

Statemate®
MicroC Code Generator

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to Telelogic Statemate 4.5 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Statemate’s MicroC Code Generator . 1
The Generator Overview . 1

Basic and Advanced Generator Information . 1

MISRA Compliance . 2

Statemate Block in Rhapsody . 2

Selecting an OSI for your Statemate Project . 3

Working with Profiles . 5
Creating a Profile. 5

Setting the Target Configuration . 6
Code Generation Options . 6

Target Properties. 7
Memory Structure . 8
Memory Initialization . 9
Static Initialization of "Frequency-of-Activation" Data . 9
Use “const” Keyword to define Constant Values. 10
Timeout Variable Type . 10

Default Data Types . 10
Use Fixed Point variables for "Real" . 11
Code Instrumentation . 11

Graphical Back Animation (GBA) . 12
Trace . 13
Debug . 14

Application Configuration . 15
Application Files... 19
OS . 21
General . 23
Test Driver. 28
Optimization . 30
Statemate i

Setting the Time Expression Scale . 33
Modules, Adding Charts . 33
Create Modules. 33
Add Charts to Modules . 33
Direct Editing of Profile Files . 34
Checking for Errors in Profiles. 34

Generating and Running MicroC Code . 35
Checking Profile Before Generating Code . 35

Generating Code . 36

Editing Code . 36

Compiling Code . 36

Running Code . 37

Running Code with Animation . 37

Designing Your Model: Model-Code Correspondence 39
Activity Charts . 40

Task Activities . 40
Basic Task - Generated Code . 40
Extended Task - Generated Code. 42

ISR (Interrupt Service Routine) Activities . 44
ISR Categories . 44

ISR - Examples of Generated Code . 44
Task/ISR Run Mode . 45
Decomposition of Non-basic Activities . 45

Execution Order (for Subactivities) . 46
Code for Basic Subactivities . 46
Communication and Synchronization Services between Activities . 48

Non-queued Messages . 48
Queued Messages . 48
Signals. 48
Global Data . 49
Semaphores . 49

Statecharts . 49
Functions Generated for Statecharts . 49
Statechart - Data Usage . 50
Statechart - Generated Functions . 51
Order of Function Execution Rules . 53
State Variable Validation Macro . 54
ii MicroC Code Generator

Timeout Implementation . 54
INSTALL_TIMEOUT Macro. 54
Special Requirements for OSEK-targeted Applications . 56

History and Deep History Implementation. 56
Optimization of Statechart Code . 57
Recommendations for Efficient Code . 57

Flowcharts . 58
Functions Generated for Flowcharts . 58
Flowchart Implementation . 59
Flowchart Elements. 59
Labels . 59
Decision Expressions . 60
Switch Expressions . 60
Minimization of Goto Statements . 60
Code Structure . 61
Begin/End Points. 61
Arrows and Labels . 61
Flowchart Examples . 62

Simple Flowchart. 62
Find/Merge Logic. 63
Switch Control . 64

Truth Table Implementation . 66

Lookup Table Implementation . 67

Fixed-Point Variable Support . 68
Fixed-Point Variable Implementation Method . 68
Supported Operators. 68
Evaluating the wordSize and shift . 69
Unsupported Functionality . 70
Specifying Fixed-Point Variables. 71

The Generated Code. 71

Usage of Upper Case / Lower Case in Statemate. 72

Advanced: Creating Customized OSIs . 73
Using the OSDT to Customize OSIs . 73

Static OS Configuration. 74
Memory Management . 74
OSEK API . 74

Types of Customization Available . 75
Statemate iii

Customizing Design Attributes . 75
Design Attribute Fields . 78

General . 78
Dependency . 79
Info . 80

Customizing API Definitions . 82
Features that Facilitate API Definition. 82

Browse Properties from OSDT . 82
Using Parameters for the Generated Code. 83
Conditional Expressions in API Definitions . 85

General API Definitions. 87
OS Data Type APIs . 88
Timeout APIs. 93
Task APIs . 101
Event APIs. 107
Software Counter APIs . 111
Timer APIs. 114
Synchronization APIs . 120
Critical Section APIs . 122
Message APIs . 124
Interrupt APIs . 126
Scheduler Definition APIs . 128
Get-Set Function APIs. 129
Queue APIs . 132
Internal Data Types APIs . 135

Customizing Code Style . 140
Code Style. 140
Types Naming Style . 141
Variables Naming Style . 147
Model Data Naming Style . 156
Functions Naming Style . 157
File Header/Footer . 160

Customizing Memory Management. 162
Data—Variable Declaration. 164
Data—Declaration Section . 166
Code—Task/ISR and Related Activities . 175
Code—Activities Definition Section . 180
Code—Per-User Function . 181
Code—User Functions Definition Section . 183
iv MicroC Code Generator

Customizing the Static OS Configuration . 184
Where Definition is Used, Code Generated . 185
Task Definition. 186
Event Definition . 188
Timer Definition . 191
Synchronization Definition. 194
Critical Section Definition . 197
Message Definition . 200
ISR Definition . 203
OS Definition . 205

Specifying Related Files . 208
Upgrading an OSI . 209
Statemate v

vi MicroC Code Generator

Statemate’s MicroC Code Generator
Statemate's MicroC Code Generator can be used to develop embedded real-time software for
micro-controllers. In addition to the generation of the code, tools are provided for debugging and
testing the software.

The Generator Overview
The MicroC Code Generator generates compact, readable ANSI C code, based on the model you
have designed using Statemate's graphical tools. The graphical elements can be supplemented by
linking in user-supplied C and or Assembly code.

The code generator allows you to define a wide range of settings in order to tailor the generated
code to your target operating systems and hardware.

This guide contains detailed information regarding:

� The mapping of the various model elements to C code
� Configuring the MicroC Code Generator to output code tailored to your target operating

systems and hardware
� Using the MicroC Code Generator to generate code and to then run, debug, and test the

compiled code

Basic and Advanced Generator Information
In order to get you up and running quickly, this guide is divided into two sections:

� The Basics
This section describes the basics of using the MicroC Code Generator. For many
users, this information will be sufficient for their work.

� Advanced Topics
This section covers more advanced topics, allowing you to further fine-tune the
generated code to your target system.
Statemate 1

Statemate’s MicroC Code Generator
MISRA Compliance
Statemate generates code that is compliant with MISRA Rule 60. This is accomplished when the
Check-box Options > Settings > General > Advanced Options > Generate are selected to
enable the “else” clause after “if...else if...” construct in the generated code that is required for this
compliance.

Statemate Block in Rhapsody
MicroC code-generator supports integration of a Statemate model (block) into a Rhapsody model.
When generating code for a Statemate block, the Statemate MicroC code generator performs the
following operations:

� Generates all code in one single file that includes other required nongenerated files.
� Generates unique code to allow using few Statemate Blocks in a single Rhapsody model.

For more detailed information about this feature, refer to the Statemate User Guide.
2 MicroC Code Generator

Selecting an OSI for your Statemate
Project
When you create a new project in Statemate, you select an OSI (Operating System Implementation)
for the project. The OSI selected customizes the code generator to produce code that is appropriate
for the target operating system.

Statemate contains a standard set of OSIs that can be selected. In addition, these basic OSIs can be
modified and saved as a new OSI using the OSDT tool that can optionally be installed with
Statemate (see Advanced: Creating Customized OSIs).

The list of available OSIs is generated from the content of the CTD directory under Statemate. If
the CTD directory contains “customized” OSIs, you will see these additional OSIs in addition to
the standard set.

Once you have selected an OSI for a project, you cannot change the OSI used. However, the OSI
list also contains an option None. This value can be selected temporarily, and you can then select
an OSI at a later time. (Note that once you have selected an OSI, you cannot return to None.)

t

OS Implementation
Options
Statemate 3

Selecting an OSI for your Statemate Project
4 MicroC Code Generator

Working with Profiles
While the OSDT allows you to configure generated code for an operating system at a project level,
profiles allow you to further configure the generated code for specific hardware targets. Because of
the highly-variable hardware configurations available for embedded systems, this ability to fine-
tune the code for the planned target hardware is essential. A number of different profiles can be
defined and used for generating code in the same project.

Creating a Profile
A profile consists of the charts for which you would like to generate code, as well as the code
generation options you would like to use when the code is generated.

Profiles are defined using the Code Generation Profile Editor. To open the profile editor, select
File > New/Open > Profile > Statemate MicroC Code Generator from the Statemate main
menu. The New/Open Compilation dialog box displays.
Statemate 5

Working with Profiles
Setting the Target Configuration
The MicroC Code Generator allows you to modify a large number of settings that affect the
generated code.

In addition, the code generator provides you with a list of configurations that have been set up for
various hardware targets. When you select one of these configurations, the appropriate values are
automatically set for the various code generation options. In many cases, this may be sufficient,
and you may not have to make any more changes to the code generation options.

In some cases, however, you may want to further refine the code generation settings by manually
changing the settings for certain options. In such cases, it is recommended that you choose one of
the target configurations as a starting point, and then modify the specific options that must be
changed.

To select a target configuration, select Options > Set Target Configuration from the MicroC
Code Generator’s main menu.

After you have selected a target configuration, when you open one of the code generation option
tabs, you will see the appropriate values for that target.

Code Generation Options

The code generation options allow you to customize the generated code for your target hardware.

To modify the settings for these code generation options, select Options > Settings from the menu
in the MicroC Code Generator Window.

The code generation options are categorized as follows:

� Target Properties

� Code Instrumentation

� Application Configuration

� OS

� General

� Test Driver

� Optimization

Each of these categories is described in detail in the following sections.
6 MicroC Code Generator

Setting the Target Configuration
Note
Any changes made to these code generation options affects all of the modules included in
the profile.

Target Properties
The following section describes the options available on the Target Properties tab.
Statemate 7

Working with Profiles
Memory Structure

� Word Size
� Determines the word size used for bit buffers, such as conditions and events.
� You can select from among the following values: 8, 16, 32.
� If a buffer size smaller than the selected word size is sufficient, then the smaller

buffer is used.
� Examples:

– If there are 3 conditions in the model and the word size selected is 16, then an
8-bit buffer is allocated to hold the 3 conditions.

– If there are 20 conditions in the model and the word size selected is 16, then
two buffers are allocated to hold the 20 conditions—one with 16 bits (for the
first 16 conditions) and one with 8 bits (for the remaining 4 conditions).

Note: The State variable that holds the current state of a control activity does not
follow this rule, and will allocate a buffer with sufficient size to hold the State's
topology (up to 32 bits).

� Bit Orientation
� Controls the orientation of the bits inside a single byte.
� You can select one of the following values:

– LSbit First
– MSBit First

� Byte Orientation
� Controls the orientation of the bytes inside allocated data larger than a single byte.
� You can select one of the following values:

– LSByte First
– MSByte First

In addition, you can select the Use Instrumentation check box to control the
generation of byte orientation directives in the code (#ifdef LSBYTE_FIRST
directives). If this option is selected, #ifdef directives will be used in the code to
accommodate the two byte orientations. This adds flexibility by making the code
easier to change manually.
8 MicroC Code Generator

Setting the Target Configuration
Memory Initialization

� Reset Global (Internal) Data

Selecting this check box enables the global data reset options:
� Compile Time, Static

Enables initialization of the data in the model using static initialization at the data
allocation location.

� Run Time, Dynamic

Enables initialization of all the data in the model through a call to the macro
RESET_DATA in the TASKINIT function.

The RESET_DATA macro uses the function memset which should be defined in the
environment. If this function is not defined, you can define the macro
AVOID_MEMSET and use the function rimc_mem_set which is defined in the file
<profile-name>.c.

� Reset User Model Data

Selecting this check box enables the user model data reset options:
� Compile Time, Static

Enables initialization of the data in the model using static initialization at the data
allocation location.

� Run Time, Dynamic

Enables initialization of all the data in the model through a call to the macro
RESET_DATA in the TASKINIT function.

The RESET_DATA macro uses the function memset which should be defined in the
environment. If this function is not defined, you can define the macro
AVOID_MEMSET and use the function rimc_mem_set which is defined in the file

Static Initialization of "Frequency-of-Activation" Data

The generated code for static initialization of data related to Frequency of Activation complies
with the profile settings.

When setting the Statemate MicroC profile options:

� Reset Global (Internal) Data, to be: RunTime, Dynamic, and
� Reset User Model Data, to be Run Time, Dynamic, the static initialization of the global

data: <task_name>_COUNTER_FREQ in the file glob_dat.c will be omitted.
Statemate 9

Working with Profiles
Use “const” Keyword to define Constant Values

If this option is selected, constant elements will be generated with the const modifier in the files
glob_data.c and glob_dat.h, rather than being generated as pre-processor macros in the file
macro_def.h.

The attribute for Constant elements (Conditions and Data-items) controls whether the specific
element should be generated using the “const” keyword. The name of the new design-attribute is
“Use 'const' Keyword” with these possible values:

� no - The constant will be generated according to the settings of the MicroC code
generation option: Options > Settings... > Memory > Use “const” Keyword to define
Constant Values

� yes - The constant will be generated using the “const” keyword, regardless of the settings
of the MicroC code generation option: Options > Settings... >Memory > Use “const”
Keyword to define Constant Values

The “Use 'const' Keyword” design attribute is available with all predefined OSIs. This attribute has
the following parameters in the OSDT APIs in Memory Management page: Variable
Declaration() and Extern Variable Declaration().

� IsConstant has the value “yes” if the element is defined as Constant in the model
� InitValue has the initial value related with the element (for constants it will be the

element’s definition)

Timeout Variable Type

In this text box, enter the data type for the Timeout Variable which holds the expiration time of a
pending timeout.

Default Data Types
These text boxes are used to specify the default data types that should be used for each of the
following:

� Signed Integer
� Unsigned Integer
� Bit Field
� Floating Point

The data types specified will be used when declaring data, and, in the case of signed integers and
unsigned integers, will be used when using bit-wise shift operators.

The data type specified for Bit Field is used for conditions and bit data items. This text box is only
enabled when the option (Use Macros For) Conditions and Bit Data Items on the General tab is
not selected.
10 MicroC Code Generator

Setting the Target Configuration
Use Fixed Point variables for "Real"
If this check box is selected, the code generated will use fixed point variables for data items of type
“real.”

If you have chosen to use fixed point variables in the generated code, you can use the Word Size
radio buttons and LSB^-2 box to select a default word size and LSB. These default settings will be
used for individual variables where “*” has been selected as the value for word size and LSB in the
variable properties. (The value in the LSB box represents the negative exponent to use.)

Code Instrumentation
The following section describes the options available on the Code Instrumentation tab.
Statemate 11

Working with Profiles
Graphical Back Animation (GBA)

Graphical Back Animation (GBA) allows you to view an animation of the activities/states/
flowchart actions in your model. This is not a simulation, but rather an animation that runs in
parallel to the running of your executable.

The GBA data is passed from the application to the Statemate model via the GBA server, which
processes the data received from the application and performs the actual painting of the charts in
the model.

If the Graphical Back Animation check box is selected, the code generator will generate the code
required for this feature.

� Animate Activities

If this check box is selected, the code generator will generate the flags required for
displaying activity animation when the animation is run.

� Animate States and Flowchart Actions

If this check box is selected, the code generator will generate the flags required for
displaying animated statecharts and flowcharts when the animation is run.

If the Graphical Back Animation check box was selected, you can then choose one of the
following animation methods:

� Indirect, using target debugger
� Enables usage of GBA with a target debugger. When this method is used, the

animation data is passed from the running application to the GBA Server
indirectly, using a 3rd party debugger.

� The text box next to the radio button contains the name of the source code file for
the animation functions. If you prefer to use animation code that you have
modified, type in the name of the appropriate source code file, or click ... to
browse for the file.

� Direct, using Sync. TCP/IP

Enables usage of GBA synchronized with the running application. When this method is
used, the animation data is read directly from the running application, and is passed
immediately to the GBA server, using the TCP/IP protocol.

� Direct, using A-Sync., Buffered, TCP/IP
� Enables usage of GBA where the animation is not synchronized with the running

application. When this method is used, the animation data is read directly from
the running application, but rather than being passed immediately to the GBA
server, the animation data is stored in a buffer which sends the data to the GBA
server when the GBA task is running, using the TCP/IP protocol.

� This method allows you to have the animation run as a separate task.
12 MicroC Code Generator

Setting the Target Configuration
When the buffered method is selected, you can define the following settings for the GBA task:

� GBA Buffer Size

The size of the buffer to use to store the animation data.
� GBA Task Priority (OSEK OS only)

Allows you to specify the priority of the GBA task.
� More... (OSEK OS only)

Opens the Task Specific Attributes dialog box.

Trace

The Trace option allows you to include code that will print to the screen information regarding the
current status of tasks and/or ISRs.

� Trace Tasks

When selected, code will be included for tracing tasks.
� Trace ISRs

When selected, code will be included for tracing ISRs.
� Trace Implementation File

� The text box next to the check boxes contains the name of the source code file for
the trace functions. If you prefer to use trace code that you have modified, type in
the name of the appropriate source code file, or click ... to browse for the file.

� The trace functions receive two parameters—one is a value which identifies the
task/ISR, and the other is a character that identifies the status of the task/ISR
(started, terminated, entering/exiting wait for event).
Statemate 13

Working with Profiles
Debug

The Debug option allows you to include code that will print to the screen the state the application
is in for each level of detail in the statechart. (Level 1 means that each super-step is reported, while
Level 2 means that each step is reported.)

When the Debug check box is selected, you can define the following debug settings:

� Debug Level 1

The state the application is in will be reported at the end of every superstep of the state
machine (stable state).

� Debug Level 2

The state the application is in will be reported at the end of every step of the state
machine.

� State Dumper File

The text box next to the radio buttons contains the name of the source code file for the
implementation of the debug functions. If you prefer to use debug code that you have
modified, type in the name of the appropriate source code file, or click ... to browse for the
file.
14 MicroC Code Generator

Setting the Target Configuration
Application Configuration
The following section describes the options available on the Application Configuration tab.
Statemate 15

Working with Profiles
Parameter Description

Generate Initializing Function /
Task

• If you select this check box, an initializing function (or Task
in OSEK) called TASKINIT will be added to the generated
application.

• The implementation code for TASKINIT is in the file
usercode.c in the prt directory (originates in the OSI), and
is later copied to the file <profile-name>.c in the output
directory.

• The TASKINIT function contains code related to
initialization of the application, such as initialization of the
panels, GBA, and model data.

• You can add additional initialization code manually to
usercode.c before generation, or add code in the On Init
Code text box, described below.

• If you are using an OSEK-based OSI, you can specify
whether this task is basic or extended, specify the task
priority, or define attributes in the Task Specific
Attributes dialog box.

Generate Timer Overflow
Function/Task

• If you select this check box, functions (or Tasks in OSEK)
will be generated for each of the timers used with the
timeouts in the model. The code in these functions
handles the overflowing of the timer, and contains only
generated code. If you want to modify this code, modify
the appropriate APIs in the OSDT.

• The calls to these functions are the user’s responsibility.
• If you are using an OSEK-based OSI, you can specify

whether these task are basic or extended, specify the task
priority, or define attributes in the Task Specific
Attributes dialog box.

Generate TestBench Function/
Task

• If you select this check box, a function (or Task in OSEK)
will be generated to support the Testbenches in the profile.
If not selected, no testbench code is generated.

• If you are using an OSEK-based OSI, you can specify
whether this task is basic or extended, specify the task
priority, or define attributes in the Task Specific
Attributes dialog box.
16 MicroC Code Generator

Setting the Target Configuration
Graphical Panels Generate Panel Dispatch Function/Task
• If you select this check box, a function (or Task in OSEK)

called PANEL_DISPATCH will be added to the generated
application.

• The implementation code for PANEL_DISPATCH is in the
file usercode.c in the prt directory (originates in the OSI),
and is later copied to the file <profile-name>.c in the
output directory.

• This function includes code for actions such as panel data
update and panel graphics update. If you wish to use
panels, this check box must be selected.

• If you are using an OSEK-based OSI, you can specify
whether this task is basic or extended, specify the task
priority, or define attributes in the Task Specific
Attributes dialog box.

Use Remote Panel(s)
• This check box should be selected if you want the panels

and the application to run on different computers. This
option can only be used if the remote host has file system
capabilities (such as open, read).

• If you are using this option, you must define a Target
Directory. This directory is used for writing data used for
communication between the panels and the application.
Therefore, it must be a directory with write permission.

On Init Code • Any code entered in this text box will be placed in a macro
called ON_INIT_CODE, generated in macro_def.h

• This macro is called from the function TASKINIT (which is
included in the generated application if Generate
Initializing Function /Task was selected).

• The text box only accepts a single line of text, but it can
contain a number of statements separated by a “;”.

Additional Compilation Flags • This text box allows you to provide values for flags in
addition to those used by Statemate. These are generated
in the file cmp_flg.h. Each flag is generated in a single
line of code using the format: #define <Flag>.

• When entering text in this text box, use ';' or “,” to separate
the different flags.

• Flags can be specified by providing only the flag name (for
example, AAA) or by providing the flag name and a value
to assign (for example, AAA=4).

• The ifdef statements for these flags can be added to
code manually or can be used in defining APIs such
as the memory management APIs in the OSDT.

Parameter Description
Statemate 17

Working with Profiles
Generate User-Code in
"glob_func.c"

If this check box, is selected, all user code (functions and
subroutines) will be generated into a file called
glob_func.c.
In this context, user code refers to the bodies of functions
defined using Statemate.
If this option is not selected, the code generator will generate
this code in the relevant modules, as follows:

• For regular subroutines, the code is generated in the
module to which the subroutine belongs.

• For subroutines defined with a GDS scope, the code is
generated in glob_func.c.

• For subroutines defined with a generic scope: bodies
of functions are generated in the file g_<Generic-
Name>.c.

• For call-back functions for elements like data-items —
code is generated in glob_func.c.

• Before each section of functions in module/generic files,
the code will include the definition of the API
USER_FUNCTIONS_BODY_DEFINITION_SECTION_HEA
DER()

• After each section of functions in module/generic
files, the code will include the definition of the API
USER_FUNCTIONS_BODY_DEFINITION_SECTION_FOO
TER().

Parameter Description
18 MicroC Code Generator

Setting the Target Configuration
Application Files...
In order to create the code for your project, the MicroC Code Generator requires certain files. You
can define the names of the files and their include lists, as well as other source files and object files
by clicking Application Files... on the Application Configuration tab.
Statemate 19

Working with Profiles
The types of files are as follows:

Type of File Description

Global Data H File The file in which global data forward declarations are
generated (.h file).

Global Data C File The file in which global data declarations are generated
(.c file).

Include Files for Global Data C
File

A list of files to be included in the global data C file. Use a
space as the delimiter for separating the files in the list.

Type Definition File The file in which types are generated (.h file).

OS Use Declarations File The file in which OS Objects (like tasks) are declared (.h file).

C Macro Definitions File The file in which macros are generated (.h file).

Compilation Flags File The file in which compiler flags are generated (.h file).

C Modules Include Files A list of files to be included in the module's C files. Use a
space as the delimiter for separating the files in the list.

Global Functions C File The file in which user functions and other global functions are
generated (.c file).

Additional Sources A list of additional sources to be included in the building of the
application. This information is added to the makefile (if used).

Additional Objects A list of additional objects (.obj, .lib etc) to be included in the
building of the application. This information is added to the
makefile (if used).
20 MicroC Code Generator

Setting the Target Configuration
OS
The following section describes the options available on the OS tab.
Statemate 21

Working with Profiles
Parameter Description

Osek Path For OSEK-based OSIs only. The path to the OSEK installation
root.

Primary Software Counter
(System Timer)

The name of the primary software counter, used with the
timeout and delay operations, and other time-related code.

OS Configuration If you select this check box, the MicroC Code Generator will
generate a static OS configuration file.
This option is only displayed if you selected Static OS
Configuration on the main screen of the OSDT.

• OS CFG Input

Enter in the text box (or locate with the ... button) the
template file to use for the creation of the OS configuration
file.

The keywords used in the template file will be replaced
with concrete data from the model to create the OS
configuration file that reflects the OS objects in the model.

• OS CFG Output

The name to use for the generated static OS configuration
file.

Allow
"GetResource(RES_SCHEDULE
R)" usage

This option is displayed for OSEK-based OSIs only.
If this check box is selected, then when a Task/ISR has
related timeouts, the code generator calls
GetResource(RES_SCHEDULER) /
ReleaseResource(RES_SCHEDULER) around the code
section that swaps the Task/ISR event buffer. It also calls
these functions around the call to genTmEvent(...) in
on<TIMER>OVERFLOW tasks (in the file glob_func.c).
22 MicroC Code Generator

Setting the Target Configuration
General
The following section describes the options available on the General tab.
Statemate 23

Working with Profiles
Parameter Description

Generate extensive code
documentation

By default, the MicroC Code Generator includes basic commenting in
the generated code. If you would like more extensive commenting in
the generated code, select this check box.
If this option is selected, comments will be included for all of the
following: body of activity functions, statechart/flowchart
implementation functions, state transitions, static reactions in a state,
data declarations, and headers and footers for all generated files. In
addition, the following will be included:

• Model information
• Information regarding the code generation profile used, such as

profile name, date, version
• Workarea and project name
• For statecharts, textual transition table before the implementation

function
• For truth tables, a textual description of the table

For timeout setting, the expression triggering the code

Ignore External Binding This option allows you to generate code while ignoring any external
bindings specified in the model. This means that you can ignore these
external elements without having to make any changes to the model—
you just have to use a profile where this option is selected.

Enable Events
Broadcasting

If this option is selected, event broadcasting will be enabled.
This means that if an event is generated anywhere in the model, then a
duplicate event will be generated for each task waiting for that event
(other than the task that “owns” the event), enabling them to react to
the event.
The duplicated events will have the name <original-Event-
name>_<task-name>. For example, if the event EV is duplicated for a
task named T1, the duplicated event will be given the name EV_T1. (If
this creates a naming conflict, a number will be added to the end of the
name.) Wherever the original event was used as a trigger, the name of
the corresponding duplicated event will appear in the code. Wherever
the original event was used in an action, the original event name will
appear in the code.
The duplicated events will be generated in the “new buffer” of their task
event buffer. However, it is possible to use GEN_IN_CURRENT for the
duplicated event if the following env-var is used:
set AMC_GEN_IN_CURR_FOR_EV_BROADCAST=ON
24 MicroC Code Generator

Setting the Target Configuration
Generate Report File If this option is selected, a report file will be generated, using the file
name that you provide.
This report does not include messages generated during code
generation. Rather, it provides information regarding the model.
The report file has three parts:

• Task description section, which includes description of all Tasks in
the model and of the “Global” task.

For each Task there is information about:

Task's attributes like: Type, ID, priority etc.

Data related to it, like: Dataitems Conditions and Events related to
the Task, and their attributes like: double-buffer etc.

• User defined Functions:

A list of the user-defined functions in the model
• Generated code description:

A data-base like description of the elements that were used in the
code generations: Activities, Conditions, Dataitems, Events, User-
defined types, Actions and Functions.

Each element has a different set of fields in its description structure
according to the available information about the element in the
following format:

 {
 "type" : <type

 "Model Name": <model-name

 More…
 }

The messages generated during code generation can be found in a file
called wrn.err. If any problems are encountered during code
generation, the information in this file is displayed to the user.

Generate Makefile If this option is selected, a makefile will be generated for building the
application.

• Makefile Template

Enter in the text box (or locate with the ... button) the template file
to use for the creation of the makefile.

The keywords used in the template file will be replaced with
concrete information regarding the model’s files and objects.

• Makefile

The name to use for the makefile that is generated.

Parameter Description
Statemate 25

Working with Profiles
Use Macros for • Data Items

If selected, a macro will be used (rather than a full C expression)
when referring to a data item.

• Activity Implementation

If selected, macros will be used (rather than functions) for activity
implementation.

• Miscellaneous

If selected, macros will be used (rather than full expression /
function) for elements such as actions.

• Conditions and Bit Data Items

If selected, macros will be used (rather than full expressions) for
Conditions and Data Items of type Bit.

• Control Activity Implementation

If selected, macros will be used (rather than functions) for control
activity implementation.

Use Single Bit For • Event

If selected, single bit with bit mask will be used for events, rather
than a whole byte.

• Condition

If selected, single bit with bit mask will be used for conditions,
rather than a whole byte.

Parameter Description
26 MicroC Code Generator

Setting the Target Configuration
Task/ISR Run Mode The radio buttons provided for this option allow you to select the task/
ISR run mode (single step or superstep, as well as specifying when
objects should be checked for value changes.
Single Step

• In this mode, each task/ISR performs a single step and then returns
control to the operating system.

• When single step mode is selected, the value checking options
available are:

once, before logic execution

once, after logic execution
Superstep

• In this mode, each task/ISR performs as many steps as needed to
reach a stable state (reached when there are no more pending
events and no transition occurred in the last step)

• When superstep mode is selected, the value checking options
available are:

once, before logic execution

after, each logic execution
• This means that values are checked for changes on each pass

through the execution loop until a stable state is reached
When superstep mode is selected, care should be exercised when
using the once, before logic execution option. This is because there are
situations where your system will remain in a certain state until a certain
value changes. If the values are only checked once, before the logic is
executed, then in many cases the system will never detect the value
change that takes the system out of that state. This may result in a task
running indefinitely.

Parameter Description
Statemate 27

Working with Profiles
Test Driver
The following section describes the options available on the Test Driver tab.
28 MicroC Code Generator

Setting the Target Configuration
Parameter Description

Enabled If the Enabled check box is selected, then the code generator will produce
the code required for using the MicroC Test Driver. The Test Driver allows
the running of scenarios whose input has been saved to file. The outputs
can then be compared with the recorded outputs.
When the check box is selected, the remaining controls on the tab are
enabled.

Asynchronous/
Sunchronous
(The Test Driver can be
run in either of these
modes)

Synchronous
The Test Driver is synchronized with the running application. When this
method is used, the test-related data is read directly from the running
application, and is executed immediately.

• Task

If this check box is selected, a call to the Test Driver dispatch function is
generated in the task’s code frame.

• ISR

If this check box is selected, a call to the Test Driver dispatch function is
generated in the ISR’s code frame.

• Level 1, Level 2

If Level 1 is selected, then the call to the Test Driver dispatch function
is made after every task/ISR’s superstep.

If Level 2 is selected, then the call to the Test Driver dispatch function
is made after every task/ISR’s step.

Asynchronous
The Test Driver is not synchronized with the running application. When this
method is used, the data is read directly from the running application, but
rather than being executed immediately, the test data is stored in a buffer
which stores the data until the Test Driver Task is running.

• Generate Test Driver Function/Task

If this option is selected, the code generator generates a function called
TEST_DRIVER_TASK which launches the Test Driver.

• Type (OSEK OS only)

Allows you to specify the type of the Test Driver task - Basic or
Extended.

• Task Priority (OSEK OS only)

Allows you to specify the priority of the Test Driver task.
• More... (OSEK OS only)

Opens the Task Specific Attributes dialog.
Statemate 29

Working with Profiles
Optimization
The following section describes the options available on the Optimization tab.

Test Driver File This text box contains the name of the source code file for the Test Driver
implementation. If you prefer to use Test Driver code that you have
modified, type in the name of the appropriate source code file, or click ... to
browse for the file.

Use "Get Value"
Functions

If this option is selected, “get” functions will be generated for retrieving the
values of elements that are being tested.
These functions are not called in the default Test Driver implementation, but
if you are using modified code, you can include calls to these functions.

Parameter Description
30 MicroC Code Generator

Setting the Target Configuration
Parameter Description

Allow Optimization on
This check box enables
selection of the various
optimization options available.

