

Statemate®
MicroC Programming Style Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to Telelogic Statemate 4.5 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
MicroC Overview . 1
Scope of this Guide. 2

Languages Supported by MicroC . 3
Graphical Languages . 3

Structuring Language: Activity chart . 3
Decomposition Language: Activity Chart . 3

Activity Behavior: Graphical Implementation Languages . 4
Statecharts . 4
Flowcharts . 4

Textual Languages . 5
Truth Table . 5
Mini-Spec, using the Statemate Action Language . 5

Time Model and Related Time Operators . 6
Asynchronous Aspects of MicroC . 7

Interrupt Service Routine. 7
TASK. 7

Synchronization. 8
Synchronization: Semaphore . 8
Synchronization: Signal (TASK Event) . 9

Serial Communication / Messages . 9
Timers . 9

Activity Behavior: User-Defined Functions . 10
Truth Tables . 10
Lookup Tables. 10

Statemate Action Language . 10

Exact Case Usage . 11

Structuring Language: Activity Chart Implementation 13
TASK Activities . 13

BASIC TASK . 14
EXTENDED TASK . 16

Interrupt Service Routine Activities. 22
ISR Categories . 22
Statemate iii

TASK/ISR Run Modes . 24
Super Step Example . 25
Single Step Example. 27

Decomposition Language: Activity Chart Implementation 29
Sub-Activities Code. 30

Communication and Synchronization Services . 34
Messages . 34
Queued Messages . 34
Signals . 35
Global Data Usage . 35
Semaphores . 35

Statechart Implementation . 37
Statechart Implementation: Data Usage . 38

Statechart Implementation: Generated Functions . 39
Statechart Code Frame. 39

Order of Function Execution . 42
Default State Implementation . 43
AndState Implementation . 44
Timeout Implementation . 45

OSEK 2.0 Implementations . 47
History and Deep History Implementation. 48

Optimization Algorithms. 48
Inline Default Test . 49
Inline Setting of the “Need Another Step” Bit . 49
Inline Entering and Exiting Reactions . 50
Merge State Sequences With No Guard on Transitions . 51
Timeout Optimization . 52
Clutch Entrance to a State Hierarchy . 54

Flowchart Implementation . 55
Flowchart Implementation . 56

Supported Constructs . 57

Labels . 59
Decision Expressions . 59
Switch Expressions . 59
Forbidden Constructs . 59

Goto Minimization . 60

Code Structure. 60
iv MicroC Programming Style Guide

Begin/End Points. 60

Arrows and Labels . 60

Flowchart Examples . 61

Truth Table Implementation . 67

Mini-Spec Implementation . 69
Reactive Activities. 69

Procedural Activities. 70

ANSI C Code Usage . 71

Lookup Table Implementation . 73

Statemate Action Language Implementation . 75

Integration with the Target . 77

Instrumentation for Testing and Debugging . 79
GBA: Graphical Back Animation . 80

Direct Mode GBA . 80
Indirect Mode GBA . 80

Panels . 80

Trace (Time Stamp) . 81
Trace Tasks . 82
Extended Tasks . 82
Design Level Debugging: Trace . 82
Trace ISR . 83

Debug Options: Trace State Transitions (reportState function) . 83
Debug Options: Trace State Transition (reportState function) . 84

Test Driver . 85
Synchronous Execution Mode . 85
Asynchronous Execution Mode. 85
Redirecting the Output . 85
Retargeting the Test Driver . 86

Specifics of Statechart Implementation . 87
Statemate v

Generated Data Types, Data Usage, and Functions . 89
Data Types . 90

User Data . 90

Data Supporting Statechart Generation . 91

Functions Supporting Statechart Generation. 91

Data Supporting Activity Chart Generation . 92

Functions Supporting Activity Chart Generation. 92

Data Supporting Timeout/Delay Implementation . 93

Functions Supporting Timeout/Delay Implementation . 93

Data Supporting Instrumentation Implementation. 94
GBA. 94
Panels . 94
Test Driver. 94

Functions Supporting Instrumentation Implementation . 95
GBA. 95
Panels . 95
Test Driver. 95
Debug . 96

OSDT Naming Styles. 97
Model Names . 97
Variable Names. 97

New Function Call . 98
Examples . 98

Linking Generated Code with External Data Types . 99
External User-Defined Subroutines . 99

External Data Types . 100

Fixed-Point Variable Support . 101
Implementation Method . 101

Supported Operators . 101

Evaluating an Object’s wordSize and shift . 102

Unsupported Functionality. 104

Specifying Fixed-Point Variables. 104
The Code Generator . 104
The Generated Code . 105
vi MicroC Programming Style Guide

OSI Definition ToolAPI Syntax Definition . 107
Conditional Expressions . 111

Example 1 . 111
Syntax . 111

Semantics. 112

Syntax Definition . 112
sub expression 1 . 112
sub expression 2 and sub expression 3: . 113

Example 2 . 113

mainloop_sc_ext OSI . 114

Naming Styles . 115
OSDT Model Naming Style . 115
Naming Style of Variables. 115

Index . 117
Statemate vii

viii MicroC Programming Style Guide

MicroC Overview
MicroC is a graphical software design and implementation tool that supports the development of
embedded real-time software for micro-controllers. The focus of the tool is to support the process
of developing software pieces while targeting small micro-controllers. The support to design-level
debugging, testing – both interactively and in batch mode and analysis of runs is implemented
through various instrumentation of the generated code. The output of the tool is a compact,
readable ANSI C code, with support to local extensions of the standard C, as well as automatically
generated design documentation. MicroC uses an Operating System Implementation (OSI)
definition to describe the implementation of the software and hardware target environment for a
given design. Any one OSI might support only a subset of the design concepts referred to above.
As a general rule, the tool tries to make use of any such design aspect/concept it encounters in the
model. If the given OSI has no support for that design aspect/concept, an error message is
produced.

Code is generated directly within MicroC based on a graphical model that represents the full
functionality of the application being designed. There are four basic graphical tools used to define
the application. These include:

� Statecharts
� Activity Charts
� Flowcharts
� Truth Tables

Each graphical tool has an associated graphical design language that allows the designer to be very
precise in defining the functional role of each graphical element. The graphical elements can be
supplemented by linking in user supplied C and/or Assembly Language code.

All of the graphical elements are stored in an internal database that contains associated data about
each element. The Data Dictionary tool is used to define and manage the various data elements as
well as various other properties of both the textual and the graphical entities in the model.
Statemate 1

MicroC Overview
Properties can be applied to data or to tasks. Data properties are typically defined as Exact Type,
although integer types can be BYTE-defined for as appropriate for specific system architectures.
Task properties are defined with a Task Priority in the model.

MicroC also includes a Check Model utility that serves as a model checker (somewhat like a
precompiler) to detect and warn of incomplete definitions as well as common design pitfalls to
help reduce development time and increase the quality of the generated code.

Scope of this Guide
Before the inherent aspects/concepts supported by the tool are described, it is important that you
understand the scope and limitations of this material. The recommendations given throughout this
document are intended to serve as design guidelines for advanced programmers concerned with
details of OSI definition and use. By no mean do they guarantee the safety, correctness or any
other property of the application developed using MicroC. This is the sole responsibility of the
designer.

The functional details presented here do not imply, by any means, any limitation on the developed
features of the Languages Supported by MicroC application code. Because C and Assembly
language functions are a part of a Micro model, as well as any existing (i.e. legacy) libraries and
sources, everything that can be done in those languages can be done within the MicroC model.
2 MicroC Programming Style Guide

Languages Supported by MicroC
Languages Supported by MicroC
The languages used in MicroC can be both graphical and/or non-graphical (i.e. textual).

Graphical Languages

Structuring Language: Activity chart
The software structure is defined in the top-level Activity chart. In this graphical view of the
application, the architecture of the software being developed is determined. TASKs and Interrupt
Service Routines (ISRs) are defined as well as the functional content of them.

Another design level definition is done here. The bindings of signals to physical hardware ports
and addresses is done using the flow lines to and from the various TASKs and ISRs in the chart.
The generated application architecture is defined, by the user, in this view. TASK and ISR code
frames are generated, according to the specific properties of the TASK/ISR. A TASK/ISR code
frame invokes the Activities mapped underneath the TASK/ISR.

Decomposition Language: Activity Chart
This is a data-flow oriented graphical language. Functionality, in here referred to as “Activity
behavior” is defined using the, well known, decomposition method. Each required functionality,
i.e., “Activity” is sub-divided into functions, i.e., “Sub-Activities” that might be further divided
into even smaller “Sub-Activities,” until no further decomposition is needed.

When no further decomposition is needed, the “Basic Activities” are defined – those that
implement certain functionality. The implementation might be defined using the various languages
described below.

The code generated for an Activity is a function (or a C Preprocessor macro). For a non-basic
Activity, the function calls each of the Activity’s sub-Activity functions. For a basic Activity, the
function contains the implementation code.
Statemate 3

MicroC Overview
Activity Behavior: Graphical Implementation Languages

Statecharts
Statecharts are hierarchical state transition diagrams. That language is best in describing
application modes and transitions between the modes, as well as application reaction to various
events in each of the modes. This discrete behavioral language is very much powerful in
describing such application modes and transitions between those modes. When other calculations
needs to be defined, that are not mode-based, other languages, those that are described below,
should be considered.

The implementation of Statecharts in MicroC is compact and efficient. The application uses a State
Variable per each of the Activities implemented by a Statechart. States are encoded to reuse RAM
bits. Several synthesis algorithms are used to reduce both the RAM and the ROM required to
implement a Statechart on a base of “Pay for what is used”. The user should be aware that as the
application maintains the State Variable, certain code (i.e., RAM and ROM) is required. Therefore,
it is recommended to use that language whenever that information, i.e., the application state, is
required.

Flowcharts
Here we refer to regular Flowcharts. Iterative algorithms, if-then-else constructs, switch
statements and direct calculations should normally be defined as a flowchart. That graphical
language enables the user to graphically debug the algorithm, and it recommended to be used
whenever the calculation is not mode-based and the specific calculation can not enjoy the benefits
of the other textual languages, listed below.

The code of a Flowchart runs from beginning to end, without stopping. If the Flowchart is ever run
again, it starts from the beginning. The code generator tries to minimize the number of goto
statements that are needed. This makes the code readable and structured.

Examples that benefit from flowcharts: tuning a radio via incremental frequency adjustment... is it
tuned? y/n, stop or increment frequency.
4 MicroC Programming Style Guide

Languages Supported by MicroC
Textual Languages

Textual, Non-Graphical, Implementation Languages are used to define Activity behavior.

Truth Table
The functionality of Activity might be directly defined using Truth Table. Truth Table is a table
describing the inputs, the resulting outputs and the actions performed. Truth Tables are
recommended to be used when the Activity has many inputs to consider and few states/modes to
be in.

When the Truth Table is defined in a reduced form, it will be reflected in the generated code. This
enables the user to build highly efficient implementations. For example: Radios are prime
examples, once on they respond to button presses, perform an action and return to the on state.
Another such function could be a climate control controller, once on and in control mode, button
presses are generally responded to and the control state returned to.

Mini-Spec, using the Statemate Action Language
Two modes of Activities may use the Activity’s Mini-Spec as implementation:

� Reactive Activities

When the functionality is best defined as pairs of triggers and actions, that language is the
most suitable to define that behavior. The syntax is exactly trigger and action: E/A thus
directly expresses the required behavior.

This textual language allows most clear, straight forward and compact implementation
when the required functionality might be defined as a set of triggers and resulting actions.

For example: On/Off Behavior like the following:
Button1Press/turn_on(); tr!(Lamp1);;

Button2Press/fs!(Lamp1); shutdown();;

� Procedural Activities

When the functionality is a pure calculation, defined as a sequence of “if then else,”
iterations and numerical calculations that language might be used. It is similar in its
expressiveness to the Flowchart graphical language, however it does not requires any
graphics, thus might be faster to complete when the algorithm is already proved to be
correct.

This textual language is the Statemate Action Language. .
Statemate 5

MicroC Overview
Time Model and Related Time Operators
MicroC has three model constructs that have a notion of time:

� Timeout and delay operators; referring to Software Counter(s)
� Schedule operator; referring to Timer
� Periodic Task; referring to Timer

Keep in mind that the concept of a Timer might not be supported on all targets. For example, in the
mainloop_sc OSI supplied with MicroC there is no direct support for a Timer.

The tool assumes the existence of a primary single Software Counter. It is determined within the
compilation profile whether this defaults to SYS_TIMER and possibly Timer(s). Applications
might use numerous software counters and timers.

Timeout and delay operators, referring to “Software Counter”(s):

Delay() expires delay_time after entering the state connected to the transition with the delay
trigger/reaction.

Timeout() expires delay_time after an_event occurs, while the application is staying in the
current state waiting for the timeout.

Related to the Software Counter specified by the counter_id

Note
When the 3rd argument is omitted in timeout(), the primary “Software Counter” is used.

Delay is actually tm(en(S), d-time) where S is the state name. Delays and Timeouts are
“Soft” and “Passive.” This means that they are relatively cheap to implement internally, using 1 or
less Timeout Variable Type variables and 1 or less bits of memory (i.e. RAM).

The actual delay might be greater than or equal to (i.e. >=) the specified delay, depends on the
cycle used to schedule the task where the timeout is specified. It is conceivable that this might
never occur. The actual implementation of the software counters is defined in the OSI.

delay(delay_time) (dly) Related to the Primary Software
Counter.

timeout (an_event,
delay_time [, counter_id])
(tm)

Related to the Software Counter
specified by the counter_id
6 MicroC Programming Style Guide

Time Model and Related Time Operators
The Schedule Operator refers to a hardware timer, Timer:

schedule(an_event, sc_time [, sc_cycle]) (sc)

schedule(an_action, sc_time [, sc_cycle]) (sc)

schedule(an_expression, sc_time [, sc_cycle]) (sc)

Note the optional cycle expressed as the 3 rd parameter to sc!(exp, delay, cycle). The timer
might be defined in the data dictionary of the scheduled operand (e.g. event or action), or
automatically by the tool. Note that this type of timer is potentially more expensive than the delay
operator. Actual invocation time accuracy and cost depends upon the Timer implementation.
Hardware timers are very accurate and Active, however they are typically a scarce and expensive
resource.

The actual implementation of the timers is defined in the OSI.

Asynchronous Aspects of MicroC

In a MicroC model we identify two basic forms of asynchronicity:

� Interrupt Service Routine (ISR)
� Task

Interrupt Service Routine
MicroC ISR - A Reactive Component that Models Interrupt Service Routine, with associated data
and functionality, defined as an Activity sub-type. Might run at any time, regardless of the internal
application‘ state. In some environments, when having interrupt levels, an ISR run might be
interrupted and preempt by a higher priority interrupt.

TASK
MicroC Task: Reactive Component with associated interface, data and functionality, defined as an
Activity sub-type. A “MicroC TASK” might be defined as a TASK in the environment, thus
running on its own, like in OSEK, or might be plugged into existing time slice (also called TASK),
using the OSI “Link with Scheduler” mechanism. MicroC Tasks run independent of each other.
According to the environment, a TASK run might be interrupted and preempt by a higher priority
TASK, or an interrupt.
Statemate 7

MicroC Overview
MicroC recognizes two Task running modes 2,3:

1. RUN_TO_TERMINATE: That MicroC Task will run, once entered the function frame,
until it has stabilized, and then will leave the function frame (return, terminate, etc.)

2. RUN_TO_WAIT_EVENT: That MicroC Task will run, once entered the function frame,
and will never leave 2 the function frame. It will be active until it has stabilized, i.e., it
finished its calculation, and then it will enter a rescheduling call defined as “Wait for
Event”/”Wait for Multiple Events”.

Note: Use the Data Dictionary->Design Attributes-> Use Active Bit flag.

