liberty 6-120

configuration details for WebSphere
Application Server Liberty
collective 6-127

constraints 6-99
MobileFirst service

mfpadm Ant task commands for
troubleshooting 10-44

mfpadm program commands for
troubleshooting 10-71

MobileFirst Studio
migration 5-1
upgrade path 5-1
using MobileFirst Studio 7.1 3-25

modes, command-line interface 7-19
monitor role

user authentication for MobileFirst
Server administration 6-166

monitoring
logging mechanism 6-194
product main features 2-1

multiple MobileFirst runtimes
topologies 6-99

MySQL
creating database for MobileFirst

Server manually 6-69
creating database for MobileFirst

Server with Ant tasks 6-78
creating database for MobileFirst

Server with Server Configuration
Tool 6-73

database requirement for MobileFirst
Server 6-66

MySQL (continued)
in combination with Apache Tomcat,

WebSphere Application Server, or
WebSphere Application Server
Liberty profile 6-192

setting up your database manually for
Application Center 6-215

stale connections 6-192
troubleshooting MobileFirst

Operations Console on Tomcat
8 6-194

MySQL database creation
for MobileFirst Server manually 6-69
for MobileFirst Server with Ant

tasks 6-78
for MobileFirst Server with Server

Configuration Tool 6-73

N
native Android projects

upgrading 5-25
native API applications

for iOS
copying files 7-27, 7-31, 7-32,

7-48, 7-51
native applications

developing 7-1, 7-24
developing for Android 7-52
for iOS 7-27, 7-126
for Universal Windows Platform

(UWP) 7-65
for Windows 8 Universal 7-65
upgrading from V6.2 to V8.0.0 5-1

native iOS applications
client property file 7-41

native iOS projects
upgrading 5-17, 5-23, 5-33, 5-44, 5-45

native iOS, upgrading 5-19
native Windows application

upgrading 5-31
network flows

between MobileFirst Server
components 6-78

new features 3-1
new featuresinterim fixes 3-16
node 11-20, 11-21
Node Package Manager (npm)

required software for Cordova
applications 7-84

Node.js
MobileFirst Node.js framework 7-275
required software for Cordova

applications 7-84
nodes, of server farms

lifecycle 6-149
notification

broadcast 7-256
notifications

tag-based, sending 7-258
npm

See Node Package Manager (npm)
NuGet

developing native applications 7-65,
7-66, 7-67

O
OAuth

overview 7-265
OAuth security model

access tokens 7-279
changes in the security model 5-1
JNDI properties for MobileFirst Server

administration service 6-174
obfuscation

of password in mfpadm configuration
file 10-48

object 8-4
Objective-C

client-side API for iOS 8-5
client-side push API for iOS 8-5

offline mode
product main features 2-1

One-Time URLs
controlled by a JNDI property 13-55

OpenJPA
See Java Persistence API (JPA) 6-174

operating systems
supported 2-7
supported by containers 9-1

operator role
user authentication for MobileFirst

Server administration 6-166
Oracle

creating database for MobileFirst
Server manually 6-68

creating database for MobileFirst
Server with Ant tasks 6-76

creating database for MobileFirst
Server with Server Configuration
Tool 6-72

database requirement for MobileFirst
Server 6-65

in combination with Apache Tomcat,
WebSphere Application Server, or
WebSphere Application Server
Liberty profile 6-192

setting up your database
manually 6-218

stale connections 6-192
Oracle database creation

for MobileFirst Server manually 6-68
for MobileFirst Server with Ant

tasks 6-76
for MobileFirst Server with Server

Configuration Tool 6-72
Oracle databases 6-220, 6-222

Apache Tomcat server 6-222
manual configuration 6-220, 6-222
WebSphere Application Server 6-220

overview 7-181
installing

token licensing 6-151
JavaScript adapters 7-204

Overview
MobileFirst Server 6-2

P
parent last

class loading policy 6-224, 6-231

Index X-11

patterns
deploying MobileFirst Server to IBM

PureApplication 9-44
Patterns

presentation 2-4
phones

reviews of application versions 13-86
showing details of a specific

application version 13-79
submitting reviews of installed

applications 13-86
platform limitations 6-150
preparing for developing Android native

applications 7-53
preparing for developing iOS native

applications 7-27
prerequisites

Apache Tomcat 6-100
application servers 6-100
Cordova 7-84
file system 6-104
installing MobileFirst Server 6-39
MobileFirst Server installation on an

application server 6-104
WebSphere Application Server 6-104
WebSphere Application Server

Liberty 6-103
WebSphere Application Server

Network Deployment 6-104
procedures

HTTP adapters 7-219
SQL adapters 7-222

product components 2-4
product overview 2-1
production

JNDI environment entries for
MobileFirst runtime 6-183

production environment 5-1
deploying or updating adapters 10-2
registering applications 10-6

production environments
building applications 10-4
transferring application

configurations 10-7
production servers

transferring server-side artifacts 10-7
profiles

See also Ad Hoc Distribution
See client log profiles

projects
configuring with JNDI

properties 6-171
properties 11-12

of mobile applications 13-27
property files

for native iOS applications 7-41
proxy settings

for push notification 7-248
public app stores

See application stores
public application stores

adding applications from 13-24
public key 7-185, 7-235, 7-239

direct update 7-20
pulling

adapters 7-199, 7-217

PureApplication
deploying MobileFirst Server, benefits

and limitations 9-44
push notification

Android 7-254
architecture 7-248, 7-250
broadcast 7-256
configuring 7-259
configuring for application

updates 13-13
getting started 7-251
iOS 7-255
mechanism 7-248
migration scenarios for hybrid

applications 5-56
migration scenarios for native

Android applications 5-62
migration scenarios for native iOS

applications 5-69
migration scenarios for Windows

Universal applications 5-75
product main features 2-1
proxy settings 7-248
REST API 8-197
scope mapping elements to security

checks 7-263
scopes 7-264
security for clients 7-251, 7-252
sending notifications to

subscribers 7-262
sending to the device 7-258
setting up 7-254
tag subscriptions 7-257
tag-based notification 7-257, 7-258
troubleshooting problems on