Reuse Timeout
Variable Where
Possible

If selected, the code generator will
attempt to combine multiple timeout
variables into a single variable if they
are exclusive, i.e., the timeouts can’t be
pending at the same time. (RAM
optimization)

Clutch Entrance To
State Hierarchy

If selected, the code will be
optimized to enter the innermost
state in a state hierarchy, wherever
possible. (ROM, runtime
optimization)

Merge State
Sequences with no
Guard on Transition

If selected, code will be optimized
to merge state sequences with no
guards on transition into a single
state wherever possible. (RAM,
ROM, runtime optimization)

Inline Default Test • If selected, the code will be
optimized to inline the test on
default transitions into other
transitions’ testing. (RAM, ROM
optimization).

• The code below represents the
“before” and “after” for this option.

if(currentState_S1 == 0){
currentState_S1 =
FS_DefaultOfS1;
} else {...

if(currentState_S1 == 0 ||
inState(DefaultOf_S1)){...
Statemate 31

Working with Profiles
Allow Optimization on
(Continued)

Inline Setting of
“Need Another Step”
bit

• At the end of the statechart code,
there is a section that tests whether
a transition was made in the
current step. If so, a flag is raised to
indicate that the superstep task
should perform another step over
the task's code frame. This test of
whether another step is needed
uses a state variable that stores the
information about the state that is
being entered.

• When this option is selected, the
code flagging the need for another
step will be put inline in the
transition code, eliminating the
need for the state variable that
stores the transition's target state.

• When selected, you can enter the
maximum number of transitions
you are willing to tolerate. If the
number of actual transitions will be
greater than this, the optimization
will not be performed. (RAM, ROM
optimization)

Inline Entering/
Exiting Reactions

• If selected, the code is optimized to
try to inline the entering and exiting
reactions of states, in order to avoid
generating the entering and exiting
reaction functions. (RAM, ROM
optimization)

• When this option is selected, you
can also specify the maximum
number of statements that should
be inlined. You can also specify the
maximum number of instances -
you may not want this inlining to be
carried out if it will have to be done
a large number of times.

Empty Overlapping
Tests for State
Hierarchy

• When there is a state hierarchy, you
are obviously not in the inner state
if you have not entered the
surrounding state. When this option
is selected, the code will be
optimized by skipping such
overlapping comparisons. (ROM
optimization, but may reduce
runtime efficiency)

Parameter Description
32 MicroC Code Generator

Setting the Time Expression Scale
Setting the Time Expression Scale
The Options menu in the MicroC Code Generator Window also contains an item called Time
Expression Scale.

This option allows you to set the time scale for all expressions in the model. For a detailed
explanation of this feature, see the MicroC Code Generator section in the Statemate User Guide.

Modules, Adding Charts

As mentioned earlier, defining a profile consists of defining what code should be generated, and
then defining options to determine how it will be generated. You define what code should be
generated by creating modules in a profile and then adding charts to the modules created.

Create Modules

Modules allow you to organize the code that is to be generated. Once you have created a module,
select the charts that you would like to add to the module. When the code is generated, the code for
all charts in a module will be included in a single file.

Add Charts to Modules

To add charts to modules:

1. Select the relevant module

2. Select Edit > Add with Descendants from the main menu or click the corresponding
button in the toolbar.

Generate Model Data and
Functions

This option allows you to specify that code should be generated
for all elements in the model, or only for elements that are used.
If the latter option is selected, then if variables/functions are
defined but not used/called anywhere in the code, no code will
be generated for them.

Parameter Description
Statemate 33

Working with Profiles
Direct Editing of Profile Files

While you will most likely use the Profile GUI for making modifications to the profile, it is also
possible to directly edit the file that contains the profile information.

To edit the file:

1. Select File> Profile Management from the MicroC Code Generator menu.

2. Select the profile.

3. Click Show.

Checking for Errors in Profiles

After a profile has been defined, before generation of the code, you can check the profile for
errors.

To check the profile, select Compile > Check Profile from the MicroC Code Generator menu.
34 MicroC Code Generator

Generating and Running MicroC Code
Once a profile has been defined, you can use the MicroC Code Generator to generate code from
your model. After the code has been generated, you can:

� Edit the code
� Compile the code
� Run the code
� Run the code with animation

All of these options are selected from the Compile menu in the MicroC Code Generator window.

Checking Profile Before Generating Code
Since the content of the generated code is determined by the profile you have defined, it is
recommended that you use the Check Profile feature before generating code from the model.

This verifies that the profile complies with the scoping rules. For example, the profile settings will
be checked to make sure that they are legal and that they do not conflict with each other.

To check the current profile, follow these steps:

1. Select Compile > Check Profile... from the MicroC Code Generator window. Any error,
warning, or information messages will be displayed in the Check Profile dialog.

2. Click Dismiss to close the Check Profile dialog.
Statemate 35

Generating and Running MicroC Code
Generating Code
To generate code, follow these steps:

1. Select Compile > Generate Code... from the MicroC Code Generator window.

2. When the directory tree is displayed, select the directory where the generated code files
should be stored, and click OK.

3. The Generate Code dialog will display relevant messages regarding the progress and
results of the code generation process. Select Dismiss to close the Generate Code dialog.

Editing Code
To edit one of the generated files, follow these steps:

1. Select Compile > Edit Code... from the MicroC Code Generator window.

2. The contents of the output directory you selected will be displayed. Select the file that you
would like to edit.

3. The contents of the selected file will be displayed in the default text editor that has been
defined for Statemate.

Note: To change the editor that is launched, select Project > General Preferences
from the main Statemate menu, and enter the relevant command line for the
parameter Editor Command Line. (You may have to close and reopen the
MicroC Code Generator window for the change to take effect.)

Compiling Code
To compile the code, follow these steps:

1. Select Compile > Make Code... from the MicroC Code Generator window.

2. The contents of the output directory you defined will be displayed. Select the makefile to
use, and click Open. (The name of the makefile defined in the profile's properties is
offered by default.)
36 MicroC Code Generator

Running Code
Running Code
To run the compiled code, follow these steps:

1. Select Compile > Run Code from the MicroC Code Generator window. The Run
Command dialog is displayed.

2. Locate the file to run, and click Open.

Running Code with Animation
If you have defined an interface panel for your application, you can run the code with animation to
follow the transition between different states, the activation/deactivation of activities, or the
execution of a flowchart.

To run your code with animation, follow these steps:

1. Select Options > Settings from the MicroC Code Generator menu.

2. On the Code Instrumentation tab, select the Graphical Back Animation (GBA) check
box.

3. Save the modified profile (OK to close the Settings dialog, and then File > Save from the
MicroC Code Generator menu.)

4. Regenerate the code (Compile > Generate Code... from the MicroC Code Generator
menu).

5. Recompile the code (Compile > Make Code... from the MicroC Code Generator menu).

6. Launch the GBA server (Tools > Open GBA from the MicroC Code Generator menu).

7. Run the application (Compile > Run Code... from the MicroC Code Generator menu).

Note: If you selected the GBA option in the profile settings, then the generated
application will automatically try to connect with the GBA server in order to
run the animation. If you have not launched the GBA server, a message will be
displayed indicating that the connection could not be established, and the
generated application will continue running without the animation.
Statemate 37

Generating and Running MicroC Code
38 MicroC Code Generator

Designing Your Model: Model-Code
Correspondence
The code that is generated is based on the model’s graphical elements, textual elements, and the
design attribute settings within these elements.

Note
This section contains many code examples. Most of these were taken from OSEK projects.
Keep in mind that these are examples only. The same principles apply to non-OSEK
projects as well.

To design the model, Statemate provides graphical tools for the following:

� Activity charts
� Statecharts
� Flowcharts

In addition, Statemate allows you to define the following:

� Truth tables
� Lookup tables
Statemate 39

Designing Your Model: Model-Code Correspondence
Activity Charts
When designing an activity chart, activities are broken down into sub-activities, which are further
broken down into their sub-activities, and so on, until no further decomposition is possible.
Activities that cannot be broken down further are considered “basic” activities.

The code generated for an activity is a function (or a C preprocessor macro). For a non-basic
activity, the function calls each of the activity’s subactivity functions. For a basic activity, the
function contains the implementation code.

Activities can represent functions, tasks, or ISRs (Interrupt Service Routines).

Task Activities

In the OSEK 2.0 operating system, Tasks can be divided into basic tasks and extended tasks:

� A basic Task runs once, upon activation, and then terminates.
� An extended Task runs once, upon activation, and then suspends itself, calling the API

function “WaitEvent”.

Basic Task - Generated Code
The code for a basic Task that contains activities A11 and A12 will resemble the following:

TASK (TASK1)

{

cgActivity_A11();

cgActivity_A12();

TerminateTask();

}

40 MicroC Code Generator

Activity Charts
If the Task is periodic, with a period of 10 ticks, the code will resemble the following:

TASK (TASK1)

{

if ((cgGlobalFlags & ALARM_SET_TASK1) == 0){

cgGlobalFlags |= ALARM_SET_TASK1;

SetRelAlarm(TASK1_ALARM, 10, 10);

}

cgActivity_A11();

cgActivity_A12();

TerminateTask();

}

The code for a periodic Task, containing activities A11 and A12 with CTRL1 as a controller, will
resemble the following:

TASK (TASK1)

{

if ((cgGlobalFlags & ALARM_SET_TASK1) == 0){

cgGlobalFlags |= ALARM_SET_TASK1;

SetAbsAlarm(TASK1_ALARM, 10, 10);

}

do {

cgGlobalFlags &= ~BITSUPERSTEP_TASK3;

cgActivity_A11();

cgActivity_A12();

cgActivity_CTRL1cnt1();

} while ((cgGlobalFlags & BITSUPERSTEP_TASK1) != 0);

TerminateTask();

}

Statemate 41

Designing Your Model: Model-Code Correspondence
Extended Task - Generated Code
The code for an extended Task that contains activities A21 and A22 will resemble the following:

TASK (TASK2)

{

cgSingleBuffer_TASK2.eventMask = 0xff;

start_activity_A21;

start_activity_A22;

while(1) {

cgActivity_A21();

cgActivity_A22();

WaitEvent(cgSingleBuffer_TASK2.eventMask);

ClearEvent(cgSingleBuffer_TASK2.eventMask);

}

/* TerminateTask(); */

}

If a statechart is added beneath the Task, but not as a direct descendant, the code will resemble the
following:

TASK (TASK2)

{

cgSingleBuffer_TASK2.eventMask = 0xff;

start_activity_A21;

start_activity_A22;

while(1) {

do {

cgGlobalFlags &= ~BITSUPERSTEP_TASK2;

cgActivity_A21();

cgActivity_A22();

if(cgDoubleBufferNew_TASK2.cg_Events)

cgGlobalFlags |= BITSUPERSTEP_TASK2;

cgDoubleBufferOld_TASK2 = cgDoubleBufferNew_TASK2;

cgDoubleBufferNew_TASK2.cg_Events = 0;

} while ((cgGlobalFlags & BITSUPERSTEP_TASK2) != 0);
42 MicroC Code Generator

Activity Charts
WaitEvent(cgSingleBuffer_TASK2.eventMask);

GetEvent(TASK2, &cgSingleBuffer_TASK2.eventsBuff);

ClearEvent(cgSingleBuffer_TASK2.eventMask);

}

/* TerminateTask(); */

}

If the Task is periodic, with a period of 10 ticks, the code will resemble the following:

TASK (TASK2)

{

SetRelAlarm(TASK2_ALARM, 1, 10);

cgSingleBuffer_TASK2.eventMask = 0xff;

start_activity_A21;

start_activity_A22;

while(1) {

do {

cgGlobalFlags &= ~BITSUPERSTEP_TASK2;

cgActivity_A21();

cgActivity_A22();

if(cgDoubleBufferNew_TASK2.cg_Events)

cgGlobalFlags |= BITSUPERSTEP_TASK2;

cgDoubleBufferOld_TASK2 = cgDoubleBufferNew_TASK2;

cgDoubleBufferNew_TASK2.cg_Events = 0;

} while ((cgGlobalFlags & BITSUPERSTEP_TASK2) != 0);

WaitEvent(cgSingleBuffer_TASK2.eventMask);

GetEvent(TASK2, &cgSingleBuffer_TASK2.eventsBuff);

ClearEvent(cgSingleBuffer_TASK2.eventMask);

if(cgSingleBuffer_TASK2.eventsBuff & 0x01)

GEN_IN_CURRENT(TASK2_EV);

}

/* TerminateTask(); */

}

Statemate 43

Designing Your Model: Model-Code Correspondence
ISR (Interrupt Service Routine) Activities

Interrupt Service Routines (ISRs) run once, upon activation, and then end.

ISR Categories
For OSEK 2.0, three ISR categories can be used: 1, 2, and 3.

The decision of which ISR category to use depends on the content of the functions it runs.
According to the OSEK/OS specification, an OS API function cannot be called from a category 1
ISR. For categories 2 and 3, some OS API functions can be called, but only within code sections
marked by EnterISR()/LeaveISR() calls.

The following are some code examples for different types of ISRs:

ISR - Examples of Generated Code

Code for a category 1 or 2 ISR, named ISR0, containing activities I01 and I02:

ISR (ISR0)

{

cgActivity_I01();

cgActivity_I02();

}

Code for a category 3 ISR function names ISR0, containing activities I01 and I02:

ISR (ISR0)

{

EnterISR();

cgActivity_I01();

cgActivity_I02();

LeaveISR();

}

44 MicroC Code Generator

Activity Charts
Code for a category 3 ISR function named ISR1, containing activities I11 and I12, and a controller
named CTRL1:

ISR (ISR1)

{

EnterISR();

do {

cgGlobalFlags &= ~BITSUPERSTEP_ISR1; MicroC 41

TASK/ISR Run Modes

cgActivity_I11();

cgActivity_I12();

cgActivity_CTRL1cnt1();

} while ((cgGlobalFlags & BITSUPERSTEP_ISR1) != 0);

LeaveISR();

}

Task/ISR Run Mode

A Task/ISR can have one of the following run modes:

� Single Step—the Task/ISR always runs a single step, then returns handling to the
operating system.

� Super Step—the Task/ISR runs the necessary number of Tasks before returning handling
to the operating system.

Decomposition of Non-basic Activities

When a non-basic activity does not contain an immediate descendant that is a control activity, all
of the activity's subactivities are considered active when the activity is active. For such a non-basic
activity, the generated code will resemble the following:

void

cgActivity_A11acy1(void)

{

cgActivity_A111();

cgActivity_A112();

}

Statemate 45

Designing Your Model: Model-Code Correspondence
Execution Order (for Subactivities)
The order in which the subactivities are called within the A11 activity body is determined by the
subactivity design attribute Execution Order, as defined for A111, A112, A113. In the previous
example, the value of this attribute was “1” for subactivity A111 and “2” for subactivity A112.

If the Execution Order attribute is not set, the calling order is not defined.

Code for Basic Subactivities
Basic activities can be defined in one of three activation modes:

� Reactive controlled
� Reactive self
� Procedure-like

For reactive controlled and reactive self modes, the code for the basic activity will resemble the
following:

void

cgActivity_A111(void)

{

… Body implementation

}

For the procedure-like mode, the code for the basic activity will resemble the following:

void

cgActivity_A112(void)

{

if ((cgActiveActivities1 & BITAC_A112) != 0) {

… Body implementation

stop_activity(A112);

}

}

46 MicroC Code Generator

Activity Charts
Adding a controller A11_CTRL to A11 will make the code look like:

void

cgActivity_A11acy1(void)

{

cgActivity_A111();

cgActivity_A112();

cgActivity_A11_CTRLcnt1();

}

with the controller function, cgActivity_A11_CTRLcnt1(), looking like:

void

cgActivity_A11_CTRLcnt1(void)

{

cgDo_A11_CTRLcnt1();

}

The implementation of cgDo_A11_CTRLcnt1() depends on whether A11_CTRL is implemented
as a statechart or as a flowchart.

For a statechart implementation:

void cgDo_A11_CTRLcnt1(void)

{

StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1 = 0;

if (currentState_A11_CTRLcnt1 == 0) {

nextState_A11_CTRLcnt1 = FS_A11_CTRLst2;

}

else

{

… Rest of the Statechart logic

}

if (nextState_A11_CTRLcnt1 != 0) {

if (currentState_A11_CTRLcnt1 !=

nextState_A11_CTRLcnt1)

cgGlobalFlags |= BITSUPERSTEP_TASK1;

currentState_A11_CTRLcnt1 = nextState_A11_CTRLcnt1;

}

}

Statemate 47

Designing Your Model: Model-Code Correspondence
For a flowchart implementation:

void

cgDo_A11_CTRLcnt1(void)

{

… The Flowchart logic

}

Communication and Synchronization Services between Activities
Communication and synchronization services between activities, including those not residing in
the same task/ISR, consist of the following:

� Non-queued messages
� Queued messages
� Signals
� Global Data
� Semaphores

Non-queued Messages

Non-queued messages uses a message identifier (i.e., the message name) to share data between
various tasks in the application. The sender and/or receiver task for such a message can be running
in the same ECU, share the same memory address space, or run across and ECU network on a
remote MCU. The user of the message need not be aware of the concrete implementation. Thus,
use of this mechanism ensures that the resulting design is correct, flexible, and efficient.

Queued Messages

The queued messages mechanism is similar to that of non-queued messages. The difference is that
queued messages do not contain values but rather signal the occurrence of some event.

Signals

Signals indicate the occurrence of some event. However, since they are not queued, there is no
information regarding how many such events occurred, until they are processed.

Also, these Task Event signals require that a specific task is addresses with a specific event, thus
requiring knowledge of the application structure. The Task Event implementation is more efficient
than ordinary or queued messages, however the task must be of type extended, which is not always
possible or efficient.

The downside of requiring knowledge of the application is balanced by the improved performance.
The weight assigned to these two issues will depend on the problem at hand.
48 MicroC Code Generator

Statecharts
Global Data

As always with real time applications, when using global data, caution should be taken regarding
the validity of the data when running in a preemptive environment with multiple tasks and ISRs.
The protection mechanism supported is the OSEK RESOURCE mechanism, which is similar to a
binary semaphore.

Semaphores

It is common for data to arrive through the bus or board ports, in some predefined messages and
addresses, and must be reproduced to the bus or board in the form of other predefined messages
and addresses.

In such situations, the designer simply uses the defined interface for his application. However, the
discussion above is relevant when one tries to build an implementation that will use the
appropriate interfaces but will also be easy to maintain, modify, and ported to various other
environments, usually unknown at design time.

Statecharts
Statecharts define the behavior of activities defined in activity diagrams, and are linked to an
activity with a control activity. Statecharts can contain sub-charts (nested statecharts).

This section provides details regarding the code that is generated for statecharts in your Statemate
model.

Functions Generated for Statecharts

For a control activity All_CTRL, the following two functions will be generated:

void cgActivity_A11_CTRLcnt1(void)

void cgDo_A11_CTRLcnt1(void)

The code generated for these functions will be as follows:

void cgDo_A11_CTRLcnt1(void)

{

StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1 = 0;

if (currentState_A11_CTRLcnt1 == 0) {

nextState_A11_CTRLcnt1 = FS_A11_CTRLst2;

}

else
Statemate 49

Designing Your Model: Model-Code Correspondence
{

… The rest of the Statechart logic

}

if (nextState_A11_CTRLcnt1 != 0) {

if (currentState_A11_CTRLcnt1 !=

nextState_A11_CTRLcnt1)

cgGlobalFlags |= BITSUPERSTEP_TASK1;

currentState_A11_CTRLcnt1 = nextState_A11_CTRLcnt1;

}

}

void cgActivity_A11_CTRLcnt1(void)

{

cgDo_A11_CTRLcnt1();

}

Statechart - Data Usage

When a statechart is created, a StateInfo data type is defined and a few variables of that type are
declared.

For the previous example, the StateInfo data type would be named StateInfo_All_CTRLcntl,
and would be defined as an unsigned type of 8, 16, or 32 bits (e.g., typedef int8
StateInfo_A11_CTRLcnt1)

The StateInfo variables will be currentState, nextState, and staySame:

StateInfo_A11_CTRLcnt1 currentState_A11_CTRLcnt1;

(global variable)

StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1;

(automatic variable)

StateInfo_A11_CTRLcnt1 staySame_A11_CTRLcnt1;

(automatic variable)

The currentState and nextState variables will always be allocated. The staySame variable will
be allocated only if the entering or exiting reaction function is required.

currentState is allocated as a global variable, while nextState and staySame are allocated as
local, automatic variables to the statechart function cgDo_....
50 MicroC Code Generator

Statecharts
Statechart - Generated Functions

In general, functions generated from statecharts will resemble the following (the provided line
numbers are used in explanations of the code below):

1 void

2 cgDo_A11_CTRLcnt1(void)

3 {

4 StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1 = 0;

5 if (currentState_A11_CTRLcnt1 == 0) {

6 nextState_A11_CTRLcnt1 = FS_A11_CTRLst2;

7 }

8

9 else

10 {

11 … The rest of the Statechart logic

12 }

13 if (nextState_A11_CTRLcnt1 != 0) {

14 if (currentState_A11_CTRLcnt1 !=

nextState_A11_CTRLcnt1)

15 cgGlobalFlags |= BITSUPERSTEP_TASK1;

16 currentState_A11_CTRLcnt1 =

nextState_A11_CTRLcnt1;

17 }

18 }

In line 4, the nextState variable is reset. This variable will be set only if a transition has been
made, and will hold the statechart's new state configuration.

Lines 13 and 14 check the nextState variable to determine whether a transition was made, and
whether to enforce another step in the task holding the statechart.

Line 16 advances the statechart configuration a step to hold the configuration of the next step.
Statemate 51

Designing Your Model: Model-Code Correspondence
In your statechart, lines 5 to 12 will be replaced with specific code resulting from the specified
statechart logic. For example, in many cases, two additional functions will be generated here -
entry actions and exit actions. If the statechart logic requires entering/exiting reactions, the
functions will resemble the following.

void

cgEnterActions_A11_CTRLcnt1(void)

{

… entering reactions code

}

void

cgExitActions_A11_CTRLcnt1(void)

{

… exiting reactions code

}

When either of these function are needed, the following changes to cgDo_… will also be made:

void cgDo_A11_CTRLcnt1(void)

{

StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1 = 0;

staySame_A11_CTRLcnt1 = 0;

if (currentState_A11_CTRLcnt1 == 0) {

nextState_A11_CTRLcnt1 =

FS_DefaultOf_Chart_A11_CTRL;

}

else

{

52 MicroC Code Generator

Statecharts
… The rest of the Statechart logic

}

if (nextState_A11_CTRLcnt1 != 0) {

cgExitActions_A11_CTRLcnt1();

cgEnterActions_A11_CTRLcnt1();

if (currentState_A11_CTRLcnt1 !=

nextState_A11_CTRLcnt1)

cgGlobalFlags |= BITSUPERSTEP_TASK1;

currentState_A11_CTRLcnt1 = nextState_A11_CTRLcnt1;

}

}

Order of Function Execution Rules

The following rules determine the order in which exiting actions, entering actions, transition
actions, and static reactions are carried out for a state transition:

1. Where the state has not changed, static reactions are carried out in descending order down
the state hierarchy.

2. When a transition is detected, the transition action is carried out immediately.

3. Exiting actions are then carried out, from the innermost state exited to the outermost state.

4. Finally, entering actions are carried out, from the outermost state entered to the innermost
state.

Note: In order to optimize code, you may sometimes want to inline entering/exiting
reactions. For more details, see Optimization.
Statemate 53

Designing Your Model: Model-Code Correspondence
State Variable Validation Macro

The IS_IN_VALID_STATE_<ctrl-activity-name> macro is defined in the generated file
macro_def.h for each Control-Activity Statechart hierarchy. This macro includes code for
validating that the state variable has a valid value. The validation is accomplished using the
inLeafState()(inState() for And States macros against all possible leaf states in the hierarchy.
In addition, there is a test against the valid “0” value.

For example, for the Control Activity (CTRL) with two leaf states (S2 and S2), the generated
macro is as follows:

#define IS_IN_VALID_STATE_CTRL (\

inLeafState(currentState_CTRL, S1, StateInfo_CTRL) || \

inLeafState(currentState_CTRL, S2, StateInfo_CTRL) || \

currentState_CTRL == 0 \

)

Timeout Implementation

Software counters are used as the basis for the implementation of timeouts. When a timeout or
delay is set, the current value of the relevant software counter will be added to the requested delay
time and stored in a variable, using a defined macro, INSTALL_TIMEOUT. By default, MicroC relates
to the primary software counter defined in the compilation profile.

Other software counters can be referenced using an optional third argument in the timeout
operator. The name of the counter is as written in the model, using the syntax:

tm(en(S1), 12, myCounter)

where myCounter is the name of the counter. Each counter receives an index value defined as
<counter_name>_INDEX. The index value identifies that specific counter in the application.

INSTALL_TIMEOUT Macro
The INSTALL_TIMEOUT macro has three arguments:

� The name of the event.
� The requested delay.
� The index of the counter on which it is pending

This allows the code to reuse the same timeout variable with different counters. The first argument
is concatenated to the INSTALL macro, as shown here. In the code, a call like the following will
be used:

INSTALL_TM(tm_999999962, 10, SYS_TIMER)
54 MicroC Code Generator

Statecharts
This call will set a timeout to expire 10 ticks from the current time of SYS_TIMER. The macro itself
will be defined as follows:

#define INSTALL_TM_tm_999999962(D, C) \

cgTimeoutsMask |= tm_999999962_TM_MASK;\

tm_999999962_TIME = currentTick + (D);

This call will assign to tm_999999962_TIME which is a variable of type Timeout Variable Type the
current counter value, help in currentTick plus the requested delay time help in D. In addition, the
bit tm_999999962_TM_MASK is set to flag that this timeout is pending.

A test for timeout expiration is carried out in the function:

genTmEvent_<CTRL_CHART_NAME>(<Timeout Variable Type>
currentTickVar, <Buffer> * buff, uint8 counterIndex)

The third parameter, uint8 counterIndex, holds the index of the counter that is referred to in the
current call to this function. Before each call to this function, the correct counter would be read
into the currentTick global variable.

For each Timeout Variable, there are three options for code generation inside the genTmEvent_…
function:

1. When there is only one counter in the model, no check will be made for the counter.

2. When there is only one counter that the timeout.variable can be installed for, then the code
will look.like:

if(counterIndex == <ITS_COUNTER_NAME>_INDEX &&
cgTimeoutsMask & tm_999999993_TM_MASK &&
currentTickVar >= tm_999999993_TIME) {

GEN_IN_BUFF(tm_999999993, buff);
cgTimeoutsMask &= ~tm_999999993_TM_MASK;

}

3. If there is more than one counter that the Timeout Variable can be installed for, then the
code will include the following provisions:

a. In the file, glob_dat.c a uint8 variable tm_999999993_counter¡ is generated, holding
the index of the current relevant counter.

b. In the file macro_def.h, along with the previous code that was generated for the
INSTALL_TIMEOUT macro, there is one more statement that keeps the INDEX of the
counter for which the timeout was installed.

The index that is passed to the function is compared with the index of the counter that was used
when the timeout was installed. This enables the application to identify the counter on which the
timeout is pending.
Statemate 55

Designing Your Model: Model-Code Correspondence
Special Requirements for OSEK-targeted Applications
OSEK-targeted applications have special requirements:

1. For each counter, an overflow task named <counter_name>_OVERFLOW is generated. This
includes the task declaration (found in os_decl.h) and body code (found in glob_func.c).

2. In each task, there is overflow management provided only for the Timeout variables that
refer to the specific counter.

3. For each counter, an alarm named <counter_name>_ALARM is generated. This includes the
alarm declaration (found in os_decl.h) and installation (found in macro_def.h). In the
macro_def.h file, a new macro is generated:

#define SET_ADDITIONAL_OVERFLOW_ALARMS() {\
SetAbsAlarm(<counte_name>_ALARM, 0,
OSMAXALLOWEDVALUE);\

}

This macro installs all the overflow alarms that activates the overflow tasks. A call
to this macro is in the file <profile-name>.c after the installation of the
SYS_TIMER_ALARM (formerly known as SYS_TIME_OVERFLOW).

Compare this to non-OSEK implementations:

1. For each counter, an overflow function named on<counter_name>_OVERFLOW is
generated. In each task, overflow management is provided only for the Timeout variables
that refer to that specific counter.

2. IMPORTANT - there is no call to these functions in the generated code. Therefore, in
order to use them, additional code should be added by the developer that decides when to
call these functions (on overflow), possibly in usercode.c.

Note: Set from within the Code Generation Profile Editor. Use Options > Settings >
General > Timeout Variable Type.
The goal is to have a variable that is bigger then the counter, thus avoiding the
“value overflow” problem.

History and Deep History Implementation

History and deep history implementation require a StateInfo variable for each state with a history
connector or deep history connector.

The state configuration is stored in this StateInfo variable, such that when a transition occurs into
the history/deep history, this configuration is assigned to the nextState variable, causing an
entrance to the stored state configuration.

The operators history_clear and deep_clear assign the corresponding default state
configuration to the corresponding StateInfo variable.
56 MicroC Code Generator

Statecharts
Optimization of Statechart Code

There are a number of optimization options available for state chart code. For more information
regarding these optimization options, see Optimization in Working with Profiles.

Recommendations for Efficient Code

To increase the efficiency of your code, it is recommended that you:

� Avoid redundant intermediate states (i.e., not persistent states).
� Avoid duplication of code segments - use functions or defined actions instead of hard-

coded duplicates.
� For a simple single state with self-transition scheduling some operation, use a static

reaction or an ISR.
� Use state hierarchy to represent priorities.
Statemate 57

Designing Your Model: Model-Code Correspondence
Flowcharts
A flowchart is another type of diagram that can be used to define the behavior of an activity.

For the purpose of code generation, a flowchart is considered to be the flowchart directly
connected to a control activity, as well as all of its sub-charts and the generics instantiated within
them.

Functions Generated for Flowcharts

For a control activity, A12_CTRL, the following two C functions will be generated:

void cgActivity_A12_CTRLcnt1(void)

void cgDo_A12_CTRLcnt1(void)

The body of these functions will resemble the following:

void

cgDo_A12_CTRLcnt1(void)

{

… The flowchart logic

}

void

cgActivity_A12_CTRLcnt1(void)

{

cgDo_A12_CTRLcnt1();

}

The function cgActivity_A12_CTRLcnt1 simply calls cgDo_A12_CTRLcnt1.
58 MicroC Code Generator

Flowcharts
Flowchart Implementation

The flowchart language that is used graphically describes a structured C program.

While both flowcharts and statecharts define the behavior of activities, the graphics and semantics
used in flowcharts are very different from those used in statecharts. In some cases, you may prefer
this approach to the statechart approach.

The code of a flowchart runs from beginning to end, without stopping and without explicitly
maintaining its internal state. Flowcharts do not have a notion of state or internal state.

While flowcharts allow the creation of highly visible, graphical algorithms, there is no inherent
overhead in the code that is generated from the chart. The MicroC code generator produces
optimized structured code, just as it does for statecharts.

If a flowchart is properly constructed, it will result in the generation of highly optimized code.
However, it is the responsibility of the designer to build appropriate charts with proper syntax,
logic, and association with a valid control activity. Otherwise, the results could be non-structured
code.

Flowchart Elements

The elements found in flowcharts can be divided into two categories:

� Boxes
� Arrows

Compound boxes—boxes containing other boxes—represent code blocks.

Labels

As with statecharts, the graphical elements in statecharts can be assigned labels for purposes of
identification and describing associated logic or value assignments. Labels on arrows are
considered to be literal constants and are allowed only for arrows exiting either decision or switch
elements.
Statemate 59

Designing Your Model: Model-Code Correspondence
Decision Expressions

The following expressions are permitted for decisions:

� Event (such as ON_POWERUP)
� Condition (such as [POWER_ON])
� Expressions (such as [TEMP > 27])

The following expressions are permitted on arrows exiting decisions:

� Yes
� No
� True
� False

Switch Expressions

The following expressions are permitted for switches:

� Value-type expressions (such as F1(3) + 5)
The following expressions are permitted on arrows exiting switches:

� Literal constants
� else
� default

Minimization of Goto Statements

The MicroC Code Generator tries to minimize the number of goto statements in the code. This
results in more structured and readable code. However, this is not always possible, and in some
cases goto statements may appear in the generated code.