Actual implementation details of TASK/ISR is defined in the OSI.

Note

� Some of the OSIs (for example, the mainloop_sc) might support only a subset of
those.

� There is a mode, named “Use Active Bit” that allows further control and actually
enables even such Tasks to sometimes return/terminate.

Synchronization

Synchronization can be implemented using Semaphore and Signal (TASK Event).

Synchronization: Semaphore
Used to co-ordinate accesses to shared resources such as memory or hardware by asynchronous
entities, modeled as CONDITION sub type. Supported with special operators:

get(SEM1) (gt!)

release(SEM1) (rl!)

The actual implementation of those operators is defined in the OSI.

Note
Once defined as Semaphore, the condition can no longer be used as a regular condition.
8 MicroC Programming Style Guide

Time Model and Related Time Operators
Synchronization: Signal (TASK Event)
Used to signal to a TASK on some occurrence like timer expiration, message arrival etc., modeled
using EVENT sub typed as TASK Event. Used like regular events:

� As Trigger, to wait on the event
� As Action, to set (generate) the Event

The actual implementation is defined in the OSI.

Serial Communication / Messages

Messages are modeled using DATA ITEM sub typed as message. Supported with special
operators:

send(MESS_DI1) (sn!)

receive(MESS_DI2) (rc!)

The actual implementation of those operators is defined in the OSI.

Timers
Means to schedule TASK invocation, or a Signal (TASK Event) generation. Modeled indirectly:

� Using schedule operator (sc!)
� Using periodic TASK

The actual implementation and capabilities of those operators is defined in the OSI and intended to
refer to Hardware Timers.
Statemate 9

MicroC Overview
Activity Behavior: User-Defined Functions
User-defined functions might be implemented in any of the following languages:

� ANSI C
� Assembly Language Code

Use the old safe way to link with legacy code, i.e. call OS/ environment special services and utilize
otherwise inaccessible functionality as inline assembly calls. This should be use like a glue, for
reuse of legacy code and to implement tricky algorithms.

For example: Debouncing and filtering algorithms; continuous controllers like PI loops within
HVAC and Cruise ECUs could also be implemented in this way.

Truth Tables

Very much as described earlier, this language is available for defining user functions, describing
defined actions and directly defining Activity content.

Lookup Tables

This language’s purpose is to support non-linear functions, such as Y=F(X), so common in the
world of micros. Such functions are typically used to represent characteristic curves of valves.

For example: A speed dependent intermittent wiper system will want to use a look-up table to
define the time between wipes. Cut-out currents on electric motors can be accurately set using a
look-up table to define the typical current at different positions.

Statemate Action Language
This kind of programming language can be used where a function is needed in an application. It is
the preferred language of choice, rather then plain C code, as all of the expressions are parsed.
Thus, it is possible to define in the Data Dictionary tool relevant properties of the elements used.
As such, compatibility between different targets can be achieved easier as the tool will generate the
right expressions in each target environment. This can not be done if the function is already
defined in C code.

For example: An automotive interior light ramping function that can be triggered from the doors,
ignition key and switch.
10 MicroC Programming Style Guide

Exact Case Usage
Exact Case Usage
MicroC supports “exact case” naming of textual elements across the product. For each textual
element (including data types, data items, subroutines, events, actions, and conditions), MicroC
holds two names:

� Case-sensitive name
� Uppercase name

The case-sensitive name is a regular field in the database. Throughout MicroC (including the
Dictionary, static reactions, mini-specs and so on), the exact-case name is used. The Code
Generator uses the exact-case name when generating full expressions—when preprocessor macros
(for data items, user-defined types, and subroutines) are not used. Preprocessor macros remain
uppercase only.

Note
You cannot use different cases of the same name for different variables because they resolve
to the same name. For example, both Ab and aB resolve to AB.

The first time you specify an element, MicroC records its exact case, and converts any subsequent
references to it to the same convention. For example, if you first enter “aB,” MicroC converts any
case combination of it (“AB,” “Ab,” “ab,” or “aB”) to aB. Use the Rename option in the dictionary
to respecify the name or case of the element.

Note that the check model tool will warn you when two strings (the case-sensitive name and the
uppercase name) do not match. This might happen if you change the setting of the Case Sensitive
Name attribute. By default, MicroC uses case-sensitive names.

The following aspects of MicroC require exact-case handling:

� Generated code
� Expressions (going through the parser).Overview

� Dictionary-Editor/ Dictionary-Browser selection matrix
� Element information
� UDT Dictionary
� Action definitions

Exact-case usage is not supported in local parameters of subroutines, nor context variables.
Statemate 11

MicroC Overview
12 MicroC Programming Style Guide

Structuring Language: Activity Chart
Implementation
A top-level Activity might be defined as a TASK or as an Interrupt Service Routine (ISR). Note
that a TASK or ISR will have special meaning in OSEK 2.0 applications.

TASK Activities
In OSEK 2.0 OS – we identify two TASK types:

� Basic Task
� Extended Task

Various other properties might be related to a TASK, some depend on the TASK type and some
common to both types, as described below.

Both types of TASKs might be scheduled to be activated at system startup, if desired, and to run
periodically, with a user define period. Each TASK body contain calls to the functions it is running
as well as some code, according to the TASK specific properties, as described in the examples
below.

In general, BASIC TASK is less expensive to use regarding run time RAM usage, as after it
complete its run it terminate and the OS free all the RAM associated with them, thus enabling
reuse of this memory.

An EXTENDED TASK can never terminate after it has been activated, thus the RAM associated
with it will never be freed.

However, it takes more time to activate a BASIC TASK. This is true because, once a request to
activate the task has been received, it is required to initialize the RAM associated with it. On the
other hand, an EXTENDED TASK is faster to react because, after it has been activated, the
associated RAM will be kept and does not need to be initialized again for subsequent use.

As a general rule, use an EXTENDED TASK when the reaction time to some external event needs
to be as short as possible, or when using the TASK EVENT inter-task communication mechanism.
Otherwise, use a BASIC TASK. Refer to the discussion below, as well as to the OSEK/OS
documentation for further details.
Statemate 13

Structuring Language: Activity Chart Implementation
BASIC TASK

A BASIC TASK runs once, upon activation, and then terminates.

The code frame for a BASIC TASK (for example: TASK1 containing Activities A11 and A12),
without controller, will resemble the following:

TASK (TASK1)

{

cgActivity_A11();

cgActivity_A12();

TerminateTask();

}.

If the TASK is periodic, with a period of 10 ticks, the code will change to look like this:

TASK (TASK1)

{

if ((cgGlobalFlags & ALARM_SET_TASK1) == 0){

cgGlobalFlags |= ALARM_SET_TASK1;

SetRelAlarm(TASK1_ALARM, 10, 10);

};

cgActivity_A11();

cgActivity_A12();

TerminateTask();

}

Note
Use the Data Dictionary->Design Attributes->Schedule Periodic flag to define a periodic
Task.
14 MicroC Programming Style Guide

TASK Activities
If the TASK is periodic, containing Activities A11 and A12 with CTRL1 as controller, the code
will change to look like this:

TASK (TASK1)

{

if ((cgGlobalFlags & ALARM_SET_TASK1) == 0){

cgGlobalFlags |= ALARM_SET_TASK1;

SetAbsAlarm(TASK1_ALARM, 10, 10);

};

do {

cgGlobalFlags &= ~BITSUPERSTEP_TASK3;

cgActivity_A11();

cgActivity_A12();

cgActivity_CTRL1cnt1();

} while ((cgGlobalFlags & BITSUPERSTEP_TASK1) != 0);

TerminateTask();

}.
Statemate 15

Structuring Language: Activity Chart Implementation
EXTENDED TASK

An EXTENDED TASK runs once, upon activation, and then suspends itself, calling the
“WaitEvent” API function. A specific modification to this EXTENDED TASK behavior will be
described below, at the end of that section.

The code frame for an EXTENDED TASK (for example: TASK2 containing Activities A21 and
A22), without controller, will look like the following:

TASK (TASK2)

{

cgSingleBuffer_TASK2.eventMask = 0xff;

start_activity_A21;

start_activity_A22;

while(1) {

cgActivity_A21();

cgActivity_A22();

WaitEvent(cgSingleBuffer_TASK2.eventMask);

ClearEvent(cgSingleBuffer_TASK2.eventMask);

}

/* TerminateTask(); */

}

Note
With regard to lines 3, 9, 10 in the last example: This has been changed from earlier
implementations of MicroC. In newer versions of MicroC, the eventMask data variable is
no longer allocated. The defined mask, in the example above 0xff is directly inlined in the
call to WaitEvent and ClearEvent calls. This note is applicable to the rest of the examples in
this document.

Note
Further Optimization: In certain implementations it is possible to call the WaitEvent and
ClearEvent API functions with constants, thus avoiding the need for allocating RAM for the
eventMask.

What can be seen is that upon invocation, the call to start_activity_A21 and to start_activity_A22
is done. The call is done only once, the first time the TASK is run. This will drive the event started
of those sub-activities as well as the event started for the task itself. This is supported only for that
task type.
16 MicroC Programming Style Guide

TASK Activities
After that call, the code enters an infinite loop running all of the TASK’ sub-activities, and
entering the suspension mode through call to “WaitEvent”.

If somewhere underneath the TASK, not as direct descendant, we will add a Statechart, the code
will change to be like:

TASK (TASK2)

{

cgSingleBuffer_TASK2.eventMask = 0xff;

start_activity_A21;

start_activity_A22;

while(1) {

do {

cgGlobalFlags &= ~BITSUPERSTEP_TASK2;

cgActivity_A21();

cgActivity_A22();

if(cgDoubleBufferNew_TASK2.cg_Events)

cgGlobalFlags |= BITSUPERSTEP_TASK2;

cgDoubleBufferOld_TASK2 = cgDoubleBufferNew_TASK2;

cgDoubleBufferNew_TASK2.cg_Events = 0;

} while ((cgGlobalFlags & BITSUPERSTEP_TASK2) != 0);

WaitEvent(cgSingleBuffer_TASK2.eventMask);

GetEvent(TASK2, &cgSingleBuffer_TASK2.eventsBuff);

ClearEvent(cgSingleBuffer_TASK2.eventMask);

}

/* TerminateTask(); */

}.
Statemate 17

Structuring Language: Activity Chart Implementation
If the TASK is periodic, with a period of 10 ticks, the code will change to look like this:

TASK (TASK2)

{

SetRelAlarm(TASK2_ALARM, 1, 10);

cgSingleBuffer_TASK2.eventMask = 0xff;

start_activity_A21;

start_activity_A22;

while(1) {

do {

cgGlobalFlags &= ~BITSUPERSTEP_TASK2;

cgActivity_A21();

cgActivity_A22();

if(cgDoubleBufferNew_TASK2.cg_Events)

cgGlobalFlags |= BITSUPERSTEP_TASK2;

cgDoubleBufferOld_TASK2 = cgDoubleBufferNew_TASK2;

cgDoubleBufferNew_TASK2.cg_Events = 0;

} while ((cgGlobalFlags & BITSUPERSTEP_TASK2) != 0);

WaitEvent(cgSingleBuffer_TASK2.eventMask);

GetEvent(TASK2, &cgSingleBuffer_TASK2.eventsBuff);

ClearEvent(cgSingleBuffer_TASK2.eventMask);

if(cgSingleBuffer_TASK2.eventsBuff & 0x01)

GEN_IN_CURRENT(TASK2_EV);

}

/* TerminateTask(); */

}
18 MicroC Programming Style Guide

TASK Activities
Another setting option, available in MicroC for an EXTENDED TASK is Guarded Activation
mode. In this mode the TASK will be active only while its control bit is set. The sample code will
change to look like:

TASK (TASK2)

{

if ((cgGlobalFlags & ALARM_SET_TASK2) == 0){

cgGlobalFlags |= ALARM_SET_TASK2;

SetRelAlarm(TASK2_ALARM, 1, 10);

};

cgSingleBuffer_TASK2.eventMask = 0xff;

while((cgGlobalFlags& BITAC_TASK2) != 0) {

do {

cgGlobalFlags &= ~BITSUPERSTEP_TASK2;

cgActivity_A21();

cgActivity_A22();

if(cgDoubleBufferNew_TASK2.cg_Events)

cgGlobalFlags |= BITSUPERSTEP_TASK2;

cgDoubleBufferOld_TASK2 = cgDoubleBufferNew_TASK2;

cgDoubleBufferNew_TASK2.cg_Events = 0;

} while ((cgGlobalFlags & BITSUPERSTEP_TASK2) != 0

&& (cgGlobalFlags& BITAC_TASK2));

WaitEvent(cgSingleBuffer_TASK2.eventMask);

GetEvent(TASK2, &cgSingleBuffer_TASK2.eventsBuff);

ClearEvent(cgSingleBuffer_TASK2.eventMask);

if(cgSingleBuffer_TASK2.eventsBuff & 0x01)

GEN_IN_CURRENT(TASK2_EV);

}

TerminateTask();

}

Statemate 19

Structuring Language: Activity Chart Implementation
In order to make that task run, it must explicitly call the start operation for it. The definition of the
start(TASK2) function, in that case, is:

#define start_activity_TASK2 { cgGlobalFlags|=

BITAC_TASK2; start_activity_CTRL2cnt1;

ActivateTask(TASK2); }

Note that now it is possible to terminate that TASK, by calling stop for it. Thus, it is possible to
combine the benefits of an EXTENDED TASK, regarding reaction time while it is alive, as well as
having the advantage of reusing RAM while running. Stopping those tasks that are not required in
certain application configurations, and activating other tasks in the new configuration; all in run-
time!

For an EXTENDED TASK, certain intertask communication/ synchronization mechanisms are
available, using the TASK EVENT operator.

EXTENDED TASK may enter the WaitEvent state waiting for some of its TASK EVENT(s) to be
set. The EVENTs the task is waiting for are marked using the event mask given to the WaitEvent
API. Only the task that “owns” the TASK EVENT may wait for it to be set. However, the TASK
EVENT might be set from any place in the code. MicroC links TASK EVENT to MicroC events.
For example: consider the EXTENDED TASK, TASK4, with 2 associated TASK EVENTs: EV1, with
mask 0x02, and EV2, with mask 0x04. The following code will be generated in order to link TASK
EVENT to MicroC events:

...EXTENDED TASK BODY

WaitEvent(cgSingleBuffer_TASK2.eventMask);

GetEvent(TASK4, &cgSingleBuffer_TASK2.eventsBuff);

ClearEvent(cgSingleBuffer_TASK2.eventMask);

if(cgSingleBuffer_TASK2.eventsBuff & 0x02)

GEN_IN_CURRENT(EV1);

if(cgSingleBuffer_TASK2.eventsBuff & 0x04)

GEN_IN_CURRENT(EV2);

…EXTENDED TASK BODY (continued)

Note
The “GEN_IN_CURRENT” call sets the internal event passed to it as an argument in the
next iteration of the task, which is in the “current” step of it.
20 MicroC Programming Style Guide

TASK Activities
Thus, if any reaction in the content of TASK4 is waiting for example to EV1 to be set, i.e., reaction
like “EV1/ACT1(),” which will be translated, as explained later, into: “if (EV1) {ACT1();}” will
be executed once the associated TASK EVENT 0x02 was set.