iOS 7-265
Push notification

upgrading to 5-55
push notifications

sending
using MobileFirst Operations

Console 7-259
Windows 7-256

push service
changes from V6.2 to V8.0.0 5-1

pushing
adapters 7-199, 7-217

Q
quick start

on application development 7-9

R
Rational Common Licensing

native library 6-160
shared library 6-160

Rational Common Licensing native
library

token license validation 10-83
Rational License Key Server

token license validation 10-83
troubleshooting token licenses 6-160

recommended applications
push notification 13-12

referrals
supported or not 6-243

registration
applications

See applications, registering
relational databases

IBM DB2 6-63
MySQL 6-63
Oracle 6-63

release notes 3-1, 3-25
known limitations 3-25

removed features 5-4
required software 7-14
resources

custom requests using
WLAuthorizationManager 7-306,
7-307

C# 7-313
Java 7-309
JavaScript 7-311
Objective-C 7-308

exporting and importing by using the
REST API 10-11

protecting 7-271
REST API 8-270

administration service 8-7
exporting and importing applications

and adapters 10-11
for the administration service

what's new 3-3
for the MobileFirst runtime 7-274
push notification service 8-197
runtime 8-270
transferring an application

configuration from one server to
another 10-9

REST services
administering applications 10-1

RESTful access
JavaScript adapters 7-232

reverse proxies
configuring MobileFirst Server 6-165

reverse proxy
deployment of topologies of server

farm and WebSphere Application
Server Network Deployment 6-98

JNDI properties for Application
Center 6-261

reviews of application versions 13-86
reviews of applications 13-86
RFC 6797

HTTP Strict Transport Security
standards 6-174

role-based access 11-23
roles

See also security
for enabling or disabling data

collection from the MobileFirst
Operations Console 11-23

for exporting and importing
applications and adapters 10-11,
10-12

mapping to users for Application
Center Java EE security 6-234,
6-236

mapping users 6-275, 6-287

X-12 IBM MobileFirst Platform Foundation V8.0.0

roles (continued)
user authentication for MobileFirst

Server administration 6-166
root certificates

pre-installed on Android and iOS
devices 6-257

self-signed CA certificates in an
Application Center test
environment 6-260

runtime
internal databases 6-315
REST API 8-270

runtime middleware 2-1
runtime synchronization limitation 9-77
runtimes

exporting and importing applications
and adapters by using the REST
API 10-11

exporting and importing applications
and adapters from the MobileFirst
Operations Console 10-12

mfpadm Ant task, commands for
global configuration 10-28

mfpadm program, commands for
global configuration 10-54

S
Safari browsers

troubleshooting a corrupted
Application Center login
page 13-21

Sample Ant files
modifications 6-112

sample response files
installing MobileFirst Server 6-48

samples
getting started with developing

applications 7-9
of MobileFirst applications 7-25
to configure MobileFirst

Analytics 6-319
scripts

as Cordova application
resources 7-102

SDK
for Analytics 11-35

search
limitations in MobileFirst Operations

Console 3-25
Secure Socket Layer (SSL) configuration

configuring in WebSphere Application
Server, HTTP adapters 6-197

Secure Sockets Layer
See SSL

security 7-265
See also Java EE security roles
authorization server 7-265

WebSphere DataPower 7-265,
7-314

challenge handlers 7-265, 7-306
changes in the security model 5-1
checks

application authenticity 7-282,
7-284

configure 7-284

security 7-265 (continued)
checks (continued)

predefined MobileFirst security
checks 7-282, 7-284

properties 7-284
client API 7-306
client certificate 7-279
confidential clients 7-279
configurations 7-297
configuring Tomcat for LDAP

authentication 6-246
configuring user authentication for

MobileFirst Server
administration 6-166

configuring with an external LDAP
repository 9-86

device single sign-on (SSO) 7-301
enforcing TLS-secure connections in

iOS apps 7-46, 7-127
Federal Information Processing

Standards (FIPS) 10-75
for One-Time URLs 13-55
for push notification clients 7-251,

7-252
framework

overview 7-265
HTTP Strict Transport Security

standards 6-174
interfaces

securityCheckDefinition 7-294
Java EE security roles for Application

Center, configuring 6-234, 6-236
keystore 7-316
mapping users to roles 6-275, 6-287
OAuth 7-265, 7-314

access tokens 7-265, 7-303, 7-305
client API 7-306
token response 7-305
tokens 7-304, 7-316
WLAuthorizationManager 7-307,

7-308, 7-309, 7-311, 7-313
OAuth API 7-307

C# 7-313
Java 7-309
JavaScript 7-311
Objective-C 7-308

OAuth scopes 7-265, 7-271, 7-272
mandatory application

scope 7-265, 7-276
mapping 7-277
scope elements 7-265, 7-277

obfuscation of password in mfpadm
configuration file 10-48

predefined checks 7-282
product main features 2-1
protecting external Java resources on

Node.js servers 7-275
protecting external Java resources on

WebSphere servers 7-275
protecting resources 7-271
resource protection

adapters 7-272
disabling 7-272
external resources 7-274

resource server 7-265
Transport Layer Security v1.2 6-165
web applications 7-73

security 7-265 (continued)
Chrome secure-origins

policy 7-73
single-origin policy 7-73

what's new in 8.0 3-10
security API 7-203
security checks 7-265, 7-281, 7-291

base classes 7-289
configuring 7-297, 7-298, 7-300

predefined LTPA-based single
sign-on (SSO) security
check 7-289

contract 7-291
defining 7-289, 7-294
defining scope mapping

elements 7-263
definition 7-295
device single sign-on

configuration 7-301
implementing 7-289
interface 7-289, 7-291
predefined 7-282

application authenticity 7-282
LTPA-based single sign-on (SSO)

security check 7-285
properties 7-297

expirationSec 7-289
security framework 7-265
security utilities 7-181, 7-182, 7-183,

7-184
self-signed certificates

CA certificates, managing and
installing in an Application Center
test environment 6-260

not supported on Application
Center 6-257

to configure SSL 10-3
sending 11-37, 11-38, 11-39, 11-40, 11-41,

11-42, 11-43
Server Configuration Tool

Applying a fix pack 6-110
creating database tables for

MobileFirst Server 6-70
creating DB2 database for MobileFirst

Server 6-71
creating MySQL database for

MobileFirst Server 6-73
creating Oracle database for

MobileFirst Server 6-72
install server farm 6-140
installation of MobileFirst Server in

graphical mode 6-5
installing MobileFirst Server to an

application server 6-105
known limitation 3-25
starting and running 6-106
Supported operating systems