Restructuring the flowchart or using statecharts instead of flowcharts may eliminate generated
goto code.
60 MicroC Code Generator

Flowcharts
Code Structure

The code is generated in C blocks.

Compound (non-basic) boxes in the flowchart are translated into blocks.

Basic boxes are interpreted as control positions between executable statements.

Begin/End Points

The start point for each block (the point at which the non-basic box is entered) is marked using a
Start arrow in that box. The end point is marked using an End connector in that box.

The start point for the entire flowchart is marked using a Start arrow at the highest level. The end
point for the entire flowchart is marked using an End connector at the highest level.

Flowchart execution stops when it can make no more progress. This may be due to reaching an
End connector, or it may be due to reaching a box for which all of the outgoing arrows evaluate to
false.

Arrows and Labels

In the case of nested boxes, all arrows on the inside boxes are tried first. If none of them can be
taken, then higher-level arrows are tried. This continues until the highest level is reached. If no
arrows can be taken at that level, the code finishes executing, i.e., the function returns.
Statemate 61

Designing Your Model: Model-Code Correspondence
Flowchart Examples

In the examples below, the flowchart is followed by the code generated for the flowchart.

Simple Flowchart

void cgDo_FL_CH_TEST_3()

{

DI=FUNC1();

if (DI > 5) {

ACT_2();

}

else {

ACT_1();

}

}

62 MicroC Code Generator

Flowcharts
Find/Merge Logic

void cgDo_FL_CH_FIND_MERGE_BOX()

{

DI = 1;

if ((DI == 1)) {

if ((DI == 3)) {

DI = 4;

}

DI = 5;

}

else {

DI = 3;

}

DI = 2;

}

Statemate 63

Designing Your Model: Model-Code Correspondence
Switch Control

void cgDo_USE_SWITCH_CTRL()

{

 switch(DI + 1) {

 case 3:

 if ((DI < 3)) {

 switch(DI * 2) {

 case 4:

 DI = 43;

 break;

 default:

 DI = 87;

 break;

 }

 DI = 4;

 }
64 MicroC Code Generator

Flowcharts
 else {

 DI = 455;

 }

 break;

 case 5:

 {

 switch(COLOR) {

 case BLACK:

 DI = 5;

 break;

 case BLUE:

 DI = 65;

 break;

 case RED:

 DI = 99;

 break;

 default:

 break;

 }

 }

 DI = 34;

 break;

 default:

 if (EV) {

 GENERATE_EVENT(EV);

 }

 else {

 SetRelAlarm(EV_ALARM, 11, 0);

 }

 break;

 }

}
Statemate 65

Designing Your Model: Model-Code Correspondence
Truth Table Implementation
The code implementation of truth tables is demonstrated below using the following sample truth
table implementing function F, using data items DI1 and DI2 as input.

For this truth table, the following code would be generated:

void f(void)

{

 if (DI1 == 1) {

 if (DI2 == 1) {

 A1();

 }

 else {

 if (DI2 == 2) {

 A2();

 }

 }

 }

 else {

 if (DI1 == 2 && DI2 == 3) {

 A3();

 }

 }

}

66 MicroC Code Generator

Lookup Table Implementation
Lookup Table Implementation
Statemate allows the definition of lookup tables to represent the type of non-linear Y=F(X)
functions that are so common in the world of microcontrollers. The data for a lookup table can be
defined manually in Statemate, or imported from any ASCII data file. You can elect to have linear
interpolation between defined points, or a histogram-like mode. Upper and lower bounds can be
defined, as can the search order to use (low-to-high, high-to-low).

In the sample lookup table below, the input is defined as Integer, and the return value of the
function is defined as Real.

Using the settings linear interpolation, high-to-low search order, lower bound = 0,
upper bound = 4, the following code will be generated:

double LOOKUP1(int IN1)

{

/*

Interpolation Function:

if(In < X2 && In >= X1)

Out = (Y2-Y1)/(X2-X1)*(In-X1)+Y1

*/

double LOOKUP1_retval;

if(IN1 < 1)

LOOKUP1_retval = (0);

else if(IN1 >= 1000)

LOOKUP1_retval = (4);

else if(IN1 >= 100)

LOOKUP1_retval = (4 - 3)/((double)1000 - 100)*(IN1 -

100) + 3;

else if(IN1 >= 10)

LOOKUP1_retval = (3 - 2)/((double)100 - 10)*(IN1 -

X F(X)1

1 1

10 2

100 3

1000 4
Statemate 67

Designing Your Model: Model-Code Correspondence
10) + 2;

else if(IN1 >= 1)

LOOKUP1_retval = (2 - 1)/((double)10 - 1)*(IN1 - 1)

+ 1;

return(LOOKUP1_retval);

}

Fixed-Point Variable Support
This section describes the MicroC Code Generator’s fixed-point support for integer arithmetic,
which scales integer variables so that they can represent non-integral values (fractions). This
feature allows you to perform calculations involving fractions without requiring floating-point
support from the target.

Statemate’s MicroC Code Generator supports fixed-point arithmetic at the model level, as well as
in the generated code.

Fixed-Point Variable Implementation Method

Statemate’s MicroC Code Generator uses the “2 factorials” implementation method—redefining
the least significant bit (LSB) to represent zero, or the negative power of 2. This implementation is
not the most accurate method but it provides reasonable code size and runtime performance.

For example, take the binary 8-bit value 0b00010001. Usually, the value represented here is “17”:

� The LSB (1st bit) corresponds to 20 (1).

� The 5th bit corresponds to 24 (16).
Rescaling this value to begin at 2-3 gives: 2.125 = 1*2-3 (or 0.125) + 1*21 (or 2)

The parameter required here is the power (of 2) represented by the LSB. This is also the resolution.

Supported Operators

You can use the following operators with fixed-point variables:

� Arithmetic (+, –, *, /)
� Assignment (=)
� Comparison (<, >, <=, >=, ==, !=)
� Functions (return value, parameters, local variables)
68 MicroC Code Generator

Fixed-Point Variable Support
Evaluating the wordSize and shift

The wordSize and shift of an object are defined by its design attributes (specified in the element
properties). The MicroC Code Generator determines the wordSize and shift of expressions made
of objects and operators by using the formulas listed in the macro definition table below.

The conventions used in the table are as follows:

� WS—The wordSize of the object
� SH—The shift of the object
� RG—The range (wordSize – shift)
� MAX(A, B)—A>B:A:B

� SUM(A, B)—A+B

� SUB(A, B)—A–B:

If the evaluated wordSize is greater than 32 bits, MicroC displays the following messages:

� wrn_err.inf - Warning: Fixed-Point Overflow in Expression:<Expression>
� generated code - /* Warning - Fixed- Point Overflow in Expression.*

This message is located right after the expression.
When you use fixed-point variables in integer arithmetic, the special functions (or C macros)
provided in the FXP package are used to perform the calculations. The following table lists these
macros

Operator or Object Formula Used

= wordSize and shift of the left operand

* WS=SUM(MAX(RG1, RG2), SUM(SH1, SH2)), SH=SUM(SH1,
SH2)

/ WS=SUM(MAX(RG1, RG2), SUB(SH1, SH2)), SH=SUB(SH1,
SH2)

funcCall wordSize and shift of the left function
ActualParameter Converted to the FXP type of the FormalParameter

All Other Parameters All other parameters WS = SUM(MAX(RG1, RG2),
MAX(SH1,SH2)), SH=MAX(SH1, SH2)
Statemate 69

Designing Your Model: Model-Code Correspondence
.

Unsupported Functionality

The following functionality is not supported:

� FXP parameter passed by reference

The MicroC Code Generator generates the following error message:

Error: Unsupported usage of Fixed-Point parameter used by reference.

In function: <FUNC_NAME> Parameter number: <PARAM_NUM>.
� MicroC ignores the remainder in division operations that result in remainders

For example:
FXP1(WS=8, SH=2) = 5

FXP2(WS=8, SH=2) = 2

FXP1/FXP2 = 2 (not 2.5)

Macro Definition Description

FXP2INT (FPvalue, FPshift) (FPvalue
>>FPshift)

Converts a fixed-point number with shift=FPshift to
an integer.

LS_FXP2FXP8 (FPvalue, fromFPshift,
toFPshift) ((sint8(FPvalue)) <<((toFPshift) -
(fromFPshift)))

Converts a fixed-point number with
shift=fromFPshift to an 8-bit fixed-point number
with shift=toFPshift using left shifting.

RS_FXP2FXP8 (FPvalue,
fromFPshift,toFPshift) ((sint8(FPvalue))
>>((fromFPshift) - (toFPshift)))

Converts a fixed-point number with
shift=fromFPshift to an 8-bit fixed-point number
with shift=toFPshift using right shifting.

LS_FXP2FXP16 (FPvalue,
fromFPshift,toFPshift) ((sint16(FPvalue))
<<((toFPshift) - (fromFPshift)))

Converts a fixed-point number with
shift=fromFPshift to a 16-bit fixed-point number
with shift=toFPshift by using left shifting.

RS_FXP2FXP16 (FPvalue,
fromFPshift,toFPshift) ((sint16(FPvalue))
>>((fromFPshift) - (toFPshift)))

Converts a fixed-point number with
shift=fromFPshift to a 16-bit fixed-point number
with shift=toFPshift using right shifting.

LS_FXP2FXP32 (FPvalue,
fromFPshift,toFPshift) ((sint32(FPvalue))
<<((toFPshift) - (fromFPshift)))

Converts a fixed-point number with
shift=fromFPshift to a 32-bit fixed-point number
with shift=toFPshift using left shifting.

RS_FXP2FXP32 (FPvalue,
fromFPshift,toFPshift) ((sint32(FPvalue))
>>
((fromFPshift) - (toFPshift)))

Converts a fixed-point number with
shift=fromFPshift to a 32-bit fixed-point number
with shift=toFPshift using right shifting.
70 MicroC Code Generator

Fixed-Point Variable Support
Specifying Fixed-Point Variables

To specify fixed-point variables in the Code Generator, follow these steps:

1. Select Options > Settings > Target Properties from the MicroC Code Generator
window.

2. Select the option Use Fixed Point variables for “Real”.

3. Select the default Word Size (8/[16]/32) and LSB= 2^- (0,1,2,..n).

The Generated Code
Fixed-point variables are implemented using uint variables (sint8, sint16, sint32), with
hardcoded shift values. Data is allocated according to the wordSize of the variable:

All calls to functions or expressions requiring integer values are done through an FXP-to-int cast,
including the test driver / panel driver. Specifically, the operators “ROUND” and “TRUNC” are
called with an FXP-to-int cast.

For example, given a fixed-point variable fxp_var, an integer variable int_var, and the following
actions:

INT_VAR := FXP_VAR + 4;

FXP_VAR := INT_VAR/5;

The generated code is as follows, if you specify fixed-point mode:

INT_VAR = RS_FXP2FXP16(FXP_VAR + LS_FXP2FXP16(0x4,

0, FXP_VAR_FXP_SHIFT), FXP_VAR_FXP_SHIFT, 0);

FXP_VAR = LS_FXP2FXP16(INT_VAR / 0x5, 0, FXP_VAR_FXP_SHIFT);

wordSize Data Type

8 bits sint8

16 bits sint16

32 bits sint32
Statemate 71

Designing Your Model: Model-Code Correspondence
Usage of Upper Case / Lower Case in Statemate
When you create a model element in Statemate, the element name that is saved in the Statemate
database reflects your exact case usage (lower case, upper case, mixed).

However, Statemate also provides a preference called Exact Case Mode (under General
Preferences), which allows you to specify how the element name should appear in both the
graphical editors and in the generated code. If this preference is set to On, then the element names
will appear just as you typed them, in both the graphical editors and in the generated code. If this
preference is set to Off, then the element names will appear in all upper case.

The mode that you select does not affect the way the names are saved in the database. There, they
always remain exact case. So to restore exact case usage in both the graphical editors and the
generated code, all you have to do is change the setting of the Exact Case Mode preference.

Statemate will not let you define two elements with the same name, differing only in the case used,
for example, an event called aB and an event called Ab. If you enter a different-case variation of a
name, Statemate automatically converts it to the exact case usage of the original element.

If you want to change the case used for an element, you must use the Rename option.
72 MicroC Code Generator

Advanced: Creating Customized OSIs
In addition to the code customization that can be achieved through the use of profiles (described
above), you can use the OSDT (Operating System Definition Tool) to further customize code
generation in order to create code appropriate for your target operating system. The result of this
process is an OSI (Operating System Implementation).

Since it is assumed that this level of customization will be performed at the project level (and not at
the individual user level), the OSDT is only installed with Statemate if it is selected during a
custom installation.

Using the OSDT to Customize OSIs
The OSDT includes predefined OSIs (operating system implementations) for a number of
operating systems. If you are using one of these systems, you do not need to perform any
customization.

If, however, customization is required, it is recommended that you select the OSI that is closest to
the system you will be using and use this as the base to which you add the required customizations.

To use an existing OSI as a template, select the desired OSI from the OS Implementation drop-
down list. Then, select File > Save As from the OSDT menu, and provide the name that you would
like to use for the new OSI you are creating.

After making any changes to individual OSI settings on the various tabs, select File > Save from
the OSDT menu to save the changes to your OSI. If you try to close the OSDT before changes
have been saved, you will be asked if you want to save the changes.

Statemate will not allow you to save changes to the predefined OSIs. If you make any changes to
these OSIs, you will be asked to save the modified profile under a different name.
Statemate 73

Advanced: Creating Customized OSIs
Static OS Configuration

If you are designing software for a system that requires a static configuration file, such as an
OSEK OIL file, select the check box Static OS Configuration.

When this option is selected, the Static OS Configuration... button is enabled, allowing you to
define the relevant APIs. This will also result in the static OS options being displayed on the OS
tab of the profile settings.

Memory Management

If you select the Memory Management check box, the Memory Management... button will be
enabled, allowing you to define various code options such as:

� directives specifying how data should be stored in memory
� directives such as #ifdef to include/exclude parts of the code

OSEK API

If you are designing an OSEK-based system, select the Use OSEK API check box, and select one
of the OSEK implementations from the drop-down list below the check box.

If you want to customize the OSEK API, select the Allow API Overriding check box. When this
options is selected, the API Definitions... button is enabled.
74 MicroC Code Generator

Types of Customization Available
Types of Customization Available
The code customization that the OSDT allows can be categorized as follows:

� Customizing Design Attributes

These attributes allow you to specify additional information for Statemate model
elements. They can also be used as building blocks when defining APIs (see below).

� Customizing API Definitions

These allow you to define the code that should be generated for a wide variety of basic
actions. In addition, you can customize the code for static OS configuration and memory
management. You can also specify formats for issues such as variable and function
naming or file headers/footers.

� Specifying Related Files

This allows you to select the files that you will want to have available in your workarea,
for example, makefiles, .h files, and .oil files.

Customizing Design Attributes
Elements in a Statemate model are further defined using design attributes. Every element has
attributes that are relevant to that type of element. For example, the design attributes for activities
may include Type, Task Run Mode, Generate Function (yes/no). These attributes appear on the
Design Attributes tab of the Properties dialog.

For most of the provided OSIs, a default set of design attributes are defined for the various
Statemate elements. You can also add new design attributes for an element, using the Attributes
Editor, which is part of the OSDT. In addition to allowing you to define new attributes, this editor
allows you to modify the various field values for the default design attributes.

The design attributes for an element, both the default attributes and any new ones, can be used as
tokens when defining the different APIs with the OSDT, allowing you to include the values of
element attributes in the generated code.

For each design attribute, the editor displays:

� The basic attribute information, such as name, type, default value, key name.
� The attribute’s dependencies
� Information that should be displayed when Statemate’s Info tool is used.
Statemate 75

Advanced: Creating Customized OSIs
Note
The key name is the string that is used when the attribute is used as a token. Since both other
attributes and API’s may reference an attribute’s key value, you will be asked to confirm
any changes to an attribute’s key name. When such a change is made, the name change will
be propagated to any attributes for the same element that have a reference to the attribute.

To edit attribute information, follow these steps:

1. Click Edit Attributes... on the main OSDT screen.

2. The Design Attributes Definition dialog is displayed. This screen is not used for editing
attribute information, but simply for turning on/off the use of design attributes for specific
model elements. If you clear the check box next to an element name, the design attributes
will not appear when you display the Properties dialog for elements of this type.

3. In the Design Attributes Definition dialog, click Edit Attributes... . The Attribute Editor
screen will be displayed. All editing of information is done on the right side of this dialog.
The left side serves as a browser, and contains controls that can be used to modify the
order in which the attributes appear in the Properties dialog.
76 MicroC Code Generator

Customizing Design Attributes
To save any changes/additions you have made to the design attributes, select File > Save All from
the menu, and after you have closed the Attribute Editor dialog, select File > Save from the OSDT
menu. The changes will not be saved to the OSI if you have only saved them in the Attribute
Editor dialog.
Statemate 77

Advanced: Creating Customized OSIs
Design Attribute Fields

General

Parameter Description

Displayed Name The string that is displayed for the attribute on the Design Attributes tab of the
Properties dialog.

Key Name The string used when using the attribute as a token in an API definition, or as a
dependency for another design attribute. This string cannot contain spaces.

Type The type of value that can be used for this attribute, for example, string, integer,
enumerated.

Default Value The default value to display for the attribute.

Select Key Allows you to specify a predefined list of values that can be presented to the user
when they click the Choose button on the Design Attributes tab, for example, a
list of tasks for the design attribute Its Task.
78 MicroC Code Generator

Customizing Design Attributes
Dependency
The Dependency tab allows you to make the existence of a design attribute dependent upon other
attributes such that the design attribute will be used only under certain conditions. If these
conditions are not met, the attribute is not included in the generated code and not visible in the
Design Attributes tab in the Properties dialog.

Visibility Specifies whether or not the attribute is displayed on the Design
Attributes tab. There are certain situations where you may want to use a
hidden attribute—an attribute that does not appear on the Design
Attributes tab, but is included in the code.

Legal Values The possible values to display for attributes of type enumerated.
Remark Field that can be used for describing the attribute. This text only appears

here, in the Attribute Editor.

Parameter Description
Statemate 79

Advanced: Creating Customized OSIs
For example, the attribute Task Run Mode will be displayed only if the activity is of type Task.

The drop-down lists can be used to compose conditions involving relevant attributes.

You can then specify whether the design attribute is available only if all of the listed conditions are
met or if any of the listed conditions are met.

Info
The Info tab allows you to specify whether the design attribute should be included in Statemate’s
Info dialog when the user displays this dialog for a given element, and, if so, how it should be
displayed.
80 MicroC Code Generator

Customizing Design Attributes
Parameter Description

Visible in Info This boolean field is used to indicate whether or not the design
attribute should be included in the Info dialog.

Order in Info You can specify the order in which design attributes are displayed in
the Info dialog, by entering an integer in this field. The values used for
the different attributes do not have to be sequential.

Show Key Value This field is used to indicate what should be displayed for this attribute
in the Info dialog—the attribute name and value, the attribute value
only, or the attribute name only.

Concatenate to Previous • If you select yes for this field, the information for this attribute will
be displayed in the same row as the information for the previous
attribute.

• If you select no, the information for this attribute will be displayed
on a new line.
Statemate 81

Advanced: Creating Customized OSIs
Customizing API Definitions
The API definitions are divided into the following categories:

� General API Definitions

� Customizing Code Style

� Customizing Memory Management

� Customizing the Static OS Configuration

The OSDT contains a number of features that facilitate API definition. These features apply to
each of the above categories, and will be described in the following section. Afterward, each of the
API definition categories will be discussed in detail.

Features that Facilitate API Definition

The following features can be used when defining the APIs:

� Browse Properties from OSDT

� Using Parameters for the Generated Code

� Conditional Expressions in API Definitions

Browse Properties from OSDT
When defining APIs in the OSDT, you can easily access tokens available for use in the definitions.

To see the available tokens, type $. The list of available values will be displayed.

The list of available tokens includes the API’s formal arguments, and all the design attributes
defined for the various elements.

Note
Design attributes have element-level scope (i.e, they are relevant only for the element for
which they are defined). Therefore, if a design attribute from a different element is used in
an API definition, its value will be an empty string.
82 MicroC Code Generator

Customizing API Definitions
Using Parameters for the Generated Code
To represent parameters in the API definitions you provide, you add the prefix “$<” and the suffix
“>” to the parameter name, for example:

API name:

Terminate Task(nameid)

API Definition in OSDT:

TerminateThread (t_$<nameid>.hndl , 0);

Code that will be generated for a task named T1:

TerminateThread (t_T1.hndl , 0);

A second way to use parameters in the API definition is to use the design attribute value of the
element itself. For example, suppose the element has a design attribute named Create Mode that
uses the attribute key word CK_createdMode, which then evaluates to:

CREATE_SUSPENDED

API Name:

Create Task(nameid)
Statemate 83

Advanced: Creating Customized OSIs
API Definition in OSDT:

t_$<nameid>. hndl = CreateThread (NULL ,

0 , (LPTHREAD_START_ROUTINE)$<nameid> , NULL ,

$<CK_createdMode> , &t_$<nameid>.tid);

Code that will be generated for a task named T1:

t_T1. hndl = CreateThread (NULL , 0 ,
(LPTHREAD_START_ROUTINE) T1, NULL ,
CREATE_SUSPENDED, &t_T1.tid);

A third way to use parameters in the API definition is to use the property value of the element as
the API definition. For example, suppose the element has a design attribute, possibly hidden, that
uses the attribute key word CK_sendMessagesAPI

This evaluates to:

mySendMessage($<nameid>,...)

For the following API definition:

API Name:

Send Message(nameid)

API Definition in OSDT:

$<<CK_sendMessagesAPI>>

and design attribute definition:

mySendMessage($<nameid>, $<CK_MessagePriority>);

The resulting generated code, for a data item named DI1, will be:

mySendMessage(DI1, 1);

assuming that the CK_MessagePriority property evaluates to 1.
84 MicroC Code Generator

Customizing API Definitions
Conditional Expressions in API Definitions
The OSDT also allows the use of conditional expressions in API definitions. This feature allows
the inclusion of a certain string if the condition is met and the inclusion of an alternative string if
the condition is not met. Basically, the feature mimics the C conditional expression, “? :”, although
the syntax is slightly different.

The basic syntax is as follows:

?<begin> expression 1 ?<?> expression 2 ?<:> expression 3 ?<end>

If expression 1 evaluates to true, then expression 2 will be used in the API definition; otherwise,
expression 3 will be used.

Example of using conditional expressions:

?<begin> $<prop1> ?<==> prop1val ?<?> expression when yes ?<:>
expression when no ?<end>

In the above example, the string used in the API definition will be expression when yes if
$<prop1> evaluates to prop1val. Otherwise, the string used will be expression when no.

When defining the condition (expression 1), the following symbols can be used:

?<==> (equal strings)

?<!=> (not equal strings)

?<&&> (logical AND)

?<||> (logical OR)

Expression 2 and expression 3 referred to above can consist of any expression that is legal in the
API definition, including additional conditional expressions.

The following is a more complex example, which uses nested conditional expressions.

Some prefix code ?<begin> $<prop1> ?<==> prop1val

?<&&> $<prop1.1> ?<==> prop1.1val ?<?> ?<begin>

$<prop2> ?<==> prop2val ?<||> $<prop2.1> ?<==>

prop2.1val ?<?> exp 1.1 when yes ?<:> exp 1.2 when no

?<end> ?<:> exp 2 when no ?<end> Some postfix code,

then another conditional expression ?<begin> $<prop3>

?<==> prop3val ?<?> exp 3.1 when yes ?<:> exp 3.2 when

no ?<end>
Statemate 85

Advanced: Creating Customized OSIs
Start with the inner conditional expression:

?<begin> $<prop2> ?<==> prop2val ?<||> $<prop2.1> ?<==> prop2.1val
?<?> exp 1.1 when yes ?<:> exp 1.2 when no ?<end>

This expression will evaluate to exp 1.1 when yes if either $<prop2> evaluates to “prop2val” or
$<prop2.1> evaluates to “prop2.1val”. If neither of these conditions are met, then the expression
will evaluate to exp 1.2 when no.

Now look at the outer conditional expression, replacing the result of the inner expression with the
string “result of inner conditional expression”:

?<begin> $<prop1> ?<==> prop1val ?<&&> $<prop1.1> ?<==>

prop1.1val ?<?> result of inner conditional expression ?<:> exp 2 when no
?<end>

This expression will evaluate to the result of the inner conditional expression if $<prop1>
evaluates to prop1val and $<prop1.1> evaluates to prop1.1val. Otherwise, the expression will
evaluate to exp 2 when no.

So, assuming that:

$<prop1> = prop1val

$<prop1.1> = prop1.1val

$<prop2> <> prop2val

$<prop2.1> <> prop2.1val

$<prop3> <> prop3val

The API result will be:

Some prefix code exp 1.2 when no Some postfix code, then another
conditional expression exp 3.2 when no
86 MicroC Code Generator

Customizing API Definitions
General API Definitions

The OSDT allows you to define how code should be generated for the various model elements.
These APIs represent the code that will be generated when you use specific elements in your
charts.

For example, if you add an activity to an activity diagram, and select “Task” as the type, the code
that is generated for activities related to this task will be determined by the APIs you have defined.

In the case of a Task, you can define the code for activities such as:

� creating the Task
� activating the Task
� destroying the Task

Using the OSDT, you can define the code to generate in connection with the following categories:

� OS data types
� timeouts
� Tasks
� events
� software counters
� timers
� synchronization
� critical sections
� messages
� interrupts
� get-set functions
� queues
� scheduler

In the tables containing the API details, the generated code is based on the definition that appears
in the column Sample Definition, unless specified otherwise.
Statemate 87

Advanced: Creating Customized OSIs
OS Data Type APIs

Name Sample
Definition Description Where Used Code Generated

Task Descriptor
Name

TASK_H Defines the Task’s
(OS Object) Type
name.

The definition of
this API is used
when a Task type
name is needed.
For example, with
the tracing function
(controlled by a
Code Generator
option), the type of
the parameter that
identifies the Task
being traced uses
this API definition.

API Definition:
TASK_H

Generated Code
(type_def.h):
#ifdef
TRACE_TASK

void
traceTask(TASK_H
t, char indx);

#endif

Task Descriptor
Data Type

typedef struct
TASK_H {HANDLE
hndl; DWORD tid;
int indx; int
evCount; HANDLE
eventArray[16];}
TASK_H;

Defines the Task’s
(OS Object) Data
Type.

The definition of
this API is
generated in the file
type_def.h

The generated code
is the API's definition
suffixed with an end-
line.
88 MicroC Code Generator

Customizing API Definitions
Event
Descriptor
Name

 EVENT_H Defines the Event’s
(OS Object) Type
name.

The definition of
this API is used
when a Task-Event
type name is
needed.
For example, when
using Task-Events
in OSEK, a data
that holds the Task-
Event is allocated
with the type name
defined by this API.

API Definition:
EventMaskType
Generated code
(type_def.h):
EventMaskType
eventsBuff;

Event
Descriptor Data
Type

Defines the Event’s
(OS Object) Data
Type.

The definition of
this API is
generated in the file
type_def.h

The generated code
is the API's definition
suffixed with an end-
line.

Software
Counter
Descriptor
Name

 SW_COUNTER_H Defines the
Software Counter’s
(OS Object) Type
name.

The definition of
this API is used
when a Software-
Counter type name
is needed.
For example, when
using OSEK OS
and Timeouts then
this API's definition
is used in the
Counter Overflow
Task to install a
timer to invoke this
Task again.

API Definition:
TickType
Generated Code
(glob_func.c):
((TickType)6000
* 0.5);

Software
Counter
Descriptor Data
Type

 typedef uint16
SW_COUNTER_H

Defines the
Software Counter’s
(OS Object) Data
Type.

The definition of
this API is
generated in the file
type_def.h

The generated code
is the API's definition
suffixed with an end-
line.

Timer
Descriptor
Name

 TIMER_H Defines the Timer’s
(OS Object) Type
name.

NOT USED

Timer
Descriptor Data
Type

Defines the Timer’s
(OS Object) Data
Type.

The definition of
this API is
generated in the file
type_def.h

The generated code
is the API's definition
suffixed with an end-
line.

Semaphore
Descriptor
Name

 SEM_H Defines the
Semaphore’s (OS
Object) Type name.

NOT USED

Name Sample
Definition Description Where Used Code Generated
Statemate 89

Advanced: Creating Customized OSIs
Semaphore
Descriptor Data
Type

Defines the
Semaphore’s (OS
Object) Data Type.

The definition of
this API is
generated in the file
type_def.h

The generated code
is the API's definition
suffixed with an end-
line.

Message
Descriptor
Name

 MESSAGE_H Defines the
Message’s (OS
Object) Type name.

NOT USED

Message
Descriptor Data
Type

Defines the
Message’s (OS
Object) Data Type.

The definition of
this API is
generated in the file
type_def.h

The generated code
is the API's definition
suffixed with an end-
line.

ISR Descriptor
Name

 ISR_H Defines the ISR’s
(OS Object) Type
name.

NOT USED

ISR Descriptor
Data Type

 typedef @interrupt
void (*
ISR_H)(void)

Defines the ISR’s
(OS Object) Data
Type.

The definition of
this API is
generated in the file
type_def.h

The generated code
is the API's definition
suffixed with an end-
line.

Name Sample
Definition Description Where Used Code Generated
90 MicroC Code Generator

Customizing API Definitions
Queue
Descriptor Data
Type(nameid,
qType)

 typedef struct
$<nameid>_qtype{
uint16 head;
uint16 tail;
$<qType>
q[DEFAULT_QUEU
E_SIZE];
}
$<nameid>_qtype;

Defines the data
type of a queue.

This API is used
when there is data
of type Queue in
the model.
The type is
generated in the file
type_def.h

For Data-Item defined
as Queue:
Name: DI_QUEUE
Formal Parameter:
q_type = unsigned
long int
API Definition:
typedef struct
$<nameid>_qtype{
 uint16 head;

 uint16 tail;

 $<qType>
q[DEFAULT_QUEUE_
SIZE];

}
$<nameid>_qtype;

Generated code:
typedef struct
DI_QUEUE_qtype{

 uint16 head;

 uint16 tail;
 unsigned long
int
q[DEFAULT_QUEUE_
SIZE];

}
DI_QUEUE_qtype;

Name Sample
Definition Description Where Used Code Generated
Statemate 91

Advanced: Creating Customized OSIs
Queue Data
Type Static
Init(nameid,
qType)

 { 0, /* head */
0, /* tail */
{0} /* q */
}

Defines the code
for the static
initialization of the
Queue type.