On the other hand, when certain action set a TASK EVENT: “[C1]/EV1,” which will be translated,
as explained later, into: “if (C1) {GENERATE_EVENT(EV1);};” the following code will be
generated for the GENERATE_EVENT(EV1) call:

cgEventMsgMask = 0x02;SetEvent(TASK2, cgEventMsgMask);

In addition, the following definitions will be made to link the TASK EVENT 0x02 (EV1) with the
internal event EV1:

#define BIT_EV1 0x01

#define GEN_IN_CURRENT_EV1

(cgDoubleBufferOld_TASK2.cg_Events |= BIT_EV1)

#define EV1 ((cgDoubleBufferOld_TASK2.cg_Events &

BIT_EV1) != 0)

Such that the line in the above TASK body code:

if(cgSingleBuffer_TASK2.eventsBuff & 0x02)

GEN_IN_CURRENT(EV1);

Will set the internal event EV1 bit (BIT_EV1) thus linking the TASK EVENT mask 0x02 of EV1
to its internal bit 0x01 (BIT_EV1) .
Statemate 21

Structuring Language: Activity Chart Implementation
Interrupt Service Routine Activities
An Interrupt Service Routine (ISR) runs once, upon activation, and then ends. For OSEK 2.0,
MicroC identifies three ISR categories: 1, 2, and 3.

ISR Categories

The decision of which ISR category to use depends on the content of the functions it runs.
According to the OSEK/OS specification, it is not allowed to call any OS API function from ISR
category 1. For ISR categories 2 and 3, it is allowed to call some of the OS API functions only
within the code section marked by EnterISR()/LeaveISR() calls.

The form of the generated code frame for an ISR depends on the.Structuring Language: Activity
chart Implementation category and content. Some examples are shown below.

Example 1:

The code for an ISR category 1 or 2, named ISR0, containing Activities I01 and I02 without
controller will be as follows:

ISR (ISR0)

{

cgActivity_I01();

cgActivity_I02();

}

Example 2:

The code for an ISR category 3 function named ISR0, containing Activities I01 and I02
without controller will be as follows:

ISR (ISR0)

{

EnterISR();

cgActivity_I01();

cgActivity_I02();

LeaveISR();

}
22 MicroC Programming Style Guide

Interrupt Service Routine Activities
Example 3:

The code for an ISR category 3 function named ISR1, containing Activities I11 and I12 and a
controller named CTRL1 will be as follows:

ISR (ISR1)

{

EnterISR();

do {

cgGlobalFlags &= ~BITSUPERSTEP_ISR1; MicroC 41

TASK/ISR Run Modes

cgActivity_I11();

cgActivity_I12();

cgActivity_CTRL1cnt1();

} while ((cgGlobalFlags & BITSUPERSTEP_ISR1) != 0);

LeaveISR();

}
Statemate 23

Structuring Language: Activity Chart Implementation
TASK/ISR Run Modes
A TASK/ISR can have one of the following run modes:

� Single Step— The TASK/ISR always runs a single step, then returns handling to the
operating system.

� Super Step— The TASK/ISR runs the necessary number of tasks before returning
handling to the operating system.

When you define a run mode, make the following checks:

1. Check the internal value once before executing the logic.

In Single Step mode, check the internal value before calling any “logic” code, such as
mini-spec, Activity, ControlAct, and so on.

In Super Step mode, check the internal value before calling the loop that handles the
logic, and the test for the need of another step. Note that choosing this run mode might
result in an infinite loop for the TASK/ISR.

2. Check the internal value after logic execution.

In Single Step mode, check the internal value after the call to any logic code.

In Super Step mode, check the value inside the loop that handles the logic, and recheck
the value after the calls to any logic code.

3. In Super Step mode, check the value after each logic execution. Check the value inside
the loop that handles the logic, and recheck the value after calls to any logic code. This
check is not relevant for Single Step mode.
24 MicroC Programming Style Guide

TASK/ISR Run Modes
Super Step Example

For example, if you select Super Step mode:

1. Check for internal value changes before logic execution.

2. The code for testing derived events and generating them is moved from the do...while
loop of the Task and after the functional code. All the calls to the Activities and Controls
in the Task are moved to be before the do..while loop of the Task (just like the test for
buffered access elements and derived events on them).

Consider the following code:

void TASK_SINGLE_STEP(void)

{

do

{

cgGlobalFlags &=~BITSUPERSTEP_TASK_SINGLE_STEP;

cgActivity_SINGLE_STEP_CTRL();

if(!lval_COND && COND != lval_COND)

{

GENERATE_EVENT(BECAME_FALSE_COND);

};

if(lval_COND && COND != lval_COND)

{

GENERATE_EVENT(BECAME_TRUE_COND);

};

if(COND != lval_COND)

GENERATE_EVENT(CHANGED_COND);

};

if(cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events)

cgGlobalFlags |= BITSUPERSTEP_TASK_SINGLE_STEP;

cgDoubleBufferOld_TASK_SINGLE_STEP =

cgDoubleBufferNew_TASK_SINGLE_STEP;

cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events = 0;

}

while ((cgGlobalFlags & BITSUPERSTEP_TASK_SINGLE_STEP)

!= 0);}
Statemate 25

Structuring Language: Activity Chart Implementation
The resultant MicroC code is as follows:

void TASK_SINGLE_STEP(void)

{

if(!lval_COND && COND != lval_COND)

{

GENERATE_EVENT(BECAME_FALSE_COND);

};

if(lval_COND && COND != lval_COND)

{

GENERATE_EVENT(BECAME_TRUE_COND);

};

if(COND != lval_COND)

{

GENERATE_EVENT(CHANGED_COND);

};

do

{

cgGlobalFlags &=~BITSUPERSTEP_TASK_SINGLE_STEP;

cgActivity_SINGLE_STEP_CTRL();

if(cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events)

cgGlobalFlags |= BITSUPERSTEP_TASK_SINGLE_STEP;

cgDoubleBufferOld_TASK_SINGLE_STEP =

cgDoubleBufferNew_TASK_SINGLE_STEP;

cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events = 0;

}

while ((cgGlobalFlags &

BITSUPERSTEP_TASK_SINGLE_STEP)!= 0);

}

26 MicroC Programming Style Guide

TASK/ISR Run Modes
Single Step Example

If you select Single Step mode, the code generated for the Task will not include the do..while
structure— this creates a single-step Task. In this case, there is no need for the NeedAnotherStep
bit named BITSUPERSTEP_<TASK-NAME> to be allocated, so all references to it are removed.

There are references to BITSUPERSTEP_<TASK-NAME> in:

� The do...while of a Task.
� In the non-Inline of NeedAnotherStep mode— at the end of the cgDo_ function, there is a

check if any nextStep is different than the currentStep. If it is, the BITSUPERSTEP is
set.

� In the Task Code frame, there is a check if there are any events pending. If there are, the
BITSUPERSTEP is set.

� When using an SCH in a generic, the BITSUPERSTEP of its task is passed via its structure.
In this case, these references should not exist.

Consider the original code:

void TASK_SINGLE_STEP(void)

{

do

{

cgGlobalFlags &=~BITSUPERSTEP_TASK_SINGLE_STEP;

cgActivity_SINGLE_STEP_CTRL();. MicroC 45

Single Step Example

if(cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events)

cgGlobalFlags |= BITSUPERSTEP_TASK_SINGLE_STEP;

cgDoubleBufferOld_TASK_SINGLE_STEP =

cgDoubleBufferNew_TASK_SINGLE_STEP;

cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events = 0;

} while ((cgGlobalFlags &

BITSUPERSTEP_TASK_SINGLE_STEP) != 0);

}

Statemate 27

Structuring Language: Activity Chart Implementation
The resultant code is as follows:

void TASK_SINGLE_STEP(void)

{

cgActivity_SINGLE_STEP_CTRL();

cgDoubleBufferOld_TASK_SINGLE_STEP =

cgDoubleBufferNew_TASK_SINGLE_STEP;

cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events = 0;

}

28 MicroC Programming Style Guide

Decomposition Language: Activity Chart
Implementation
The Activity Chart is the focus of the graphical language used to decompose functionality into
realizable sub-functions.

The classic illustration of Functional Decomposition is shown the following figure:

With regard to decomposition in MicroC, each non-basic Activity is being composed out of its
sub-activities. We distinguish between 2 cases. The first case is when that non-basic Activity does
not contain immediate descendant that is a control activity. In that case, all of the sub-activities are
considered active when that Activity is active. The code for such a non-basic Activity (e.g. A11
with sub-activities A111 and A112 and with no immediate descendant controller) will look like:

void

cgActivity_A11acy1(void)

{

cgActivity_A111();

cgActivity_A112();

}

Statemate 29

Decomposition Language: Activity Chart Implementation
The order in which the sub-activities are called within the A11 Activity body is determined by the
sub-activities attribute “Execution Order,” as defined in the Dictionary of A111, A112 and A113.
In the example above, the “Execution Order” of sub-activity A111 is 1 and of A112 is 2. When that
attribute is not set, the calling order is not defined.

If it is desired to save function calls overhead, it is possible to set (in the Compilation Profile-
>Options->Settings->General Tab dialog) the field to true. The resulting code will be:

#define cgActivity_A11acy1()\

{\

cgActivity_A111();\

cgActivity_A112();\

}

This setting is always applicable for non-TASK and non-ISR, and will not be repeated as the result
might be derived from the examples given adding the “ \” at the end of each line, and defining
instead of function a C Preprocessor macro.

Sub-Activities Code
Assuming both A111 and A112 are basic Activities, the basic activity can be defined in one of
three activation modes:

� •Reactive controlled
� Reactive self
� Procedure like

For Reactive controlled and Reactive self modes, the code body of the Activity will look like the
following code frame:

void

cgActivity_A111(void)

{

… Body implementation

}

While for the Procedure like mode, the code body of the Activity will look like the following
code frame:
30 MicroC Programming Style Guide

Sub-Activities Code
void

cgActivity_A112(void)

{

if ((cgActiveActivities1 & BITAC_A112) != 0) {

… Body implementation

stop_activity(A112);

}

}

The differences between the three will be found in the activation rules for each mode. Reactive
controlled and Reactive self modes will perform a step, while they are active, each time the
TASK containing them is running. Usually, a TASK will perform a run to stable run (also called a
super step), that might require few steps (also called micro steps). Those using Reactive
controlled and Reactive self modes will participate in each of the steps.

Procedure like mode performs only a single step each time the TASK containing it is running. At
the beginning of the TASK, the relevant Activity active bit will be set. Then the Activity body will
unset that bit after it ran, calling stop_activity.

Another difference, between Reactive controlled, Reactive self and Procedure like, is in the
allowed syntax of the Mini-Spec which is described later.

Adding the controller A11_CTRL to A11 will make the code look like:

void

cgActivity_A11acy1(void)

{

cgActivity_A111();

cgActivity_A112();

cgActivity_A11_CTRLcnt1();

}

Statemate 31

Decomposition Language: Activity Chart Implementation
With the controller function, cgActivity_A11_CTRLcnt1(), like:

void

cgActivity_A11_CTRLcnt1(void)

{

cgDo_A11_CTRLcnt1();

}

The implementation of cgDo_A11_CTRLcnt1() depends on whether A11_CTRL is implemented
as a Statechart or as a Flowchart. In this discussion we will only show a brief descriptions of each;
a more detailed description is given later in the appropriate sections.

For a Statechart implementation:

void

cgDo_A11_CTRLcnt1(void)

{

StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1 = 0;

if (currentState_A11_CTRLcnt1 == 0) {

nextState_A11_CTRLcnt1 = FS_A11_CTRLst2;

}

else

{

… Rest of the Statechart logic

}

if (nextState_A11_CTRLcnt1 != 0) {

if (currentState_A11_CTRLcnt1 !=

nextState_A11_CTRLcnt1)

cgGlobalFlags |= BITSUPERSTEP_TASK1;

currentState_A11_CTRLcnt1 = nextState_A11_CTRLcnt1;

}

}

32 MicroC Programming Style Guide

Sub-Activities Code
For a Flowchart implementation:

void

cgDo_A11_CTRLcnt1(void)

{

… The Flowchart logic

}

Activities within a certain TASK can communicate with each other using various method. Within a
single TASK/ISR boundary, the Activity Chart Graphical Language of MicroC shares most of the
semantics used in the Activity Chart Graphical Language of Statemate. However, there are few
discrepancies between those languages that should be noticed, and will be mentioned shortly
below. The interaction between TASK/ISR and communication between Activities not residing in
the same TASK/ISR has nothing equivalent in the language of Statemate, and should only use the
services provided by the run time OS, also described below. Activities defined to be TASK/ISR
have already been discussed, but it must be remembered that such Activities are not fully
compatible with the Activities that can be defined in Statemate.

Discrepancies between MicroC Regular (i.e., not a TASK nor ISR) Activities running under the
same TASK/ISR and Statemate Activities that should be noticed include the following:

� Stable state criteria
� Implicit termination of Activity as result of termination of all its sub-activities
� Suspend, resume modes
� Status sensing – stopped/started
� Implementation as CA (Not supported at all in MicroC)

Note
We do not include here those language features that are only temporarily not supported, but
will be supported in coming release of the product. Instead, we are focusing our discussions
on those aspects that are not expected to change.
Statemate 33

Decomposition Language: Activity Chart Implementation
Communication and Synchronization Services
Communication and synchronization services between Activities, possibly not residing in the
same TASK/ISR, include the following:

� Messages (for OSEK 2.0: non-queued and queued Messages)
� Signals (for OSEK 2.0:TASK EVENT)
� Semaphores (for OSEK 2.0: resources)
� Global data

Messages

The first communication mechanisms use the OSEK Messages support capabilities provided by
MicroC.

The first of those, Non-Queued messages, uses a message identifier (i.e. the message name) to
share data between various tasks in the application. The sender and or receiver TASK of such a
message might be running in the same ECU, sharing the same memory address space, or running
across an ECU network on some remote MCU. The user of the message need not be aware of the
concrete implementation. Thus, using that mechanism ensures that the resulting design is correct,
flexible and efficient.

Queued Messages

Queued messages use a very similar implementation mechanism to that for Non-Queued
messages. The difference being in that those types of messages do not contain value but rather
signals the occurrence of some event. Again, using these in a design makes the design easier to
modify.

Note
Examples and discussion regarding each of those two methods is given in Statemate Action
Language Implementation.
34 MicroC Programming Style Guide

Communication and Synchronization Services
Signals

The third method (i.e. those of TASK EVENT) is somewhat different from the first two. Similar to
the Queued messages, described above, they signal the occurrence of some event. However, as
they are not queued, there is no information regarding how many such events occurred until being
processed. An additional difference is that a TASK EVENT must address a specific TASK with a
specific EVENT, thus requiring knowledge of the application structure. A TASK EVENT
implementation is much more efficient than the previously mentioned communication methods,
however it requires the TASK to be of type EXTENDED, which is not always possible or
efficient. The downside of requiring knowledge of the application structure is balanced by the
improved performance. Those are design decisions that should be made regarding a specific
problem at hand. Examples and further discussion can be found in Structuring Language: Activity
Chart Implementation.

Global Data Usage

Global data usage is the fourth method of communication. As always in real time applications,
caution should be made regarding the validity of the data when running in preemptive environment
with multiple tasks and ISRs. The protection mechanism supported is the OSEK RESOURCE
mechanism, which is similar to a binary semaphore Similar added, meant to help in protecting data
and access to common resources.

Semaphores

Examples and discussion of using OSEK RESOURCE is given in Statemate Action Language
Implementation.

All the above said, it is a common situation that data is arriving through the bus or board ports, in
some predefined messages and addresses, and is needed to be produces, again, to the bus or board,
in some maybe other predefined messages and addresses.

In this situation the decision is rather easy, as it already has being taking, and the designer simply
uses the defined interface for his application. However, the discussion above is relevant when one
tries to build up implementation that will obviously use the appropriate interfaces, however will
also be easy to maintain, modify and ported to various other environments, usually unknown at
design time.
Statemate 35

Decomposition Language: Activity Chart Implementation
36 MicroC Programming Style Guide

Statechart Implementation
Statecharts are used to define the behavior of a Control Activity. For the purposes of code
generation in MicroC and our discussion here, a single Statechart is considered to be the Statechart
directly connected to a Control Activity, all of its sub-charts, and the generics instantiated within
them. In short, all the states under the root are represented by the control Activity.