Linux x86 or Linux x86-64 6-106
Mac OS x86-64 6-106
Windows x86 or x86-64 6-106

Supported topologies 6-106
server farm

reverse proxy 6-98
server farms

configuring 6-144
deploying MobileFirst Server to IBM

PureApplication 9-44

Index X-13

server farms (continued)
heartbeat rate, timeout values, and

status 6-149
homogeneous, as opposed to

heterogeneous 6-139
installing with Ant tasks 6-141
installing with the Server

Configuration Tool 6-140
invalid configuration 6-139
planning the configuration 6-139
tutorial about the installation

MobileFirst Server in command line
mode 6-22

tutorial about the installation
MobileFirst Server in graphical
mode 6-5

verifying configuration 6-148
when to declare 6-139

server topologies
MobileFirst Server 6-78

server-side artifacts
transferring the configuration to a test

or production server 10-7
server-side development

changes from V6.2 to V8.0.0 5-1
servers

transferring application
configurations 10-9

Service Level Agreement (SLA)
and WebSphere Application Server

Network Deployment
topology 6-94

Setting
application license 10-80

setting up your environment for
developing native Android
applications 7-53

setting up your environment for
developing native iOS
applications 7-27

setup 7-182
MobileFirst Server databases 6-63

sharing
applications through Application

Center 13-1
shells

not supported in V.8.0.0 5-1
sideloading Windows applications 13-2
silent installation

command line parameters 6-51
using XML response files 6-47

single sign-on (SSO)
device

configuring 7-301
LTPA-based predefined security

check 7-285
configuring 7-289

Single Sign-On (SSO)
configuring a server farm 6-144

skins
not supported in V.8.0.0 5-1

SLA
See Service Level Agreement (SLA)

SOAP-based service request 7-219
software development kits

supported 2-7

splash screens
as Cordova application

resources 7-102
custom 7-104

SQL adapter
connectionPolicy 7-213
elements 7-213

SQL adapter XML file 7-213
SQL adapter XML file structure 7-213
SQL adapters

example 7-222
procedures 7-222

SSL
configuring between adapters and

back-end servers 10-3
configuring for Application

Center 6-257
JNDI properties

for MobileFirst Server
administration service 6-174

keystore 7-316
security with a server farm 6-139
to connect to Application Center from

an iOS login view 13-61
SSL/TLS 7-185
stars

to rate appreciations of installed
applications on Application
Center 13-86

stylesheets
for Cordova applications 7-102

support
unsubscribing a device from SMS

notification
not supported in 8.0 6-166

supported platforms
token licensing 6-159

SWAM (WebSphere authentication
method)

configuring user authentication for
MobileFirst Server
administration 6-166

symmetric deployment
Liberty collective 6-91
WebSphere Application Server

Network Deployment 6-94
synchronization

of device with application log
profile 11-24

system messages 8-4
system requirements 11-2

T
tablets

See also ARM-based tablets
reviews of application versions 13-86
showing details of a specific

application version 13-79
submitting reviews of installed

applications 13-86
tag-based notifications

sending to the device 7-258
tags

for tag-based notification 7-257
TAI

See Trust Association Interceptor (TAI)

template
Cordova 7-88

test environments
building applications 10-4
managing and installing self-signed

CA certificates 6-260
transferring application

configurations 10-7
test servers

transferring server-side artifacts 10-7
testing adapter

CLI 7-230
command line interface 7-230

testing applications
product main features 2-1

thumbnail images
as Cordova application

resources 7-102
timeout values

for server farm nodes 6-149
Tivoli Endpoint Manager

propert to manage mobile
applications 13-27

TLS v1.2
See Transport Layer Security v1.2

token licenses
validation 10-83

token licensing 2-8
blocked application status 10-20
installation overview 6-151
insufficient tokens and application

status in MobileFirst Operations
Console 10-20

planning
Development 6-150
installation process 6-150
Operations 6-150
supported platforms 6-150
supported topologies 6-150
technical restrictions 6-150

troubleshooting 6-160
tokens 2-8
Tomcat 6-170

configuring a server farm 6-144
configuring Derby manually for

Application Center 6-214
configuring for DB2 manually for

Application Center 6-210
configuring for LDAP

authentication 6-246
configuring LDAP

authentication 6-246
logging and monitoring

mechanisms 6-194
logging and tracing 13-88
starting and running Server

Configuration Tool 6-106
troubleshooting a corrupted login

page 13-20
troubleshooting MobileFirst

Operations Console calls 6-194
troubleshooting token licenses 6-160

tools 7-13

X-14 IBM MobileFirst Platform Foundation V8.0.0

topologies
multiple instances of MobileFirst

Server on the same server or
WebSphere Application Server
cell 6-100

multiple MobileFirst runtimes 6-99
server farm 6-88
stand-alone 6-85

topology
asymmetric deployment 6-91, 6-94
Liberty collective 6-91
reverse proxy with server farm and

WebSphere Application Server
Network Deployment 6-98

WebSphere Application Server
Network Deployment 6-94

topology constraints
of MobileFirst runtime 6-84
of MobileFirst Server administration

service 6-84
of MobileFirst Server live update

service 6-84
traces

See logging
tracing

See also logging and tracing
JNDI properties for controlling

Application Center trace
output 13-88

tracking licenses 10-80
translation 8-4
Transport Layer Security (TLS)

enforcing secure connections in iOS
apps 7-46, 7-127

Transport Layer Security v1.2
configuring MobileFirst Server 6-165

troubleshooting 11-49, 14-1
corrupted Application Center login

page in Safari browsers 13-21
licence validation failure 10-83
logging and tracing for Application

Center 13-87
mfpadm Ant task commands 10-44
mfpadm program commands 10-71
MobileFirst Operations Console calls,

with MySQL on Tomcat 8 6-194
push notification on iOS 7-265
token licensing 6-160
Tomcat corrupted login page 13-20