This API is used
when statically
initializing a Queue
typed data.
The initialization
can be in a
generic's data
allocation, or in a
User's data
initialization
(controlled by a
Code Generator
option)

For Data-Item defined
as Queue:
Name: DI_QUEUE
Formal Parameter:
q_type = unsigned
long int
API Definition:
{

 0, /* head */
 0, /* tail */

 {0} /* q */

}

Generated code:
struct
DI_QUEUE_qtype
DI_QUEUE = {

 0, /* head */
 0, /* tail */

 {0} /* q */

};

Name Sample
Definition Description Where Used Code Generated
92 MicroC Code Generator

Customizing API Definitions
Timeout APIs

Name Sample
Definition Description Where Used Code Generated

Timeout Install
Define
(nameid,
tmMaskName,
tmMaskVal,
tmVariableName,
tmMaskVarName,
tmVariableType,
tmCurrentTickName,
tmCounterVarName,
tmCounterName)

?<begin>
$<tmMaskVal>
?<==>
?<?>?<:>#defin
e
$<tmMaskNam
e>
$<tmMaskVal>
?<end>#define
INSTALL_TM_$
<nameid>(D, C)
\

$<tmMaskVarN
ame> |=
$<tmMaskNam
e>; \

$<tmVariableN
ame> =
($<tmVariableT
ype>)$<tmCurr
entTickName>
+ (D); ?<begin>
$<tmCounterVa
rName> ?<==>
?<?>?<:>\

$<tmCounterVa
rName> =
(C);?<end>

Definition of the
Timeout
installation, in
the file
macro_def.h

This API is
used for each
of the
Timeouts in
the model,
when
generating the
macro for
installing the
Timeout.
The macro is
generated in
the file
macro_def.h

For a Timeout with
predefined name:
tm_999999998
API's Parameters:
tmMaskName =
tm_999999998_TM_MASK
tmMaskVal = 0x01
nameid = tm_999999998
tmMaskVarName =
cgTimeoutsMask
tmVariableName =
tm_999999998_TIME
tmVariableType = uint32
tmCurrentTickName =
currentTick
tmCounterVarName =
<empty>
API Definition:
?<begin> $<tmMaskVal>
?<==> ?<?>?<:>#define
$<tmMaskName>
$<tmMaskVal>
?<end>#define
INSTALL_TM_$<nameid>(D,
C) \
Statemate 93

Advanced: Creating Customized OSIs
Timeout Install
Define
(nameid,
tmMaskName,
tmMaskVal,
tmVariableName,
tmMaskVarName,
tmVariableType,
tmCurrentTickName,
tmCounterVarName,
tmCounterName)

(Continued)

 $<tmMaskVarName> |=
$<tmMaskName>; \
 $<tmVariableName> =
($<tmVariableType>)$<tmCur
rentTickName> + (D);
?<begin>
$<tmCounterVarName>
?<==> ?<?>?<:>\
 $<tmCounterVarName> =
(C);?<end>
Generated Code:
#define
tm_999999998_TM_MASK
(UNSIGNED_MASK_TYPE)(
0x01)
#define
INSTALL_TM_tm_9999999
98(D, C) \

cgTimeoutsMask |=
tm_999999998_TM_MASK;
\
tm_999999998_TIME =
(uint32)currentTick +
(D)

Name Sample
Definition Description Where Used Code Generated
94 MicroC Code Generator

Customizing API Definitions
Timeout Install
Call(nameid, time,
counterIndex,
tmCounterName,
tmCurrentTickName)

$<tmCurrentTic
kName> =
$<tmCounterNa
me>;
INSTALL_TIME
OUT($<nameid
>, $<time>,
$<counterIndex
>)

Definition of the
call to the install
of a Timeout, in
file <module>.c

This API is
used for each
of the
Timeouts in
the model,
when
generating the
code for
installing the
Timeout.
The code for
the installation
is generated in
the file
<module>.c

For a Timeout with
predefined name:
tm_999999998
API's Parameters:
tmCurrentTickName =
currentTick
tmCounterName =
ms_counter
nameid = tm_999999998
time = 1
counterIndex =
ms_counter_INDEX
API Definition:
$<tmCurrentTickName> =
$<tmCounterName>;
INSTALL_TIMEOUT($<name
id>, $<time>,
$<counterIndex>)
Generated Code:
currentTick =
ms_counter;
INSTALL_TIMEOUT(tm_99
9999998,1,ms_counter_
INDEX);

Name Sample
Definition Description Where Used Code Generated
Statemate 95

Advanced: Creating Customized OSIs
Timeout Test on
Expiration
Call(nameid,
tmCurrentTickName,
tmCounterName,
tmEventBuffer,
tmCounterIndex,
genContextVar)

$<tmCurrentTic
kName> =
$<tmCounterNa
me>;
$<nameid>($<t
mCounterName
>,
&$<tmEventBuf
fer>,
$<tmCounterIn
dex>?<begin>$
<genContextVa
r> ?<!=> ?<?>,
$<genContextV
ar>?<:>?<end>
)

Definition of the
call to the
Timeouts
Dispatch
function, in the
file <module>.c

This API is
used in the
Task's code
frame.
The API
defines the
code that calls
to the
Timeouts
Dispatch
Function, in
<module>.c

For a Timeout with
predefined name:
tm_999999998
API's Parameters:
tmCurrentTickName =
currentTick
tmCounterName =
ms_counter
nameid = tm_999999998
time = 1
counterIndex =
ms_counter_INDEX
tmEventBuffer =
cgDoubleBufferOld_T1
genContextVar = <empty>
API Definition:
$<tmCurrentTickName> =
$<tmCounterName>;
$<nameid>($<tmCounterNa
me>, &$<tmEventBuffer>,
$<tmCounterIndex>?<begin>
$<genContextVar> ?<!=>
?<?>,
$<genContextVar>?<:>?<en
d>);
Generated Code:
currentTick =
ms_counter;

genTmEvent_T1(current
Tick,
&cgDoubleBufferOld_T1
, ms_counter_INDEX);

Name Sample
Definition Description Where Used Code Generated
96 MicroC Code Generator

Customizing API Definitions
Timeout Test on
Expiration
Define(nameid,
tmCurrentTickType,
tmCurrentTickName,
tmEventBuffType,
tmEventBuffName,
tmCounterIndexType
, tmCounterIndex,
genContextVar,
timeoutList)

 @<for>
@<timeoutList>
@<begin>
if(?<begin>
$<$<timeoutList
>_counterIndex
>?<==>
?<?>?<:>$<tm
CounterIndex>
==
$<$<timeoutList
>_counterIndex
> &&

?<end>$<$<tim
eoutList>_buff
Mask> &
$<timeoutList>_
TM_MASK &&
$<tmCurrentTic
kName> >=
$<$<timeoutList
>_timeVar>) {

GEN_IN_BUFF
($<timeoutList>
,
$<tmEventBuff
Name>);

$<$<timeoutList
>_buffMask>
&=
~$<timeoutList
>_TM_MASK;
 };
@<end>}

Definition of the
Timeouts
Dispatch
function, in the
file <module>.c

This API is
used when
generating the
Timeout
Dispatch
Function.
A separate
Timeout
Dispatch
Function is
generated for
each of the
Tasks, ISR's
and Generic
Activity
generated as
function.
This API uses
a syntax
capability that
handles lists
of Design-
Attributes.
Lists of
Design-
Attributes are
simply a set of
Design-
Attributes with
identical
name, in the
same element.
The syntax
uses the
character "@"
and the
"begin" and
"end" tokens
to define the
boundaries of
the definition
related to the
list of Design-
Attributes.

For an Activity defined to be a
Task:
Name: T1
With Timeouts:
tm_999999998,
tm_999999997
API Definition: Same as the
example definition
API's Parameters:
nameid = T1
timeoutList = tm_999999998,
tm_999999997
tmCurrentTickType = uint16
tmCurrentTickName =
currentTickVar
tmEventBuffType =
cgDoubleBufferType_T1*
tmEventBuffName = buff
tmCounterIndexType = uint8
tmCounterIndex =
counterIndex
genContextVar = <empty>
Generated Code:
void
genTmEvent_T1(uint16
currentTickVar,
cgDoubleBufferType_T1
* buff, uint8
counterIndex)

{
 if(counterIndex ==
ms_counter_INDEX &&

 cgTimeoutsMask &
tm_999999998_TM_MASK
&& currentTickVar >=
tm_999999998_TIME) {

Name Sample
Definition Description Where Used Code Generated
Statemate 97

Advanced: Creating Customized OSIs
Timeout Test on
Expiration
Define(nameid,
tmCurrentTickType,
tmCurrentTickName,
tmEventBuffType,
tmEventBuffName,
tmCounterIndexType
, tmCounterIndex,
genContextVar,
timeoutList)

(Continued)

GEN_IN_BUFF(tm_999999
998, buff);
 cgTimeoutsMask &=
~tm_999999998_TM_MASK
;
 };

 if(counterIndex ==
sec_counter_INDEX &&
 cgTimeoutsMask &
tm_999999997_TM_MASK
&& currentTickVar >=
tm_999999997_TIME) {

GEN_IN_BUFF(tm_999999
997, buff);

 cgTimeoutsMask &=
~tm_999999997_TM_MASK
;

 };

}

Name Sample
Definition Description Where Used Code Generated
98 MicroC Code Generator

Customizing API Definitions
Timeout Test on
Expiration
Declare(nameid,
tmCurrentTickType,
tmCurrentTickName,
tmEventBuffType,
tmEventBuffName,
tmCounterIndexType
, tmCounterIndex,
genContextVar)

void
$<nameid>($<t
mCurrentTickTy
pe>
$<tmCurrentTic
kName>,
$<tmEventBuff
Type>*
$<tmEventBuff
Name>,
$<tmCounterIn
dexType>
$<tmCounterIn
dex>?<begin>$
<genContextVa
r> ?<!=> ?<?>,
$<genContextV
ar>?<:>?<end>
);

The forward
declaration of
the Timeouts
Dispatch
function, in the
file type_def.h

This API is
used when
generating the
Timeout
Dispatch
Function's
forward
declaration.
The forward
declaration is
generated in
the file
type_def.h

For an Activity defined to be a
Task:
Name: T1
API's Parameters:
tmCurrentTickType = uint16
tmCurrentTickName =
currentTickVar
tmEventBuffType =
cgDoubleBufferType_T1*
tmEventBuffName = buff
tmCounterIndexType = uint8
tmCounterIndex =
counterIndex
API definition:
void
$<nameid>($<tmCurrentTick
Type>
$<tmCurrentTickName>,
$<tmEventBuffType>*
$<tmEventBuffName>,
$<tmCounterIndexType>
$<tmCounterIndex>?<begin>
$<genContextVar> ?<!=>
?<?>,
$<genContextVar>?<:>?<en
d>);
Generated Code:
void
genTmEvent_T1(uint16
currentTickVar,
cgDoubleBufferType_T1
* buff, uint8
counterIndex);

Name Sample
Definition Description Where Used Code Generated
Statemate 99

Advanced: Creating Customized OSIs
Timeout Overflow
Code Per
Task(tmMasks,
tmDispatchFunc,
counterMaxAllowdVa
l, tmEventBuffName,
counterIndex,
genContextVar,
timeoutList,
timeoutVarType,
counterValueType)

if($<tmMasks>)
{

$<tmDispatchF
unc>($<counter
MaxAllowdVal>,
&($<tmEventBu
ffName>),
$<counterIndex
>?<begin>$<ge
nContextVar>
?<!=> ?<?>,
$<genContextV
ar>?<:>?<end>
);

@<for>@<time
outList>
@<begin>?<be
gin>
$<$<timeoutList
>_counterIndex
>?<!=> ?<?>
if($<$<timeoutL
ist>_counterInd
ex> ==
$<counterIndex
>)
 ?<:>?<end>
$<$<timeoutList
>_timeoutVar> -
=
($<timeoutVarT
ype>) 1 +
(($<counterValu
eType>)$<coun
terMaxAllowdV
al>);
@<end>
}

The overflow
code related to
a specific task
with timeouts,
put in the
Overflow-Task,
in the file
glob_func.c

This API is
used in the
Counter's
overflow task,
in the section
where the
overflow task
calls the
Timeout
Dispatch
Functions for
each of the
related
Timeouts.
This API
defines the
code for
calling the
Timeout
Dispatch
Function for
Timeouts that
related to the
same Task,
ISR or generic
activity
instance.
This code is
generated in
the file
glob_func.c

For an Activity defined to be a
Task:
Name: T1
API's Parameters:
tmMasks = cgTimeoutsMask
!= 0
tmDispatchFunc =
genTmEvent_T1
counterMaxAllowdVal =
(uint16) -1
tmEventBuffName =
cgDoubleBufferNew_T1
counterIndex =
ms_counter_INDEX
genContextVar = <empty>
timeoutList = tm_999999998
(list with only 1 Timeout)
timeoutVarType = uint32
counterValueType = (uint16)
counterMaxAllowdVal =
(uint16) -1
API definition:
Same as the example
definition
Generated Code:
if(cgTimeoutsMask !=
0) {

genTmEvent_T1((uint16
) -1,
&(cgDoubleBufferNew_T
1),
ms_counter_INDEX);

 tm_999999998_TIME
-= (uint32) 1 +
((uint16)(uint16) -
1);

}

Name Sample
Definition Description Where Used Code Generated
100 MicroC Code Generator

Customizing API Definitions
Task APIs

Name Sample
Definition Description Where Used Code

Generated

Task Entry
Function
Style(nameid)

void
$<nameid>(void)

Defines the style in
which a Task’s (OS
Object) function
entry is generated.

This API is used
when generating
the code for the
definition of a
Task's code frame.
It defines the Task's
code frame
function's prototype
and return type.
The code is
generated in the file
<module>.c

For an Activity
defined to be a
Task:
Name: T1
API Definition:
void
$<nameid>(v
oid)

Generated
code:
void
T1(void)

Declare
Task(nameid)

extern void
$<nameid>(void);

Definition of the
code for declaring a
Task (OS Object).

This API is used
when generating
the code for
declaring a Task.
The code is
generated in the file
type_def.h

For an Activity
defined to be a
Task:
Name: T1
API Definition:
extern void
$<nameid>(v
oid);
Generated
code:
extern void
T1(void);

Define
Task(nameid)

Definition of the
code for defining a
Task (OS Object).

This API is used
when generating
the code for
defining a Task.
The code is
generated in the file
glob_dat.c

For an Activity
defined to be a
Task:
Name: T1
API Definition:
DEFINE_TASK
($<nameid>)
;

Generated
code:
DEFINE_TASK
(T1);
Statemate 101

Advanced: Creating Customized OSIs
Create
Task(nameid)

Definition of the
code for creating a
Task (OS Object).

This API is used
when generating
the code for
creating a Task.
The code is
generated in the file
glob_dat.c, in the
function:
on_startup_cod
e.
The function
on_startup_cod
e is called at the
startup of the
generated
application.

For an Activity
defined to be a
Task:
Name: T1
API Definition:
CREATE_TASK
($nameid);

Generated
code:
CREATE_TASK
(T1);

Destroy
Task(nameid)

Definition of the
code for destroying
a Task (OS Object).

This API is used
when generating
the code for
destroying a Task.
The code is
generated in the file
glob_dat.c, in the
function:
on_exit_code.
The function
on_exit_code is
called at the end of
the generated
application.

For an Activity
defined to be a
Task:
Name: T1
API Definition:
DESTROY($na
meid);
Generated
code:
DESTROY(T1)
;

Name Sample
Definition Description Where Used Code

Generated
102 MicroC Code Generator

Customizing API Definitions
Activate
Task(nameid)

Defines the code
for activating a
Task (OS Object)

This API is used
when a Task needs
to be activated.
For example, each
Activity has a set of
macros defined in
the file
macro_def.h.
On of this macro is
the
start_activity_<act-
name> macro
which, in case that
the Activity is
defined as a Task,
includes the code
for Activating the
Task, defined by
this API.
The definition of
this API will be
generated in the file
<module>.c

For an Activity
defined to be a
Task:
Name: T1
API Definition:
ActivateTas
k($nameid);

Generated
code:
#define
start_activ
ity_T1 {
cgGlobalFla
gs |=
BITAC_T1;
ctivateTask
(T1); }

Enter
TASK(nameid)

Defines the code
for entering a Task
(OS Object).

This API defines
the code that is put
at the beginning of
the Task's code
frame.
The code is
generated just after
the code from the
API: Task/ISR
Beginning
Code(nameid,
profileName)
The definition of
this API will be
generated in the file
<module>.c

For an Activity
defined to be a
Task:
Name: T1
API Definition:
EnteredTask
($nameid);

Generated
code:
void
T1(void)
{

EnteredTask
(T1);

…

Name Sample
Definition Description Where Used Code

Generated
Statemate 103

Advanced: Creating Customized OSIs
Terminate
Task(nameid)

Defines the code
for terminating a
task (OS Object).

This API defines
the code that is put
at the end of the
Task's code frame.
The definition of
this API will be
generated in the file
<module>.c

For an Activity
defined to be a
Task:
Name: T1
API Definition:
TerminateTa
sk($nameid)
;

Generated
code:
void
T1(void)
{

...

TerminateTa
sk(T1);

}

Wait for Multiple
Events(nameid)

Defines the code
for waiting for
multiple Events by
a Task (OS Object).

This API defines
the code for waiting
on multiple Task
Events.
For Tasks that have
Task-Event related
to them, the code
will be generated in
the Task's code
frame, after the
code for the Task's
logic.
The definition of
this API will be
generated in the file
<module>.c

For an Activity
defined to be a
Task:
Name: T1
API Definition:
WaitMultipl
eEvent($nam
eid);
Generated
code:
void
T1(void)

{

 …

<Tasklogic>

WaitMultipl
eEvent(T1);

}

Name Sample
Definition Description Where Used Code

Generated
104 MicroC Code Generator

Customizing API Definitions
Get Multiple
Events(nameid)

Defines the code
for getting multiple
Events by a Task
(OS Object).

This API defines
the code for getting
the generated Task
Events for multiple
Task Events.
For Tasks that have
Task-Event related
to them, the code
of this API will be
generated in the
Task's code frame,
after the code for
the API:
WaitMultipleEvent()
The definition of
this API will be
generated in the file
<module>.c

For an Activity
defined to be a
Task:
Name: T1
API Definition:
GetMultiple
Event($name
id);

Generated
code:
void
T1(void)
{

 …

<Tasklogic>

WaitMultipl
eEvent(T1);

GetMultiple
Event(T1);

 ...

}

Name Sample
Definition Description Where Used Code

Generated
Statemate 105

Advanced: Creating Customized OSIs
Clear Multiple
Events(nameid)

Defines the code
for clearing multiple
Events by a Task
(OS Object).

This API defines
the code for
clearing multiple
Task Events.
For Tasks that have
Task-Event related
to them, the code
of this API will be
generated in the
Task's code frame,
after the code for
the API: Get
Multiple Events().
The definition of
this API will be
generated in the file
<module>.c

For an Activity
defined to be a
Task:
Name: T1
API Definition:
ClearMultip
leEvent($na
meid);

Generated
code:
void
T1(void)
{

 …

<Tasklogic>

WaitMultipl
eEvent(T1);

GetMultiple
Event(T1);

ClearMultip
leEvent(T1)
;

 ...
}

Get Task
ID(nameid)

$<nameid> Defines the code
for getting a Task’s
(OS Object) ID.

NOT USED

Name Sample
Definition Description Where Used Code

Generated
106 MicroC Code Generator

Customizing API Definitions
Event APIs

Name Sample
Description Definition Where Used Code

Generated

Declare
Event(nameid,
itstaskid)

Defines the code
for declaring an
Event (OS Object).

This API is used
when generating
the code for
declaring a Task
Event
The code is
generated in the file
type_def.h

For an Event
defined to be a
Task-Event.
Name: EV1
API definition:
DECLARE_EVE
NT($nameid)
;

Generated
Code:
DECLARE_EVE
NT(EV1);

Define
Event(nameid,
itstaskid)

Defines the code
for defining an
Event (OS Object).

This API is used
when generating
the code for
defining a Task
Event.
The code is
generated in the file
glob_dat.c

For an Event
defined to be a
Task-Event.
Name: EV1
API definition:
DEFINE_EVEN
T($nameid);

Generated
Code:
DEFINE_EVEN
T(EV1);

Create
Event(nameid,
itstaskid)

Defines the code
for creating an
Event (OS Object).

This API is used
when generating
the code for
creating a Task
Event.
The code is
generated in the file
glob_dat.c, in the
function:
on_startup_cod
e.
The function
on_startup_cod
e is called at the
startup of the
generated
application.

For an Event
defined to be a
Task-Event.
Name: EV1
API definition:
CREATE_EVEN
T($nameid);

Generated
Code:
CREATE_EVEN
T(EV1);
Statemate 107

Advanced: Creating Customized OSIs
Destroy
Event(nameid,
itstaskid)

Defines the code
for destroying an
Event (OS Object).

This API is used
when generating
the code for
destroying a Task
Event.
The code is
generated in the file
glob_dat.c, in the
function
on_exit_code.
The function
on_exit_code is
called at the end of
the generated
application.

For an Event
defined to be a
Task-Event.
Name: EV1
API definition:
DESTROY_EVE
NT($nameid)
;

Generated
Code:
DESTROY_EVE
NT(EV1);

Clear
Event(nameid,
itstaskid)

Defines the code
for clearing an
Event (OS object).

This API defines
the code for
clearing a single
Task Event.
The definition of
this API will be
used only if there is
no definition for
ClearMultipleEvent
()
For Tasks that have
Task-Event related
to them, the code
of this API will be
generated in the
Task's code frame,
after the code for
the API: Get
Event().
The definition of
this API will be
generated in the file
<module>.c

For an Event
defined to be a
Task-Event.
Name: EV1
API definition:
CLEAR_EVENT
($nameid);

Generated
Code:
CLEAR_EVENT
(EV1);

Name Sample
Description Definition Where Used Code

Generated
108 MicroC Code Generator

Customizing API Definitions
Get Event(nameid,
itstaskid)

Defines the code
for getting an Event
(OS Object).

This API defines
the code for
clearing a single
Task Event.
The definition of
this API will be
used only if there is
no definition for
GetMultipleEvent()
For Tasks that have
Task-Event related
to them, the code
of this API will be
generated in the
Task's code frame,
after the code for
the API: Wait
Event().
The definition of
this API will be
generated in the file
<module>.c

For an Event
defined to be a
Task-Event.
Name: EV1
API definition:
GET_EVENT($
nameid);

Generated
Code:
GET_EVENT(E
V1);

Set Event(nameid,
itstaskid)

Defines the code
for setting an Event
(OS Object).

This API defines
the code for setting
a single Task
Event.
The definition of
this API will be
used in the
definition of the
GENERATE_EVEN
T macro for Events
that are defined to
be a Task Event.
The macro is
generated in the file
macro_def.h

For an Event
defined to be a
Task-Event.
Name: EV1
API definition:
SET_EVENT($
nameid);
Generated
Code:
SET_EVENT(E
V1);

Wait Event(nameid,
itstaskid)

Defines the code
for waiting for an
Event (OS Object).

NOT USED

Name Sample
Description Definition Where Used Code

Generated
Statemate 109

Advanced: Creating Customized OSIs
Test for
Event(nameid,
itstaskid)

Defines the code
for testing an Event
(OS Object).

This API defines
the code for testing
if a single Task
Event was
generated.
For Tasks that have
Task-Event related
to them, the code
of this API will be
generated in the
Task's code frame,
after the code for
the API: Get
Event().

For an Event
defined to be a
Task-Event.
Name: EV1
API definition:
TEST_EVENT(
$nameid);

Generated
Code:
TEST_EVENT(
EV1);

Name Sample
Description Definition Where Used Code

Generated
110 MicroC Code Generator

Customizing API Definitions
Software Counter APIs

Name Sample
Definition Description Where Used Code

Generated

Software Counter
Value Type

uint16 Defines the type of
a variable that
holds a Software
Counter value.

This API is used
when the type of a
Software Counter is
required.
For example, the
Timeouts Dispatch
Function requires
the “Time" that was
read from the
counter. The value
of the "Time" is
passed to the
function using a
"Software Counter
Value Type".

For an Activity
defined to be a
Task:
Name: T1
API Definition:
uint16

Generated
code:
void

genTmEvent_
T1(uint16
currentTick
Var,
cgDoubleBuf
ferType_T1*
buff, uint8
counterInde
x)

{
…

Software Counter
Max Value(nameid)

(uint16) -1 Defines the
maximum allowed
value for a
Software Counter,
after which it
overflows.

The API is used
when handling the
overflow of
counters, used with
Timeouts.
In the Timeouts
Dispatch Function,
generated in the file
glob_func.c, there
is a code section
that subtracts the
max value of the
software counter
from the value
stored in the
Timeout's time
variable.

For counter
named:
ms_counter
API Definition:
(uint16) -1

void
onms_counte
r_OVERFLOW(
void)

{
 ...

tm_99999999
8_TIME -=
(uint32) 1 +
((uint16)(u
int16) -1);

 ...

}

Statemate 111

Advanced: Creating Customized OSIs
Get Software
Counter
Value(nameid,
value)

$<value> =
$<nameid>;

Defines the code
for retrieving the
current value of a
Software Counter.

This API is used
when the value of a
Software counter is
needed.
For example, the
Timeouts Dispatch
Function requires
the current "Time"
of the "Software
Counter" to test for
the expired
Timeouts.
This API is used to
retrieve the "current
value", just before
calling the
""Timeouts
Dispatch
Function"", in a
Task's ISR's or
Generic Activity
generated as
Function, Code
frame, in the file:
<module>.c.

For an Activity
defined to be a
Task:
Name: T1
API's
Parameters:
value =
currentTick
nameid = T1
API Definition:
$<value> =
$<nameid>;
Generated
code:
currentTick
=
ms_counter;

genTmEvent_
T1(currentT
ick, &/
Old/
cgDoubleBuf
ferOld_T1,
ms_counter_
INDEX);

Declare Software
Counter(nameid)

extern
SW_COUNTER_H
$<nameid>;

Defines the code
for declaring a
Software Counter
(OS Object).

This API is used
when generating
the code for
declaring a
Software Counter
The code is
generated in the file
type_def.h

For a Software
Counter:
Name:
ms_counter
API definition:
DECLARE_S_C
OUNTER($nam
eid);

Generated
Code:
DECLARE_S_C
OUNTER(ms_c
ounter);

Name Sample
Definition Description Where Used Code

Generated
112 MicroC Code Generator

Customizing API Definitions
Define Software
Counter(nameid)

SW_COUNTER_H
$<nameid>;

Defines the code
for defining a
Software Counter
(OS Object).

This API is used
when generating
the code for
defining a Software
Counter.
This code is
generated in the file
glob_dat.c

For a Software
Counter:
Name:
ms_counter
API definition:
DEFINE_S_CO
UNTER($name
id);

Generated
Code:
DEFINE_S_CO
UNTER(ms_co
unter);

Create Software
Counter(nameid)

Defines the code
for creating a
Software Counter
(OS Object).

This API is used
when generating
the code for
creating a Software
Counter.
This code is
generated in the file
glob_dat.c, in the
function
on_startup_cod
e.
The function
on_startup_cod
e is called at the
startup of the
generated
application.

For a Software
Counter:
Name:
ms_counter
API definition:
CREATE_S_CO
UNTER($name
id);

Generated
Code:
CREATE_S_CO
UNTER(ms_co
unter);

Destroy Software
Counter(nameid)

Defines the code
for destroying a
Software Counter
(OS Object).

This API is used
when generating
the code for
destroying a
Software Counter.
This code is
generated in the file
glob_dat.c, in the
function
on_exit_code.
The function
on_exit_code is
called at the end of
the generated
application.

For a Software
Counter:
Name:
ms_counter
API definition:
DESTROY_S_C
OUNTER($nam
eid);

Generated
Code:
DESTROY_S_C
OUNTER(ms_c
ounter);

Name Sample
Definition Description Where Used Code

Generated
Statemate 113

Advanced: Creating Customized OSIs
Timer APIs

Name Sample
Definition Description Where Used Code

Generated

Timer Value Type Defines the type of
a variable that
holds a Timer
value.

NOT USED

Timer Max
Value(nameid)

(uint8) -1 Defines the
maximum allowed
value of a Timer,
after which it
overflows.

NOT USED

Get Timer
Value(nameid,
value, itstaskid)

Defines the code
for retrieving the
current value of a
Timer.

NOT USED

Declare
Timer(nameid,
itstaskid)

?<begin>$<CK_def
ineThisAlarm>
?<==> yes
?<?>extern void
tim_hndlr_$<namei
d>();
?<:> ?<end>

Defines the code
for declaring a
Timer (OS Object).

This API is used
when generating
the code for
declaring a Timer
The code is
generated in the file
type_def.h

For a Timer:
Name:
timer_10ms
API definition:
DECLARE_TIM
ER($nameid)
;

Generated
Code:
DECLARE_TIM
ER(timer_10
ms);

Define
Timer(nameid,
itstaskid)

"?<begin>$<CK_de
fineThisAlarm>
?<==> yes
?<?>void
tim_hndlr_$<namei
d> ()
{
GENERATE_EVEN
T($<nameid>);
}
?<:> ?<end>

Defines the code
for defining a Timer
(OS Object).

This API is used
when generating
the code for
defining a Software
Timer.
The code is
generated in the file
glob_dat.c

For a Timer:
Name:
timer_10ms
API definition:
DEFINE_TIME
R($nameid);

Generated
Code:
DEFINE_TIME
R(timer_10m
s);
114 MicroC Code Generator

Customizing API Definitions
Create
Timer(nameid,
itstaskid)

Defines the code
for creating a Timer
(OS Object).

This API is used
when generating
the code for
creating a Software
Timer.
This code is
generated in the file
glob_dat.c, in the
function
on_startup_cod
e.
The function
on_startup_cod
e is called at the
startup of the
generated
application.

For a Timer:
Name:
timer_10ms
API definition:
CREATE_TIME
R($nameid);
Generated
Code:
CREATE_TIME
R(timer_10m
s);

Destroy
Timer(nameid,
itstaskid)

Defines the code
for destroying a
Timer (OS Object).

This API is used
when generating
the code for
destroying a
Software Timer.
This code is
generated in the file
glob_dat.c, in the
function
on_exit_code.
The function
on_exit_code is
called at the end of
the generated
application.

For a Timer:
Name:
timer_10ms
API definition:
DESTROY_TIM
ER($nameid)
;

Generated
Code:
DESTROY_TIM
ER(timer_10
ms);

Name Sample
Definition Description Where Used Code

Generated
Statemate 115

Advanced: Creating Customized OSIs
Install Relative
Timer(nameid,
value, cycle,
counter, itstaskid)

install_mainloop_ti
mer((unsigned long
int) ($<value>) +
(?<begin>$<counte
r> ?<==>
?<?>ms_counter?<
:>$<counter>?<en
d>),
tim_hndlr_$<namei
d>);

Defines the code
for installing a
Timer (OS Object)
with a relative
value.

This API is used
when installing a
Timer using relative
time.
For example, when
using a scheduling
operation with an
Event, that uses a
Timer for this
operation. The
generated code will
use the definition of
this API to install
the timer.
The code for this
operation will be
generated in the file
<module>.c

For an Event
defined to be a
Task-Event.
Name: EV
API's
Parameters:
value = 100
counter =
ms_counter
nameid = EV
API definition:
install_mai
nloop_rel_t
imer((unsig
ned long
int)
($<value>)
+
(?<begin>$<
counter>
?<==>
?<?>ms_coun
ter?<:>$<co
unter>?<end
>),
tim_hndlr_$
<nameid>);
Generated
Code:
install_mai
nloop_rel_t
imer((unsig
ned long
int) (100) +
(ms_counter
),
tim_hndlr_E
V);

Name Sample
Definition Description Where Used Code

Generated
116 MicroC Code Generator

Customizing API Definitions
Install Absolute
Timer(nameid,
value, cycle,
counter, itstaskid)

Defines the code
for installing a
Timer (OS Object)
with an absolute
value.

This API is used
when installing a
Timer using
absolute time.
For example, when
using a scheduling
operation with an
Event that uses a
Timer for this
operation. The
generated code will
use the definition of
this API to install
the timer.
The code for this
operation will be
generated in the file
<module>.c

For an Event
defined to be a
Task-Event.
Name: EV
API's
Parameters:
value = 100
counter =
ms_counter
nameid = EV
API definition:
install_mai
nloop_abs_t
imer((unsig
ned long
int)
($<value>)
+
(?<begin>$<
counter>
?<==>
?<?>ms_coun
ter?<:>$<co
unter>?<end
>),
tim_hndlr_$
<nameid>);
Generated
Code:
install_mai
nloop_abs_t
imer((unsig
ned long
int) (100) +
(ms_counter
),
tim_hndlr_E
V);

Name Sample
Definition Description Where Used Code

Generated
Statemate 117

Advanced: Creating Customized OSIs
Clear
Timer(nameid,
itstaskid)

Defines the code
for clearing a Timer
(OS Object).

This API is used in
the code section
that handles the
Timer expiration.
If the Timer was
tested to be
expired, the Event
related to this Timer
is generated.
Just before
generating the
Event, the timer is
cleared.