For example, for the control Activity A11_CTRL, the following two functions will be generated:

void cgActivity_A11_CTRLcnt1(void)

void cgDo_A11_CTRLcnt1(void)

The bodies of the generated code for these functions resembles the following:

void

cgDo_A11_CTRLcnt1(void)

{

StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1 = 0;

if (currentState_A11_CTRLcnt1 == 0) {

nextState_A11_CTRLcnt1 = FS_A11_CTRLst2;

}

else

{

… The rest of the Statechart logic

}

if (nextState_A11_CTRLcnt1 != 0) {

if (currentState_A11_CTRLcnt1 !=

nextState_A11_CTRLcnt1)

cgGlobalFlags |= BITSUPERSTEP_TASK1;

currentState_A11_CTRLcnt1 = nextState_A11_CTRLcnt1;

}

}

Statemate 37

Statechart Implementation
void

cgActivity_A11_CTRLcnt1(void)

{

cgDo_A11_CTRLcnt1();

}

Note that the function cgActivity_A11_CTRLcnt1() simply calls cgDo_A11_CTRLcnt1(). A more
detailed discussion of the cgDo_… function is found below.

Note

� Further Optimization: This might be changed, as the wrapping function,
“cgActivity_A11_CTRLcnt1” in the above example, could be dropped.

� Use the Compilation Profile >Setting >General >Use Macros flag to control function
generation vs. pre-processor macro.

Statechart Implementation: Data Usage
A StateInfo data type will be defined, and a few variables of that type will be declared, when a
statechart is created.

For the previous example, the StateInfo data type would be named StateInfo_A11_CTRLcnt1 and
will be defined as an unsigned type of either 8, 16 or 32 bits; like “ typedef int8
StateInfo_A11_CTRLcnt1”. The size depends on the topology of the Statechart which is described
later in this document.

The StateInfo variables will be currentState, nextState, staySame. For the example of A11_CTRL:

StateInfo_A11_CTRLcnt1 currentState_A11_CTRLcnt1;

(global variable)

StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1;

(automatic variable)

StateInfo_A11_CTRLcnt1 staySame_A11_CTRLcnt1;

(automatic variable)
38 MicroC Programming Style Guide

Statechart Implementation: Generated Functions
The currentState and nextState variables will always be allocated. The staySame variable will be
allocated only if either of the entering or exiting reaction functions is required, as discussed below.

currentState is allocated as global variable, while nextState and staySame are allocated as local,
automatic, variables to the statechart function cgDo_… .

Note
Further Optimization: In specific topologies it is possible to use only a single StateInfo
variable, i.e. the currentState.

Statechart Implementation: Generated Functions

Statechart Code Frame

Consider the following example of code generated from a Statechart (Note: line numbers are
included in this code sample for discussion purposes):

1 void

2 cgDo_A11_CTRLcnt1(void)

3 {

4 StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1 = 0;

5 if (currentState_A11_CTRLcnt1 == 0) {

6 nextState_A11_CTRLcnt1 = FS_A11_CTRLst2;

7 }

8

9 else

10 {

11 … The rest of the Statechart logic

12 }

13 if (nextState_A11_CTRLcnt1 != 0) {

14 if (currentState_A11_CTRLcnt1 !=

nextState_A11_CTRLcnt1)

15 cgGlobalFlags |= BITSUPERSTEP_TASK1;

16 currentState_A11_CTRLcnt1 =

nextState_A11_CTRLcnt1;

17 }

18 }
Statemate 39

Statechart Implementation
In general, the overall code frame of a Statechart looks like the cgDo_A11_CTRLcnt1 function
shown above. However, you will discover in the following discussions that code frame is not
fixed.

Line 4 resets the nextState variable. This variable will be set only if a transition has been made, and
will hold the new state configuration of the Statechart.

Lines 13 and 14 check the nextState variable, to determine if a transition was taken and whether to
enforce another step in the TASK holding the Statechart...

Line 15: cgGlobalFlags | = BITSUPERSTEP_TASK1

Line 16: currentState_A11_CTRLcnt1 = nextState_A11_CTRLcnt1

advances the Statechart configuration a step, to hold the configuration of the next step.

Lines 5 to 12 will be replaced with specific code resulting from the specified Statechart logic. For
example, two additional functions might be commonly generated here: entry actions and exit
actions. If the Statechart logic requires entering/exiting reactions, the functions will resemble the
following:

void

cgEnterActions_A11_CTRLcnt1(void)

{

… entering reactions code

}

void

cgExitActions_A11_CTRLcnt1(void)

{

… exiting reactions code

}

40 MicroC Programming Style Guide

Statechart Implementation: Generated Functions
When either of these function are needed, the following changes to cgDo_… will also be made:

void

cgDo_A11_CTRLcnt1(void)

{

StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1 = 0;

staySame_A11_CTRLcnt1 = 0;

if (currentState_A11_CTRLcnt1 == 0) {

nextState_A11_CTRLcnt1 =

FS_DefaultOf_Chart_A11_CTRL;

}

else

{

… The rest of the Statechart logic

}

if (nextState_A11_CTRLcnt1 != 0) {

cgExitActions_A11_CTRLcnt1();

cgEnterActions_A11_CTRLcnt1();

if (currentState_A11_CTRLcnt1 !=

nextState_A11_CTRLcnt1)

cgGlobalFlags |= BITSUPERSTEP_TASK1;

currentState_A11_CTRLcnt1 = nextState_A11_CTRLcnt1;

}

}

Of course, the function calls to cgExitActions_A11_CTRLcnt1() required. See Optimization
Algorithms for information on the MicroC algorithms that create more efficient code.
Statemate 41

Statechart Implementation
Order of Function Execution
The order of doing exiting actions, entering actions, transition actions and static reactions for a
state is as follows:

1. Static reactions are done, as the generated code reveals, in descending order down the state
hierarchy, where the state has not changed.

2. When a transition is detected, then the transition action is done immediately.

3. Exiting actions are then done, in which all the states that are exited are given an
opportunity to do exiting static reactions. Exiting reactions are done from the innermost
state to the outermost state.

4. Entering actions are then done, in which all the states that are entered are given an
opportunity to do entering static reactions. Entering reactions are done from the outermost
state to the innermost state.

Note
In specific topologies it is possible, and more efficient, to put the entering/exiting reactions
inline, while taking the transition. Use the Compilation Profile->Setting->Optimization
flags.

In the balance of this section we will discuss the implementation of the following language
features:

� Default state implementation
� AndState implementation
� Timeout implementation
� History and Deep History implementation
� Short list of guide lines to get the most efficient code
42 MicroC Programming Style Guide

Statechart Implementation: Generated Functions
Default State Implementation

The Default connector is treated as a state. This means that when a state is entered, we spend one
step going into the Default.Statechart Implementation and then on the following step, we actually
enter the desired state. Note that this is a slight change to the classic Language of Statemate
semantics. The motivation behind this change is that, as it is allowed to put a guard on the default
transition, it might be that no transition could be taken. This means that the code might otherwise
get stuck in a default connector.

In a practical sense, however, this does not represent a significant difference and should be
negligible in any practical example.

Note
In specific topologies – when there is no guard on the default transition it is possible to
directly enter the default state.Use the Compilation Profile->Setting->Optimization flags.
Statemate 43

Statechart Implementation
AndState Implementation

The implementation of AndState compresses a few otherwise different StateInfo variables into a
single one, thus using potentially less RAM. However, in order to relate to each of the different
parallel state hierarchies, some ROM is required to implement bit-masking. As a general rule, it is
preferable (from a code size perspective) to use AndState when having few independent very small
statecharts. The difference in the generated code will be that instead of few control activities, each
having related cgDo_… functions as is the case with a few Statecharts, here only one such control
activity is required with one related cgDo_… function. This code for such a function will only
appear once. The function’s code frame would resemble the following:

…

StateInfo_A11_CTRLcnt1 nextState_A11_CTRLcnt1 = 0;

if (currentState_A11_CTRLcnt1 == 0) {

nextState_A11_CTRLcnt1 = FS_A11_CTRLst2;

}. MicroC 65

Timeout Implementation

else

{

… The rest of the Statechart logic

}

if (nextState_A11_CTRLcnt1 != 0) {

if (currentState_A11_CTRLcnt1 !=

nextState_A11_CTRLcnt1)

cgGlobalFlags |= BITSUPERSTEP_TASK1;

currentState_A11_CTRLcnt1 = nextState_A11_CTRLcnt1;

}

…

On the other hand, the test for being in leaf-state will be done using the inState test and not
inLeafState test. The inState test requires one more integer comparison then the inLeafState test.
Thus, it is recommend for each particular case that the developer test both options and compare the
results to choose the optimum implementation.
44 MicroC Programming Style Guide

Statechart Implementation: Generated Functions
Timeout Implementation

Software Counter(s) are used as the basis for the implementation of timeouts. When a timeout or
delay is set, the current value of the relevant Software Counter will be added to the requested delay
time, and stored in a variable, using a defined macro: INSTALL_TIMEOUT. By default, MicroC
relates to the primary Software Counter defined in the compilation profile.

Note
Use Compilation Profile >Setting >OS >System Counter Timer to define the primary
Software Counter.

Other Software Counter(s) might be referenced using an optional third argument in the timeout
operator. The name of the counter is as written in the model using the syntax:

tm(en(S1), 12, myCounter)

In this example, the name of the counter is: myCounter. Each counter receives an index value
defined as <counter_name>_INDEX. That index value identifies that specific counter in the
application.

Note
The counter definition is found in the “macro_def.h file.

The INSTALL_TIMEOUT macro has three arguments:

� The name of the event
� The requested delay
� The index of the Counter that it is pending on

This allows the code to reuse the same Timeout variable with different counters. The first
argument is concatenated to the INSTALL macro, as shown here. In the code, a call like the
following will be used:

INSTALL_TM(tm_999999962, 10, SYS_TIMER)

This call will set a timeout to expire 10 ticks from the current time of SYS_TIMER. The macro
itself will be defined as follows:

#define INSTALL_TM_tm_999999962(D, C) \

cgTimeoutsMask |= tm_999999962_TM_MASK;\

tm_999999962_TIME = currentTick + (D);
Statemate 45

Statechart Implementation
That call will assign to tm_999999962_TIME which is a variable of type Timeout Variable Type
the current counter value, help in currentTick plus the requested delay time help in D. In addition,
the bit tm_999999962_TM_MASK is set to flag that this timeout is pending.

A test for Timeout expiration is done in the function:

genTmEvent_<CTRL_CHART_NAME>(<Timeout Variable Type>

currentTickVar, <Buffer> * buff, uint8 counterIndex)

The third parameter uint8 counterIndex,holds the index of the Counter that is referred to in
the current call to this function. Before each call to this function, the correct counter would be read
into the currentTick global variable.

For each Timeout Variable there are three options for code generation inside the genTmEvent_…
function:

1. When there is only one Counter in the model no check will be made for the counter.

2. When there is only one counter that the timeout.variable can be installed for, then the code
will look.like:

if(counterIndex == <ITS_COUNTER_NAME>_INDEX &&

cgTimeoutsMask & tm_999999993_TM_MASK &&

currentTickVar >= tm_999999993_TIME) {

GEN_IN_BUFF(tm_999999993, buff);

cgTimeoutsMask &= ~tm_999999993_TM_MASK;

}

3. If there is more than one counter that the Timeout Variable can be installed for, then the
code will include the following provisions:

In the glob_dat.c file an uint8 variable is generated: tm_999999993_counter¡that
holds the index of the current relevant counter.

In macro_def.h file along with the previous code that was generated for the
INSTALL_TIMEOUT macro, there is one more statement that keep the INDEX of the
counter that the timeout was installed for.

The index that is passed to the function is compared with the index of the counter that was used
when the timeout was installed. This enables the application to identify the counter that the
timeout is pending on.
46 MicroC Programming Style Guide

Statechart Implementation: Generated Functions
When the option Generate Timer Overflow Task is selected, in the compilation profile setting, then
the following code elements are generated:

OSEK 2.0 Implementations
OSEK-targeted applications have special requirements:

1. For each Counter, an overflow Task named <counter_name>_OVERFLOW is generated.
This includes the task declaration (found in os_decl.h) and body code (found in
glob_func.c).

2. In each Task there is overflow management provided only for the Timeouts variables that
are referring to the specific counter.

3. For each Counter, an Alarm named <counter_name>_ALARM is generated. This includes
the alarm declaration (found in os_decl.h) and installation (found in macro_def.h). In
the macro_def.h file, a new macro is generated:

#define SET_ADDITIONAL_OVERFLOW_ALARMS() {\

SetAbsAlarm(<counte_name>_ALARM, 0,

OSMAXALLOWEDVALUE);\

}

This macro installs all the overflow alarms that activates the overflow tasks. A call to this macro is
in the file <profile>.c after the installation of the SYS_TIMER_ALARM (formerly known as
SYS_TIME_OVERFLOW).

Compare that to non-OSEK implementations:

1. For each counter, an overflow function named on<counter_name>_OVERFLOW is
generated. In each Task, overflow management is provided only for the Timeouts
variables that refer to that specific counter.

2. IMPORTANT - there is no call to these functions in the generated code. Therefore, in
order to use them, additional code should be added by the developer that decides when to
call these functions (on overflow), possibly in usercode.c.

Note
Set from within the Code Generation Profile Editor. Use Options->Settings->General-
>Timeout Variable Type.

The goal is to have a variable that is bigger then the counter, thus avoiding the “value overflow”
problem.
Statemate 47

Statechart Implementation
Note
(OSEK only) When a TASK/ISR has related timeouts, MicroC calls
GetResource(RES_SCHEDULER)/ ReleaseResource(RES_SCHEDULER) around the
code section that swaps the TASK/ISR event buffer, and both before and after the call to
genTmEvent(...) in on<TIMER>OVERFLOW Tasks (in the file glob_func.c). This
resource usage can be avoided. Within the Code Generation Profile Editor, select Options >
OS TAB > Allow "GetResource(RES_SCHEDULER) Usage. Uncheck this option.

History and Deep History Implementation

History and Deep History implementation requires a StateInfo variable per each state holding a
History Connector(s) and a StateInfo variable per each state holding a Deep History Connector(s).

The state configuration is stored in that StateInfo variable, such that when taking a transition into
the History/Deep History that configuration is assigned to the nextState variable, causing an
entrance to the stored state configuration.

When used, the operators history_clear and deep_clear assign to the corresponding StateInfo
variable the corresponding default state configuration.

Optimization Algorithms
MicroC includes several algorithms to generate the most efficient code, including:

� Inline Default Test

� Inline Setting of the “Need Another Step” Bit

� Inline Entering and Exiting Reactions

� Merge State Sequences With No Guard on Transitions

� Timeout Optimization

� Clutch Entrance to a State Hierarchy

In addition to these algorithms, use the following guidelines to get the most efficient code:

� Avoid redundant intermediate states (i.e., not persistent states).
� Avoid duplication of code segments— use functions or defined actions instead of

hardcoded duplicates.
� For a simple, single state with self-transition scheduling some operation, use static

reaction or an ISR.
� Use the state hierarchy to represent priorities.
48 MicroC Programming Style Guide

Optimization Algorithms
Inline Default Test

MicroC can inline the initial and default test. Consider the following code:

if(currentState_S1 == 0){

currentState_S1 = FS_DefaultOfS1;

} else {...

The inlined code generated by MicroC is as follows:

if(currentState_S1 == 0 || inState(DefaultOf_S1)){...