Trust Association Interceptor
MobileFirst OAuth TAI 7-274

Trust Association Interceptor (TAI)
MobileFirst OAuth TAI 7-275

truststores
and SSL configuration 6-197

tutorials 4-1
installation of MobileFirst Server 6-4

U
Unicode Normalization Forms

limitation on search 3-25
uninstallanalytics

Ant task 6-309
uninstalling

applications 13-78

uninstallmobilefirstadmin
Ant task 6-275

uninstallmobilefirstpush
Ant task 6-287

uninstallmobilefirstruntime
Ant task 6-293

United States Government Configuration
Baseline 10-74, 10-75

Universal Windows Platform
(UWP) 7-65

unresponsive servers
heartbeat mechanism 6-149

updateanalytics
Ant task 6-309

updatemobilefirstadmin
Ant task 6-275

updatemobilefirstpush
Ant task 6-287

updatemobilefirstruntime
Ant task 6-293

updates
configuring push notification 13-13

updating client apps directly
CLI 7-236
development and production

environments 7-235
full vs. incremental 7-235
keystore 7-235
lifecycle 7-236
MobileFirst Operations

Console 7-236
overview 7-235
secure and non-secure 7-235

upgrade path 5-1
upgrades

V6.2 applications to V8.0.0 5-1
upgrading

native Android projects 5-25
native iOS projects 5-17, 5-23, 5-33,

5-44, 5-45
native Windows application 5-31

upgrading, native iOS 5-19
upload, Ant task 13-49
user authentication

See authentication
user roles

configuring authentication for
MobileFirst Server
administration 6-166

users 11-36
mapped to Java EE security roles for

Application Center 6-234, 6-236
users and groups

access to Application Center 6-238,
6-240, 6-242

Application Center 6-238

V
verbosity of client log files 11-24
verification

server farm configuration 6-148
version 5-1
versions of applications

in Application Center 13-2
reverting 13-85
reviewing 13-86

versions of applications (continued)
showing details of a specific

version 13-79
views

in the Application Center
client 13-63

Virtual Member Manager (VMM)
Application Center Access Control

List 6-238, 6-240
JNDI properties for Application

Center 6-261
Visual Studio

application packages 13-22
to build the Application Center mobile

client 13-6
VMM

See Virtual Member Manager (VMM)

W
watchOS 7-48, 7-51
web

applications
registering 7-80
registering using MobileFirst

Operations Console 7-81
registering using MobileFirst

Platform CLI 7-80
web applications

analytics 7-73, 7-76, 7-79
developing 7-1, 7-73

acquiring the SDK 7-75
initializing the SDK 7-79
using the SDK 7-76

web browsers
supported 2-7

web resources
checksum

configuring 7-20
test ignored file extensions 7-20

packaging and uploading to
MobileFirst Server 7-237

WebSphere Application Server
configuring for Application

Center 6-224
after EAR file deployment 6-231

configuring for DB2 manually for
Application Center 6-209

configuring for Derby manually for
Application Center 6-212

configuring Java EE security roles for
Application Center 6-234

configuring LDAP ACL management
for Application Center 6-240

configuring LDAP ACL management
for V7 6-238

configuring profile for MobileFirst
Server administration 6-169

configuring the endpoint of
application resources for Application
Center 6-253

configuring to avoid MySQL timeout
issues 6-192

configuring to avoid MySQL, DB2,
and Oracle timeout issues 6-192

Index X-15

WebSphere Application Server (continued)
configuring user authentication for

MobileFirst Server
administration 6-166

deploying MobileFirst Server to IBM
PureApplication 9-44

installing MobileFirst Analytics 11-7
logging and monitoring

mechanisms 6-194
LTPA-based single sign-on

(SSO) 7-285
managing ACL for Application Center

with LDAP 6-240
manual configuration 6-220
multiple instances of MobileFirst

Server 6-100
outbound dynamic

configuration 6-197
prerequisites for installing MobileFirst

Server 6-104
protecting external resources 7-275
resource protection 7-274
SSL configuration and HTTP

adapters 6-197
starting and running Server

Configuration Tool 6-106
V7.0 and V8.0 are no longer

supported 5-1
WebSphere Application Server full profile

logging and tracing in Application
Center 13-87

topologies 6-85, 6-88
WebSphere Application Server Liberty

configuring a server farm 6-144
configuring for Application Center

manually
after EAR file deployment 6-229

configuring Java EE security roles for
Application Center 6-236

configuring LDAP ACL
management 6-243

configuring LDAP
authentication 6-242

configuring profile for MobileFirst
Server administration 6-169

configuring the endpoint of
application resources for Application
Center 6-255

deploying MobileFirst Server to IBM
PureApplication 9-44

installation of MobileFirst Server in
command line mode 6-22

installation of MobileFirst Server in
graphical mode 6-5

installing MobileFirst Analytics 11-4
prerequisites for installing MobileFirst

Server 6-103
resource protection 7-274
starting and running Server

Configuration Tool 6-106
WebSphere Application Server Liberty

collective
See also Liberty collective
installing MobileFirst Server

components manually 6-121
starting and running Server

Configuration Tool 6-106

WebSphere Application Server Liberty
profile

Application Center installation 13-6
configuring to avoid MySQL, DB2,

and Oracle timeout issues 6-192
logging and tracing in Application

Center 13-88
topologies 6-85, 6-88

WebSphere Application Server Network
Deployment

prerequisites for installing MobileFirst
Server 6-104

reverse proxy 6-98
topologies 6-94
troubleshooting token licenses 6-160

WebSphere Application Server V8
configuring LDAP for Application

Center 6-238
WebView interface

developing Cordova
applications 7-83

what's new 3-1, 3-17
Android support 5-17
API 3-3
deploying and managing apps 3-10
discontinued features 3-19
external library 3-3
in building applications 3-1
interim fixes 3-16
migrating existing apps 5-17
new mobile OS updates 5-17
removed features 5-4

whitelisting
See Restricting access to the consoles

running on containers
Windows

adding MobileFirst SDK to an
application 7-66

adding MobileFirst SDK to an
application manually 7-65

adding optional MobileFirst
components to an application 7-67

applications
registering 7-68
registering using MobileFirst

Operations Console 7-70
registering using MobileFirst

Platform CLI 7-68
known limitations 3-25
push notifications 7-256
stopping the MobileFirst Development