For an Event
defined to be a
Task-Event,
using a Timer.
Name: EV
API's
Parameters:
nameid = EV
API definition:
Clear_Timer
(tim_hndlr_
$nameid)
Generated
Code:
Clear_Timer
(tim_hndlr_
EV)

Test for Timer
Expiration(nameid,
itstaskid)

Defines the code
for testing a Timer
(OS Object) for
expiration.

This API is used in
the code section
that handles the
Timer expiration.
This API definition
is used in order to
find out if a timer
has expired.
The code related to
this API is
generated in the file
<module>.c

For an Event
defined to be a
Task-Event,
using a Timer.
Name: EV
API's
Parameters:
nameid = EV
API definition:
TEST_TIMER(
tim_hndlr_$
nameid)
Generated
Code:
TEST_TIMER(
tim_hndlr_E
V)

Name Sample
Definition Description Where Used Code

Generated
118 MicroC Code Generator

Customizing API Definitions
Cancel
Timer(nameid,
itstaskid)

Defines the code
for canceling a
Timer.

This API is used
just before
installing the Timer.
If the Event related
to the timer has the
Design-Attribute:
"CK_cancelBefore
Set" with the value
"yes", then the
definition of this
API is put before
the timer
installation code.

For an Event
defined to be a
Task-Event,
using a Timer.
Name: EV
API's
Parameters:
nameid = EV
API definition:
TEST_TIMER(
tim_hndlr_$
nameid)
Generated
Code:
TEST_TIMER(
tim_hndlr_E
V)

Name Sample
Definition Description Where Used Code

Generated
Statemate 119

Advanced: Creating Customized OSIs
Synchronization APIs

Name Sample
Definition Description Where Used Code

Generated

Declare
Semaphore(nameid)

extern SEM_H
$<nameid>;

Defines the code
for declaring a
Semaphone (OS
Object).

This API is used
when generating
the code for
declaring a Timer
This code is
generated in the file
type_def.h

For a Condition
defined to be a
Semaphore:
Name: COND1
API definition:
extern
SEM_H
$<nameid>;

Generated
Code: extern
SEM_H
COND1;

Define
Semaphore(nameid)

SEM_H
$<nameid>;

Defines the code
for defining a
Semaphone (OS
Object).

This API is used
when generating
the code for
defining a Software
Timer.
This code is
generated in the file
glob_dat.c

For a Condition
defined to be a
Semaphore:
Name: COND1
API definition:
extern
SEM_H
$<nameid>;
Generated
Code:
DECLARE_TIM
ER(timer_10
ms);

Create
Semaphore(nameid)

$<nameid> =
CreateSemaphore(
);

Defines the code
for creating a
Semaphone (OS
Object).

This API is used
when generating
the code for
creating a Software
Timer.
This code is
generated in the file
glob_dat.c, in the
function:
on_startup_cod
e.
The function
on_startup_cod
e is called at the
startup of the
generated
application.

For a Condition
defined to be a
Semaphore:
Name: COND1
API definition:
$<nameid> =
CreateSemap
hore();

Generated
Code: COND1 =
CreateSemap
hore();
120 MicroC Code Generator

Customizing API Definitions
Destroy
Semaphore(nameid)

DestroySemaphore
($<nameid>);

Defines the code
for destroying a
Semaphone (OS
Object).

This API is used
when generating
the code for
destroying a
Software Timer.
This code is
generated in the file
glob_dat.c, in the
function:
on_exit_code.
The function
on_exit_code is
called at the end of
the generated
application.

For a Condition
defined to be a
Semaphore:
Name: COND1
API definition:
DestroySema
phore($<nam
eid>);

Generated
Code:
DestroySema
phore(COND1
);

Wait
Semaphore(nameid)

WaitSemaphore($<
nameid>);

Defines the code
for waiting on a
Semaphore (OS
Object).

This API's definition
is used as the
generated code for
the operator: "get"
on a Condition
defined to be a
Semaphore.

For a Condition
defined to be a
Semaphore:
Name: COND1
API definition:
WaitSemapho
re($<nameid
>);
Generated
Code:
WaitSemapho
re(COND1);

Release
Semaphore(nameid)

ReleaseSemaphor
e($<nameid>);

Defines the code
for releasing a
Semaphore (OS
Object).

This API's definition
is used as the
generated code for
the operator:
"release" on a
Condition defined
to be a Semaphore.

For a Condition
defined to be a
Semaphore:
Name: COND1
API definition:
ReleaseSema
phore($<nam
eid>);

Generated
Code:
ReleaseSema
phore(COND1
);

Name Sample
Definition Description Where Used Code

Generated
Statemate 121

Advanced: Creating Customized OSIs
Critical Section APIs

Name Sample
Definition Description Where Used Code

Generated

Declare Critical
Section(nameid)

extern
CRITICAL_SECTI
ON $<nameid>;

Defines the code
for declaring a
Critical Section (OS
Object).

This API is used
when generating
the code for
declaring a Critical
Section.
This code is
generated in the file
type_def.h

For a Critical
Section named:
critical_section:
extern
CRITICAL_SE
CTION
critical_se
ction;

Define Critical
Section(nameid)

CRITICAL_SECTI
ON $<nameid>;

Defines the code
for defining a
Critical Section (OS
Object).

This API is used
when generating
the code for
defining a Critical
Section.
This code is
generated in the file
glob_dat.c

For a Critical
Section named:
critical_section:
CRITICAL_SE
CTION
critical_se
ction;

Create Critical
Section(nameid)

$<nameid> =
CreateCriticalSecti
on();

Defines the code
for creating a
Critical Section (OS
Object).

This API is used
when generating
the code for
creating a Critical
Section.
This code is
generated in the file
glob_dat.c, in the
function
on_startup_cod
e.
The function
on_startup_cod
e is called at the
startup of the
generated
application.

For a Critical
Section named:
critical_section:
critical_se
ction =
CreateCriti
calSection(
);
122 MicroC Code Generator

Customizing API Definitions
Destroy Critical
Section(nameid)

DestroyCriticalSecti
on($<nameid>);

Defines the code
for destroying a
Critical Section (OS
Object).

This API is used
when generating
the code for
destroying a
Critical Section.
This code is
generated in the file
glob_dat.c, in the
function
on_exit_code.
The function
on_exit_code is
called at the end of
the generated
application.

For a Critical
Section named:
critical_section:
DestroyCrit
icalSection
(critical_s
ection);

Enter Critical
Section(nameid)

EnterCriticalSectio
n($<nameid>);

Defines the code
for entering a
Critical Section (OS
Object).

Used when
entering a critical
section.
For example,
swapping the
double buffered
buffers of a Task,
may require
guarding this code
section. The code
generator uses this
API just before
swapping the
buffers.

For a Critical
Section named:
critical_section:
EnterCritic
alSection(c
ritical_sec
tion);

End Critical
Section(nameid)

EndCriticalSection(
$<nameid>);

Defines the code
for ending a Critical
Section (OS
Object).

Used when exiting
a critical section.
For example,
swapping the
double buffered
buffers of a Task,
may require
guarding this code
section. The code
generator uses this
API just after the
swapping the
buffers.

For a Critical
Section named:
critical_section:
EndCritical
Section(cri
tical_secti
on);

Name Sample
Definition Description Where Used Code

Generated
Statemate 123

Advanced: Creating Customized OSIs
Message APIs

Name Sample
Definition Description Where Used Code Generated

Message Data
Type(nameid)

typedef
$<CK_itsMessages
DataType >
MESSAGE_$<nam
eid>;

Defines the code
for the Type of a
Message (OS
Object).

Used for Data-Item
which is defined to
be a Message, to
generate the type
definition for the
message.
Generated in the
file type_def.h

For a Data-Item
named DI_MSG,
defined as a
Message:
Design Attribute:
CK_itsMessagesD
ataType = long int:
typedef long
int
MESSAGE_DI_MSG
;

Declare
Message(nameid)

DECLARE_MSG($
<nameid>)

Defines the code
for declaring a
Message (OS
Object).

Used when
generating the
code for declaring a
Message.
The code is
generated in the file
type_def.h

For a Data-Item
named DI_MSG,
defined as a
Message:
DECLARE_MSG(DI
_MSG)

Define
Message(nameid)

DEFINE_MSG($<n
ameid>)

Defines the code
for defining a
Message (OS
Object).

Used when
generating the
code for defining a
Message.
The code is
generated in the file
glob_dat.c

For a Data-Item
named DI_MSG,
defined as a
Message:
DEFINE_MSG(DI_
MSG)

Create
Message(nameid)

CREATE_MSG($<
nameid>)

Defines the code
for creating a
Message (OS
Object).

Used when
generating the
code for creating a
Message
The code is
generated in the file
glob_dat.c, in the
function:
on_startup_cod
e.
The function
on_startup_cod
e is called at the
startup of the
generated
application.

For a Data-Item
named DI_MSG,
defined as a
Message:
CREATE_MSG(DI_
MSG)
124 MicroC Code Generator

Customizing API Definitions
Destroy
Message(nameid)

DESTROY_MSG($
<nameid>)

Defines the code
for destroying a
Message (OS
Object).

Used when
generating the
code for destroying
a Message
The code is
generated in the file
glob_dat.c, in the
function
on_exit_code.
The function
on_exit_code is
called at the end of
the generated
application.

For a Data-Item
named DI_MSG,
defined as a
Message:
DESTROY_MSG(DI
_MSG)

Send
Message(nameid)

SendMessage(<$n
ameid>)

Defines the code
for sending a
Message (OS
Object).

This API's definition
is used as the
generated code for
the operator "send"
on a Data-Item
defined to be a
Message.

For a Data-Item
named DI_MSG,
defined as a
Message:
SendMessage(DI
_MSG)

Receive
Message(nameid)

ReceiveMessage(<
$nameid>)

Defines the code
for receiving a
Message (OS
Object).

This API's definition
is used as the
generated code for
the operator
"receive" on a
Data-Item defined
to be a Message

For a Data-Item
named DI_MSG,
defined as a
Message:
ReceiveMessage
(DI_MSG)

Name Sample
Definition Description Where Used Code Generated
Statemate 125

Advanced: Creating Customized OSIs
Interrupt APIs

Name Sample
Definition Description Where Used Code

Generated

ISR Entry Function
Style(nameid)

@interrupt void
$<nameid>()

Defines the style in
which an ISR’s (OS
Object) entry
function is
generated.

Used when
generating the
code for the
definition of an
ISR's code frame.
Defines the ISR's
code frame
function's prototype
and return type.
This code is
generated in the file
<module>.c

For an Activity
defined to be an
ISR, named T1:
@interrupt
void $<T1>()

Declare
ISR(nameid)

extern void
$<nameid>();

Defines the code
for declaring an
ISR (OS Object).

Used when
generating the
code for declaring
an ISR.
This code is
generated in the file
type_def.h

For an Activity
named T1,
defined to be an
ISR:
extern void
$<T1>();

Define
ISR(nameid)

DEFINE_ISR($na
meid);

Defines the code
for defining an ISR
(OS Object).

Used when
generating the
code for defining an
ISR.
This code is
generated in the file
glob_dat.c

For an Activity
named T1,
defined to be an
ISR:
DEFINE_ISR(T1
);

Create
ISR(nameid)

CREATE_ISR($na
meid);

Defines the code
for creating an ISR
(OS Object).

Used when
generating the
code for creating
an ISR.
This code is
generated in the file
glob_dat.c, in the
function
on_startup_cod
e.
The function
on_startup_cod
e is called at the
startup of the
generated
application.

For an Activity
named T1,
defined to be an
ISR:
CREATE_ISR(T1
);
126 MicroC Code Generator

Customizing API Definitions
Destroy
ISR(nameid)

DESTROY_ISR($n
ameid);

Defines the code
for destroying an
ISR (OS Object).

Used when
generating the
code for destroying
an ISR.
This code is
generated in the file
glob_dat.c, in the
function
on_exit_code.
The function
on_exit_code is
called at the end of
the generated
application.

For an Activity
named T1,
defined to be an
ISR:
DESTROY_ISR(T
1);

Enter ISR(nameid) EnterIsr(<$nameid
>

Defines the code
for entering an ISR
(OS Object).

Defines the code
that is put at the
beginning of the
ISR's code frame.
This code is
generated just after
the code from the
API: Task/ISR
Beginning
Code(nameid,
profileName)
The definition of
this API will be
generated in the file
<module>.c

For an Activity
named T1,
defined to be an
ISR:
void T1(void)

{

EnterIsr(T1);

…

Leave ISR(nameid) LeaveIsr(<$nameid
>

Defines the code
for leaving an ISR
(OS Object).

This API defines
the code that is put
at the end of the
ISR's code frame.
The definition of
this API will be
generated in the file
<module>.c

For an Activity
named T1,
defined to be an
ISR:
Generated code:
void T1(void)

{

...

LeaveIsr(T1);

}

Disable
Interrupt(mask)

DisableIsr(<$namei
d>

Defines the code
for disabling an ISR
(OS Object).

NOT USED

Enable
Interrupt(mask)

EnableIsr(<$namei
d>

Defines the code
for Enabling an ISR
(OS Object).

NOT USED

Name Sample
Definition Description Where Used Code

Generated
Statemate 127

Advanced: Creating Customized OSIs
Scheduler Definition APIs
A scheduler file is a file that includes the Tasks defined in the application.

If this option is selected, the code generator will look for the specified scheduler file, and insert the
list of Tasks to be performed.

� File Name

By default, the tasks are added to the file <Profile Name>.c. If you want the generator to
use a different file, enter the name of the file in the text box or use the ... button to select
the file.

� Scheduler Key Words
� These are the words that demarcate the beginning and end of the task list. The

code generator requires the end keyword as well because it removes the tasks that
were previously included in the list.

� The keywords used can include tokens enclosed with "$<" and ">" (API definition
notation).

� When using "$<token>" as part of the keyword, the name of the keyword can vary
between groups of tasks, depending on the data of the task. The tokens that can be
used are:

– $<nameid> - The name of the task
– $<Design-Attribute-Name> - Any design attribute defined for the task.

� For example:

If a task has a design attribute named "CK_timeSlice" with three possible values
("10ms", "40ms" and "100ms"), and the begin and end keywords are defined as /*
User $<CK_timeSlice> Tasks Begin */\, and /* User $<CK_timeSlice> Tasks
End */respectively, then tasks with CK_timeSlice = 40ms will be put in the
scheduler file between the keywords /* User 40msTasks Begin */\ and the
keyword /* User 40ms Tasks End */

� Task Separator

The delimiter to use to separate the individual tasks in the list. When using a custom
delimiter, you can use "\n" to specify a new line.

Interrupt Mask Data
Type

uint8 Defines the type for
an ISR’s interrupt
mask.

NOT USED

Name Sample
Definition Description Where Used Code

Generated
128 MicroC Code Generator

Customizing API Definitions
Get-Set Function APIs

Name Sample
Definition Description Where Used Code Generated

Get Function
Declare(nameid,
returntype,
argType, argName)

$<returntype>
get_$<nameid>_C
B($<argType>
$<argName>);

Forward
declaration of the
'Get' function
(placed in
type_def.h)

Defines the forward
declaration of the
"Get" function for a
Statemate element,
like a Data-Item or
a Condition.
The API's definition
is generated in the
file type_def.h

For Data-Item
named DI, of type
Real:
double
get_DI_CB(
void);

Get Function
Define(nameid,
returntype,
argType, argName,
getElemCode)

"$<returntype>
get_$<nameid>_C
B($<argType>
$<argName>){
$<getElemCode>
}"

Definition of the
'Get' function
(placed in
glob_func.c)

Defines the
definition of the
"Get" function for a
Statemate element,
like a Data-Item or
a Condition.
This API's definition
is generated in the
file glob_func.c

For Data-Item
named DI, of type
Real:
double

get_DI_CB(void
){
 return DI;

}

Get Function
Name(nameid)

get_$<nameid>_C
B

Name of the 'Get'
function, used for
the Panel/Test-
Driver Bindings
(placed in
glob_func.c)

Used when the
name of the "Get"
function is required.
For example, when
using the Test-
Driver
instrumentation,
and the "Get Value"
option, this API is
used to initialize the
Test-Driver data.

For Data-Item
named DI of type
integer:
testDriver_add
Key(3, "DI",
INTEGER_DATA_I
TEM_T, DI_CB,
get_DI_CB);

Get Array Element
Function
Declare(nameid,
returntype,
argType, argName)

$<returntype>
get_$<nameid>_C
B($<argType>
$<argName>);

Forward
declaration of the
'Get' function
(placed in
type_def.h)

For elements of
type array, this is
used in the file
type_def.h to
generate the
forward declaration
of the "Get"
function for the
array's element.

For Data-Item
named DI_ARR of
type array of
integers:
int
get_DI_ARR_Arr
Elm_CB(int
index);
Statemate 129

Advanced: Creating Customized OSIs
Get Array Element
Function
Define(nameid,
returntype,
argType, argName,
getElemCode)

"$<returntype>
get_$<nameid>_C
B($<argType>
$<argName>){
$<getElemCode>
}

Definition of the
'Get' function for
array's
element(placed in
glob_func.c)

For elements of
type array, this is
used in the file
glob_func.c to
generate the
definition of the
"Get" function for
the array's element.

For Data-Item
named DI_ARR of
type array of
integers:
int

get_DI_ARR_CB_
ArrElm(int
index)

{

return(DI_ARR[
index -
DI_ARR_INDEX_S
HIFT]);

}

Set Function
Declare(nameid,
returntype,
argType, argName)

$<returntype>
$<nameid>_CB($<
argType>
$<argName>);

Forward
declaration of the
'Set' function
(placed in
type_def.h)

Defines the forward
declaration of the
"Set" function for a
Statemate element,
like a Data-Item or
a Condition.
The API's definition
is generated in the
file type_def.h

For Data-Item
named DI, of type
Real:
void
DI_CB(doubel
di_val);

Set Function
Define(nameid,
returntype,
argType, argName,
tstDrvInst,
setElemCode)

"$<returntype>
$<nameid>_CB($<
argType>
$<argName>){
$<tstDrvInst>
$<setElemCode>
}

Definition of the
'Set' function
(placed in
glob_func.c)

Defines the
definition of the
"Set" function for a
Statemate element,
like a Data-Item or
a Condition.
This API's definition
is generated in the
file glob_func.c

For Data-Item
named DI, of type
Real:
void
DI_CB(double
di_val){

 DI = di_val;
}

Set Function
Name(nameid)

$<nameid>_CB Name of the 'Set'
function, used for
the Panel/Test-
Driver Bindings
(placed in
glob_func.c)

Used when the
name of the "Set"
function is required.
For example, when
using the Test-
Driver
instrumentation,
this API is used to
initialize the Test-
Driver data.

For Data-Item
named DI of type
integer:
testDriver_add
Key(3, "DI",
INTEGER_DATA_I
TEM_T, DI_CB,
get_DI_CB);

Name Sample
Definition Description Where Used Code Generated
130 MicroC Code Generator

Customizing API Definitions
Set Array Element
Function
Declare(nameid,
returntype,
argType,
arrIndexArgType,
arrIndexArgName,
argName)

$<returntype>
$<nameid>_CB($<
argType>
$<argName>,
$<arrIndexArgType
>
$<arrIndexArgNam
e>);

Forward
declaration of the
'Set' function
(placed in
type_def.h)

For elements of
type array, this is
used in the file
type_def.h to
generate the
forward declaration
of the "Set" function
for the array's
element.

For Data-Item
named DI_ARR of
type array of
integers:
void
DI_ARR_CB_ArrE
lm(double
di_val, int
index);

Set Array Element
Function
Define(nameid,
returntype,
argType, argName,
arrIndexArgType,
arrIndexArgName,
tstDrvInst,
setElemCode)

"$<returntype>
$<nameid>_CB($<
argType>
$<argName>,
$<arrIndexArgType
>
$<arrIndexArgNam
e>){
$<tstDrvInst>
$<setElemCode>
}

Definition of the
'Set' function
(placed in
glob_func.c)

For elements of
type array, this is
used in the file
glob_func.c to
generate the
definition of the
"Set" function for
the array's element.

For Data-Item
named DI_ARR of
type array of
integers:
void
DI_ARR_CB_ArrE
lm(double
di_val, int
index){

 DI_ARR[index
-
DI_ARR_INDEX_S
HIFT] =
di_val;
}

Name Sample
Definition Description Where Used Code Generated
Statemate 131

Advanced: Creating Customized OSIs
Queue APIs

Name Sample
Definition Description Where Used Code Generated

Queue Put(nameid,
elName)

{
int tmpH =
($<nameid>.tail+1)
%
DEFAULT_QUEUE
_SIZE;
if(tmpH !=
$<nameid>.head){
$<nameid>.tail =
tmpH;
$<nameid>.q[$<na
meid>.tail] =
$<elName>;
};
}

Put <elName> at
the end of queue
<nameid>.

The generated
code for the
operation put!() for
elements of type
Queue.
Generated in the
file <module>.c, or
glob_func.c for
user's functions.

For Data-Item DI_Q
of type Queue, and
DI_IN to put into
the queue:
{

 int tmpH =
(DI_Q.tail+1)
%
DEFAULT_QUEUE_
SIZE;
 if(tmpH !=
DI_Q.head){

 DI_Q.tail =
tmpH;

DI_Q.q[DI_Q] =
DI_IN;

 };

}

Queue Urgent
Put(nameid,
elName)

{
int tmpH =
($<nameid>.head -
1 +
DEFAULT_QUEUE
_SIZE) %
DEFAULT_QUEUE
_SIZE;
if(tmpH !=
$<nameid>.tail){
$<nameid>.q[$<na
meid>.head] =
$<elName>;
$<nameid>.head =
tmpH;
};
}

Put <elName> at
the beginning of
queue <nameid>.

The generated
code for the
operation uput!()
for elements of type
Queue.
Generated in the
file <module>.c, or
glob_func.c for
user's functions.

For Data-Item DI_Q
of type Queue, and
DI_IN to put into
the queue:
{

 int tmpH =
(DI_Q.head - 1
+
DEFAULT_QUEUE_
SIZE) %
DEFAULT_QUEUE_
SIZE;

 if(tmpH !=
DI_Q.tail){

DI_Q.q[DI_Q.he
ad] = DI_IN;

 DI_Q.head =
tmpH;
 };

}

132 MicroC Code Generator

Customizing API Definitions
Queue
Get(nameid,
elName,
statElName)

?<begin>
$<statElName>
?<==> ?<?>{
 if($<nameid>.tail
!=
$<nameid>.head){
 $<nameid>.head
= ($<nameid>.head
+ 1) %
DEFAULT_QUEUE
_SIZE;
 $<elName> =
$<nameid>.q[$<na
meid>.head];
 };
}?<:>{
 if($<nameid>.tail
!=
$<nameid>.head){
 $<nameid>.head
= ($<nameid>.head
+ 1) %
DEFAULT_QUEUE
_SIZE;
 $<elName> =
$<nameid>.q[$<na
meid>.head];

MAKE_TRUE($<st
atElName>);
 }
 else{
MAKE_FALSE($<s
tatElName>);
 };
}?<end>

Remove value from
front of queue
<nameid>, return
value in <elName>,
and set
<statElName>
successful.

The generated
code for the
operation get!() for
elements of type
Queue.
Generated in the
file <module>.c, or
glob_func.c for
user's functions.

For Data-Item DI_Q
of type Queue, and
DI_OUT to set with
the operation's
value, and STAT as
the status variable
name:
{

 if(DI_Q.tail
!= DI_Q.head){

 DI_Q.head =
(DI_Q.head +
1) %
DEFAULT_QUEUE_
SIZE;
 DI_OUT =
$<nameid>.q[DI
_Q.head];

MAKE_TRUE(STAT
);
 }

 else{

MAKE_FALSE(STA
T);

 };
}

Name Sample
Definition Description Where Used Code Generated
Statemate 133

Advanced: Creating Customized OSIs
Queue
Peek(nameid,
elName,
statElName)

 %=%
?<begin>
$<statElName>
?<==> ?<?>{
 if($<nameid>.tail
!=
$<nameid>.head){
 $<elName> =
$<nameid>.q[($<na
meid>.head+1) %
DEFAULT_QUEUE
_SIZE];
 };
}?<:>{
 if($<nameid>.tail
!=
$<nameid>.head){
 $<elName> =
$<nameid>.q[($<na
meid>.head+1) %
DEFAULT_QUEUE
_SIZE];

MAKE_TRUE($<st
atElName>);
 }
 else{

MAKE_FALSE($<s
tatElName>);
 };
}?<end>

Copy value from
front of queue
<nameid>, return
value in <elName>,
and set
<statElName>
successful.

The generated
code for the
operation peek!()
for elements of type
Queue.
Generated in the
file <module>.c, or
glob_func.c for
user's functions.

For Data-Item DI_Q
of type Queue, and
DI_OUT to set with
the operation's
value, and STAT as
the status variable
name:
{

 if(DI_Q.tail
!= DI_Q.head){

 DI_OUT =
DI_Q.q[(DI_Q.h
ead+1) %
DEFAULT_QUEUE_
SIZE];

MAKE_TRUE(STAT
);
 }

 else{

MAKE_FALSE(STA
T);

 };
}

Queue
Flush(nameid)

$<nameid>.head =
0;
$<nameid>.tail = 0;

Remove all
elements from
queue <nameid>

The generated
code for the
operation fl!() for
elements of type
Queue.
Generated in the
file <module>.c, or
glob_func.c for
user's functions.

For Data-Item DI_Q
of type Queue:
DI_Q.head = 0;
DI_Q.tail = 0;

Name Sample
Definition Description Where Used Code Generated
134 MicroC Code Generator

Customizing API Definitions
Internal Data Types APIs

Queue
Length(nameid)

($<nameid>.head
<= $<nameid>.tail
? $<nameid>.tail -
$<nameid>.head :
DEFAULT_QUEUE
_SIZE -
($<nameid>.head -
$<nameid>.tail))

Return length of
Queue <nameid>

The generated
code for the
operation
q_length() for
elements of type
Queue.
Generated in the
file <module>.c, or
glob_func.c for
user's functions.

For Data-Item DI_Q
of type Queue:
(DI_Q.head <=
DI_Q.tail ?
DI_Q.tail -
DI_Q.head :
DEFAULT_QUEUE_
SIZE -
(DI_Q.head -
DI_Q.tail))

Name Sample
Definition Description Where Used Code

Generated

Condition Buffer
User-Type Type

uint8 Defines the type of
User-Define-Type
used when
generating the
conditions in 'Buffer
per Condition'
mode.

Conditions that are
generated in a
separate buffer
each, use the type
which is defined by
this API.
The definition of
this API is
generated in the file
type_def.h - for
Conditions related
to a Task/ISR or a
Generic Activity
generated as
function.
The definition of
this API is
generated in the
files glob_dat
(forward
declaration) and
glob_dat.c
(declaration) - for
Condition in the
"global" scope.

For Condition
named COND1,
using a
separate buffer:
uint8
COND1;

Name Sample
Definition Description Where Used Code Generated
Statemate 135

Advanced: Creating Customized OSIs
Event Buffer Type() uint8 Defines the type of
buffer used when
generating the
events in 'Buffer
per Event' mode.

Events that are
generated in a
separate buffer
each, use the type
which is defined by
this API.
The definition of
this API is used in
the file type_def.h

For Event
named EV1,
using a
separate buffer:
uint8 EV1;

Default Signed
Integer Type()

int Defines the default
integer signed type.
This overrides the
definition in the
Code-Generator
property-sheet.

Element defined to
be of type Integer
or Bit array will
have a definition of
its 'signed type' in
the generated
code. The definition
may be a macro in
the file
macro_def.h, or a
typedef in the file
type_def.h
(depending on a
profile setting).
This type is used
with the
Arithmetical bitwise
operations (ASHL,
ASHR), to cast the
value of the
element to the
Element's "signed
type".
The definition of
this API is used for
an Element only if
there are no
specific definitions
of the Integer
signed type already
defined in its
Design-Attributes.

For a Data-Item
named DI, of
type Integer
Design-
Attribute
"Integer Signed
Type": signed
long int

#define
STYPE_DI
signed long
int (in
macro_def.h
)

typedef
signed long
int
STYPE_DI
(in
type_def.h)

Name Sample
Definition Description Where Used Code

Generated
136 MicroC Code Generator

Customizing API Definitions
Default Unsigned
Integer Type()

unsigned int Defines the default
integer unsigned
type.
This overrides the
definition in the
Code-Generator
property-sheet.

Element defined to
be of type Integer
or Bit array will
have a definition of
its 'unsigned type'
in the generated
code. The definition
may be a macro in
the file
macro_def.h, or a
typedef in the file
type_def.h
(depending on a
profile setting).
This type is used
with the
Arithmetical bitwise
operations (LSHL,
LSHR), to cast the
value of the
element to the
Element's
"unsigned type".
The definition of
this API is used for
an Element only if
there are no
specific definitions
of the Integer
unsigned type
already defined in
its Design-
Attributes.

For a Data-Item
named DI, of
type Integer
Design-
Attribute
"Integer
Unsigned
Type": unsigned
long int

#define
STYPE_DI
unsigned
long int
(in
macro_def.h
)

typedef
unsigned
long int
STYPE_DI
(in
type_def.h)

Name Sample
Definition Description Where Used Code

Generated
Statemate 137

Advanced: Creating Customized OSIs
Default Floating
Point Type()

double Defines the default
floating point type.
This overrides the
definition in the
Code-Generator
property-sheet.

"Element defined to
be of type Real,
and which is not
defining a specific
data type in its
Design-Attributes
will use the default
floating data type.
The default floating
data type defined
by this API
overrides the
default floating
point data type
defined in the Code
Generator's profile.
The definition of
this API is used
when declaring the
Elements data, in
glob_dat.c
(declaration) and
glob_dat.h (extern
declaration)."

"For a Data-
Item named
DI_REAL, of
type Real:

double
DI_REAL;
(in glob_dat.c)
extern double
DI_REAL; (in
glob_dat.h)"

Name Sample
Definition Description Where Used Code

Generated
138 MicroC Code Generator

Customizing API Definitions
Bit Field Type() unsigned int Defines the data-
type used for
conditions and bit
data-items, when
generating
conditions/bits
without macros.
This overrides the
definition in the
Code-Generator
property-sheet.

Conditions and
Data-Items of type
Bit are combined
into buffers.
When using the
Code Generator's
option for
generating
Conditions in
expressions
without using
macros ("Use
Macros for >
Conditions" -
unchecked), the
type definition of
the Conditions/Bits
buffers uses a bit
field data type.
Each of the fields in
the bit fields is of
type which can be
defined by this API.
The data type is
defined in the file
type_def.h for Bits/
Conditions that
relate to a TASK/
ISR or a User-
Defined-Type, and
in the file
glob_dat.c and
glob_dat.h for Bits/
Conditions that
relate to the global
scope.

For Conditions
COND1 and
COND2:
struct {

 unsigned
int
cond1_:1; /
*
GENERAL_CON
TROL:cond1
*/

 unsigned
int
cond2_:1; /
*
GENERAL_CON
TROL:cond2
*/
 }
cg_BitsCond
itions;

Default char Type() char Defines the default
""char"" type.
Example:
The tool will
generate the
following data
allocation for Data-
Item DI_STR
defined as string
with length=23:
<Default char
Type() Definition>
di_str_[23];

Defines the default
data type for
elements of type
char or char*
(strings).
For example a
Data-Item defined
to be a string will
use this API to
allocate its data.