Inline Setting of the “Need Another Step” Bit

To improve code efficiency, you can specify No. of Transition <= 0. This criteria determines
whether the optimization is performed. When you apply this optimization, MicroC makes the
following changes to the generated code:

� The declaration of StateInfo_<CTRL Activity

Name > nextState_<CTRL ActivityName = 0;

is removed— there is no need for this local variable after the optimization.
� All the assignments to nextState_<CTRL Activity Name> are replaced with

assignments to currentState_<CTRL Activity Name>.
� After every transition, MicroC makes the following assignment:

cgGlobalFlags |= BITSUPERSTEP_<Task Name>;

� The code at the end of the cgDo...() is removed. This is the code that was inlined:
if (nextState_<CTRL Activity Name> != 0) {

if (currentState_<CTRL Activity Name> !=

nextState_<CTRL Activity Name>)

cgGlobalFlags |= BITSUPERSTEP_<Task Name>;

currentState_<CTRL Activity Name> =

nextState_<CTRLActivity Name>;

}

Statemate 49

Statechart Implementation
� If a transition is inside an AndState component, the assignment to currentState includes a
reset of the bits that represent the component that is the LCA of the transition. For
example:

nextState_OPT_NEXT_STATE_CTRL =

(nextState_OPT_NEXT_STATE_CTR &~

(FM2_<ComponentLCA of Transition>)) |FS_<Next State>;

Note
The optimization will not take place if there is an entering or exiting reaction that could not
be optimized out.

Inline Entering and Exiting Reactions

Inlining entering or exiting reactions is based on the following criteria:

No. of Statements <= 5

No. of Instances <= 999

Note that this criteria is based on the average number of inlined statements for the number of
reaction statements. For example, if the number of reactive statements is 5 and the number of
transitions is 10, the average is 5 statements.

An exit reaction is inlined when none of the following scenarios are encountered:

� An AndState exists with the exit reaction, or with a descendant that has an exit reaction.
� The operator stop_activity is used for any ancestor of the control activity with

which the statechart is connected, at least one state has more than a single descendant, and
at least one of its descendants has an exiting reaction.

� A transition exiting from a state exists and has more than a single descendant, and at least
one of its descendants has an exiting reaction.
50 MicroC Programming Style Guide

Optimization Algorithms
When inlining take place, the exit reaction code is added to the transition code segment after the
transition action itself, but before the entering action code. If an inlining scenario is encountered
but inlining cannot be performed, MicroC does one of the following:

� If there are entering reactions, MicroC adds a call to the exiting reaction function
(cgExit...) to the transition code segment. The cgExit... function will not be
called at the end of the statechart code.

� In the absence of an entering reaction, MicroC does not add a call to the transition code
segment. The call to cgExit... is done at the end of the statechart code, as occurs
when optimization is not used.

Merge State Sequences With No Guard on Transitions

MicroC can merge sibling Or-States when there is a single transition between them that has no
guard on it. Consider the following topology:

...[S11]-t12->[S12]...(states S11, S12 transition t12)

The goal of the optimization is to merge S11 and S12, as well as the static reactions of the two
states and the transition action (referred to as “merged actions”). The merge is allowed (considered
correct) when the following conditions are met:

� The transition (t12) is the only transition that exits S11 or enters S12.
� The transition (t12) has no guard.
� There is no conflict in double-buffered element assignments and usage in the actions to be

merged.
� There is no conflict in event generation and usage in the actions to be merged.
� When the merged states are inside an AndState:

� There is no conflict in element assignment and usage between merged actions and
actions/ reactions in the other AndState components.

� There is no conflict in event generation and usage between merged actions and
actions/reactions in the other AndState components.

� In user function calls:
� When the usage is Out/Inout, the call is regarded as “assignment/events

generation” of the actual function parameters.
� When the usage is In/Inout, the call is regarded as “usage/events test” of the actual

function
� parameters.
� Function “Global Usage” elements are ignored.
Statemate 51

Statechart Implementation
Note the following:

� No check is done regarding sibling activities.

� When using GBA, no painting is done for the states that have been merged to another
state; only the remaining state is painted.

� A reference to/usage of an element of an array is considered as a reference to/usage of the
entire array. For example, if you use MY_ARR[2]=3; there will be a conflict for the
whole array or any member of it, such as DI=MY_ARR[4];.

� A reference to/usage of a record field is considered example, if you use MY_REC.F1=3;,
there will be a conflict for the whole record or any of its fields, such as
DI=MY_REC.F2;.

Note
This optimization, when used with the optimizations inline entering/exiting reactions and
clutch of state hierarchy might result in an action sequence that is not identical to the action
sequence performed without those optimizations. Make sure the difference is acceptable.

Timeout Optimization

The Code Generator performs optimization of data allocated for timeouts. Data allocated for a
timeout is reused for another timeout if these timeouts trigger transitions outgoing from exclusive
states.

Note
Use the menu selections Options->Settings->Optimization ->Reuse Timeout Variable to
set that optimization.

Note the following:

� The optimization reuses the same Timeout/Delay variable for other timeouts/delays.
� A variable can be reused only if the states waiting for the timeouts are exclusive states.

To reduce the number of data allocations for the timeout operation, the algorithm has been
changed. The description of the algorithm uses the following terms:

� Source state of a timeout— The source state of the transition that the timeout is on, or the
state in which its static reaction contains the timeout.

� Clutch a timeout— Add the clutched timeout to the list of timeouts for the timeout that
represents the data allocation. Tagging the clutched timeout as NOT requires data
allocation. In the clutched timeout, the Code Generator keeps a reference to the timeout
that represents its data allocation.

� Parent— State 1 (S1) is a parent of state 2 (S2) if S1 is an ancestor of S2.
52 MicroC Programming Style Guide

Optimization Algorithms
The algorithm merges data allocation for two timeouts if their sources are mutually exclusive. The
steps of the algorithm are as follows:

1. Prepare the list of timeouts.

2. For each timeout in the list (in no particular order), look through the other timeouts for a
candidate to be clutched to it.

3. For a timeout to be clutched, the following conditions must be met:

� The timeout being tested requires data allocation.
� The source state and every timeout in the list are not parents of the source state of

the tested timeout, or of any of the source states of the timeouts in the list.
� The source state of the tested timeouts and the source state of every timeout in its

list are not parents of the source state, or the source state of any timeout in the list.
� None of the following are an AndState:

– The first common parent of the source state
– The source state of each of timeout in the list
– The source state of the tested timeout
– Any of the timeouts in tested timeout’s list

If all four conditions are satisfied, the tested timeout is clutched. The following code sample
represents the algorithm:

LIST TimeoutsList = CREATE TimeoutsList.

FOR EACH Timeout (TM) in (TimeoutList) DO

{

State TMSourceState = FIND SOURCE STATE OF (State).

LIST SiblingsStatesList = CREATE SIBLINGS LIST OF (TMSourceState)

FOR EACH State (S) in (SiblingsStatesList) DO

{

LIST CurrSiblingTimeoutsLists = CREATE LIST OF TIMEOUTS UNDER (S)

FOR EACH Timeout (T1) in (CurrSiblingTimeoutsLists) DO

{

if (T1) NOT (Requires Data Allocation) then EXIT FOR LOOP

State SiblingTimeoutSourceState = FIND SOURCE STATE OF (T1)

LIST MySourceStatesList = CREATE LIST OF SOURCE STATES OF

(TMSourceState AND ALL THE TIMEOUTS IN ITS LIST)

FOR EACH (S1) in (MySourceStatesList) DO

{

Statemate 53

Statechart Implementation
if (S1) IS PARENT OF (SiblingTimeoutSourceState) OR

(SiblingTimeoutSourceState) IS PARENT OF (S1) then EXIT FOR LOOP

State FirstCommonParentState = FIND FIRST COMMON PARENT OF

(S1, SiblingTimeoutSourceState)

if (FirstCommonParentState) IS AND-STATE then EXIT FOR LOOP

CLUTCH TIMEOUT (T1) TO TIMEOUT (TM).Statechart Implementation

}

}

}

}

After the algorithm has finished, each timeout is marked with one of the following tags:

� The timeout requires data allocation, and the list of all the other timeouts that are using its
data.

� The timeout does not require data allocation, and a reference to the timeout whose data
will be used.

Clutch Entrance to a State Hierarchy

MicroC can perform a clutch of steps, intermediate states, and default states when entering state
hierarchy. The clutch entrance algorithm steps directly into the lower-most leaf state in the state
hierarchy. All the entering reactions are performed appropriately, according to the state hierarchy.

The algorithm stops at the following items:

� A default transition with guard AND/OR action
� A state with more than a single descendant state and no default
� A state with a History/Deep History connector
54 MicroC Programming Style Guide

Flowchart Implementation
Flowcharts are another graphical language used in MicroC to define the behavior of a Control
Activity. For the purpose of code generation, including this discussion, a single Flowchart is
considered to be the Flowchart directly connected to a Control Activity, and all of its sub-charts
and the generics instantiated within them.

Consider the Control Activity A12_CTRL. The following two C functions will be generated for it:

void cgActivity_A12_CTRLcnt1(void)

void cgDo_A12_CTRLcnt1(void)

The body of these functions look like the following:

void

cgDo_A12_CTRLcnt1(void)

{

… The flowchart logic

}

void

cgActivity_A12_CTRLcnt1(void)

{

cgDo_A12_CTRLcnt1();

}

The function cgActivity_A12_CTRLcnt1 simply calls cgDo_A12_CTRLcnt1.
Statemate 55

Flowchart Implementation
Detailed discussions of the cgDo_… function construct will be found below.

Note
Further Optimization: This example might be optimized by dropping the wrapping function,
cgActivity_A12_CTRLcnt1, unless it serves some additional purpose not considered here.

Use the Compilation Profile->Setting->General->Use Macros flag to control the use of function
generation vs. pre-processor macro.

Flowchart Implementation
The Flowchart Language in MicroC graphically describes a Structured C Program. It is used as
an alternative approach to the Language of Statemate’s emphasis on Statecharts to describe control
activity logic.

The graphics and semantics used in Flowcharts are very much different from what is used in
Statecharts. This gives the designer the option to choose the language that is best suited to a
specific algorithm implementation.

The code of a Flowchart runs from beginning to end, without stopping and without explicitly
maintaining its internal state. Each time the Flowchart is run, it must start from the beginning. The
Flowchart does not have a notion of State or Internal State.

While Flowcharts allows the creation of highly visible, graphical algorithms, there is no inherent
overhead in the generated code. The code generator is able to generate optimized structured code
from a flowchart just as readily as from a statechart.

The use of flowcharts is recommended where ever clear and visible (graphical) algorithms are
desired, while preserving maximum performance.

If a Flowchart is properly constructed, it will result in the generation of highly optimized
structured code. However, it is the responsibility of the designer to build appropriate charts with
proper syntax, logic, and association with a valid control activity. Otherwise, the results could be
non-structured code.
56 MicroC Programming Style Guide

Flowchart Implementation
Supported Constructs

When discussing the structuring of a flowchart, we refer to two categories of graphical elements:

� Boxes
� Arrows

Compound Boxes, that is boxes containing other boxes, represent code blocks. Individual graphic
elements include Those shown in the following figure.

Start Connectors

End Connectors

Action Boxes sc!(EV,222)

Start

DI:=5

DI:=4

End

Compound Boxes

[DI=2]Decisions

Start

End
Statemate 57

Flowchart Implementation
@FL_CH_TEST_5_1Instance (off Page) Boxes

Arrows

Start

Color

DI:99DI:=5

RedBlack
Switches
58 MicroC Programming Style Guide

Labels
Labels
As with statecharts, the graphical elements in flowcharts can be assigned labels for purposes of
identification and describing associated logic or value assignments. Labels on arrows are
considered to be literal constants and are allowed only for arrows exiting either Decision or
Switch elements.

Decision Expressions

Allowed expressions in “Decision” are:

� Event (like: ON_POWERUP)
� Condition (like: [POWER_ON])
� Expressions (like: [TEMP > 27])

Allowed expressions on Arrows exiting “Decision” are:

� yes
� no
� true
� false

Switch Expressions

Allowed expressions in “Switch” are:

� Value type expressions (like: F1(3) + 5)

Allowed expressions on Arrows exiting “Switch” are:
� Literal constants:

else

default

Forbidden Constructs

There are some uses of graphical elements that are not allowed in flowcharts here. These include
the following:

� Arrows that cross the boundaries of boxes are not allowed.
� Arrows may only go between sibling boxes.
Statemate 59

Flowchart Implementation
Goto Minimization
The code generator tries to minimize the number of goto statements that are needed. This tends
to make the code readable and structured. However, this is not always possible and goto
statements may appear in the generated code.

Restructuring the flowchart or using statecharts instead of flowcharts may eliminate generated
goto code.

Code Structure
The code is generated in C-Blocks. Compound (non-basic) boxes are translated into blocks. Basic
boxes are interpreted as control positions between executable statements.

Begin/End Points
The “START” point for each block, i.e. the entering point to the non-basic box, is marked using a
Start arrow in that box. The “END” point is marked using an End connector in that box.
Specifically, the “START” point for the execution of the whole Flowchart is marked using a Start
arrow in the upper most level. The “END” point for the whole Flowchart is marked using End

connector in the upper most level.

The Flowchart execution will stop as soon as it can make no more progress. This may be due to
reaching an End connector, or it may be because it reaches some box for which all the outgoing
arrows have triggers that evaluate to false.

Arrows and Labels
In the case of nested boxes, all arrows on the inside boxes are tried first. If none of them can be
taken, then “higher level” arrows are tried. If none of them can be taken then higher level arrows
are tried, etc. If no arrows can be taken, then the code finishes executing, i.e., the function returns.
60 MicroC Programming Style Guide

Flowchart Examples
Flowchart Examples
In the following examples, we give the graphics and then the generated code for the graphics.

Simple Flowchart

[DI>5]

Start

ACT_2 ()ACT_1 ()

END END

yesno

DI:=FUNC1()

void
cgDo_FL_CH_TEST_3()
{
DI=FUNC1();
if (DI > 5) {
ACT_2();
}
else {
ACT_1();
}
}

Statemate 61

Flowchart Implementation
Find/Merge Logic

no

[DI=1]
yes

[DI=3]

DI:=4

yes

DI:=5

DI:=3

no

DI:=2

End

Start

DI:=1

void
cgDo_FL_CH_FIND_MERGE_BOX()
{
DI = 1;
if ((DI == 1)) {
if ((DI == 3)) {
DI = 4;
}
DI = 5;
}
else {
DI = 3;
}
DI = 2;
}

62 MicroC Programming Style Guide

Flowchart Examples
Switch Control

Start

default

Start

Color

Blue

RedBlack

DI:=5 DI:=99

DI:=65

EV

EV

true false

sc! (SV, 11)

END END

[DI<3]

DI:=455

END

END

END

3
DI+1

no
DI*2

DI:=87 DI:=87

yes

else

5

DI:=4

4

DI:=34
Statemate 63

Flowchart Implementation
void

cgDo_USE_SWITCH_CTRL()

{

switch(DI + 1) {

case 3:

if ((DI < 3)) {

switch(DI * 2) {

case 4:

DI = 43;

break;

default:

DI = 87;

break;

}

DI = 4;

}

else {

DI = 455;

}

break;

case 5:

{

switch(COLOR) {

case BLACK:

DI = 5;

break;

case BLUE:

DI = 65;

break;

case RED:

DI = 99;

break;

default:

break;
64 MicroC Programming Style Guide

Flowchart Examples
}

}

DI = 34;

break;

default:

if (EV) {

GENERATE_EVENT(EV);

}

else {

SetRelAlarm(EV_ALARM, 11, 0);

}

break;

}

}

Statemate 65

Flowchart Implementation
66 MicroC Programming Style Guide

Truth Table Implementation
The Truth Table implementation in code is relatively straight-forward from the table itself. The
basic code structure might be seen in the example below. For a Truth Table implementing function
F with C1 and C2 input conditions:

The generated code would be:

void F()

{

if(DI1== 1){

if(DI2== 1){

A1;

} else {

if(DI2== 2){

A2;

};

};

} else {

if(DI1 == 2 && DI2== 3){

A3;

}

DI1 DI2

1 1 A1

2 A2

2 3 A3
Statemate 67

Truth Table Implementation
Note
If the Truth Table is being factorized, as in this example, so is the generated code. This
results in compact and fast code. It is recommended to factorize the table at the end of the
development stage to make modifications easy, while not paying the cost on production.
68 MicroC Programming Style Guide

Mini-Spec Implementation
The implementation of an Activity can be defined using the Statemate Action Language. This
definition is called a mini-spec. The mini-spec definition of an Activity’s behavior is entered into
the Data Dictionary. The mini-spec is then activated when the associated Activity is active and
stops when the associated Activity stops.