Server 7-13
Windows 10 Universal Windows Platform

(UWP) 7-72
Windows 8

developing native applications 7-1,
7-24

file types 13-2
sideloading applications 13-2
specific platform requirements for

Application Center 13-2
Windows 8 Universal 7-72, 7-170, 7-171

adding mobile applications to
Application Center 13-22

developing native applications 7-65
framework packages 13-22

Windows 8 Universal (continued)
prerequisites for using the mobile

client 13-6
updating applications in Application

Center 13-80
Windows applications

getting started 7-9
Windows devices

showing details of a specific
application version 13-79

views in the Application Center
client 13-63

Windows Phone
deploying the mobile client in

Application Center 13-12
installing and running the mobile

client in Application Center 13-6
removing applications 13-78

Windows Phone 8
developing native applications 7-1,

7-24
Windows Phone applications

properties 13-27
reverting 13-85

Windows Phone devices
reviews of application versions 13-86
showing details of a specific

application version 13-79
views in the Application Center

client 13-63
Windows Phone Store

not supported for adding applications
toApplication Center catalog 13-24

Windows Phones
preparation for the mobile client 13-8

Windows push notification server
WNS 7-256

Windows Store
not supported for adding applications

toApplication Center catalog 13-24
removing applications 13-78

Windows Universal applications
migration scenarios for push

notification 5-75
WindowsPhone 8

specific platform requirements for
Application Center 13-2

WinJS framework package
adding Windows 8 mobile

applications to Application
Center 13-22

WKWebView
plug-in for iOS applications 7-134

X
X.509 certificates

See self-signed certificates
Xcode 7-48
XML response files

installing Application Center 6-47
XSL transformation filtering 7-219

X-16 IBM MobileFirst Platform Foundation V8.0.0

	Contents
	IBM MobileFirst Platform Foundation V8.0.0 documentation
	Product overview
	Product main capabilities
	Product components
	System requirements
	Licensing in MobileFirst Server
	Downloading IBM MobileFirst Platform Foundation V8.0.0
	Matrix of features and platforms
	Accessibility features for IBM MobileFirst Platform Foundation

	Release notes
	What's new in V8.0.0
	What's new in building apps
	What's new in MobileFirst APIs
	What's new in MobileFirst security
	What's new in operating system support
	What's new in deploying and managing apps
	What's new in MobileFirst Server
	What's new in IBM MobileFirst Analytics
	What's new in push notifications

	What's new in V8.0.0 interim fixes
	Licensing
	Web applications
	Adapters
	Cordova applications
	Deprecated features and API elements
	Discontinued features and API elements
	Known issues
	Known limitations

	Tutorials and additional resources
	Upgrading to IBM MobileFirst Platform Foundation V8.0.0
	Migrating apps from earlier releases
	Client API changes in V8.0.0
	Server-side API changes in V8.0.0
	Migrating client applications to IBM MobileFirst Platform Foundation V8.0.0
	Migrating existing native iOS applications
	Migrating existing native Android applications
	Migrating existing native Windows applications
	Migrating existing Cordova and hybrid applications

	Migrating existing adapters to work under MobileFirst Server V8.0.0
	Using older adapters as-is under MobileFirst Server V8.0.0
	Migrating Java adapters to Maven projects for MobileFirst Server V8.0.0
	Migrating JavaScript adapters to Maven projects for MobileFirst Server V8.0.0

	Migrating to push notifications from event source-based notifications
	Migration scenarios

	Migrating apps storing mobile data in Cloudant with IMFData or Cloudant SDK
	Integrating MobileFirst and Cloudant security
	Creating databases
	Encrypting data on the device
	Setting user permissions
	Modeling data
	Performing CRUD operations
	Creating indexes
	Querying data
	Supporting offline storage and synchronization

	Applying a fix pack to IBM MobileFirst Platform Server

	Installing and configuring server-side components
	Installation overview
	Installing IBM MobileFirst Platform Server
	MobileFirst Server overview
	Tutorials about MobileFirst Server installation
	Installing MobileFirst Server in graphical mode
	Installing MobileFirst Server in command line mode

	Installing MobileFirst Server for a production environment
	Installation prerequisites
	Running IBM Installation Manager
	Setting up databases
	Topologies and network flows
	Installing MobileFirst Server to an application server

	Installing and configuring for token licensing
	Planning for the use of token licensing
	Installation overview for token licensing
	Connecting MobileFirst Server installed on Apache Tomcat to the Rational License Key Server
	Connecting MobileFirst Server installed on WebSphere Application Server Liberty profile to the Rational License Key Server
	Connecting MobileFirst Server installed on WebSphere Application Server to the Rational License Key Server
	Limitations of supported platforms for token licensing
	Troubleshooting token licensing problems

	Configuring MobileFirst Server
	Endpoints of the MobileFirst Server production server
	Configuring MobileFirst Server to enable TLS V1.2
	Apache Tomcat
	WebSphere Application Server Liberty profile
	WebSphere Application Server full profile

	Configuring user authentication for MobileFirst Server administration
	Configuring WebSphere Application Server full profile for MobileFirst Server administration
	Configuring WebSphere Application Server Liberty profile for MobileFirst Server administration
	Configuring Apache Tomcat for MobileFirst Server administration

	List of JNDI properties of the MobileFirst Server web applications
	Setting up JNDI properties for MobileFirst Server web applications
	List of JNDI properties for MobileFirst Server administration service
	List of JNDI properties for MobileFirst Server live update service
	List of JNDI properties for MobileFirst runtime
	List of JNDI properties for MobileFirst Server push service

	Configuring data sources
	Managing the DB2 transaction log size
	Configuring DB2 HADR seamless failover for MobileFirst Server and Application Center data sources
	Handling stale connections
	Stale data after creating or deleting apps from MobileFirst Operations Console

	Configuring logging and monitoring mechanisms
	Configuring license tracking
	Configuring license tracking for client device and addressable device
	Configuring IBM License Metric Tool log files

	WebSphere Application Server SSL configuration and HTTP adapters

	Installing and configuring the MobileFirst Analytics Server
	Installing and configuring the Application Center
	Installing Application Center with IBM Installation Manager
	Optional creation of databases
	Installing Application Center in WebSphere Application Server Network Deployment
	Completing the installation
	Default logins and passwords created by IBM Installation Manager for the Application Center

	Installing the Application Center with Ant tasks
	Creating and configuring the database for Application Center with Ant tasks
	Deploying the Application Center Console and Services with Ant tasks