For Data-Item
named DI_STR
or type string,
with length of
10:
char
DI_STR[10];

Name Sample
Definition Description Where Used Code

Generated
Statemate 139

Advanced: Creating Customized OSIs
Customizing Code Style

The OSDT allows you to modify a large number of settings that affect the code style. These
settings are accessed by clicking Code Style... in the main OSDT window, and they are
categorized as follows:

� Code Style
� Types Naming Style
� Variables Naming Style
� Model Data - Naming Style
� Functions Naming Style
� File Header/Footer

Code Style
This category includes the following settings, which affect the visual appearance of the code:

� Indent Size
� New Line and Brace Style

These settings determine whether the opening brace appears on the same line as the
preceding code or on a new line. There are separate settings for:
� Function Blocks
� Code Blocks
� Type Blocks
140 MicroC Code Generator

Customizing API Definitions
Types Naming Style

Name Sample
Definition Description Where Used Code

Generated

Single Buffer Type
Prefix(activityNameid)

cgSingleBufferType_ Defines the prefix
of the Single Buffer
type, for Task/ISR

All data which is
defined as "Single
Buffered" and that
relates to a Task/
ISR is combined
into a structure.
The structure's
name is combined
from the prefix
defined by this API,
and from the name
of the Task/ISR.
The type is defined
in the file
type_def.h

For an Activity
defined to be a
Task:
Name: T1
API Definition:
cgSingleBuf
ferType_
Generated
Code:
struct
cgSingleBuf
ferType_T1_
type {
…

};

Double Buffer Type
Prefix(activityNameid)

cgDoubleBufferType
_

Defines the prefix
of the Double
Buffer type, for
Task/ISR

All data which is
defined as "Double
Buffered" and that
relates to a Task/
ISR is combined
into a structure.
The structure's
name is combined
from the prefix
defined by this API,
and from the name
of the Task/ISR.
The type is defined
in the file
type_def.h

For an Activity
defined to be a
Task:
Name: T1
API Definition:
cgDoubleBuf
ferType_

Generated
Code:
struct
cgDoubleBuf
ferType_T1_
type {

…

};
Statemate 141

Advanced: Creating Customized OSIs
State Variable
Prefix(activityNameid)

StateInfo_ Defines the prefix
of the State
Variable type, for
statechart
hierarchy

A control Activity,
which represent a
Statechart
hierarchy is
implemented using
a single function.
The state in which
the state machine
is in is stored in a
variable.
For each such
Statechart
hierarchy a
separate type is
generated.
The name of the
type is combined of
the prefix defined
by this API, and
from the name of
the Control Activity.
The type id defined
in the file
type_def.h

For a Control
Activity:
Name:
FAN_CTRL
API Definition:
StateInfo_
Generated
code (in
type_def.h):
typedef
uint8
StateInfo_F
AN_CTRL;

Name Sample
Definition Description Where Used Code

Generated
142 MicroC Code Generator

Customizing API Definitions
Bits Buffer Type
Prefix(udt_or_activity_
nameid)

bitsConditionsStruct Defines the prefix
of the Bits and
Conditions buffer.
The formal
parameter
udt_or_activity_na
meid is the name of
the context element
in which the buffer
is defined.
The context
element can be
either an Activity or
a User-Defined-
Type.

Conditions and
Data-Items of type
Bit are combined
into buffers. The
number of Bits/
Condition per buffer
comes from the
selected Word-
Size.
In case there are
more Bits/
Conditions than the
size of the Word-
Size an additional
buffer is allocated
with the prefix
defined in this API
and postfixed with
an incrementing
number.
The buffers are
defined in the file
type_def.h for Bits/
Conditions that
relates to a TASK/
ISR or a User-
Defined-Type, and
in the files
glob_dat.c and
glob_dat.h for Bits/
Conditions that
relate to the global
scope.

For Conditions
CO1 - CO12
and Data-Items
of type "bit"
BIT1-BIT12,
using word size
of 8-Bits:
API Definition:
bitsConditi
onsStruct

There are total
of 26 elements,
that require 4 8-
Bits buffers.
Therefore the
generated code
would be:
uint8
bitsConditi
onsStruct;

uint8
bitsConditi
onsStruct1;

uint8
bitsConditi
onsStruct2;

uint8
bitsConditi
onsStruct3

Name Sample
Definition Description Where Used Code

Generated
Statemate 143

Advanced: Creating Customized OSIs
Integer Signed Type
Macro Prefix()

STYPE_ Defines the prefix
of the 'signed type'
macro for integer
Data-Item , used
with bit shifting
predefined
functions, or other
user-defined
usages.

Element which is
defined to be of
type Integer or
Bitarray will have a
definition of its
'signed type' in the
generated code.
The definition may
be a macro in the
file macro_def.h, or
a typedef in the file
type_def.h
(depending on a
profile setting).
This type is used
with the
Arithmetical bitwise
operations (ASHL,
ASHR), to cast the
value of the
element to the
Element's "signed
type".
The definition of the
"signed type" is
defined in the
Element's Design-
Attributes.

For a Data-Item
of type: Integer
Name: DI
Design-
Attribute
"Integer Signed
Type":
signed long int
Expression: DI
= ASHL(DI, 5)
API Definition:
STYPE_
Generated
code:
#define
STYPE_DI
signed long
int (in
macro_def.h
)

DI =
((STYPE_DI)
DI) << 5;
(in
<module>.c)

Name Sample
Definition Description Where Used Code

Generated
144 MicroC Code Generator

Customizing API Definitions
Integer Unsigned Type
Macro Prefix()

TYPE_ Defines the prefix
of the 'unsigned
type' macro for
integer Data-Item ,
used with bit
shifting predefined
functions, o r other
user-defined
usages.

Element which is
defined to be of
type Integer or Bit
array will have a
definition of its
'unsigned type' in
the generated
code. The definition
may be a macro in
the file
macro_def.h, or a
typedef in the file
type_def.h
(depending on
profile settings).
This type is used
with the Logical
bitwise operations
(LSHL, LSHR), to
cast the value of
the element to the
Element's
"unsigned type".
The definition of the
"unsigned type" is
defined in the
Element's Design-
Attributes.

For a Data-Item
of type: Integer
Name: DI
Design-
Attribute
"Integer
Unsigned
Type": unsigned
long int
Expression: DI
= LSHL(DI, 5)
API Definition:
TYPE_

Generated
code:
#define
STYPE_DI
signed long
int (in
macro_def.h
)
DI =
((TYPE_DI)D
I) << 5;
(in
<module>.c)

Name Sample
Definition Description Where Used Code

Generated
Statemate 145

Advanced: Creating Customized OSIs
User Defined Type
Record Name Postfix()

_T Controls the postfix
of the name of the
structure of a User-
Defined-Type or
Data-Items defined
as Record/Union.
It also controls the
postfix of the
structures:
TestDriver_Previou
sValues
PanelBindings_Pre
viousValues
Example:
The following
typedef will be
generated for Data-
Item DI_REC
defined as record
with the fields: G1
and G2.
 typedef struct
DI_REC_type<Post
fix> {
 int G1;
 int G2;
 } DI_REC_type;

Elements of type
Record/Union may
have a postfix in
the name of their
generated type.
The type is defined
in the file
type_def.h.
The postfix is used
only on the name of
the type and not on
the typedef'ed
name.

For Data-Item
defined as
record:
Name: DI_REC
Fields : G1 and
G2, defined as
integers.
API Definition:
_T
Generated
code:
typedef
struct
DI_REC_type
_T {
 int G1;

 int G2;

}
DI_REC_type
;

Name Sample
Definition Description Where Used Code

Generated
146 MicroC Code Generator

Customizing API Definitions
Variables Naming Style

Name Example
Definition Description Where Used Code

Generated

Global Flags Buffer cgGlobalFlags Controls the
naming of the
global flags buffers.
If more than one
buffer is required,
the name of the
next buffer is
postfixed with an
incrementing
number, starting
with 1.
(cgGlobalFlags1,
cgGlobalFlags2,
etc.)

The generated
application uses
some bit sized data
to handle various
parts of the
implementation
(like Bit activation
for tasks). All those
bits are combined
into buffers and are
generated in the
files glob_dat.c
(declaration) and
glob_dat.h (extern
declaration).

For an
Application
using 14 global
bits.
API definition:
cgGlobalFla
gs
Word Size: 16-
Bits
Generated
Code:
uint16
cgGlobalFla
gs;

Timeouts Mask cgTimeoutsMask Controls the
naming of the
timeout mask
buffers. If more
than one buffer is
required, the name
of the next buffer is
postfixed with an
incrementing
number, starting
with 1.
(cgTimeoutMask1,
cgTimeoutMask2,
etc.)

The generated
application uses
bits sized data to
indicate that a
Timeout is pending.
All those bits are
combined into
buffers and are
generated in the
files glob_dat.c
(declaration) and
glob_dat.h (extern
declaration)

For an
Application
using 14
Timeouts.
API definition:
cgTimeoutsM
ask

Word Size: 8-
Bits
Generated
Code:
uint8
cgTimeoutsM
ask;

uint8
cgTimeoutsM
ask1;
Statemate 147

Advanced: Creating Customized OSIs
Timeout Event
Name(nameid)

$<nameid> Controls the
naming of the
timeout event. The
profile name can be
added here.
Example:
$<nameid>_$<profi
leName>

Defines the name
that identifies the
event that relates to
a Timeout.
The code generator
creates a
predefined name
for the event, which
the user can
customize.

For a Timeout
with predefined
name:
tm_999999998
In profile:
MY_PROF
API Definition:
$<nameid>_$
<profileNam
e>

Generated
event name:
tm_99999999
8_MY_PROF

Timeout Time
Variable
Name(nameid)

$<nameid>_TIME Controls the
naming of the
timeout time
variable. The
profile name can be
added here.
Example:
$<nameid>_TIME_
$<profileName>

A Timeout uses a
Timeout-Time-
Variable to hold the
time in which it
expires.
The name of the
Timeout-Time-
Variable is used
when installing the
Timeout, and when
testing for
Timeout's
expiration.

For a Timeout
with predefined
name:
tm_999999998
API Definition:
$<nameid>_T
IME

Generated
event name:
tm_99999999
8_TIME

Timeout Mask
Name(nameid)

$<nameid>_TM_M
ASK

Controls the
naming of the
timeout mask. The
profile name can be
added here.
Example:
$<nameid>_TM_M
ASK_$<profileNam
e>

A timeout uses a bit
sized data to
indicate that the
Timeout was
installed and is now
pending. All the bits
for all the timeouts
are combined into
buffers.
In order to access
the relevant bit for
a Timeout, the
application uses a
Mask.
The name of the
Mask is defined by
this API, and is
generated in the file
macro_def.h

For a Timeout
with predefined
name:
tm_999999998
API Definition:
$<nameid>_T
M_MASK

Generated
code for the
mask:
#define
tm_99999999
8_TM_MASK
0x01

Name Example
Definition Description Where Used Code

Generated
148 MicroC Code Generator

Customizing API Definitions
Timeout Counter
Index
Name(nameid)

$<nameid>_counte
r

Controls the
naming of the
timeout's related
counter index. The
profile name can be
added here.
Example:
$<nameid>_counte
r_$<profileName>

When using the
optimization
"Reuse Timeout
Variable Where
Possible", more
than one Timeout
may share the
same Timeout-
Time-Variable. If
those Timeouts are
using a different
Counter. then it is
required to store
the actual counter
on which the
timeout was
installed. For this
purpose, a variable
is allocated that
stores the index of
the counter.
The name of this
variable is defined
by this API, and is
generated in the file
glob_dat.c
(declaration) and
glob_dat.h (extern
declaration).

For a Timeout
with predefined
name:
tm_999999998
API Definition:
$<nameid>_c
ounter

Generated
code for the
counter's index
variable:
uint8
tm_99999999
8_counter;

Current Time
Variable

currentTick Controls the
naming of the
variable that holds
the “current time”
retrieved from a
counter; variable is
later passed to
functions that
require this
information.

When retrieving the
value of a counter,
this API is used to
define the name of
the variable used to
hold this value.
The retrieval of the
counter's value is
done before calling
a method that
requires the current
time of a counter,
like when testing
for Timeout's
expiration.

API definition:
currentTick

Generated
Code:
currentTick

Name Example
Definition Description Where Used Code

Generated
Statemate 149

Advanced: Creating Customized OSIs
Single Buffer
Variable
Prefix(activityName
id)

cgSingleBuffer_ Defines the prefix
of the Single Buffer
type, for Task/ISR.

Single buffered
elements that are
related to a Task/
ISR are generated
in a structure.
This API is used
when generating
the name of the
'Single Buffer'
variable of this
Single Buffer type,
in the file
glob_dat.c
(declaration) and
glob_dat.h (extern
declaration)

For an Activity
defined to be a
Task:
Name: T1
API Definition:
myCgSingleB
uffer_

Generated
code:
cgSingleBuf
ferType_T1
myCgSingleB
uffer_T1;

Double Buffer
Typedef
Prefix(activityName
id)

cgDoubleBuffer_ Defines the prefix
of the Double
Buffer typedef’ed
type, for Task/ISR.

Double buffered
elements that are
related to a Task/
ISR are generated
in a structure.
This API is used
when generating
the name of the
'Double Buffer'
type, in the file
type_def.c

For an Activity
defined to be a
Task:
Name: T1
API Definition:
myCgDoubleB
uffer_
Generated
code:
struct
myCgDoubleB
uffer_T1_ty
pe {
… (Double
buffered
data)
};

typedef
struct
myCgDoubleB
uffer_T1_ty
pe
cgDoubleBuf
ferType_T1;

Name Example
Definition Description Where Used Code

Generated
150 MicroC Code Generator

Customizing API Definitions
Double Buffer Next
Variable
Prefix(activityName
id)

cgDoubleBufferNe
w_

Defines the prefix
of the Double
Buffer variable
which holds the
current value, for
Task/ISR.

Double buffered
elements that are
related to a Task/
ISR are generated
in a structure.
This API is used
when generating
the name of the
'Double Buffer'
variable of this
Double Buffer type,
in the file
glob_dat.c
(declaration) and
glob_dat.h (extern
declaration).
The double
buffering of an
Element is
achieved by using
two instances of
the Double Buffer
type; one is "new"
and one is "old".
This API is used for
prefixing the name
of the buffer of the
"new" values.

For an Activity
defined to be a
Task:
Name: T1
API Definition:
myCgDoubleB
uffer_

Generated
code:
extern
cgDoubleBuf
ferType_T1
/* New*/
cgDoubleBuf
ferNew_T1;

Name Example
Definition Description Where Used Code

Generated
Statemate 151

Advanced: Creating Customized OSIs
Double Buffer
Current Variable
Prefix(activityName
id)

cgDoubleBufferOld
_

Defines the prefix
of the Double
Buffer variable
which holds the
new value, for
Task/ISR.

Double buffered
elements that are
related to a Task/
ISR are generated
in a structure.
This API is used
when generating
the name of the
'Double Buffer'
variable of this
Double Buffer type,
in the file
glob_dat.c
(declaration) and
""glob_dat.h""
(extern
declaration).
The double
buffering of an
Element is
achieved by using
two instances of
the Double Buffer;
type one is "new"
and one is "old".
This API is used for
prefixing the name
of the buffer of the
"old" values.

For an Activity
defined to be a
Task:
Name: T1
API Definition:
myCgDoubleB
uffer_

Generated
code:
extern
cgDoubleBuf
ferType_T1
/*Old*/
cgDoubleBuf
ferOld_T1;

Name Example
Definition Description Where Used Code

Generated
152 MicroC Code Generator

Customizing API Definitions
Events Buffer
Prefix(udt_or_activi
ty_nameid)

cg_Events Controls the
naming of the
Events buffers. If
more than one
buffer is required,
the name of the
next buffer is
postfixed with an
incrementing
number, starting
with 1 (cg_Events1,
cg_Events2, etc.).
The formal
parameter
udt_or_activity_na
meid is that name
of the context
element in which
the buffer is
defined. The
context element
can be either an
Activity of a User-
defined type.

Events use Bit
sized data, which
are combined into
buffers.
The name of these
buffers is defined
using this API, and
is generated in the
file type_def.h,
inside the Double-
Buffer type
structure.

For an Activity
defined to be a
Task:
Name: T1
With 10 Events
assigned to this
Task, and Word
Size defined to
be 8-Bits
API Definition:
cg_Events

Generated
code:
struct
cgDoubleBuf
fer_T1_type
{

 ...
 uint8
cg_Events;

 ...
};

Bits Buffer
Prefix(udt_or_activi
ty_nameid)

cg_BitsConditions Controls the
naming of the Bits
and Conditions
buffer in a Task/ISR
or user-defined-
type structure, and
for globals.
The formal
parameter
udt_or_activity_na
meid is the name of
the context element
in which the buffer
is defined.
The context
element can be
either an Activity or
a User-defined-
type.

Conditions and
Data-Item of type
"Bit" use Bit sized
data, which are
combined into
buffers.
The name of these
buffers is defined
using this API, and
is generated in the
file type_def.h"
inside the Task's/
ISR's data type
structure (if related
to it), or in the files
glob_dat.c
(declaration) and
glob_dat.h
(extern
declaration).

For 10
Conditions that
are defined in
the "global"
scope, and
Word Size
defined to be 8-
Bit.
API definition:
cg_BitsCond
itions

The generated
code in the file
glob_dat.c:
AMCBitsStru
ct8
cg_BitsCond
itions;

AMCBitsStru
ct8
cg_BitsCond
itions1;

Name Example
Definition Description Where Used Code

Generated
Statemate 153

Advanced: Creating Customized OSIs
Current State Info
Variable
Prefix(activityName
id)

currentState_ Defines the prefix
of the Current State
variable, for
statecharts.

A Statechart
Hierarchy (under a
Control-Activity)
uses a single
variable to hold the
state of the state
machine.
This API defines
the prefix of the
State variable that
holds the current
state of the state
machine.

For a Control
Activity:
Name:
FAN_CTRL
API Definition:
currentStat
e_

Generated
code (in
glob_dat.c):
StateInfo_F
AN_CTRL
currentStat
e_FAN_CTRL;

Stay Same State
Info Variable
Prefix(activityName
id)

staySame_ Defines the prefix
of the Stay Same
variable, for
statecharts.

A Statechart
Hierarchy (under a
Control-Activity)
uses a single
variable to hold the
state of the state
machine.
This API defines
the prefix of the
State variable that
holds the state of
the state machine
in favor of the
Entering and
Exiting reaction
implementation.
This variable is
generated in the
Statechart's
function.

For a Control
Activity:
Name:
FAN_CTRL
API Definition:
staySame_
Generated
code (in
<module>.c):
void

cgDo_FAN_CT
RL(void)
{

…

StateInfo_F
AN_CTRL
staySame_FA
N_CTRL = 0;
...

Name Example
Definition Description Where Used Code

Generated
154 MicroC Code Generator

Customizing API Definitions
Next State Info
Variable
Prefix(activityName
id)

nextState_ Defines the prefix
of the Next State
variable, for
statecharts.

A Statechart
Hierarchy (under a
Control-Activity)
uses a single
variable to hold the
state of the state
machine.
This API defines
the prefix of the
State variable that
holds the state of
the state machine
in favor of the
Entering and
Exiting reaction
and Statechart's
implementation.
This variable is
generated in the
Statechart's
function.

For a Control
Activity:
Name:
FAN_CTRL
API Definition:
nextState_
Generated
code (in
<module>.c):
void

cgDo_FAN_CT
RL(void)
{

…

StateInfo_F
AN_CTRL
nextState_F
AN_CTRL = 0;
...

Name Example
Definition Description Where Used Code

Generated
Statemate 155

Advanced: Creating Customized OSIs
Model Data Naming Style

Name Example
Definition Description Where Used Code

Generated

Model Data Prefix() $RimcPre_$<CK_it
sSequence>

Prefixes the name
of global model
data elements—
those elements
where the field "Its
Task" is global.
It will be added just
before the element
model name.

When generating
the declaration and
extern declaration
of a global user
data, this API is
used to add a prefix
for the name of the
Element.

For a Data-Item
of type Integer:
Name: DI
Design
Attribute: "Its
Task" defined to
be "global"
Design
Attribute:
"CK_itsSequen
ce" defined to
be "2"
API Definition:
$RimcPre_$<
CK_itsSeque
nce>_
Generated
code
(glob_dat.c):
int
$RimcPre_2_
DI;

Model Data
Postfix()

_$<CK_postFix>_d
ata

Postfixes the name
of global model
data elements—
those elements
where the field "Its
Task" is global.
It will be added just
after the element
model name.

When generating
the declaration and
extern declaration
of a global user
data, this API is
used to add a
postfix for the name
of the Element.

For a Data-Item
of type Integer:
Name: DI
Design
Attribute: "Its
Task" defined to
be "global"
Design
Attribute:
"CK_postFix"
defined to be
"post"
API Definition:
_$<CK_postF
ix>_data

Generated
code
(glob_dat.c):
int
DI_post_dat
a;
156 MicroC Code Generator

Customizing API Definitions
Functions Naming Style

Name Example
Definition Description Where Used Code

Generated

Check for Timeout
Function
Name(activityName
id)

genTmEvent_$<act
ivityNameid>

Defines the prefix
of the timeout’s
dispatch function,
related to a Task/
ISR or generic
activity chart
generated as a
function.

This API defines
the name of the
name of the
Timeouts dispatch
function.
The function is
generated before
the Task code
function, in the file
<module>.c.

For an Activity
defined to be a
Task:
Name: T1
API Definition:
genTmEvent_
$<activityN
ameid>

Generated
code:
void

genTmEvent_
T1(...)
{

…

Activity Function
Name(activityName
id)

cgActivity_$<activit
yNameid>

Defines the prefix
for the name of the
function/macro
implementing an
activity.

Each Activity is
translated into a
Function/Macro
(depending on a
profile option).
The name of the
Function/Macro is
defined by this API,
and generated in
the file <module>.c

For an Activity
NOT defined to
be a Task:
Name: ACT1
API Definition:
cgActivity_
$<activityN
ameid>

Generated
code:
1. As macro:
#define
cgActivity_
ACT1()\

{\
 ...

}

2. As function:
void

cgActivity_
ACT1(void)
{

…

}

Statemate 157

Advanced: Creating Customized OSIs
Statechart Function
Name(activityName
id)

cgDo_$<activityNa
meid>

Defines the prefix
for the name of the
function/macro
implementing a
statechart
hierarchy.

Each Control-
Activity (with the
Statechart
hierarchy below it)
is translated into a
Function/Macro
(depending on a
profile option).
The name of the
Function/Macro is
defined by this API,
and generated in
the file <module>.c

For a Control-
Activity:
Name: CTRL1
API Definition:
cgDo_$<acti
vityNameid>
Generated
code:
1. As macro:
#define
cgDo_CTRL1(
)\
{\

 ...

}
2. As function:
void

cgDo_CTRL1(
void)

{

…
}"

Entering Reaction
Function
Name(activityName
id)

cgEnterActions_$<
activityNameid>

Defines the prefix
for the name of the
Entering Reaction
function
implementing a
statechart hierarch.

The Entering-
Reactions for a
Statechart
hierarchy is
generated in a
single function.
This API defines
the name of this
function.
The function is
generated in the file
<module>.c

For a Control-
Activity:
Name: CTRL1
API Definition:
cgEnterActi
ons_$<activ
ityNameid>
Generated
code:
void
cgExitActio
ns_GENERAL_
CONTROL(...
)

{

…
}

Name Example
Definition Description Where Used Code

Generated
158 MicroC Code Generator

Customizing API Definitions
Exiting Reaction
Function
Name(activityName
id)

cgExitActions_$<a
ctivityNameid>

Defines the prefix
for the name of the
Exiting Reaction
function
implementing a
statechart
hierarchy.

The Exiting-
Reactions for a
Statechart
hierarchy is
generated in a
single function.
This API defines
the name of this
function.
The function is
generated in the file
<module>.c

For a Control-
Activity:
Name: CTRL1
API Definition:
cgExitActio
ns_$<activi
tyNameid>

Generated
code:
void

cgExitActio
ns_GENERAL_
CONTROL(...
)

{
…

}

Generic Chart
Function
Name(activityName
id)

cgGenericFunc_$<
activityNameid>

Defines the prefix
for the name of the
function
implementing a
generic activity.

Generic Activity
which is
implemented as
function uses an
entry function to the
generic's code.
The name of this
function is defined
by this API.
This function is
generated in the file
g_<Generic-As-
Function-Name>.

For a Generic
Activity Chart:
Name:
GEN_ACT1
API Definition:
cgGenericFu
nc_$<activi
tyNameid>

Generated
code:
void

cgGenericFu
nc_GEN_ACT1
(GEN_ACT1_G
Record_type
* rec)

{

…
}

Name Example
Definition Description Where Used Code

Generated
Statemate 159

Advanced: Creating Customized OSIs
File Header/Footer

Name Example
Definition Description Where

Used Code Generated

Generated
File
Header(profil
eName,
fileName,
module_nam
e, genDate,
genTime,
chartsList,
profileOptions
, project,
workarea,
profileVersion
)

?<begin>$<cha
rtsList> ?<!=>
?<?>$<chartsLi
st>?<:>
?<end>/*
Project:
$<project> */
/* Workarea:
$<workarea> */
/* Profile Name:
$<profileName>
, Version:
$<profileVersio
n> */
/* File Name:
$<fileName> */
/* Date:
$<genDate>,
$<genTime> */
?<begin>$<prof
ileOptions>
?<!=>
?<?>$<profileO
ptions>?<:>?<e
nd>

Determines the
format of the
various
comments
added to each
generated file,
such as profile
name, date, file
name,
information
regarding the
charts in the
module.
Will be affected
by the code-
generation
option:
Additional
Model
Description.

This API
definition is
used at the
head of
each one of
the
generated
files.

Project: MY_PROJ
Workarea: C:\myWa
Profile Name: PROF1
Version: New
File Name: C:\myWa \prt\prof1\<file-
name>
Date: Sunday, January 15, 2006,
10:05:25
profileOptions: Optimizations
Settings: ...
API definition:
?<begin>$<chartsList>
?<!=>
?<?>$<chartsList>?<:>

?<end>/* Project:
$<project> */
/* Workarea: $<workarea>
*/

/* Profile Name:
$<profileName>, Version:
$<profileVersion> */

/* File Name: $<fileName>
*/

/* Date: $<genDate>,
$<genTime> */
?<begin>$<profileOptions>
?<!=>
?<?>$<profileOptions>
?<:>?<end>

Generated Header:
/* Project: MY_PROJ */
/* Workarea: C:\myWa */

/* Profile Name: prof1
Version: New */
/* File Name: C:\myWa
\prt\prof1\<file-name> */

/* Date: Sunday, January
15, 2006, 10:05:25 */

/* Optimizations Settings:
...*/
160 MicroC Code Generator

Customizing API Definitions
Generated
File
Footer(profile
Name,
fileName,
module_nam
e, genDate,
genTime,
chartsList,
profileOptions
, Project,
Workarea,
profileVersion
)

/* End of
generated file */

Determines the
format of the
various
comments
added to each
generated file,
such as profile
name, date, file
name,
information
regarding the
charts in the
module.
Will be affected
by the code-
generation
option:
Additional
Model
Description.

This API
definition is
used at the
footer of
each one of
the
generated
files.

API definition:
/* End of generated file */

Generated Footer:
/* End of generated file */

Generated
Profile H File
Header(profil
eName,
fileName,
genDate,
genTime,
profileOptions
, project,
workarea,
profileVersion
)

?<end>/*
Project:
$<project> */
/* Workarea:
$<workarea> */
/* Profile Name:
$<profileName>
, Version:
$<profileVersio
n> */
/* File Name:
$<fileName> */
/* Date:
$<genDate>,
$<genTime> */
?<begin>$<prof
ileOptions>
?<!=>
?<?>$<profileO
ptions>
?<:>?<end>

Determines the
format of the
various
comments
added to the
generated file
<profile-
name>.h, such
as profile name,
date, file name.
Will be affected
by the code-
generation
option:
Additional
Model
Description.

This API
definition is
used at the
head of the
file <profile-
name>.h.

See example for API: Generated
File Header

Name Example
Definition Description Where

Used Code Generated
Statemate 161

Advanced: Creating Customized OSIs
Customizing Memory Management

The OSDT allows you to modify settings that affect memory management. These settings are
accessed by clicking Memory Management... in the main OSDT window. (This option will be
grayed out unless the Memory Management check box is selected.) These settings are
categorized as follows:

� Data—Variable Declaration
� Data—Declaration Section
� Code—Task/ISR and Related Activities
� Code—Activities Definition Section
� Code—Per-User Function
� Code—User Functions Definition Section

Generated
Profile H File
Footer(profile
Name,
fileName,
genDate,
genTime,
profileOptions
, Project,
Workarea,
profileVersion
)

"/* End of
generated file */

Determines the
format of the
various
comments
added to the
generated file
<profile-
name>.h, such
as profile name,
date, file name.
Will be affected
by the code-
generation
option:
Additional
Model
Description.

This API
definition is
used at the
footer of the
file <profile-
name>.h.

See example for API: Generated
File Footer

Profile .c File
Header(profil
eName,
fileName,
genDate,
genTime,
profileOptions
, Project,
Workarea,
profileVersion
)

""#include
""$<profileNam
e>.h

Determines the
header of the
file: <profile-
name>.c.

This API
defines the
header of
the
generated
file <profile-
name>.c

API Definition:
#include
"$<profileName>.h"
Generated Header:
#include
"$<profileName>.h"
…

Name Example
Definition Description Where

Used Code Generated
162 MicroC Code Generator

Customizing API Definitions
Statemate 163

Advanced: Creating Customized OSIs
Data—Variable Declaration

Name Sample
Definition Description Where Used Code Generated

Variable
Declaration(nameid
, datatype,
shortdescription)

?<begin>
$<CK_memSegme
nt> ?<!=> ?<?>#if
defined __HC12__
|| defined
__HC08__
#pragma
DATA_SEG
$<CK_memSegme
nt>
#elif
defined(COSMIC1
2)
#pragma section
[$<CK_memSegm
ent>]
#endif
?<:>?<end>$<data
type>
$<nameid>;?<begi
n>
$<CK_memSegme
nt> ?<!=> ?<?>
#if defined
__HC12__ ||
defined __HC08__
#pragma
DATA_SEG
DEFAULT
#elif
defined(COSMIC1
2)
#pragma section []
#endif?<:>?<end>

Controls the
specific variable
declaration, by
default in
'glob_dat.c' file.

By default in the file
glob_dat.c

For Data-Item DI of
type Integer,
Design Attribute:
CK_memSegment
!= <empty-string>
Formal parameters:
datatype = int
nameid = DI

CK_memSegment
= CONST_SEG1

#if defined
__HC12__ ||
defined
__HC08__
#pragma
DATA_SEG
CONST_SEG1
#elif
defined(COSMIC
12)
#pragma
section
[CONST_SEG1]
#endif

int DI;

#if defined
__HC12__ ||
defined
__HC08__
#pragma
DATA_SEG
DEFAULT
#elif
defined(COSMIC
12)
#pragma
section []

#endif
164 MicroC Code Generator

Customizing API Definitions
Extern Variable
Declaration(nameid
, datatype,
shortdescription)

?<begin>
$<CK_memSegme
nt> ?<!=> ?<?>#if
defined __HC12__
|| defined
__HC08__
extern far
$<datatype>
$<nameid>;
#else
?<:>?<end>extern
$<datatype>
$<nameid>;?<begi
n>
$<CK_memSegme
nt> ?<!=> ?<?>
#endif?<:>?<end>

Controls the
specific variable
extern declaration,
by default in
'glob_dat.h' file.