As mentioned, the mini-spec is defined in the Data Dictionary Editor. The syntax is similar to that
used to describe static reactions, i.e. a list of reactions of the form trigger/action, separated by a
double semicolon (;;).

States that have mini-specs are distinguished by a ‘>’ symbol after their chart name (e.g.
ALARM>).

Two modes are supported in MicroC: Reactive (either Self or Controlled) and Procedural. For both
modes, the generated code is a relatively straight-forward implementation of the Mini- Spec itself.
The basic code structure might be seen in the examples below.

Reactive Activities
The syntax for reactive mini-spec is “E[C]/A,” that is on the event E, when the condition C is true,
do the reaction A. Consider the following example, for a mini-spec defined as:

ALARM_ON[WORKING]/SET_SIGNAL

With Event - ALARM_ON, Condition – WORKING, and Event -

SET_SIGNAL

The code would be:

if(ALARM_ON && WORKING){

GENERATE_EVENT(SET_SIGNAL);

};
Statemate 69

Mini-Spec Implementation
Note

� For repeating large actions, it is preferable to use a user-defined function.
� For a repeated scenario of activating some action, the preferred style is:

[C1 or C2]/A0

rather than

[C1]/A0;;[C2]/A0

Procedural Activities
The syntax for procedural mini-spec is comparable to that of the trigger part, without the action.
For example, if(C) then A endif while(something) do anotherthing end and so on.

Consider the following example, for a mini-spec defined as:

if(WORKING) then SET_SIGNAL endif

The generated code would be:

if(WORKING){

GENERATE_EVENT(SET_SIGNAL);

};
70 MicroC Programming Style Guide

ANSI C Code Usage
Only two programming languages are available in MicroC:

� ANSI C
� Assembly Language

ANSI C, includes both C language code (with possible extensions to the ANSII standard) and
Assembly language code.

It is best to use the old safe way to link with legacy code (i.e. call the OS/environment special
services) and to utilize otherwise inaccessible functionality as inline assembly language calls.

One way to use legacy/library code that is available external to the model, might be done through a
user-defined C function calling them. Another way would be to include the definition within the
model, in either C or ASM languages.
Statemate 71

ANSI C Code Usage
72 MicroC Programming Style Guide

Lookup Table Implementation
The MicroC Style Guide implementation of the Statemate Language has been extended to include
Lookup Tables.

The language supports non-linear “Y=F(X)” functions that are so common in the world of micros.
Typically, these non-linear functions are used to represent characteristic curves of valves in a table
structure. Such a table may consist of a list of pairs of digitizing points, Xi, and its corresponding
value, Fi. The data might be imported from any ASCII data file. A choice is given whether to
perform (linear) interpolation between points, or to use a histogram like mode. In addition,
saturation values might be defined, for the upper and lower range bounds, as well as a search order
to support performance sensitive scenarios.

For example, consider the following definition and implementation of such a function with return
value defined to be “Real” and input defined to be “Integer”:

In “Interpolation,” High to Low mode, Lower Bound=0, Upper Bound =4 The following code will
be generated.

X F(X)

1 1

10 2

100 3

1000 4
Statemate 73

Lookup Table Implementation
Note
Define default mapping between Real and either “double” or “float” and Integer vs.
int8/16/32.

double LOOKUP1(int IN1)

{

/*

Interpolation Function:

if(In < X2 && In >= X1)

Out = (Y2-Y1)/(X2-X1)*(In-X1)+Y1

*/

double LOOKUP1_retval;

if(IN1 < 1)

LOOKUP1_retval = (0);

else if(IN1 >= 1000)

LOOKUP1_retval = (4);

else if(IN1 >= 100)

LOOKUP1_retval = (4 - 3)/((double)1000 - 100)*(IN1 -

100) + 3;

else if(IN1 >= 10)

LOOKUP1_retval = (3 - 2)/((double)100 - 10)*(IN1 -

10) + 2;

else if(IN1 >= 1)

LOOKUP1_retval = (2 - 1)/((double)10 - 1)*(IN1 - 1)

+ 1;

return(LOOKUP1_retval);

}

74 MicroC Programming Style Guide

Statemate Action Language
Implementation
This kind of programming language can be used where a function is needed in an application. It is
the preferred language to use, rather then plan C code, as all the expressions are parsed. Thus, by
using the Dictionary tool, it is possible to define relevant properties of the elements used. As such,
compatibility between different targets can be more easily achieved since MicroC generates the
right expressions in each target environment. This cannot be done if the function is already defined
in C code.

The available operators and syntax in the Statemate Action Language is similar to a programming
language. As such, it is easily learned and readable.

A detailed discussion of the Statemate Action Language (also known as the Language of
Statemate) is beyond the scope of this publication.
Statemate 75

Statemate Action Language Implementation
76 MicroC Programming Style Guide

Integration with the Target
In a MicroC model you can have direct access to ports, memory mapped I/O and external memory
(i.e. external to the modeled feature). This can be done using Data-Items and Conditions bound to
External Symbols.

This feature is normally used during code generation for H/W (i.e. hardware) properties, using the
symbol mapping definition menu. The binding is done in 2 stages:

� Stage 1 - Data Item/Condition tagged as bounded to external symbol, identifying
“Logical” signal name.

� Stage 2 - Mapping of the “Logical” signal names to “Physical” signals.
For example:

DI1 is defined as bound to PORTA.

� Stage 1 - From the model via the Data Dictionary, DI1 is tagged as being bound to an
external symbol, identified by the Logical signal name PORTA.

� Stage 2: From the compilation profile editor, a mapping of the Logical signal name
PORTA to a physical location value of 0x03 is accomplished using the data matrix tool.

Result: On this target, DI1 is now mapped to physical address 0x03.

Data-Items and Conditions might be bound in two modes:

� Direct—The previous description holds.
� Buffered—In buffered access mode, two additional definitions are used for the element:

– “Get Value Call”—A user-defined API function to receive a value
– “Set Value Call”—A user-defined API function to set a value

When in buffered mode, the internal value is kept. At the beginning of a step, of the
correspondence TASK, (Defined in the Condition dictionary as “Its Task”) a call to the “Get Value
Call” API is done to ask for the new value. The “Set Value Call” API is called whenever there is
assignment to the corresponding element in the model.
Statemate 77

Integration with the Target
78 MicroC Programming Style Guide

Instrumentation for Testing and
Debugging
Design-level debugging is supported through a combination of various instrumentation inserted
into the generated code. This instrumentation typically consists of code that calls external
functions (i.e. APIs) and source-level libraries implementing those functions.

Localization of these instrumentations might be done either by predefining the instrumentation
calls or by modifying the provided API implementations.

Design-level debugging features include:

� GBA
� Panels (Only available when running on Windows)
� Trace – time stamps
� Trace – State transitions (reportState function)
� Test Driver
Statemate 79

Instrumentation for Testing and Debugging
GBA: Graphical Back Animation
GBA provides a form of animation to indicate the execution of the application code under test. In
the Activity charts, the active boxes are highlighted to indicate their execution. In the Statecharts,
the current state of the application is highlighted.

Note
As only 1 box can be executing at a time with one processor, the designer can see if all the
code is being serviced.

GBA is supported in two modes:

� Direct
� Indirect.

Direct Mode GBA

� Asynchronous: Buffers changes, and then uses a task to pass data to MicroC.
� Synchronous: Passes data directly as the code runs.

Indirect Mode GBA

Uses calls in the code to communicate to the target debugger. The target debugger talks to the
GBA server to animate the model.

Panels
A task in the code drives the panels. Buffers data and only when active does it drive the panels
(OSEK only). It is a basic cyclic task with a high priority, it will slow down the execution of the
model. The cyclic rate and priority can be changed to alter this.
80 MicroC Programming Style Guide

Trace (Time Stamp)
Trace (Time Stamp)
Consider the following code:

#ifdef TRACE_TASK

#ifndef TRACE_TASK_STARTED

extern void traceTask();

#define TRACE_TASK_STARTED(t) traceTask((t),’S’)

#endif

TASK (MAIN_LOOP)

{

if ((cgGlobalFlags & ALARM_SET_MAIN_LOOP) == 0){

cgGlobalFlags |= ALARM_SET_MAIN_LOOP;

SetRelAlarm(ALARM_SET_MAIN_LOOP, 10, 10);

};

TRACE_TASK_STARTED(MAIN_LOOP);

do {

:

} while ((cgGlobalFlags & BITSUPERSTEP_MAIN_LOOP) !=

0);

TRACE_TASK_TERMINATED(MAIN_LOOP);

TerminateTask();

This is from the traceFunc.c file and can be easily modified to send the output anywhere.

#ifdef TRACE_TASK

void

traceTask(TaskRefType t, char indx)

{

TickType sysTime;

GetCounterValue(SYS_TIMER, &sysTime);

OSPrintf("%c Task ID %d %ld\n", indx, (int) t, (long

int)sysTime);

}

#endif
Statemate 81

Instrumentation for Testing and Debugging
Trace Tasks

When this flag set, the generated code is instrumented to call the task tracing function in the
following places:

� Just after entering the Task frame
� Just before calling the “TerminateTask” API, and leaving the Task frame Instrumentation for

Testing and Debugging

Extended Tasks

Applies to EXTENDED Tasks only:

� Just before calling “WaitEvent” API
� Just after leaving “WaitEvent” API

Design Level Debugging: Trace
TASK (MAIN_LOOP)

{

if ((cgGlobalFlags & ALARM_SET_MAIN_LOOP) == 0){

cgGlobalFlags |= ALARM_SET_MAIN_LOOP;

SetRelAlarm(ALARM_SET_MAIN_LOOP, 10, 10);

};

TRACE_TASK_STARTED(MAIN_LOOP);

do {

:

} while ((cgGlobalFlags & BITSUPERSTEP_MAIN_LOOP) !=

0);

TRACE_TASK_TERMINATED(MAIN_LOOP);

TerminateTask();

}

82 MicroC Programming Style Guide

Debug Options: Trace State Transitions (reportState function)
Trace ISR

When this flag set, the generated code is instrumented to call the ISR tracing function in the
following places (For ISR Type 2 and 3):

� Just after calling the “EnterISR” API
� Just before calling the “LeaveISR” API

Example:

#ifndef TRACE_ISR_ENTER

extern void traceIsr();

#define TRACE_ISR_ENTER(i) traceIsr((i), ’N’)

#endif

Debug Options: Trace State Transitions (reportState
function)

This is from the traceFunc.c file and can be easily modified to send the output anywhere.

ISR (MY_INTERRUPT)

{

EnterISR();

TRACE_ISR_ENTER(1);

COUNTERdi = 0;

TRACE_ISR_LEAVE(1);

LeaveISR();

}

#ifdef TRACE_ISR

void

traceIsr(int isrNo, char indx)

{

TickType sysTime;

GetCounterValue(SYS_TIMER, &sysTime);

OSPrintf("%c ISR No %d %ld\n", indx, isrNo, (long

int)sysTime);

}

#endif
Statemate 83

Instrumentation for Testing and Debugging
Debug Options: Trace State Transition (reportState function)

The debug option inserts calls to the "reportState" functions. The “reportState”
functions are placed in a file p_state.c and are called according to the defined “Debug Level”:

Debug Level1

The reportState functions are called when a Task enters a stable state mode.

Debug Level2:

The reportState functions are called after each step in the statecharts.

For example, consider the following file extract from P_STATE.C:

cgReportState(unsigned char whichChart, unsigned char*

baseAddress)

{

if(whichChart == 1){

OSPrintf("Statechart %s ", "INIT_MODE_SC");

OSPrintf("In State: ");

if ((((*(StateInfo_INIT_MODE_SC*)baseAddress)) & 0)

== 0) {

OSPrintf("%s", "Chart_INIT_MODE_SC");

OSPrintf(".");

if ((((*(StateInfo_INIT_MODE_SC*)baseAddress)) &

3) == 3) {

OSPrintf("%s", "DefaultOf_Chart_INIT_MODE_SC");

}

else if ((((*(StateInfo_INIT_MODE_SC*)baseAddress))

& 3) == 2) {

OSPrintf("%s", "VOLT_OUT_OF_RANGEst3");

}

else if ((((*(StateInfo_INIT_MODE_SC*)baseAddress))

& 3) == 1) {

OSPrintf("%s", "STATE_15");

OSPrintf(".");
84 MicroC Programming Style Guide

Test Driver
Note
OSPrintf is used only in OSEK applications, and outputs to the stdout, which can be
redirected. Redefining the OSPrintf function can allow the debug info to be directed
anywhere. For Non-OSEK applications, printf is used.

Test Driver
The test driver supports testing of the application using test vectors. Test vectors can be used to
drive inputs as well as to record outputs. The generated code calls an API that is provided in the
tst_drv.c source-level library.

Two execution modes are supported:

� Synchronous
� Asynchronous

Synchronous Execution Mode

The test driver functions are called directly from the code tasks and the data is then streamed to the
necessary output.

Asynchronous Execution Mode

A task is created to stream all the data, which is buffered, to the relevant place. The task has a high
priority and can be set as either Basic or Extended (For OSEK Applications only). All the
information regarding how the task calls the test driver code is in “glob_func.c” file and the test
driver code is in “tst_drv.c.”

Redirecting the Output

The test driver utility is fully automated for Windows. This can be enabled via the setting menu in
the code profile window. All IO on the panels can be used as automated IO. Normally the data is
streamed to a DOS box. To redirect the output, set the following environment variables to the file
names that the data should be streamed to, or read from:

� TESTDRIVER_INPUT_FROM_PNL_FILE
� TESTDRIVER_IN_FILE
� TESTDRIVER_OUT_FILE

One way to do this is to create a small batch file to run before running the model.
Statemate 85

Instrumentation for Testing and Debugging
Retargeting the Test Driver

The full API for the test driver is provided. To enable test drivers to operate on a target, the input
and output needs to be redirected. This requires that the tst_dvr.c file be modified appropriately
so that, perhaps, the I/O is transmitted via a serial communication link. The actual modification to
tst_dvr.c is a function of the application environment and whose implementation must be left to
the developer to determine
86 MicroC Programming Style Guide

Specifics of Statechart Implementation
The calculation for the size of The StateInfo data type will be named StateInfo_<Controller
Name> - for example, might be StateInfo_A11_CTRLcnt1. The data type will be defined as
an unsigned type of either 8, 16 or 32 bits. The size depends on the topology of the Statechart. A
general method for calculating the required size is:

1. Summarize the bits required for each level in the state hierarchy.

2. To calculate the bits required for each level in the state hierarchy, take the maximal
number of states in that level, add one and calculate how many bits are required to count,
in binary, to that number:

(log 2 (number_states))

Note
For And-States, perform the calculation for each of the And-state descendants, and take the
largest.
Statemate 87

Specifics of Statechart Implementation
88 MicroC Programming Style Guide

Generated Data Types, Data Usage, and
Functions
All of the variables, data types and functions that are generated in MicroC are directly derived
from the model.

Some are directly user-defined data (data-items, conditions, events, user-functions) and some
relate to the graphical elements, like states and activities.

Those that the tool generates, and the naming convention used is customizable, through the OSDT
(MicroC OS Definition Tool), are marked with custom.