	Manually installing Application Center
	Configuring the DB2 database manually for IBM MobileFirst Platform Application Center
	Configuring the Apache Derby database manually for Application Center
	Configuring the MySQL database manually for Application Center
	Configuring the Oracle database manually for IBM MobileFirst Platform Application Center
	Deploying the Application Center WAR files and configuring the application server manually
	Deploying the Application Center EAR file and configuring the application server manually

	Configuring Application Center after installation
	Configuring user authentication for Application Center
	Managing users with LDAP
	Configuring properties of DB2 JDBC driver in WebSphere Application Server
	Managing the DB2 transaction log size
	Defining the endpoint of the application resources
	Configuring Secure Sockets Layer (SSL)
	JNDI properties for Application Center
	Configuring WebSphere Application Server to support applications in public app stores

	Installation reference
	Ant configuredatabase task reference
	Ant tasks for installation of MobileFirst Operations Console, MobileFirst Server artifacts, MobileFirst Server administration, and live update services
	Ant tasks for installation of MobileFirst Server push service
	Ant tasks for installation of MobileFirst runtime environments
	Ant tasks for installation of Application Center
	Ant tasks for installation of MobileFirst Analytics
	Internal runtime databases
	Sample configuration files
	Sample configuration files for MobileFirst Analytics

	Developing applications
	Development concepts and overview
	Applications
	MobileFirst Server
	Adapters
	MobileFirst Operations Console overview
	Client app development environments

	Setting up the development environment
	Getting started with MobileFirst development
	The IBM MobileFirst Platform Foundation Developer Kit
	Installing the IBM MobileFirst Platform Foundation Developer Kit

	Setting up the MobileFirst Development Server
	Starting the MobileFirst Development Server
	Opening the MobileFirst Operations Console
	Stopping the MobileFirst Development Server

	The MobileFirst command-line interface (CLI)
	Prerequisite software for using the CLI
	Installing the MobileFirst Platform CLI
	Command-line interface (CLI) summary
	Command-line interface (CLI) help
	Interactive mode and direct mode
	Global command-line options
	Configuring the application from the CLI
	Getting started with the MobileFirst CLI

	Setting up an internal Maven repository for offline development

	Developing the client side of a MobileFirst application
	Developing MobileFirst applications
	Getting started with a sample MobileFirst application
	Acquiring the MobileFirst SDK from the MobileFirst Operations Console
	Developing native applications for iOS in Xcode
	Methods of setting up your environment
	Adding optional iOS frameworks
	Registering iOS applications to MobileFirst Server
	iOS client properties file
	Creating some initial code in iOS
	Using Logger in Swift projects
	Enforcing TLS-secure connections in iOS apps
	Enabling OpenSSL for iOS
	Working with bitcode in iOS apps
	Developing for watchOS 2

	Developing native applications in Android Studio
	Methods of setting up your environment
	Registering Android applications to MobileFirst Server
	Android client properties file
	Some initial code for accessing the server

	Developing native C# applications for Windows 10 Universal Windows Platform and Windows 8 Universal
	Methods of setting up your environment
	Registering Windows applications to MobileFirst Server
	Client property file for Windows 10 Universal Windows Platform and Windows 8 Universal

	Developing web applications
	Acquiring the MobileFirst web SDK
	Adding the MobileFirst SDK to web applications
	Initializing the MobileFirst SDK
	Registering web applications to MobileFirst Server

	Developing Cordova applications
	Prerequisites for developing Cordova apps with MobileFirst features
	Supported Cordova components for MobileFirst cross-platform apps
	Creating Cordova apps that include MobileFirst features
	Inside your Cordova app
	Registering Cordova applications to MobileFirst Server
	Previewing Cordova web resources with the Mobile Browser Simulator
	Cordova app security
	IBM MobileFirst Studio plug-in for managing Cordova projects in Eclipse
	Developing Cordova apps for Android
	Developing Cordova apps for iOS
	Developing Cordova apps for Windows
	Cordova WebView

	JSONStore
	JSONStore overview
	General JSONStore terminology
	Enabling JSONStore
	JSONStore API concepts
	Troubleshooting JSONStore
	JSONStore examples
	JSONStore advanced topics
	JSONStore security utilities

	Certificate pinning

	Developing the server side of a MobileFirst application
	Adapters overview
	Adapters as Apache Maven projects
	MobileFirst Java adapters
	The Java adapter-descriptor file
	Working with Java adapters
	Developing Java adapter code

	MobileFirst JavaScript adapters
	The JavaScript adapter-descriptor file
	Working with JavaScript adapters
	Developing JavaScript adapter code

	Configuring adapters
	Creating user-defined adapter properties
	Configuring adapter properties with MobileFirst Operations Console
	Sharing adapter configurations
	Using user-defined property values in adapter code

	Tools for testing and debugging adapters
	Client access to adapters
	Troubleshooting an error when an application or an adapter is pushed to a MobileFirst Server

	Updating Cordova client apps directly
	The Direct Update lifecycle
	Creating and deploying updated web resources to MobileFirst Server
	Creating and deploying updated web resources to the default MobileFirst Server
	Creating and deploying updated web resources to a non-default MobileFirst Server
	Uploading a previously generated archive
	Uploading packaged web resources with the MobileFirst Operations Console

	Implementing secure Direct Update on the client side
	Default Direct Update user interface
	Serving Direct Update requests from a CDN
	Customizing the Direct Update user interface and process

	Push notification
	Push notification architecture
	Getting started with push notifications
	Security for push notification clients
	Obtaining tokens

	Setting up push notifications
	Setting up push notifications for Android
	Setting up push notifications for iOS
	Setting up push notifications for Windows

	Broadcast notifications
	Tag-based notifications
	Setting up tag-based notifications

	Unicast notifications
	Sending push notifications
	Sending push notification with the MobileFirst Operations Console

	Sending SMS notifications
	Setting up SMS notification

	REST Services APIs
	Troubleshooting push notification problems

	MobileFirst security framework
	Overview of the MobileFirst security framework
	OAuth resource protection
	Configuring adapter resource protection
	External resources protection
	Configuring a mandatory application scope
	Mapping scope elements

	Confidential clients
	Security checks
	Predefined MobileFirst security checks
	Security-checks implementation
	Security-checks configuration

	Access tokens
	Configuring the maximum access-token expiration period
	Access-token response

	Client security APIs
	Sample custom resource-request implementations using WLAuthorizationManager