By default in the file
glob_dat.h

For Data-Item DI of
type Integer,
Design Attribute:

#if defined
__HC12__ ||
defined
__HC08__

extern far int
DI;

#else

extern int DI;
#endif

Name Sample
Definition Description Where Used Code Generated
Statemate 165

Advanced: Creating Customized OSIs
Data—Declaration Section

Name Sample
Definition Description Where Used Code Generated

Declaratio
n Section
[.c]
Header

#if defined
__HC12__ ||
defined
__HC08__
#pragma
DATA_SEG
DEFAULT
#pragma
CONST_SEG
DEFAULT
#pragma
STRING_SEG
DEFAULT
#elif
defined(COSMI
C12)
#pragma
section []
#endif

This line will be
added at the
beginning of
'glob_dat.c'

This line will be
added at the
beginning of
'glob_dat.c'

"#if defined __HC12__ || defined
__HC08__
#pragma DATA_SEG DEFAULT
#pragma CONST_SEG DEFAULT
#pragma STRING_SEG DEFAULT
#elif defined(COSMIC12)
#pragma section []
#endif

Declaratio
n Section
[.c] Footer

#if defined
__HC12__ ||
defined
__HC08__
#pragma
DATA_SEG
DEFAULT
#elif
defined(COSMI
C12)
#pragma
section []
#endif

This line will be
added at the
end of
'glob_dat.c'

This line will be
added at the end of
'glob_dat.c'

"#if defined __HC12__ || defined
__HC08__
#pragma DATA_SEG DEFAULT
#elif defined(COSMIC12)
#pragma section []
#endif

Extern
Declaratio
n Section
[.h]
Header

This line will be
added at the
beginning of
'glob_dat.h'

This line will be
added at the
beginning of
'glob_dat.h'

/* This is the header for extern
declaration file */

Extern
Declaratio
n Section
[.h] Footer

This line will be
added at the
end of
'glob_dat.h'

This line will be
added at the end of
'glob_dat.h'

/* This is the footer for extern
declaration file */
166 MicroC Code Generator

Customizing API Definitions
8-bit
Declaratio
n Begin
Section

#pragma
PRGM_8_BIT_
BEGIN_SEC

Defines the
code that will be
generated to
'glob_dat.c',
relating to the
key-word '/*
Key word: for 8-
bit data
declaration
begin section */'
defined in
'type_declare_o
rder.txt'

These APIs enable
insertion of user
code into the data
declaration and
extern declaration
section in the files
glob_dat.c and
glob_dat.h.
The order in which
the data is
generated can be
defined by adding a
file named
type_declare_order.
txt into the OSI.
This file is a list of
names of types,
which defines the
order in which they
will be generated.
Data of types not
included in this file
will be generated
last.
The file
type_declare_order.
txt may also include
a set of keywords
that identifies the
location in which the
definition of the
corresponding APIs
are inserted.
There are two sets
of APIs:
1. APIs referring to
the declaration file
(glob_dat.c)
2. APIs referring to
the extern
declaration file
(glob_dat.h)

For file type_declare_order.txt with the
following content:
/* Key word: for 8-bit data declaration
begin section */
/* Key word: for 8-bit data extern
declaration begin section */
unsigned char
char
uint8
/* Key word: for 8-bit data declaration
end section */
/* Key word: for 8-bit data extern
declaration end section */
/* Key word: for 16-bit data declaration
begin section */
/* Key word: for 16-bit data extern
declaration begin section */
unsigned short int uint16
/* Key word: for 16-bit data declaration
end section */
/* Key word: for 16-bit data extern
declaration end section */
Generated glob_dat.c:
#pragma PRGM_8_BIT_BEGIN_SEC
unsigned char
char
uint8
#pragma PRGM_8_BIT_END_SEC
#pragma
PRGM_16_BIT_BEGIN_SEC
unsigned short int
uint16

#pragma PRGM_16_BIT_END_SEC
Generated glob_dat.h:
#pragma
PRGM_8_BIT_EXT_BEGIN_SEC
unsigned char
char
uint8
#pragma
PRGM_8_BIT_EXT_END_SEC
#pragma
PRGM_16_BIT_EXT_BEGIN_SEC
unsigned short int
uint16
#pragma
PRGM_16_BIT_EXT_END_SEC

Name Sample
Definition Description Where Used Code Generated
Statemate 167

Advanced: Creating Customized OSIs
8-bit
Declaratio
n End
Section

#pragma
PRGM_8_BIT_
END_SEC

Defines the
code that will be
generated to
'glob_dat.c',
relating to the
key-word '/*
Key word: for 8-
bit data
declaration end
section */'
defined in
'type_declare_o
rder.txt'

16-bit
Declaratio
n Begin
Section

#pragma
PRGM_16_BIT
_BEGIN_SEC

Defines the
code that will be
generated to
'glob_dat.c',
relating to the
key-word '/*
Key word: for
16-bit data
declaration
begin section */'
defined in
'type_declare_o
rder.txt'

16-bit
Declaratio
n end
Section

#pragma
PRGM_16_BIT
_END_SEC

Defines the
code that will be
generated to
'glob_dat.c',
relating to the
key-word '/*
Key word: for
16-bit data
declaration end
section */'
defined in
'type_declare_o
rder.txt'

Name Sample
Definition Description Where Used Code Generated
168 MicroC Code Generator

Customizing API Definitions
32-bit
Declaratio
n Begin
Section

#pragma
PRGM_32_BIT
_BEGIN_SEC

Defines the
code that will be
generated to
'glob_dat.c',
relating to the
key-word '/*
Key word: for
32-bit data
declaration
begin section */'
defined in
'type_declare_o
rder.txt'

32-bit
Declaratio
n End
Section

#pragma
PRGM_32_BIT
_END_SEC

Defines the
code that will be
generated to
'glob_dat.c',
relating to the
key-word '/*
Key word: for
32-bit data
declaration end
section */'
defined in
'type_declare_o
rder.txt'

Record
Declaratio
n Begin
Section

#pragma
PRGM_REC_B
EGIN_SEC

Defines the
code that will be
generated to
'glob_dat.c',
relating to the
key-word '/*
Key word: for
record data
declaration
begin section */'
defined in
'type_declare_o
rder.txt'

Name Sample
Definition Description Where Used Code Generated
Statemate 169

Advanced: Creating Customized OSIs
Record
Declaratio
n End
Section

#pragma
PRGM_REC_E
ND_SEC

Defines the
code that will be
generated to
'glob_dat.c',
relating to the
key-word '/*
Key word: for
record data
declaration end
section */'
defined in
'type_declare_o
rder.txt'

Other
Types
Declaratio
n Begin
Section

#pragma
PRGM_OTHER
_BEGIN_SEC

Defines the
code that will be
generated to
'glob_dat.c',
relating to the
key-word '/*
Key word: for
other types
declaration
begin section */'
defined in
'type_declare_o
rder.txt'

Other
Types
Declaratio
n End
Section

#pragma
PRGM_OTHER
_END_SEC

Defines the
code that will be
generated to
'glob_dat.c',
relating to the
key-word '/*
Key word: for
other types
declaration end
section */'
defined in
'type_declare_o
rder.txt'

Name Sample
Definition Description Where Used Code Generated
170 MicroC Code Generator

Customizing API Definitions
8-bit
Extern
Declaratio
n Begin
Section

#pragma
PRGM_8_BIT_
EXT_BEGIN_S
EC

Defines the
code that will be
generated to
'glob_dat.h',
relating to the
key-word '/*
Key word: for 8-
bit data extern
declaration
begin section */'
defined in
'type_declare_o
rder.txt'

8-bit
Extern
Declaratio
n End
Section

#pragma
PRGM_8_BIT_
EXT_END_SE
C

Defines the
code that will be
generated to
'glob_dat.h',
relating to the
key-word '/*
Key word: for 8-
bit data extern
declaration end
section */'
defined in
'type_declare_o
rder.txt'

16-bit
Extern
Declaratio
n Begin
Section

#pragma
PRGM_16_BIT
_EXT_BEGIN_
SEC

Defines the
code that will be
generated to
'glob_dat.h',
relating to the
key-word '/*
Key word: for
16-bit data
extern
declaration
begin section */'
defined in
'type_declare_o
rder.txt'

Name Sample
Definition Description Where Used Code Generated
Statemate 171

Advanced: Creating Customized OSIs
16-bit
Extern
Declaratio
n End
Section

#pragma
PRGM_16_BIT
_EXT_END_SE
C

Defines the
code that will be
generated to
'glob_dat.h',
relating to the
key-word '/*
Key word: for
16-bit data
extern
declaration end
section */'
defined in
'type_declare_o
rder.txt'

32-bit
Extern
Declaratio
n Begin
Section

#pragma
PRGM_32_BIT
_EXT_BEGIN_
SEC

Defines the
code that will be
generated to
'glob_dat.h',
relating to the
key-word '/*
Key word: for
32-bit data
extern
declaration
begin section */'
defined in
'type_declare_o
rder.txt'

32-bit
Extern
Declaratio
n End
Section

#pragma
PRGM_32_BIT
_EXT_END_SE
C

Defines the
code that will be
generated to
'glob_dat.h',
relating to the
key-word '/*
Key word: for
32-bit data
extern
declaration end
section */'
defined in
'type_declare_o
rder.txt'

Name Sample
Definition Description Where Used Code Generated
172 MicroC Code Generator

Customizing API Definitions
Record
Extern
Declaratio
n Begin
Section

#pragma
PRGM_REC_E
XT_BEGIN_SE
C

Defines the
code that will be
generated to
'glob_dat.h',
relating to the
key-word '/*
Key word: for
record data
extern
declaration
begin section */'
defined in
'type_declare_o
rder.txt'

Record
Extern
Declaratio
n End
Section

#pragma
PRGM_REC_E
XT_END_SEC

Defines the
code that will be
generated to
'glob_dat.h',
relating to the
key-word '/*
Key word: for
record data
extern
declaration end
section */'
defined in
'type_declare_o
rder.txt'

Other
Types
Extern
Declaratio
n Begin
Section

#pragma
PRGM_OTHER
_EXT_BEGIN_
SEC

Defines the
code that will be
generated to
'glob_dat.h',
relating to the
key-word '/*
Key word: for
other types
extern
declaration
begin section */'
defined in
'type_declare_o
rder.txt'

Name Sample
Definition Description Where Used Code Generated
Statemate 173

Advanced: Creating Customized OSIs
Other
Types
Extern
Declaratio
n End
Section

#pragma
PRGM_OTHER
_EXT_END_SE
C

Defines the
code that will be
generated to
'glob_dat.h',
relating to the
key-word '/*
Key word: for
other types
extern
declaration end
section */'
defined in
'type_declare_o
rder.txt'

Name Sample
Definition Description Where Used Code Generated
174 MicroC Code Generator

Customizing API Definitions
Code—Task/ISR and Related Activities

Name Sample
Definition Description Where Used Code Generated

Task/ISR
Opening(nameid)

?<begin>$<CK_me
mSegment>?<!=>?
<?>#if defined
__HC12__ ||
defined __HC08__
#pragma
CODE_SEG
$<CK_memSegme
nt>
#elif
defined(COSMIC1
2)
#pragma section
($<CK_memSegm
ent>)
#endif?<:>?<end>

Controls the
specific Task/ISR
entry function body
definition.
It will be added just
before the function
body begins, in
<module>.c file. It
will be added, as
well, to all related
activities functions.

These API's enable
insertion of user
code before and
after the Task's/
ISR's body code
function, and
before and after
every function
which is related to
the Task/ISR.
Such functions may
be the functions for
the Activities in the
Task's/ISR's
hierarchy.
The code related to
these API's is
generated in
<module>.c

For an Activity
named T1, defined
to be an TASK, with
Activity named
ACT1 inside:
Design-Attribute:
CK_memSegment
= CODE_SEG_1
#pragma
CODE_SEG
CODE_SEG_1

void

cgActivity_ACT
1(void)

{

...
}

#pragma
CODE_SEG
DEFAULT

#pragma
CODE_SEG
CODE_SEG_1

void T1(void)
{

 ...

cgActivity_ACT
1();

 ...
}

#pragma
CODE_SEG
DEFAULT

Task/ISR
Closure(nameid)

 %=%
?<begin>$<CK_me
mSegment>?<!=>?
<?>#if defined
__HC12__ ||
defined __HC08__
#pragma
CODE_SEG
DEFAULT
#elif
defined(COSMIC1
2)
#pragma section ()
#endif?<:>?<end>

Controls the
specific Task/ISR
entry function body
definition.
It will be added just
after the function
body end, in
<module>.c file. It
will be added, as
well, to all related
activities functions.
Statemate 175

Advanced: Creating Customized OSIs
Task/ISR Beginning
Code(nameid,
profileName)

/* Task/ISR
Beginning Code */

Controls the code
that can be added
at the beginning of
a Task/ISR body. It
will be added at the
beginning of the
Task/ISR body, in
the file <module>.c

These API's enable
insertion of user
code in specific
locations of the
Task's/ISR's body
code function.
The code related to
these API's is
generated in
<module>.c

For an Activity
named T1, defined
to be a TASK, with
Activity named
ACT1 inside:

void T1(void)

{

 /* Task
beginning */

 <Enter Task
API
definition>

 /* Task
beginning 2 */
...

cgActivity_AC1
();

...

 /* Task
Ending */

<Terminate
Task API
definition>

}

Task/ISR Beginning
Code Entry
2(nameid,
profileName)

/* Task/ISR
Beginning Code
Entry 2*/

Controls the code
that can be added
at the beginning of
a Task/ISR body. It
will be added at the
beginning of the
Task/ISR body,
after the 'Task/ISR
Beginning Code'
API definition, in
the file <module>.c

Task/ISR Ending
Code(nameid,
profileName)

/* Task/ISR Ending
Code */

Controls the code
that can be added
at the end of a
Task/ISR body. It
will be added just at
the end of the Task/
ISR body, in the file
<module>.c

Related Function
Declaration
Style(nameid,
returntype, arglist)

$<returntype>
$<nameid>($<argli
st>)

Controls the
declaration style of
functions which are
related to the Task/
ISR and related
activities, such as
"cgEnterActions_...
" and
"cgExitActions_...".

Used in the file
<module>.c with
the functions
related to Tasks/
ISRs

For an Activity
named T1, defined
to be a TASK, with
a Control Activity
named
ACT_CTRL:
void
cgDo_ACT_CTRL(
void)

{
…

Name Sample
Definition Description Where Used Code Generated
176 MicroC Code Generator

Customizing API Definitions
Related Function
Call(nameid,
arglist)

$<nameid>($<argli
st>)

Controls the call
style of functions
which are related to
the Task/ISR and
related activities,
such as
"cgEnterActions_...
" and
"cgExitActions_...".

Used in the file
<module>.c with
the functions
related to Tasks/
ISRs

For an Activity
named T1, defined
to be a TASK, with
a Control Activity
named
ACT_CTRL:
void T1(void)

{

...

cgDo_ACT_CTRL(
);

Forward Related
Function
Declaration(nameid
, returntype, arglist)

#if defined
__HC12__ ||
defined __HC08__
extern ?<begin>
$<CK_memSegme
nt> ?<!=> ?<?>far
?<:>
?<end>$<returntyp
e>
$<nameid>($<argli
st>);
#else
extern
$<returntype>
$<nameid>($<argli
st>);
#endif

Controls the
forward (extern)
declaration of
functions related to
the Task/ISR and
related activities,
such as
"cgEnterActions_...
" and
"cgExitActions_...";
by default, in the
file 'type_def.h'

Used in the file
type_def.h with the
functions related to
Tasks/ISRs

For an Activity
named T1, defined
to be a TASK, with
a Control Activity
named
ACT_CTRL with
entering reactions
in it.
#if defined
__HC12__ ||
defined
__HC08__

extern void
cgEnterActions
_GENERAL_CONTR
OL(...);

#else
extern void
cgEnterActions
_GENERAL_CONTR
OL(...);

#endif

Activity Function
Opening(nameid)

?<begin>
$<CK_compilation
Flag> ?<!=> (none)
?<&&>
$<CK_compilation
Flag> ?<!=>
?<?>#ifdef
$<CK_compilation
Flag>
?<:>?<end>

Controls the
specific function
body definition. It
will be added just
before the function
body begins, in the
file <module>.c

Used in the file
<module>.c with
the functions
related to Tasks/
ISRs

For Activity named
AC1:
Design-Attribute:
CK_compilationFla
g = CODE_SEG_1
#ifdef
CODE_SEG_1

void

cgActivity_AC1
(void)

{

…

Name Sample
Definition Description Where Used Code Generated
Statemate 177

Advanced: Creating Customized OSIs
Activity Function
Closure(nameid)

"?<begin>
$<CK_compilation
Flag> ?<!=> (none)
?<&&>
$<CK_compilation
Flag> ?<!=>
?<?>#endif
?<:>?<end>

Controls the
specific function
body definition. It
will be added just
after the function
body end, in the file
<module>.c

Used in the file
<module>.c with
the functions
related to Tasks/
ISRs

For Activity named
AC1:
Design-Attribute:
CK_compilationFla
g = CODE_SEG_1
void
cgActivity_AC1
(void)

{
…

}

#endif

Activity Function
Call
Opening(nameid)

?<begin>
$<CK_compilation
Flag> ?<!=> (none)
?<&&>
$<CK_compilation
Flag> ?<!=>
?<?>#ifdef
$<CK_compilation
Flag>
?<:>?<end>

Controls the
specific call to the
function
implementing the
activity. It will be
added just before
calling the function,
in the file
<module>.c

Used in the file
<module>.c with
the functions
related to Tasks/
ISRs

For Activity named
AC1:
Design-Attribute:
CK_compilationFla
g = CODE_SEG_1

#ifdef
CODE_SEG_1

cgActivity_AC1
();
#endif

Activity Function
Call
Closure(nameid)

?<begin>
$<CK_compilation
Flag> ?<!=> (none)
?<&&>
$<CK_compilation
Flag> ?<!=>
?<?>#endif
?<:>?<end>

Controls the
specific call to the
function
implementing the
activity. It will be
added just after
calling the function,
in the file
<module>.c

Used in the file
<module>.c with
the functions
related to Tasks/
ISRs

For Activity named
AC1:
Design-Attribute:
CK_compilationFla
g = CODE_SEG_1

#ifdef
CODE_SEG_1

cgActivity_AC1
();

#endif

Name Sample
Definition Description Where Used Code Generated
178 MicroC Code Generator

Customizing API Definitions
Statechart
Beginning
Code(nameid)

if((currentState_$<
nameid> &
$<nameid>_BITS_
RANGE) != 0){
 /* Error:
$<nameid> State
Variable out of
Range. */
 };

Controls the code
at the beginning of
the Statechart. It
will be added as
the first executable
statement in the
Statechart function.

These API's enable
insertion of user
code in specific
locations of the
Statechart function
(cgDo_…).
The code related to
these API's is
generated in
<module>.c

For a Control
Activity named
ACT_CTRL:

void

cgDo_ACT_CTRLv
oid)

{

if((currentSta
te_ACT_CTRL &
ACT_CTRL_BITS_
RANGE) != 0){

 /* Error:
ACT_CTRL State
Variable out
of Range. */

 };
...

/* Statechart
Ending Code */
}

Statechart Ending
Code(nameid)

Controls the code
at the end of the
Statechart. It will be
added as the last
executable
statement in the
Statechart function.

Name Sample
Definition Description Where Used Code Generated
Statemate 179

Advanced: Creating Customized OSIs
Code—Activities Definition Section

Name Sample
Definition Description Where Used Code Generated

Activities Body
Definition File [.c]
Header

#if defined
__HC12__ ||
defined __HC08__
#pragma
CODE_SEG
DEFAULT
#elif
defined(COSMIC1
2)
#pragma section ()
#endif

This line will be
added at the
beginning of each
<module>.c file.

Activities Body
Definition File [.c]
Footer

#if defined
__HC12__ ||
defined __HC08__
#pragma
CODE_SEG
DEFAULT
#elif
defined(COSMIC1
2)
#pragma section ()
#endif

This line will be
added at the end of
each <module>.c
file.
180 MicroC Code Generator

Customizing API Definitions
Code—Per-User Function

Name Sample
Definition Description Where Used Code Generated

User Function
Definition
Style(nameid,
returntype, arglist,
shortdescription)

$<returntype>
$<nameid>($<argli
st>)

Controls the
specific function
declaration style.

Used in the file
glob_func.c for
user functions.

For a Subroutine
named SUBR1,
Return type:
Integer, Parameter:
PRM1 of type Real:
int
SUBR1(double
PRM1)

{

...

Extern User
Function
Declaration(nameid
, returntype, arglist,
shortdescription)

extern ?<begin>
$<CK_memSegme
nt> ?<!=> ?<?>far
?<:>
?<end>$<returntyp
e>
$<nameid>($<argli
st>);

Controls the
specific function
extern declaration;
by default in the file
type_def.h

Used in the file
type_def.h for user
functions.

For a Subroutine
named SUBR1,
Return type:
Integer, Parameter:
PRM1 of type Real,
Design-Attribute:
CK_memSegment
= SEG_1:
extern far int
SUBR1(double
PRM1);

User Function
Opening()

?<begin>$<CK_co
mpilationFlag>?<!=
> (none) ?<&&>
$<CK_compilation
Flag>?<!=>
?<?>#ifdef
$<CK_compilation
Flag>?<:>?<end>
?<begin>$<CK_me
mSegment>?<!=>?
<?>#if defined
__HC12__ ||
defined __HC08__
#pragma
CODE_SEG
$<CK_memSegme
nt>
#elif
defined(COSMIC1
2)
#pragma section
($<CK_memSegm
ent>)
#endif?<:>?<end>

Controls the
specific function
body definition. It
will be added just
before the function
body begins, by
default in the file
glob_func.c

Used in the file
glob_func.c for
user functions.

For a Subroutine
named SUBR1,
Return type:
Integer, Parameter:
PRM1 of type Real,
Design-Attribute:
CK_compilationFla
g = FEATURE_1
#ifdef
FEATURE_1

int
SUBR1(double
PRM1)

...
Statemate 181

Advanced: Creating Customized OSIs
User Function
Closure()

?<begin>$<CK_me
mSegment>?<!=>?
<?>#if defined
__HC12__ ||
defined __HC08__
#pragma
CODE_SEG
DEFAULT
#elif
defined(COSMIC1
2)
#pragma section
($<CK_memSegm
ent>)
#endif?<:>?<end>
?<begin>$<CK_co
mpilationFlag>?<!=
> (none) ?<&&>
$<CK_compilation
Flag>?<!=>
?<?>#endif?<:>?<e
nd>

Controls the
specific function
body definition. It
will be added just
after the function
body end, by
default in the file
glob_func.c

Used in the file
glob_func.c for
user functions.

For a Subroutine
named SUBR1,
Return type:
Integer, Parameter:
PRM1 of type Real,
Design-Attribute:
CK_compilationFla
g = FEATURE_1

int
SUBR1(double
PRM1)
{

…

}
#endif

User Function Call
Style(nameid,
arglist,
funcPrefixWrapCod
e,
funcPostfixWrapCo
de,
shortdescription)

$<funcPrefixWrapC
ode>$<nameid>($
<arglist>)$<funcPo
stfixWrapCode>

Controls the
specific function
call style.
Formal
Parameters:
- nameid - The
name of the
function.
- arglist - The code
for the arguments,
in the function's
call.
-
funcPrefixWrapCod
e - Function's prefix
code (if any).
-
funcPostfixWrapCo
de - Function's
postfix code (if
any).
- shortdescription -
the function's short
description

Used in the files
where a User-
Function is called:
<module>.c,
glob_func.c etc.

For a Subroutine
named SUBR1,
Actual Parameter:
DI_REAL,
Design-Attribute:
funcPrefixWrapCod
e = <empty>
Design-Attribute:
funcPostfixWrapCo
de = <empty>

SUBR1(DI_REAL)

Name Sample
Definition Description Where Used Code Generated
182 MicroC Code Generator

Customizing API Definitions
Code—User Functions Definition Section

Name Sample
Definition Description Where Used Code Generated

Functions Body
Definition File [.c]
Header

#if defined
__HC12__ ||
defined __HC08__
#pragma
CODE_SEG
DEFAULT
#elif
defined(COSMIC1
2)
#pragma section ()
#endif

This line will be
added at the
beginning of the file
glob_func.c

This line will be
added at the
beginning of the file
glob_func.c

#if defined
__HC12__ ||
defined __HC08__
#pragma
CODE_SEG
DEFAULT
#elif
defined(COSMIC1
2)
#pragma section ()
‘#endif

Functions Body
Definition File [.c]
Footer

#if defined
__HC12__ ||
defined __HC08__
#pragma
CODE_SEG
DEFAULT
#elif
defined(COSMIC1
2)
#pragma section ()
#endif

This line will be
added at the end of
the file glob_func.c

This line will be
added at the end of
the file glob_func.c

#if defined
__HC12__ ||
defined __HC08__
#pragma
CODE_SEG
DEFAULT
#elif
defined(COSMIC1
2)
#pragma section ()
#endif

Extern Declaration
File [.h] Header

/* Ext Decl. Header
*/

This line will be
added at the
beginning of the file
type_def.h

This line will be
added in the file
type_def.h

/* Ext Decl. Header
*/

Extern Declaration
File [.h] Footer

/* Ext Decl. Footer
*/

This line will be
added at the end of
the file type_def.h

This line will be
added at the end of
the file type_def.h

/* Ext Decl. Footer
*/
Statemate 183

Advanced: Creating Customized OSIs
Customizing the Static OS Configuration

The OSDT allows you to modify a large number of static OS configuration settings. These settings
are accessed by clicking Static OS Configuration... in the main OSDT window. (This option will
be grayed out unless the Static OS Configuration check box is selected.) These settings are
categorized as follows:

� Task Definition
� Event Definition
� Timer Definition
� Synchronization Definition
� Critical Section Definition
� Message Definition
� ISR Definition
184 MicroC Code Generator

Customizing API Definitions
Where Definition is Used, Code Generated
For OSIs that use a static OS configuration file, you provide the names of the following two files,
when defining the profile to use for code generation:

� OS CFG Input
� The template file to use for the creation of the OS configuration file.
� The keywords used in the template file will be replaced with concrete data from

the model to create the OS configuration file that reflects the OS objects in the
model.

� OS CFG Output

The name to use for the generated static OS configuration file.
The task, event, timer, synchronization, critical section, message, and ISR definitions listed in the
tables in this section are used for building the file used for generation of the static OS
configuration file.

The following code will be generated for an activity named T1, defined to be a task:, and the input
file given below.

Input File:

…
task_definition_keyword_1
…
task_definition_keyword_6
semaphore_definition_keyword_9
…
event_definition_keyword_4
...

Generated Code:

…
task_definition_1
…
task_definition_6
semaphore_definition_9
…
event_definition_4
...
Statemate 185

Advanced: Creating Customized OSIs
Task Definition

Name Sample Definition Description

Task Definition(nameid,
eventlist, semaphoreList,
messageList)

task_definition_1 Used to build TASK definitions, per
each TASK in the model, in the
"Static OS Configuration file".
If only a single API is used, it must
be this one.

Task Definition Keyword task_definition_keyword_1 Defines the appropriate location, in
the "Static OS Configuration file", for
TASK definitions.

Task Definition Section
2(nameid, eventlist,
semaphoreList, messageList)

task_definition_2 Builds Section 2 TASK definitions,
per each TASK in the model, in the
"Static OS Configuration file".

Task Definition Section 2
Keyword

task_definition_keyword_2 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 2 TASK definitions

Task Definition Section
3(nameid, eventlist,
semaphoreList, messageList)

task_definition_3 Builds Section 3 TASK definitions,
per each TASK in the model, in the
"Static OS Configuration file"

Task Definition Section 3
Keyword

task_definition_keyword_3 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 3 TASK definitions.

Task Definition Section
4(nameid, eventlist,
semaphoreList, messageList)

task_definition_4 Builds Section 4 TASK definitions,
per each TASK in the model, in the
"Static OS Configuration file"

Task Definition Section 4
Keyword

task_definition_keyword_4 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 4 TASK definitions.

Task Definition Section
5(nameid, eventlist,
semaphoreList, messageList)

task_definition_5 Builds Section 5 TASK definitions,
per each TASK in the model, in the
"Static OS Configuration file"

Task Definition Section 5
Keyword

task_definition_keyword_5 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 5 TASK definitions.

Task Definition Section
6(nameid, eventlist,
semaphoreList, messageList)

task_definition_6 Used to build Section 6 TASK
definitions, per each TASK in the
model, in the "Static OS
Configuration file"

Task Definition Section 6
Keyword

task_definition_keyword_6 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 6 TASK definitions.
186 MicroC Code Generator

Customizing API Definitions
Task Definition Section
7(nameid, eventlist,
semaphoreList, messageList)

task_definition_7 Used to build Section 7 TASK
definitions, per each TASK in the
model, in the "Static OS
Configuration file”

Task Definition Section 7
Keyword

task_definition_keyword_7 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 7 TASK definitions.

Task Definition Section
8(nameid, eventlist,
semaphoreList, messageList)

task_definition_8 Used to build Section 8 TASK
definitions, per each TASK in the
model, in the "Static OS
Configuration file"

Task Definition Section 8
Keyword

task_definition_keyword_8 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 8 TASK definitions.

Task Definition Section
9(nameid, eventlist,
semaphoreList, messageList)

task_definition_9 Used to build Section 9 TASK
definitions, per each TASK in the
model, in the "Static OS
Configuration file"

Task Definition Section 9
Keyword

task_definition_keyword_9 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 9 TASK definitions.

Task Definition Section
10(nameid, eventlist,
semaphoreList, messageList)

task_definition_10 Used to build Section 10 TASK
definitions, per each TASK in the
model, in the "Static OS
Configuration file"

Task Definition Section 10
Keyword

task_definition_keyword_10 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 10 TASK definitions.

Task Definition Section
11(nameid, eventlist,
semaphoreList, messageList)

task_definition_11 Used to build Section 11 TASK
definitions, per each TASK in the
model, in the "Static OS
Configuration file"

Task Definition Section 11
Keyword

task_definition_keyword_11 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 11 TASK definitions.

Task Definition Section
12(nameid, eventlist,
semaphoreList, messageList)

task_definition_12 Used to build Section 12 TASK
definitions, per each TASK in the
model, in the "Static OS
Configuration file"

Task Definition Section 12
Keyword

task_definition_keyword_12 Defines the appropriate location, in
the "Static OS Configuration file", for
Section 12 TASK definitions.