When having <NAME> the intention is to replace that sequence with the relevant model element
name.

Data is generated to the (custom) glob_dat.c file. The variables which are not in that file are
context variables, that are generated as automatic variables for the activity/statechart/ flowchart
they are used in. Functions resulting from the graphical model are generated in <MODULE>.c file
(that is the module name, in the compilation profile, containing the chart in scope).

User functions and other functions needed, that are not explicitly in any module scope, are
generated to (custom)
Statemate 89

Generated Data Types, Data Usage, and Functions
Data Types
custom: cgSingleBufferType_<NAME>

custom: cgDoubleBufferType_<NAME>

Those are type definitions (typedefs) for structures, with the activity name as postfix. The data
assigned to the activity, in the Its Task field will be located in that structure, and instantiate later as
either cgSingleBuffer_<NAME>, for all of the non doublebuffered data elements, or
cgDoubleBufferNew_<NAME> and cgDoubleBufferOld_<NAME> for all of the doublebuffered
data elements.

custom: StateInfo_<NAME>

This is type definitions (typedefs) for int8/16/32, to hold the internal state configuration of a
Statechart.

User Data
custom: cg_Events

This data (either int8/16/32) holds the events and the derived events (such as ch/fs/tr as well as tm/
dly) related to a certain activity. When more then a single variable is needed, the tool will add
indexed postfix like “cg_Events1,” “cg_Events2,” etc.

custom: cg_BitsConditions

This data (either int8/16/32) holds the conditions related to a certain activity. When more then a
single variable is needed, the tool will add indexed postfixes.
90 MicroC Programming Style Guide

Data Supporting Statechart Generation
Data Supporting Statechart Generation
currentState_<NAME>

nextState_<NAME>

This data hold the internal (in current step and in the next step) state configuration of a Statechart.
Is required per control activity implemented by a statechart.

staySame_<NAME>

This data hold the internal state configuration in which no change occurred between current and
next step. Is required only when the Enter State/Exit State functions are required, per control
activity implemented by a statechart.

Functions Supporting Statechart Generation
custom: cgEnterActions_<NAME>

custom: cgExitActions_<NAME>

Those void functions will be generated in case of a control activity, with statechart underneath, that
has (in accordance) entering/exiting reactions.

Note that when the optimizer is enabled, some of the reactions might be placed directly on
transitions code, thus avoiding the need of having those functions.

custom: cgDo_<NAME>

That void function will be generated for each control activity, and contains the code implementing
the logic.
Statemate 91

Generated Data Types, Data Usage, and Functions
Data Supporting Activity Chart Generation
custom: cgGlobalFlags

For task containing Statechart underneath. Indicates when a task is in non-stable state, i.e., need to
perform another step. Might be 8/16/32 bits, according to the no. of tasks having a Statechart
underneath. And Indicates active/ inactive activities might be 8/16/32 bits, according to the no. of
activities requiring active bit.

This is if either the activity is procedural or its parent has a control-activity, or it is flagged as
“Guarded Activation” (=”yes”).

custom: cgSingleBuffer_<NAME>

When activity has non double-buffered data (user data, conditions) associated with.

custom: cgDoubleBufferNew_<NAME>

custom: cgDoubleBufferOld_<NAME>

When activity has a double-buffered data type (user data, conditions, events) associated with it.

Functions Supporting Activity Chart Generation
custom: cgActivity_<NAME>

That void function contains the implementation for the activity. In case when the implementation
is either statechart or flowchart, that function will call the statechart/flowchart code. In case of
lookup table, truth table, or other textual implementation, the code will be contained in that
function.
92 MicroC Programming Style Guide

Data Supporting Timeout/Delay Implementation
Data Supporting Timeout/Delay Implementation
custom: cgTimeoutsMask

Indicates pending timeouts/delays. Might be 8/16/32 bits, bits. That is less then or equal to the
number of timeout/delay in the model.

custom: currentTick

TickType variable, as defined in the compilation profile. Will be used when having delay or
timeout in the model.

Functions Supporting Timeout/Delay Implementation
custom: genTmEvent_<NAME>

The void function will be generated for each control activity having a background timeout or
delay. The function checks to see if the time has expired.
Statemate 93

Generated Data Types, Data Usage, and Functions
Data Supporting Instrumentation Implementation

GBA

There are two important arrays of type “unsigned char,” named “gba_states” and “gba_acts” in
“glob_dat.c”. The “gba_states” array will hold 1 bit per each state in the application. The
“gba_acts” array will hold 2 bits per each activity in the application. Those bits are packed
together into the 8 bits (char) chunks.

Panels
static char *panels_table[]

This array of char* holds the panels in scope.

struct

PanelBindings_PreviousValues

panelBindings_PreviousValues

The variable panelBindings_PreviousValues holds the previously reported values of elements
that are bound to panels.

Test Driver
struct

TestDriver_PreviousValues

testDriver_PreviousValues

The variable testDriver_PreviousValues hold the previously reported values of elements that
are bound to panels, and are reported to the test driver API.
94 MicroC Programming Style Guide

Functions Supporting Instrumentation Implementation
Functions Supporting Instrumentation Implementation

GBA
cgColorState_<NAME>

That void function will be generated for each activity, to build the corresponding data to be used to
highlight states.

<NAME>_CB

When either of the “Panels” or “Test Driver” is enabled, setting functions will be generated. Those
functions will be generated in “glob_func.c” file, for each of the model elements that is bound in
either “Input” or “Input/Output” mode.

Panels
void init_panels(void)

void update_panels(void)

Each of these void functions will be generated when having panels in scope. init_panels is
called once at startup, to initialize the panels. update_panels is called periodically to update and
refresh the panels.

Test Driver
void init_test_driver_table (void)

void call_test_driver (void)

Each of those void functions will be generated when having panels in scope and the “Test Driver”
is enabled. “init_test_driver_table” is called once at startup, to initialize the test driver.
“call_test_driver” is called periodically to update the test driver, i.e., to report changes and poll
inputs.
Statemate 95

Generated Data Types, Data Usage, and Functions
Debug
cgReportState

This function will be generated in (custom) p_state.c file when debug is enabled. The function
calculates and reports the current state configuration of an activity chart. Because the function is
generated to a separate file, and the prototype of it is:

void cgReportState(unsigned char whichChart,

unsigned char* baseAddress)

It is possible to use that functionality across target-host communications when providing a target
implementation that saves the data to a file and uses that generated file on the host.

cgReportStates_<NAME>

This function will be generated when debug is enabled per control activity, to the <MODULE>.c file.
That function call cgReportState with the appropriate data and timing.
96 MicroC Programming Style Guide

OSDT Naming Styles
OSDT Naming Styles
The following sections describe the naming styles of OSDT models and variables.

Model Names

The Code Style page includes the page Model Data - Naming Style, with two API definitions:

� Model Data Prefix()
� Model Data Postfix()

The prefix or postfix strings are added to the name of global model data elements for which the
field Its Task is global.They are added just before or after the element’s model name in the
generated code. When in Case Sensitive mode, the case-correct name is used as the element
model name (nameid). The definitions can use attributes of the model object.

Variable Names

The Variables Naming Style tab includes three new definitions for customization of the variable
names used for statecharts:

� Current State Info Variable Prefix - Specifies the prefix to use for the currentState
variable.

� Stay Same State Info Variable Prefix - Specifies the prefix to use for
the staySame variable.

� Next State Info Variable Prefix - Specifies the prefix to use for the
nextState variable.
Statemate 97

Generated Data Types, Data Usage, and Functions
New Function Call
The file type_def.h no longer includes the CALL_ macro. The prototype of the function did not
change, but the call did:

� If the parameter is OUT/INOUT, MicroC adds an ampersand (&) before it.
� If the parameter is a string or an array, an ampersand is not added.
� If there is an ampersand in the parameter, the parameter is enclosed with parentheses. For

example:

&(PRM)

Examples

Prototype:

void myFunc(int inPrm0,

int * outPrm1, int * inOutPrm2);

Call:

myFunc(INPRM, &(OUTPRM), &(INOUTPRM));

Prototype:

void myFuncStr(char * inPrmStr,

char * outPrmStr, char * inOutPrmStr);

Call: myFuncStr(PRMSTR, PRMSTR, PRMSTR);
98 MicroC Programming Style Guide

Linking Generated Code with External
Data Types
This section describes how to link the MicroC generated code with external functions and data
types.

External User-Defined Subroutines
You can have an external user subroutine in your MicroC model. To define a subroutine to be
external, set the Selected Implementation to External Code/None. In this case, MicroC generates
only the call to the subroutine—not the prototype or body.

When a user-defined function is not defined in the model (that is, unresolved text) the code
generator does not generate a prototype for that function. To generate an external user defined
function prototype in the model, complete the following steps:

1. Save the user-defined function with the relevant return type and arguments list.

2. Define a dummy implementation for that function. The implementation cannot empty;
otherwise, MicroC aborts code generation.

3. Set the design attribute for the user-defined function “External Function” to “yes.” The
OSI's mainloop_sc and mainloop_sc_ext has that attribute for functions.
Statemate 99

Linking Generated Code with External Data Types
External Data Types
Micro includes a design attributes file for User-defined Data Types (UDTs), which is named
UserDefinedType.dat. A UDT that has its Data Type attribute defined as CK_itsDataType
generates a typedef statement in the code, which is then used to define variables of that type.

Exceptions:

� Singleton-Record and Singleton-Union

For these types, the name of the UDT (the value of the CK_itsDataType attribute) is used
to define the variable.

� Variables that override the value of CK_itsDataType.
To use an external data type in the model, set the Data Type field in the Design Attribute of a
User-Defined-Type (UDT) to be a value other than “Default.” To have design attributes for a UDT
in an OSI, complete the following steps:

1. Open the OSI from the OSDTool.

2. 2. In the Edit Attributes dialog box, select the list item UserDefinedType.

3. 3. Click OK and save the OSI.

The design attributes for the UDT will be available from the Data Dictionary.
100 MicroC Programming Style Guide

Fixed-Point Variable Support
This section describes fixed-point support for integer arithmetic, which scales integer variables so
they can represent non-integral values (fractions). This functionality enables you to perform
calculations involving fractions without the need of special floating-point support from the target.

MicroC supports fixed-point arithmetic in the model level, through the Dictionary and the Check
Model tools, as well as in the generated code.

Implementation Method
MicroC uses the “2 factorials” implementation method— redefining the least significant bit (LSB)
to represent zero, or the negative power of 2. This implementation method provides reasonable
code size and run-time performance, but is not the most accurate method.

Consider the binary 8-bit value 0b00010001. Usually, the value represented here is “17,” because:

� The LSB (1st bit) corresponds to 20 (1).
� The 5th bit corresponds to 24 (16). Rescaling that value to begin at 2-3 gives:

2.125 = 1*2-3 (or 0.125) + 1*21 (or 2)

The parameter required here is the power (of 2) represented by the LSB. This is also the resolution.

Supported Operators
You can use the following operators with fixed-point variables:

� Arithmetic (+, –, *, /)
� Assignment (=)
� Comparison (<, >, <=, >=, ==, !=)
� Functions (return value, parameters, local variables)
Statemate 101

Fixed-Point Variable Support
Evaluating an Object’s wordSize and shift
The wordSize and shift of an object are defined by its attributes (specified in the Data
Dictionary Editor). MicroC determines the wordSize and shift of an expression made of
objects and operators using the formulas listed in the Fixed-Point Macros Macro Definition
Description table.

The conventions used in the table are as follows:

� WS—The wordSize of the object
� SH—The shift of the object
� RG—The range (wordSize – shift)
� MAX(A, B)—A>B:A:B

� SUM(A, B)—A+B

� SUB(A, B)—A–B:

If the wordSize is greater than 32 bits, MicroC displays the following messages:

� wrn_err.inf - Warning: Fixed-Point Overflow in Expression:<Expression>
� generated code - /* Warning - Fixed- Point Overflow in Expression. */

This message is located right after the expression.

Operator or Object Formula Used

= wordSize and shift of the left operand

* WS=SUM(MAX(RG1, RG2), SUM(SH1,

SH2)), SH=SUM(SH1, SH2)

/ WS=SUM(MAX(RG1, RG2), SUB(SH1, SH2)), SH=SUB(SH1, SH2)

funcCall wordSize and shift of the left function
ActualParameter Converted to the FXP type of the

FormalParameter

All Other Parameters All other parameters WS = SUM(MAX(RG1, RG2), MAX(SH1,
SH2)), SH=MAX(SH1, SH2)
102 MicroC Programming Style Guide

Evaluating an Object’s wordSize and shift
When you use fixed-point variables in integer arithmetic, MicroC uses the special functions (or C
macros) provided in the FXP package to perform the calculations. The following table lists these
macros.

Fixed-Point Macros Macro Definition Description

Macro Definition Description

FXP2INT (FPvalue, FPshift) (FPvalue >>
FPshift)

Converts a fixed-point number with shift=FPshift to
an integer.

LS_FXP2FXP8 (FPvalue, fromFPshift,
toFPshift) ((sint8(FPvalue)) << ((toFPshift) -
(fromFPshift)))

Converts a fixed-point number with shift=fromFPshift
to an 8-bit fixed-point number with shift=toFPshift
using left shifting

RS_FXP2FXP8 (FPvalue, fromFPshift,
toFPshift) ((sint8(FPvalue)) >> ((fromFPshift)
- (toFPshift)))

Converts a fixed-point number with shift=fromFPshift
to an 8-bit fixed-point number with shift=toFPshift
using right shifting

LS_FXP2FXP16 (FPvalue, fromFPshift,
toFPshift) ((sint16(FPvalue)) << ((toFPshift) -
(fromFPshift)))

Converts a fixed-point number with shift=fromFPshift
to a 16-bit fixed-point number with shift=toFPshift
by using left shifting

RS_FXP2FXP16 (FPvalue, fromFPshift,
toFPshift) ((sint16(FPvalue)) >>
((fromFPshift) - (toFPshift)))

Converts a fixed-point number with shift=fromFPshift
to a 16-bit fixed-point number with shift=toFPshift
right shifting

LS_FXP2FXP32 (FPvalue, fromFPshift,
toFPshift) ((sint32(FPvalue)) << ((toFPshift) -
(fromFPshift)))

Converts a fixed-point number with shift=fromFPshift
to a 32-bit fixed-point number with shift=toFPshift
using left shifting

RS_FXP2FXP32 (FPvalue, fromFPshift,
toFPshift) ((sint32(FPvalue)) >>
((fromFPshift) - (toFPshift)))

Converts a fixed-point number with shift=fromFPshift
to a 32-bit fixed-point number with shift=toFPshift
using right shifting
Statemate 103

Fixed-Point Variable Support
Unsupported Functionality
The following functionality is not supported:

� FXP parameter passed by reference

MicroC generates the following error message:
Error: Unsupported usage of Fixed-Point parameter used by reference.

In function: <FUNC_NAME> Parameter number: <PARAM_NUM>.

� MicroC ignores the remainder in division operations that result in remainders.

For example:
FXP1(WS=8, SH=2) = 5
FXP2(WS=8, SH=2) = 2
FXP1/FXP2 = 2 (not 2.5)

Specifying Fixed-Point Variables
The following sections describe how to specify fixed-point variables in MicroC.

The Code Generator

To specify fixed-point variables in the Code Generator, complete the following steps:

1. Select Compilation Profile->Setting-> Target Properties.

2. Click Use Fixed Point variables for “Real”.

3. Select the default word size (8/[16]/32) and LSB= 2^-([0],1,2,..n).
104 MicroC Programming Style Guide

Specifying Fixed-Point Variables
The Generated Code

Fixed-point variables are implemented using uint variables (sint8, sint16, sint32), with
hardcoded shift values. MicroC allocates data according to the wordSize of the variable.