	Configuring IBM WebSphere DataPower as the OAuth authorization server
	Configuring the MobileFirst Server keystore

	API reference
	MobileFirst client-side API
	JavaScript client-side API
	The options Object
	The WL.ClientMessages object

	JavaScript client-side push API
	JavaScript web analytics client-side API
	Objective-C client-side API for iOS apps
	Objective-C client-side push API for iOS apps
	Objective-C client-side API for hybrid apps
	Java client-side API for Android apps
	Java client-side push API for Android apps
	C# client-side API for Windows 10 Universal Windows Platform and Windows 8 Universal apps
	C# client-side push API for Windows 10 Universal Windows Platform and Windows 8 Universal apps

	MobileFirst server-side API
	JavaScript server-side API
	Java server-side API

	MobileFirst Java Token Validator API
	REST API for the MobileFirst Server administration service
	Adapter (GET)
	Adapter (DELETE)
	Adapter (POST)
	Adapters (GET)
	Adapter Configuration (GET)
	Adapter configuration (PUT)
	Application Authenticity (DELETE)
	Application Configuration (GET)
	Application Configuration (PUT)
	Application Descriptor (GET)
	Application Environment (GET)
	Application (GET)
	Application (POST)
	Applications (GET)
	Application License Configuration (POST)
	Application license configuration (GET)
	Application Version (GET)
	Application Version (DELETE)
	Audit (GET)
	Confidential Clients (GET)
	Confidential Clients (PUT)
	Create Subscription (POST)
	Create Tag (POST)
	Delete APNs settings (DELETE)
	Delete GCM settings (DELETE)
	Delete WNS settings (DELETE)
	Delete Message (DELETE)
	Delete Subscription (DELETE)
	Delete Tag (DELETE)
	Deploy (POST)
	Deploy Application Authenticity Data (POST)
	Deploy a web resource (POST)
	Device Application Status (PUT)
	Device Status (PUT)
	Device (DELETE)
	Devices (GET)
	Diagnostic Service (GET)
	Export adapter resources (GET)
	Export adapters (GET)
	Export application environment (GET)
	Export application environment resources (GET)
	Export application resources (GET)
	Export applications (GET)
	Export resources (GET)
	Export runtime resources (GET)
	Farm topology members (GET)
	Farm topology members (DELETE)
	Get Message (GET)
	Get Tags (GET)
	Get APNs Settings (GET)
	Get GCM Settings (GET)
	Get WNS Settings (GET)
	Global Configuration (GET)
	Keystore (GET)
	Keystore (POST)
	Keystore (DELETE)
	License configuration (DELETE)
	Push Device Registration (GET)
	Push Device Registration (DELETE)
	Push Device Subscription (GET)
	Register Application with Push Service (POST)
	Remove Subscription (DELETE)
	Retrieve Device Registration (GET)
	Retrieve Tag (GET)
	Retrieve Web Resource (GET)
	Retrieve Subscription to Push Service. (GET)
	Runtime Configuration (GET)
	Runtime configuration (PUT)
	Runtime (GET)
	Runtime (DELETE)
	Runtime Lock (GET)
	Runtime Lock (DELETE)
	Runtimes (GET)
	Send Bulk Messages (POST)
	Send Message (POST)
	Transaction (GET)
	Transactions (GET)
	Remove Subscription (DELETE)
	Update Device Registration (PUT)
	Update APNs settings (PUT)
	Update GCM settings (PUT)
	Update WNS Settings (PUT)
	Update Tag Information (PUT)

	REST API for the MobileFirst Server push service
	Push Device Registration (DELETE)
	Push Device Registration (GET)
	Push Device Registration (POST)
	Push Device Registrations (GET)
	Push Device Registration (PUT)
	Push Device Subscription (DELETE)
	Push Device Subscription (GET)
	Push Device Subscription (POST)
	Push Device Subscriptions (GET)
	Push Tags (GET)
	Push Applications (GET)
	Push Application (POST)
	Push Application (GET)
	Push Application (DELETE)
	Push Application Settings (GET)
	Push APNS Settings (GET)
	Push APNS settings (PUT)
	Push APNS settings (DELETE)
	Push GCM Settings (GET)
	Push GCM Settings (PUT)
	Push GCM Settings (DELETE)
	Push WNS Settings (GET)
	Push WNS Settings (PUT)
	Push WNS settings (DELETE)
	Push Application (PUT)
	Push Message (POST)
	Push Message (GET)
	Push Message (DELETE)
	Push SMS Settings (GET)
	Push SMS Settings (PUT)
	Push SMS settings (DELETE)
	Push Tags (GET)
	Push Tag (POST)
	Push Tag (GET)
	Push Tag (PUT)
	Push Tag (DELETE)
	Push Webhooks (POST)
	Push Webhooks (PUT)
	Push Webhook (DELETE)
	Push Health Checker (GET)
	Bulk Push Messages (POST)

	REST API for the MobileFirst runtime
	REST API for MobileFirst Analytics and Logger

	Deploying MobileFirst Server to the cloud
	Deploying to the cloud
	IBM MobileFirst Platform Foundation on cloud
	Package structure and contents
	Setting up V8.0.0
	MobileFirst Server as Liberty for Java Cloud Foundry application on IBM Bluemix
	MobileFirst Server container
	MobileFirst Analytics containers
	Securing containers
	Removing a container from Bluemix
	Removing the database service configuration from Bluemix
	Log and trace collection
	Troubleshooting tips
	Applying IBM MobileFirst Platform Foundation interim fixes
	Resolving problems with IBM MobileFirst Platform Foundation deployed in IBM Containers or as Liberty for Java Cloud Foundry application on IBM Bluemix

	Deploying MobileFirst Server on IBM PureApplication System
	Installing IBM MobileFirst Platform Foundation System Pattern
	Token licensing requirements for IBM MobileFirst Platform Foundation System Pattern
	Deploying MobileFirst Server on a single-node WebSphere Application Server Liberty profile server
	Deploying MobileFirst Server on a multiple-node WebSphere Application Server Liberty profile server
	Deploying MobileFirst Server on a single-node WebSphere Application Server full profile server
	Deploying MobileFirst Server on a multiple-node WebSphere Application Server full profile server
	Deploying MobileFirst Server on clusters of WebSphere Application Server Network Deployment servers
	MobileFirst runtime synchronization limitation with WebSphere Application Server Network Deployment
	Restarting the IBM MobileFirst Platform runtime from the WebSphere Application Server administrative console