Name Sample Definition Description
Statemate 187

Advanced: Creating Customized OSIs
Event Definition

Name Sample Definition Description

Event Definition(nameid, itstaskid) event_definition_1 Used to build Event
definitions, per each Event in
the model, in the "Static OS
Configuration file"

Event Definition Keyword event_definition_keyword_1 Used to define the
appropriate location for Event
definitions, in the "Static OS
Configuration file"

Event Definition Section 2(nameid,
itstaskid)

event_definition_2 Used to build Section 2 Event
definitions, per each Event in
the model, in the "Static OS
Configuration file"

Event Definition Section 2 Keyword event_definition_keyword_2 Used to define the
appropriate location for
Section 2 Event definitions, in
the "Static OS Configuration
file"

Event Definition Section 3(nameid,
itstaskid)

event_definition_3 Used to build Section 3 Event
definitions, per each Event in
the model, in the "Static OS
Configuration file"

Event Definition Section 3 Keyword event_definition_keyword_3 Used to define the
appropriate location for
Section 3 Event definitions, in
the "Static OS Configuration
file"

Event Definition Section 4(nameid,
itstaskid)

event_definition_4 Used to build Section 4 Event
definitions, per each Event in
the model, in the "Static OS
Configuration file"

Event Definition Section 4 Keyword event_definition_keyword_4 Used to define the
appropriate location for
Section 4 Event definitions, in
the "Static OS Configuration
file"

Event Definition Section 5(nameid,
itstaskid)

event_definition_5 Used to build Section 5 Event
definitions, per each Event in
the model, in the "Static OS
Configuration file"

Event Definition Section 5 Keyword event_definition_keyword_5 Used to define the
appropriate location for
Section 5 Event definitions, in
the "Static OS Configuration
file"
188 MicroC Code Generator

Customizing API Definitions
Event Definition Section 6(nameid,
itstaskid)

event_definition_6 Used to build Section 6 Event
definitions, per each Event in
the model, in the "Static OS
Configuration file"

Event Definition Section 6 Keyword event_definition_keyword_6 Used to define the
appropriate location for
Section 6 Event definitions, in
the "Static OS Configuration
file"

Event Definition Section 7(nameid,
itstaskid)

event_definition_7 Used to build Section 7 Event
definitions, per each Event in
the model, in the "Static OS
Configuration file"

Event Definition Section 7 Keyword event_definition_keyword_7 Used to define the
appropriate location for
Section 7 Event definitions, in
the "Static OS Configuration
file"

Event Definition Section 8(nameid,
itstaskid)

event_definition_8 Used to build Section 8 Event
definitions, per each Event in
the model, in the "Static OS
Configuration file"

Event Definition Section 8 Keyword event_definition_keyword_8 Used to define the
appropriate location for
Section 8 Event definitions, in
the "Static OS Configuration
file"

Event Definition Section 9(nameid,
itstaskid)

event_definition_9 Used to build Section 9 Event
definitions, per each Event in
the model, in the "Static OS
Configuration file"

Event Definition Section 9 Keyword event_definition_keyword_9 Used to define the
appropriate location for
Section 9 Event definitions, in
the "Static OS Configuration
file"

Event Definition Section
10(nameid, itstaskid)

event_definition_10 Used to build Section 10
Event definitions, per each
Event in the model, in the
"Static OS Configuration file"

Event Definition Section 10
Keyword

event_definition_keyword_10 Used to define the
appropriate location for
Section 10 Event definitions,
in the "Static OS
Configuration file"

Name Sample Definition Description
Statemate 189

Advanced: Creating Customized OSIs
Event Definition Section
11(nameid, itstaskid)

event_definition_11 Used to build Section 11
Event definitions, per each
Event in the model, in the
"Static OS Configuration file"

Event Definition Section 11
Keyword

event_definition_keyword_11 Used to define the
appropriate location for
Section 11 Event definitions,
in the "Static OS
Configuration file"

Event Definition Section
12(nameid, itstaskid)

event_definition_12 Used to build Section 12
Event definitions, per each
Event in the model, in the
"Static OS Configuration file"

Event Definition Section 12
Keyword

event_definition_keyword_12 Used to define the
appropriate location for
Section 12 Event definitions,
in the "Static OS
Configuration file"

Name Sample Definition Description
190 MicroC Code Generator

Customizing API Definitions
Timer Definition

Name Sample Definition Description

Timer Definition(nameid, itstaskid,
eventnameid)

timer_definition_1 Used to build Timer
definitions, per each Timer in
the model, in the "Static OS
Configuration file"

Timer Definition Keyword timer_definition_keyword_1 Used to define the
appropriate location for Timer
definitions in the "Static OS
Configuration file"

Timer Definition Section 2(nameid,
itstaskid, eventnameid)

timer_definition_2 Used to build Section 2 Timer
definitions, per each Timer in
the model, in the "Static OS
Configuration file"

Timer Definition Section 2 Keyword timer_definition_keyword_2 Used to define the
appropriate location for
Section 2 Timer definitions in
the "Static OS Configuration
file"

Timer Definition Section 3(nameid,
itstaskid, eventnameid)

timer_definition_3 Used to build Section 3 Timer
definitions, per each Timer in
the model, in the "Static OS
Configuration file"

Timer Definition Section 3 Keyword timer_definition_keyword_3 Used to define the
appropriate location for
Section 3 Timer definitions in
the "Static OS Configuration
file"

Timer Definition Section 4(nameid,
itstaskid, eventnameid)

timer_definition_4 Used to build Section 4 Timer
definitions, per each Timer in
the model, in the "Static OS
Configuration file"

Timer Definition Section 4 Keyword timer_definition_keyword_4 Used to define the
appropriate location for
Section 4 Timer definitions in
the "Static OS Configuration
file"

Timer Definition Section 5(nameid,
itstaskid, eventnameid)

timer_definition_5 Used to build Section 5 Timer
definitions, per each Timer in
the model, in the "Static OS
Configuration file"

Timer Definition Section 5 Keyword timer_definition_keyword_5 Used to define the
appropriate location for
Section 5 Timer definitions in
the "Static OS Configuration
file"
Statemate 191

Advanced: Creating Customized OSIs
Timer Definition Section 6(nameid,
itstaskid, eventnameid)

timer_definition_6 Used to build Section 6 Timer
definitions, per each Timer in
the model, in the "Static OS
Configuration file"

Timer Definition Section 6 Keyword timer_definition_keyword_6 Used to define the
appropriate location for
Section 6 Timer definitions in
the "Static OS Configuration
file"

Timer Definition Section 7(nameid,
itstaskid, eventnameid)

timer_definition_7 Used to build Section 7 Timer
definitions, per each Timer in
the model, in the "Static OS
Configuration file"

Timer Definition Section 7 Keyword timer_definition_keyword_7 Used to define the
appropriate location for
Section 7 Timer definitions in
the "Static OS Configuration
file"

Timer Definition Section 8(nameid,
itstaskid, eventnameid)

timer_definition_8 Used to build Section 8 Timer
definitions, per each Timer in
the model, in the "Static OS
Configuration file"

Timer Definition Section 8 Keyword timer_definition_keyword_8 Used to define the
appropriate location for
Section 8 Timer definitions in
the "Static OS Configuration
file"

Timer Definition Section 9(nameid,
itstaskid, eventnameid)

timer_definition_9 Used to build Section 9 Timer
definitions, per each Timer in
the model, in the "Static OS
Configuration file"

Timer Definition Section 9 Keyword timer_definition_keyword_9 Used to define the
appropriate location for
Section 9 Timer definitions in
the "Static OS Configuration
file"

Timer Definition Section
10(nameid, itstaskid, eventnameid)

timer_definition_10 Used to build Section 10
Timer definitions, per each
Timer in the model, in the
"Static OS Configuration file"

Timer Definition Section 10
Keyword

timer_definition_keyword_10 Used to define the
appropriate location for
Section 10 Timer definitions
in the "Static OS
Configuration file"

Name Sample Definition Description
192 MicroC Code Generator

Customizing API Definitions
Timer Definition Section
11(nameid, itstaskid, eventnameid)

timer_definition_11 Used to build Section 11
Timer definitions, per each
Timer in the model, in the
"Static OS Configuration file"

Timer Definition Section 11
Keyword

timer_definition_keyword_11 Used to define the
appropriate location for
Section 11 Timer definitions in
the "Static OS Configuration
file"

Timer Definition Section
12(nameid, itstaskid, eventnameid)

timer_definition_12 Used to build Section 12
Timer definitions, per each
Timer in the model, in the
"Static OS Configuration file"

Timer Definition Section 12
Keyword

timer_definition_keyword_12 Used to define the
appropriate location for
Section 12 Timer definitions
in the "Static OS
Configuration file"

Name Sample Definition Description
Statemate 193

Advanced: Creating Customized OSIs
Synchronization Definition

Name Sample Definition Description

Semaphore Definition(nameid) semaphore_definition_1 Used to build Semaphore
definitions, per each
Semaphore in the model, in the
"Static OS Configuration file”

Semaphore Definition Keyword semaphore_definition_keywo
rd_1

Used to define the appropriate
location for Semaphore
definitions in the "Static OS
Configuration file"

Semaphore Definition Section
2(nameid)

semaphore_definition_2 Used to build Section 2
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 2
Keyword

semaphore_definition_keywo
rd_2

Used to define the appropriate
location for Section 2
Semaphore definitions in the
"Static OS Configuration file"

Semaphore Definition Section
3(nameid)

semaphore_definition_3 Used to build Section 3
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 3
Keyword

semaphore_definition_keywo
rd_3

Used to define the appropriate
location for Section 3
Semaphore definitions in the
"Static OS Configuration file"

Semaphore Definition Section
4(nameid)

semaphore_definition_4 Used to build Section 4
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 4
Keyword

semaphore_definition_keywo
rd_4

Used to define the appropriate
location for Section 4
Semaphore definitions in the
"Static OS Configuration file"

Semaphore Definition Section
5(nameid)

semaphore_definition_5 Used to build Section 5
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 5
Keyword

semaphore_definition_keywo
rd_5

Used to define the appropriate
location for Section 5
Semaphore definitions in the
"Static OS Configuration file"
194 MicroC Code Generator

Customizing API Definitions
Semaphore Definition Section
6(nameid)

semaphore_definition_6 Used to build Section 6
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 6
Keyword

semaphore_definition_keywo
rd_6

Used to define the appropriate
location for Section 6
Semaphore definitions in the
"Static OS Configuration file"

Semaphore Definition Section
7(nameid)

semaphore_definition_7 Used to build Section 7
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 7
Keyword

semaphore_definition_keywo
rd_7

Used to define the appropriate
location for Section 7
Semaphore definitions in the
"Static OS Configuration file"

Semaphore Definition Section
8(nameid)

semaphore_definition_8 Used to build Section 8
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 8
Keyword

semaphore_definition_keywo
rd_8

Used to define the appropriate
location for Section 8
Semaphore definitions in the
"Static OS Configuration file"

Semaphore Definition Section
9(nameid)

semaphore_definition_9 Used to build Section 9
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 9
Keyword

semaphore_definition_keywo
rd_9

Used to define the appropriate
location for Section 9
Semaphore definitions in the
"Static OS Configuration file"

Semaphore Definition Section
10(nameid)

semaphore_definition_10 Used to build Section 10
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 10
Keyword

semaphore_definition_keywo
rd_10

Used to define the appropriate
location for Section 10
Semaphore definitions in the
"Static OS Configuration file"

Name Sample Definition Description
Statemate 195

Advanced: Creating Customized OSIs
Semaphore Definition Section
11(nameid)

semaphore_definition_11 Used to build Section 11
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 11
Keyword

semaphore_definition_keywo
rd_11

Used to define the appropriate
location for Section 11
Semaphore definitions in the
"Static OS Configuration file"

Semaphore Definition Section
12(nameid)

semaphore_definition_12 Used to build Section 12
Semaphore definitions, per
each Semaphore in the model,
in the "Static OS Configuration
file"

Semaphore Definition Section 12
Keyword

semaphore_definition_keywo
rd_12

Used to define the appropriate
location for Section 12
Semaphore definitions in the
"Static OS Configuration file"

Name Sample Definition Description
196 MicroC Code Generator

Customizing API Definitions
Critical Section Definition

Name Sample Definition Description

Critical Section Definition(nameid) critical_section_definition_1 Used to build Critical
Section definitions, per each
Critical Section in the model,
in the "Static OS
Configuration file"

Critical Section Definition Keyword critical_section_definition_keyword_1 Used to define the
appropriate location for
Critical Section definitions in
the "Static OS Configuration
file"

Critical Section Definition Section
2(nameid)

critical_section_definition_2 Used to build Critical
Section Section 2
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"

Critical Section Definition Section 2
Keyword

critical_section_definition_keyword_2 Used to define the
appropriate location for
Critical Section Section 2
definitions in the "Static OS
Configuration file"

Critical Section Definition Section
3(nameid)

critical_section_definition_3 Used to build Critical
Section Section 3
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"

Critical Section Definition Section 3
Keyword

critical_section_definition_keyword_3 Used to define the
appropriate location for
Critical Section Section 3
definitions in the "Static OS
Configuration file"

Critical Section Definition Section
4(nameid)

critical_section_definition_4 Used to build Critical
Section Section 4
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"

Critical Section Definition Section 4
Keyword

critical_section_definition_keyword_4 Used to define the
appropriate location for
Critical Section Section 4
definitions in the "Static OS
Configuration file"

Critical Section Definition Section
5(nameid)

critical_section_definition_5 Used to build Critical
Section Section 5
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"
Statemate 197

Advanced: Creating Customized OSIs
Critical Section Definition Section 5
Keyword

critical_section_definition_keyword_5 Used to define the
appropriate location for
Critical Section Section 5
definitions in the "Static OS
Configuration file"

Critical Section Definition Section
6(nameid)

critical_section_definition_6 Used to build Critical
Section Section 6
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"

Critical Section Definition Section 6
Keyword

critical_section_definition_keyword_6 Used to define the
appropriate location for
Critical Section Section 6
definitions in the "Static OS
Configuration file"

Critical Section Definition Section
7(nameid)

critical_section_definition_7 Used to build Critical
Section Section 7
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"

Critical Section Definition Section 7
Keyword

critical_section_definition_keyword_7 Used to define the
appropriate location for
Critical Section Section 7
definitions in the "Static OS
Configuration file"

Critical Section Definition Section
8(nameid)

critical_section_definition_8 Used to build Critical
Section Section 8
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"

Critical Section Definition Section 8
Keyword

critical_section_definition_keyword_8 Used to define the
appropriate location for
Critical Section Section 8
definitions in the "Static OS
Configuration file"

Critical Section Definition Section
9(nameid)

critical_section_definition_9 Used to build Critical
Section Section 9
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"

Critical Section Definition Section 9
Keyword

critical_section_definition_keyword_9 Used to define the
appropriate location for
Critical Section Section 9
definitions in the "Static OS
Configuration file"

Name Sample Definition Description
198 MicroC Code Generator

Customizing API Definitions
Critical Section Definition Section
10(nameid)

critical_section_definition_10 Used to build Critical
Section Section 10
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"

Critical Section Definition Section
10 Keyword

critical_section_definition_keyword_
10

Used to define the
appropriate location for
Critical Section Section 10
definitions in the "Static OS
Configuration file"

Critical Section Definition Section
11(nameid)

critical_section_definition_11 Used to build Critical
Section Section 11
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"

Critical Section Definition Section
11 Keyword

critical_section_definition_keyword_
11

Used to define the
appropriate location for
Critical Section Section 11
definitions in the "Static OS
Configuration file"

Critical Section Definition Section
12(nameid)

critical_section_definition_12 Used to build Critical
Section Section 12
definitions, per each Critical
Section in the model, in the
"Static OS Configuration file"

Critical Section Definition Section
12 Keyword

critical_section_definition_keyword_
12

Used to define the
appropriate location for
Critical Section Section 12
definitions in the "Static OS
Configuration file"

Name Sample Definition Description
Statemate 199

Advanced: Creating Customized OSIs
Message Definition

Name Sample Definition Description

Message Definition(nameid,
itstaskid, datatype)

message_section_definition_1 Used to build Message
definitions, per each
Message in the model, in the
"Static OS Configuration file"

Message Definition Keyword message_definition_keyword_1 Used to define the
appropriate location for
Message definitions in the
"Static OS Configuration file"

Message Definition Section
2(nameid)

message_section_definition_2 Used to build Message
Section 2 definitions, per
each Message in the model,
in the "Static OS
Configuration file"

Message Definition Section 2
Keyword

message_definition_keyword_2 Used to define the
appropriate location for
Message Section 2
definitions in the "Static OS
Configuration file"

Message Definition Section
3(nameid)

message_section_definition_3 Used to build Message
Section 3 definitions, per
each Message in the model,
in the "Static OS
Configuration file"

Message Definition Section 3
Keyword

message_definition_keyword_3 Used to define the
appropriate location for
Message Section 3
definitions in the "Static OS
Configuration file"

Message Definition Section
4(nameid)

message_section_definition_4 Used to build Message
Section 4 definitions, per
each Message in the model,
in the "Static OS
Configuration file"

Message Definition Section 4
Keyword

message_definition_keyword_4 Used to define the
appropriate location for
Message Section 4
definitions in the "Static OS
Configuration file"

Message Definition Section
5(nameid)

message_section_definition_5 Used to build Message
Section 5 definitions, per
each Message in the model,
in the "Static OS
Configuration file"
200 MicroC Code Generator

Customizing API Definitions
Message Definition Section 5
Keyword

message_definition_keyword_5 Used to define the
appropriate location for
Message Section 5
definitions in the "Static OS
Configuration file"

Message Definition Section
6(nameid)

message_section_definition_6 Used to build Message
Section 6 definitions, per
each Message in the model,
in the "Static OS
Configuration file"

Message Definition Section 6
Keyword

message_definition_keyword_6 Used to define the
appropriate location for
Message Section 6
definitions in the "Static OS
Configuration file"

Message Definition Section
7(nameid)

message_section_definition_7 Used to build Message
Section 7 definitions, per
each Message in the model,
in the "Static OS
Configuration file"

Message Definition Section 7
Keyword

message_definition_keyword_7 Used to define the
appropriate location for
Message Section 7
definitions in the "Static OS
Configuration file"

Message Definition Section
8(nameid)

message_section_definition_8 Used to build Message
Section 8 definitions, per
each Message in the model,
in the "Static OS
Configuration file"

Message Definition Section 8
Keyword

message_definition_keyword_8 Used to define the
appropriate location for
Message Section 8
definitions in the "Static OS
Configuration file"

Message Definition Section
9(nameid)

message_section_definition_9 Used to build Message
Section 9 definitions, per
each Message in the model,
in the "Static OS
Configuration file"

Message Definition Section 9
Keyword

message_definition_keyword_9 Used to define the
appropriate location for
Message Section 9
definitions in the "Static OS
Configuration file"

Name Sample Definition Description
Statemate 201

Advanced: Creating Customized OSIs
Message Definition Section
10(nameid)

message_section_definition_10 Used to build Message
Section 10 definitions, per
each Message in the model,
in the "Static OS
Configuration file"

Message Definition Section 10
Keyword

message_definition_keyword_10 Used to define the
appropriate location for
Message Section 10
definitions in the "Static OS
Configuration file"

Message Definition Section
11(nameid)

message_section_definition_11 Used to build Message
Section 11 definitions, per
each Message in the model,
in the "Static OS
Configuration file"

Message Definition Section 11
Keyword

message_definition_keyword_11 Used to define the
appropriate location for
Message Section 11
definitions in the "Static OS
Configuration file"

Message Definition Section
12(nameid)

message_section_definition_12 Used to build Message
Section 12 definitions, per
each Message in the model,
in the "Static OS
Configuration file"

Message Definition Section 12
Keyword

message_definition_keyword_12 Used to define the
appropriate location for
Message Section 12
definitions in the "Static OS
Configuration file"

Name Sample Definition Description
202 MicroC Code Generator

Customizing API Definitions
ISR Definition

Name Sample Definition Description

ISR Definition(nameid, eventlist,
semaphoreList, messageList)

isr_section_definition_1 Used to build ISR definitions, per
each ISR in the model, in the
"Static OS Configuration file"

ISR Definition Keyword isr_definition_keyword_1 Used to define the appropriate
location for ISR definitions in the
"Static OS Configuration file"

ISR Definition Section 2(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_2 Used to build ISR Section 2
definitions, per each ISR in the
model, in the "Static OS
Configuration file"

ISR Definition Section 2 Keyword isr_definition_keyword_2 Used to define the appropriate
location for ISR Section 2
definitions in the "Static OS
Configuration file"

ISR Definition Section 3(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_3 Used to build ISR Section 3
definitions, per each ISR in the
model, in the "Static OS
Configuration file"

ISR Definition Section 3 Keyword isr_definition_keyword_3 Used to define the appropriate
location for ISR Section 3
definitions in the "Static OS
Configuration file"

ISR Definition Section 4(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_4 Used to build ISR Section 4
definitions, per each ISR in the
model, in the "Static OS
Configuration file"

ISR Definition Section 4 Keyword isr_definition_keyword_4 Used to define the appropriate
location for ISR Section 4
definitions in the "Static OS
Configuration file"

ISR Definition Section 5(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_5 Used to build ISR Section 5
definitions, per each ISR in the
model, in the "Static OS
Configuration file"

ISR Definition Section 5 Keyword isr_definition_keyword_5 Used to define the appropriate
location for ISR Section 5
definitions in the "Static OS
Configuration file"

ISR Definition Section 6(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_6 Used to build ISR Section 6
definitions, per each ISR in the
model, in the "Static OS
Configuration file"
Statemate 203

Advanced: Creating Customized OSIs
ISR Definition Section 6 Keyword isr_definition_keyword_6 Used to define the appropriate
location for ISR Section 6
definitions in the "Static OS
Configuration file"

ISR Definition Section 7(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_7 Used to build ISR Section 7
definitions, per each ISR in the
model, in the "Static OS
Configuration file"

ISR Definition Section 7 Keyword isr_definition_keyword_7 Used to define the appropriate
location for ISR Section 7
definitions in the "Static OS
Configuration file"

ISR Definition Section 8(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_8 Used to build ISR Section 8
definitions, per each ISR in the
model, in the "Static OS
Configuration file"

ISR Definition Section 8 Keyword isr_definition_keyword_8 Used to define the appropriate
location for ISR Section 8
definitions in the "Static OS
Configuration file"

ISR Definition Section 9(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_9 Used to build ISR Section 9
definitions, per each ISR in the
model, in the "Static OS
Configuration file"

ISR Definition Section 9 Keyword isr_definition_keyword_9 Used to define the appropriate
location for ISR Section 9
definitions in the "Static OS
Configuration file"

ISR Definition Section 10(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_10 Used to build ISR Section 10
definitions, per each ISR in the
model, in the "Static OS
Configuration file"

ISR Definition Section 10 Keyword isr_definition_keyword_10 Used to define the appropriate
location for ISR Section 10
definitions in the "Static OS
Configuration file"

ISR Definition Section 11(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_11 Used to build ISR Section 11
definitions, per each ISR in the
model, in the "Static OS
Configuration file"

ISR Definition Section 11 Keyword isr_definition_keyword_11 Used to define the appropriate
location for ISR Section 11
definitions in the "Static OS
Configuration file"

Name Sample Definition Description
204 MicroC Code Generator

Customizing API Definitions
OS Definition

ISR Definition Section 12(nameid,
eventlist, semaphoreList,
messageList)

isr_section_definition_12 Used to build ISR Section 12
definitions, per each ISR in the
model, in the "Static OS
Configuration file"

ISR Definition Section 12 Keyword isr_definition_keyword_12 Used to define the appropriate
location for ISR Section 12
definitions in the "Static OS
Configuration file"

API Name Example Definition Description

OS Definition(task_no, event_no,
timer_no, sem_no, crit_sec_no,
mess_no, isr_no)

os_section_definition_1 This entry is used to build
general OS definitions,
according to the OS objects
used in the application, in the
Static OS Configuration
file.The various counts are
based on calls to the
"Definition" API`s, like "Timer
Definition" and "Event
Definition". Additional API`s
keywords like "Task Definition
Section 2" might appear
ONLY after the first one in
each section.

OS Definition Keyword os_definition_keyword_1 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for the OS definitions.

OS Definition Section 2(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_2 This entry is used to build
Section 2 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

OS Definition Section 2 Keyword os_definition_keyword_2 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 2 of general
OS definitions.

OS Definition Section 3(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_3 This entry is used to build
Section 3 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

Name Sample Definition Description
Statemate 205

Advanced: Creating Customized OSIs
OS Definition Section 3 Keyword os_definition_keyword_3 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 3 of general
OS definitions.

OS Definition Section 4(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_4 This entry is used to build
Section 4 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

OS Definition Section 4 Keyword os_definition_keyword_4 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 4 of general
OS definitions.

OS Definition Section 5(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_5 This entry is used to build
Section 5 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

OS Definition Section 5 Keyword os_definition_keyword_5 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 5 of general
OS definitions.

OS Definition Section 6(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_6 This entry is used to build
Section 6 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

OS Definition Section 6 Keyword os_definition_keyword_6 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 6 of general
OS definitions.

OS Definition Section 7(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_7 This entry is used to build
Section 7 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

OS Definition Section 7 Keyword os_definition_keyword_7 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 7 of general
OS definitions.

API Name Example Definition Description
206 MicroC Code Generator

Customizing API Definitions
OS Definition Section 8(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_8 This entry is used to build
Section 8 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

OS Definition Section 8 Keyword os_definition_keyword_8 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 8 of general
OS definitions.

OS Definition Section 9(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_9 This entry is used to build
Section 9 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

OS Definition Section 9 Keyword os_definition_keyword_9 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 9 of general
OS definitions.

OS Definition Section 10(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_10 This entry is used to build
Section 10 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

OS Definition Section 10 Keyword os_definition_keyword_10 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 10 of general
OS definitions.

OS Definition Section 11(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_11 This entry is used to build
Section 11 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

OS Definition Section 11 Keyword os_definition_keyword_11 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 11 of general
OS definitions.

API Name Example Definition Description
Statemate 207

Advanced: Creating Customized OSIs
Specifying Related Files

The main OSDT screen contains a button labeled Related Files.... When this button is pressed, a
list of files is displayed. These files are files that you will want to have available in your workarea,
for example, makefiles, .h files, and .oil files. The specific files listed will depend upon the OSI
you are using.

When you create a new workarea, these files are copied to the workarea’s prt directory.

To remove a file from the files that will be copied to this directory, clear the check box next to the
file. To add a file, click the Add File button.

OS Definition Section 12(task_no,
event_no, timer_no, sem_no,
crit_sec_no, mess_no, isr_no)

os_section_definition_12 This entry is used to build
Section 12 of general OS
definitions, according to the
OS objects used in the
application, in the Static OS
Configuration file.

OS Definition Section 12 Keyword os_definition_keyword_12 This entry is used to define
the appropriate location, in
the Static OS Configuration
file, for Section 12 of general
OS definitions.

API Name Example Definition Description
208 MicroC Code Generator

Customizing API Definitions
Upgrading an OSI

The OSDT is capable of upgrading OSIs that were created with previous versions of the tool.

To upgrade an existing OSI, select File > Update from OSI... from the main menu.

The upgrade operation carries out the following actions:

� Checks for API definitions that exist in the reference OSI but not in the OSI being
upgraded. You will be prompted to approve these additions.

� Checks for obsolete API definitions—those that exist in the OSI being upgraded but not in
the reference OSI. You will be prompted to approve the removal of these obsolete
definitions.

� Checks the list of Related Files for new, modified, or obsolete files.
� Checks for design attributes that exist in the reference OSI but not in the OSI being

upgraded. You will be prompted to approve these additions.
� Checks for obsolete design attributes—those that exist in the OSI being upgraded but not

in the reference OSI. You will be prompted to approve the removal of these obsolete
design attributes.

All changes made during the upgrade operation are recorded in a log file located in the ctd
directory (file is named <OSI NAME>DD/MM/YY.txt).

When the upgrade operation is completed, the OSI will be marked as "modified." The changes will
only take effect when the OSI is saved.
Statemate 209

Advanced: Creating Customized OSIs
210 MicroC Code Generator

Index
A
Activities

non-basic 45
synchronization with services 48

Activity charts 40
API

customizing definitions 75
Arrows 61
Attributes

customizing design 75
edit 76

C
Code

ANSI C 1
Assembly 1
basic subroutines 46
compiled 1
customizing 73
generated 40
generated ISR 44
generator for MicroC 1
implementation for flowcharts 48
optimization of statechart 57
statechart implementation 47
structure 61

Communication 48
Configuration

setting target 6
static OS 74

D
Data

global 49
usage in statecharts 50

Decision expressions 60

E
Elements

flowcharts 59
graphical 1

Expressions
decision 60
switch 60

F
Files

specifying related 75
Flowcharts 58

elements 59
examples 62
implementation 59
implementation code 48

Functions
execution order for statecharts 53
generated for flowcharts 58
generated for statecharts 49

G
Goto statements 60
Graphical

elements in statecharts 59

I
Interrupt Service Routine (ISR) 44
ISR 44

categories 44
code examples 44

K
Keywords 185

const 10
scheduler 128
task definition 186
Statemate 211

Index
L
Labels 59, 61
Lookup tables 67

M
Macros 70

INSTALL_TIMEOUT 54
state variable validation 54

Memory
management 74
structure 8

Messages
non-queued 48
queued 48

MicroC
code generator 1

MISRA 2

O
Operating System Implementation (OSI) 3
Operators 68
OSEK 39

API 74
special requirements for applications 56

OSI 3
customizing 73

Output 1

P
Points

begin/end 61
Profiles 5, 73
Projects

OSI for 3

R
Rhapsody 2
Run modes 45

S
Semaphores 49
Services

synchronization with activities 48
Signals 48
Statecharts 49

code optimization 57
data usage 50
function execution order 53
generated functions 51
graphical elements in 59
implementation code 47

Statemate
block in Rhapsody 2

Subactivities
execution order 46

Subroutines
code for basic 46

Switch expressions 60

T
Tables

lookup 67
truth 66

Target
setting configuration 6

Tasks 40
basic 40

Timeout
implementation 54

Timeout variable 10
Turth tables 66
Types

timeout variable 10

U
Upgrade 209

V
Validation

state variable macro 54
Variables

fixed-point 68

W
Word size 8, 11, 69
212 MicroC Code Generator

	Statemate’s MicroC Code Generator
	The Generator Overview
	Basic and Advanced Generator Information
	MISRA Compliance
	Statemate Block in Rhapsody

	Selecting an OSI for your Statemate Project
	Working with Profiles
	Creating a Profile
	Setting the Target Configuration
	Code Generation Options
	Target Properties
	Default Data Types
	Use Fixed Point variables for "Real"
	Code Instrumentation
	Application Configuration
	Application Files...
	OS
	General
	Test Driver
	Optimization

	Setting the Time Expression Scale
	Modules, Adding Charts
	Create Modules
	Add Charts to Modules
	Direct Editing of Profile Files
	Checking for Errors in Profiles

	Generating and Running MicroC Code
	Checking Profile Before Generating Code
	Generating Code
	Editing Code
	Compiling Code
	Running Code
	Running Code with Animation

	Designing Your Model: Model-Code Correspondence
	Activity Charts
	Task Activities
	Basic Task - Generated Code
	Extended Task - Generated Code

	ISR (Interrupt Service Routine) Activities
	ISR Categories

	Task/ISR Run Mode
	Decomposition of Non-basic Activities
	Execution Order (for Subactivities)
	Code for Basic Subactivities
	Communication and Synchronization Services between Activities

	Statecharts
	Functions Generated for Statecharts
	Statechart - Data Usage
	Statechart - Generated Functions
	Order of Function Execution Rules
	State Variable Validation Macro
	Timeout Implementation
	INSTALL_TIMEOUT Macro
	Special Requirements for OSEK-targeted Applications

	History and Deep History Implementation
	Optimization of Statechart Code
	Recommendations for Efficient Code

	Flowcharts
	Functions Generated for Flowcharts
	Flowchart Implementation
	Flowchart Elements
	Labels
	Decision Expressions
	Switch Expressions
	Minimization of Goto Statements
	Code Structure
	Begin/End Points
	Arrows and Labels
	Flowchart Examples
	Simple Flowchart
	Find/Merge Logic
	Switch Control

	Truth Table Implementation
	Lookup Table Implementation
	Fixed-Point Variable Support
	Fixed-Point Variable Implementation Method
	Supported Operators
	Evaluating the wordSize and shift
	Unsupported Functionality
	Specifying Fixed-Point Variables
	The Generated Code

	Usage of Upper Case / Lower Case in Statemate

	Advanced: Creating Customized OSIs
	Using the OSDT to Customize OSIs
	Static OS Configuration
	Memory Management
	OSEK API

	Types of Customization Available
	Customizing Design Attributes
	Design Attribute Fields
	General
	Dependency
	Info

	Customizing API Definitions
	Features that Facilitate API Definition
	Browse Properties from OSDT
	Using Parameters for the Generated Code
	Conditional Expressions in API Definitions

	General API Definitions
	OS Data Type APIs
	Timeout APIs
	Task APIs
	Event APIs
	Software Counter APIs
	Timer APIs
	Synchronization APIs
	Critical Section APIs
	Message APIs
	Interrupt APIs
	Scheduler Definition APIs
	Get-Set Function APIs
	Queue APIs
	Internal Data Types APIs

	Customizing Code Style
	Code Style
	Types Naming Style
	Variables Naming Style
	Model Data Naming Style
	Functions Naming Style
	File Header/Footer

	Customizing Memory Management
	Data-Variable Declaration
	Data-Declaration Section
	Code-Task/ISR and Related Activities
	Code-Activities Definition Section
	Code-Per-User Function
	Code-User Functions Definition Section

	Customizing the Static OS Configuration
	Where Definition is Used, Code Generated
	Task Definition
	Event Definition
	Timer Definition
	Synchronization Definition
	Critical Section Definition
	Message Definition
	ISR Definition
	OS Definition

	Specifying Related Files
	Upgrading an OSI

	Index
	A
	C
	D
	E
	F
	G
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