:

All calls to functions or expressions requiring integer values are done through an FXP-to-int
cast, including the test-driver/ panel driver. Specifically, the operators “ROUND” and “TRUNC”
are called with an FXP-to-int cast.

For example, given a fixed-point variable fxp_var, an integer variable int_var, and the following
actions:

INT_VAR := FXP_VAR + 4;

FXP_VAR := INT_VAR/5;

The generated code is as follows, if you specify fixed-point mode:

INT_VAR = RS_FXP2FXP16(FXP_VAR + LS_FXP2FXP16(0x4,

0, FXP_VAR_FXP_SHIFT), FXP_VAR_FXP_SHIFT, 0);

FXP_VAR = LS_FXP2FXP16(INT_VAR / 0x5, 0,

FXP_VAR_FXP_SHIFT);

wordSize Data Type

8 bits sint8

16 bits sint16

32 bits sint32
Statemate 105

Fixed-Point Variable Support
106 MicroC Programming Style Guide

OSI Definition ToolAPI Syntax Definition
Each OSI (Operating System Implementation) contains a predefined list of API definitions. Each
such API definition is intend to define the structure of the generated code that will result from use
of that API. An API definition is often referred to as an OSI. OSIs are managed using the OSDT
(Operating System Definition Tool) utility that is supplied with MicroC.

Each API definition might have predefined values that it would use, similar to the formal
parameters of a function. To use predefined values in the API definition, you must use the
predefined value name wrapped with the “$<” prefix and “>” postfix delimiters. Note that this
notation is standard throughout the OSDT utility.

For example, consider the following API definition:

API Name Terminate Task(nameid),

API definition TerminateThread (t_$<nameid>.hndl, 0);

The resulting generated code, for a Task named “T1,” will be:

TerminateThread (t_T1.hndl, 0);

This is illustrated in the following figure.

Parameterizing an API Definition, Method 1
Statemate 107

OSI Definition ToolAPI Syntax Definition
Another way to parameterize the API definition is to use the property value of the element itself, as
defined in the Data Dictionary for it. For example, suppose the element has a design attribute
named Create Mode that uses the attribute key word CK_createdMode, which then evaluates to:

CREATE_SUSPENDED

For the following API definition:

API Name Create Task(nameid)

API definition t_$<nameid>. hndl = CreateThread (NULL ,

0 , (LPTHREAD_START_ROUTINE)$<nameid> , NULL ,

$<CK_createdMode> , &t_$<nameid>.tid);

The resulting generated code, for a Task named “T1,” will be:

t_T1. hndl = CreateThread (NULL , 0 ,

(LPTHREAD_START_ROUTINE) T1, NULL ,

CREATE_SUSPENDED, &t_T1.tid);

T1*

Parameterizing an API Definition, Method 2
108 MicroC Programming Style Guide

A third way to parameterize the API definition is to use the property value of the element itself (as
defined in the DataDictionary for it) as the API definition itself. For example, suppose the element
has a design attribute, possibly hidden, that uses the attribute key word:

CK_sendMessagesAPI

This evaluates to:

mySendMessage($<nameid>,...)

For the following API definition:

API Name Send Message(nameid)

API definition $<<CK_sendMessagesAPI>>

And design attribute definition:

mySendMessage($<nameid>, $<CK_MessagePriority>);

The resulting generated code, for a data item named DI1, will be:

mySendMessage(DI1, 1);

assuming that the CK_MessagePriority property evaluates to 1.

This third method is illustrated in the following figure.
Statemate 109

OSI Definition ToolAPI Syntax Definition
Parameterizing an API Definition, Method 3

Note
A good use for this approach is to modify the API definition just for a local implementation
requirement.

Note
Browsing of the defined key word, in the data dictionary, is supported in the tool. When in
the definition field of the API, you can enter either of the following sequences, which will
result in a list popping up with the predefined keys. The sequences are:

“$<” and “$<<”. While in this list, pressing space, enter or “>” will close it.
110 MicroC Programming Style Guide

Conditional Expressions
Conditional Expressions
In addition to the $< and $<< expressions discussed above, other conditional expressions are
supported. These are described below.

The general syntax is ?<Conditional Operator> where Conditional Operator can be one of
the following:

Example 1

?<begin> $<prop1> ?<==> prop1val ?<?> expression when yes ?<:> expression when no ?<end>

In this conditional expression we mimic the C conditional expression, “? :” with some syntax
modifications.

Syntax

The syntax require that a conditional expression will begin with the operator “?<begin>” end with
the operator “?<end>” and will contain in between the operators: “?<?>” and then “?<:>”.

So, a conditional expression looks like:

?<begin> sub expression 1 ?<?> sub

expression 2 ?<:> sub expression 3 ?<end>

All that is legal in an API definition might appear before the ?<begin> and after the ?<end>
markers.

?<begin> Marks beginning of a conditional expression

?<end> Marks end of a conditional expression

?<?>

?<:>

?<&&> Logical AND

?<||> Logical OR

?<==> Equal strings

?<!=> Not equal strings
Statemate 111

OSI Definition ToolAPI Syntax Definition
Semantics
The segment defined between the ?<begin> ?<end> operators will be replaced by “sub expression
2” when “sub expression 1” evaluates to true, and by “sub expression 3” when “sub expression 1”
evaluates to false.

Take another look at example 1:

?<begin> $<prop1> ?<==> prop1val ?<?> expression when

yes ?<:> expression when no ?<end>

The API line will be expression when yes if $<prop1> evaluates to prop1val and will be expression
when no otherwise.

Syntax Definition

sub expression 1

This sub expression may be composed of the ?<&&>, ?<||>, ?<==>, ?<!=> binary operators and
operands in between.

Note
New-lines and conditional expressions are forbidden here.

Operators definition, with the highest precedence level at the top of the table:

Expressions that contains neither ?<==> nor ?<!=> are evaluated to false.

?<==> Equal strings

?<!=> Not equal strings

?<&&> Logical And

?<||> Logical Or
112 MicroC Programming Style Guide

Syntax Definition
sub expression 2 and sub expression 3:

These can consist of any legal expression in the API definition, including conditional expressions.

Example 2
Some prefix, fix code ?<begin> $<prop1> ?<==> prop1val

?<&&> $<prop1.1> ?<==> prop1.1val ?<?> ?<begin>

$<prop2> ?<==> prop2val ?<||> $<prop2.1> ?<==>

prop2.1val ?<?> exp 1.1 when yes ?<:> exp 1.2 when no

?<end> ?<:> exp 2 when no ?<end> Some postfix code,

then another conditional expression ?<begin> $<prop3>

?<==> prop3val ?<?> exp 3.1 when yes ?<:> exp 3.2 when

no ?<end>

In this example we are trying to illustrate a “full” capability expression. Begin with the inner
expression:

?<begin> $<prop2> ?<==> prop2val ?<||> $<prop2.1> ?<==>

prop2.1val ?<?> exp 1.1 when yes ?<:> exp 1.2 when no

?<end>

That expression will be evaluated to “exp 1.1 when yes” when either $<prop2> evaluates to
“prop2val” or $<prop2.1> evaluates to “prop2.1val”. When none of them is true, it will be
evaluated to “exp 1.2 when no”.

So that expression will be replaced by either “exp 1.1 when yes” or “exp 1.2 when no”, let us mark
it as “exp 1”.

Now, substituting for “exp 1”, the first conditional expression will look like:

?<begin> $<prop1> ?<==> prop1val ?<&&> $<prop1.1> ?<==>

prop1.1val ?<?> exp 1 ?<:> exp 2 when no ?<end>

That expression will be evaluated to exp 1 when $<prop1>evaluates to prop1val and $<prop1.1>
evaluates to prop1.1val. Otherwise, the expression will be evaluated to exp 2 when no.
Statemate 113

OSI Definition ToolAPI Syntax Definition
So, assuming that:

$<prop1> = prop1val

$<prop1.1> = prop1.1val

$<prop2> = prop2val DIFFER

$<prop2.1> = prop2.1val DIFFER

$<prop3> = prop3val DIFFER

The API result will be:

Some prefix, fix code exp 1.2 when no Some postfix code, then another
conditional expression exp 3.2 when no

mainloop_sc_ext OSI
MicroC includes the OSI mainloop_sc_ext, which is an extension to the simple main-loop
scheduler (mainloop_sc). This extended OSI supports the following functionality:

� Predefined time slices of 8 and 84 milliseconds.
� Segmented memory support—code and data can be mapped.
� Conditional compilation, using #ifdef for Activities.
114 MicroC Programming Style Guide

Naming Styles
Naming Styles
The following sections describe the tabs that enable you to specify the naming styles of models
and variables.

OSDT Model Naming Style

The Code Style tab includes the page Model Data - Naming Style, with two API definitions:

� Model Data Prefix()
� Model Data Postfix()

The prefix or postfix strings are added to the name of global model data elements for which the
field Its Task is global.They are added just before or after the element’s model name in the
generated code. When in Case Sensitive mode, the case-correct name is used as the element model
name (nameid). The definitions can use attributes of the model object.

Naming Style of Variables

The Variables Naming Style tab includes three new definitions for customization of the variable
names used for statecharts:

� Current State Info Variable Prefix - Specifies the prefix to use for the
currentState variable.

� Stay Same State Info Variable Prefix - Specifies the prefix to use for
the staySame variable.

� Next State Info Variable Prefix - Specifies the prefix to use for the
nextState variable.
Statemate 115

OSI Definition ToolAPI Syntax Definition
116 MicroC Programming Style Guide

Index
A
Action language 75
Actions 11
Activities

reactive 69
TASK 13

Activity charts 1, 3
data supporting generation 92
decomposition language 3
functions supporting generations 92
implementation 13, 29

ANSI C 71
Arrays

unsigned char 94

B
Begin points 60

C
C language 71
Case usage 11
Code

linking generated 99
Conditions 11

D
Data

items 11
supporting timeout/delay 93

Data Dictionary tool 1
Data types 11, 90

external 99, 100
Debug 79, 96

options 83
Decomposition 3
Decompsotion 29
Delay 93

Diagrams
activity charts 1
statecharts 1

E
End points 60
Events 11
Execution modes 85
External data types 99

F
Fixedpoint variables 101
Flowcharts 1, 4, 60

implementation 55
Functions 89

supporting activity chart generation 92
supporting statechart generation 91
supporting timeout/delay 93

G
GBA 80, 94

direct mode 80
indirect mode 80

Generation
activity charts 92

Graphical tools 1

I
Instrumentation

implementation 94
Integration

with target 77
Interrupt service rounties 22
ISR 3
ISR categories 22
Statemate 117

Index
L
Languages

action 5, 75
C 71
decomposition 3, 29
graphical 3
graphical implementation 4
supported by MicroC 3
textual 5

Linking generated code 99

M
MicroC 1

languages support by 3
programming languages supported 71

Models
names 97

N
Names

model 97
OSDT styles 97
upper and lowercase 11
variables 97

O
Objects

shift 102
wordSize 102

Operators 101
OSDR

naming styles 97
OSI 1

definition tool 107
Output

redirecting 85

P
Panels 79, 80, 94, 95
Points

begin/end 60

R
Reactive activities 69
Routines 3

interrupt service 7, 22
service interrupt 13

S
Shift 102
Specifications

mini 5, 69
OSEK/OS 22

Statecharts 1, 4
data supporting generation 91
data usage 38
functions supporting generation 91
implementation 37, 87

Subrountines 11
Subroutines

external user defined 99

T
Tables

lookup 73
truth implemenetation 67

TASK 7
basic 14
extended 16
ISR run mode 24

TASK activities 13
Test 79
Test driver 79, 85, 94, 95

retargeting 86
Time stamp 81
Timeout 93
Trace 79, 81
Truth tables 1, 5

implementation 67

U
User data 90

V
Variables

Data types 89
fixed-point 101
names 97

W
WordSize 102
118 MicroC Programming Style Guide

	MicroC Overview
	Scope of this Guide
	Languages Supported by MicroC
	Graphical Languages
	Structuring Language: Activity chart
	Decomposition Language: Activity Chart

	Activity Behavior: Graphical Implementation Languages
	Statecharts
	Flowcharts

	Textual Languages
	Truth Table
	Mini-Spec, using the Statemate Action Language

	Time Model and Related Time Operators
	Asynchronous Aspects of MicroC
	Interrupt Service Routine
	TASK

	Synchronization
	Synchronization: Semaphore
	Synchronization: Signal (TASK Event)

	Serial Communication / Messages
	Timers

	Activity Behavior: User-Defined Functions
	Truth Tables
	Lookup Tables
	Statemate Action Language

	Exact Case Usage

	Structuring Language: Activity Chart Implementation
	TASK Activities
	BASIC TASK
	EXTENDED TASK

	Interrupt Service Routine Activities
	ISR Categories

	TASK/ISR Run Modes
	Super Step Example
	Single Step Example

	Decomposition Language: Activity Chart Implementation
	Sub-Activities Code
	Communication and Synchronization Services
	Messages
	Queued Messages
	Signals
	Global Data Usage
	Semaphores

	Statechart Implementation
	Statechart Implementation: Data Usage
	Statechart Implementation: Generated Functions
	Statechart Code Frame
	Order of Function Execution

	Default State Implementation
	AndState Implementation
	Timeout Implementation
	OSEK 2.0 Implementations

	History and Deep History Implementation

	Optimization Algorithms
	Inline Default Test
	Inline Setting of the “Need Another Step” Bit
	Inline Entering and Exiting Reactions
	Merge State Sequences With No Guard on Transitions
	Timeout Optimization
	Clutch Entrance to a State Hierarchy

	Flowchart Implementation
	Flowchart Implementation
	Supported Constructs

	Labels
	Decision Expressions
	Switch Expressions
	Forbidden Constructs

	Goto Minimization
	Code Structure
	Begin/End Points
	Arrows and Labels
	Flowchart Examples

	Truth Table Implementation
	Mini-Spec Implementation
	Reactive Activities
	Procedural Activities

	ANSI C Code Usage
	Lookup Table Implementation
	Statemate Action Language Implementation
	Integration with the Target
	Instrumentation for Testing and Debugging
	GBA: Graphical Back Animation
	Direct Mode GBA
	Indirect Mode GBA

	Panels
	Trace (Time Stamp)
	Trace Tasks
	Extended Tasks
	Design Level Debugging: Trace
	Trace ISR

	Debug Options: Trace State Transitions (reportState function)
	Debug Options: Trace State Transition (reportState function)

	Test Driver
	Synchronous Execution Mode
	Asynchronous Execution Mode
	Redirecting the Output
	Retargeting the Test Driver

	Specifics of Statechart Implementation
	Generated Data Types, Data Usage, and Functions
	Data Types
	User Data
	Data Supporting Statechart Generation
	Functions Supporting Statechart Generation
	Data Supporting Activity Chart Generation
	Functions Supporting Activity Chart Generation
	Data Supporting Timeout/Delay Implementation
	Functions Supporting Timeout/Delay Implementation
	Data Supporting Instrumentation Implementation
	GBA
	Panels
	Test Driver

	Functions Supporting Instrumentation Implementation
	GBA
	Panels
	Test Driver
	Debug

	OSDT Naming Styles
	Model Names
	Variable Names

	New Function Call
	Examples

	Linking Generated Code with External Data Types
	External User-Defined Subroutines
	External Data Types

	Fixed-Point Variable Support
	Implementation Method
	Supported Operators
	Evaluating an Object’s wordSize and shift
	Unsupported Functionality
	Specifying Fixed-Point Variables
	The Code Generator
	The Generated Code

	OSI Definition ToolAPI Syntax Definition
	Conditional Expressions
	Example 1
	Syntax

	Semantics
	Syntax Definition
	sub expression 1
	sub expression 2 and sub expression 3:
	Example 2

	mainloop_sc_ext OSI
	Naming Styles
	OSDT Model Naming Style
	Naming Style of Variables

	Index