	Deploying MobileFirst Application Center on a single-node WebSphere Application Server Liberty profile server
	Deploying MobileFirst Application Center on a single-node WebSphere Application Server full profile server
	Configuring MobileFirst administration security with an external LDAP repository
	Configuring an external database with a IBM MobileFirst Platform Foundation System Pattern
	Deploying and configuring MobileFirst Analytics
	Predefined templates for MobileFirst Platform Pattern
	Script packages for MobileFirst Server
	Upgrading IBM MobileFirst Platform Foundation System Pattern

	Administering MobileFirst applications
	Deploying MobileFirst applications to test and production environments
	Deploying or updating an adapter to a production environment
	Configuring SSL between MobileFirst adapters and back-end servers by using self-signed certificates
	Building an application for a test or production environment
	Registering an application to a production environment
	Transferring server-side artifacts to a test or production server
	Transferring an application configuration by using mfpdev
	Transferring an application configuration with the administration service
	Transferring server-side artifacts by using the REST API
	Exporting and importing applications and adapters from the MobileFirst Operations Console

	Updating MobileFirst apps in production

	Administering MobileFirst applications through the MobileFirst Operations Console
	Mobile-application management
	Remotely disabling application access to protected resources
	Displaying an administrator message
	Defining administrator messages in multiple languages

	Application status and token licensing
	Error log of operations on runtime environments
	Audit log of administration operations

	Administering MobileFirst applications through Ant
	Calling the mfpadm Ant task
	Commands for general configuration
	Commands for adapters
	Commands for apps
	Commands for devices
	Commands for troubleshooting

	Administering MobileFirst applications through the command line
	Calling the mfpadm program
	Commands for general configuration
	Commands for adapters
	Commands for apps
	Commands for devices
	Commands for troubleshooting

	Federal standards support in IBM MobileFirst Platform Foundation
	FDCC and USGCB support
	FIPS 140-2 support
	Enabling FIPS 140-2
	Configure FIPS 140-2 mode for HTTPS and JSONStore encryption
	Configuring FIPS 140-2 for existing applications

	License tracking
	Setting the application license information
	License Tracking report
	Token license validation
	Integration with IBM License Metric Tool

	Analytics and Logger
	Major features
	MobileFirst Analytics Server installation guide
	System requirements
	Capacity considerations
	Installing MobileFirst Analytics on WebSphere Application Server Liberty
	Installing MobileFirst Analytics on Tomcat
	Installing MobileFirst Analytics on WebSphere Application Server
	Installing MobileFirst Analytics with Ant tasks
	Installing MobileFirst Analytics Server V8.0.0 on servers running previous versions
	Migration of server properties used by previous versions of MobileFirst Analytics Server
	Analytics data migration

	Configuration guide
	Configuration properties
	Backing up Analytics data
	Cluster management and Elasticsearch

	Configuring analytics from the MobileFirst Operations Console
	Enabling or disabling data collection from the MobileFirst Operations Console
	Role-based access control
	Setting Log Filters from the MobileFirst Operations Console
	Custom charts
	Custom chart creation
	Chart types
	Creating custom charts for client logs
	Exporting custom chart data
	Exporting and importing custom chart definitions

	Alerts
	Creating an alert definition for app crashes
	Custom webhook
	Viewing alert details

	Developing the analytics client
	Analytics SDK
	Capturing analytics
	Sending analytics

	Logger SDK
	Enabling log capture
	Adjusting log verbosity
	Sending captured logs
	Auto log send
	Fine-tuning with the Logger API
	Fetching server configuration profiles

	Analytics workflows
	App usage analytics
	Initializing your app to capture app usage
	Default Usage and Devices charts
	Creating a custom chart for average session duration

	Crash capture
	Initializing your app to capture crash data
	App crash monitoring
	App crash troubleshooting
	Default charts for crashes

	Custom analytics
	Instrumenting your app to capture custom analytics
	Visualizing custom analytics

	Troubleshooting Analytics and Logger

	Integrating with other IBM products
	Application Center
	Concept of Application Center
	Specific platform requirements
	General architecture
	Preliminary information
	Preparations for using the mobile client
	Importing and building the project (Android, iOS, Windows Phone)
	Customizing features (for experts): Android, iOS, Windows Phone
	Microsoft Windows 8: Building the project
	Deploying the mobile client in Application Center

	Push notifications of application updates
	Configuring push notifications for application updates
	Configuring the Application Center server for connection to Google Cloud Messaging
	Configuring the Application Center server for connection to Apple Push Notification Services
	Building a version of the mobile client that does not depend on the GCM API

	The Application Center console
	Starting the Application Center console
	Troubleshooting a corrupted login page (Apache Tomcat)
	Troubleshooting a corrupted login page in Safari browsers
	Application Management
	Adding a mobile application
	Adding an application from a public app store
	Application properties
	Editing application properties
	Upgrading a mobile application in MobileFirst Server and the Application Center
	Downloading an application file
	Viewing application reviews
	User and group management
	Access control
	Managing access control
	Device Management
	Application enrollment tokens in Windows 8 Universal
	Signing out of the Application Center console

	Command-line tool for uploading or deleting an application
	Using the stand-alone tool to upload an application
	Using the stand-alone tool to delete an application
	Using the stand-alone tool to clear the LDAP cache
	Ant task for uploading or deleting an application

	The mobile client
	Installing the client on an Android mobile device
	Installing the client on an iOS mobile device
	Installing the client on Windows 8 Universal
	The Login view
	Views in the Application Center client
	Installing an application on an Android device
	Installing an application on an iOS device
	Installing an application on a Windows Phone device
	Installing a Windows Store application on a Windows device
	Installing applications through public app stores
	Removing an installed application
	Showing details of a specific application version
	Updating an application
	Upgrading the Application Center client automatically
	Reverting an installed application
	Marking or unmarking a favorite app
	Submitting a review for an installed application
	Viewing reviews

	Setting logging and tracing for Application Center on the application server
	Enabling logging and tracing in WebSphere Application Server full profile
	Enabling logging and tracing in WebSphere Application Server Liberty
	Enabling logging and tracing in Apache Tomcat
	JNDI properties for controlling trace output

	Troubleshooting
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Support and comments
	Notices
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

